/* Perform the semantic phase of parsing, i.e., the process of building tree structure, checking semantic consistency, and building RTL. These routines are used both during actual parsing and during the instantiation of template functions. Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Written by Mark Mitchell (mmitchell@usa.net) based on code found formerly in parse.y and pt.c. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "cp-tree.h" #include "c-common.h" #include "tree-inline.h" #include "tree-mudflap.h" #include "except.h" #include "toplev.h" #include "flags.h" #include "rtl.h" #include "expr.h" #include "output.h" #include "timevar.h" #include "debug.h" #include "diagnostic.h" #include "cgraph.h" #include "tree-iterator.h" #include "vec.h" #include "target.h" #include "gimple.h" /* There routines provide a modular interface to perform many parsing operations. They may therefore be used during actual parsing, or during template instantiation, which may be regarded as a degenerate form of parsing. */ static tree maybe_convert_cond (tree); static tree finalize_nrv_r (tree *, int *, void *); /* Deferred Access Checking Overview --------------------------------- Most C++ expressions and declarations require access checking to be performed during parsing. However, in several cases, this has to be treated differently. For member declarations, access checking has to be deferred until more information about the declaration is known. For example: class A { typedef int X; public: X f(); }; A::X A::f(); A::X g(); When we are parsing the function return type `A::X', we don't really know if this is allowed until we parse the function name. Furthermore, some contexts require that access checking is never performed at all. These include class heads, and template instantiations. Typical use of access checking functions is described here: 1. When we enter a context that requires certain access checking mode, the function `push_deferring_access_checks' is called with DEFERRING argument specifying the desired mode. Access checking may be performed immediately (dk_no_deferred), deferred (dk_deferred), or not performed (dk_no_check). 2. When a declaration such as a type, or a variable, is encountered, the function `perform_or_defer_access_check' is called. It maintains a VEC of all deferred checks. 3. The global `current_class_type' or `current_function_decl' is then setup by the parser. `enforce_access' relies on these information to check access. 4. Upon exiting the context mentioned in step 1, `perform_deferred_access_checks' is called to check all declaration stored in the VEC. `pop_deferring_access_checks' is then called to restore the previous access checking mode. In case of parsing error, we simply call `pop_deferring_access_checks' without `perform_deferred_access_checks'. */ typedef struct deferred_access GTY(()) { /* A VEC representing name-lookups for which we have deferred checking access controls. We cannot check the accessibility of names used in a decl-specifier-seq until we know what is being declared because code like: class A { class B {}; B* f(); } A::B* A::f() { return 0; } is valid, even though `A::B' is not generally accessible. */ VEC (deferred_access_check,gc)* GTY(()) deferred_access_checks; /* The current mode of access checks. */ enum deferring_kind deferring_access_checks_kind; } deferred_access; DEF_VEC_O (deferred_access); DEF_VEC_ALLOC_O (deferred_access,gc); /* Data for deferred access checking. */ static GTY(()) VEC(deferred_access,gc) *deferred_access_stack; static GTY(()) unsigned deferred_access_no_check; /* Save the current deferred access states and start deferred access checking iff DEFER_P is true. */ void push_deferring_access_checks (deferring_kind deferring) { /* For context like template instantiation, access checking disabling applies to all nested context. */ if (deferred_access_no_check || deferring == dk_no_check) deferred_access_no_check++; else { deferred_access *ptr; ptr = VEC_safe_push (deferred_access, gc, deferred_access_stack, NULL); ptr->deferred_access_checks = NULL; ptr->deferring_access_checks_kind = deferring; } } /* Resume deferring access checks again after we stopped doing this previously. */ void resume_deferring_access_checks (void) { if (!deferred_access_no_check) VEC_last (deferred_access, deferred_access_stack) ->deferring_access_checks_kind = dk_deferred; } /* Stop deferring access checks. */ void stop_deferring_access_checks (void) { if (!deferred_access_no_check) VEC_last (deferred_access, deferred_access_stack) ->deferring_access_checks_kind = dk_no_deferred; } /* Discard the current deferred access checks and restore the previous states. */ void pop_deferring_access_checks (void) { if (deferred_access_no_check) deferred_access_no_check--; else VEC_pop (deferred_access, deferred_access_stack); } /* Returns a TREE_LIST representing the deferred checks. The TREE_PURPOSE of each node is the type through which the access occurred; the TREE_VALUE is the declaration named. */ VEC (deferred_access_check,gc)* get_deferred_access_checks (void) { if (deferred_access_no_check) return NULL; else return (VEC_last (deferred_access, deferred_access_stack) ->deferred_access_checks); } /* Take current deferred checks and combine with the previous states if we also defer checks previously. Otherwise perform checks now. */ void pop_to_parent_deferring_access_checks (void) { if (deferred_access_no_check) deferred_access_no_check--; else { VEC (deferred_access_check,gc) *checks; deferred_access *ptr; checks = (VEC_last (deferred_access, deferred_access_stack) ->deferred_access_checks); VEC_pop (deferred_access, deferred_access_stack); ptr = VEC_last (deferred_access, deferred_access_stack); if (ptr->deferring_access_checks_kind == dk_no_deferred) { /* Check access. */ perform_access_checks (checks); } else { /* Merge with parent. */ int i, j; deferred_access_check *chk, *probe; for (i = 0 ; VEC_iterate (deferred_access_check, checks, i, chk) ; ++i) { for (j = 0 ; VEC_iterate (deferred_access_check, ptr->deferred_access_checks, j, probe) ; ++j) { if (probe->binfo == chk->binfo && probe->decl == chk->decl && probe->diag_decl == chk->diag_decl) goto found; } /* Insert into parent's checks. */ VEC_safe_push (deferred_access_check, gc, ptr->deferred_access_checks, chk); found:; } } } } /* Perform the access checks in CHECKS. The TREE_PURPOSE of each node is the BINFO indicating the qualifying scope used to access the DECL node stored in the TREE_VALUE of the node. */ void perform_access_checks (VEC (deferred_access_check,gc)* checks) { int i; deferred_access_check *chk; if (!checks) return; for (i = 0 ; VEC_iterate (deferred_access_check, checks, i, chk) ; ++i) enforce_access (chk->binfo, chk->decl, chk->diag_decl); } /* Perform the deferred access checks. After performing the checks, we still have to keep the list `deferred_access_stack->deferred_access_checks' since we may want to check access for them again later in a different context. For example: class A { typedef int X; static X a; }; A::X A::a, x; // No error for `A::a', error for `x' We have to perform deferred access of `A::X', first with `A::a', next with `x'. */ void perform_deferred_access_checks (void) { perform_access_checks (get_deferred_access_checks ()); } /* Defer checking the accessibility of DECL, when looked up in BINFO. DIAG_DECL is the declaration to use to print diagnostics. */ void perform_or_defer_access_check (tree binfo, tree decl, tree diag_decl) { int i; deferred_access *ptr; deferred_access_check *chk; deferred_access_check *new_access; /* Exit if we are in a context that no access checking is performed. */ if (deferred_access_no_check) return; gcc_assert (TREE_CODE (binfo) == TREE_BINFO); ptr = VEC_last (deferred_access, deferred_access_stack); /* If we are not supposed to defer access checks, just check now. */ if (ptr->deferring_access_checks_kind == dk_no_deferred) { enforce_access (binfo, decl, diag_decl); return; } /* See if we are already going to perform this check. */ for (i = 0 ; VEC_iterate (deferred_access_check, ptr->deferred_access_checks, i, chk) ; ++i) { if (chk->decl == decl && chk->binfo == binfo && chk->diag_decl == diag_decl) { return; } } /* If not, record the check. */ new_access = VEC_safe_push (deferred_access_check, gc, ptr->deferred_access_checks, 0); new_access->binfo = binfo; new_access->decl = decl; new_access->diag_decl = diag_decl; } /* Returns nonzero if the current statement is a full expression, i.e. temporaries created during that statement should be destroyed at the end of the statement. */ int stmts_are_full_exprs_p (void) { return current_stmt_tree ()->stmts_are_full_exprs_p; } /* T is a statement. Add it to the statement-tree. This is the C++ version. The C/ObjC frontends have a slightly different version of this function. */ tree add_stmt (tree t) { enum tree_code code = TREE_CODE (t); if (EXPR_P (t) && code != LABEL_EXPR) { if (!EXPR_HAS_LOCATION (t)) SET_EXPR_LOCATION (t, input_location); /* When we expand a statement-tree, we must know whether or not the statements are full-expressions. We record that fact here. */ STMT_IS_FULL_EXPR_P (t) = stmts_are_full_exprs_p (); } /* Add T to the statement-tree. Non-side-effect statements need to be recorded during statement expressions. */ append_to_statement_list_force (t, &cur_stmt_list); return t; } /* Returns the stmt_tree to which statements are currently being added. */ stmt_tree current_stmt_tree (void) { return (cfun ? &cfun->language->base.x_stmt_tree : &scope_chain->x_stmt_tree); } /* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */ static tree maybe_cleanup_point_expr (tree expr) { if (!processing_template_decl && stmts_are_full_exprs_p ()) expr = fold_build_cleanup_point_expr (TREE_TYPE (expr), expr); return expr; } /* Like maybe_cleanup_point_expr except have the type of the new expression be void so we don't need to create a temporary variable to hold the inner expression. The reason why we do this is because the original type might be an aggregate and we cannot create a temporary variable for that type. */ static tree maybe_cleanup_point_expr_void (tree expr) { if (!processing_template_decl && stmts_are_full_exprs_p ()) expr = fold_build_cleanup_point_expr (void_type_node, expr); return expr; } /* Create a declaration statement for the declaration given by the DECL. */ void add_decl_expr (tree decl) { tree r = build_stmt (DECL_EXPR, decl); if (DECL_INITIAL (decl) || (DECL_SIZE (decl) && TREE_SIDE_EFFECTS (DECL_SIZE (decl)))) r = maybe_cleanup_point_expr_void (r); add_stmt (r); } /* Finish a scope. */ tree do_poplevel (tree stmt_list) { tree block = NULL; if (stmts_are_full_exprs_p ()) block = poplevel (kept_level_p (), 1, 0); stmt_list = pop_stmt_list (stmt_list); if (!processing_template_decl) { stmt_list = c_build_bind_expr (block, stmt_list); /* ??? See c_end_compound_stmt re statement expressions. */ } return stmt_list; } /* Begin a new scope. */ static tree do_pushlevel (scope_kind sk) { tree ret = push_stmt_list (); if (stmts_are_full_exprs_p ()) begin_scope (sk, NULL); return ret; } /* Queue a cleanup. CLEANUP is an expression/statement to be executed when the current scope is exited. EH_ONLY is true when this is not meant to apply to normal control flow transfer. */ void push_cleanup (tree decl, tree cleanup, bool eh_only) { tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl); CLEANUP_EH_ONLY (stmt) = eh_only; add_stmt (stmt); CLEANUP_BODY (stmt) = push_stmt_list (); } /* Begin a conditional that might contain a declaration. When generating normal code, we want the declaration to appear before the statement containing the conditional. When generating template code, we want the conditional to be rendered as the raw DECL_EXPR. */ static void begin_cond (tree *cond_p) { if (processing_template_decl) *cond_p = push_stmt_list (); } /* Finish such a conditional. */ static void finish_cond (tree *cond_p, tree expr) { if (processing_template_decl) { tree cond = pop_stmt_list (*cond_p); if (TREE_CODE (cond) == DECL_EXPR) expr = cond; if (check_for_bare_parameter_packs (expr)) *cond_p = error_mark_node; } *cond_p = expr; } /* If *COND_P specifies a conditional with a declaration, transform the loop such that while (A x = 42) { } for (; A x = 42;) { } becomes while (true) { A x = 42; if (!x) break; } for (;;) { A x = 42; if (!x) break; } The statement list for BODY will be empty if the conditional did not declare anything. */ static void simplify_loop_decl_cond (tree *cond_p, tree body) { tree cond, if_stmt; if (!TREE_SIDE_EFFECTS (body)) return; cond = *cond_p; *cond_p = boolean_true_node; if_stmt = begin_if_stmt (); cond = cp_build_unary_op (TRUTH_NOT_EXPR, cond, 0, tf_warning_or_error); finish_if_stmt_cond (cond, if_stmt); finish_break_stmt (); finish_then_clause (if_stmt); finish_if_stmt (if_stmt); } /* Finish a goto-statement. */ tree finish_goto_stmt (tree destination) { if (TREE_CODE (destination) == IDENTIFIER_NODE) destination = lookup_label (destination); /* We warn about unused labels with -Wunused. That means we have to mark the used labels as used. */ if (TREE_CODE (destination) == LABEL_DECL) TREE_USED (destination) = 1; else { /* The DESTINATION is being used as an rvalue. */ if (!processing_template_decl) { destination = decay_conversion (destination); destination = cp_convert (ptr_type_node, destination); if (error_operand_p (destination)) return NULL_TREE; } /* We don't inline calls to functions with computed gotos. Those functions are typically up to some funny business, and may be depending on the labels being at particular addresses, or some such. */ DECL_UNINLINABLE (current_function_decl) = 1; } check_goto (destination); return add_stmt (build_stmt (GOTO_EXPR, destination)); } /* COND is the condition-expression for an if, while, etc., statement. Convert it to a boolean value, if appropriate. In addition, verify sequence points if -Wsequence-point is enabled. */ static tree maybe_convert_cond (tree cond) { /* Empty conditions remain empty. */ if (!cond) return NULL_TREE; /* Wait until we instantiate templates before doing conversion. */ if (processing_template_decl) return cond; if (warn_sequence_point) verify_sequence_points (cond); /* Do the conversion. */ cond = convert_from_reference (cond); if (TREE_CODE (cond) == MODIFY_EXPR && !TREE_NO_WARNING (cond) && warn_parentheses) { warning (OPT_Wparentheses, "suggest parentheses around assignment used as truth value"); TREE_NO_WARNING (cond) = 1; } return condition_conversion (cond); } /* Finish an expression-statement, whose EXPRESSION is as indicated. */ tree finish_expr_stmt (tree expr) { tree r = NULL_TREE; if (expr != NULL_TREE) { if (!processing_template_decl) { if (warn_sequence_point) verify_sequence_points (expr); expr = convert_to_void (expr, "statement", tf_warning_or_error); } else if (!type_dependent_expression_p (expr)) convert_to_void (build_non_dependent_expr (expr), "statement", tf_warning_or_error); if (check_for_bare_parameter_packs (expr)) expr = error_mark_node; /* Simplification of inner statement expressions, compound exprs, etc can result in us already having an EXPR_STMT. */ if (TREE_CODE (expr) != CLEANUP_POINT_EXPR) { if (TREE_CODE (expr) != EXPR_STMT) expr = build_stmt (EXPR_STMT, expr); expr = maybe_cleanup_point_expr_void (expr); } r = add_stmt (expr); } finish_stmt (); return r; } /* Begin an if-statement. Returns a newly created IF_STMT if appropriate. */ tree begin_if_stmt (void) { tree r, scope; scope = do_pushlevel (sk_block); r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE); TREE_CHAIN (r) = scope; begin_cond (&IF_COND (r)); return r; } /* Process the COND of an if-statement, which may be given by IF_STMT. */ void finish_if_stmt_cond (tree cond, tree if_stmt) { finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond)); add_stmt (if_stmt); THEN_CLAUSE (if_stmt) = push_stmt_list (); } /* Finish the then-clause of an if-statement, which may be given by IF_STMT. */ tree finish_then_clause (tree if_stmt) { THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt)); return if_stmt; } /* Begin the else-clause of an if-statement. */ void begin_else_clause (tree if_stmt) { ELSE_CLAUSE (if_stmt) = push_stmt_list (); } /* Finish the else-clause of an if-statement, which may be given by IF_STMT. */ void finish_else_clause (tree if_stmt) { ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt)); } /* Finish an if-statement. */ void finish_if_stmt (tree if_stmt) { tree scope = TREE_CHAIN (if_stmt); TREE_CHAIN (if_stmt) = NULL; add_stmt (do_poplevel (scope)); finish_stmt (); } /* Begin a while-statement. Returns a newly created WHILE_STMT if appropriate. */ tree begin_while_stmt (void) { tree r; r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE); add_stmt (r); WHILE_BODY (r) = do_pushlevel (sk_block); begin_cond (&WHILE_COND (r)); return r; } /* Process the COND of a while-statement, which may be given by WHILE_STMT. */ void finish_while_stmt_cond (tree cond, tree while_stmt) { finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond)); simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt)); } /* Finish a while-statement, which may be given by WHILE_STMT. */ void finish_while_stmt (tree while_stmt) { WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt)); finish_stmt (); } /* Begin a do-statement. Returns a newly created DO_STMT if appropriate. */ tree begin_do_stmt (void) { tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE); add_stmt (r); DO_BODY (r) = push_stmt_list (); return r; } /* Finish the body of a do-statement, which may be given by DO_STMT. */ void finish_do_body (tree do_stmt) { tree body = DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt)); if (TREE_CODE (body) == STATEMENT_LIST && STATEMENT_LIST_TAIL (body)) body = STATEMENT_LIST_TAIL (body)->stmt; if (IS_EMPTY_STMT (body)) warning (OPT_Wempty_body, "suggest explicit braces around empty body in % statement"); } /* Finish a do-statement, which may be given by DO_STMT, and whose COND is as indicated. */ void finish_do_stmt (tree cond, tree do_stmt) { cond = maybe_convert_cond (cond); DO_COND (do_stmt) = cond; finish_stmt (); } /* Finish a return-statement. The EXPRESSION returned, if any, is as indicated. */ tree finish_return_stmt (tree expr) { tree r; bool no_warning; expr = check_return_expr (expr, &no_warning); if (flag_openmp && !check_omp_return ()) return error_mark_node; if (!processing_template_decl) { if (warn_sequence_point) verify_sequence_points (expr); if (DECL_DESTRUCTOR_P (current_function_decl) || (DECL_CONSTRUCTOR_P (current_function_decl) && targetm.cxx.cdtor_returns_this ())) { /* Similarly, all destructors must run destructors for base-classes before returning. So, all returns in a destructor get sent to the DTOR_LABEL; finish_function emits code to return a value there. */ return finish_goto_stmt (cdtor_label); } } r = build_stmt (RETURN_EXPR, expr); TREE_NO_WARNING (r) |= no_warning; r = maybe_cleanup_point_expr_void (r); r = add_stmt (r); finish_stmt (); return r; } /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */ tree begin_for_stmt (void) { tree r; r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE); if (flag_new_for_scope > 0) TREE_CHAIN (r) = do_pushlevel (sk_for); if (processing_template_decl) FOR_INIT_STMT (r) = push_stmt_list (); return r; } /* Finish the for-init-statement of a for-statement, which may be given by FOR_STMT. */ void finish_for_init_stmt (tree for_stmt) { if (processing_template_decl) FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt)); add_stmt (for_stmt); FOR_BODY (for_stmt) = do_pushlevel (sk_block); begin_cond (&FOR_COND (for_stmt)); } /* Finish the COND of a for-statement, which may be given by FOR_STMT. */ void finish_for_cond (tree cond, tree for_stmt) { finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond)); simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt)); } /* Finish the increment-EXPRESSION in a for-statement, which may be given by FOR_STMT. */ void finish_for_expr (tree expr, tree for_stmt) { if (!expr) return; /* If EXPR is an overloaded function, issue an error; there is no context available to use to perform overload resolution. */ if (type_unknown_p (expr)) { cxx_incomplete_type_error (expr, TREE_TYPE (expr)); expr = error_mark_node; } if (!processing_template_decl) { if (warn_sequence_point) verify_sequence_points (expr); expr = convert_to_void (expr, "3rd expression in for", tf_warning_or_error); } else if (!type_dependent_expression_p (expr)) convert_to_void (build_non_dependent_expr (expr), "3rd expression in for", tf_warning_or_error); expr = maybe_cleanup_point_expr_void (expr); if (check_for_bare_parameter_packs (expr)) expr = error_mark_node; FOR_EXPR (for_stmt) = expr; } /* Finish the body of a for-statement, which may be given by FOR_STMT. The increment-EXPR for the loop must be provided. */ void finish_for_stmt (tree for_stmt) { FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt)); /* Pop the scope for the body of the loop. */ if (flag_new_for_scope > 0) { tree scope = TREE_CHAIN (for_stmt); TREE_CHAIN (for_stmt) = NULL; add_stmt (do_poplevel (scope)); } finish_stmt (); } /* Finish a break-statement. */ tree finish_break_stmt (void) { return add_stmt (build_stmt (BREAK_STMT)); } /* Finish a continue-statement. */ tree finish_continue_stmt (void) { return add_stmt (build_stmt (CONTINUE_STMT)); } /* Begin a switch-statement. Returns a new SWITCH_STMT if appropriate. */ tree begin_switch_stmt (void) { tree r, scope; r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE); scope = do_pushlevel (sk_block); TREE_CHAIN (r) = scope; begin_cond (&SWITCH_STMT_COND (r)); return r; } /* Finish the cond of a switch-statement. */ void finish_switch_cond (tree cond, tree switch_stmt) { tree orig_type = NULL; if (!processing_template_decl) { /* Convert the condition to an integer or enumeration type. */ cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true); if (cond == NULL_TREE) { error ("switch quantity not an integer"); cond = error_mark_node; } orig_type = TREE_TYPE (cond); if (cond != error_mark_node) { /* [stmt.switch] Integral promotions are performed. */ cond = perform_integral_promotions (cond); cond = maybe_cleanup_point_expr (cond); } } if (check_for_bare_parameter_packs (cond)) cond = error_mark_node; else if (!processing_template_decl && warn_sequence_point) verify_sequence_points (cond); finish_cond (&SWITCH_STMT_COND (switch_stmt), cond); SWITCH_STMT_TYPE (switch_stmt) = orig_type; add_stmt (switch_stmt); push_switch (switch_stmt); SWITCH_STMT_BODY (switch_stmt) = push_stmt_list (); } /* Finish the body of a switch-statement, which may be given by SWITCH_STMT. The COND to switch on is indicated. */ void finish_switch_stmt (tree switch_stmt) { tree scope; SWITCH_STMT_BODY (switch_stmt) = pop_stmt_list (SWITCH_STMT_BODY (switch_stmt)); pop_switch (); finish_stmt (); scope = TREE_CHAIN (switch_stmt); TREE_CHAIN (switch_stmt) = NULL; add_stmt (do_poplevel (scope)); } /* Begin a try-block. Returns a newly-created TRY_BLOCK if appropriate. */ tree begin_try_block (void) { tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE); add_stmt (r); TRY_STMTS (r) = push_stmt_list (); return r; } /* Likewise, for a function-try-block. The block returned in *COMPOUND_STMT is an artificial outer scope, containing the function-try-block. */ tree begin_function_try_block (tree *compound_stmt) { tree r; /* This outer scope does not exist in the C++ standard, but we need a place to put __FUNCTION__ and similar variables. */ *compound_stmt = begin_compound_stmt (0); r = begin_try_block (); FN_TRY_BLOCK_P (r) = 1; return r; } /* Finish a try-block, which may be given by TRY_BLOCK. */ void finish_try_block (tree try_block) { TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block)); TRY_HANDLERS (try_block) = push_stmt_list (); } /* Finish the body of a cleanup try-block, which may be given by TRY_BLOCK. */ void finish_cleanup_try_block (tree try_block) { TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block)); } /* Finish an implicitly generated try-block, with a cleanup is given by CLEANUP. */ void finish_cleanup (tree cleanup, tree try_block) { TRY_HANDLERS (try_block) = cleanup; CLEANUP_P (try_block) = 1; } /* Likewise, for a function-try-block. */ void finish_function_try_block (tree try_block) { finish_try_block (try_block); /* FIXME : something queer about CTOR_INITIALIZER somehow following the try block, but moving it inside. */ in_function_try_handler = 1; } /* Finish a handler-sequence for a try-block, which may be given by TRY_BLOCK. */ void finish_handler_sequence (tree try_block) { TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block)); check_handlers (TRY_HANDLERS (try_block)); } /* Finish the handler-seq for a function-try-block, given by TRY_BLOCK. COMPOUND_STMT is the outer block created by begin_function_try_block. */ void finish_function_handler_sequence (tree try_block, tree compound_stmt) { in_function_try_handler = 0; finish_handler_sequence (try_block); finish_compound_stmt (compound_stmt); } /* Begin a handler. Returns a HANDLER if appropriate. */ tree begin_handler (void) { tree r; r = build_stmt (HANDLER, NULL_TREE, NULL_TREE); add_stmt (r); /* Create a binding level for the eh_info and the exception object cleanup. */ HANDLER_BODY (r) = do_pushlevel (sk_catch); return r; } /* Finish the handler-parameters for a handler, which may be given by HANDLER. DECL is the declaration for the catch parameter, or NULL if this is a `catch (...)' clause. */ void finish_handler_parms (tree decl, tree handler) { tree type = NULL_TREE; if (processing_template_decl) { if (decl) { decl = pushdecl (decl); decl = push_template_decl (decl); HANDLER_PARMS (handler) = decl; type = TREE_TYPE (decl); } } else type = expand_start_catch_block (decl); HANDLER_TYPE (handler) = type; if (!processing_template_decl && type) mark_used (eh_type_info (type)); } /* Finish a handler, which may be given by HANDLER. The BLOCKs are the return value from the matching call to finish_handler_parms. */ void finish_handler (tree handler) { if (!processing_template_decl) expand_end_catch_block (); HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler)); } /* Begin a compound statement. FLAGS contains some bits that control the behavior and context. If BCS_NO_SCOPE is set, the compound statement does not define a scope. If BCS_FN_BODY is set, this is the outermost block of a function. If BCS_TRY_BLOCK is set, this is the block created on behalf of a TRY statement. Returns a token to be passed to finish_compound_stmt. */ tree begin_compound_stmt (unsigned int flags) { tree r; if (flags & BCS_NO_SCOPE) { r = push_stmt_list (); STATEMENT_LIST_NO_SCOPE (r) = 1; /* Normally, we try hard to keep the BLOCK for a statement-expression. But, if it's a statement-expression with a scopeless block, there's nothing to keep, and we don't want to accidentally keep a block *inside* the scopeless block. */ keep_next_level (false); } else r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block); /* When processing a template, we need to remember where the braces were, so that we can set up identical scopes when instantiating the template later. BIND_EXPR is a handy candidate for this. Note that do_poplevel won't create a BIND_EXPR itself here (and thus result in nested BIND_EXPRs), since we don't build BLOCK nodes when processing templates. */ if (processing_template_decl) { r = build3 (BIND_EXPR, NULL, NULL, r, NULL); BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0; BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0; TREE_SIDE_EFFECTS (r) = 1; } return r; } /* Finish a compound-statement, which is given by STMT. */ void finish_compound_stmt (tree stmt) { if (TREE_CODE (stmt) == BIND_EXPR) BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt)); else if (STATEMENT_LIST_NO_SCOPE (stmt)) stmt = pop_stmt_list (stmt); else { /* Destroy any ObjC "super" receivers that may have been created. */ objc_clear_super_receiver (); stmt = do_poplevel (stmt); } /* ??? See c_end_compound_stmt wrt statement expressions. */ add_stmt (stmt); finish_stmt (); } /* Finish an asm-statement, whose components are a STRING, some OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note whether the asm-statement should be considered volatile. */ tree finish_asm_stmt (int volatile_p, tree string, tree output_operands, tree input_operands, tree clobbers) { tree r; tree t; int ninputs = list_length (input_operands); int noutputs = list_length (output_operands); if (!processing_template_decl) { const char *constraint; const char **oconstraints; bool allows_mem, allows_reg, is_inout; tree operand; int i; oconstraints = (const char **) alloca (noutputs * sizeof (char *)); string = resolve_asm_operand_names (string, output_operands, input_operands); for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i) { operand = TREE_VALUE (t); /* ??? Really, this should not be here. Users should be using a proper lvalue, dammit. But there's a long history of using casts in the output operands. In cases like longlong.h, this becomes a primitive form of typechecking -- if the cast can be removed, then the output operand had a type of the proper width; otherwise we'll get an error. Gross, but ... */ STRIP_NOPS (operand); if (!lvalue_or_else (operand, lv_asm, tf_warning_or_error)) operand = error_mark_node; if (operand != error_mark_node && (TREE_READONLY (operand) || CP_TYPE_CONST_P (TREE_TYPE (operand)) /* Functions are not modifiable, even though they are lvalues. */ || TREE_CODE (TREE_TYPE (operand)) == FUNCTION_TYPE || TREE_CODE (TREE_TYPE (operand)) == METHOD_TYPE /* If it's an aggregate and any field is const, then it is effectively const. */ || (CLASS_TYPE_P (TREE_TYPE (operand)) && C_TYPE_FIELDS_READONLY (TREE_TYPE (operand))))) readonly_error (operand, "assignment (via 'asm' output)"); constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t))); oconstraints[i] = constraint; if (parse_output_constraint (&constraint, i, ninputs, noutputs, &allows_mem, &allows_reg, &is_inout)) { /* If the operand is going to end up in memory, mark it addressable. */ if (!allows_reg && !cxx_mark_addressable (operand)) operand = error_mark_node; } else operand = error_mark_node; TREE_VALUE (t) = operand; } for (i = 0, t = input_operands; t; ++i, t = TREE_CHAIN (t)) { constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t))); operand = decay_conversion (TREE_VALUE (t)); /* If the type of the operand hasn't been determined (e.g., because it involves an overloaded function), then issue an error message. There's no context available to resolve the overloading. */ if (TREE_TYPE (operand) == unknown_type_node) { error ("type of asm operand %qE could not be determined", TREE_VALUE (t)); operand = error_mark_node; } if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0, oconstraints, &allows_mem, &allows_reg)) { /* If the operand is going to end up in memory, mark it addressable. */ if (!allows_reg && allows_mem) { /* Strip the nops as we allow this case. FIXME, this really should be rejected or made deprecated. */ STRIP_NOPS (operand); if (!cxx_mark_addressable (operand)) operand = error_mark_node; } } else operand = error_mark_node; TREE_VALUE (t) = operand; } } r = build_stmt (ASM_EXPR, string, output_operands, input_operands, clobbers); ASM_VOLATILE_P (r) = volatile_p || noutputs == 0; r = maybe_cleanup_point_expr_void (r); return add_stmt (r); } /* Finish a label with the indicated NAME. */ tree finish_label_stmt (tree name) { tree decl = define_label (input_location, name); if (decl == error_mark_node) return error_mark_node; return add_stmt (build_stmt (LABEL_EXPR, decl)); } /* Finish a series of declarations for local labels. G++ allows users to declare "local" labels, i.e., labels with scope. This extension is useful when writing code involving statement-expressions. */ void finish_label_decl (tree name) { if (!at_function_scope_p ()) { error ("__label__ declarations are only allowed in function scopes"); return; } add_decl_expr (declare_local_label (name)); } /* When DECL goes out of scope, make sure that CLEANUP is executed. */ void finish_decl_cleanup (tree decl, tree cleanup) { push_cleanup (decl, cleanup, false); } /* If the current scope exits with an exception, run CLEANUP. */ void finish_eh_cleanup (tree cleanup) { push_cleanup (NULL, cleanup, true); } /* The MEM_INITS is a list of mem-initializers, in reverse of the order they were written by the user. Each node is as for emit_mem_initializers. */ void finish_mem_initializers (tree mem_inits) { /* Reorder the MEM_INITS so that they are in the order they appeared in the source program. */ mem_inits = nreverse (mem_inits); if (processing_template_decl) { tree mem; for (mem = mem_inits; mem; mem = TREE_CHAIN (mem)) { /* If the TREE_PURPOSE is a TYPE_PACK_EXPANSION, skip the check for bare parameter packs in the TREE_VALUE, because any parameter packs in the TREE_VALUE have already been bound as part of the TREE_PURPOSE. See make_pack_expansion for more information. */ if (TREE_CODE (TREE_PURPOSE (mem)) != TYPE_PACK_EXPANSION && check_for_bare_parameter_packs (TREE_VALUE (mem))) TREE_VALUE (mem) = error_mark_node; } add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits)); } else emit_mem_initializers (mem_inits); } /* Finish a parenthesized expression EXPR. */ tree finish_parenthesized_expr (tree expr) { if (EXPR_P (expr)) /* This inhibits warnings in c_common_truthvalue_conversion. */ TREE_NO_WARNING (expr) = 1; if (TREE_CODE (expr) == OFFSET_REF) /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be enclosed in parentheses. */ PTRMEM_OK_P (expr) = 0; if (TREE_CODE (expr) == STRING_CST) PAREN_STRING_LITERAL_P (expr) = 1; return expr; } /* Finish a reference to a non-static data member (DECL) that is not preceded by `.' or `->'. */ tree finish_non_static_data_member (tree decl, tree object, tree qualifying_scope) { gcc_assert (TREE_CODE (decl) == FIELD_DECL); if (!object) { if (current_function_decl && DECL_STATIC_FUNCTION_P (current_function_decl)) error ("invalid use of member %q+D in static member function", decl); else error ("invalid use of non-static data member %q+D", decl); error ("from this location"); return error_mark_node; } TREE_USED (current_class_ptr) = 1; if (processing_template_decl && !qualifying_scope) { tree type = TREE_TYPE (decl); if (TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); else { /* Set the cv qualifiers. */ int quals = cp_type_quals (TREE_TYPE (current_class_ref)); if (DECL_MUTABLE_P (decl)) quals &= ~TYPE_QUAL_CONST; quals |= cp_type_quals (TREE_TYPE (decl)); type = cp_build_qualified_type (type, quals); } return build_min (COMPONENT_REF, type, object, decl, NULL_TREE); } else { tree access_type = TREE_TYPE (object); tree lookup_context = context_for_name_lookup (decl); while (!DERIVED_FROM_P (lookup_context, access_type)) { access_type = TYPE_CONTEXT (access_type); while (access_type && DECL_P (access_type)) access_type = DECL_CONTEXT (access_type); if (!access_type) { error ("object missing in reference to %q+D", decl); error ("from this location"); return error_mark_node; } } /* If PROCESSING_TEMPLATE_DECL is nonzero here, then QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF for now. */ if (processing_template_decl) return build_qualified_name (TREE_TYPE (decl), qualifying_scope, DECL_NAME (decl), /*template_p=*/false); perform_or_defer_access_check (TYPE_BINFO (access_type), decl, decl); /* If the data member was named `C::M', convert `*this' to `C' first. */ if (qualifying_scope) { tree binfo = NULL_TREE; object = build_scoped_ref (object, qualifying_scope, &binfo); } return build_class_member_access_expr (object, decl, /*access_path=*/NULL_TREE, /*preserve_reference=*/false, tf_warning_or_error); } } /* DECL was the declaration to which a qualified-id resolved. Issue an error message if it is not accessible. If OBJECT_TYPE is non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the type of `*x', or `x', respectively. If the DECL was named as `A::B' then NESTED_NAME_SPECIFIER is `A'. */ void check_accessibility_of_qualified_id (tree decl, tree object_type, tree nested_name_specifier) { tree scope; tree qualifying_type = NULL_TREE; /* If we're not checking, return immediately. */ if (deferred_access_no_check) return; /* Determine the SCOPE of DECL. */ scope = context_for_name_lookup (decl); /* If the SCOPE is not a type, then DECL is not a member. */ if (!TYPE_P (scope)) return; /* Compute the scope through which DECL is being accessed. */ if (object_type /* OBJECT_TYPE might not be a class type; consider: class A { typedef int I; }; I *p; p->A::I::~I(); In this case, we will have "A::I" as the DECL, but "I" as the OBJECT_TYPE. */ && CLASS_TYPE_P (object_type) && DERIVED_FROM_P (scope, object_type)) /* If we are processing a `->' or `.' expression, use the type of the left-hand side. */ qualifying_type = object_type; else if (nested_name_specifier) { /* If the reference is to a non-static member of the current class, treat it as if it were referenced through `this'. */ if (DECL_NONSTATIC_MEMBER_P (decl) && current_class_ptr && DERIVED_FROM_P (scope, current_class_type)) qualifying_type = current_class_type; /* Otherwise, use the type indicated by the nested-name-specifier. */ else qualifying_type = nested_name_specifier; } else /* Otherwise, the name must be from the current class or one of its bases. */ qualifying_type = currently_open_derived_class (scope); if (qualifying_type /* It is possible for qualifying type to be a TEMPLATE_TYPE_PARM or similar in a default argument value. */ && CLASS_TYPE_P (qualifying_type) && !dependent_type_p (qualifying_type)) perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl, decl); } /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the class named to the left of the "::" operator. DONE is true if this expression is a complete postfix-expression; it is false if this expression is followed by '->', '[', '(', etc. ADDRESS_P is true iff this expression is the operand of '&'. TEMPLATE_P is true iff the qualified-id was of the form "A::template B". TEMPLATE_ARG_P is true iff this qualified name appears as a template argument. */ tree finish_qualified_id_expr (tree qualifying_class, tree expr, bool done, bool address_p, bool template_p, bool template_arg_p) { gcc_assert (TYPE_P (qualifying_class)); if (error_operand_p (expr)) return error_mark_node; if (DECL_P (expr) || BASELINK_P (expr)) mark_used (expr); if (template_p) check_template_keyword (expr); /* If EXPR occurs as the operand of '&', use special handling that permits a pointer-to-member. */ if (address_p && done) { if (TREE_CODE (expr) == SCOPE_REF) expr = TREE_OPERAND (expr, 1); expr = build_offset_ref (qualifying_class, expr, /*address_p=*/true); return expr; } /* Within the scope of a class, turn references to non-static members into expression of the form "this->...". */ if (template_arg_p) /* But, within a template argument, we do not want make the transformation, as there is no "this" pointer. */ ; else if (TREE_CODE (expr) == FIELD_DECL) { push_deferring_access_checks (dk_no_check); expr = finish_non_static_data_member (expr, current_class_ref, qualifying_class); pop_deferring_access_checks (); } else if (BASELINK_P (expr) && !processing_template_decl) { tree fns; /* See if any of the functions are non-static members. */ fns = BASELINK_FUNCTIONS (expr); if (TREE_CODE (fns) == TEMPLATE_ID_EXPR) fns = TREE_OPERAND (fns, 0); /* If so, the expression may be relative to the current class. */ if (!shared_member_p (fns) && current_class_type && DERIVED_FROM_P (qualifying_class, current_class_type)) expr = (build_class_member_access_expr (maybe_dummy_object (qualifying_class, NULL), expr, BASELINK_ACCESS_BINFO (expr), /*preserve_reference=*/false, tf_warning_or_error)); else if (done) /* The expression is a qualified name whose address is not being taken. */ expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false); } return expr; } /* Begin a statement-expression. The value returned must be passed to finish_stmt_expr. */ tree begin_stmt_expr (void) { return push_stmt_list (); } /* Process the final expression of a statement expression. EXPR can be NULL, if the final expression is empty. Return a STATEMENT_LIST containing all the statements in the statement-expression, or ERROR_MARK_NODE if there was an error. */ tree finish_stmt_expr_expr (tree expr, tree stmt_expr) { if (error_operand_p (expr)) { /* The type of the statement-expression is the type of the last expression. */ TREE_TYPE (stmt_expr) = error_mark_node; return error_mark_node; } /* If the last statement does not have "void" type, then the value of the last statement is the value of the entire expression. */ if (expr) { tree type = TREE_TYPE (expr); if (processing_template_decl) { expr = build_stmt (EXPR_STMT, expr); expr = add_stmt (expr); /* Mark the last statement so that we can recognize it as such at template-instantiation time. */ EXPR_STMT_STMT_EXPR_RESULT (expr) = 1; } else if (VOID_TYPE_P (type)) { /* Just treat this like an ordinary statement. */ expr = finish_expr_stmt (expr); } else { /* It actually has a value we need to deal with. First, force it to be an rvalue so that we won't need to build up a copy constructor call later when we try to assign it to something. */ expr = force_rvalue (expr); if (error_operand_p (expr)) return error_mark_node; /* Update for array-to-pointer decay. */ type = TREE_TYPE (expr); /* Wrap it in a CLEANUP_POINT_EXPR and add it to the list like a normal statement, but don't convert to void or actually add the EXPR_STMT. */ if (TREE_CODE (expr) != CLEANUP_POINT_EXPR) expr = maybe_cleanup_point_expr (expr); add_stmt (expr); } /* The type of the statement-expression is the type of the last expression. */ TREE_TYPE (stmt_expr) = type; } return stmt_expr; } /* Finish a statement-expression. EXPR should be the value returned by the previous begin_stmt_expr. Returns an expression representing the statement-expression. */ tree finish_stmt_expr (tree stmt_expr, bool has_no_scope) { tree type; tree result; if (error_operand_p (stmt_expr)) { pop_stmt_list (stmt_expr); return error_mark_node; } gcc_assert (TREE_CODE (stmt_expr) == STATEMENT_LIST); type = TREE_TYPE (stmt_expr); result = pop_stmt_list (stmt_expr); TREE_TYPE (result) = type; if (processing_template_decl) { result = build_min (STMT_EXPR, type, result); TREE_SIDE_EFFECTS (result) = 1; STMT_EXPR_NO_SCOPE (result) = has_no_scope; } else if (CLASS_TYPE_P (type)) { /* Wrap the statement-expression in a TARGET_EXPR so that the temporary object created by the final expression is destroyed at the end of the full-expression containing the statement-expression. */ result = force_target_expr (type, result); } return result; } /* Returns the expression which provides the value of STMT_EXPR. */ tree stmt_expr_value_expr (tree stmt_expr) { tree t = STMT_EXPR_STMT (stmt_expr); if (TREE_CODE (t) == BIND_EXPR) t = BIND_EXPR_BODY (t); if (TREE_CODE (t) == STATEMENT_LIST && STATEMENT_LIST_TAIL (t)) t = STATEMENT_LIST_TAIL (t)->stmt; if (TREE_CODE (t) == EXPR_STMT) t = EXPR_STMT_EXPR (t); return t; } /* Perform Koenig lookup. FN is the postfix-expression representing the function (or functions) to call; ARGS are the arguments to the call. Returns the functions to be considered by overload resolution. */ tree perform_koenig_lookup (tree fn, tree args) { tree identifier = NULL_TREE; tree functions = NULL_TREE; tree tmpl_args = NULL_TREE; if (TREE_CODE (fn) == TEMPLATE_ID_EXPR) { tmpl_args = TREE_OPERAND (fn, 1); fn = TREE_OPERAND (fn, 0); } /* Find the name of the overloaded function. */ if (TREE_CODE (fn) == IDENTIFIER_NODE) identifier = fn; else if (is_overloaded_fn (fn)) { functions = fn; identifier = DECL_NAME (get_first_fn (functions)); } else if (DECL_P (fn)) { functions = fn; identifier = DECL_NAME (fn); } /* A call to a namespace-scope function using an unqualified name. Do Koenig lookup -- unless any of the arguments are type-dependent. */ if (!any_type_dependent_arguments_p (args) && !any_dependent_template_arguments_p (tmpl_args)) { fn = lookup_arg_dependent (identifier, functions, args); if (!fn) /* The unqualified name could not be resolved. */ fn = unqualified_fn_lookup_error (identifier); } if (fn && tmpl_args) fn = build_nt (TEMPLATE_ID_EXPR, fn, tmpl_args); return fn; } /* Generate an expression for `FN (ARGS)'. If DISALLOW_VIRTUAL is true, the call to FN will be not generated as a virtual call, even if FN is virtual. (This flag is set when encountering an expression where the function name is explicitly qualified. For example a call to `X::f' never generates a virtual call.) Returns code for the call. */ tree finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p, tsubst_flags_t complain) { tree result; tree orig_fn; tree orig_args; if (fn == error_mark_node || args == error_mark_node) return error_mark_node; /* ARGS should be a list of arguments. */ gcc_assert (!args || TREE_CODE (args) == TREE_LIST); gcc_assert (!TYPE_P (fn)); orig_fn = fn; orig_args = args; if (processing_template_decl) { if (type_dependent_expression_p (fn) || any_type_dependent_arguments_p (args)) { result = build_nt_call_list (fn, args); KOENIG_LOOKUP_P (result) = koenig_p; if (cfun) { do { tree fndecl = OVL_CURRENT (fn); if (TREE_CODE (fndecl) != FUNCTION_DECL || !TREE_THIS_VOLATILE (fndecl)) break; fn = OVL_NEXT (fn); } while (fn); if (!fn) current_function_returns_abnormally = 1; } return result; } if (!BASELINK_P (fn) && TREE_CODE (fn) != PSEUDO_DTOR_EXPR && TREE_TYPE (fn) != unknown_type_node) fn = build_non_dependent_expr (fn); args = build_non_dependent_args (orig_args); } if (is_overloaded_fn (fn)) fn = baselink_for_fns (fn); result = NULL_TREE; if (BASELINK_P (fn)) { tree object; /* A call to a member function. From [over.call.func]: If the keyword this is in scope and refers to the class of that member function, or a derived class thereof, then the function call is transformed into a qualified function call using (*this) as the postfix-expression to the left of the . operator.... [Otherwise] a contrived object of type T becomes the implied object argument. This paragraph is unclear about this situation: struct A { void f(); }; struct B : public A {}; struct C : public A { void g() { B::f(); }}; In particular, for `B::f', this paragraph does not make clear whether "the class of that member function" refers to `A' or to `B'. We believe it refers to `B'. */ if (current_class_type && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)), current_class_type) && current_class_ref) object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)), NULL); else { tree representative_fn; representative_fn = BASELINK_FUNCTIONS (fn); if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR) representative_fn = TREE_OPERAND (representative_fn, 0); representative_fn = get_first_fn (representative_fn); object = build_dummy_object (DECL_CONTEXT (representative_fn)); } if (processing_template_decl) { if (type_dependent_expression_p (object)) return build_nt_call_list (orig_fn, orig_args); object = build_non_dependent_expr (object); } result = build_new_method_call (object, fn, args, NULL_TREE, (disallow_virtual ? LOOKUP_NONVIRTUAL : 0), /*fn_p=*/NULL, complain); } else if (is_overloaded_fn (fn)) { /* If the function is an overloaded builtin, resolve it. */ if (TREE_CODE (fn) == FUNCTION_DECL && (DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL || DECL_BUILT_IN_CLASS (fn) == BUILT_IN_MD)) result = resolve_overloaded_builtin (fn, args); if (!result) /* A call to a namespace-scope function. */ result = build_new_function_call (fn, args, koenig_p, complain); } else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR) { if (args) error ("arguments to destructor are not allowed"); /* Mark the pseudo-destructor call as having side-effects so that we do not issue warnings about its use. */ result = build1 (NOP_EXPR, void_type_node, TREE_OPERAND (fn, 0)); TREE_SIDE_EFFECTS (result) = 1; } else if (CLASS_TYPE_P (TREE_TYPE (fn))) /* If the "function" is really an object of class type, it might have an overloaded `operator ()'. */ result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE, /*overloaded_p=*/NULL, complain); if (!result) /* A call where the function is unknown. */ result = cp_build_function_call (fn, args, complain); if (processing_template_decl) { result = build_call_list (TREE_TYPE (result), orig_fn, orig_args); KOENIG_LOOKUP_P (result) = koenig_p; } return result; } /* Finish a call to a postfix increment or decrement or EXPR. (Which is indicated by CODE, which should be POSTINCREMENT_EXPR or POSTDECREMENT_EXPR.) */ tree finish_increment_expr (tree expr, enum tree_code code) { return build_x_unary_op (code, expr, tf_warning_or_error); } /* Finish a use of `this'. Returns an expression for `this'. */ tree finish_this_expr (void) { tree result; if (current_class_ptr) { result = current_class_ptr; } else if (current_function_decl && DECL_STATIC_FUNCTION_P (current_function_decl)) { error ("% is unavailable for static member functions"); result = error_mark_node; } else { if (current_function_decl) error ("invalid use of % in non-member function"); else error ("invalid use of % at top level"); result = error_mark_node; } return result; } /* Finish a pseudo-destructor expression. If SCOPE is NULL, the expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is the TYPE for the type given. If SCOPE is non-NULL, the expression was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */ tree finish_pseudo_destructor_expr (tree object, tree scope, tree destructor) { if (object == error_mark_node || destructor == error_mark_node) return error_mark_node; gcc_assert (TYPE_P (destructor)); if (!processing_template_decl) { if (scope == error_mark_node) { error ("invalid qualifying scope in pseudo-destructor name"); return error_mark_node; } if (scope && TYPE_P (scope) && !check_dtor_name (scope, destructor)) { error ("qualified type %qT does not match destructor name ~%qT", scope, destructor); return error_mark_node; } /* [expr.pseudo] says both: The type designated by the pseudo-destructor-name shall be the same as the object type. and: The cv-unqualified versions of the object type and of the type designated by the pseudo-destructor-name shall be the same type. We implement the more generous second sentence, since that is what most other compilers do. */ if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object), destructor)) { error ("%qE is not of type %qT", object, destructor); return error_mark_node; } } return build3 (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor); } /* Finish an expression of the form CODE EXPR. */ tree finish_unary_op_expr (enum tree_code code, tree expr) { tree result = build_x_unary_op (code, expr, tf_warning_or_error); /* Inside a template, build_x_unary_op does not fold the expression. So check whether the result is folded before setting TREE_NEGATED_INT. */ if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST && TREE_CODE (result) == INTEGER_CST && !TYPE_UNSIGNED (TREE_TYPE (result)) && INT_CST_LT (result, integer_zero_node)) { /* RESULT may be a cached INTEGER_CST, so we must copy it before setting TREE_NEGATED_INT. */ result = copy_node (result); TREE_NEGATED_INT (result) = 1; } if (TREE_OVERFLOW_P (result) && !TREE_OVERFLOW_P (expr)) overflow_warning (result); return result; } /* Finish a compound-literal expression. TYPE is the type to which the CONSTRUCTOR in COMPOUND_LITERAL is being cast. */ tree finish_compound_literal (tree type, tree compound_literal) { if (type == error_mark_node) return error_mark_node; if (!TYPE_OBJ_P (type)) { error ("compound literal of non-object type %qT", type); return error_mark_node; } if (processing_template_decl) { TREE_TYPE (compound_literal) = type; /* Mark the expression as a compound literal. */ TREE_HAS_CONSTRUCTOR (compound_literal) = 1; return compound_literal; } type = complete_type (type); if (TYPE_NON_AGGREGATE_CLASS (type)) { /* Trying to deal with a CONSTRUCTOR instead of a TREE_LIST everywhere that deals with function arguments would be a pain, so just wrap it in a TREE_LIST. The parser set a flag so we know that it came from T{} rather than T({}). */ CONSTRUCTOR_IS_DIRECT_INIT (compound_literal) = 1; compound_literal = build_tree_list (NULL_TREE, compound_literal); return build_functional_cast (type, compound_literal, tf_error); } if (TREE_CODE (type) == ARRAY_TYPE && check_array_initializer (NULL_TREE, type, compound_literal)) return error_mark_node; compound_literal = reshape_init (type, compound_literal); if (TREE_CODE (type) == ARRAY_TYPE) cp_complete_array_type (&type, compound_literal, false); compound_literal = digest_init (type, compound_literal); if ((!at_function_scope_p () || cp_type_readonly (type)) && initializer_constant_valid_p (compound_literal, type)) { tree decl = create_temporary_var (type); DECL_INITIAL (decl) = compound_literal; TREE_STATIC (decl) = 1; decl = pushdecl_top_level (decl); DECL_NAME (decl) = make_anon_name (); SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl)); return decl; } else return get_target_expr (compound_literal); } /* Return the declaration for the function-name variable indicated by ID. */ tree finish_fname (tree id) { tree decl; decl = fname_decl (input_location, C_RID_CODE (id), id); if (processing_template_decl) decl = DECL_NAME (decl); return decl; } /* Finish a translation unit. */ void finish_translation_unit (void) { /* In case there were missing closebraces, get us back to the global binding level. */ pop_everything (); while (current_namespace != global_namespace) pop_namespace (); /* Do file scope __FUNCTION__ et al. */ finish_fname_decls (); } /* Finish a template type parameter, specified as AGGR IDENTIFIER. Returns the parameter. */ tree finish_template_type_parm (tree aggr, tree identifier) { if (aggr != class_type_node) { permerror (input_location, "template type parameters must use the keyword % or %"); aggr = class_type_node; } return build_tree_list (aggr, identifier); } /* Finish a template template parameter, specified as AGGR IDENTIFIER. Returns the parameter. */ tree finish_template_template_parm (tree aggr, tree identifier) { tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE); tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE); DECL_TEMPLATE_PARMS (tmpl) = current_template_parms; DECL_TEMPLATE_RESULT (tmpl) = decl; DECL_ARTIFICIAL (decl) = 1; end_template_decl (); gcc_assert (DECL_TEMPLATE_PARMS (tmpl)); check_default_tmpl_args (decl, DECL_TEMPLATE_PARMS (tmpl), /*is_primary=*/true, /*is_partial=*/false, /*is_friend=*/0); return finish_template_type_parm (aggr, tmpl); } /* ARGUMENT is the default-argument value for a template template parameter. If ARGUMENT is invalid, issue error messages and return the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */ tree check_template_template_default_arg (tree argument) { if (TREE_CODE (argument) != TEMPLATE_DECL && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE) { if (TREE_CODE (argument) == TYPE_DECL) error ("invalid use of type %qT as a default value for a template " "template-parameter", TREE_TYPE (argument)); else error ("invalid default argument for a template template parameter"); return error_mark_node; } return argument; } /* Begin a class definition, as indicated by T. */ tree begin_class_definition (tree t, tree attributes) { if (error_operand_p (t) || error_operand_p (TYPE_MAIN_DECL (t))) return error_mark_node; if (processing_template_parmlist) { error ("definition of %q#T inside template parameter list", t); return error_mark_node; } /* A non-implicit typename comes from code like: template struct A { template struct A::B ... This is erroneous. */ else if (TREE_CODE (t) == TYPENAME_TYPE) { error ("invalid definition of qualified type %qT", t); t = error_mark_node; } if (t == error_mark_node || ! MAYBE_CLASS_TYPE_P (t)) { t = make_class_type (RECORD_TYPE); pushtag (make_anon_name (), t, /*tag_scope=*/ts_current); } /* Update the location of the decl. */ DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location; if (TYPE_BEING_DEFINED (t)) { t = make_class_type (TREE_CODE (t)); pushtag (TYPE_IDENTIFIER (t), t, /*tag_scope=*/ts_current); } maybe_process_partial_specialization (t); pushclass (t); TYPE_BEING_DEFINED (t) = 1; cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE); if (flag_pack_struct) { tree v; TYPE_PACKED (t) = 1; /* Even though the type is being defined for the first time here, there might have been a forward declaration, so there might be cv-qualified variants of T. */ for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v)) TYPE_PACKED (v) = 1; } /* Reset the interface data, at the earliest possible moment, as it might have been set via a class foo; before. */ if (! TYPE_ANONYMOUS_P (t)) { struct c_fileinfo *finfo = get_fileinfo (input_filename); CLASSTYPE_INTERFACE_ONLY (t) = finfo->interface_only; SET_CLASSTYPE_INTERFACE_UNKNOWN_X (t, finfo->interface_unknown); } reset_specialization(); /* Make a declaration for this class in its own scope. */ build_self_reference (); return t; } /* Finish the member declaration given by DECL. */ void finish_member_declaration (tree decl) { if (decl == error_mark_node || decl == NULL_TREE) return; if (decl == void_type_node) /* The COMPONENT was a friend, not a member, and so there's nothing for us to do. */ return; /* We should see only one DECL at a time. */ gcc_assert (TREE_CHAIN (decl) == NULL_TREE); /* Set up access control for DECL. */ TREE_PRIVATE (decl) = (current_access_specifier == access_private_node); TREE_PROTECTED (decl) = (current_access_specifier == access_protected_node); if (TREE_CODE (decl) == TEMPLATE_DECL) { TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl); TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl); } /* Mark the DECL as a member of the current class. */ DECL_CONTEXT (decl) = current_class_type; /* Check for bare parameter packs in the member variable declaration. */ if (TREE_CODE (decl) == FIELD_DECL) { if (check_for_bare_parameter_packs (TREE_TYPE (decl))) TREE_TYPE (decl) = error_mark_node; if (check_for_bare_parameter_packs (DECL_ATTRIBUTES (decl))) DECL_ATTRIBUTES (decl) = NULL_TREE; } /* [dcl.link] A C language linkage is ignored for the names of class members and the member function type of class member functions. */ if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c) SET_DECL_LANGUAGE (decl, lang_cplusplus); /* Put functions on the TYPE_METHODS list and everything else on the TYPE_FIELDS list. Note that these are built up in reverse order. We reverse them (to obtain declaration order) in finish_struct. */ if (TREE_CODE (decl) == FUNCTION_DECL || DECL_FUNCTION_TEMPLATE_P (decl)) { /* We also need to add this function to the CLASSTYPE_METHOD_VEC. */ if (add_method (current_class_type, decl, NULL_TREE)) { TREE_CHAIN (decl) = TYPE_METHODS (current_class_type); TYPE_METHODS (current_class_type) = decl; maybe_add_class_template_decl_list (current_class_type, decl, /*friend_p=*/0); } } /* Enter the DECL into the scope of the class. */ else if ((TREE_CODE (decl) == USING_DECL && !DECL_DEPENDENT_P (decl)) || pushdecl_class_level (decl)) { /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields go at the beginning. The reason is that lookup_field_1 searches the list in order, and we want a field name to override a type name so that the "struct stat hack" will work. In particular: struct S { enum E { }; int E } s; s.E = 3; is valid. In addition, the FIELD_DECLs must be maintained in declaration order so that class layout works as expected. However, we don't need that order until class layout, so we save a little time by putting FIELD_DECLs on in reverse order here, and then reversing them in finish_struct_1. (We could also keep a pointer to the correct insertion points in the list.) */ if (TREE_CODE (decl) == TYPE_DECL) TYPE_FIELDS (current_class_type) = chainon (TYPE_FIELDS (current_class_type), decl); else { TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type); TYPE_FIELDS (current_class_type) = decl; } maybe_add_class_template_decl_list (current_class_type, decl, /*friend_p=*/0); } if (pch_file) note_decl_for_pch (decl); } /* DECL has been declared while we are building a PCH file. Perform actions that we might normally undertake lazily, but which can be performed now so that they do not have to be performed in translation units which include the PCH file. */ void note_decl_for_pch (tree decl) { gcc_assert (pch_file); /* There's a good chance that we'll have to mangle names at some point, even if only for emission in debugging information. */ if ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL) && !processing_template_decl) mangle_decl (decl); } /* Finish processing a complete template declaration. The PARMS are the template parameters. */ void finish_template_decl (tree parms) { if (parms) end_template_decl (); else end_specialization (); } /* Finish processing a template-id (which names a type) of the form NAME < ARGS >. Return the TYPE_DECL for the type named by the template-id. If ENTERING_SCOPE is nonzero we are about to enter the scope of template-id indicated. */ tree finish_template_type (tree name, tree args, int entering_scope) { tree decl; decl = lookup_template_class (name, args, NULL_TREE, NULL_TREE, entering_scope, tf_warning_or_error | tf_user); if (decl != error_mark_node) decl = TYPE_STUB_DECL (decl); return decl; } /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER. Return a TREE_LIST containing the ACCESS_SPECIFIER and the BASE_CLASS, or NULL_TREE if an error occurred. The ACCESS_SPECIFIER is one of access_{default,public,protected_private}_node. For a virtual base we set TREE_TYPE. */ tree finish_base_specifier (tree base, tree access, bool virtual_p) { tree result; if (base == error_mark_node) { error ("invalid base-class specification"); result = NULL_TREE; } else if (! MAYBE_CLASS_TYPE_P (base)) { error ("%qT is not a class type", base); result = NULL_TREE; } else { if (cp_type_quals (base) != 0) { error ("base class %qT has cv qualifiers", base); base = TYPE_MAIN_VARIANT (base); } result = build_tree_list (access, base); if (virtual_p) TREE_TYPE (result) = integer_type_node; } return result; } /* Issue a