/* RunTime Type Identification Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. Mostly written by Jason Merrill (jason@cygnus.com). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "tree.h" #include "cp-tree.h" #include "flags.h" #include "output.h" #include "assert.h" #include "toplev.h" #ifndef INT_TYPE_SIZE #define INT_TYPE_SIZE BITS_PER_WORD #endif /* Accessors for the type_info objects. We need to remember several things about each of the type_info types. The global tree nodes such as bltn_desc_type_node are TREE_LISTs, and these macros are used to access the required information. */ /* The RECORD_TYPE of a type_info derived class. */ #define TINFO_PSEUDO_TYPE(NODE) TREE_TYPE (NODE) /* The VAR_DECL of the vtable for the type_info derived class. */ #define TINFO_VTABLE_DECL(NODE) TREE_VALUE (NODE) extern struct obstack permanent_obstack; static tree build_headof_sub PARAMS((tree)); static tree build_headof PARAMS((tree)); static tree get_tinfo_var PARAMS((tree)); static tree ifnonnull PARAMS((tree, tree)); static tree tinfo_name PARAMS((tree)); static tree get_base_offset PARAMS((tree, tree)); static tree build_dynamic_cast_1 PARAMS((tree, tree)); static void expand_si_desc PARAMS((tree, tree)); static void expand_class_desc PARAMS((tree, tree)); static void expand_attr_desc PARAMS((tree, tree)); static void expand_ptr_desc PARAMS((tree, tree)); static void expand_generic_desc PARAMS((tree, tree, const char *)); static tree throw_bad_cast PARAMS((void)); static tree throw_bad_typeid PARAMS((void)); static tree get_tinfo_decl_dynamic PARAMS((tree)); static tree tinfo_from_decl PARAMS((tree)); static int qualifier_flags PARAMS((tree)); static tree tinfo_base_init PARAMS((tree, tree)); static tree generic_initializer PARAMS((tree, tree)); static tree ptr_initializer PARAMS((tree, tree)); static tree ptmd_initializer PARAMS((tree, tree)); static tree dfs_class_hint_mark PARAMS ((tree, void *)); static tree dfs_class_hint_unmark PARAMS ((tree, void *)); static int class_hint_flags PARAMS((tree)); static tree class_initializer PARAMS((tree, tree, tree)); static tree synthesize_tinfo_var PARAMS((tree, tree)); static tree create_real_tinfo_var PARAMS((tree, tree, tree)); static tree create_pseudo_type_info PARAMS((const char *, int, ...)); static tree get_vmi_pseudo_type_info PARAMS((int)); static void create_tinfo_types PARAMS((void)); static int doing_runtime = 0; void init_rtti_processing () { if (flag_honor_std) push_namespace (get_identifier ("std")); type_info_type_node = xref_tag (class_type_node, get_identifier ("type_info"), 1); if (flag_honor_std) pop_namespace (); if (!new_abi_rtti_p ()) { tinfo_decl_id = get_identifier ("__tf"); tinfo_decl_type = build_function_type (build_reference_type (build_qualified_type (type_info_type_node, TYPE_QUAL_CONST)), void_list_node); } else { tinfo_decl_id = get_identifier ("__ti"); tinfo_decl_type = build_qualified_type (type_info_type_node, TYPE_QUAL_CONST); } tinfo_var_id = get_identifier ("__ti"); } /* Given a pointer to an object with at least one virtual table pointer somewhere, return a pointer to a possible sub-object that has a virtual table pointer in it that is the vtable parent for that sub-object. */ static tree build_headof_sub (exp) tree exp; { tree type = TREE_TYPE (TREE_TYPE (exp)); tree basetype = CLASSTYPE_RTTI (type); tree binfo = get_binfo (basetype, type, 0); exp = convert_pointer_to_real (binfo, exp); return exp; } /* Given the expression EXP of type `class *', return the head of the object pointed to by EXP with type cv void*, if the class has any virtual functions (TYPE_POLYMORPHIC_P), else just return the expression. */ static tree build_headof (exp) tree exp; { tree type = TREE_TYPE (exp); tree aref; tree offset; tree index; my_friendly_assert (TREE_CODE (type) == POINTER_TYPE, 20000112); type = TREE_TYPE (type); if (!TYPE_POLYMORPHIC_P (type)) return exp; if (CLASSTYPE_COM_INTERFACE (type)) { cp_error ("RTTI not supported for COM interface type `%T'", type); return error_mark_node; } /* If we don't have rtti stuff, get to a sub-object that does. */ if (!CLASSTYPE_VFIELDS (TREE_TYPE (TREE_TYPE (exp)))) exp = build_headof_sub (exp); /* We use this a couple of times below, protect it. */ exp = save_expr (exp); /* Under the new ABI, the offset-to-top field is at index -2 from the vptr. */ if (new_abi_rtti_p ()) index = build_int_2 (-2, -1); /* But under the old ABI, it is at offset zero. */ else index = integer_zero_node; aref = build_vtbl_ref (build_indirect_ref (exp, NULL_PTR), index); if (flag_vtable_thunks) offset = aref; else offset = build_component_ref (aref, delta_identifier, NULL_TREE, 0); type = build_qualified_type (ptr_type_node, CP_TYPE_QUALS (TREE_TYPE (exp))); return build (PLUS_EXPR, type, exp, cp_convert (ptrdiff_type_node, offset)); } /* Get a bad_cast node for the program to throw... See libstdc++/exception.cc for __throw_bad_cast */ static tree throw_bad_cast () { tree fn = get_identifier ("__throw_bad_cast"); if (IDENTIFIER_GLOBAL_VALUE (fn)) fn = IDENTIFIER_GLOBAL_VALUE (fn); else fn = push_throw_library_fn (fn, build_function_type (ptr_type_node, void_list_node)); return build_call (fn, NULL_TREE); } static tree throw_bad_typeid () { tree fn = get_identifier ("__throw_bad_typeid"); if (IDENTIFIER_GLOBAL_VALUE (fn)) fn = IDENTIFIER_GLOBAL_VALUE (fn); else { tree t = build_qualified_type (type_info_type_node, TYPE_QUAL_CONST); t = build_function_type (build_reference_type (t), void_list_node); fn = push_throw_library_fn (fn, t); } return build_call (fn, NULL_TREE); } /* Return a pointer to type_info function associated with the expression EXP. If EXP is a reference to a polymorphic class, return the dynamic type; otherwise return the static type of the expression. */ static tree get_tinfo_decl_dynamic (exp) tree exp; { tree type; if (exp == error_mark_node) return error_mark_node; type = TREE_TYPE (exp); /* peel back references, so they match. */ if (TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); /* Peel off cv qualifiers. */ type = TYPE_MAIN_VARIANT (type); if (type != void_type_node) type = complete_type_or_else (type, exp); if (!type) return error_mark_node; /* If exp is a reference to polymorphic type, get the real type_info. */ if (TYPE_POLYMORPHIC_P (type) && ! resolves_to_fixed_type_p (exp, 0)) { /* build reference to type_info from vtable. */ tree t; tree index; if (! flag_rtti) error ("taking dynamic typeid of object with -fno-rtti"); if (CLASSTYPE_COM_INTERFACE (type)) { cp_error ("RTTI not supported for COM interface