/* Help friends in C++. Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "tree.h" #include "rtl.h" #include "cp-tree.h" #include "flags.h" #include "output.h" #include "toplev.h" /* Friend data structures are described in cp-tree.h. */ /* Returns non-zero if SUPPLICANT is a friend of TYPE. */ int is_friend (type, supplicant) tree type, supplicant; { int declp; register tree list; tree context; if (supplicant == NULL_TREE || type == NULL_TREE) return 0; declp = (TREE_CODE_CLASS (TREE_CODE (supplicant)) == 'd'); if (declp) /* It's a function decl. */ { tree list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type)); tree name = DECL_NAME (supplicant); for (; list ; list = TREE_CHAIN (list)) { if (name == FRIEND_NAME (list)) { tree friends = FRIEND_DECLS (list); for (; friends ; friends = TREE_CHAIN (friends)) { if (TREE_VALUE (friends) == NULL_TREE) continue; if (supplicant == TREE_VALUE (friends)) return 1; /* With -fguiding-decls we are more lenient about friendship. This is bogus in general since two specializations of a template with non-type template parameters may have the same type, but be different. Temporarily, we are also more lenient to deal with nested friend functions, for which there can be more than one FUNCTION_DECL, despite being the same function. When that's fixed, the FUNCTION_MEMBER_P bit can go. */ if ((flag_guiding_decls || DECL_FUNCTION_MEMBER_P (supplicant)) && same_type_p (TREE_TYPE (supplicant), TREE_TYPE (TREE_VALUE (friends)))) return 1; if (TREE_CODE (TREE_VALUE (friends)) == TEMPLATE_DECL && is_specialization_of (supplicant, TREE_VALUE (friends))) return 1; } break; } } } else /* It's a type. */ { /* Nested classes are implicitly friends of their enclosing types, as per core issue 45 (this is a change from the standard). */ for (context = supplicant; context && TYPE_P (context); context = TYPE_CONTEXT (context)) if (type == context) return 1; list = CLASSTYPE_FRIEND_CLASSES (TREE_TYPE (TYPE_MAIN_DECL (type))); for (; list ; list = TREE_CHAIN (list)) { tree t = TREE_VALUE (list); if (TREE_CODE (t) == TEMPLATE_DECL ? is_specialization_of (TYPE_MAIN_DECL (supplicant), t) : same_type_p (supplicant, t)) return 1; } } if (declp && DECL_FUNCTION_MEMBER_P (supplicant)) context = DECL_CONTEXT (supplicant); else if (! declp) /* Local classes have the same access as the enclosing function. */ context = decl_function_context (TYPE_MAIN_DECL (supplicant)); else context = NULL_TREE; /* A namespace is not friend to anybody. */ if (context && TREE_CODE (context) == NAMESPACE_DECL) context = NULL_TREE; if (context) return is_friend (type, context); return 0; } /* Add a new friend to the friends of the aggregate type TYPE. DECL is the FUNCTION_DECL of the friend being added. */ void add_friend (type, decl) tree type, decl; { tree typedecl; tree list; tree name; if (decl == error_mark_node) return; typedecl = TYPE_MAIN_DECL (type); list = DECL_FRIENDLIST (typedecl); name = DECL_NAME (decl); type = TREE_TYPE (typedecl); while (list) { if (name == FRIEND_NAME (list)) { tree friends = FRIEND_DECLS (list); for (; friends ; friends = TREE_CHAIN (friends)) { if (decl == TREE_VALUE (friends)) { cp_warning ("`%D' is already a friend of class `%T'", decl, type); cp_warning_at ("previous friend declaration of `%D'", TREE_VALUE (friends)); return; } } TREE_VALUE (list) = tree_cons (error_mark_node, decl, TREE_VALUE (list)); return; } list = TREE_CHAIN (list); } DECL_FRIENDLIST (typedecl) = tree_cons (DECL_NAME (decl), build_tree_list (error_mark_node, decl), DECL_FRIENDLIST (typedecl)); if (!uses_template_parms (type)) DECL_BEFRIENDING_CLASSES (decl) = tree_cons (NULL_TREE, type, DECL_BEFRIENDING_CLASSES (decl)); } /* Make FRIEND_TYPE a friend class to TYPE. If FRIEND_TYPE has already been defined, we make all