// Methods for type_info for -*- C++ -*- Run Time Type Identification. // Copyright (C) 1994, 1996, 1998, 1999 Free Software Foundation // This file is part of GNU CC. // GNU CC is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // GNU CC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with GNU CC; see the file COPYING. If not, write to // the Free Software Foundation, 59 Temple Place - Suite 330, // Boston, MA 02111-1307, USA. // As a special exception, if you link this library with other files, // some of which are compiled with GCC, to produce an executable, // this library does not by itself cause the resulting executable // to be covered by the GNU General Public License. // This exception does not however invalidate any other reasons why // the executable file might be covered by the GNU General Public License. #pragma implementation "typeinfo" #include #include "tinfo.h" #include "new" // for placement new // This file contains the minimal working set necessary to link with code // that uses virtual functions and -frtti but does not actually use RTTI // functionality. std::type_info:: ~type_info () { } // We can't rely on common symbols being shared between shared objects. bool std::type_info:: operator== (const std::type_info& arg) const { return (&arg == this) || (strcmp (name (), arg.name ()) == 0); } extern "C" void __rtti_class (void *addr, const char *name, const __class_type_info::base_info *bl, size_t bn) { new (addr) __class_type_info (name, bl, bn); } extern "C" void __rtti_si (void *addr, const char *n, const std::type_info *ti) { new (addr) __si_type_info (n, static_cast (*ti)); } extern "C" void __rtti_user (void *addr, const char *name) { new (addr) __user_type_info (name); } // Upcast for catch checking. OBJPTR points to the thrown object and might be // NULL. Return 0 on failure, non-zero on success. Set *ADJPTR to adjusted // object pointer. int __user_type_info:: upcast (const type_info &target, void *objptr, void **adjptr) const { upcast_result result; if (do_upcast (contained_public, target, objptr, result)) return 0; *adjptr = result.target_obj; return contained_public_p (result.whole2target); } // Down or cross cast for dynamic_cast. OBJPTR points to the most derrived // object, SUBPTR points to the static base object. Both must not be NULL. // TARGET specifies the desired target type, SUBTYPE specifies the static // type. Both must be defined. Returns adjusted object pointer on success, // NULL on failure. [expr.dynamic.cast]/8 says 'unambiguous public base'. This // itself is an ambiguous statement. We choose it to mean the base must be // separately unambiguous and public, rather than unambiguous considering only // public bases. void *__user_type_info:: dyncast (int boff, const type_info &target, void *objptr, const type_info &subtype, void *subptr) const { dyncast_result result; do_dyncast (boff, contained_public, target, objptr, subtype, subptr, result); if (!result.target_obj) return NULL; if (contained_public_p (result.target2sub)) return result.target_obj; if (contained_public_p (sub_kind (result.whole2sub & result.whole2target))) // Found a valid cross cast return result.target_obj; if (contained_nonvirtual_p (result.whole2sub)) // Found an invalid cross cast, which cannot also be a down cast return NULL; if (result.target2sub == unknown) result.target2sub = static_cast (target) .find_public_subobj (boff, subtype, result.target_obj, subptr); if (contained_public_p (result.target2sub)) // Found a valid down cast return result.target_obj; // Must be an invalid down cast, or the cross cast wasn't bettered return NULL; } // Catch cast helper. ACCESS_PATH is the access from the complete thrown // object to this base. TARGET is the desired type we want to catch. OBJPTR // points to this base within the throw object, it might be NULL. Fill in // RESULT with what we find. Return true, should we determine catch must fail. bool __user_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } return false; } // dynamic cast helper. ACCESS_PATH gives the access from the most derived // object to this base. TARGET indicates the desired type we want. OBJPTR // points to this base within the object. SUBTYPE indicates the static type // started from and SUBPTR points to that base within the most derived object. // Fill in RESULT with what we find. Return true if we have located an // ambiguous match. bool __user_type_info:: do_dyncast (int, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; result.target2sub = not_contained; return false; } return false; } // find_public_subobj