/* Language-dependent node constructors for parse phase of GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "cp-tree.h" #include "flags.h" #include "real.h" #include "rtl.h" #include "toplev.h" #include "insn-config.h" #include "integrate.h" #include "tree-inline.h" #include "target.h" static tree bot_manip (tree *, int *, void *); static tree bot_replace (tree *, int *, void *); static tree build_cplus_array_type_1 (tree, tree); static int list_hash_eq (const void *, const void *); static hashval_t list_hash_pieces (tree, tree, tree); static hashval_t list_hash (const void *); static cp_lvalue_kind lvalue_p_1 (tree, int); static tree no_linkage_helper (tree *, int *, void *); static tree mark_local_for_remap_r (tree *, int *, void *); static tree cp_unsave_r (tree *, int *, void *); static tree build_target_expr (tree, tree); static tree count_trees_r (tree *, int *, void *); static tree verify_stmt_tree_r (tree *, int *, void *); static tree find_tree_r (tree *, int *, void *); static tree build_local_temp (tree); static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *); static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *); static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *); /* If REF is an lvalue, returns the kind of lvalue that REF is. Otherwise, returns clk_none. If TREAT_CLASS_RVALUES_AS_LVALUES is nonzero, rvalues of class type are considered lvalues. */ static cp_lvalue_kind lvalue_p_1 (tree ref, int treat_class_rvalues_as_lvalues) { cp_lvalue_kind op1_lvalue_kind = clk_none; cp_lvalue_kind op2_lvalue_kind = clk_none; if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE) return clk_ordinary; if (ref == current_class_ptr) return clk_none; switch (TREE_CODE (ref)) { /* preincrements and predecrements are valid lvals, provided what they refer to are valid lvals. */ case PREINCREMENT_EXPR: case PREDECREMENT_EXPR: case SAVE_EXPR: case UNSAVE_EXPR: case TRY_CATCH_EXPR: case WITH_CLEANUP_EXPR: case REALPART_EXPR: case IMAGPART_EXPR: return lvalue_p_1 (TREE_OPERAND (ref, 0), treat_class_rvalues_as_lvalues); case COMPONENT_REF: op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0), treat_class_rvalues_as_lvalues); if (!op1_lvalue_kind /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some situations. */ || TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL) ; else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1))) { /* Clear the ordinary bit. If this object was a class rvalue we want to preserve that information. */ op1_lvalue_kind &= ~clk_ordinary; /* The lvalue is for a bitfield. */ op1_lvalue_kind |= clk_bitfield; } else if (DECL_PACKED (TREE_OPERAND (ref, 1))) op1_lvalue_kind |= clk_packed; return op1_lvalue_kind; case STRING_CST: return clk_ordinary; case VAR_DECL: if (TREE_READONLY (ref) && ! TREE_STATIC (ref) && DECL_LANG_SPECIFIC (ref) && DECL_IN_AGGR_P (ref)) return clk_none; case INDIRECT_REF: case ARRAY_REF: case PARM_DECL: case RESULT_DECL: if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE) return clk_ordinary; break; /* A currently unresolved scope ref. */ case SCOPE_REF: abort (); case MAX_EXPR: case MIN_EXPR: op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0), treat_class_rvalues_as_lvalues); op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1), treat_class_rvalues_as_lvalues); break; case COND_EXPR: op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1), treat_class_rvalues_as_lvalues); op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2), treat_class_rvalues_as_lvalues); break; case MODIFY_EXPR: return clk_ordinary; case COMPOUND_EXPR: return lvalue_p_1 (TREE_OPERAND (ref, 1), treat_class_rvalues_as_lvalues); case TARGET_EXPR: return treat_class_rvalues_as_lvalues ? clk_class : clk_none; case CALL_EXPR: case VA_ARG_EXPR: /* Any class-valued call would be wrapped in a TARGET_EXPR. */ return clk_none; case FUNCTION_DECL: /* All functions (except non-static-member functions) are lvalues. */ return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref) ? clk_none : clk_ordinary); case NON_DEPENDENT_EXPR: /* We must consider NON_DEPENDENT_EXPRs to be lvalues so that things like "&E" where "E" is an expression with a non-dependent type work. It is safe to be lenient because an error will be issued when the template is instantiated if "E" is not an lvalue. */ return clk_ordinary; default: break; } /* If one operand is not an lvalue at all, then this expression is not an lvalue. */ if (!op1_lvalue_kind || !op2_lvalue_kind) return clk_none; /* Otherwise, it's an lvalue, and it has all the odd properties contributed by either operand. */ op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind; /* It's not an ordinary lvalue if it involves either a bit-field or a class rvalue. */ if ((op1_lvalue_kind & ~clk_ordinary) != clk_none) op1_lvalue_kind &= ~clk_ordinary; return op1_lvalue_kind; } /* Returns the kind of lvalue that REF is, in the sense of [basic.lval]. This function should really be named lvalue_p; it computes the C++ definition of lvalue. */ cp_lvalue_kind real_lvalue_p (tree ref) { return lvalue_p_1 (ref, /*treat_class_rvalues_as_lvalues=*/0); } /* This differs from real_lvalue_p in that class rvalues are considered lvalues. */ int lvalue_p (tree ref) { return (lvalue_p_1 (ref, /*class rvalue ok*/ 1) != clk_none); } /* Return nonzero if REF is an lvalue valid for this language; otherwise, print an error message and return zero. */ int lvalue_or_else (tree ref, const char* string) { if (!lvalue_p (ref)) { error ("non-lvalue in %s", string); return 0; } return 1; } /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */ static tree build_target_expr (tree decl, tree value) { tree t; t = build (TARGET_EXPR, TREE_TYPE (decl), decl, value, cxx_maybe_build_cleanup (decl), NULL_TREE); /* We always set TREE_SIDE_EFFECTS so that expand_expr does not ignore the TARGET_EXPR. If there really turn out to be no side-effects, then the optimizer should be able to get rid of whatever code is generated anyhow. */ TREE_SIDE_EFFECTS (t) = 1; return t; } /* Return an undeclared local temporary of type TYPE for use in building a TARGET_EXPR. */ static tree build_local_temp (tree type) { tree slot = build_decl (VAR_DECL, NULL_TREE, type); DECL_ARTIFICIAL (slot) = 1; DECL_CONTEXT (slot) = current_function_decl; layout_decl (slot, 0); return slot; } /* INIT is a CALL_EXPR which needs info about its target. TYPE is the type that this initialization should appear to have. Build an encapsulation of the initialization to perform and return it so that it can be processed by language-independent and language-specific expression expanders. */ tree build_cplus_new (tree type, tree init) { tree fn; tree slot; tree rval; int is_ctor; /* Make sure that we're not trying to create an instance of an abstract class. */ abstract_virtuals_error (NULL_TREE, type); if (TREE_CODE (init) != CALL_EXPR && TREE_CODE (init) != AGGR_INIT_EXPR) return convert (type, init); fn = TREE_OPERAND (init, 0); is_ctor = (TREE_CODE (fn) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0))); slot = build_local_temp (type); /* We split the CALL_EXPR into its function and its arguments here. Then, in expand_expr, we put them back together. The reason for this is that this expression might be a default argument expression. In that case, we need a new temporary every time the expression is used. That's what break_out_target_exprs does; it replaces every AGGR_INIT_EXPR with a copy that uses