of its member functions friends of TYPE. If not, we make it a pending friend, which can later be added when its definition is seen. If a type is defined, then its TYPE_DECL's DECL_UNDEFINED_FRIENDS contains a (possibly empty) list of friend classes that are not defined. If a type has not yet been defined, then the DECL_WAITING_FRIENDS contains a list of types waiting to make it their friend. Note that these two can both be in use at the same time! */ void make_friend_class (type, friend_type) tree type, friend_type; { tree classes; int is_template_friend; if (! IS_AGGR_TYPE (friend_type)) { cp_error ("invalid type `%T' declared `friend'", friend_type); return; } if (CLASS_TYPE_P (friend_type) && CLASSTYPE_TEMPLATE_SPECIALIZATION (friend_type) && uses_template_parms (friend_type)) { /* [temp.friend] Friend declarations shall not declare partial specializations. */ cp_error ("partial specialization `%T' declared `friend'", friend_type); return; } if (processing_template_decl > template_class_depth (type)) /* If the TYPE is a template then it makes sense for it to be friends with itself; this means that each instantiation is friends with all other instantiations. */ is_template_friend = 1; else if (same_type_p (type, friend_type)) { pedwarn ("class `%s' is implicitly friends with itself", TYPE_NAME_STRING (type)); return; } else is_template_friend = 0; if (is_template_friend && (TREE_CODE (friend_type) == TYPENAME_TYPE || TREE_CODE (friend_type) == TEMPLATE_TYPE_PARM)) { /* [temp.friend] A friend of a class or class template can be a function or class template, a specialization of a function template or class template, or an ordinary (nontemplate) function or class. But, we're looking at something like: template friend typename S::X; or: template friend class T; which isn't any of these. */ if (TREE_CODE (friend_type) == TYPENAME_TYPE) cp_error ("typename type `%T' declared `friend'", friend_type); else cp_error ("template parameter type `%T' declared `friend'", friend_type); return; } GNU_xref_hier (type, friend_type, 0, 0, 1); if (is_template_friend) friend_type = CLASSTYPE_TI_TEMPLATE (friend_type); classes = CLASSTYPE_FRIEND_CLASSES (type); while (classes /* Stop if we find the same type on the list. */ && !(TREE_CODE (TREE_VALUE (classes)) == TEMPLATE_DECL ? friend_type == TREE_VALUE (classes) : same_type_p (TREE_VALUE (classes), friend_type))) classes = TREE_CHAIN (classes); if (classes) cp_warning ("`%T' is already a friend of `%T'", TREE_VALUE (classes), type); else { CLASSTYPE_FRIEND_CLASSES (type) = tree_cons (NULL_TREE, friend_type, CLASSTYPE_FRIEND_CLASSES (type)); if (is_template_friend) friend_type = TREE_TYPE (friend_type); if (!uses_template_parms (type)) CLASSTYPE_BEFRIENDING_CLASSES (friend_type) = tree_cons (NULL_TREE, type, CLASSTYPE_BEFRIENDING_CLASSES (friend_type)); } } /* Main friend processor. This is large, and for modularity purposes, has been removed from grokdeclarator. It returns `void_type_node' to indicate that something happened, though a FIELD_DECL is not returned. CTYPE is the class this friend belongs to. DECLARATOR is the name of the friend. DECL is the FUNCTION_DECL that the friend is. In case we are parsing a friend which is part of an inline definition, we will need to store PARM_DECL chain that comes with it into the DECL_ARGUMENTS slot of the FUNCTION_DECL. FLAGS is just used for `grokclassfn'. QUALS say what special qualifies should apply to the object pointed to by `this'. */ tree do_friend (ctype, declarator, decl, parmdecls, attrlist, flags, quals, funcdef_flag) tree ctype, declarator, decl, parmdecls, attrlist; enum overload_flags flags; tree quals; int funcdef_flag; { int is_friend_template = 0; tree prefix_attributes, attributes; /* Every decl that gets here is a friend of