/* Process declarations and variables for C compiler. Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Process declarations and symbol lookup for C front end. Also constructs types; the standard scalar types at initialization, and structure, union, array and enum types when they are declared. */ /* ??? not all decl nodes are given the most useful possible line numbers. For example, the CONST_DECLs for enum values. */ #include "config.h" #include "system.h" #include "tree.h" #include "rtl.h" #include "expr.h" #include "flags.h" #include "cp-tree.h" #include "decl.h" #include "lex.h" #include "output.h" #include "except.h" #include "toplev.h" #include "ggc.h" #include "timevar.h" #include "cpplib.h" #include "target.h" #include "c-common.h" extern cpp_reader *parse_in; /* This structure contains information about the initializations and/or destructions required for a particular priority level. */ typedef struct priority_info_s { /* Non-zero if there have been any initializations at this priority throughout the translation unit. */ int initializations_p; /* Non-zero if there have been any destructions at this priority throughout the translation unit. */ int destructions_p; } *priority_info; static void mark_vtable_entries PARAMS ((tree)); static void grok_function_init PARAMS ((tree, tree)); static int finish_vtable_vardecl PARAMS ((tree *, void *)); static int prune_vtable_vardecl PARAMS ((tree *, void *)); static int is_namespace_ancestor PARAMS ((tree, tree)); static void add_using_namespace PARAMS ((tree, tree, int)); static tree ambiguous_decl PARAMS ((tree, tree, tree,int)); static tree build_anon_union_vars PARAMS ((tree, tree*, int, int)); static int acceptable_java_type PARAMS ((tree)); static void output_vtable_inherit PARAMS ((tree)); static tree start_objects PARAMS ((int, int)); static void finish_objects PARAMS ((int, int, tree)); static tree merge_functions PARAMS ((tree, tree)); static tree decl_namespace PARAMS ((tree)); static tree validate_nonmember_using_decl PARAMS ((tree, tree *, tree *)); static void do_nonmember_using_decl PARAMS ((tree, tree, tree, tree, tree *, tree *)); static tree start_static_storage_duration_function PARAMS ((void)); static void finish_static_storage_duration_function PARAMS ((tree)); static priority_info get_priority_info PARAMS ((int)); static void do_static_initialization PARAMS ((tree, tree)); static void do_static_destruction PARAMS ((tree)); static tree start_static_initialization_or_destruction PARAMS ((tree, int)); static void finish_static_initialization_or_destruction PARAMS ((tree)); static void generate_ctor_or_dtor_function PARAMS ((int, int)); static int generate_ctor_and_dtor_functions_for_priority PARAMS ((splay_tree_node, void *)); static tree prune_vars_needing_no_initialization PARAMS ((tree)); static void write_out_vars PARAMS ((tree)); static void import_export_class PARAMS ((tree)); static tree key_method PARAMS ((tree)); static tree get_guard_bits PARAMS ((tree)); /* A list of static class variables. This is needed, because a static class variable can be declared inside the class without an initializer, and then initialized, statically, outside the class. */ static GTY(()) varray_type pending_statics; #define pending_statics_used \ (pending_statics ? pending_statics->elements_used : 0) /* A list of functions which were declared inline, but which we may need to emit outline anyway. */ static GTY(()) varray_type deferred_fns; #define deferred_fns_used \ (deferred_fns ? deferred_fns->elements_used : 0) /* Flag used when debugging spew.c */ extern int spew_debug; /* Nonzero if we're done parsing and into end-of-file activities. */ int at_eof; /* Functions called along with real static constructors and destructors. */ tree static_ctors; tree static_dtors; /* The :: namespace. */ tree global_namespace; /* Incorporate `const' and `volatile' qualifiers for member functions. FUNCTION is a TYPE_DECL or a FUNCTION_DECL. QUALS is a list of qualifiers. Returns any explicit top-level qualifiers of the method's this pointer, anything other than TYPE_UNQUALIFIED will be an extension. */ int grok_method_quals (ctype, function, quals) tree ctype, function, quals; { tree fntype = TREE_TYPE (function); tree raises = TYPE_RAISES_EXCEPTIONS (fntype); int type_quals = TYPE_UNQUALIFIED; int dup_quals = TYPE_UNQUALIFIED; int this_quals = TYPE_UNQUALIFIED; do { int tq = cp_type_qual_from_rid (TREE_VALUE (quals)); if ((type_quals | this_quals) & tq) dup_quals |= tq; else if (tq & TYPE_QUAL_RESTRICT) this_quals |= tq; else type_quals |= tq; quals = TREE_CHAIN (quals); } while (quals); if (dup_quals != TYPE_UNQUALIFIED) error ("duplicate type qualifiers in %s declaration", TREE_CODE (function) == FUNCTION_DECL ? "member function" : "type"); ctype = cp_build_qualified_type (ctype, type_quals); fntype = build_cplus_method_type (ctype, TREE_TYPE (fntype), (TREE_CODE (fntype) == METHOD_TYPE ? TREE_CHAIN (TYPE_ARG_TYPES (fntype)) : TYPE_ARG_TYPES (fntype))); if (raises) fntype = build_exception_variant (fntype, raises); TREE_TYPE (function) = fntype; return this_quals; } /* Warn when -fexternal-templates is used and #pragma interface/implementation is not used all the times it should be, inform the user. */ void warn_if_unknown_interface (decl) tree decl; { static int already_warned = 0; if (already_warned++) return; if (flag_alt_external_templates) { tree til = tinst_for_decl (); int sl = lineno; const char *sf = input_filename; if (til) { lineno = TINST_LINE (til); input_filename = TINST_FILE (til); } warning ("template `%#D' instantiated in file without #pragma interface", decl); lineno = sl; input_filename = sf; } else cp_warning_at ("template `%#D' defined in file without #pragma interface", decl); } /* A subroutine of the parser, to handle a component list. */ void grok_x_components (specs) tree specs; { tree t; specs = strip_attrs (specs); check_tag_decl (specs); t = groktypename (build_tree_list (specs, NULL_TREE)); /* The only case where we need to do anything additional here is an anonymous union field, e.g.: `struct S { union { int i; }; };'. */ if (t == NULL_TREE || !ANON_AGGR_TYPE_P (t)) return; fixup_anonymous_aggr (t); finish_member_declaration (build_decl (FIELD_DECL, NULL_TREE, t)); } /* Build a PARM_DECL with NAME and TYPE, and set DECL_ARG_TYPE appropriately. */ tree cp_build_parm_decl (name, type) tree name; tree type; { tree parm = build_decl (PARM_DECL, name, type); DECL_ARG_TYPE (parm) = type_passed_as (type); return parm; } /* Returns a PARM_DECL for a parameter of the indicated TYPE, with the indicated NAME. */ tree build_artificial_parm (name, type) tree name; tree type; { tree parm = cp_build_parm_decl (name, type); DECL_ARTIFICIAL (parm) = 1; /* All our artificial parms are implicitly `const'; they cannot be assigned to. */ TREE_READONLY (parm) = 1; return parm; } /* Constructors for types with virtual baseclasses need an "in-charge" flag saying whether this constructor is responsible for initialization of virtual baseclasses or not. All destructors also need this "in-charge" flag, which additionally determines whether or not the destructor should free the memory for the object. This function adds the "in-charge" flag to member function FN if appropriate. It is called from grokclassfn and tsubst. FN must be either a constructor or destructor. The in-charge flag follows the 'this' parameter, and is followed by the VTT parm (if any), then the user-written parms. */ void maybe_retrofit_in_chrg (fn) tree fn; { tree basetype, arg_types, parms, parm, fntype; /* If we've already add the in-charge parameter don't do it again. */ if (DECL_HAS_IN_CHARGE_PARM_P (fn)) return; /* When processing templates we can't know, in general, whether or not we're going to have virtual baseclasses. */ if (uses_template_parms (fn)) return; /* We don't need an in-charge parameter for constructors that don't have virtual bases. */ if (DECL_CONSTRUCTOR_P (fn) && !TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn))) return; arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn)); basetype = TREE_TYPE (TREE_VALUE (arg_types)); arg_types = TREE_CHAIN (arg_types); parms = TREE_CHAIN (DECL_ARGUMENTS (fn)); /* If this is a subobject constructor or destructor, our caller will pass us a pointer to our VTT. */ if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn))) { parm = build_artificial_parm (vtt_parm_identifier, vtt_parm_type); /* First add it to DECL_ARGUMENTS between 'this' and the real args... */ TREE_CHAIN (parm) = parms; parms = parm; /* ...and then to TYPE_ARG_TYPES. */ arg_types = hash_tree_chain (vtt_parm_type, arg_types); DECL_HAS_VTT_PARM_P (fn) = 1; } /* Then add the in-charge parm (before the VTT parm). */ parm = build_artificial_parm (in_charge_identifier, integer_type_node); TREE_CHAIN (parm) = parms; parms = parm; arg_types = hash_tree_chain (integer_type_node, arg_types); /* Insert our new parameter(s) into the list. */ TREE_CHAIN (DECL_ARGUMENTS (fn)) = parms; /* And rebuild the function type. */ fntype = build_cplus_method_type (basetype, TREE_TYPE (TREE_TYPE (fn)), arg_types); if (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn))) fntype = build_exception_variant (fntype, TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn))); TREE_TYPE (fn) = fntype; /* Now we've got the in-charge parameter. */ DECL_HAS_IN_CHARGE_PARM_P (fn) = 1; } /* Classes overload their constituent function names automatically. When a function name is declared in a record structure, its name is changed to it overloaded name. Since names for constructors and destructors can conflict, we place a leading '$' for destructors. CNAME is the name of the class we are grokking for. FUNCTION is a FUNCTION_DECL. It was created by `grokdeclarator'. FLAGS contains bits saying what's special about today's arguments. 