a fresh temporary slot. Then, expand_expr builds up a call-expression using the new slot. */ /* If we don't need to use a constructor to create an object of this type, don't mess with AGGR_INIT_EXPR. */ if (is_ctor || TREE_ADDRESSABLE (type)) { rval = build (AGGR_INIT_EXPR, type, fn, TREE_OPERAND (init, 1), slot); TREE_SIDE_EFFECTS (rval) = 1; AGGR_INIT_VIA_CTOR_P (rval) = is_ctor; } else rval = init; rval = build_target_expr (slot, rval); return rval; } /* Build a TARGET_EXPR using INIT to initialize a new temporary of the indicated TYPE. */ tree build_target_expr_with_type (tree init, tree type) { tree slot; if (TREE_CODE (init) == TARGET_EXPR) return init; else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type) && TREE_CODE (init) != COND_EXPR && TREE_CODE (init) != CONSTRUCTOR && TREE_CODE (init) != VA_ARG_EXPR) /* We need to build up a copy constructor call. COND_EXPR is a special case because we already have copies on the arms and we don't want another one here. A CONSTRUCTOR is aggregate initialization, which is handled separately. A VA_ARG_EXPR is magic creation of an aggregate; there's no additional work to be done. */ return force_rvalue (init); slot = build_local_temp (type); return build_target_expr (slot, init); } /* Like the above function, but without the checking. This function should only be used by code which is deliberately trying to subvert the type system, such as call_builtin_trap. */ tree force_target_expr (tree type, tree init) { tree slot = build_local_temp (type); return build_target_expr (slot, init); } /* Like build_target_expr_with_type, but use the type of INIT. */ tree get_target_expr (tree init) { return build_target_expr_with_type (init, TREE_TYPE (init)); } static tree build_cplus_array_type_1 (tree elt_type, tree index_type) { tree t; if (elt_type == error_mark_node || index_type == error_mark_node) return error_mark_node; /* Don't do the minimal thing just because processing_template_decl is set; we want to give string constants the right type immediately, so we don't have to fix them up at instantiation time. */ if ((processing_template_decl && index_type && TYPE_MAX_VALUE (index_type) && TREE_CODE (TYPE_MAX_VALUE (index_type)) != INTEGER_CST) || uses_template_parms (elt_type) || (index_type && uses_template_parms (index_type))) { t = make_node (ARRAY_TYPE); TREE_TYPE (t) = elt_type; TYPE_DOMAIN (t) = index_type; } else t = build_array_type (elt_type, index_type); /* Push these needs up so that initialization takes place more easily. */ TYPE_NEEDS_CONSTRUCTING (t) = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type)); TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type)); return t; } tree build_cplus_array_type (tree elt_type, tree index_type) { tree t; int type_quals = cp_type_quals (elt_type); if (type_quals != TYPE_UNQUALIFIED) elt_type = cp_build_qualified_type (elt_type, TYPE_UNQUALIFIED); t = build_cplus_array_type_1 (elt_type, index_type); if (type_quals != TYPE_UNQUALIFIED) t = cp_build_qualified_type (t, type_quals); return t; } /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles arrays correctly. In particular, if TYPE is an array of T's, and TYPE_QUALS is non-empty, returns an array of qualified T's. FLAGS determines how to deal with illformed qualifications. If tf_ignore_bad_quals is set, then bad qualifications are dropped (this is permitted if TYPE was introduced via a typedef or template type parameter). If bad qualifications are dropped and tf_warning is set, then a warning is issued for non-const qualifications. If tf_ignore_bad_quals is not set and tf_error is not set, we return error_mark_node. Otherwise, we issue an error, and ignore the qualifications. Qualification of a reference type is valid when the reference came via a typedef or template type argument. [dcl.ref] No such dispensation is provided for qualifying a function type. [dcl.fct] DR 295 queries this and the proposed resolution brings it into line with qualifying a reference. We implement the DR. We also behave in a similar manner for restricting non-pointer types. */ tree cp_build_qualified_type_real (tree type, int type_quals, tsubst_flags_t complain) { tree result; int bad_quals = TYPE_UNQUALIFIED; /* We keep bad function qualifiers separate, so that we can decide whether to implement DR 295 or not. DR 295 break existing code, unfortunately. Remove this variable to implement the defect report. */ int bad_func_quals = TYPE_UNQUALIFIED; if (type == error_mark_node) return type; if (type_quals == cp_type_quals (type)) return type; if (TREE_CODE (type) == ARRAY_TYPE) { /* In C++, the qualification really applies to the array element type. Obtain the appropriately qualified element type. */ tree t; tree element_type = cp_build_qualified_type_real (TREE_TYPE (type), type_quals, complain); if (element_type == error_mark_node) return error_mark_node; /* See if we already have an identically qualified type. */ for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) if (cp_type_quals (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type) && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)) break; if (!t) { /* Make a new array type, just like the old one, but with the appropriately qualified element type. */ t = build_type_copy (type); TREE_TYPE (t) = element_type; } /* Even if we already had this variant, we update TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case they changed since the variant was originally created. This seems hokey; if there is some way to use a previous variant *without* coming through here, TYPE_NEEDS_CONSTRUCTING will never be updated. */ TYPE_NEEDS_CONSTRUCTING (t) = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type)); TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type)); return t; } else if (TYPE_PTRMEMFUNC_P (type)) { /* For a pointer-to-member type, we can't just return a cv-qualified version of the RECORD_TYPE. If we do, we haven't changed the field that contains the actual pointer to a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */ tree t; t = TYPE_PTRMEMFUNC_FN_TYPE (type); t = cp_build_qualified_type_real (t, type_quals, complain); return build_ptrmemfunc_type (t); } /* A reference, function or method type shall not be cv qualified. [dcl.ref], [dct.fct] */ if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE) && (TREE_CODE (type) == REFERENCE_TYPE || TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)) { bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE); if (TREE_CODE (type) != REFERENCE_TYPE) bad_func_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE); type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE); } /* A restrict-qualified type must be a pointer (or reference) to object or incomplete type. */ if ((type_quals & TYPE_QUAL_RESTRICT) && TREE_CODE (type) != TEMPLATE_TYPE_PARM && TREE_CODE (type) != TYPENAME_TYPE && !POINTER_TYPE_P (type)) { bad_quals |= TYPE_QUAL_RESTRICT; type_quals &= ~TYPE_QUAL_RESTRICT; } if (bad_quals == TYPE_UNQUALIFIED) /*OK*/; else if (!(complain & (tf_error | tf_ignore_bad_quals))) return error_mark_node; else if (bad_func_quals && !(complain & tf_error)) return error_mark_node; else { if (complain & tf_ignore_bad_quals) /* We're not going to warn about constifying things that can't be constified. */ bad_quals &= ~TYPE_QUAL_CONST; bad_quals |= bad_func_quals; if (bad_quals) { tree bad_type = build_qualified_type (ptr_type_node, bad_quals); if (!