helper. Return contained_public if we are the desired // subtype. OBJPTR points to this base type, SUBPTR points to the desired base // object. __user_type_info::sub_kind __user_type_info:: do_find_public_subobj (int, const type_info &, void *objptr, void *subptr) const { if (subptr == objptr) // Must be our type, as the pointers match. return contained_public; return not_contained; } // catch helper for single public inheritance types. See // __user_type_info::do_upcast for semantics. bool __si_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } return base.do_upcast (access_path, target, objptr, result); } // dynamic cast helper for single public inheritance types. See // __user_type_info::do_dyncast for semantics. BOFF indicates how SUBTYPE // types are inherited by TARGET types. bool __si_type_info:: do_dyncast (int boff, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; if (boff >= 0) result.target2sub = ((char *)subptr - (char *)objptr) == boff ? contained_public : not_contained; else if (boff == -3) result.target2sub = not_contained; return false; } return base.do_dyncast (boff, access_path, target, objptr, subtype, subptr, result); } // find_public_subobj helper. See __user_type_info::do_find_public_subobj or // semantics. BOFF indicates how SUBTYPE types are inherited by the original // target object. __user_type_info::sub_kind __si_type_info:: do_find_public_subobj (int boff, const type_info &subtype, void *objptr, void *subptr) const { if (subptr == objptr && subtype == *this) return contained_public; return base.do_find_public_subobj (boff, subtype, objptr, subptr); } // catch helper for multiple or non-public inheritance types. See // __user_type_info::do_upcast for semantics. bool __class_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } for (size_t i = n_bases; i--;) { upcast_result result2; void *p = objptr; sub_kind sub_access = access_path; if (p) p = (char *)p + base_list[i].offset; if (base_list[i].is_virtual) { if (p) p = *(void **)p; sub_access = sub_kind (sub_access | contained_virtual_mask); } if (base_list[i].access != PUBLIC) sub_access = sub_kind (sub_access & ~contained_public_mask); if (base_list[i].base->do_upcast (sub_access, target, p, result2)) return true; // must fail if (result2.base_type) { if (result2.base_type == nonvirtual_base_type && base_list[i].is_virtual) result2.base_type = base_list[i].base; if (!result.base_type) result = result2; else if (result.target_obj != result2.target_obj) { // Found an ambiguity. result.target_obj = NULL; result.whole2target = contained_ambig; return true; } else if (result.target_obj) { // Ok, found real object via a virtual path. result.whole2target = sub_kind (result.whole2target | result2.whole2target); } else { // Dealing with a null pointer, need to check vbase // containing each of the two choices. if (result2.base_type == nonvirtual_base_type || result.base_type == nonvirtual_base_type || !(*result2.base_type == *result.base_type)) { // Already ambiguous, not virtual or via different virtuals. // Cannot match. result.whole2target = contained_ambig; return true; } } } } return false; } // dynamic cast helper for non-public or multiple inheritance types. See // __user_type_info::do_dyncast for overall semantics. // This is a big hairy function. Although the run-time behaviour of // dynamic_cast is simple to describe, it gives rise to some non-obvious // behaviour. We also desire to determine as early as possible any definite // answer we can get. Because it is unknown what the run-time ratio of // succeeding to failing dynamic casts is, we do not know in which direction // to bias any optimizations. To that end we make no particular effort towards // early fail answers or early success answers. Instead we try to minimize // work by filling in things lazily (when we know we need the information), // and opportunisticly take early success or failure results. bool __class_type_info:: do_dyncast (int boff, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; if (boff >= 0) result.target2sub = ((char *)subptr - (char *)objptr) == boff ? contained_public : not_contained; else if (boff == -3) result.target2sub = not_contained; return false; } bool result_ambig = false; for (size_t i = n_bases; i--;) { dyncast_result result2; void *p = (char *)objptr + base_list[i].offset; sub_kind sub_access = access_path; if (base_list[i].is_virtual) { p = *(void **)p; sub_access = sub_kind (sub_access | contained_virtual_mask); } if (base_list[i].access != PUBLIC) sub_access = sub_kind (sub_access & ~contained_public_mask); bool