something. */ DECL_FRIEND_P (decl) = 1; if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR) { declarator = TREE_OPERAND (declarator, 0); if (TREE_CODE (declarator) == LOOKUP_EXPR) declarator = TREE_OPERAND (declarator, 0); if (is_overloaded_fn (declarator)) declarator = DECL_NAME (get_first_fn (declarator)); } if (TREE_CODE (decl) != FUNCTION_DECL) my_friendly_abort (990513); is_friend_template = PROCESSING_REAL_TEMPLATE_DECL_P (); if (ctype) { tree cname = TYPE_NAME (ctype); if (TREE_CODE (cname) == TYPE_DECL) cname = DECL_NAME (cname); /* A method friend. */ if (flags == NO_SPECIAL && ctype && declarator == cname) DECL_CONSTRUCTOR_P (decl) = 1; /* This will set up DECL_ARGUMENTS for us. */ grokclassfn (ctype, decl, flags, quals); if (is_friend_template) decl = DECL_TI_TEMPLATE (push_template_decl (decl)); else if (template_class_depth (current_class_type)) decl = push_template_decl_real (decl, /*is_friend=*/1); /* We can't do lookup in a type that involves template parameters. Instead, we rely on tsubst_friend_function to check the validity of the declaration later. */ if (processing_template_decl) add_friend (current_class_type, decl); /* A nested class may declare a member of an enclosing class to be a friend, so we do lookup here even if CTYPE is in the process of being defined. */ else if (COMPLETE_TYPE_P (ctype) || TYPE_BEING_DEFINED (ctype)) { decl = check_classfn (ctype, decl); if (decl) add_friend (current_class_type, decl); } else cp_error ("member `%D' declared as friend before type `%T' defined", decl, ctype); } /* A global friend. @@ or possibly a friend from a base class ?!? */ else if (TREE_CODE (decl) == FUNCTION_DECL) { /* Friends must all go through the overload machinery, even though they may not technically be overloaded. Note that because classes all wind up being top-level in their scope, their friend wind up in top-level scope as well. */ DECL_ARGUMENTS (decl) = parmdecls; if (funcdef_flag) SET_DECL_FRIEND_CONTEXT (decl, current_class_type); if (! DECL_USE_TEMPLATE (decl)) { /* We can call pushdecl here, because the TREE_CHAIN of this FUNCTION_DECL is not needed for other purposes. Don't do this for a template instantiation. However, we don't call pushdecl() for a friend function of a template class, since in general, such a declaration depends on template parameters. Instead, we call pushdecl when the class is instantiated. */ if (!is_friend_template && template_class_depth (current_class_type) == 0) decl = pushdecl (decl); else decl = push_template_decl_real (decl, /*is_friend=*/1); if (warn_nontemplate_friend && ! funcdef_flag && ! flag_guiding_decls && ! is_friend_template && current_template_parms && uses_template_parms (decl)) { static int explained; cp_warning ("friend declaration `%#D'", decl); warning (" declares a non-template function"); if (! explained) { warning (" (if this is not what you intended, make sure the function template has already been declared and add <> after the function name here) -Wno-non-template-friend disables this warning."); explained = 1; } } } make_decl_rtl (decl, NULL_PTR, 1); add_friend (current_class_type, is_friend_template ? DECL_TI_TEMPLATE (decl) : decl); DECL_FRIEND_P (decl) = 1; } /* Unfortunately, we have to handle attributes here. Normally we would handle them in start_decl_1, but since this is a friend decl start_decl_1 never gets to see it. */ if (attrlist) { attributes = TREE_PURPOSE (attrlist); prefix_attributes = TREE_VALUE (attrlist); } else { attributes = NULL_TREE; prefix_attributes = NULL_TREE; } #ifdef SET_DEFAULT_DECL_ATTRIBUTES SET_DEFAULT_DECL_ATTRIBUTES (decl, attributes); #endif /* Set attributes here so if duplicate decl, will have proper attributes. */ cplus_decl_attributes (decl, attributes, prefix_attributes); return decl; }