(complain & tf_ignore_bad_quals) || bad_func_quals) error ("`%V' qualifiers cannot be applied to `%T'", bad_type, type); } } /* Retrieve (or create) the appropriately qualified variant. */ result = build_qualified_type (type, type_quals); /* If this was a pointer-to-method type, and we just made a copy, then we need to unshare the record that holds the cached pointer-to-member-function type, because these will be distinct between the unqualified and qualified types. */ if (result != type && TREE_CODE (type) == POINTER_TYPE && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE) TYPE_LANG_SPECIFIC (result) = NULL; return result; } /* Returns the canonical version of TYPE. In other words, if TYPE is a typedef, returns the underlying type. The cv-qualification of the type returned matches the type input; they will always be compatible types. */ tree canonical_type_variant (tree t) { return cp_build_qualified_type (TYPE_MAIN_VARIANT (t), cp_type_quals (t)); } /* Makes new binfos for the indirect bases under BINFO. T is the most derived TYPE. PREV is the previous binfo, whose TREE_CHAIN we make point to this binfo. We return the last BINFO created. The CLASSTYPE_VBASECLASSES list of T is constructed in reverse order (pre-order, depth-first, right-to-left). You must nreverse it. The BINFO_INHERITANCE of a virtual base class points to the binfo og the most derived type. The binfo's TREE_CHAIN is set to inheritance graph order, but bases for non-class types are not included (i.e. those which are dependent bases in non-instantiated templates). */ tree copy_base_binfos (tree binfo, tree t, tree prev) { tree binfos = BINFO_BASETYPES (binfo); int n, ix; if (prev) TREE_CHAIN (prev) = binfo; prev = binfo; if (binfos == NULL_TREE) return prev; n = TREE_VEC_LENGTH (binfos); /* Now copy the structure beneath BINFO. */ for (ix = 0; ix != n; ix++) { tree base_binfo = TREE_VEC_ELT (binfos, ix); tree new_binfo = NULL_TREE; if (!CLASS_TYPE_P (BINFO_TYPE (base_binfo))) { my_friendly_assert (binfo == TYPE_BINFO (t), 20030204); new_binfo = base_binfo; TREE_CHAIN (prev) = new_binfo; prev = new_binfo; BINFO_INHERITANCE_CHAIN (new_binfo) = binfo; BINFO_DEPENDENT_BASE_P (new_binfo) = 1; } else if (TREE_VIA_VIRTUAL (base_binfo)) { new_binfo = purpose_member (BINFO_TYPE (base_binfo), CLASSTYPE_VBASECLASSES (t)); if (new_binfo) new_binfo = TREE_VALUE (new_binfo); } if (!new_binfo) { new_binfo = make_binfo (BINFO_OFFSET (base_binfo), base_binfo, NULL_TREE, BINFO_VIRTUALS (base_binfo)); prev = copy_base_binfos (new_binfo, t, prev); if (TREE_VIA_VIRTUAL (base_binfo)) { CLASSTYPE_VBASECLASSES (t) = tree_cons (BINFO_TYPE (new_binfo), new_binfo, CLASSTYPE_VBASECLASSES (t)); TREE_VIA_VIRTUAL (new_binfo) = 1; BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t); } else BINFO_INHERITANCE_CHAIN (new_binfo) = binfo; } TREE_VEC_ELT (binfos, ix) = new_binfo; } return prev; } /* Hashing of lists so that we don't make duplicates. The entry point is `list_hash_canon'. */ /* Now here is the hash table. When recording a list, it is added to the slot whose index is the hash code mod the table size. Note that the hash table is used for several kinds of lists. While all these live in the same table, they are completely independent, and the hash code is computed differently for each of these. */ static GTY ((param_is (union tree_node))) htab_t list_hash_table; struct list_proxy { tree purpose; tree value; tree chain; }; /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy for a node we are thinking about adding). */ static int list_hash_eq (const void* entry, const void* data) { tree t = (tree) entry; struct list_proxy *proxy = (struct list_proxy *) data; return (TREE_VALUE (t) == proxy->value && TREE_PURPOSE (t) == proxy->purpose && TREE_CHAIN (t) == proxy->chain); } /* Compute a hash code for a list (chain of TREE_LIST nodes with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the TREE_COMMON slots), by adding the hash codes of the individual entries. */ static hashval_t list_hash_pieces (tree purpose, tree value, tree chain) { hashval_t hashcode = 0; if (chain) hashcode += TYPE_HASH (chain); if (value) hashcode += TYPE_HASH (value); else hashcode += 1007; if (purpose) hashcode += TYPE_HASH (purpose); else hashcode += 1009; return hashcode; } /* Hash an already existing TREE_LIST. */ static hashval_t list_hash (const void* p) { tree t = (tree) p; return list_hash_pieces (TREE_PURPOSE (t), TREE_VALUE (t), TREE_CHAIN (t)); } /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical object for an identical list if one already exists. Otherwise, build a new one, and record it as the canonical object. */ tree hash_tree_cons (tree purpose, tree value, tree chain) { int hashcode = 0; void **slot; struct list_proxy proxy; /* Hash the list node. */ hashcode = list_hash_pieces (purpose, value, chain); /* Create a proxy for the TREE_LIST we would like to create. We don't actually create it so as to avoid creating garbage. */ proxy.purpose = purpose; proxy.value = value; proxy.chain = chain; /* See if it is already in the table. */ slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode, INSERT); /* If not, create a new node. */ if (!*slot) *slot = tree_cons (purpose, value, chain); return *slot; } /* Constructor for hashed lists. */ tree hash_tree_chain (tree value, tree chain) { return hash_tree_cons (NULL_TREE, value, chain); } /* Similar, but used for concatenating two lists. */ tree hash_chainon (tree list1, tree list2) { if (list2 == 0) return list1; if (list1 == 0) return list2; if (TREE_CHAIN (list1) == NULL_TREE) return hash_tree_chain (TREE_VALUE (list1), list2); return hash_tree_chain (TREE_VALUE (list1), hash_chainon (TREE_CHAIN (list1), list2)); } /* Build an association between TYPE and some parameters: OFFSET is the offset added to `this' to convert it to a pointer of type `TYPE *' BINFO is the base binfo to use, if we are deriving from one. This is necessary, as we want specialized parent binfos from base classes, so that the VTABLE_NAMEs of bases are for the most derived type, instead of the simple type. VTABLE is the virtual function table with which to initialize sub-objects of type TYPE. VIRTUALS are the virtual functions sitting in VTABLE. */ tree make_binfo (tree offset, tree binfo, tree vtable, tree virtuals) { tree new_binfo = make_tree_vec (BINFO_LANG_ELTS); tree type; if (TREE_CODE (binfo) == TREE_VEC) { type = BINFO_TYPE (binfo); BINFO_DEPENDENT_BASE_P (new_binfo) = BINFO_DEPENDENT_BASE_P (binfo); } else { type = binfo; binfo = NULL_TREE; BINFO_DEPENDENT_BASE_P (new_binfo) = 1; } TREE_TYPE (new_binfo) = TYPE_MAIN_VARIANT (type); BINFO_OFFSET (new_binfo) = offset; BINFO_VTABLE (new_binfo) = vtable; BINFO_VIRTUALS (new_binfo) = virtuals; if (binfo && !BINFO_DEPENDENT_BASE_P (binfo) && BINFO_BASETYPES (binfo) != NULL_TREE) { BINFO_BASETYPES (new_binfo) = copy_node (BINFO_BASETYPES (binfo)); /* We do not need to copy the accesses, as they are read only. */ BINFO_BASEACCESSES (new_binfo) = BINFO_BASEACCESSES (binfo); } return new_binfo; } void debug_binfo (tree elem) { HOST_WIDE_INT n; tree virtuals; fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC "\nvtable type:\n", TYPE_NAME_STRING (BINFO_TYPE (elem)), TREE_INT_CST_LOW (BINFO_OFFSET (elem))); debug_tree (BINFO_TYPE (elem)); if (BINFO_VTABLE (elem)) fprintf (stderr, "vtable decl \"%s\"\n", IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem)))); else fprintf (stderr, "no vtable decl yet\n"); fprintf (stderr, "virtuals:\n"); virtuals = BINFO_VIRTUALS (elem); n = 0; while (virtuals) { tree fndecl = TREE_VALUE (virtuals); fprintf (stderr, "%s [%ld =? %ld]\n", IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)), (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl))); ++n; virtuals = TREE_CHAIN (virtuals); } } int count_functions (tree t) { int i; if (TREE_CODE (t) == FUNCTION_DECL) return 1; else if (TREE_CODE (t) == OVERLOAD) { for (i = 0; t; t = OVL_CHAIN (t)) i++; return i; } abort (); return 0; } int is_overloaded_fn (tree x) { /* A baselink is also considered an overloaded function. */ if (TREE_CODE (x) == OFFSET_REF) x = TREE_OPERAND (x, 1); if (BASELINK_P (x)) x = BASELINK_FUNCTIONS (x); return (TREE_CODE (x) == FUNCTION_DECL || TREE_CODE (x) == TEMPLATE_ID_EXPR || DECL_FUNCTION_TEMPLATE_P (x) || TREE_CODE (x) == OVERLOAD); } int really_overloaded_fn (tree x) { /* A baselink is also considered an overloaded function. */ if (TREE_CODE (x) == OFFSET_REF) x = TREE_OPERAND (x, 1); if (BASELINK_P (x)) x = BASELINK_FUNCTIONS (x); return ((TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)) || DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x)) || TREE_CODE (x) == TEMPLATE_ID_EXPR); } tree get_first_fn (tree from) { my_friendly_assert (is_overloaded_fn (from), 9); /* A baselink is also considered an overloaded function. */ if (BASELINK_P (from)) from = BASELINK_FUNCTIONS (from); return OVL_CURRENT (from); } /* Returns nonzero if T is a ->* or .* expression that refers to a member function. */ int bound_pmf_p (tree t) { return (TREE_CODE (t) == OFFSET_REF && TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (t, 1)))); } /* Return a new OVL node, concatenating it with the old one. */ tree ovl_cons (tree decl, tree chain) { tree result = make_node (OVERLOAD); TREE_TYPE (result) = unknown_type_node; OVL_FUNCTION (result) = decl; TREE_CHAIN (result) = chain; return result; } /* Build a new overloaded function. If this is the first one, just return it; otherwise, ovl_cons the _DECLs */ tree build_overload (tree decl, tree chain) { if (! chain && TREE_CODE (decl) != TEMPLATE_DECL) return decl; if (chain && TREE_CODE (chain) != OVERLOAD) chain = ovl_cons (chain, NULL_TREE); return ovl_cons (decl, chain); } #define PRINT_RING_SIZE 4 const char * cxx_printable_name (tree decl, int v) { static tree decl_ring[PRINT_RING_SIZE]; static char *print_ring[PRINT_RING_SIZE]; static int ring_counter; int i; /* Only cache functions. */ if (v < 2 || TREE_CODE (decl) != FUNCTION_DECL || DECL_LANG_SPECIFIC (decl) == 0) return lang_decl_name (decl, v); /* See if this print name is lying around. */ for (i = 0; i < PRINT_RING_SIZE; i++) if (decl_ring[i] == decl) /* yes, so return it. */ return print_ring[i]; if (++ring_counter == PRINT_RING_SIZE) ring_counter = 0; if (current_function_decl != NULL_TREE) { if (decl_ring[ring_counter] == current_function_decl) ring_counter += 1; if (ring_counter == PRINT_RING_SIZE) ring_counter = 0; if (decl_ring[ring_counter] == current_function_decl) abort (); } if (print_ring[ring_counter]) free (print_ring[ring_counter]); print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v)); decl_ring[ring_counter] = decl; return print_ring[ring_counter]; } /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions listed in RAISES. */ tree build_exception_variant (tree type, tree raises) { tree v = TYPE_MAIN_VARIANT (type); int type_quals = TYPE_QUALS (type); for (; v; v = TYPE_NEXT_VARIANT (v)) if (TYPE_QUALS (v) == type_quals && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1)) return v; /* Need to build a new variant. */ v = build_type_copy (type); TYPE_RAISES_EXCEPTIONS (v) = raises; return v; } /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template arguments. */ tree bind_template_template_parm (tree t, tree newargs) { tree decl = TYPE_NAME (t); tree t2; t2 = make_aggr_type (BOUND_TEMPLATE_TEMPLATE_PARM); decl = build_decl (TYPE_DECL, DECL_NAME (decl), NULL_TREE); /* These nodes have to be created to reflect new TYPE_DECL and template arguments. */ TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t)); TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl; TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2) = tree_cons (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs, NULL_TREE); TREE_TYPE (decl) = t2; TYPE_NAME (t2) = decl; TYPE_STUB_DECL (t2) = decl; TYPE_SIZE (t2) = 0; return t2; } /* Called from count_trees via walk_tree. */ static tree count_trees_r (tree* tp ATTRIBUTE_UNUSED , int* walk_subtrees ATTRIBUTE_UNUSED , void* data) { ++ *((int*) data); return NULL_TREE; } /* Debugging function for measuring the rough complexity of a tree representation. */ int count_trees (tree t) { int n_trees = 0; walk_tree_without_duplicates (&t, count_trees_r, &n_trees); return n_trees; } /* Called from verify_stmt_tree via walk_tree. */ static tree verify_stmt_tree_r (tree* tp, int* walk_subtrees ATTRIBUTE_UNUSED , void* data) { tree t = *tp; htab_t *statements = (htab_t *) data; void **slot; if (!STATEMENT_CODE_P (TREE_CODE (t))) return NULL_TREE; /* If this statement is already present in the hash table, then there is a circularity in the statement tree. */ if (htab_find (*statements, t)) abort (); slot = htab_find_slot (*statements, t, INSERT); *slot = t; return NULL_TREE; } /* Debugging function to check that the statement T has not been corrupted. For now, this function simply checks that T contains no circularities. */ void verify_stmt_tree (tree t) { htab_t statements; statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL); walk_tree (&t, verify_stmt_tree_r, &statements, NULL); htab_delete (statements); } /* Called from find_tree via walk_tree. */ static tree find_tree_r (tree* tp, int* walk_subtrees ATTRIBUTE_UNUSED , void* data) { if (*tp == (tree) data) return (tree) data; return NULL_TREE; } /* Returns X if X appears in the tree structure rooted at T. */ tree find_tree (tree t, tree x) { return walk_tree_without_duplicates (&t, find_tree_r, x); } /* Passed to walk_tree. Checks for the use of types with no linkage. */ static tree no_linkage_helper (tree* tp, int* walk_subtrees ATTRIBUTE_UNUSED , void* data ATTRIBUTE_UNUSED ) { tree t = *tp; if (TYPE_P (t) && (CLASS_TYPE_P (t) || TREE_CODE (t) == ENUMERAL_TYPE) && (decl_function_context (TYPE_MAIN_DECL (t)) || TYPE_ANONYMOUS_P (t))) return t; return NULL_TREE; } /* Check if the type T depends on a type with no linkage and if so, return it. */ tree no_linkage_check (tree t) { /* There's no point in checking linkage on template functions; we can't know their complete types. */ if (processing_template_decl) return NULL_TREE; t = walk_tree_without_duplicates (&t, no_linkage_helper, NULL); if (t != error_mark_node) return t; return NULL_TREE; } #ifdef GATHER_STATISTICS extern int depth_reached; #endif void cxx_print_statistics (void) { print_search_statistics (); print_class_statistics (); #ifdef GATHER_STATISTICS fprintf (stderr, "maximum template instantiation depth reached: %d\n", depth_reached); #endif } /* Return, as an INTEGER_CST node, the number of elements for TYPE (which is an ARRAY_TYPE). This counts only elements of the top array. */ tree array_type_nelts_top (tree type) { return fold (build (PLUS_EXPR, sizetype, array_type_nelts (type), integer_one_node)); } /* Return, as an INTEGER_CST node, the number of elements for TYPE (which is an ARRAY_TYPE). This one is a recursive count of all ARRAY_TYPEs that are