// Methods for type_info for -*- C++ -*- Run Time Type Identification. // Copyright (C) 1994, 1996, 1998, 1999, 2000 Free Software Foundation // This file is part of GNU CC. // GNU CC is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // GNU CC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with GNU CC; see the file COPYING. If not, write to // the Free Software Foundation, 59 Temple Place - Suite 330, // Boston, MA 02111-1307, USA. // As a special exception, if you link this library with other files, // some of which are compiled with GCC, to produce an executable, // this library does not by itself cause the resulting executable // to be covered by the GNU General Public License. // This exception does not however invalidate any other reasons why // the executable file might be covered by the GNU General Public License. #pragma implementation "typeinfo" #include #include "tinfo.h" #include "new" // for placement new // This file contains the minimal working set necessary to link with code // that uses virtual functions and -frtti but does not actually use RTTI // functionality. std::type_info:: ~type_info () { } #if !defined(__GXX_ABI_VERSION) || __GXX_ABI_VERSION < 100 // original (old) abi namespace { // ADDR is a pointer to an object. Convert it to a pointer to a base, // using OFFSET. inline void* convert_to_base (void *addr, bool is_virtual, myint32 offset) { if (!addr) return NULL; if (!is_virtual) return (char *) addr + offset; // Under the old ABI, the offset gives us the address of a pointer // to the virtual base. return *((void **) ((char *) addr + offset)); } } // We can't rely on common symbols being shared between shared objects. bool std::type_info:: operator== (const std::type_info& arg) const { return (&arg == this) || (strcmp (name (), arg.name ()) == 0); } extern "C" void __rtti_class (void *addr, const char *name, const __class_type_info::base_info *bl, size_t bn) { new (addr) __class_type_info (name, bl, bn); } extern "C" void __rtti_si (void *addr, const char *n, const std::type_info *ti) { new (addr) __si_type_info (n, static_cast (*ti)); } extern "C" void __rtti_user (void *addr, const char *name) { new (addr) __user_type_info (name); } // Upcast for catch checking. OBJPTR points to the thrown object and might be // NULL. Return 0 on failure, non-zero on success. Set *ADJPTR to adjusted // object pointer. int __user_type_info:: upcast (const type_info &target, void *objptr, void **adjptr) const { upcast_result result; if (do_upcast (contained_public, target, objptr, result)) return 0; *adjptr = result.target_obj; return contained_public_p (result.whole2target); } // Down or cross cast for dynamic_cast. OBJPTR points to the most derrived // object, SUBPTR points to the static base object. Both must not be NULL. // TARGET specifies the desired target type, SUBTYPE specifies the static // type. Both must be defined. Returns adjusted object pointer on success, // NULL on failure. [expr.dynamic.cast]/8 says 'unambiguous public base'. This // itself is an ambiguous statement. We choose it to mean the base must be // separately unambiguous and public, rather than unambiguous considering only // public bases. void *__user_type_info:: dyncast (int boff, const type_info &target, void *objptr, const type_info &subtype, void *subptr) const { dyncast_result result; do_dyncast (boff, contained_public, target, objptr, subtype, subptr, result); if (!result.target_obj) return NULL; if (contained_public_p (result.target2sub)) return result.target_obj; if (contained_public_p (sub_kind (result.whole2sub & result.whole2target))) // Found a valid cross cast return result.target_obj; if (contained_nonvirtual_p (result.whole2sub)) // Found an invalid cross cast, which cannot also be a down cast return NULL; if (result.target2sub == unknown) result.target2sub = static_cast (target) .find_public_subobj (boff, subtype, result.target_obj, subptr); if (contained_public_p (result.target2sub)) // Found a valid down cast return result.target_obj; // Must be an invalid down cast, or the cross cast wasn't bettered return NULL; } // Catch cast helper. ACCESS_PATH is the access from the complete thrown // object to this base. TARGET is the desired type we want to catch. OBJPTR // points to this base within the throw object, it might be NULL. Fill in // RESULT with what we find. Return true, should we determine catch must fail. bool __user_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } return false; } // dynamic cast helper. ACCESS_PATH gives the access from the most derived // object to this base. TARGET indicates the desired type we want. OBJPTR // points to this base within the object. SUBTYPE indicates the static type // started from and SUBPTR points to that base within the most derived object. // Fill in RESULT with what we find. Return true if we have located an // ambiguous match. bool __user_type_info:: do_dyncast (int, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; result.target2sub = not_contained; return false; } return false; } // find_public_subobj helper. Return contained_public if we are the desired // subtype. OBJPTR points to this base type, SUBPTR points to the desired base // object. __user_type_info::sub_kind __user_type_info:: do_find_public_subobj (int, const type_info &, void *objptr, void *subptr) const { if (subptr == objptr) // Must be our type, as the pointers match. return contained_public; return not_contained; } // catch helper for single public inheritance types. See // __user_type_info::do_upcast for semantics. bool __si_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } return base.do_upcast (access_path, target, objptr, result); } // dynamic cast helper for single public inheritance types. See // __user_type_info::do_dyncast for semantics. BOFF indicates how SUBTYPE // types are inherited by TARGET types. bool __si_type_info:: do_dyncast (int boff, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; if (boff >= 0) result.target2sub = ((char *)subptr - (char *)objptr) == boff ? contained_public : not_contained; else if (boff == -2) result.target2sub = not_contained; return false; } return base.do_dyncast (boff, access_path, target, objptr, subtype, subptr, result); } // find_public_subobj helper. See __user_type_info::do_find_public_subobj or // semantics. BOFF indicates how SUBTYPE types are inherited by the original // target object. __user_type_info::sub_kind __si_type_info:: do_find_public_subobj (int boff, const type_info &subtype, void *objptr, void *subptr) const { if (subptr == objptr && subtype == *this) return contained_public; return base.do_find_public_subobj (boff, subtype, objptr, subptr); } // catch helper for multiple or non-public inheritance types. See // __user_type_info::do_upcast for semantics. bool __class_type_info:: do_upcast (sub_kind access_path, const type_info &target, void *objptr, upcast_result &__restrict result) const { if (*this == target) { result.target_obj = objptr; result.base_type = nonvirtual_base_type; result.whole2target = access_path; return contained_nonpublic_p (access_path); } for (size_t i = n_bases; i--;) { upcast_result result2; void *p = objptr; sub_kind sub_access = access_path; p = convert_to_base (p, base_list[i].is_virtual, base_list[i].offset); if (base_list[i].is_virtual) sub_access = sub_kind (sub_access | contained_virtual_mask); if (base_list[i].access != PUBLIC) sub_access = sub_kind (sub_access & ~contained_public_mask); if (base_list[i].base->do_upcast (sub_access, target, p, result2)) return true; // must fail if (result2.base_type) { if (result2.base_type == nonvirtual_base_type && base_list[i].is_virtual) result2.base_type = base_list[i].base; if (!result.base_type) result = result2; else if (result.target_obj != result2.target_obj) { // Found an ambiguity. result.target_obj = NULL; result.whole2target = contained_ambig; return true; } else if (result.target_obj) { // Ok, found real object via a virtual path. result.whole2target = sub_kind (result.whole2target | result2.whole2target); } else { // Dealing with a null pointer, need to check vbase // containing each of the two choices. if (result2.base_type == nonvirtual_base_type || result.base_type == nonvirtual_base_type || !