type `%T'", type); return error_mark_node; } /* If we don't have rtti stuff, get to a sub-object that does. */ if (! CLASSTYPE_VFIELDS (type)) { exp = build_unary_op (ADDR_EXPR, exp, 0); exp = build_headof_sub (exp); exp = build_indirect_ref (exp, NULL_PTR); } /* The RTTI information is always in the vtable, but it's at different indices depending on the ABI. */ if (new_abi_rtti_p ()) index = minus_one_node; else if (flag_vtable_thunks) index = integer_one_node; else index = integer_zero_node; t = build_vfn_ref ((tree *) 0, exp, index); TREE_TYPE (t) = build_pointer_type (tinfo_decl_type); return t; } /* otherwise return the type_info for the static type of the expr. */ exp = get_tinfo_decl (TYPE_MAIN_VARIANT (type)); return build_unary_op (ADDR_EXPR, exp, 0); } tree build_typeid (exp) tree exp; { tree cond = NULL_TREE; int nonnull = 0; if (! flag_rtti) { error ("cannot use typeid with -fno-rtti"); return error_mark_node; } if (!COMPLETE_TYPE_P (type_info_type_node)) { error ("must #include before using typeid"); return error_mark_node; } if (processing_template_decl) return build_min_nt (TYPEID_EXPR, exp); if (TREE_CODE (exp) == INDIRECT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE && TYPE_POLYMORPHIC_P (TREE_TYPE (exp)) && ! resolves_to_fixed_type_p (exp, &nonnull) && ! nonnull) { exp = stabilize_reference (exp); cond = cp_convert (boolean_type_node, TREE_OPERAND (exp, 0)); } exp = get_tinfo_decl_dynamic (exp); if (exp == error_mark_node) return error_mark_node; exp = tinfo_from_decl (exp); if (cond) { tree bad = throw_bad_typeid (); exp = build (COND_EXPR, TREE_TYPE (exp), cond, exp, bad); } return convert_from_reference (exp); } static tree get_tinfo_var (type) tree type; { tree tname = build_overload_with_type (tinfo_var_id, type); tree arrtype; int size; my_friendly_assert (!new_abi_rtti_p (), 20000118); if (IDENTIFIER_GLOBAL_VALUE (tname)) return IDENTIFIER_GLOBAL_VALUE (tname); /* Figure out how much space we need to allocate for the type_info object. If our struct layout or the type_info classes are changed, this will need to be modified. */ if (TYPE_QUALS (type) != TYPE_UNQUALIFIED) size = 3 * POINTER_SIZE + INT_TYPE_SIZE; else if (TREE_CODE (type) == POINTER_TYPE && ! (TREE_CODE (TREE_TYPE (type)) == OFFSET_TYPE || TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)) size = 3 * POINTER_SIZE; else if (IS_AGGR_TYPE (type)) { if (CLASSTYPE_N_BASECLASSES (type) == 0) size = 2 * POINTER_SIZE; else if (! TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (type) && (TREE_VIA_PUBLIC (TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), 0)))) size = 3 * POINTER_SIZE; else size = 3 * POINTER_SIZE + TYPE_PRECISION (sizetype); } else size = 2 * POINTER_SIZE; /* The type for a character array of the appropriate size. */ arrtype = build_cplus_array_type (unsigned_char_type_node, build_index_type (size_int (size / BITS_PER_UNIT - 1))); return declare_global_var (tname, arrtype); } /* Generate the NTBS name of a type. */ static tree tinfo_name (type) tree type; { const char *name = build_overload_name (type, 1, 1); tree name_string = combine_strings (build_string (strlen (name) + 1, name)); return name_string; } /* Returns a decl for a function or variable which can be used to obtain a type_info object for TYPE. The old-abi uses functions, the new-abi uses the type_info object directly. You can take the address of the returned decl, to save the decl. To use the decl call tinfo_from_decl. You must arrange that the decl is mark_used, if actually use it --- decls in vtables are only used if the vtable is output. */ tree get_tinfo_decl (type) tree type; { tree name; tree d; if (TREE_CODE (type) == OFFSET_TYPE) type = TREE_TYPE (type); if (TREE_CODE (type) == METHOD_TYPE) type = build_function_type (TREE_TYPE (type), TREE_CHAIN (TYPE_ARG_TYPES (type))); name = build_overload_with_type (tinfo_decl_id, type); d = IDENTIFIER_GLOBAL_VALUE (name); if (d) /* OK */; else if (!new_abi_rtti_p ()) { /* The tinfo decl is a function returning a reference to the type_info object. */ d = push_library_fn (name, tinfo_decl_type); DECL_NOT_REALLY_EXTERN (d) = 1; SET_DECL_TINFO_FN_P (d); TREE_TYPE (name) = type; defer_fn (d); } else { /* The tinfo decl is the type_info object itself. We make all tinfo objects look as type_info, even though they will end up being a subclass of that when emitted. This means the we'll erroneously think we know the dynamic type -- be careful in the runtime. */ d = build_lang_decl (VAR_DECL, name, tinfo_decl_type); DECL_ARTIFICIAL (d) = 1; DECL_ALIGN (d) = TYPE_ALIGN (ptr_type_node); TREE_READONLY (d) = 1; TREE_STATIC (d) = 1; DECL_EXTERNAL (d) = 1; TREE_PUBLIC (d) = 1; comdat_linkage (d); DECL_ASSEMBLER_NAME (d) = DECL_NAME (d); cp_finish_decl (d, NULL_TREE, NULL_TREE, 0); pushdecl_top_level (d); /* Remember the type it is for. */ TREE_TYPE (name) = type; TREE_USED (name) = 1; } return d; } /* Given an expr produced by get_tinfo_decl, return an expr which produces a reference to the type_info object. */ static tree tinfo_from_decl (expr) tree expr; { tree t; if (!new_abi_rtti_p ()) t = build_call (expr, NULL_TREE); else if (TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE) t = build_indirect_ref (expr, NULL); else t = expr; return t; } tree get_typeid_1 (type) tree type; { tree t; t = get_tinfo_decl (type); t = tinfo_from_decl (t); return convert_from_reference (t); } /* Return the type_info object for TYPE. */ tree get_typeid (type) tree type; { if (type == error_mark_node) return error_mark_node; if (!COMPLETE_TYPE_P (type_info_type_node)) { error ("must #include before using typeid"); return error_mark_node; } if (processing_template_decl) return build_min_nt (TYPEID_EXPR, type); /* If the type of the type-id is a reference type, the result of the typeid expression refers to a type_info object representing the referenced type. */ if (TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); /* The top-level cv-qualifiers of the lvalue expression or the type-id that is the operand of typeid are always ignored. */ type = TYPE_MAIN_VARIANT (type); if (type != void_type_node) type = complete_type_or_else (type, NULL_TREE); if (!type) return error_mark_node; return get_typeid_1 (type); } /* Check whether TEST is null before returning RESULT. If TEST is used in RESULT, it must have previously had a save_expr applied to it. */ static tree ifnonnull (test, result) tree test, result; { return build (COND_EXPR, TREE_TYPE (result), build (EQ_EXPR, boolean_type_node, test, integer_zero_node), cp_convert (TREE_TYPE (result), integer_zero_node), result); } /* Generate the constant expression describing where direct base BINFO appears within the PARENT. How to interpret this expression depends on details of the ABI, which the runtime must be aware of. */ static tree get_base_offset (binfo, parent) tree binfo; tree parent; { if (! TREE_VIA_VIRTUAL (binfo)) return BINFO_OFFSET (binfo); else if (! vbase_offsets_in_vtable_p ()) { const char *name; FORMAT_VBASE_NAME (name, BINFO_TYPE (binfo)); return byte_position (lookup_field (parent, get_identifier (name), 0, 0)); } else /* Under the new ABI, we store the vtable offset at which the virtual base offset can be found. */ return convert (sizetype, BINFO_VPTR_FIELD (BINFO_FOR_VBASE (BINFO_TYPE (binfo), parent))); } /* Execute a dynamic cast, as described in section 5.2.6 of the 9/93 working paper. */ static tree build_dynamic_cast_1 (type, expr) tree type, expr; { enum tree_code tc = TREE_CODE (type); tree exprtype = TREE_TYPE (expr); tree dcast_fn; tree old_expr = expr; const char *errstr = NULL; /* T shall be a pointer or reference to a complete class type, or `pointer to cv void''. */ switch (tc) { case POINTER_TYPE: if (TREE_CODE (TREE_TYPE (type)) == VOID_TYPE) break; case REFERENCE_TYPE: if (! IS_AGGR_TYPE (TREE_TYPE (type))) { errstr = "target is not pointer or reference to class"; goto fail; } if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (type)))) { errstr = "target is not pointer or reference to complete type"; goto fail; } break; default: errstr = "target is not pointer or reference"; goto fail; } if (TREE_CODE (expr) == OFFSET_REF) { expr = resolve_offset_ref (expr); exprtype = TREE_TYPE (expr); } if (tc == POINTER_TYPE) expr = convert_from_reference (expr); else if (TREE_CODE (exprtype) != REFERENCE_TYPE) { /* Apply trivial conversion T -> T& for dereferenced ptrs. */ exprtype = build_reference_type (exprtype); expr = convert_to_reference (exprtype, expr, CONV_IMPLICIT, LOOKUP_NORMAL, NULL_TREE); } exprtype = TREE_TYPE (expr); if (tc == POINTER_TYPE) { /* If T is a pointer type, v shall be an rvalue of a pointer to complete class type, and the result is an rvalue of type T. */ if (TREE_CODE (exprtype) != POINTER_TYPE) { errstr = "source is not a pointer"; goto fail; } if (! IS_AGGR_TYPE (TREE_TYPE (exprtype))) { errstr = "source is not a pointer to class"; goto fail; } if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (exprtype)))) { errstr = "source is a pointer to incomplete type"; goto fail; } } else { /* T is a reference type, v shall be an lvalue of a complete class type, and the result is an lvalue of the type referred to by T. */ if (! IS_AGGR_TYPE (TREE_TYPE (exprtype))) { errstr = "source is not of class type"; goto fail; } if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (exprtype)))) { errstr = "source is of incomplete class type"; goto fail; } } /* The dynamic_cast operator shall not cast away constness. */ if (!at_least_as_qualified_p (TREE_TYPE (type), TREE_TYPE (exprtype))) { errstr = "conversion casts away constness"; goto fail; } /* If *type is an unambiguous accessible base class of *exprtype, convert statically. */ { int distance; tree path; distance = get_base_distance (TREE_TYPE (type), TREE_TYPE (exprtype), 1, &path); if (distance == -2) { cp_error ("dynamic_cast from `%T' to ambiguous base class `%T'", TREE_TYPE (exprtype), TREE_TYPE (type)); return error_mark_node; } if (distance == -3) { cp_error ("dynamic_cast from `%T' to private base class `%T'", TREE_TYPE (exprtype), TREE_TYPE (type)); return error_mark_node; } if (distance >= 0) { expr = build_vbase_path (PLUS_EXPR, type, expr, path, 0); if (TREE_CODE (exprtype) == POINTER_TYPE) expr = non_lvalue (expr); return expr; } } /* Otherwise *exprtype must be a polymorphic class (have a vtbl). */ if (TYPE_POLYMORPHIC_P (TREE_TYPE (exprtype))) { tree expr1; /* if TYPE is `void *', return pointer to complete object. */ if (tc == POINTER_TYPE && TYPE_MAIN_VARIANT (TREE_TYPE (type)) == void_type_node) { /* if b is an object, dynamic_cast(&b) == (void *)&b. */ if (TREE_CODE (expr) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (expr, 0)) == VAR_DECL && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == RECORD_TYPE) return build1 (NOP_EXPR, type, expr); /* Since expr is used twice below, save it. */ expr = save_expr (expr); expr1 = build_headof (expr); if (TREE_TYPE (expr1) != type) expr1 = build1 (NOP_EXPR, type, expr1); return ifnonnull (expr, expr1); } else { tree retval; tree result, td2, td3, elems; tree static_type, target_type, boff; /* If we got here, we can't convert statically. Therefore, dynamic_cast(b) (b an object) cannot succeed. */ if (tc == REFERENCE_TYPE) { if (TREE_CODE (old_expr) == VAR_DECL && TREE_CODE (TREE_TYPE (old_expr)) == RECORD_TYPE) { tree expr = throw_bad_cast (); cp_warning ("dynamic_cast of `%#D' to `%#T' can never succeed", old_expr, type); /* Bash it to the expected type. */ TREE_TYPE (expr) = type; return expr; } } /* Ditto for dynamic_cast(&b). */ else if (TREE_CODE (expr) == ADDR_EXPR) { tree op = TREE_OPERAND (expr, 0); if (TREE_CODE (op) == VAR_DECL && TREE_CODE (TREE_TYPE (op)) == RECORD_TYPE) { cp_warning ("dynamic_cast of `%#D' to `%#T' can never succeed", op, type); retval = build_int_2 (0, 0); TREE_TYPE (retval) = type; return retval; } } target_type = TYPE_MAIN_VARIANT (TREE_TYPE (type)); static_type = TYPE_MAIN_VARIANT (TREE_TYPE (exprtype)); td2 = build_unary_op (ADDR_EXPR, get_tinfo_decl (target_type), 0); td3 = build_unary_op (ADDR_EXPR, get_tinfo_decl (static_type), 0); /* Determine how T and V are related. */ boff = get_dynamic_cast_base_type (static_type, target_type); /* Since expr is used twice below, save it. */ expr = save_expr (expr); expr1 = expr; if (tc == REFERENCE_TYPE) expr1 = build_unary_op (ADDR_EXPR, expr1, 0); if (!new_abi_rtti_p ()) { tree expr2 = build_headof (expr1); tree td1 = expr; if (tc == POINTER_TYPE) td1 = build_indirect_ref (td1, NULL_PTR); td1 = get_tinfo_decl_dynamic (td1); elems = tree_cons (NULL_TREE, td1, tree_cons (NULL_TREE, td2, tree_cons (NULL_TREE, boff, tree_cons (NULL_TREE, expr2, tree_cons (NULL_TREE, td3, tree_cons (NULL_TREE, expr1, NULL_TREE)))))); } else elems = tree_cons (NULL_TREE, expr1, tree_cons (NULL_TREE, td3, tree_cons (NULL_TREE, td2, tree_cons (NULL_TREE, boff, NULL_TREE)))); dcast_fn = dynamic_cast_node; if (!dcast_fn) { tree tmp; tree tinfo_ptr; tree ns = new_abi_rtti_p () ? abi_node : global_namespace; const char *name; push_nested_namespace (ns); if (!new_abi_rtti_p ()) { tinfo_ptr = build_pointer_type (tinfo_decl_type); name = "__dynamic_cast_2"; tmp = tree_cons (NULL_TREE, tinfo_ptr, tree_cons (NULL_TREE, tinfo_ptr, tree_cons (NULL_TREE, integer_type_node, tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, tinfo_ptr, tree_cons (NULL_TREE, ptr_type_node, void_list_node)))))); } else { tinfo_ptr = xref_tag (class_type_node, get_identifier ("__class_type_info"), 1); tinfo_ptr = build_pointer_type (build_qualified_type (tinfo_ptr, TYPE_QUAL_CONST)); name = "__dynamic_cast"; tmp = tree_cons (NULL_TREE, const_ptr_type_node, tree_cons (NULL_TREE, tinfo_ptr, tree_cons (NULL_TREE, tinfo_ptr, tree_cons (NULL_TREE, ptrdiff_type_node, void_list_node)))); } tmp = build_function_type (ptr_type_node, tmp); if (new_abi_rtti_p ()) /* We want its name mangling. */ dcast_fn = build_cp_library_fn_ptr (name, tmp); else dcast_fn = build_library_fn_ptr (name, tmp); pop_nested_namespace (ns); dynamic_cast_node = dcast_fn; } result = build_call (dcast_fn, elems); if (tc == REFERENCE_TYPE) { tree bad = throw_bad_cast (); result = save_expr (result); return build (COND_EXPR, type, result, result, bad); } /* Now back to the type we want from a void*. */ result = cp_convert (type, result); return ifnonnull (expr, result); } } else errstr = "source type is not polymorphic"; fail: cp_error ("cannot dynamic_cast `%E' (of type `%#T') to type `%#T' (%s)", expr, exprtype, type, errstr); return error_mark_node; } tree build_dynamic_cast (type, expr) tree type, expr; { if (type == error_mark_node || expr == error_mark_node) return error_mark_node; if (processing_template_decl) return build_min (DYNAMIC_CAST_EXPR, type, expr); return convert_from_reference (build_dynamic_cast_1 (type, expr)); } /* Build and initialize various sorts of descriptors. Every descriptor node has a name associated with it (the name created by mangling). For this reason, we use the identifier as our access to the __*_desc nodes, instead of sticking them directly in the types. Otherwise we would burden all built-in types (and pointer types) with slots that we don't necessarily want to use. For each descriptor we build, we build a variable that contains the descriptor's information. When we need this info at runtime, all we need is access to these variables. Note: these constructors always return the address of the descriptor info, since that is simplest for their mutual interaction. */ /* Build an initializer for a __si_type_info node. */ static void expand_si_desc (tdecl, type) tree tdecl; tree type; { tree t, elems, fn; tree name_string = tinfo_name (type); type = BINFO_TYPE (TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), 0)); finish_expr_stmt (get_typeid_1 (type)); t = decay_conversion (get_tinfo_var (type)); elems = tree_cons (NULL_TREE, decay_conversion (tdecl), tree_cons (NULL_TREE, decay_conversion (name_string), tree_cons (NULL_TREE, t, NULL_TREE))); fn = get_identifier ("__rtti_si"); if (IDENTIFIER_GLOBAL_VALUE (fn)) fn = IDENTIFIER_GLOBAL_VALUE (fn); else { tree tmp; tmp = tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, const_string_type_node, tree_cons (NULL_TREE, build_pointer_type (type_info_type_node), void_list_node))); fn = push_void_library_fn (fn, tmp); } fn = build_call (fn, elems); finish_expr_stmt (fn); } /* Build an initializer for a __class_type_info node. */ static void expand_class_desc (tdecl, type) tree tdecl; tree type; { tree name_string; tree fn, tmp; int i = CLASSTYPE_N_BASECLASSES (type); int base_cnt = 0; tree binfos = TYPE_BINFO_BASETYPES (type); #if 0 /* See code below that used these. */ tree vb = CLASSTYPE_VBASECLASSES (type); int n_base = i; #endif tree base, elems, access, offset, isvir; tree elt, elts = NULL_TREE; if (base_desc_type_node == NULL_TREE) { tree fields [4]; /* A reasonably close approximation of __class_type_info::base_info */ base_desc_type_node = make_aggr_type (RECORD_TYPE); /* Actually const __user_type_info * */ fields [0] = build_lang_decl (FIELD_DECL, NULL_TREE, build_pointer_type (build_qualified_type (type_info_type_node, TYPE_QUAL_CONST))); fields [1] = build_lang_decl (FIELD_DECL, NULL_TREE, flag_new_abi ? intSI_type_node : unsigned_intSI_type_node); DECL_BIT_FIELD (fields[1]) = 1; DECL_SIZE (fields[1]) = bitsize_int (29); fields [2] = build_lang_decl (FIELD_DECL, NULL_TREE, boolean_type_node); DECL_BIT_FIELD (fields[2]) = 1; DECL_SIZE (fields[2]) = bitsize_one_node; /* Actually enum access */ fields [3] = build_lang_decl (FIELD_DECL, NULL_TREE, integer_type_node); DECL_BIT_FIELD (fields[3]) = 1; DECL_SIZE (fields[3]) = bitsize_int (2); finish_builtin_type (base_desc_type_node, "__base_info", fields, 3, ptr_type_node); } while (--i >= 0) { tree binfo = TREE_VEC_ELT (binfos, i); finish_expr_stmt (get_typeid_1 (BINFO_TYPE (binfo))); base = decay_conversion (get_tinfo_var (BINFO_TYPE (binfo))); offset = get_base_offset (binfo, type); if (TREE_VIA_PUBLIC (binfo)) access = access_public_node; else if (TREE_VIA_PROTECTED (binfo)) access = access_protected_node; else access = access_private_node; if (TREE_VIA_VIRTUAL (binfo)) isvir = boolean_true_node; else isvir = boolean_false_node; elt = build (CONSTRUCTOR, base_desc_type_node, NULL_TREE, tree_cons (NULL_TREE, base, tree_cons (NULL_TREE, offset, tree_cons (NULL_TREE, isvir, tree_cons (NULL_TREE, access, NULL_TREE))))); TREE_HAS_CONSTRUCTOR (elt) = TREE_CONSTANT (elt) = TREE_STATIC (elt) = 1; elts = tree_cons (NULL_TREE, elt, elts); base_cnt++; } #if 0 i = n_base; while (vb) { tree b; access = access_public_node; while (--i >= 0) { b = TREE_VEC_ELT (binfos, i); if (BINFO_TYPE (vb) == BINFO_TYPE (b) && TREE_VIA_VIRTUAL (b)) { if (TREE_VIA_PUBLIC (b)) access = access_public_node; else if (TREE_VIA_PROTECTED (b)) access = access_protected_node; else access = access_private_node; break; } } base = build_t_desc (BINFO_TYPE (vb), 1); offset = BINFO_OFFSET (vb); isvir = build_int_2 (1, 0); base_list = tree_cons (NULL_TREE, base, base_list); isvir_list = tree_cons (NULL_TREE, isvir, isvir_list); acc_list = tree_cons (NULL_TREE, access, acc_list); off_list = tree_cons (NULL_TREE, offset, off_list); base_cnt++; vb = TREE_CHAIN (vb); } #endif name_string = tinfo_name (type); { tree arrtype = build_array_type (base_desc_type_node, NULL_TREE); elts = build (CONSTRUCTOR, arrtype, NULL_TREE, elts); TREE_HAS_CONSTRUCTOR (elts) = TREE_CONSTANT (elts) = TREE_STATIC (elts) = 1; complete_array_type (arrtype, elts, 1); } elems = tree_cons (NULL_TREE, decay_conversion (tdecl), tree_cons (NULL_TREE, decay_conversion (name_string), tree_cons (NULL_TREE, decay_conversion (elts), tree_cons (NULL_TREE, cp_convert (sizetype, build_int_2 (base_cnt, 0)), NULL_TREE)))); fn = get_identifier ("__rtti_class"); if (IDENTIFIER_GLOBAL_VALUE (fn)) fn = IDENTIFIER_GLOBAL_VALUE (fn); else { tmp = tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, const_string_type_node, tree_cons (NULL_TREE, build_pointer_type (base_desc_type_node), tree_cons (NULL_TREE, sizetype, void_list_node)))); fn = push_void_library_fn (fn, tmp); } fn = build_call (fn, elems); finish_expr_stmt (fn); } /* Build an initializer for a __pointer_type_info node. */ static void expand_ptr_desc (tdecl, type) tree tdecl; tree type; { tree t, elems, fn; tree name_string = tinfo_name (type); type = TREE_TYPE (type); finish_expr_stmt (get_typeid_1 (type)); t = decay_conversion (get_tinfo_var (type)); elems = tree_cons (NULL_TREE, decay_conversion (tdecl), tree_cons (NULL_TREE, decay_conversion (name_string), tree_cons (NULL_TREE, t, NULL_TREE))); fn = get_identifier ("__rtti_ptr"); if (IDENTIFIER_GLOBAL_VALUE (fn)) fn = IDENTIFIER_GLOBAL_VALUE (fn); else { tree tmp; tmp = tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, const_string_type_node, tree_cons (NULL_TREE, build_pointer_type (type_info_type_node), void_list_node))); fn = push_void_library_fn (fn, tmp); } fn = build_call (fn, elems); finish_expr_stmt (fn); } /* Build an initializer for a __attr_type_info node. */ static void expand_attr_desc (tdecl, type) tree tdecl; tree type; { tree elems, t, fn; tree name_string = tinfo_name (type); tree attrval = build_int_2 (TYPE_QUALS (type), 0); finish_expr_stmt (get_typeid_1 (TYPE_MAIN_VARIANT (type))); t = decay_conversion (get_tinfo_var (TYPE_MAIN_VARIANT (type))); elems = tree_cons (NULL_TREE, decay_conversion (tdecl), tree_cons (NULL_TREE, decay_conversion (name_string), tree_cons (NULL_TREE, attrval, tree_cons (NULL_TREE, t, NULL_TREE)))); fn = get_identifier ("__rtti_attr"); if (IDENTIFIER_GLOBAL_VALUE (fn)) fn = IDENTIFIER_GLOBAL_VALUE (fn); else { tree tmp; tmp = tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, const_string_type_node, tree_cons (NULL_TREE, integer_type_node, tree_cons (NULL_TREE, build_pointer_type (type_info_type_node), void_list_node)))); fn = push_void_library_fn (fn, tmp); } fn = build_call (fn, elems); finish_expr_stmt (fn); } /* Build an initializer for a type_info node that just has a name. */ static void expand_generic_desc (tdecl, type, fnname) tree tdecl; tree type; const char *fnname; { tree name_string = tinfo_name (type); tree elems = tree_cons (NULL_TREE, decay_conversion (tdecl), tree_cons (NULL_TREE, decay_conversion (name_string), NULL_TREE)); tree fn = get_identifier (fnname); if (IDENTIFIER_GLOBAL_VALUE (fn)) fn = IDENTIFIER_GLOBAL_VALUE (fn); else { tree tmp; tmp = tree_cons (NULL_TREE, ptr_type_node, tree_cons (NULL_TREE, const_string_type_node, void_list_node)); fn = push_void_library_fn (fn, tmp); } fn = build_call (fn, elems); finish_expr_stmt (fn); } /* Generate the code for a type_info initialization function. Note that we take advantage of the passage 5.2.7 Type identification [expr.typeid] Whether or not the destructor is called for the type_info object at the end of the program is unspecified. and don't bother to arrange for these objects to be destroyed. It doesn't matter, anyway, since the destructors don't do anything. This must only be called from toplevel (i.e. from finish_file)! */ void synthesize_tinfo_fn (fndecl) tree fndecl; { tree type = TREE_TYPE (DECL_NAME (fndecl)); tree tmp, addr, tdecl; tree compound_stmt; tree if_stmt; tree then_clause; my_friendly_assert (!new_abi_rtti_p (), 20000118); if (at_eof) { import_export_decl (fndecl); if (DECL_REALLY_EXTERN (fndecl)) return; } /* Declare the static typeinfo variable. */ tdecl = get_tinfo_var (type); DECL_EXTERNAL (tdecl) = 0; TREE_STATIC (tdecl) = 1; DECL_COMMON (tdecl) = 1; TREE_USED (tdecl) = 1; DECL_ALIGN (tdecl) = TYPE_ALIGN (ptr_type_node); cp_finish_decl (tdecl, NULL_TREE, NULL_TREE, 0); /* Begin processing the function. */ start_function (NULL_TREE, fndecl, NULL_TREE, SF_DEFAULT | SF_PRE_PARSED); DECL_DEFER_OUTPUT (fndecl) = 1; store_parm_decls (); clear_last_expr (); /* Begin the body of the function. */ compound_stmt = begin_compound_stmt (/*has_no_scope=*/0); /* For convenience, we save away the address of the static variable. */ addr = decay_conversion (tdecl); /* If the first word of the array (the vtable) is non-zero, we've already initialized the object, so don't do it again. */ if_stmt = begin_if_stmt (); tmp = cp_convert (build_pointer_type (ptr_type_node), addr); tmp = build_indirect_ref (tmp, 0); tmp = build_binary_op (EQ_EXPR, tmp, integer_zero_node); finish_if_stmt_cond (tmp, if_stmt); then_clause = begin_compound_stmt (/*has_no_scope=*/0); if (TREE_CODE (type) == FUNCTION_TYPE) expand_generic_desc (tdecl, type, "__rtti_func"); else if (TREE_CODE (type) == ARRAY_TYPE) expand_generic_desc (tdecl, type, "__rtti_array"); else if (TYPE_QUALS (type) != TYPE_UNQUALIFIED) expand_attr_desc (tdecl, type); else if (TREE_CODE (type) == POINTER_TYPE) { if (TREE_CODE (TREE_TYPE (type)) == OFFSET_TYPE) expand_generic_desc (tdecl, type, "__rtti_ptmd"); else if (TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE) expand_generic_desc (tdecl, type, "__rtti_ptmf"); else expand_ptr_desc (tdecl, type); } else if (TYPE_PTRMEMFUNC_P (type)) expand_generic_desc (tdecl, type, "__rtti_ptmf"); else if (IS_AGGR_TYPE (type)) { if (CLASSTYPE_N_BASECLASSES (type) == 0) expand_generic_desc (tdecl, type, "__rtti_user"); else if (! TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (type) && (TREE_VIA_PUBLIC (TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), 0)))) expand_si_desc (tdecl, type); else expand_class_desc (tdecl, type); } else if (TREE_CODE (type) == ENUMERAL_TYPE) expand_generic_desc (tdecl, type, "__rtti_user"); else my_friendly_abort (252); finish_compound_stmt (/*has_no_scope=*/0, then_clause); finish_then_clause (if_stmt); finish_if_stmt (); /* OK, now return the type_info object. */ tmp = cp_convert (build_pointer_type (type_info_type_node), addr); tmp = build_indirect_ref (tmp, 0); finish_return_stmt (tmp); /* Finish the function body. */ finish_compound_stmt (/*has_no_scope=*/0, compound_stmt); expand_body (finish_function (0)); } /* Return the runtime bit mask encoding the qualifiers of TYPE. */ static int qualifier_flags (type) tree type; { int flags = 0; /* we want the qualifiers on this type, not any array core, it might have */ int quals = TYPE_QUALS (type); if (quals & TYPE_QUAL_CONST) flags |= 1; if (quals & TYPE_QUAL_VOLATILE) flags |= 2; if (quals & TYPE_QUAL_RESTRICT) flags |= 4; return flags; } /* Return a CONSTRUCTOR for the common part of the type_info objects. This is the vtable pointer and NTBS name. */ static tree tinfo_base_init (desc, target) tree desc; tree target; { tree name_string = tinfo_name (target); tree init = NULL_TREE; if (TINFO_VTABLE_DECL (desc)) { tree vtbl_ptr = TINFO_VTABLE_DECL (desc); init = tree_cons (NULL_TREE, vtbl_ptr, init); } init = tree_cons (NULL_TREE, decay_conversion (name_string), init); init = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, nreverse (init)); TREE_HAS_CONSTRUCTOR (init) = TREE_CONSTANT (init) = TREE_STATIC (init) = 1; init = tree_cons (NULL_TREE, init, NULL_TREE); return init; } /* Return the CONSTRUCTOR expr for a type_info of TYPE. DESC provides the information about the particular type_info derivation, which adds no additional fields to the type_info base. */ static tree generic_initializer (desc, target) tree desc; tree target; { tree init = tinfo_base_init (desc, target); init = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, init); TREE_HAS_CONSTRUCTOR (init) = TREE_CONSTANT (init) = TREE_STATIC (init) = 1; return init; } /* Return the CONSTRUCTOR expr for a type_info of pointer TYPE. DESC provides information about the particular type_info derivation, which adds target type and qualifier flags members to the type_info base. */ static tree ptr_initializer (desc, target) tree desc; tree target; { tree init = tinfo_base_init (desc, target); tree to = TREE_TYPE (target); int flags = qualifier_flags (to); init = tree_cons (NULL_TREE, build_int_2 (flags, 0), init); init = tree_cons (NULL_TREE, build_unary_op (ADDR_EXPR, get_tinfo_decl (TYPE_MAIN_VARIANT (to)), 0), init); init = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, nreverse (init)); TREE_HAS_CONSTRUCTOR (init) = TREE_CONSTANT (init) = TREE_STATIC (init) = 1; return init; } /* Return the CONSTRUCTOR expr for a type_info of pointer to member data TYPE. DESC provides information about the particular type_info derivation, which adds target type and qualifier flags members to the type_info base. */ static tree ptmd_initializer (desc, target) tree desc; tree target; { tree init = tinfo_base_init (desc, target); tree to = TYPE_PTRMEM_POINTED_TO_TYPE (target); tree klass = TYPE_PTRMEM_CLASS_TYPE (target); int flags = qualifier_flags (to); init = tree_cons (NULL_TREE, build_int_2 (flags, 0), init); init = tree_cons (NULL_TREE, build_unary_op (ADDR_EXPR, get_tinfo_decl (TYPE_MAIN_VARIANT (to)), 0), init); init = tree_cons (NULL_TREE, build_unary_op (ADDR_EXPR, get_tinfo_decl (klass), 0), init); init = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, nreverse (init)); TREE_HAS_CONSTRUCTOR (init) = TREE_CONSTANT (init) = TREE_STATIC (init) = 1; return init; } /* Check base BINFO to set hint flags in *DATA, which is really an int. We use CLASSTYPE_MARKED to tag types we've found as non-virtual bases and CLASSTYPE_MARKED2 to tag those which are virtual bases. Remember it is possible for a type to be both a virtual and non-virtual base. */ static tree dfs_class_hint_mark (binfo, data) tree binfo; void *data; { tree basetype = BINFO_TYPE (binfo); int *hint = (int *) data; if (TREE_VIA_VIRTUAL (binfo)) { if (CLASSTYPE_MARKED (basetype)) *hint |= 1; if (CLASSTYPE_MARKED2 (basetype)) *hint |= 2; SET_CLASSTYPE_MARKED2 (basetype); } else { if (CLASSTYPE_MARKED (basetype) || CLASSTYPE_MARKED2 (basetype)) *hint |= 1; SET_CLASSTYPE_MARKED (basetype); } if (!TREE_VIA_PUBLIC (binfo) && TYPE_BINFO (basetype) != binfo) *hint |= 4; return NULL_TREE; }; /* Clear the base's dfs marks, after searching for duplicate bases. */ static tree dfs_class_hint_unmark (binfo, data) tree binfo; void *data ATTRIBUTE_UNUSED; { tree basetype = BINFO_TYPE (binfo); CLEAR_CLASSTYPE_MARKED (basetype); CLEAR_CLASSTYPE_MARKED2 (basetype); return NULL_TREE; } /* Determine the hint flags describing the features of a class's heirarchy. */ static int class_hint_flags (type) tree type; { int hint_flags = 0; int i; dfs_walk (TYPE_BINFO (type), dfs_class_hint_mark, NULL, &hint_flags); dfs_walk (TYPE_BINFO (type), dfs_class_hint_unmark, NULL, NULL); for (i = 0; i < CLASSTYPE_N_BASECLASSES (type); ++i) { tree base_binfo = BINFO_BASETYPE (TYPE_BINFO (type), i); if (TREE_VIA_PUBLIC (base_binfo)) hint_flags |= 0x8; } return hint_flags; } /* Return the CONSTRUCTOR expr for a type_info of class TYPE. DESC provides information about the particular __class_type_info derivation, which adds hint flags and TRAIL initializers to the type_info base. */ static tree class_initializer (desc, target, trail) tree desc; tree target; tree trail; { tree init = tinfo_base_init (desc, target); TREE_CHAIN (init) = trail; init = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, init); TREE_HAS_CONSTRUCTOR (init) = TREE_CONSTANT (init) = TREE_STATIC (init) = 1; return init; } /* Generate a pseudo_type_info VAR_DECL suitable for the supplied TARGET_TYPE and given the REAL_NAME. This is the structure expected by the runtime, and therefore has additional fields. If we need not emit a definition (because the runtime must contain it), return NULL_TREE, otherwise return the VAR_DECL. */ static tree synthesize_tinfo_var (target_type, real_name) tree target_type; tree real_name; { tree var_init = NULL_TREE; tree var_type = NULL_TREE; my_friendly_assert (new_abi_rtti_p (), 20000118); switch (TREE_CODE (target_type)) { case POINTER_TYPE: if (TYPE_PTRMEM_P (target_type)) { var_type = ptmd_desc_type_node; var_init = ptmd_initializer (var_type, target_type); } else { int code = TREE_CODE (TREE_TYPE (target_type)); if ((CP_TYPE_QUALS (TREE_TYPE (target_type)) | TYPE_QUAL_CONST) == TYPE_QUAL_CONST && (code == INTEGER_TYPE || code == BOOLEAN_TYPE || code == CHAR_TYPE || code == REAL_TYPE || code == VOID_TYPE) && !doing_runtime) /* These are in the runtime. */ return NULL_TREE; var_type = ptr_desc_type_node; var_init = ptr_initializer (var_type, target_type); } break; case ENUMERAL_TYPE: var_type = enum_desc_type_node; var_init = generic_initializer (var_type, target_type); break; case FUNCTION_TYPE: var_type = func_desc_type_node; var_init = generic_initializer (var_type, target_type); break; case ARRAY_TYPE: var_type = ary_desc_type_node; var_init = generic_initializer (var_type, target_type); break; case UNION_TYPE: case RECORD_TYPE: if (!COMPLETE_TYPE_P (target_type)) { /* FIXME: incomplete type. Awaiting specification. */ return NULL_TREE; } else if (!CLASSTYPE_N_BASECLASSES (target_type)) { var_type = class_desc_type_node; var_init = class_initializer (var_type, target_type, NULL_TREE); } else { /* if this has a single public non-virtual base, it's easier */ tree binfo = TYPE_BINFO (target_type); int nbases = BINFO_N_BASETYPES (binfo); tree base_binfos = BINFO_BASETYPES (binfo); tree base_inits = NULL_TREE; int is_simple = nbases == 1; int ix; /* Generate the base information initializer. */ for (ix = nbases; ix--;) { tree base_binfo = TREE_VEC_ELT (base_binfos, ix); tree base_init = NULL_TREE; int flags = 0; tree tinfo; tree offset; if (TREE_VIA_VIRTUAL (base_binfo)) flags |= 1; if (TREE_PUBLIC (base_binfo)) flags |= 2; tinfo = get_tinfo_decl (BINFO_TYPE (base_binfo)); tinfo = build_unary_op (ADDR_EXPR, tinfo, 0); offset = get_base_offset (base_binfo, target_type); /* is it a single public inheritance? */ if (is_simple && flags == 2 && integer_zerop (offset)) { base_inits = tree_cons (NULL_TREE, tinfo, NULL_TREE); break; } is_simple = 0; /* combine offset and flags into one field */ offset = build_binary_op (LSHIFT_EXPR, offset, build_int_2 (8, 0)); offset = build_binary_op (BIT_IOR_EXPR, offset, build_int_2 (flags, 0)); base_init = tree_cons (NULL_TREE, offset, base_init); base_init = tree_cons (NULL_TREE, tinfo, base_init); base_init = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, base_init); base_inits = tree_cons (NULL_TREE, base_init, base_inits); } if (is_simple) var_type = si_class_desc_type_node; else { int hint = class_hint_flags (target_type); base_inits = build (CONSTRUCTOR, NULL_TREE, NULL_TREE, base_inits); base_inits = tree_cons (NULL_TREE, base_inits, NULL_TREE); /* Prepend the number of bases. */ base_inits = tree_cons (NULL_TREE, build_int_2 (nbases, 0), base_inits); /* Prepend the hint flags. */ base_inits = tree_cons (NULL_TREE, build_int_2 (hint, 0), base_inits); var_type = get_vmi_pseudo_type_info (nbases); } var_init = class_initializer (var_type, target_type, base_inits); } break; case INTEGER_TYPE: case BOOLEAN_TYPE: case CHAR_TYPE: case REAL_TYPE: case VOID_TYPE: if (!doing_runtime) /* These are guaranteed to be in the runtime. */ return NULL_TREE; var_type = bltn_desc_type_node; var_init = generic_initializer (var_type, target_type); break; default: my_friendly_abort (20000117); } return create_real_tinfo_var (real_name, TINFO_PSEUDO_TYPE (var_type), var_init); } /* Create the real typeinfo variable. */ static tree create_real_tinfo_var (name, type, init) tree name; tree type; tree init; { tree decl; decl = build_lang_decl (VAR_DECL, name, build_qualified_type (type, TYPE_QUAL_CONST)); DECL_ARTIFICIAL (decl) = 1; TREE_READONLY (decl) = 1; TREE_STATIC (decl) = 1; TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = 0; comdat_linkage (decl); DECL_ASSEMBLER_NAME (decl) = name; DECL_INITIAL (decl) = init; cp_finish_decl (decl, init, NULL_TREE, 0); return decl; } /* Generate the RECORD_TYPE containing the data layout of a type_info derivative as used by the runtime. This layout must be consistent with that defined in the runtime support. Also generate the VAR_DECL for the type's vtable. We explicitly manage the vtable member, and name it for real type as used in the runtime. The RECORD type has a different name, to avoid collisions. Return a TREE_LIST who's TINFO_PSEUDO_TYPE is the generated type and TINFO_VTABLE_DECL is the vtable decl. REAL_NAME is the runtime's name of the type. Trailing arguments are additional FIELD_DECL's for the structure. The final argument must be NULL. */ static tree create_pseudo_type_info VPARAMS((const char *real_name, int ident, ...)) { #ifndef ANSI_PROTOTYPES char const *real_name; int ident; #endif va_list ap; tree real_type, pseudo_type; char *pseudo_name; tree vtable_decl; int ix; tree fields[10]; tree field_decl; tree result; VA_START (ap, ident); #ifndef ANSI_PROTOTYPES real_name = va_arg (ap, char const *); ident = va_arg (app, int); #endif /* Generate the pseudo type name. */ pseudo_name = (char *)alloca (strlen (real_name) + 30); strcpy (pseudo_name, real_name); strcat (pseudo_name, "_pseudo"); if (ident) sprintf (pseudo_name + strlen (pseudo_name), "%d", ident); /* Get the vtable decl. */ real_type = xref_tag (class_type_node, get_identifier (real_name), 1); vtable_decl = get_vtable_decl (real_type, /*complete=*/1); vtable_decl = build_unary_op (ADDR_EXPR, vtable_decl, 0); /* Under the new ABI, we need to point into the middle of the vtable. */ if (flag_new_abi) { vtable_decl = build (PLUS_EXPR, TREE_TYPE (vtable_decl), vtable_decl, size_binop (MULT_EXPR, size_int (2), TYPE_SIZE_UNIT (vtable_entry_type))); TREE_CONSTANT (vtable_decl) = 1; } /* First field is the pseudo type_info base class. */ fields[0] = build_lang_decl (FIELD_DECL, NULL_TREE, ti_desc_type_node); /* Now add the derived fields. */ for (ix = 0; (field_decl = va_arg (ap, tree));) fields[++ix] = field_decl; /* Create the pseudo type. */ pseudo_type = make_aggr_type (RECORD_TYPE); finish_builtin_type (pseudo_type, pseudo_name, fields, ix, ptr_type_node); TYPE_HAS_CONSTRUCTOR (pseudo_type) = 1; va_end (ap); result = tree_cons (NULL_TREE, NULL_TREE, NULL_TREE); TINFO_VTABLE_DECL (result) = vtable_decl; TINFO_PSEUDO_TYPE (result) = pseudo_type; return result; } /* Return a descriptor for a vmi type with NUM_BASES bases. */ static tree get_vmi_pseudo_type_info (num_bases) int num_bases; { tree desc; tree array_domain, base_array; if (TREE_VEC_LENGTH (vmi_class_desc_type_node) <= num_bases) { int ix; tree extend = make_tree_vec (num_bases + 5); for (ix = TREE_VEC_LENGTH (vmi_class_desc_type_node); ix--;) TREE_VEC_ELT (extend, ix) = TREE_VEC_ELT (vmi_class_desc_type_node, ix); vmi_class_desc_type_node = extend; } desc = TREE_VEC_ELT (vmi_class_desc_type_node, num_bases); if (desc) return desc; /* Add number of bases and trailing array of base_class_type_info. */ array_domain = build_index_type (build_int_2 (num_bases, 0)); base_array = build_array_type (base_desc_type_node, array_domain); push_nested_namespace (abi_node); desc = create_pseudo_type_info ("__vmi_class_type_info", num_bases, build_lang_decl (FIELD_DECL, NULL_TREE, integer_type_node), build_lang_decl (FIELD_DECL, NULL_TREE, integer_type_node), build_lang_decl (FIELD_DECL, NULL_TREE, base_array), NULL); pop_nested_namespace (abi_node); TREE_VEC_ELT (vmi_class_desc_type_node, num_bases) = desc; return desc; } /* Make sure the required builtin types exist for generating the type_info varable definitions. */ static void create_tinfo_types () { tree ptr_type_info; if (bltn_desc_type_node) return; push_nested_namespace (abi_node); ptr_type_info = build_pointer_type (build_qualified_type (type_info_type_node, TYPE_QUAL_CONST)); /* Create the internal type_info structure. This is used as a base for the other structures. */ { tree fields[2]; ti_desc_type_node = make_aggr_type (RECORD_TYPE); fields[0] = build_lang_decl (FIELD_DECL, NULL_TREE, const_ptr_type_node); fields[1] = build_lang_decl (FIELD_DECL, NULL_TREE, const_string_type_node); finish_builtin_type (ti_desc_type_node, "__type_info_pseudo", fields, 1, ptr_type_node); TYPE_HAS_CONSTRUCTOR (ti_desc_type_node) = 1; } /* Fundamental type_info */ bltn_desc_type_node = create_pseudo_type_info ("__fundamental_type_info", 0, NULL); /* Pointer type_info. Adds two fields, qualification mask and pointer to the pointed to type. */ ptr_desc_type_node = create_pseudo_type_info ("__pointer_type_info", 0, build_lang_decl (FIELD_DECL, NULL_TREE, integer_type_node), build_lang_decl (FIELD_DECL, NULL_TREE, ptr_type_info), NULL); /* Array, function and enum type_info. No additional fields. */ ary_desc_type_node = create_pseudo_type_info ("__array_type_info", 0, NULL); func_desc_type_node = create_pseudo_type_info ("__function_type_info", 0, NULL); enum_desc_type_node = create_pseudo_type_info ("__enum_type_info", 0, NULL); /* Class type_info. Add a flags field. */ class_desc_type_node = create_pseudo_type_info ("__class_type_info", 0, NULL); /* Single public non-virtual base class. Add pointer to base class. This is really a descendant of __class_type_info. */ si_class_desc_type_node = create_pseudo_type_info ("__si_class_type_info", 0, build_lang_decl (FIELD_DECL, NULL_TREE, ptr_type_info), NULL); /* Base class internal helper. Pointer to base type, offset to base, flags. */ { tree fields[2]; fields[0] = build_lang_decl (FIELD_DECL, NULL_TREE, ptr_type_info); fields[1] = build_lang_decl (FIELD_DECL, NULL_TREE, integer_types[itk_long]); base_desc_type_node = make_aggr_type (RECORD_TYPE); finish_builtin_type (base_desc_type_node, "__base_class_type_info_pseudo", fields, 1, ptr_type_node); TYPE_HAS_CONSTRUCTOR (base_desc_type_node) = 1; } /* General heirarchy is created as necessary in this vector. */ vmi_class_desc_type_node = make_tree_vec (10); /* Pointer to member data type_info. Add qualifications flags, pointer to the member's type info and pointer to the class. This is really a descendant of __pointer_type_info. */ ptmd_desc_type_node = create_pseudo_type_info ("__pointer_to_member_type_info", 0, build_lang_decl (FIELD_DECL, NULL_TREE, integer_type_node), build_lang_decl (FIELD_DECL, NULL_TREE, ptr_type_info), build_lang_decl (FIELD_DECL, NULL_TREE, ptr_type_info), NULL); pop_nested_namespace (abi_node); } /* Emit the type_info descriptors which are guaranteed to be in the runtime support. Generating them here guarantees consistency with the other structures. We use the following heuristic to determine when the runtime is being generated. If std::__fundamental_type_info is defined, and it's destructor is defined, then the runtime is being built. */ void emit_support_tinfos () { static tree *const fundamentals[] = { &void_type_node, &boolean_type_node, &wchar_type_node, #if 0 &signed_wchar_type_node, &unsigned_wchar_type_node, #endif &char_type_node, &signed_char_type_node, &unsigned_char_type_node, &short_integer_type_node, &short_unsigned_type_node, &integer_type_node, &unsigned_type_node, &long_integer_type_node, &long_unsigned_type_node, &long_long_integer_type_node, &long_long_unsigned_type_node, &float_type_node, &double_type_node, &long_double_type_node, /* GCC extension types */ #if 0 &complex_integer_type_node, &complex_float_type_node, &complex_double_type_node, &complex_long_double_type_node, #endif 0 }; int ix; tree bltn_type, dtor; push_nested_namespace (abi_node); bltn_type = xref_tag (class_type_node, get_identifier ("__fundamental_type_info"), 1); pop_nested_namespace (abi_node); if (!COMPLETE_TYPE_P (bltn_type)) return; dtor = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (bltn_type), 1); if (DECL_EXTERNAL (dtor)) return; doing_runtime = 1; for (ix = 0; fundamentals[ix]; ix++) { tree bltn = *fundamentals[ix]; tree bltn_ptr = build_pointer_type (bltn); tree bltn_const_ptr = build_pointer_type (build_qualified_type (bltn, TYPE_QUAL_CONST)); tree tinfo; tinfo = get_tinfo_decl (bltn); TREE_USED (tinfo) = 1; TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (tinfo)) = 1; tinfo = get_tinfo_decl (bltn_ptr); TREE_USED (tinfo) = 1; TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (tinfo)) = 1; tinfo = get_tinfo_decl (bltn_const_ptr); TREE_USED (tinfo) = 1; TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (tinfo)) = 1; } } /* Return non-zero, iff T is a type_info variable which has not had a definition emitted for it. */ int tinfo_decl_p (t, data) tree t; void *data ATTRIBUTE_UNUSED; { return TREE_CODE (t) == VAR_DECL && IDENTIFIER_GLOBAL_VALUE (DECL_NAME (t)) == (t) && TREE_TYPE (t) == tinfo_decl_type && TREE_TYPE (DECL_NAME (t)); } /* Emit a suitable type_info definition for the type_info decl pointed to by DECL_PTR. We emit a completely new variable, of the correct type for the actual type this is describing. The DECL_ASSEMBLER_NAME of the generated definition is set to that of the supplied decl, so that they can be tied up. Mark the supplied decl as having been dealt with. Emitting one definitions might cause other declarations to be emitted. We need to do things this way, because we're trying to do something like struct B : A { ... }; extern const A tinfo_var; const B tinfo_var = {...}; which is not permitted. Also, we've not necessarily seen the definition of B. So we do something like the following, extern const A tinfo_var; struct pseudo_A { const void *vtable_ptr; const char *name; }; struct pseudo_B { pseudo_A base; ... }; const pseudo_B proxy_tinfo_var attribute((assembler_name="tinfo_var")) = { {&B::vtable, "..."}, ... }; pseudo_A and pseudo_B must be layout equivalent to the real definitions in the runtime. */ int emit_tinfo_decl (decl_ptr, data) tree *decl_ptr; void *data ATTRIBUTE_UNUSED; { tree tinfo_decl = *decl_ptr; tree tinfo_type, decl; my_friendly_assert (TREE_TYPE (tinfo_decl) == tinfo_decl_type, 20000121); tinfo_type = TREE_TYPE (DECL_NAME (tinfo_decl)); my_friendly_assert (tinfo_type != NULL_TREE, 20000120); if (!DECL_NEEDED_P (tinfo_decl)) return 0; /* Say we've dealt with it. */ TREE_TYPE (DECL_NAME (tinfo_decl)) = NULL_TREE; create_tinfo_types (); decl = synthesize_tinfo_var (tinfo_type, DECL_ASSEMBLER_NAME (tinfo_decl)); return decl != 0; }