clumped together. */ tree array_type_nelts_total (tree type) { tree sz = array_type_nelts_top (type); type = TREE_TYPE (type); while (TREE_CODE (type) == ARRAY_TYPE) { tree n = array_type_nelts_top (type); sz = fold (build (MULT_EXPR, sizetype, sz, n)); type = TREE_TYPE (type); } return sz; } /* Called from break_out_target_exprs via mapcar. */ static tree bot_manip (tree* tp, int* walk_subtrees, void* data) { splay_tree target_remap = ((splay_tree) data); tree t = *tp; if (TREE_CONSTANT (t)) { /* There can't be any TARGET_EXPRs or their slot variables below this point. We used to check !TREE_SIDE_EFFECTS, but then we failed to copy an ADDR_EXPR of the slot VAR_DECL. */ *walk_subtrees = 0; return NULL_TREE; } if (TREE_CODE (t) == TARGET_EXPR) { tree u; if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR) { mark_used (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 1), 0), 0)); u = build_cplus_new (TREE_TYPE (t), break_out_target_exprs (TREE_OPERAND (t, 1))); } else { u = build_target_expr_with_type (break_out_target_exprs (TREE_OPERAND (t, 1)), TREE_TYPE (t)); } /* Map the old variable to the new one. */ splay_tree_insert (target_remap, (splay_tree_key) TREE_OPERAND (t, 0), (splay_tree_value) TREE_OPERAND (u, 0)); /* Replace the old expression with the new version. */ *tp = u; /* We don't have to go below this point; the recursive call to break_out_target_exprs will have handled anything below this point. */ *walk_subtrees = 0; return NULL_TREE; } else if (TREE_CODE (t) == CALL_EXPR) mark_used (TREE_OPERAND (TREE_OPERAND (t, 0), 0)); /* Make a copy of this node. */ return copy_tree_r (tp, walk_subtrees, NULL); } /* Replace all remapped VAR_DECLs in T with their new equivalents. DATA is really a splay-tree mapping old variables to new variables. */ static tree bot_replace (tree* t, int* walk_subtrees ATTRIBUTE_UNUSED , void* data) { splay_tree target_remap = ((splay_tree) data); if (TREE_CODE (*t) == VAR_DECL) { splay_tree_node n = splay_tree_lookup (target_remap, (splay_tree_key) *t); if (n) *t = (tree) n->value; } return NULL_TREE; } /* When we parse a default argument expression, we may create temporary variables via TARGET_EXPRs. When we actually use the default-argument expression, we make a copy of the expression, but we must replace the temporaries with appropriate local versions. */ tree break_out_target_exprs (tree t) { static int target_remap_count; static splay_tree target_remap; if (!target_remap_count++) target_remap = splay_tree_new (splay_tree_compare_pointers, /*splay_tree_delete_key_fn=*/NULL, /*splay_tree_delete_value_fn=*/NULL); walk_tree (&t, bot_manip, target_remap, NULL); walk_tree (&t, bot_replace, target_remap, NULL); if (!--target_remap_count) { splay_tree_delete (target_remap); target_remap = NULL; } return t; } /* Similar to `build_nt', but for template definitions of dependent expressions */ tree build_min_nt (enum tree_code code, ...) { register tree t; register int length; register int i; va_list p; va_start (p, code); t = make_node (code); length = TREE_CODE_LENGTH (code); TREE_COMPLEXITY (t) = input_line; for (i = 0; i < length; i++) { tree x = va_arg (p, tree); TREE_OPERAND (t, i) = x; } va_end (p); return t; } /* Similar to `build', but for template definitions. */ tree build_min (enum tree_code code, tree tt, ...) { register tree t; register int length; register int i; va_list p; va_start (p, tt); t = make_node (code); length = TREE_CODE_LENGTH (code); TREE_TYPE (t) = tt; TREE_COMPLEXITY (t) = input_line; for (i = 0; i < length; i++) { tree x = va_arg (p, tree); TREE_OPERAND (t, i) = x; if (x && TREE_SIDE_EFFECTS (x)) TREE_SIDE_EFFECTS (t) = 1; } va_end (p); return t; } /* Similar to `build', but for template definitions of non-dependent expressions. NON_DEP is the non-dependent expression that has been built. */ tree build_min_non_dep (enum tree_code code, tree non_dep, ...) { register tree t; register int length; register int i; va_list p; va_start (p, non_dep); t = make_node (code); length = TREE_CODE_LENGTH (code); TREE_TYPE (t) = TREE_TYPE (non_dep); TREE_COMPLEXITY (t) = input_line; TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep); for (i = 0; i < length; i++) { tree x = va_arg (p, tree); TREE_OPERAND (t, i) = x; } if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR) /* This should not be considered a COMPOUND_EXPR, because it resolves to an overload. */ COMPOUND_EXPR_OVERLOADED (t) = 1; va_end (p); return t; } /* Returns an INTEGER_CST (of type `int') corresponding to I. Multiple calls with the same value of I may or may not yield the same node; therefore, callers should never modify the node returned. */ static GTY(()) tree shared_int_cache[256]; tree build_shared_int_cst (int i) { if (i >= 256) return build_int_2 (i, 0); if (!shared_int_cache[i]) shared_int_cache[i] = build_int_2 (i, 0); return shared_int_cache[i]; } tree get_type_decl (tree t) { if (TREE_CODE (t) == TYPE_DECL) return t; if (TYPE_P (t)) return TYPE_STUB_DECL (t); if (t == error_mark_node) return t; abort (); /* Stop compiler from complaining control reaches end of non-void function. */ return 0; } /* Return first vector element whose BINFO_TYPE is ELEM. Return 0 if ELEM is not in VEC. VEC may be NULL_TREE. */ tree vec_binfo_member (tree elem, tree vec) { int i; if (vec) for (i = 0; i < TREE_VEC_LENGTH (vec); ++i) if (same_type_p (elem, BINFO_TYPE (TREE_VEC_ELT (vec, i)))) return TREE_VEC_ELT (vec, i); return NULL_TREE; } /* Returns the namespace that contains DECL, whether directly or indirectly. */ tree decl_namespace_context (tree decl) { while (1) { if (TREE_CODE (decl) == NAMESPACE_DECL) return decl; else if (TYPE_P (decl)) decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl)); else decl = CP_DECL_CONTEXT (decl); } } /* Return truthvalue of whether T1 is the same tree structure as T2. Return 1 if they are the same. Return 0 if they are different. */ bool cp_tree_equal (tree t1, tree t2) { register enum tree_code code1, code2; if (t1 == t2) return true; if (!t1 || !t2) return false; for (code1 = TREE_CODE (t1); code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR; code1 = TREE_CODE (t1)) t1 = TREE_OPERAND (t1, 0); for (code2 = TREE_CODE (t2); code2 == NOP_EXPR || code2 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR; code2 = TREE_CODE (t2)) t2 = TREE_OPERAND (t2, 0); /* They might have become equal now. */ if (t1 == t2) return true; if (code1 != code2) return false; switch (code1) { case INTEGER_CST: return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2) && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2); case REAL_CST: return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2)); case STRING_CST: return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2) && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2), TREE_STRING_LENGTH (t1)); case CONSTRUCTOR: /* We need to do this when determining whether or not two non-type pointer to member function template arguments are the same. */ if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)) /* The first operand is RTL. */ && TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0))) return false; return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); case TREE_LIST: if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))) return false; if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2))) return false; return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2)); case SAVE_EXPR: return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); case CALL_EXPR: if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))) return false; return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); case TARGET_EXPR: { tree o1 = TREE_OPERAND (t1, 0); tree o2 = TREE_OPERAND (t2, 0); /* Special case: if either target is an unallocated VAR_DECL, it means that it's going to be unified with whatever the TARGET_EXPR is really supposed to initialize, so treat it as being equivalent to anything. */ if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE && !DECL_RTL_SET_P (o1)) /*Nop*/; else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE && !DECL_RTL_SET_P (o2)) /*Nop*/; else if (!cp_tree_equal (o1, o2)) return false; return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); } case WITH_CLEANUP_EXPR: if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))) return false; return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1)); case COMPONENT_REF: if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1)) return false; return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); case VAR_DECL: case PARM_DECL: case CONST_DECL: case FUNCTION_DECL: case TEMPLATE_DECL: case IDENTIFIER_NODE: return false; case TEMPLATE_PARM_INDEX: return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2) && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2) && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)), TREE_TYPE (TEMPLATE_PARM_DECL (t2)))); case TEMPLATE_ID_EXPR: { unsigned ix; tree vec1, vec2; if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))) return false; vec1 = TREE_OPERAND (t1, 1); vec2 = TREE_OPERAND (t2, 1); if (!vec1 || !vec2) return !vec1 && !vec2; if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2)) return false; for (ix = TREE_VEC_LENGTH (vec1); ix--;) if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix), TREE_VEC_ELT (vec2, ix))) return false; return true; } case SIZEOF_EXPR: case ALIGNOF_EXPR: { tree o1 = TREE_OPERAND (t1, 0); tree o2 = TREE_OPERAND (t2, 0); if (TREE_CODE (o1) != TREE_CODE (o2)) return false; if (TYPE_P (o1)) return same_type_p (o1, o2); else return cp_tree_equal (o1, o2); } case PTRMEM_CST: /* Two pointer-to-members are the same if they point to the same field or function in the same class. */ if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2)) return false; return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2)); default: break; } switch (TREE_CODE_CLASS (code1)) { case '1': case '2': case '<': case 'e': case 'r': case 's': { int i; for (i = 0; i < TREE_CODE_LENGTH (code1); ++i) if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i))) return false; return true; } case 't': return same_type_p (t1, t2); } my_friendly_assert (0, 20030617); return false; } /* Build a wrapper around a 'struct z_candidate' so we can use it as a tree. */ tree build_zc_wrapper (struct z_candidate* ptr) { tree t = make_node (WRAPPER); WRAPPER_ZC (t) = ptr; return t; } /* The type of ARG when used as an lvalue. */ tree lvalue_type (tree arg) { tree type = TREE_TYPE (arg); if (TREE_CODE (arg) == OVERLOAD) type = unknown_type_node; return type; } /* The type of ARG for printing error messages; denote lvalues with reference types. */ tree error_type (tree arg) { tree type = TREE_TYPE (arg); if (TREE_CODE (type) == ARRAY_TYPE) ; else if (TREE_CODE (type) == ERROR_MARK) ; else if (real_lvalue_p (arg)) type = build_reference_type (lvalue_type (arg)); else if (IS_AGGR_TYPE (type)) type = lvalue_type (arg); return type; } /* Does FUNCTION use a variable-length argument list? */ int varargs_function_p (tree function) { tree parm = TYPE_ARG_TYPES (TREE_TYPE (function)); for (; parm; parm = TREE_CHAIN (parm)) if (TREE_VALUE (parm) == void_type_node) return 0; return 1; } /* Returns 1 if decl is a member of a class. */ int member_p (tree decl) { const tree ctx = DECL_CONTEXT (decl); return (ctx && TYPE_P (ctx)); } /* Create a placeholder for member access where we don't actually have an object that the access is against. */ tree build_dummy_object (tree type) { tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node); return build_indirect_ref (decl, NULL); } /* We've gotten a reference to a member of TYPE. Return *this if appropriate, or a dummy object otherwise. If BINFOP is non-0, it is filled with the binfo path from current_class_type to TYPE, or 0. */ tree maybe_dummy_object (tree type, tree* binfop) { tree decl, context; tree binfo; if (current_class_type && (binfo = lookup_base (current_class_type, type, ba_ignore | ba_quiet, NULL))) context = current_class_type; else { /* Reference from a nested class member function. */ context = type; binfo = TYPE_BINFO (type); } if (binfop) *binfop = binfo; if (current_class_ref && context == current_class_type /* Kludge: Make sure that current_class_type is actually correct. It might not be if we're in the middle of tsubst_default_argument. */ && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)), current_class_type)) decl = current_class_ref; else decl = build_dummy_object (context); return decl; } /* Returns 1 if OB is a placeholder object, or a pointer to one. */ int is_dummy_object (tree ob) { if (TREE_CODE (ob) == INDIRECT_REF) ob = TREE_OPERAND (ob, 0); return (TREE_CODE (ob) == NOP_EXPR && TREE_OPERAND (ob, 0) == void_zero_node); } /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */ int pod_type_p (tree t) { t = strip_array_types (t); if (t == error_mark_node) return 1; if (INTEGRAL_TYPE_P (t)) return 1; /* integral, character or enumeral type */ if (FLOAT_TYPE_P (t)) return 1; if (TYPE_PTR_P (t)) return 1; /* pointer to non-member */ if (TYPE_PTR_TO_MEMBER_P (t)) return 1; /* pointer to member */ if (! CLASS_TYPE_P (t)) return 0; /* other non-class type (reference or function) */ if (CLASSTYPE_NON_POD_P (t)) return 0; return 1; } /* Returns 1 iff zero initialization of type T means actually storing zeros in it. */ int zero_init_p (tree t) { t = strip_array_types (t); if (t == error_mark_node) return 1; /* NULL pointers to data members are initialized with -1. */ if (TYPE_PTRMEM_P (t)) return 0; /* Classes that contain types that can't be zero-initialized, cannot be zero-initialized themselves. */ if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t)) return 0; return 1; } /* Table of valid C++ attributes. */ const struct attribute_spec cxx_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ { "java_interface", 0, 0, false, false, false, handle_java_interface_attribute }, { "com_interface", 0, 0, false, false, false, handle_com_interface_attribute }, { "init_priority", 1, 1, true, false, false, handle_init_priority_attribute }, { NULL, 0, 0, false, false, false, NULL } }; /* Handle a "java_interface" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_java_interface_attribute (tree* node, tree name, tree args ATTRIBUTE_UNUSED , int flags, bool* no_add_attrs) { if (DECL_P (*node) || !CLASS_TYPE_P (*node) || !TYPE_FOR_JAVA (*node)) { error ("`%s' attribute can only be applied to Java class definitions", IDENTIFIER_POINTER (name)); *no_add_attrs = true; return NULL_TREE; } if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE)) *node = build_type_copy (*node); TYPE_JAVA_INTERFACE (*node) = 1; return NULL_TREE; } /* Handle a "com_interface" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_com_interface_attribute (tree* node, tree name, tree args ATTRIBUTE_UNUSED , int flags ATTRIBUTE_UNUSED , bool* no_add_attrs) { static