(*result2.base_type == *result.base_type)) { // Already ambiguous, not virtual or via different virtuals. // Cannot match. result.whole2target = contained_ambig; return true; } } } } return false; } // dynamic cast helper for non-public or multiple inheritance types. See // __user_type_info::do_dyncast for overall semantics. // This is a big hairy function. Although the run-time behaviour of // dynamic_cast is simple to describe, it gives rise to some non-obvious // behaviour. We also desire to determine as early as possible any definite // answer we can get. Because it is unknown what the run-time ratio of // succeeding to failing dynamic casts is, we do not know in which direction // to bias any optimizations. To that end we make no particular effort towards // early fail answers or early success answers. Instead we try to minimize // work by filling in things lazily (when we know we need the information), // and opportunisticly take early success or failure results. bool __class_type_info:: do_dyncast (int boff, sub_kind access_path, const type_info &target, void *objptr, const type_info &subtype, void *subptr, dyncast_result &__restrict result) const { if (objptr == subptr && *this == subtype) { // The subobject we started from. Indicate how we are accessible from // the most derived object. result.whole2sub = access_path; return false; } if (*this == target) { result.target_obj = objptr; result.whole2target = access_path; if (boff >= 0) result.target2sub = ((char *)subptr - (char *)objptr) == boff ? contained_public : not_contained; else if (boff == -2) result.target2sub = not_contained; return false; } bool result_ambig = false; for (size_t i = n_bases; i--;) { dyncast_result result2; void *p; sub_kind sub_access = access_path; p = convert_to_base (objptr, base_list[i].is_virtual, base_list[i].offset); if (base_list[i].is_virtual) sub_access = sub_kind (sub_access | contained_virtual_mask); if (base_list[i].access != PUBLIC) sub_access = sub_kind (sub_access & ~contained_public_mask); bool result2_ambig = base_list[i].base->do_dyncast (boff, sub_access, target, p, subtype, subptr, result2); result.whole2sub = sub_kind (result.whole2sub | result2.whole2sub); if (result2.target2sub == contained_public || result2.target2sub == contained_ambig) { result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result.target2sub = result2.target2sub; // Found a downcast which can't be bettered or an ambiguous downcast // which can't be disambiguated return result2_ambig; } if (!result_ambig && !result.target_obj) { // Not found anything yet. result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result_ambig = result2_ambig; } else if (result.target_obj && result.target_obj == result2.target_obj) { // Found at same address, must be via virtual. Pick the most // accessible path. result.whole2target = sub_kind (result.whole2target | result2.whole2target); } else if ((result.target_obj && result2.target_obj) || (result_ambig && result2.target_obj) || (result2_ambig && result.target_obj)) { // Found two different TARGET bases, or a valid one and a set of // ambiguous ones, must disambiguate. See whether SUBOBJ is // contained publicly within one of the non-ambiguous choices. // If it is in only one, then that's the choice. If it is in // both, then we're ambiguous and fail. If it is in neither, // we're ambiguous, but don't yet fail as we might later find a // third base which does contain SUBPTR. sub_kind new_sub_kind = result2.target2sub; sub_kind old_sub_kind = result.target2sub; if (contained_nonvirtual_p (result.whole2sub)) { // We already found SUBOBJ as a non-virtual base of most // derived. Therefore if it is in either choice, it can only be // in one of them, and we will already know. if (old_sub_kind == unknown) old_sub_kind = not_contained; if (new_sub_kind == unknown) new_sub_kind = not_contained; } else { const __user_type_info &t = static_cast (target); if (old_sub_kind >= not_contained) ;// already calculated else if (contained_nonvirtual_p (new_sub_kind)) // Already found non-virtually inside the other choice, // cannot be in this. old_sub_kind = not_contained; else old_sub_kind = t.find_public_subobj (boff, subtype, result.target_obj, subptr); if (new_sub_kind >= not_contained) ;// already calculated else if (contained_nonvirtual_p (old_sub_kind)) // Already found non-virtually inside the other choice, // cannot be in this. new_sub_kind = not_contained; else new_sub_kind = t.find_public_subobj (boff, subtype, result2.target_obj, subptr); } // Neither sub_kind can be contained_ambig -- we bail out early // when we find those. if (contained_p (sub_kind (new_sub_kind ^ old_sub_kind))) { // Only on one choice, not ambiguous. if (contained_p (new_sub_kind)) { // Only in new. result.target_obj = result2.target_obj; result.whole2target = result2.whole2target; result_ambig = false; old_sub_kind = new_sub_kind; } result.target2sub = old_sub_kind; if (result.target2sub == contained_public) return false; // Can't