diagnostic that NAME cannot be found in SCOPE. DECL is what we found when we tried to do the lookup. LOCATION is the location of the NAME identifier; The location is used in the error message*/ void qualified_name_lookup_error (tree scope, tree name, tree decl, location_t location) { if (scope == error_mark_node) ; /* We already complained. */ else if (TYPE_P (scope)) { if (!COMPLETE_TYPE_P (scope)) error ("%Hincomplete type %qT used in nested name specifier", &location, scope); else if (TREE_CODE (decl) == TREE_LIST) { error ("%Hreference to %<%T::%D%> is ambiguous", &location, scope, name); print_candidates (decl); } else error ("%H%qD is not a member of %qT", &location, name, scope); } else if (scope != global_namespace) error ("%H%qD is not a member of %qD", &location, name, scope); else error ("%H%<::%D%> has not been declared", &location, name); } /* If FNS is a member function, a set of member functions, or a template-id referring to one or more member functions, return a BASELINK for FNS, incorporating the current access context. Otherwise, return FNS unchanged. */ tree baselink_for_fns (tree fns) { tree fn; tree cl; if (BASELINK_P (fns) || error_operand_p (fns)) return fns; fn = fns; if (TREE_CODE (fn) == TEMPLATE_ID_EXPR) fn = TREE_OPERAND (fn, 0); fn = get_first_fn (fn); if (!DECL_FUNCTION_MEMBER_P (fn)) return fns; cl = currently_open_derived_class (DECL_CONTEXT (fn)); if (!cl) cl = DECL_CONTEXT (fn); cl = TYPE_BINFO (cl); return build_baselink (cl, cl, fns, /*optype=*/NULL_TREE); } /* ID_EXPRESSION is a representation of parsed, but unprocessed, id-expression. (See cp_parser_id_expression for details.) SCOPE, if non-NULL, is the type or namespace used to explicitly qualify ID_EXPRESSION. DECL is the entity to which that name has been resolved. *CONSTANT_EXPRESSION_P is true if we are presently parsing a constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will be set to true if this expression isn't permitted in a constant-expression, but it is otherwise not set by this function. *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a constant-expression, but a non-constant expression is also permissible. DONE is true if this expression is a complete postfix-expression; it is false if this expression is followed by '->', '[', '(', etc. ADDRESS_P is true iff this expression is the operand of '&'. TEMPLATE_P is true iff the qualified-id was of the form "A::template B". TEMPLATE_ARG_P is true iff this qualified name appears as a template argument. If an error occurs, and it is the kind of error that might cause the parser to abort a tentative parse, *ERROR_MSG is filled in. It is the caller's responsibility to issue the message. *ERROR_MSG will be a string with static storage duration, so the caller need not "free" it. Return an expression for the entity, after issuing appropriate diagnostics. This function is also responsible for transforming a reference to a non-static member into a COMPONENT_REF that makes the use of "this" explicit. Upon return, *IDK will be filled in appropriately. */ tree finish_id_expression (tree id_expression, tree decl, tree scope, cp_id_kind *idk, bool integral_constant_expression_p, bool allow_non_integral_constant_expression_p, bool *non_integral_constant_expression_p, bool template_p, bool done, bool address_p, bool template_arg_p, const char **error_msg, location_t location) { /* Initialize the output parameters. */ *idk = CP_ID_KIND_NONE; *error_msg = NULL; if (id_expression == error_mark_node) return error_mark_node; /* If we have a template-id, then no further lookup is required. If the template-id was for a template-class, we will sometimes have a TYPE_DECL at this point. */ else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR || TREE_CODE (decl) == TYPE_DECL) ; /* Look up the name. */ else { if (decl == error_mark_node) { /* Name lookup failed. */ if (scope && (!TYPE_P (scope) || (!dependent_type_p (scope) && !(TREE_CODE (id_expression) == IDENTIFIER_NODE && IDENTIFIER_TYPENAME_P (id_expression) && dependent_type_p (TREE_TYPE (id_expression)))))) { /* If the qualifying type is non-dependent (and the name does not name a conversion operator to a dependent type), issue an error. */ qualified_name_lookup_error (scope, id_expression, decl, location); return error_mark_node; } else if (!scope) { /* It may be resolved via Koenig lookup. */ *idk = CP_ID_KIND_UNQUALIFIED; return id_expression; } else decl = id_expression; } /* If DECL is a variable that would be out of scope under ANSI/ISO rules, but in scope in the ARM, name lookup will succeed. Issue a diagnostic here. */ else decl = check_for_out_of_scope_variable (decl); /* Remember that the name was used in the definition of the current class so that we can check later to see if the meaning would have been different after the class was entirely defined. */ if (!scope && decl != error_mark_node) maybe_note_name_used_in_class (id_expression, decl); /* Disallow uses of local variables from containing functions. */ if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL) { tree context = decl_function_context (decl); if (context != NULL_TREE && context != current_function_decl && ! TREE_STATIC (decl)) { error (TREE_CODE (decl) == VAR_DECL ? "use of % variable from containing function" : "use of parameter from containing function"); error (" %q+#D declared here", decl); return error_mark_node; } } } /* If we didn't find anything, or what we found was a type, then this wasn't really an id-expression. */ if (TREE_CODE (decl) == TEMPLATE_DECL && !DECL_FUNCTION_TEMPLATE_P (decl)) { *error_msg = "missing template arguments"; return error_mark_node; } else if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == NAMESPACE_DECL) { *error_msg = "expected primary-expression"; return error_mark_node; } /* If the name resolved to a template parameter, there is no need to look it up again later. */ if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl)) || TREE_CODE (decl) == TEMPLATE_PARM_INDEX) { tree r; *idk = CP_ID_KIND_NONE; if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX) decl = TEMPLATE_PARM_DECL (decl); r = convert_from_reference (DECL_INITIAL (decl)); if (integral_constant_expression_p && !dependent_type_p (TREE_TYPE (decl)) && !(INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (r)))) { if (!allow_non_integral_constant_expression_p) error ("template parameter %qD of type %qT is not allowed in " "an integral constant expression because it is not of " "integral or enumeration type", decl, TREE_TYPE (decl)); *non_integral_constant_expression_p = true; } return r; } /* Similarly, we resolve enumeration constants to their underlying values. */ else if (TREE_CODE (decl) == CONST_DECL) { *idk = CP_ID_KIND_NONE; if (!processing_template_decl) { used_types_insert (TREE_TYPE (decl)); return DECL_INITIAL (decl); } return decl; } else { bool dependent_p; /* If the declaration was explicitly qualified indicate that. The semantics of `A::f(3)' are different than `f(3)' if `f' is virtual. */ *idk = (scope ? CP_ID_KIND_QUALIFIED : (TREE_CODE (decl) == TEMPLATE_ID_EXPR ? CP_ID_KIND_TEMPLATE_ID : CP_ID_KIND_UNQUALIFIED)); /* [temp.dep.expr] An id-expression is type-dependent if it contains an identifier that was declared with a dependent type. The standard is not very specific about an id-expression that names a set of overloaded functions. What if some of them have dependent types and some of them do not? Presumably, such a name should be treated as a dependent name. */ /* Assume the name is not dependent. */ dependent_p = false; if (!processing_template_decl) /* No names are dependent outside a template. */ ; /* A template-id where the name of the template was not resolved is definitely dependent. */ else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR && (TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE)) dependent_p = true; /* For anything except an overloaded function, just check its type. */ else if (!is_overloaded_fn (decl)) dependent_p = dependent_type_p (TREE_TYPE (decl)); /* For a set of overloaded functions, check each of the functions. */ else { tree fns = decl; if (BASELINK_P (fns)) fns = BASELINK_FUNCTIONS (fns); /* For a template-id, check to see if the template arguments are dependent. */ if (TREE_CODE (fns) == TEMPLATE_ID_EXPR) { tree args = TREE_OPERAND (fns, 1); dependent_p = any_dependent_template_arguments_p (args); /* The functions are those referred to by the template-id. */ fns = TREE_OPERAND (fns, 0); } /* If there are no dependent template arguments, go through the overloaded functions. */ while (fns && !dependent_p) { tree fn = OVL_CURRENT (fns); /* Member functions of dependent classes are dependent. */ if (TREE_CODE (fn) == FUNCTION_DECL && type_dependent_expression_p (fn)) dependent_p = true; else if (TREE_CODE (fn) == TEMPLATE_DECL && dependent_template_p (fn)) dependent_p = true; fns = OVL_NEXT (fns); } } /* If the name was dependent on a template parameter, we will resolve the name at instantiation time. */ if (dependent_p) { /* Create a SCOPE_REF for qualified names, if the scope is dependent. */ if (scope) { /* Since this name was dependent, the expression isn't constant -- yet. No error is issued because it might be constant when things are instantiated. */ if (integral_constant_expression_p) *non_integral_constant_expression_p = true; if (TYPE_P (scope)) { if (address_p && done) decl = finish_qualified_id_expr (scope, decl, done, address_p, template_p, template_arg_p); else if (dependent_type_p (scope)) decl = build_qualified_name (/*type=*/NULL_TREE, scope, id_expression, template_p); else if (DECL_P (decl)) decl = build_qualified_name (TREE_TYPE (decl), scope, id_expression, template_p); } if (TREE_TYPE (decl)) decl = convert_from_reference (decl); return decl; } /* A TEMPLATE_ID already contains all the information we need. */ if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR) return id_expression; *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT; /* If we found a variable, then name lookup during the instantiation will always resolve to the same VAR_DECL (or an instantiation thereof). */ if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL) return convert_from_reference (decl); /* The same is true for FIELD_DECL, but we also need to make sure that the syntax is correct. */ else if (TREE_CODE (decl) == FIELD_DECL) { /* Since SCOPE is NULL here, this is an unqualified name. Access checking has been performed during name lookup already. Turn off checking to avoid duplicate errors. */ push_deferring_access_checks (dk_no_check); decl = finish_non_static_data_member (decl, current_class_ref, /*qualifying_scope=*/NULL_TREE); pop_deferring_access_checks (); return decl; } return id_expression; } /* Only certain kinds of names are allowed in constant expression. Enumerators and template parameters have already been handled above. */ if (integral_constant_expression_p && ! DECL_INTEGRAL_CONSTANT_VAR_P (decl) && ! builtin_valid_in_constant_expr_p (decl)) { if (!allow_non_integral_constant_expression_p) { error ("%qD cannot appear in a constant-expression", decl); return error_mark_node; } *non_integral_constant_expression_p = true; } if (TREE_CODE (decl) == NAMESPACE_DECL) { error ("use of namespace %qD as expression", decl); return error_mark_node; } else if (DECL_CLASS_TEMPLATE_P (decl)) { error ("use of class template %qT as expression", decl); return error_mark_node; } else if (TREE_CODE (decl) == TREE_LIST) { /* Ambiguous reference to base members. */ error ("request for member %qD is ambiguous in " "multiple inheritance lattice", id_expression); print_candidates (decl); return error_mark_node; } /* Mark variable-like entities as used. Functions are similarly marked either below or after overload resolution. */ if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL) mark_used (decl); if (scope) { decl = (adjust_result_of_qualified_name_lookup (decl, scope, current_class_type)); if (TREE_CODE (decl) == FUNCTION_DECL) mark_used (decl); if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl)) decl = finish_qualified_id_expr (scope, decl, done, address_p, template_p, template_arg_p); else { tree r = convert_from_reference (decl); if (processing_template_decl && TYPE_P (scope)) r = build_qualified_name (TREE_TYPE (r), scope, decl, template_p); decl = r; } } else if (TREE_CODE (decl) == FIELD_DECL) { /* Since SCOPE is NULL here, this is an unqualified name. Access checking has been performed during name lookup already. Turn off checking to avoid duplicate errors. */ push_deferring_access_checks (dk_no_check); decl = finish_non_static_data_member (decl, current_class_ref, /*qualifying_scope=*/NULL_TREE); pop_deferring_access_checks (); } else if (is_overloaded_fn (decl)) { tree first_fn; first_fn = decl; if (TREE_CODE (first_fn) == TEMPLATE_ID_EXPR) first_fn = TREE_OPERAND (first_fn, 0); first_fn = get_first_fn (first_fn); if (TREE_CODE (first_fn) == TEMPLATE_DECL) first_fn = DECL_TEMPLATE_RESULT (first_fn); if (!really_overloaded_fn (decl)) mark_used (first_fn); if (!template_arg_p && TREE_CODE (first_fn) == FUNCTION_DECL && DECL_FUNCTION_MEMBER_P (first_fn) && !shared_member_p (decl)) { /* A set of member functions. */ decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0); return finish_class_member_access_expr (decl, id_expression, /*template_p=*/false, tf_warning_or_error); } decl = baselink_for_fns (decl); } else { if (DECL_P (decl) && DECL_NONLOCAL (decl) && DECL_CLASS_SCOPE_P (decl)) { tree context = context_for_name_lookup (decl); if (context != current_class_type) { tree path = currently_open_derived_class (context); perform_or_defer_access_check (TYPE_BINFO (path), decl, decl); } } decl = convert_from_reference (decl); } } if (TREE_DEPRECATED (decl)) warn_deprecated_use (decl); return decl; } /* Implement the __typeof keyword: Return the type of EXPR, suitable for use as a type-specifier. */ tree finish_typeof (tree expr) { tree type; if (type_dependent_expression_p (expr)) { type = cxx_make_type (TYPEOF_TYPE); TYPEOF_TYPE_EXPR (type) = expr; SET_TYPE_STRUCTURAL_EQUALITY (type); return type; } type = unlowered_expr_type (expr); if (!type || type == unknown_type_node) { error ("type of %qE is unknown", expr); return error_mark_node; } return type; } /* Perform C++-specific checks for __builtin_offsetof before calling fold_offsetof. */ tree finish_offsetof (tree expr) { if (TREE_CODE (expr) == PSEUDO_DTOR_EXPR) { error ("cannot apply % to destructor %<~%T%>", TREE_OPERAND (expr, 2)); return error_mark_node; } if (TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE || TREE_CODE (TREE_TYPE (expr)) == METHOD_TYPE || TREE_CODE (TREE_TYPE (expr)) == UNKNOWN_TYPE) { if (TREE_CODE (expr) == COMPONENT_REF || TREE_CODE (expr) == COMPOUND_EXPR) expr = TREE_OPERAND (expr, 1); error ("cannot apply % to member function %qD", expr); return error_mark_node; } if (TREE_CODE (expr) == INDIRECT_REF && REFERENCE_REF_P (expr)) expr = TREE_OPERAND (expr, 0); return fold_offsetof (expr, NULL_TREE); } /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This function is broken out from the above for the benefit of the tree-ssa project. */ void simplify_aggr_init_expr (tree *tp) { tree aggr_init_expr = *tp; /* Form an appropriate CALL_EXPR. */ tree fn = AGGR_INIT_EXPR_FN (aggr_init_expr); tree slot = AGGR_INIT_EXPR_SLOT (aggr_init_expr); tree type = TREE_TYPE (slot); tree call_expr; enum style_t { ctor, arg, pcc } style; if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr)) style = ctor; #ifdef PCC_STATIC_STRUCT_RETURN else if (1) style = pcc; #endif else { gcc_assert (TREE_ADDRESSABLE (type)); style = arg; } call_expr = build_call_array (TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))), fn, aggr_init_expr_nargs (aggr_init_expr), AGGR_INIT_EXPR_ARGP (aggr_init_expr)); if (style == ctor) { /* Replace the first argument to the ctor with the address of the slot. */ cxx_mark_addressable (slot); CALL_EXPR_ARG (call_expr, 0) = build1 (ADDR_EXPR, build_pointer_type (type), slot); } else if (style == arg) { /* Just mark it addressable here, and leave the rest to expand_call{,_inline}. */ cxx_mark_addressable (slot); CALL_EXPR_RETURN_SLOT_OPT (call_expr) = true; call_expr = build2 (MODIFY_EXPR, TREE_TYPE (call_expr), slot, call_expr); } else if (style == pcc) { /* If we're using the non-reentrant PCC calling convention, then we need to copy the returned value out of the static buffer into the SLOT. */ push_deferring_access_checks (dk_no_check); call_expr = build_aggr_init (slot, call_expr, DIRECT_BIND | LOOKUP_ONLYCONVERTING, tf_warning_or_error); pop_deferring_access_checks (); call_expr = build2 (COMPOUND_EXPR, TREE_TYPE (slot), call_expr, slot); } if (AGGR_INIT_ZERO_FIRST (aggr_init_expr)) { tree init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false); init = build2 (INIT_EXPR, void_type_node, slot, init); call_expr = build2 (COMPOUND_EXPR, TREE_TYPE (call_expr), init, call_expr); } *tp = call_expr; } /* Emit all thunks to FN that should be emitted when FN is emitted. */ void emit_associated_thunks (tree fn) { /* When we use vcall offsets, we emit thunks with the virtual functions to which they thunk. The whole point of vcall offsets is so that you can know statically the entire set of thunks that will ever be needed for a given virtual function, thereby enabling you to output all the thunks with the function itself. */ if (DECL_VIRTUAL_P (fn)) { tree thunk; for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk)) { if (!THUNK_ALIAS (thunk)) { use_thunk (thunk, /*emit_p=*/1); if (DECL_RESULT_THUNK_P (thunk)) { tree probe; for (probe = DECL_THUNKS (thunk); probe; probe = TREE_CHAIN (probe)) use_thunk (probe, /*emit_p=*/1); } } else gcc_assert (!DECL_THUNKS (thunk)); } } } /* Generate RTL for FN. */ void expand_or_defer_fn (tree fn) { /* When the parser calls us after finishing the body of a template function, we don't really want to expand the body. */ if (processing_template_decl) { /* Normally, collection only occurs in rest_of_compilation. So, if we don't collect here, we never collect junk generated during the processing of templates until we hit a non-template function. It's not safe to do this inside a nested class, though, as the parser may have local state that is not a GC root. */ if (!function_depth) ggc_collect (); return; } gcc_assert (gimple_body (fn)); /* If this is a constructor or destructor body, we have to clone it. */ if (maybe_clone_body (fn)) { /* We don't want to process FN again, so pretend we've written it out, even though we haven't. */ TREE_ASM_WRITTEN (fn) = 1; return; } /* We make a decision about linkage for these functions at the end of the compilation. Until that point, we do not want the back end to output them -- but we do want it to see the bodies of these functions so that it can inline them as appropriate. */ if (DECL_DECLARED_INLINE_P (fn) || DECL_IMPLICIT_INSTANTIATION (fn)) { if (DECL_INTERFACE_KNOWN (fn)) /* We've already made a decision as to how this function will be handled. */; else if (!at_eof) { DECL_EXTERNAL (fn) = 1; DECL_NOT_REALLY_EXTERN (fn) = 1; note_vague_linkage_fn (fn); /* A non-template inline function with external linkage will always be COMDAT. As we must eventually determine the linkage of all functions, and as that causes writes to the data mapped in from the PCH file, it's advantageous to mark the functions at this point. */ if (!DECL_IMPLICIT_INSTANTIATION (fn)) { /* This function must have external linkage, as otherwise DECL_INTERFACE_KNOWN would have been set. */ gcc_assert (TREE_PUBLIC (fn)); comdat_linkage (fn); DECL_INTERFACE_KNOWN (fn) = 1; } } else import_export_decl (fn); /* If the user wants us to keep all inline functions, then mark this function as needed so that finish_file will make sure to output it later. */ if (flag_keep_inline_functions && DECL_DECLARED_INLINE_P (fn)) mark_needed (fn); } /* There's no reason to do any of the work here if we're only doing semantic analysis; this code just generates RTL. */ if (flag_syntax_only) return; function_depth++; /* Expand or defer, at the whim of the compilation unit manager. */ cgraph_finalize_function (fn, function_depth > 1); function_depth--; } struct nrv_data { tree var; tree result; htab_t visited; }; /* Helper function for walk_tree, used by finalize_nrv below. */ static tree finalize_nrv_r (tree* tp, int* walk_subtrees, void* data) { struct nrv_data *dp = (struct nrv_data *)data; void **slot; /* No need to walk into types. There wouldn't be any need to walk into non-statements, except that we have to consider STMT_EXPRs. */ if (TYPE_P (*tp)) *walk_subtrees = 0; /* Change all returns to just refer to the RESULT_DECL; this is a nop, but differs from using NULL_TREE in that it indicates that we care about the value of the RESULT_DECL. */ else if (TREE_CODE (*tp) == RETURN_EXPR) TREE_OPERAND (*tp, 0) = dp->result; /* Change all cleanups for the NRV to only run when an exception is thrown. */ else if (TREE_CODE (*tp) == CLEANUP_STMT && CLEANUP_DECL (*tp) == dp->var) CLEANUP_EH_ONLY (*tp) = 1; /* Replace the DECL_EXPR for the NRV with an initialization of the RESULT_DECL, if needed. */ else if (TREE_CODE (*tp) == DECL_EXPR && DECL_EXPR_DECL (*tp) == dp->var) { tree init; if (DECL_INITIAL (dp->var) && DECL_INITIAL (dp->var) != error_mark_node) init = build2 (INIT_EXPR, void_type_node, dp->result, DECL_INITIAL (dp->var)); else init = build_empty_stmt (); DECL_INITIAL (dp->var) = NULL_TREE; SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp)); *tp = init; } /* And replace all uses of the NRV with the RESULT_DECL. */ else if (*tp == dp->var) *tp = dp->result; /* Avoid walking into the same tree more than once. Unfortunately, we can't just use walk_tree_without duplicates because it would only call us for the first occurrence of dp->var in the function body. */ slot = htab_find_slot (dp->visited, *tp, INSERT); if (*slot) *walk_subtrees = 0; else *slot = *tp; /* Keep iterating. */ return NULL_TREE; } /* Called from finish_function to implement the named return value optimization by overriding all the RETURN_EXPRs and pertinent CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the RESULT_DECL for the function. */ void finalize_nrv (tree *tp, tree var, tree result) { struct nrv_data data; /* Copy debugging information from VAR to RESULT. */ DECL_NAME (result) = DECL_NAME (var); DECL_ARTIFICIAL (result) = DECL_ARTIFICIAL (var); DECL_IGNORED_P (result) = DECL_IGNORED_P (var); DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var); DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var); /* Don't forget that we take its address. */ TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var); data.var = var; data.result = result; data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL); cp_walk_tree (tp, finalize_nrv_r, &data, 0); htab_delete (data.visited); } /* Return the declaration for the function called by CALL_EXPR T, TYPE is the class type of the clause decl. */ static tree omp_clause_info_fndecl (tree t, tree type) { tree ret = get_callee_fndecl (t); if (ret) return ret; gcc_assert (TREE_CODE (t) == CALL_EXPR); t = CALL_EXPR_FN (t); STRIP_NOPS (t); if (TREE_CODE (t) == OBJ_TYPE_REF) { t = cp_fold_obj_type_ref (t, type); if (TREE_CODE (t) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL) return TREE_OPERAND (t, 0); } return NULL_TREE; } /* Create CP_OMP_CLAUSE_INFO for clause C. Returns true if it is invalid. */ bool cxx_omp_create_clause_info (tree c, tree type, bool need_default_ctor, bool need_copy_ctor, bool need_copy_assignment) { int save_errorcount = errorcount; tree info, t; /* Always allocate 3 elements for simplicity. These are the function decls for the ctor, dtor, and assignment op. This layout is known to the three lang hooks, cxx_omp_clause_default_init, cxx_omp_clause_copy_init, and cxx_omp_clause_assign_op. */ info = make_tree_vec (3); CP_OMP_CLAUSE_INFO (c) = info; if (need_default_ctor || (need_copy_ctor && !TYPE_HAS_TRIVIAL_INIT_REF (type))) { if (need_default_ctor) t = NULL; else { t = build_int_cst (build_pointer_type (type), 0); t = build1 (INDIRECT_REF, type, t); t = build_tree_list (NULL, t); } t = build_special_member_call (NULL_TREE, complete_ctor_identifier, t, type, LOOKUP_NORMAL, tf_warning_or_error); if (targetm.cxx.cdtor_returns_this () || errorcount) /* Because constructors and destructors return this, the call will have been cast to "void". Remove the cast here. We would like to use STRIP_NOPS, but it wouldn't work here because TYPE_MODE (t) and TYPE_MODE (TREE_OPERAND (t, 0)) are different. They are VOIDmode and Pmode, respectively. */ if (TREE_CODE (t) == NOP_EXPR) t = TREE_OPERAND (t, 0); TREE_VEC_ELT (info, 0) = get_callee_fndecl (t); } if ((need_default_ctor || need_copy_ctor) && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) { t = build_int_cst (build_pointer_type (type), 0); t = build1 (INDIRECT_REF, type, t); t = build_special_member_call (t, complete_dtor_identifier, NULL, type, LOOKUP_NORMAL, tf_warning_or_error); if (targetm.cxx.cdtor_returns_this () || errorcount) /* Because constructors and destructors return this, the call will have been cast to "void". Remove the cast here. We would like to use STRIP_NOPS, but it wouldn't work here because TYPE_MODE (t) and TYPE_MODE (TREE_OPERAND (t, 0)) are different. They are VOIDmode and Pmode, respectively. */ if (TREE_CODE (t) == NOP_EXPR) t = TREE_OPERAND (t, 0); TREE_VEC_ELT (info, 1) = omp_clause_info_fndecl (t, type); } if (need_copy_assignment && !TYPE_HAS_TRIVIAL_ASSIGN_REF (type)) { t = build_int_cst (build_pointer_type (type), 0); t = build1 (INDIRECT_REF, type, t); t = build_special_member_call (t, ansi_assopname (NOP_EXPR), build_tree_list (NULL, t), type, LOOKUP_NORMAL, tf_warning_or_error); /* We'll have called convert_from_reference on the call, which may well have added an indirect_ref. It's unneeded here, and in the way, so kill it. */ if (TREE_CODE (t) == INDIRECT_REF) t = TREE_OPERAND (t, 0); TREE_VEC_ELT (info, 2) = omp_clause_info_fndecl (t, type); } return errorcount != save_errorcount; } /* For all elements of CLAUSES, validate them vs OpenMP constraints. Remove any elements from the list that are invalid. */ tree finish_omp_clauses (tree clauses) { bitmap_head generic_head, firstprivate_head, lastprivate_head; tree c, t, *pc = &clauses; const char *name; bitmap_obstack_initialize (NULL); bitmap_initialize (&generic_head, &bitmap_default_obstack); bitmap_initialize (&firstprivate_head, &bitmap_default_obstack); bitmap_initialize (&lastprivate_head, &bitmap_default_obstack); for (pc = &clauses, c = clauses; c ; c = *pc) { bool remove = false; switch (OMP_CLAUSE_CODE (c)) { case OMP_CLAUSE_SHARED: name = "shared"; goto check_dup_generic; case OMP_CLAUSE_PRIVATE: name = "private"; goto check_dup_generic; case OMP_CLAUSE_REDUCTION: name = "reduction"; goto check_dup_generic; case OMP_CLAUSE_COPYPRIVATE: name = "copyprivate"; goto check_dup_generic; case OMP_CLAUSE_COPYIN: name = "copyin"; goto check_dup_generic; check_dup_generic: t = OMP_CLAUSE_DECL (c); if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL) { if (processing_template_decl) break; if (DECL_P (t)) error ("%qD is not a variable in clause %qs", t, name); else error ("%qE is not a variable in clause %qs", t, name); remove = true; } else if (bitmap_bit_p (&generic_head, DECL_UID (t)) || bitmap_bit_p (&firstprivate_head, DECL_UID (t)) || bitmap_bit_p (&lastprivate_head, DECL_UID (t))) { error ("%qD appears more than once in data clauses", t); remove = true; } else bitmap_set_bit (&generic_head, DECL_UID (t)); break; case OMP_CLAUSE_FIRSTPRIVATE: t = OMP_CLAUSE_DECL (c); if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL) { if (processing_template_decl) break; if (DECL_P (t)) error ("%qD is not a variable in clause %", t); else error ("%qE is not a variable in clause %", t); remove = true; } else if (bitmap_bit_p (&generic_head, DECL_UID (t)) || bitmap_bit_p (&firstprivate_head, DECL_UID (t))) { error ("%qD appears more than once in data clauses", t); remove = true; } else bitmap_set_bit (&firstprivate_head, DECL_UID (t)); break; case OMP_CLAUSE_LASTPRIVATE: t = OMP_CLAUSE_DECL (c); if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL) { if (processing_template_decl) break; if (DECL_P (t)) error ("%qD is not a variable in clause %", t); else error ("%qE is not a variable in clause %", t); remove = true; } else if (bitmap_bit_p (&generic_head, DECL_UID (t)) || bitmap_bit_p (&lastprivate_head, DECL_UID (t))) { error ("%qD appears more than once in data clauses", t); remove = true; } else bitmap_set_bit (&lastprivate_head, DECL_UID (t)); break; case OMP_CLAUSE_IF: t = OMP_CLAUSE_IF_EXPR (c); t = maybe_convert_cond (t); if (t == error_mark_node) remove = true; OMP_CLAUSE_IF_EXPR (c) = t; break; case OMP_CLAUSE_NUM_THREADS: t = OMP_CLAUSE_NUM_THREADS_EXPR (c); if (t == error_mark_node) remove = true; else if (!type_dependent_expression_p (t) && !INTEGRAL_TYPE_P (TREE_TYPE (t))) { error ("num_threads expression must be integral"); remove = true; } break; case OMP_CLAUSE_SCHEDULE: t = OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c); if (t == NULL) ; else if (t == error_mark_node) remove = true; else if (!type_dependent_expression_p (t) && !INTEGRAL_TYPE_P (TREE_TYPE (t))) { error ("schedule chunk size expression must be integral"); remove = true; } break; case OMP_CLAUSE_NOWAIT: case OMP_CLAUSE_ORDERED: case OMP_CLAUSE_DEFAULT: case OMP_CLAUSE_UNTIED: case OMP_CLAUSE_COLLAPSE: break; default: gcc_unreachable (); } if (remove) *pc = OMP_CLAUSE_CHAIN (c); else pc = &OMP_CLAUSE_CHAIN (c); } for (pc = &clauses, c = clauses; c ; c = *pc) { enum tree_code c_kind = OMP_CLAUSE_CODE (c); bool remove = false; bool need_complete_non_reference = false; bool need_default_ctor = false; bool need_copy_ctor = false; bool need_copy_assignment = false; bool need_implicitly_determined = false; tree type, inner_type; switch (c_kind) { case OMP_CLAUSE_SHARED: name = "shared"; need_implicitly_determined = true; break; case OMP_CLAUSE_PRIVATE: name = "private"; need_complete_non_reference = true; need_default_ctor = true; need_implicitly_determined = true; break; case OMP_CLAUSE_FIRSTPRIVATE: name = "firstprivate"; need_complete_non_reference = true; need_copy_ctor = true; need_implicitly_determined = true; break; case OMP_CLAUSE_LASTPRIVATE: name = "lastprivate"; need_complete_non_reference = true; need_copy_assignment = true; need_implicitly_determined = true; break; case OMP_CLAUSE_REDUCTION: name = "reduction"; need_implicitly_determined = true; break; case OMP_CLAUSE_COPYPRIVATE: name = "copyprivate"; need_copy_assignment = true; break; case OMP_CLAUSE_COPYIN: name = "copyin"; need_copy_assignment = true; break; default: pc = &OMP_CLAUSE_CHAIN (c); continue; } t = OMP_CLAUSE_DECL (c); if (processing_template_decl && TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL) { pc = &OMP_CLAUSE_CHAIN (c); continue; } switch (c_kind) { case OMP_CLAUSE_LASTPRIVATE: if (!bitmap_bit_p (&firstprivate_head, DECL_UID (t))) need_default_ctor = true; break; case OMP_CLAUSE_REDUCTION: if (AGGREGATE_TYPE_P (TREE_TYPE (t)) || POINTER_TYPE_P (TREE_TYPE (t))) { error ("%qE has invalid type for %", t); remove = true; } else if (FLOAT_TYPE_P (TREE_TYPE (t))) { enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c); switch (r_code) { case PLUS_EXPR: case MULT_EXPR: case MINUS_EXPR: break; default: error ("%qE has invalid type for %", t, operator_name_info[r_code].name); remove = true; } } break; case OMP_CLAUSE_COPYIN: if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t)) { error ("%qE must be % for %", t); remove = true; } break; default: break; } if (need_complete_non_reference) { t = require_complete_type (t); if (t == error_mark_node) remove = true; else if (TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE) { error ("%qE has reference type for %qs", t, name); remove = true; } } if (need_implicitly_determined) { const char *share_name = NULL; if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t)) share_name = "threadprivate"; else switch (cxx_omp_predetermined_sharing (t)) { case OMP_CLAUSE_DEFAULT_UNSPECIFIED: break; case OMP_CLAUSE_DEFAULT_SHARED: share_name = "shared"; break; case OMP_CLAUSE_DEFAULT_PRIVATE: share_name = "private"; break; default: gcc_unreachable (); } if (share_name) { error ("%qE is predetermined %qs for %qs", t, share_name, name); remove = true; } } /* We're interested in the base element, not arrays. */ inner_type = type = TREE_TYPE (t); while (TREE_CODE (inner_type) == ARRAY_TYPE) inner_type = TREE_TYPE (inner_type); /* Check for special function availability by building a call to one. Save the results, because later we won't be in the right context for making these queries. */ if (CLASS_TYPE_P (inner_type) && (need_default_ctor || need_copy_ctor || need_copy_assignment) && !type_dependent_expression_p (t) && cxx_omp_create_clause_info (c, inner_type, need_default_ctor, need_copy_ctor, need_copy_assignment)) remove = true; if (remove) *pc = OMP_CLAUSE_CHAIN (c); else pc = &OMP_CLAUSE_CHAIN (c); } bitmap_obstack_release (NULL); return clauses; } /* For all variables in the tree_list VARS, mark them as thread local. */ void finish_omp_threadprivate (tree vars) { tree t; /* Mark every variable in VARS to be assigned thread local storage. */ for (t = vars; t; t = TREE_CHAIN (t)) { tree v = TREE_PURPOSE (t); if (error_operand_p (v)) ; else if (TREE_CODE (v) != VAR_DECL) error ("% %qD is not file, namespace " "or block scope variable", v); /* If V had already been marked threadprivate, it doesn't matter whether it had been used prior to this point. */ else if (TREE_USED (v) && (DECL_LANG_SPECIFIC (v) == NULL || !CP_DECL_THREADPRIVATE_P (v))) error ("%qE declared % after first use", v); else if (! TREE_STATIC (v) && ! DECL_EXTERNAL (v)) error ("automatic variable %qE cannot be %", v); else if (! COMPLETE_TYPE_P (TREE_TYPE (v))) error ("% %qE has incomplete type", v); else if (TREE_STATIC (v) && TYPE_P (CP_DECL_CONTEXT (v)) && CP_DECL_CONTEXT (v) != current_class_type) error ("% %qE directive not " "in %qT definition", v, CP_DECL_CONTEXT (v)); else { /* Allocate a LANG_SPECIFIC structure for V, if needed. */ if (DECL_LANG_SPECIFIC (v) == NULL) { retrofit_lang_decl (v); /* Make sure that DECL_DISCRIMINATOR_P continues to be true after the allocation of the lang_decl structure. */ if (DECL_DISCRIMINATOR_P (v)) DECL_LANG_SPECIFIC (v)->decl_flags.u2sel = 1; } if (! DECL_THREAD_LOCAL_P (v)) { DECL_TLS_MODEL (v) = decl_default_tls_model (v); /* If rtl has been already set for this var, call make_decl_rtl once again, so that encode_section_info has a chance to look at the new decl flags. */ if (DECL_RTL_SET_P (v)) make_decl_rtl (v); } CP_DECL_THREADPRIVATE_P (v) = 1; } } } /* Build an OpenMP structured block. */ tree begin_omp_structured_block (void) { return do_pushlevel (sk_omp); } tree finish_omp_structured_block (tree block) { return do_poplevel (block); } /* Similarly, except force the retention of the BLOCK. */ tree begin_omp_parallel (void) { keep_next_level (true); return begin_omp_structured_block (); } tree finish_omp_parallel (tree clauses, tree body) { tree stmt; body = finish_omp_structured_block (body); stmt = make_node (OMP_PARALLEL); TREE_TYPE (stmt) = void_type_node; OMP_PARALLEL_CLAUSES (stmt) = clauses; OMP_PARALLEL_BODY (stmt) = body; return add_stmt (stmt); } tree begin_omp_task (void) { keep_next_level (true); return begin_omp_structured_block (); } tree finish_omp_task (tree clauses, tree body) { tree stmt; body = finish_omp_structured_block (body); stmt = make_node (OMP_TASK); TREE_TYPE (stmt) = void_type_node; OMP_TASK_CLAUSES (stmt) = clauses; OMP_TASK_BODY (stmt) = body; return add_stmt (stmt); } /* Helper function for finish_omp_for. Convert Ith random access iterator into integral iterator. Return FALSE if successful. */ static bool handle_omp_for_class_iterator (int i, location_t locus, tree declv, tree initv, tree condv, tree incrv, tree *body, tree *pre_body, tree clauses) { tree diff, iter_init, iter_incr = NULL, last; tree incr_var = NULL, orig_pre_body, orig_body, c; tree decl = TREE_VEC_ELT (declv, i); tree init = TREE_VEC_ELT (initv, i); tree cond = TREE_VEC_ELT (condv, i); tree incr = TREE_VEC_ELT (incrv, i); tree iter = decl; location_t elocus = locus; if (init && EXPR_HAS_LOCATION (init)) elocus = EXPR_LOCATION (init); switch (TREE_CODE (cond)) { case GT_EXPR: case GE_EXPR: case LT_EXPR: case LE_EXPR: if (TREE_OPERAND (cond, 1) == iter) cond = build2 (swap_tree_comparison (TREE_CODE (cond)), TREE_TYPE (cond), iter, TREE_OPERAND (cond, 0)); if (TREE_OPERAND (cond, 0) != iter) cond = error_mark_node; else { tree tem = build_x_binary_op (TREE_CODE (cond), iter, ERROR_MARK, TREE_OPERAND (cond, 1), ERROR_MARK, NULL, tf_warning_or_error); if (error_operand_p (tem)) return true; } break; default: cond = error_mark_node; break; } if (cond == error_mark_node) { error ("%Hinvalid controlling predicate", &elocus); return true; } diff = build_x_binary_op (MINUS_EXPR, TREE_OPERAND (cond, 1), ERROR_MARK, iter, ERROR_MARK, NULL, tf_warning_or_error); if (error_operand_p (diff)) return true; if (TREE_CODE (TREE_TYPE (diff)) != INTEGER_TYPE) { error ("%Hdifference between %qE and %qD does not have integer type", &elocus, TREE_OPERAND (cond, 1), iter); return true; } switch (TREE_CODE (incr)) { case PREINCREMENT_EXPR: case PREDECREMENT_EXPR: case POSTINCREMENT_EXPR: case POSTDECREMENT_EXPR: if (TREE_OPERAND (incr, 0) != iter) { incr = error_mark_node; break; } iter_incr = build_x_unary_op (TREE_CODE (incr), iter, tf_warning_or_error); if (error_operand_p (iter_incr)) return true; else if (TREE_CODE (incr) == PREINCREMENT_EXPR || TREE_CODE (incr) == POSTINCREMENT_EXPR) incr = integer_one_node; else incr = integer_minus_one_node; break; case MODIFY_EXPR: if (TREE_OPERAND (incr, 0) != iter) incr = error_mark_node; else if (TREE_CODE (TREE_OPERAND (incr, 1)) == PLUS_EXPR || TREE_CODE (TREE_OPERAND (incr, 1)) == MINUS_EXPR) { tree rhs = TREE_OPERAND (incr, 1); if (TREE_OPERAND (rhs, 0) == iter) { if (TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 1))) != INTEGER_TYPE) incr = error_mark_node; else { iter_incr = build_x_modify_expr (iter, TREE_CODE (rhs), TREE_OPERAND (rhs, 1), tf_warning_or_error); if (error_operand_p (iter_incr)) return true; incr = TREE_OPERAND (rhs, 1); incr = cp_convert (TREE_TYPE (diff), incr); if (TREE_CODE (rhs) == MINUS_EXPR) { incr = build1 (NEGATE_EXPR, TREE_TYPE (diff), incr); incr = fold_if_not_in_template (incr); } if (TREE_CODE (incr) != INTEGER_CST && (TREE_CODE (incr) != NOP_EXPR || (TREE_CODE (TREE_OPERAND (incr, 0)) != INTEGER_CST))) iter_incr = NULL; } } else if (TREE_OPERAND (rhs, 1) == iter) { if (TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) != INTEGER_TYPE || TREE_CODE (rhs) != PLUS_EXPR) incr = error_mark_node; else { iter_incr = build_x_binary_op (PLUS_EXPR, TREE_OPERAND (rhs, 0), ERROR_MARK, iter, ERROR_MARK, NULL, tf_warning_or_error); if (error_operand_p (iter_incr)) return true; iter_incr = build_x_modify_expr (iter, NOP_EXPR, iter_incr, tf_warning_or_error); if (error_operand_p (iter_incr)) return true; incr = TREE_OPERAND (rhs, 0); iter_incr = NULL; } } else incr = error_mark_node; } else incr = error_mark_node; break; default: incr = error_mark_node; break; } if (incr == error_mark_node) { error ("%Hinvalid increment expression", &elocus); return true; } incr = cp_convert (TREE_TYPE (diff), incr); for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LASTPRIVATE && OMP_CLAUSE_DECL (c) == iter) break; decl = create_temporary_var (TREE_TYPE (diff)); pushdecl (decl); add_decl_expr (decl); last = create_temporary_var (TREE_TYPE (diff)); pushdecl (last); add_decl_expr (last); if (c && iter_incr == NULL) { incr_var = create_temporary_var (TREE_TYPE (diff)); pushdecl (incr_var); add_decl_expr (incr_var); } gcc_assert (stmts_are_full_exprs_p ()); orig_pre_body = *pre_body; *pre_body = push_stmt_list (); if (orig_pre_body) add_stmt (orig_pre_body); if (init != NULL) finish_expr_stmt (build_x_modify_expr (iter, NOP_EXPR, init, tf_warning_or_error)); init = build_int_cst (TREE_TYPE (diff), 0); if (c && iter_incr == NULL) { finish_expr_stmt (build_x_modify_expr (incr_var, NOP_EXPR, incr, tf_warning_or_error)); incr = incr_var; iter_incr = build_x_modify_expr (iter, PLUS_EXPR, incr, tf_warning_or_error); } finish_expr_stmt (build_x_modify_expr (last, NOP_EXPR, init, tf_warning_or_error)); *pre_body = pop_stmt_list (*pre_body); cond = cp_build_binary_op (elocus, TREE_CODE (cond), decl, diff, tf_warning_or_error); incr = build_modify_expr (elocus, decl, PLUS_EXPR, incr); orig_body = *body; *body = push_stmt_list (); iter_init = build2 (MINUS_EXPR, TREE_TYPE (diff), decl, last); iter_init = build_x_modify_expr (iter, PLUS_EXPR, iter_init, tf_warning_or_error); iter_init = build1 (NOP_EXPR, void_type_node, iter_init); finish_expr_stmt (iter_init); finish_expr_stmt (build_x_modify_expr (last, NOP_EXPR, decl, tf_warning_or_error)); add_stmt (orig_body); *body = pop_stmt_list (*body); if (c) { OMP_CLAUSE_LASTPRIVATE_STMT (c) = push_stmt_list (); finish_expr_stmt (iter_incr); OMP_CLAUSE_LASTPRIVATE_STMT (c) = pop_stmt_list (OMP_CLAUSE_LASTPRIVATE_STMT (c)); } TREE_VEC_ELT (declv, i) = decl; TREE_VEC_ELT (initv, i) = init; TREE_VEC_ELT (condv, i) = cond; TREE_VEC_ELT (incrv, i) = incr; return false; } /* Build and validate an OMP_FOR statement. CLAUSES, BODY, COND, INCR are directly for their associated operands in the statement. DECL and INIT are a combo; if DECL is NULL then INIT ought to be a MODIFY_EXPR, and the DECL should be extracted. PRE_BODY are optional statements that need to go before the loop into its sk_omp scope. */ tree finish_omp_for (location_t locus, tree declv, tree initv, tree condv, tree incrv, tree body, tree pre_body, tree clauses) { tree omp_for = NULL, orig_incr = NULL; tree decl, init, cond, incr; location_t elocus; int i; gcc_assert (TREE_VEC_LENGTH (declv) == TREE_VEC_LENGTH (initv)); gcc_assert (TREE_VEC_LENGTH (declv) == TREE_VEC_LENGTH (condv)); gcc_assert (TREE_VEC_LENGTH (declv) == TREE_VEC_LENGTH (incrv)); for (i = 0; i < TREE_VEC_LENGTH (declv); i++) { decl = TREE_VEC_ELT (declv, i); init = TREE_VEC_ELT (initv, i); cond = TREE_VEC_ELT (condv, i); incr = TREE_VEC_ELT (incrv, i); elocus = locus; if (decl == NULL) { if (init != NULL) switch (TREE_CODE (init)) { case MODIFY_EXPR: decl = TREE_OPERAND (init, 0); init = TREE_OPERAND (init, 1); break; case MODOP_EXPR: if (TREE_CODE (TREE_OPERAND (init, 1)) == NOP_EXPR) { decl = TREE_OPERAND (init, 0); init = TREE_OPERAND (init, 2); } break; default: break; } if (decl == NULL) { error ("%Hexpected iteration declaration or initialization", &locus); return NULL; } } if (init && EXPR_HAS_LOCATION (init)) elocus = EXPR_LOCATION (init); if (cond == NULL) { error ("%Hmissing controlling predicate", &elocus); return NULL; } if (incr == NULL) { error ("%Hmissing increment expression", &elocus); return NULL; } TREE_VEC_ELT (declv, i) = decl; TREE_VEC_ELT (initv, i) = init; } if (dependent_omp_for_p (declv, initv, condv, incrv)) { tree stmt; stmt = make_node (OMP_FOR); for (i = 0; i < TREE_VEC_LENGTH (declv); i++) { /* This is really just a place-holder. We'll be decomposing this again and going through the cp_build_modify_expr path below when we instantiate the thing. */ TREE_VEC_ELT (initv, i) = build2 (MODIFY_EXPR, void_type_node, TREE_VEC_ELT (declv, i), TREE_VEC_ELT (initv, i)); } TREE_TYPE (stmt) = void_type_node; OMP_FOR_INIT (stmt) = initv; OMP_FOR_COND (stmt) = condv; OMP_FOR_INCR (stmt) = incrv; OMP_FOR_BODY (stmt) = body; OMP_FOR_PRE_BODY (stmt) = pre_body; OMP_FOR_CLAUSES (stmt) = clauses; SET_EXPR_LOCATION (stmt, locus); return add_stmt (stmt); } if (processing_template_decl) orig_incr = make_tree_vec (TREE_VEC_LENGTH (incrv)); for (i = 0; i < TREE_VEC_LENGTH (declv); ) { decl = TREE_VEC_ELT (declv, i); init = TREE_VEC_ELT (initv, i); cond = TREE_VEC_ELT (condv, i); incr = TREE_VEC_ELT (incrv, i); if (orig_incr) TREE_VEC_ELT (orig_incr, i) = incr; elocus = locus; if (init && EXPR_HAS_LOCATION (init)) elocus = EXPR_LOCATION (init); if (!DECL_P (decl)) { error ("%Hexpected iteration declaration or initialization", &elocus); return NULL; } if (incr && TREE_CODE (incr) == MODOP_EXPR) { if (orig_incr) TREE_VEC_ELT (orig_incr, i) = incr; incr = cp_build_modify_expr (TREE_OPERAND (incr, 0), TREE_CODE (TREE_OPERAND (incr, 1)), TREE_OPERAND (incr, 2), tf_warning_or_error); } if (CLASS_TYPE_P (TREE_TYPE (decl))) { if (handle_omp_for_class_iterator (i, locus, declv, initv, condv, incrv, &body, &pre_body, clauses)) return NULL; continue; } if (!INTEGRAL_TYPE_P (TREE_TYPE (decl)) && TREE_CODE (TREE_TYPE (decl)) != POINTER_TYPE) { error ("%Hinvalid type for iteration variable %qE", &elocus, decl); return NULL; } if (!processing_template_decl) { init = fold_build_cleanup_point_expr (TREE_TYPE (init), init); init = cp_build_modify_expr (decl, NOP_EXPR, init, tf_warning_or_error); } else init = build2 (MODIFY_EXPR, void_type_node, decl, init); if (cond && TREE_SIDE_EFFECTS (cond) && COMPARISON_CLASS_P (cond) && !processing_template_decl) { tree t = TREE_OPERAND (cond, 0); if (TREE_SIDE_EFFECTS (t) && t != decl && (TREE_CODE (t) != NOP_EXPR || TREE_OPERAND (t, 0) != decl)) TREE_OPERAND (cond, 0) = fold_build_cleanup_point_expr (TREE_TYPE (t), t); t = TREE_OPERAND (cond, 1); if (TREE_SIDE_EFFECTS (t) && t != decl && (TREE_CODE (t) != NOP_EXPR || TREE_OPERAND (t, 0) != decl)) TREE_OPERAND (cond, 1) = fold_build_cleanup_point_expr (TREE_TYPE (t), t); } if (decl == error_mark_node || init == error_mark_node) return NULL; TREE_VEC_ELT (declv, i) = decl; TREE_VEC_ELT (initv, i) = init; TREE_VEC_ELT (condv, i) = cond; TREE_VEC_ELT (incrv, i) = incr; i++; } if (IS_EMPTY_STMT (pre_body)) pre_body = NULL; omp_for = c_finish_omp_for (locus, declv, initv, condv, incrv, body, pre_body); if (omp_for == NULL) return NULL; for (i = 0; i < TREE_VEC_LENGTH (OMP_FOR_INCR (omp_for)); i++) { decl = TREE_OPERAND (TREE_VEC_ELT (OMP_FOR_INIT (omp_for), i), 0); incr = TREE_VEC_ELT (OMP_FOR_INCR (omp_for), i); if (TREE_CODE (incr) != MODIFY_EXPR) continue; if (TREE_SIDE_EFFECTS (TREE_OPERAND (incr, 1)) && BINARY_CLASS_P (TREE_OPERAND (incr, 1)) && !processing_template_decl) { tree t = TREE_OPERAND (TREE_OPERAND (incr, 1), 0); if (TREE_SIDE_EFFECTS (t) && t != decl && (TREE_CODE (t) != NOP_EXPR || TREE_OPERAND (t, 0) != decl)) TREE_OPERAND (TREE_OPERAND (incr, 1), 0) = fold_build_cleanup_point_expr (TREE_TYPE (t), t); t = TREE_OPERAND (TREE_OPERAND (incr, 1), 1); if (TREE_SIDE_EFFECTS (t) && t != decl && (TREE_CODE (t) != NOP_EXPR || TREE_OPERAND (t, 0) != decl)) TREE_OPERAND (TREE_OPERAND (incr, 1), 1) = fold_build_cleanup_point_expr (TREE_TYPE (t), t); } if (orig_incr) TREE_VEC_ELT (OMP_FOR_INCR (omp_for), i) = TREE_VEC_ELT (orig_incr, i); } if (omp_for != NULL) OMP_FOR_CLAUSES (omp_for) = clauses; return omp_for; } void finish_omp_atomic (enum tree_code code, tree lhs, tree rhs) { tree orig_lhs; tree orig_rhs; bool dependent_p; tree stmt; orig_lhs = lhs; orig_rhs = rhs; dependent_p = false; stmt = NULL_TREE; /* Even in a template, we can detect invalid uses of the atomic pragma if neither LHS nor RHS is type-dependent. */ if (processing_template_decl) { dependent_p = (type_dependent_expression_p (lhs) || type_dependent_expression_p (rhs)); if (!dependent_p) { lhs = build_non_dependent_expr (lhs); rhs = build_non_dependent_expr (rhs); } } if (!dependent_p) { stmt = c_finish_omp_atomic (code, lhs, rhs); if (stmt == error_mark_node) return; } if (processing_template_decl) stmt = build2 (OMP_ATOMIC, void_type_node, integer_zero_node, build2 (code, void_type_node, orig_lhs, orig_rhs)); add_stmt (stmt); } void finish_omp_barrier (void) { tree fn = built_in_decls[BUILT_IN_GOMP_BARRIER]; tree stmt = finish_call_expr (fn, NULL, false, false, tf_warning_or_error); finish_expr_stmt (stmt); } void finish_omp_flush (void) { tree fn = built_in_decls[BUILT_IN_SYNCHRONIZE]; tree stmt = finish_call_expr (fn, NULL, false, false, tf_warning_or_error); finish_expr_stmt (stmt); } void finish_omp_taskwait (void) { tree fn = built_in_decls[BUILT_IN_GOMP_TASKWAIT]; tree stmt = finish_call_expr (fn, NULL, false, false, tf_warning_or_error); finish_expr_stmt (stmt); } void init_cp_semantics (void) { } /* Build a STATIC_ASSERT for a static assertion with the condition CONDITION and the message text MESSAGE. LOCATION is the location of the static assertion in the source code. When MEMBER_P, this static assertion is a member of a class. */ void finish_static_assert (tree condition, tree message, location_t location, bool member_p) { if (check_for_bare_parameter_packs (condition)) condition = error_mark_node; if (type_dependent_expression_p (condition) || value_dependent_expression_p (condition)) { /* We're in a template; build a STATIC_ASSERT and put it in the right place. */ tree assertion; assertion = make_node (STATIC_ASSERT); STATIC_ASSERT_CONDITION (assertion) = condition; STATIC_ASSERT_MESSAGE (assertion) = message; STATIC_ASSERT_SOURCE_LOCATION (assertion) = location; if (member_p) maybe_add_class_template_decl_list (current_class_type, assertion, /*friend_p=*/0); else add_stmt (assertion); return; } /* Fold the expression and convert it to a boolean value. */ condition = fold_non_dependent_expr (condition); condition = cp_convert (boolean_type_node, condition); if (TREE_CODE (condition) == INTEGER_CST && !integer_zerop (condition)) /* Do nothing; the condition is satisfied. */ ; else { location_t saved_loc = input_location; input_location = location; if (TREE_CODE (condition) == INTEGER_CST && integer_zerop (condition)) /* Report the error. */ error ("static assertion failed: %E", message); else if (condition && condition != error_mark_node) error ("non-constant condition for static assertion"); input_location = saved_loc; } } /* Returns decltype((EXPR)) for cases where we can drop the decltype and just return the type even though EXPR is a type-dependent expression. The ABI specifies which cases this applies to, which is a subset of the possible cases. */ tree describable_type (tree expr) { tree type = NULL_TREE; /* processing_template_decl isn't set when we're called from the mangling code, so bump it now. */ ++processing_template_decl; if (! type_dependent_expression_p (expr) && ! type_unknown_p (expr)) { type = TREE_TYPE (expr); if (real_lvalue_p (expr)) type = build_reference_type (type); } --processing_template_decl; if (type) return type; switch (TREE_CODE (expr)) { case VAR_DECL: case PARM_DECL: case RESULT_DECL: case FUNCTION_DECL: /* Named rvalue reference becomes lvalue. */ type = build_reference_type (non_reference (TREE_TYPE (expr))); break; case NEW_EXPR: case CONST_DECL: case TEMPLATE_PARM_INDEX: case CAST_EXPR: case STATIC_CAST_EXPR: case REINTERPRET_CAST_EXPR: case CONST_CAST_EXPR: case DYNAMIC_CAST_EXPR: type = TREE_TYPE (expr); break; case INDIRECT_REF: { tree ptrtype = describable_type (TREE_OPERAND (expr, 0)); if (ptrtype && POINTER_TYPE_P (ptrtype)) type = build_reference_type (TREE_TYPE (ptrtype)); } break; default: if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_constant) type = TREE_TYPE (expr); break; } if (type && type_uses_auto (type)) return NULL_TREE; else return type; } /* Implements the C++0x decltype keyword. Returns the type of EXPR, suitable for use as a type-specifier. ID_EXPRESSION_OR_MEMBER_ACCESS_P is true when EXPR was parsed as an id-expression or a class member access, FALSE when it was parsed as a full expression. */ tree finish_decltype_type (tree expr, bool id_expression_or_member_access_p) { tree orig_expr = expr; tree type = NULL_TREE; if (!expr || error_operand_p (expr)) return error_mark_node; if (TYPE_P (expr) || TREE_CODE (expr) == TYPE_DECL || (TREE_CODE (expr) == BIT_NOT_EXPR && TYPE_P (TREE_OPERAND (expr, 0)))) { error ("argument to decltype must be an expression"); return error_mark_node; } if (type_dependent_expression_p (expr)) { if (id_expression_or_member_access_p) { switch (TREE_CODE (expr)) { case VAR_DECL: case PARM_DECL: case RESULT_DECL: case FUNCTION_DECL: case CONST_DECL: case TEMPLATE_PARM_INDEX: type = TREE_TYPE (expr); break; default: break; } } if (type && !type_uses_auto (type)) return type; type = cxx_make_type (DECLTYPE_TYPE); DECLTYPE_TYPE_EXPR (type) = expr; DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (type) = id_expression_or_member_access_p; SET_TYPE_STRUCTURAL_EQUALITY (type); return type; } /* The type denoted by decltype(e) is defined as follows: */ if (id_expression_or_member_access_p) { /* If e is an id-expression or a class member access (5.2.5 [expr.ref]), decltype(e) is defined as the type of the entity named by e. If there is no such entity, or e names a set of overloaded functions, the program is ill-formed. */ if (TREE_CODE (expr) == IDENTIFIER_NODE) expr = lookup_name (expr); if (TREE_CODE (expr) == INDIRECT_REF) /* This can happen when the expression is, e.g., "a.b". Just look at the underlying operand. */ expr = TREE_OPERAND (expr, 0); if (TREE_CODE (expr) == OFFSET_REF || TREE_CODE (expr) == MEMBER_REF) /* We're only interested in the field itself. If it is a BASELINK, we will need to see through it in the next step. */ expr = TREE_OPERAND (expr, 1); if (TREE_CODE (expr) == BASELINK) /* See through BASELINK nodes to the underlying functions. */ expr = BASELINK_FUNCTIONS (expr); if (TREE_CODE (expr) == OVERLOAD) { if (OVL_CHAIN (expr)) { error ("%qE refers to a set of overloaded functions", orig_expr); return error_mark_node; } else /* An overload set containing only one function: just look at that function. */ expr = OVL_FUNCTION (expr); } switch (TREE_CODE (expr)) { case FIELD_DECL: if (DECL_BIT_FIELD_TYPE (expr)) { type = DECL_BIT_FIELD_TYPE (expr); break; } /* Fall through for fields that aren't bitfields. */ case FUNCTION_DECL: case VAR_DECL: case CONST_DECL: case PARM_DECL: case RESULT_DECL: case TEMPLATE_PARM_INDEX: type = TREE_TYPE (expr); break; case ERROR_MARK: type = error_mark_node; break; case COMPONENT_REF: type = is_bitfield_expr_with_lowered_type (expr); if (!type) type = TREE_TYPE (TREE_OPERAND (expr, 1)); break; case BIT_FIELD_REF: gcc_unreachable (); case INTEGER_CST: /* We can get here when the id-expression refers to an enumerator. */ type = TREE_TYPE (expr); break; default: gcc_assert (TYPE_P (expr) || DECL_P (expr) || TREE_CODE (expr) == SCOPE_REF); error ("argument to decltype must be an expression"); return error_mark_node; } } else { /* Expressions of reference type are sometimes wrapped in INDIRECT_REFs. INDIRECT_REFs are just internal compiler representation, not part of the language, so we have to look through them. */ if (TREE_CODE (expr) == INDIRECT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE) expr = TREE_OPERAND (expr, 0); if (TREE_CODE (expr) == CALL_EXPR) { /* If e is a function call (5.2.2 [expr.call]) or an invocation of an overloaded operator (parentheses around e are ignored), decltype(e) is defined as the return type of that function. */ tree fndecl = get_callee_fndecl (expr); if (fndecl && fndecl != error_mark_node) type = TREE_TYPE (TREE_TYPE (fndecl)); else { tree target_type = TREE_TYPE (CALL_EXPR_FN (expr)); if ((TREE_CODE (target_type) == REFERENCE_TYPE || TREE_CODE (target_type) == POINTER_TYPE) && (TREE_CODE (TREE_TYPE (target_type)) == FUNCTION_TYPE || TREE_CODE (TREE_TYPE (target_type)) == METHOD_TYPE)) type = TREE_TYPE (TREE_TYPE (target_type)); else sorry ("unable to determine the declared type of expression %<%E%>", expr); } } else { type = is_bitfield_expr_with_lowered_type (expr); if (type) { /* Bitfields are special, because their type encodes the number of bits they store. If the expression referenced a bitfield, TYPE now has the declared type of that bitfield. */ type = cp_build_qualified_type (type, cp_type_quals (TREE_TYPE (expr))); if (real_lvalue_p (expr)) type = build_reference_type (type); } else { /* Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is defined as T&, otherwise decltype(e) is defined as T. */ type = TREE_TYPE (expr); if (type == error_mark_node) return error_mark_node; else if (expr == current_class_ptr) /* If the expression is just "this", we want the cv-unqualified pointer for the "this" type. */ type = TYPE_MAIN_VARIANT (type); else if (real_lvalue_p (expr)) { if (TREE_CODE (type) != REFERENCE_TYPE) type = build_reference_type (type); } else type = non_reference (type); } } } if (!type || type == unknown_type_node) { error ("type of %qE is unknown", expr); return error_mark_node; } return type; } /* Called from trait_expr_value to evaluate either __has_nothrow_assign or __has_nothrow_copy, depending on assign_p. */ static bool classtype_has_nothrow_assign_or_copy_p (tree type, bool assign_p) { tree fns; if (assign_p) { int ix; ix = lookup_fnfields_1 (type, ansi_assopname (NOP_EXPR)); if (ix < 0) return false; fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix); } else if (TYPE_HAS_INIT_REF (type)) { /* If construction of the copy constructor was postponed, create it now. */ if (CLASSTYPE_LAZY_COPY_CTOR (type)) lazily_declare_fn (sfk_copy_constructor, type); fns = CLASSTYPE_CONSTRUCTORS (type); } else return false; for (; fns; fns = OVL_NEXT (fns)) { tree fn = OVL_CURRENT (fns); if (assign_p) { if (copy_fn_p (fn) == 0) continue; } else if (copy_fn_p (fn) <= 0) continue; if (!TYPE_NOTHROW_P (TREE_TYPE (fn))) return false; } return true; } /* Actually evaluates the trait. */ static bool trait_expr_value (cp_trait_kind kind, tree type1, tree type2) { enum tree_code type_code1; tree t; type_code1 = TREE_CODE (type1); switch (kind) { case CPTK_HAS_NOTHROW_ASSIGN: return (!CP_TYPE_CONST_P (type1) && type_code1 != REFERENCE_TYPE && (trait_expr_value (CPTK_HAS_TRIVIAL_ASSIGN, type1, type2) || (CLASS_TYPE_P (type1) && classtype_has_nothrow_assign_or_copy_p (type1, true)))); case CPTK_HAS_TRIVIAL_ASSIGN: return (!CP_TYPE_CONST_P (type1) && type_code1 != REFERENCE_TYPE && (pod_type_p (type1) || (CLASS_TYPE_P (type1) && TYPE_HAS_TRIVIAL_ASSIGN_REF (type1)))); case CPTK_HAS_NOTHROW_CONSTRUCTOR: type1 = strip_array_types (type1); return (trait_expr_value (CPTK_HAS_TRIVIAL_CONSTRUCTOR, type1, type2) || (CLASS_TYPE_P (type1) && (t = locate_ctor (type1, NULL)) && TYPE_NOTHROW_P (TREE_TYPE (t)))); case CPTK_HAS_TRIVIAL_CONSTRUCTOR: type1 = strip_array_types (type1); return (pod_type_p (type1) || (CLASS_TYPE_P (type1) && TYPE_HAS_TRIVIAL_DFLT (type1))); case CPTK_HAS_NOTHROW_COPY: return (trait_expr_value (CPTK_HAS_TRIVIAL_COPY, type1, type2) || (CLASS_TYPE_P (type1) && classtype_has_nothrow_assign_or_copy_p (type1, false))); case CPTK_HAS_TRIVIAL_COPY: return (pod_type_p (type1) || type_code1 == REFERENCE_TYPE || (CLASS_TYPE_P (type1) && TYPE_HAS_TRIVIAL_INIT_REF (type1))); case CPTK_HAS_TRIVIAL_DESTRUCTOR: type1 = strip_array_types (type1); return (pod_type_p (type1) || type_code1 == REFERENCE_TYPE || (CLASS_TYPE_P (type1) && TYPE_HAS_TRIVIAL_DESTRUCTOR (type1))); case CPTK_HAS_VIRTUAL_DESTRUCTOR: return (CLASS_TYPE_P (type1) && (t = locate_dtor (type1, NULL)) && DECL_VIRTUAL_P (t)); case CPTK_IS_ABSTRACT: return (CLASS_TYPE_P (type1) && CLASSTYPE_PURE_VIRTUALS (type1)); case CPTK_IS_BASE_OF: return (NON_UNION_CLASS_TYPE_P (type1) && NON_UNION_CLASS_TYPE_P (type2) && DERIVED_FROM_P (type1, type2)); case CPTK_IS_CLASS: return (NON_UNION_CLASS_TYPE_P (type1)); case CPTK_IS_CONVERTIBLE_TO: /* TODO */ return false; case CPTK_IS_EMPTY: return (NON_UNION_CLASS_TYPE_P (type1) && CLASSTYPE_EMPTY_P (type1)); case CPTK_IS_ENUM: return (type_code1 == ENUMERAL_TYPE); case CPTK_IS_POD: return (pod_type_p (type1)); case CPTK_IS_POLYMORPHIC: return (CLASS_TYPE_P (type1) && TYPE_POLYMORPHIC_P (type1)); case CPTK_IS_UNION: return (type_code1 == UNION_TYPE); default: gcc_unreachable (); return false; } } /* Returns true if TYPE is a complete type, an array of unknown bound, or (possibly cv-qualified) void, returns false otherwise. */ static bool check_trait_type (tree type) { if (COMPLETE_TYPE_P (type)) return true; if (TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type)) return true; if (VOID_TYPE_P (type)) return true; return false; } /* Process a trait expression. */ tree finish_trait_expr (cp_trait_kind kind, tree type1, tree type2) { gcc_assert (kind == CPTK_HAS_NOTHROW_ASSIGN || kind == CPTK_HAS_NOTHROW_CONSTRUCTOR || kind == CPTK_HAS_NOTHROW_COPY || kind == CPTK_HAS_TRIVIAL_ASSIGN || kind == CPTK_HAS_TRIVIAL_CONSTRUCTOR || kind == CPTK_HAS_TRIVIAL_COPY || kind == CPTK_HAS_TRIVIAL_DESTRUCTOR || kind == CPTK_HAS_VIRTUAL_DESTRUCTOR || kind == CPTK_IS_ABSTRACT || kind == CPTK_IS_BASE_OF || kind == CPTK_IS_CLASS || kind == CPTK_IS_CONVERTIBLE_TO || kind == CPTK_IS_EMPTY || kind == CPTK_IS_ENUM || kind == CPTK_IS_POD || kind == CPTK_IS_POLYMORPHIC || kind == CPTK_IS_UNION); if (kind == CPTK_IS_CONVERTIBLE_TO) { sorry ("__is_convertible_to"); return error_mark_node; } if (type1 == error_mark_node || ((kind == CPTK_IS_BASE_OF || kind == CPTK_IS_CONVERTIBLE_TO) && type2 == error_mark_node)) return error_mark_node; if (processing_template_decl) { tree trait_expr = make_node (TRAIT_EXPR); TREE_TYPE (trait_expr) = boolean_type_node; TRAIT_EXPR_TYPE1 (trait_expr) = type1; TRAIT_EXPR_TYPE2 (trait_expr) = type2; TRAIT_EXPR_KIND (trait_expr) = kind; return trait_expr; } complete_type (type1); if (type2) complete_type (type2); switch (kind) { case CPTK_HAS_NOTHROW_ASSIGN: case CPTK_HAS_TRIVIAL_ASSIGN: case CPTK_HAS_NOTHROW_CONSTRUCTOR: case CPTK_HAS_TRIVIAL_CONSTRUCTOR: case CPTK_HAS_NOTHROW_COPY: case CPTK_HAS_TRIVIAL_COPY: case CPTK_HAS_TRIVIAL_DESTRUCTOR: case CPTK_HAS_VIRTUAL_DESTRUCTOR: case CPTK_IS_ABSTRACT: case CPTK_IS_EMPTY: case CPTK_IS_POD: case CPTK_IS_POLYMORPHIC: if (!check_trait_type (type1)) { error ("incomplete type %qT not allowed", type1); return error_mark_node; } break; case CPTK_IS_BASE_OF: if (NON_UNION_CLASS_TYPE_P (type1) && NON_UNION_CLASS_TYPE_P (type2) && !same_type_ignoring_top_level_qualifiers_p (type1, type2) && !COMPLETE_TYPE_P (type2)) { error ("incomplete type %qT not allowed", type2); return error_mark_node; } break; case CPTK_IS_CLASS: case CPTK_IS_ENUM: case CPTK_IS_UNION: break; case CPTK_IS_CONVERTIBLE_TO: default: gcc_unreachable (); } return (trait_expr_value (kind, type1, type2) ? boolean_true_node : boolean_false_node); } #include "gt-cp-semantics.h"