int warned; *no_add_attrs = true; if (DECL_P (*node) || !CLASS_TYPE_P (*node) || *node != TYPE_MAIN_VARIANT (*node)) { warning ("`%s' attribute can only be applied to class definitions", IDENTIFIER_POINTER (name)); return NULL_TREE; } if (!warned++) warning ("`%s' is obsolete; g++ vtables are now COM-compatible by default", IDENTIFIER_POINTER (name)); return NULL_TREE; } /* Handle an "init_priority" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_init_priority_attribute (tree* node, tree name, tree args, int flags ATTRIBUTE_UNUSED , bool* no_add_attrs) { tree initp_expr = TREE_VALUE (args); tree decl = *node; tree type = TREE_TYPE (decl); int pri; STRIP_NOPS (initp_expr); if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST) { error ("requested init_priority is not an integer constant"); *no_add_attrs = true; return NULL_TREE; } pri = TREE_INT_CST_LOW (initp_expr); type = strip_array_types (type); if (decl == NULL_TREE || TREE_CODE (decl) != VAR_DECL || !TREE_STATIC (decl) || DECL_EXTERNAL (decl) || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE) /* Static objects in functions are initialized the first time control passes through that function. This is not precise enough to pin down an init_priority value, so don't allow it. */ || current_function_decl) { error ("can only use `%s' attribute on file-scope definitions of objects of class type", IDENTIFIER_POINTER (name)); *no_add_attrs = true; return NULL_TREE; } if (pri > MAX_INIT_PRIORITY || pri <= 0) { error ("requested init_priority is out of range"); *no_add_attrs = true; return NULL_TREE; } /* Check for init_priorities that are reserved for language and runtime support implementations.*/ if (pri <= MAX_RESERVED_INIT_PRIORITY) { warning ("requested init_priority is reserved for internal use"); } if (SUPPORTS_INIT_PRIORITY) { DECL_INIT_PRIORITY (decl) = pri; return NULL_TREE; } else { error ("`%s' attribute is not supported on this platform", IDENTIFIER_POINTER (name)); *no_add_attrs = true; return NULL_TREE; } } /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the thing pointed to by the constant. */ tree make_ptrmem_cst (tree type, tree member) { tree ptrmem_cst = make_node (PTRMEM_CST); /* If would seem a great convenience if make_node would set TREE_CONSTANT for things of class `c', but it does not. */ TREE_CONSTANT (ptrmem_cst) = 1; TREE_TYPE (ptrmem_cst) = type; PTRMEM_CST_MEMBER (ptrmem_cst) = member; return ptrmem_cst; } /* Apply FUNC to all language-specific sub-trees of TP in a pre-order traversal. Called from walk_tree(). */ tree cp_walk_subtrees (tree* tp, int* walk_subtrees_p, walk_tree_fn func, void* data, void* htab) { enum tree_code code = TREE_CODE (*tp); tree result; #define WALK_SUBTREE(NODE) \ do \ { \ result = walk_tree (&(NODE), func, data, htab); \ if (result) \ return result; \ } \ while (0) /* Not one of the easy cases. We must explicitly go through the children. */ switch (code) { case DEFAULT_ARG: case TEMPLATE_TEMPLATE_PARM: case BOUND_TEMPLATE_TEMPLATE_PARM: case UNBOUND_CLASS_TEMPLATE: case TEMPLATE_PARM_INDEX: case TEMPLATE_TYPE_PARM: case TYPENAME_TYPE: case TYPEOF_TYPE: case BASELINK: /* None of these have subtrees other than those already walked above. */ *walk_subtrees_p = 0; break; case PTRMEM_CST: WALK_SUBTREE (TREE_TYPE (*tp)); *walk_subtrees_p = 0; break; case TREE_LIST: WALK_SUBTREE (TREE_PURPOSE (*tp)); break; case OVERLOAD: WALK_SUBTREE (OVL_FUNCTION (*tp)); WALK_SUBTREE (OVL_CHAIN (*tp)); *walk_subtrees_p = 0; break; case RECORD_TYPE: if (TYPE_PTRMEMFUNC_P (*tp)) WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp)); break; default: break; } /* We didn't find what we were looking for. */ return NULL_TREE; #undef WALK_SUBTREE } /* Decide whether there are language-specific reasons to not inline a function as a tree. */ int cp_cannot_inline_tree_fn (tree* fnp) { tree fn = *fnp; /* We can inline a template instantiation only if it's fully instantiated. */ if (DECL_TEMPLATE_INFO (fn) && TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn))) { /* Don't instantiate functions that are not going to be inlined. */ if (!DECL_INLINE (DECL_TEMPLATE_RESULT (template_for_substitution (fn)))) return 1; fn = *fnp = instantiate_decl (fn, /*defer_ok=*/0); if (TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn))) return 1; } if (flag_really_no_inline && lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) == NULL) return 1; /* Don't auto-inline anything that might not be bound within this unit of translation. */ if (!DECL_DECLARED_INLINE_P (fn) && !(*targetm.binds_local_p) (fn)) { DECL_UNINLINABLE (fn) = 1; return 1; } if (varargs_function_p (fn)) { DECL_UNINLINABLE (fn) = 1; return 1; } if (! function_attribute_inlinable_p (fn)) { DECL_UNINLINABLE (fn) = 1; return 1; } return 0; } /* Add any pending functions other than the current function (already handled by the caller), that thus cannot be inlined, to FNS_P, then return the latest function added to the array, PREV_FN. */ tree cp_add_pending_fn_decls (void* fns_p, tree prev_fn) { varray_type *fnsp = (varray_type *)fns_p; struct saved_scope *s; for (s = scope_chain; s; s = s->prev) if (s->function_decl && s->function_decl != prev_fn) { VARRAY_PUSH_TREE (*fnsp, s->function_decl); prev_fn = s->function_decl; } return prev_fn; } /* Determine whether a tree node is an OVERLOAD node. Used to decide whether to copy a node or to preserve its chain when inlining a function. */ int cp_is_overload_p (tree t) { return TREE_CODE (t) == OVERLOAD; } /* Determine whether VAR is a declaration of an automatic variable in function FN. */ int cp_auto_var_in_fn_p (tree var, tree fn) { return (DECL_P (var) && DECL_CONTEXT (var) == fn && nonstatic_local_decl_p (var)); } /* Tell whether a declaration is needed for the RESULT of a function FN being inlined into CALLER or if the top node of target_exprs is to be used. */ tree cp_copy_res_decl_for_inlining (tree result, tree fn, tree caller, void* decl_map_, int* need_decl, tree return_slot_addr) { splay_tree decl_map = (splay_tree)decl_map_; tree var; /* If FN returns an aggregate then the caller will always pass the address of the return slot explicitly. If we were just to create a new VAR_DECL here, then the result of this function would be copied (bitwise) into the variable initialized by the TARGET_EXPR. That's incorrect, so we must transform any references to the RESULT into references to the target. */ /* We should have an explicit return slot iff the return type is TREE_ADDRESSABLE. See simplify_aggr_init_expr. */ if (TREE_ADDRESSABLE (TREE_TYPE (result)) != (return_slot_addr != NULL_TREE)) abort (); *need_decl = !return_slot_addr; if (return_slot_addr) { var = build_indirect_ref (return_slot_addr, ""); if (! same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (var), TREE_TYPE (result))) abort (); } /* Otherwise, make an appropriate copy. */ else var = copy_decl_for_inlining (result, fn, caller); if (DECL_SAVED_FUNCTION_DATA (fn)) { tree nrv = DECL_SAVED_FUNCTION_DATA (fn)->x_return_value; if (nrv) { /* We have a named return value; copy the name and source position so we can get reasonable debugging information, and register the return variable as its equivalent. */ if (TREE_CODE (var) == VAR_DECL /* But not if we're initializing a variable from the enclosing function which already has its own name. */ && DECL_NAME (var) == NULL_TREE) { DECL_NAME (var) = DECL_NAME (nrv); DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (nrv); DECL_ABSTRACT_ORIGIN (var) = DECL_ORIGIN (nrv); /* Don't lose initialization info. */ DECL_INITIAL (var) = DECL_INITIAL (nrv); /* Don't forget that it needs to go in the stack. */ TREE_ADDRESSABLE (var) = TREE_ADDRESSABLE (nrv); } splay_tree_insert (decl_map, (splay_tree_key) nrv, (splay_tree_value) var); } } return var; } /* Record that we're about to start inlining FN, and return nonzero if that's OK. Used for lang_hooks.tree_inlining.start_inlining. */ int cp_start_inlining (tree fn) { if (DECL_TEMPLATE_INSTANTIATION (fn)) return push_tinst_level (fn); else return 1; } /* Record that we're done inlining FN. Used for lang_hooks.tree_inlining.end_inlining. */ void cp_end_inlining (tree fn ATTRIBUTE_UNUSED ) { if (DECL_TEMPLATE_INSTANTIATION (fn)) pop_tinst_level (); } /* Initialize tree.c. */ void init_tree (void) { list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL); } /* Called via walk_tree. If *TP points to a DECL_STMT for a local declaration, copies the declaration and enters it in the splay_tree pointed to by DATA (which is really a `splay_tree *'). */ static tree mark_local_for_remap_r (tree* tp, int* walk_subtrees ATTRIBUTE_UNUSED , void* data) { tree t = *tp; splay_tree st = (splay_tree) data; tree decl; if (TREE_CODE (t) == DECL_STMT && nonstatic_local_decl_p (DECL_STMT_DECL (t))) decl = DECL_STMT_DECL (t); else if (TREE_CODE (t) == LABEL_STMT) decl = LABEL_STMT_LABEL (t); else if (TREE_CODE (t) == TARGET_EXPR && nonstatic_local_decl_p (TREE_OPERAND (t, 0))) decl = TREE_OPERAND (t, 0); else if (TREE_CODE (t) == CASE_LABEL) decl = CASE_LABEL_DECL (t); else decl = NULL_TREE; if (decl) { tree copy; /* Make a copy. */ copy = copy_decl_for_inlining (decl, DECL_CONTEXT (decl), DECL_CONTEXT (decl)); /* Remember the copy. */ splay_tree_insert (st, (splay_tree_key) decl, (splay_tree_value) copy); } return NULL_TREE; } /* Called via walk_tree when an expression is unsaved. Using the splay_tree pointed to by ST (which is really a `splay_tree'), remaps all local declarations to appropriate replacements. */ static tree cp_unsave_r (tree* tp, int* walk_subtrees, void* data) { splay_tree st = (splay_tree) data; splay_tree_node n; /* Only a local declaration (variable or label). */ if (nonstatic_local_decl_p (*tp)) { /* Lookup the declaration. */ n = splay_tree_lookup (st, (splay_tree_key) *tp); /* If it's there, remap it. */ if (n) *tp = (tree) n->value; } else if (TREE_CODE (*tp) == SAVE_EXPR) remap_save_expr (tp, st, current_function_decl, walk_subtrees); else { copy_tree_r (tp, walk_subtrees, NULL); /* Do whatever unsaving is required. */ unsave_expr_1 (*tp); } /* Keep iterating. */ return NULL_TREE; } /* Called whenever an expression needs to be unsaved. */ tree cxx_unsave_expr_now (tree tp) { splay_tree st; /* Create a splay-tree to map old local variable declarations to new ones. */ st = splay_tree_new (splay_tree_compare_pointers, NULL, NULL); /* Walk the tree once figuring out what needs to be remapped. */ walk_tree (&tp, mark_local_for_remap_r, st, NULL); /* Walk the tree again, copying, remapping, and unsaving. */ walk_tree (&tp, cp_unsave_r, st, NULL); /* Clean up. */ splay_tree_delete (st); return tp; } /* Returns the kind of special function that DECL (a FUNCTION_DECL) is. Note that sfk_none is zero, so this function can be used as a predicate to test whether or not DECL is a special function. */ special_function_kind special_function_p (tree decl) { /* Rather than doing all this stuff with magic names, we should probably have a field of type `special_function_kind' in DECL_LANG_SPECIFIC. */ if (DECL_COPY_CONSTRUCTOR_P (decl)) return sfk_copy_constructor; if (DECL_CONSTRUCTOR_P (decl)) return sfk_constructor; if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR) return sfk_assignment_operator; if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl)) return sfk_destructor; if (DECL_COMPLETE_DESTRUCTOR_P (decl)) return sfk_complete_destructor; if (DECL_BASE_DESTRUCTOR_P (decl)) return sfk_base_destructor; if (DECL_DELETING_DESTRUCTOR_P (decl)) return sfk_deleting_destructor; if (DECL_CONV_FN_P (decl)) return sfk_conversion; return sfk_none; } /* Returns true if and only if NODE is a name, i.e., a node created by the parser when processing an id-expression. */ bool name_p (tree node) { if (TREE_CODE (node) == TEMPLATE_ID_EXPR) node = TREE_OPERAND (node, 0); return (/* An ordinary unqualified name. */ TREE_CODE (node) == IDENTIFIER_NODE /* A destructor name. */ || TREE_CODE (node) == BIT_NOT_EXPR /* A qualified name. */ || TREE_CODE (node) == SCOPE_REF); } /* Returns nonzero if TYPE is a character type, including wchar_t. */ int char_type_p (tree type) { return (same_type_p (type, char_type_node) || same_type_p (type, unsigned_char_type_node) || same_type_p (type, signed_char_type_node) || same_type_p (type, wchar_type_node)); } /* Returns the kind of linkage associated with the indicated DECL. Th value returned is as specified by the language standard; it is independent of implementation details regarding template instantiation, etc. For example, it is possible that a declaration to which this function assigns external linkage would not show up as a global symbol when you run `nm' on the resulting object file. */ linkage_kind decl_linkage (tree decl) { /* This function doesn't attempt to calculate the linkage from first principles as given in [basic.link]. Instead, it makes use of the fact that we have already set TREE_PUBLIC appropriately, and then handles a few special cases. Ideally, we would calculate linkage first, and then transform that into a concrete implementation. */ /* Things that don't have names have no linkage. */ if (!DECL_NAME (decl)) return lk_none; /* Things that are TREE_PUBLIC have external linkage. */ if (TREE_PUBLIC (decl)) return lk_external; /* Some things that are not TREE_PUBLIC have external linkage, too. For example, on targets that don't have weak symbols, we make all template instantiations have internal linkage (in the object file), but the symbols should still be treated as having external linkage from the point of view of the language. */ if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl)) return lk_external; /* Things in local scope do not have linkage, if they don't have TREE_PUBLIC set. */ if (decl_function_context (decl)) return lk_none; /* Everything else has internal linkage. */ return lk_internal; } /* EXP is an expression that we want to pre-evaluate. Returns via INITP an expression to perform the pre-evaluation, and returns directly an expression to use the precalculated result. */ tree stabilize_expr (tree exp, tree* initp) { tree init_expr; if (!TREE_SIDE_EFFECTS (exp)) { init_expr = void_zero_node; } else if (!real_lvalue_p (exp) || !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp))) { init_expr = get_target_expr (exp); exp = TARGET_EXPR_SLOT (init_expr); } else { exp = build_unary_op (ADDR_EXPR, exp, 1); init_expr = get_target_expr (exp); exp = TARGET_EXPR_SLOT (init_expr); exp = build_indirect_ref (exp, 0); } *initp = init_expr; return exp; } #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007) /* Complain that some language-specific thing hanging off a tree node has been accessed improperly. */ void lang_check_failed (const char* file, int line, const char* function) { internal_error ("lang_* check: failed in %s, at %s:%d", function, trim_filename (file), line); } #endif /* ENABLE_TREE_CHECKING */ #include "gt-cp-tree.h"