result2_ambig = base_list[i].base->do_dyncast (boff, sub_access, target, p, subtype, subptr, result2); result.whole2sub = sub_kind (result.whole2sub | result2.whole2sub); if (result2.target2sub == contained_public || result2.target2sub == contained_ambig) { result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result.target2sub = result2.target2sub; // Found a downcast which can't be bettered or an ambiguous downcast // which can't be disambiguated return result2_ambig; } if (!result_ambig && !result.target_obj) { // Not found anything yet. result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result_ambig = result2_ambig; } else if (result.target_obj && result.target_obj == result2.target_obj) { // Found at same address, must be via virtual. Pick the most // accessible path. result.whole2target = sub_kind (result.whole2target | result2.whole2target); } else if ((result.target_obj && result2.target_obj) || (result_ambig && result2.target_obj) || (result2_ambig && result.target_obj)) { // Found two different TARGET bases, or a valid one and a set of // ambiguous ones, must disambiguate. See whether SUBOBJ is // contained publicly within one of the non-ambiguous choices. // If it is in only one, then that's the choice. If it is in // both, then we're ambiguous and fail. If it is in neither, // we're ambiguous, but don't yet fail as we might later find a // third base which does contain SUBPTR. sub_kind new_sub_kind = result2.target2sub; sub_kind old_sub_kind = result.target2sub; if (contained_nonvirtual_p (result.whole2sub)) { // We already found SUBOBJ as a non-virtual base of most // derived. Therefore if it is in either choice, it can only be // in one of them, and we will already know. if (old_sub_kind == unknown) old_sub_kind = not_contained; if (new_sub_kind == unknown) new_sub_kind = not_contained; } else { const __user_type_info &t = static_cast (target); if (old_sub_kind >= not_contained) ;// already calculated else if (contained_nonvirtual_p (new_sub_kind)) // Already found non-virtually inside the other choice, // cannot be in this. old_sub_kind = not_contained; else old_sub_kind = t.find_public_subobj (boff, subtype, result.target_obj, subptr); if (new_sub_kind >= not_contained) ;// already calculated else if (contained_nonvirtual_p (old_sub_kind)) // Already found non-virtually inside the other choice, // cannot be in this. new_sub_kind = not_contained; else new_sub_kind = t.find_public_subobj (boff, subtype, result2.target_obj, subptr); } // Neither sub_kind can be contained_ambig -- we bail out early // when we find those. if (contained_p (sub_kind (new_sub_kind ^ old_sub_kind))) { // Only on one choice, not ambiguous. if (contained_p (new_sub_kind)) { // Only in new. result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result_ambig = false; old_sub_kind = new_sub_kind; } result.target2sub = old_sub_kind; if (result.target2sub == contained_public) return false; // Can't be an ambiguating downcast for later discovery. } else if (contained_p (sub_kind (new_sub_kind & old_sub_kind))) { // In both. result.target_obj = NULL; result.target2sub = contained_ambig; return true; // Fail. } else { // In neither publicly, ambiguous for the moment, but keep // looking. It is possible that it was private in one or // both and therefore we should fail, but that's just tough. result.target_obj = NULL; result.target2sub = not_contained; result_ambig = true; } } if (result.whole2sub == contained_private) // We found SUBOBJ as a private non-virtual base, therefore all // cross casts will fail. We have already found a down cast, if // there is one. return result_ambig; } return result_ambig; } // find_public_subobj helper for non-public or multiple inheritance types. See // __user_type_info::do_find_public_subobj for semantics. We make use of BOFF // to prune the base class walk. __user_type_info::sub_kind __class_type_info:: do_find_public_subobj (int boff, const type_info &subtype, void *objptr, void *subptr) const { if (objptr == subptr && subtype == *this) return contained_public; for (size_t i = n_bases; i--;) { if (base_list[i].access != PUBLIC) continue; // Not public, can't be here. void *p = (char *)objptr + base_list[i].offset; if (base_list[i].is_virtual) { if (boff == -1) continue; // Not a virtual base, so can't be here. p = *(void **)p; } sub_kind base_kind = base_list[i].base->do_find_public_subobj (boff, subtype, p, subptr); if (contained_p (base_kind)) { if (base_list[i].is_virtual) base_kind = sub_kind (base_kind | contained_virtual_mask); return base_kind; } } return not_contained; }