be an ambiguating downcast for later discovery. } else if (contained_p (sub_kind (new_sub_kind & old_sub_kind))) { // In both. result.target_obj = NULL; result.target2sub = contained_ambig; return true; // Fail. } else { // In neither publicly, ambiguous for the moment, but keep // looking. It is possible that it was private in one or // both and therefore we should fail, but that's just tough. result.target_obj = NULL; result.target2sub = not_contained; result_ambig = true; } } if (result.whole2sub == contained_private) // We found SUBOBJ as a private non-virtual base, therefore all // cross casts will fail. We have already found a down cast, if // there is one. return result_ambig; } return result_ambig; } // find_public_subobj helper for non-public or multiple inheritance types. See // __user_type_info::do_find_public_subobj for semantics. We make use of BOFF // to prune the base class walk. __user_type_info::sub_kind __class_type_info:: do_find_public_subobj (int boff, const type_info &subtype, void *objptr, void *subptr) const { if (objptr == subptr && subtype == *this) return contained_public; for (size_t i = n_bases; i--;) { if (base_list[i].access != PUBLIC) continue; // Not public, can't be here. void *p; if (base_list[i].is_virtual && boff == -3) // Not a virtual base, so can't be here. continue; p = convert_to_base (objptr, base_list[i].is_virtual, base_list[i].offset); sub_kind base_kind = base_list[i].base->do_find_public_subobj (boff, subtype, p, subptr); if (contained_p (base_kind)) { if (base_list[i].is_virtual) base_kind = sub_kind (base_kind | contained_virtual_mask); return base_kind; } } return not_contained; } #else // new abi namespace std { // return true if this is a type_info for a pointer type bool type_info:: is_pointer_p () const { return false; } // return true if this is a type_info for a function type bool type_info:: is_function_p () const { return false; } // try and catch a thrown object. bool type_info:: do_catch (const type_info *thr_type, void **, unsigned) const { return *this == *thr_type; } // upcast from this type to the target. __class_type_info will override bool type_info:: do_upcast (const __class_type_info *, void **) const { return false; } }; namespace { using namespace std; // initial part of a vtable, this structure is used with offsetof, so we don't // have to keep alignments consistent manually. struct vtable_prefix { ptrdiff_t whole_object; // offset to most derived object const __class_type_info *whole_type; // pointer to most derived type_info const void *origin; // what a class's vptr points to }; template inline const T * adjust_pointer (const void *base, ptrdiff_t offset) { return reinterpret_cast (reinterpret_cast (base) + offset); } // some predicate functions for __class_type_info::sub_kind inline bool contained_p (__class_type_info::sub_kind access_path) { return access_path >= __class_type_info::contained_mask; } inline bool public_p (__class_type_info::sub_kind access_path) { return access_path & __class_type_info::contained_public_mask; } inline bool virtual_p (__class_type_info::sub_kind access_path) { return (access_path & __class_type_info::contained_virtual_mask); } inline bool contained_public_p (__class_type_info::sub_kind access_path) { return (access_path & __class_type_info::contained_public) == __class_type_info::contained_public; } inline bool contained_nonpublic_p (__class_type_info::sub_kind access_path) { return (access_path & __class_type_info::contained_public) == __class_type_info::contained_mask; } inline bool contained_nonvirtual_p (__class_type_info::sub_kind access_path) { return (access_path & (__class_type_info::contained_mask | __class_type_info::contained_virtual_mask)) == __class_type_info::contained_mask; } static const __class_type_info *const nonvirtual_base_type = static_cast (0) + 1; }; // namespace namespace std { __class_type_info:: ~__class_type_info () {} __si_class_type_info:: ~__si_class_type_info () {} __vmi_class_type_info:: ~__vmi_class_type_info () {} bool __class_type_info:: do_catch (const type_info *thr_type, void **thr_obj, unsigned outer) const { if (*this == *thr_type) return true; if (outer >= 4) // Neither `A' nor `A *'. return false; return thr_type->do_upcast (this, thr_obj); } bool __class_type_info:: do_upcast (const __class_type_info *dst_type, void **obj_ptr) const { upcast_result result (details); if (do_upcast (contained_public, dst_type, *obj_ptr, result)) return false; *obj_ptr = const_cast (result.dst_ptr); return contained_public_p (result.whole2dst); } inline __class_type_info::sub_kind __class_type_info:: find_public_src (ptrdiff_t src2dst, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr) const { if (src2dst >= 0) return adjust_pointer (obj_ptr, src2dst) == src_ptr ? contained_public : not_contained; if (src2dst == -2) return not_contained; return do_find_public_src (src2dst, obj_ptr, src_type, src_ptr); } __class_type_info::sub_kind __class_type_info:: do_find_public_src (ptrdiff_t, const void *obj_ptr, const __class_type_info *, const void *src_ptr) const { if (src_ptr == obj_ptr) // Must be our type, as the pointers match. return contained_public; return not_contained; } __class_type_info::sub_kind __si_class_type_info:: do_find_public_src (ptrdiff_t src2dst, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr) const { if (src_ptr == obj_ptr && *this == *src_type) return contained_public; return base->do_find_public_src (src2dst, obj_ptr, src_type, src_ptr); } __class_type_info::sub_kind __vmi_class_type_info:: do_find_public_src (ptrdiff_t src2dst, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr) const { if (obj_ptr == src_ptr && *this == *src_type) return contained_public; for (size_t i = n_bases; i--;) { if (!base_list[i].is_public_p ()) continue; // Not public, can't be here. const void *base = obj_ptr; ptrdiff_t offset = base_list[i].offset; if (base_list[i].is_virtual_p ()) { if (src2dst == -3) continue; // Not a virtual base, so can't be here. const ptrdiff_t *vtable = *static_cast (base); offset = vtable[offset]; } base = adjust_pointer (base, offset); sub_kind base_kind = base_list[i].type->do_find_public_src (src2dst, base, src_type, src_ptr); if (contained_p (base_kind)) { if (base_list[i].is_virtual_p ()) base_kind = sub_kind (base_kind | contained_virtual_mask); return base_kind; } } return not_contained; } bool __class_type_info:: do_dyncast (ptrdiff_t, sub_kind access_path, const __class_type_info *dst_type, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr, dyncast_result &__restrict result) const { if (obj_ptr == src_ptr && *this == *src_type) { // The src object we started from. Indicate how we are accessible from // the most derived object. result.whole2src = access_path; return false; } if (*this == *dst_type) { result.dst_ptr = obj_ptr; result.whole2dst = access_path; result.dst2src = not_contained; return false; } return false; } bool __si_class_type_info:: do_dyncast (ptrdiff_t src2dst, sub_kind access_path, const __class_type_info *dst_type, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr, dyncast_result &__restrict result) const { if (*this == *dst_type) { result.dst_ptr = obj_ptr; result.whole2dst = access_path; if (src2dst >= 0) result.dst2src = adjust_pointer (obj_ptr, src2dst) == src_ptr ? contained_public : not_contained; else if (src2dst == -2) result.dst2src = not_contained; return false; } if (obj_ptr == src_ptr && *this == *src_type) { // The src object we started from. Indicate how we are accessible from // the most derived object. result.whole2src = access_path; return false; } return base->do_dyncast (src2dst, access_path, dst_type, obj_ptr, src_type, src_ptr, result); } // This is a big hairy function. Although the run-time behaviour of // dynamic_cast is simple to describe, it gives rise to some non-obvious // behaviour. We also desire to determine as early as possible any definite // answer we can get. Because it is unknown what the run-time ratio of // succeeding to failing dynamic casts is, we do not know in which direction // to bias any optimizations. To that end we make no particular effort towards // early fail answers or early success answers. Instead we try to minimize // work by filling in things lazily (when we know we need the information), // and opportunisticly take early success or failure results. bool __vmi_class_type_info:: do_dyncast (ptrdiff_t src2dst, sub_kind access_path, const __class_type_info *dst_type, const void *obj_ptr, const __class_type_info *src_type, const void *src_ptr, dyncast_result &__restrict result) const { if (obj_ptr == src_ptr && *this == *src_type) { // The src object we started from. Indicate how we are accessible from // the most derived object. result.whole2src = access_path; return false; } if (*this == *dst_type) { result.dst_ptr = obj_ptr; result.whole2dst = access_path; if (src2dst >= 0) result.dst2src = adjust_pointer (obj_ptr, src2dst) == src_ptr ? contained_public : not_contained; else if (src2dst == -2) result.dst2src = not_contained; return false; } bool result_ambig = false; for (size_t i = n_bases; i--;) { dyncast_result result2; void const *base = obj_ptr; sub_kind base_access = access_path; ptrdiff_t offset = base_list[i].offset; if (base_list[i].is_virtual_p ()) { base_access = sub_kind (base_access | contained_virtual_mask); const ptrdiff_t *vtable = *static_cast (base); offset = vtable[offset]; } base = adjust_pointer (base, offset); if (!base_list[i].is_public_p ()) base_access = sub_kind (base_access & ~contained_public_mask); bool result2_ambig = base_list[i].type->do_dyncast (src2dst, base_access, dst_type, base, src_type, src_ptr, result2); result.whole2src = sub_kind (result.whole2src | result2.whole2src); if (result2.dst2src == contained_public || result2.dst2src == contained_ambig) { result.dst_ptr = result2.dst_ptr; result.whole2dst = result2.whole2dst; result.dst2src = result2.dst2src; // Found a downcast which can't be bettered or an ambiguous downcast // which can't be disambiguated return result2_ambig; } if (!result_ambig && !result.dst_ptr) { // Not found anything yet. result.dst_ptr = result2.dst_ptr; result.whole2dst = result2.whole2dst; result_ambig = result2_ambig; } else if (result.dst_ptr && result.dst_ptr == result2.dst_ptr) { // Found at same address, must be via virtual. Pick the most // accessible path. result.whole2dst = sub_kind (result.whole2dst | result2.whole2dst); } else if ((result.dst_ptr && result2.dst_ptr) || (result_ambig && result2.dst_ptr) || (result2_ambig && result.dst_ptr)) { // Found two different DST_TYPE bases, or a valid one and a set of // ambiguous ones, must disambiguate. See whether SRC_PTR is // contained publicly within one of the non-ambiguous choices. If it // is in only one, then that's the choice. If it is in both, then // we're ambiguous and fail. If it is in neither, we're ambiguous, // but don't yet fail as we might later find a third base which does // contain SRC_PTR. sub_kind new_sub_kind = result2.dst2src; sub_kind old_sub_kind = result.dst2src; if (contained_nonvirtual_p (result.whole2src)) { // We already found SRC_PTR as a non-virtual base of most // derived. Therefore if it is in either choice, it can only be // in one of them, and we will already know. if (old_sub_kind == unknown) old_sub_kind = not_contained; if (new_sub_kind == unknown) new_sub_kind = not_contained; } else { if (old_sub_kind >= not_contained) ;// already calculated else if (contained_nonvirtual_p (new_sub_kind)) // Already found non-virtually inside the other choice, // cannot be in this. old_sub_kind = not_contained; else old_sub_kind = dst_type->find_public_src (src2dst, result.dst_ptr, src_type, src_ptr); if (new_sub_kind >= not_contained) ;// already calculated else if (contained_nonvirtual_p (old_sub_kind)) // Already found non-virtually inside the other choice, // cannot be in this. new_sub_kind = not_contained; else new_sub_kind = dst_type->find_public_src (src2dst, result2.dst_ptr, src_type, src_ptr); } // Neither sub_kind can be contained_ambig -- we bail out early // when we find those. if (contained_p (sub_kind (new_sub_kind ^ old_sub_kind))) { // Only on one choice, not ambiguous. if (contained_p (new_sub_kind)) { // Only in new. result.dst_ptr = result2.dst_ptr; result.whole2dst = result2.whole2dst; result_ambig = false; old_sub_kind = new_sub_kind; } result.dst2src = old_sub_kind; if (public_p (result.dst2src)) return false; // Can't be an ambiguating downcast for later discovery. if (!virtual_p (result.dst2src)) return false; // Found non-virtually can't be bettered } else if (contained_p (sub_kind (new_sub_kind & old_sub_kind))) { // In both. result.dst_ptr = NULL; result.dst2src = contained_ambig; return true; // Fail. } else { // In neither publicly, ambiguous for the moment, but keep // looking. It is possible that it was private in one or // both and therefore we should fail, but that's just tough. result.dst_ptr = NULL; result.dst2src = not_contained; result_ambig = true; } } if (result.whole2src == contained_private) // We found SRC_PTR as a private non-virtual base, therefore all // cross casts will fail. We have already found a down cast, if // there is one. return result_ambig; } return result_ambig; } bool __class_type_info:: do_upcast (sub_kind access_path, const __class_type_info *dst, const void *obj, upcast_result &__restrict result) const { if (*this == *dst) { result.dst_ptr = obj; result.base_type = nonvirtual_base_type; result.whole2dst = access_path; return contained_nonpublic_p (access_path); } return false; } bool __si_class_type_info:: do_upcast (sub_kind access_path, const __class_type_info *dst, const void *obj_ptr, upcast_result &__restrict result) const { if (*this == *dst) { result.dst_ptr = obj_ptr; result.base_type = nonvirtual_base_type; result.whole2dst = access_path; return contained_nonpublic_p (access_path); } return base->do_upcast (access_path, dst, obj_ptr, result); } bool __vmi_class_type_info:: do_upcast (sub_kind access_path, const __class_type_info *dst, const void *obj_ptr, upcast_result &__restrict result) const { if (*this == *dst) { result.dst_ptr = obj_ptr; result.base_type = nonvirtual_base_type; result.whole2dst = access_path; return contained_nonpublic_p (access_path); } for (size_t i = n_bases; i--;) { upcast_result result2 (result.src_details); const void *base = obj_ptr; sub_kind sub_access = access_path; ptrdiff_t offset = base_list[i].offset; if (!base_list[i].is_public_p ()) { if (!(result.src_details & multiple_base_mask)) // original cannot have an ambiguous base continue; sub_access = sub_kind (sub_access & ~contained_public_mask); } if (base_list[i].is_virtual_p ()) { sub_access = sub_kind (sub_access | contained_virtual_mask); if (base) { const ptrdiff_t *vtable = *static_cast (base); offset = vtable[offset]; } } if (base) base = adjust_pointer (base, offset); if (base_list[i].type->do_upcast (sub_access, dst, base, result2)) return true; // must fail if (result2.base_type) { if (result2.base_type == nonvirtual_base_type && base_list[i].is_virtual_p ()) result2.base_type = base_list[i].type; if (!result.base_type) { result = result2; if (!(details & multiple_base_mask)) // cannot have an ambiguous other base return false; } else if (result.dst_ptr != result2.dst_ptr) { // Found an ambiguity. result.dst_ptr = NULL; result.whole2dst = contained_ambig; return true; } else if (result.dst_ptr) { // Ok, found real object via a virtual path. result.whole2dst = sub_kind (result.whole2dst | result2.whole2dst); } else { // Dealing with a null pointer, need to check vbase // containing each of the two choices. if (result2.base_type == nonvirtual_base_type || result.base_type == nonvirtual_base_type || !(*result2.base_type == *result.base_type)) { // Already ambiguous, not virtual or via different virtuals. // Cannot match. result.whole2dst = contained_ambig; return true; } } } } return false; } // this is the external interface to the dynamic cast machinery void * __dynamic_cast (const void *src_ptr, // object started from const __class_type_info *src_type, // type of the starting object const __class_type_info *dst_type, // desired target type ptrdiff_t src2dst) // how src and dst are related { const void *vtable = *static_cast (src_ptr); const vtable_prefix *prefix = adjust_pointer (vtable, 0); // FIXME: the above offset should be -offsetof (vtable_prefix, origin)); // but we don't currently layout vtables correctly. const void *whole_ptr = adjust_pointer (src_ptr, prefix->whole_object); const __class_type_info *whole_type = prefix->whole_type; __class_type_info::dyncast_result result; whole_type->do_dyncast (src2dst, __class_type_info::contained_public, dst_type, whole_ptr, src_type, src_ptr, result); if (!result.dst_ptr) return NULL; if (contained_public_p (result.dst2src)) return const_cast (result.dst_ptr); if (contained_public_p (__class_type_info::sub_kind (result.whole2src & result.whole2dst))) // Found a valid cross cast return const_cast (result.dst_ptr); if (contained_nonvirtual_p (result.whole2src)) // Found an invalid cross cast, which cannot also be a down cast return NULL; if (!(whole_type->details & __class_type_info::private_base_mask)) // whole type has no private bases return const_cast (result.dst_ptr); if (result.dst2src == __class_type_info::unknown) result.dst2src = dst_type->find_public_src (src2dst, result.dst_ptr, src_type, src_ptr); if (contained_public_p (result.dst2src)) // Found a valid down cast return const_cast (result.dst_ptr); // Must be an invalid down cast, or the cross cast wasn't bettered return NULL; } }; // namespace std #endif