1 == DESTRUCTOR. 2 == OPERATOR. If FUNCTION is a destructor, then we must add the `auto-delete' field as a second parameter. There is some hair associated with the fact that we must "declare" this variable in the manner consistent with the way the rest of the arguments were declared. QUALS are the qualifiers for the this pointer. */ void grokclassfn (ctype, function, flags, quals) tree ctype, function; enum overload_flags flags; tree quals; { tree fn_name = DECL_NAME (function); int this_quals = TYPE_UNQUALIFIED; /* Even within an `extern "C"' block, members get C++ linkage. See [dcl.link] for details. */ SET_DECL_LANGUAGE (function, lang_cplusplus); if (fn_name == NULL_TREE) { error ("name missing for member function"); fn_name = get_identifier (""); DECL_NAME (function) = fn_name; } if (quals) this_quals = grok_method_quals (ctype, function, quals); if (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE) { /* Must add the class instance variable up front. */ /* Right now we just make this a pointer. But later we may wish to make it special. */ tree type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (function))); tree qual_type; tree parm; /* The `this' parameter is implicitly `const'; it cannot be assigned to. */ this_quals |= TYPE_QUAL_CONST; qual_type = cp_build_qualified_type (type, this_quals); parm = build_artificial_parm (this_identifier, qual_type); c_apply_type_quals_to_decl (this_quals, parm); TREE_CHAIN (parm) = last_function_parms; last_function_parms = parm; } DECL_ARGUMENTS (function) = last_function_parms; DECL_CONTEXT (function) = ctype; if (flags == DTOR_FLAG) DECL_DESTRUCTOR_P (function) = 1; if (flags == DTOR_FLAG || DECL_CONSTRUCTOR_P (function)) maybe_retrofit_in_chrg (function); if (flags == DTOR_FLAG) { DECL_DESTRUCTOR_P (function) = 1; TYPE_HAS_DESTRUCTOR (ctype) = 1; } } /* Create an ARRAY_REF, checking for the user doing things backwards along the way. */ tree grok_array_decl (array_expr, index_exp) tree array_expr, index_exp; { tree type = TREE_TYPE (array_expr); tree p1, p2, i1, i2; if (type == error_mark_node || index_exp == error_mark_node) return error_mark_node; if (processing_template_decl) return build_min (ARRAY_REF, type ? TREE_TYPE (type) : NULL_TREE, array_expr, index_exp); if (type == NULL_TREE) { /* Something has gone very wrong. Assume we are mistakenly reducing an expression instead of a declaration. */ error ("parser may be lost: is there a '{' missing somewhere?"); return NULL_TREE; } if (TREE_CODE (type) == OFFSET_TYPE || TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); /* If they have an `operator[]', use that. */ if (IS_AGGR_TYPE (type) || IS_AGGR_TYPE (TREE_TYPE (index_exp))) return build_opfncall (ARRAY_REF, LOOKUP_NORMAL, array_expr, index_exp, NULL_TREE); /* Otherwise, create an ARRAY_REF for a pointer or array type. It is a little-known fact that, if `a' is an array and `i' is an int, you can write `i[a]', which means the same thing as `a[i]'. */ if (TREE_CODE (type) == ARRAY_TYPE) p1 = array_expr; else p1 = build_expr_type_conversion (WANT_POINTER, array_expr, 0); if (TREE_CODE (TREE_TYPE (index_exp)) == ARRAY_TYPE) p2 = index_exp; else p2 = build_expr_type_conversion (WANT_POINTER, index_exp, 0); i1 = build_expr_type_conversion (WANT_INT | WANT_ENUM, array_expr, 0); i2 = build_expr_type_conversion (WANT_INT | WANT_ENUM, index_exp, 0); if ((p1 && i2) && (i1 && p2)) error ("ambiguous conversion for array subscript"); if (p1 && i2) array_expr = p1, index_exp = i2; else if (i1 && p2) array_expr = p2, index_exp = i1; else { error ("invalid types `%T[%T]' for array subscript", type, TREE_TYPE (index_exp)); return error_mark_node; } if (array_expr == error_mark_node || index_exp == error_mark_node) error ("ambiguous conversion for array subscript"); return build_array_ref (array_expr, index_exp); } /* Given the cast expression EXP, checking out its validity. Either return an error_mark_node if there was an unavoidable error, return a cast to void for trying to delete a pointer w/ the value 0, or return the call to delete. If DOING_VEC is 1, we handle things differently for doing an array delete. If DOING_VEC is 2, they gave us the array size as an argument to delete. Implements ARM $5.3.4. This is called from the parser. */ tree delete_sanity (exp, size, doing_vec, use_global_delete) tree exp, size; int doing_vec, use_global_delete; { tree t, type; /* For a regular vector delete (aka, no size argument) we will pass this down as a NULL_TREE into build_vec_delete. */ tree maxindex = NULL_TREE; if (exp == error_mark_node) return exp; if (processing_template_decl) { t = build_min (DELETE_EXPR, void_type_node, exp, size); DELETE_EXPR_USE_GLOBAL (t) = use_global_delete; DELETE_EXPR_USE_VEC (t) = doing_vec; return t; } if (TREE_CODE (exp) == OFFSET_REF) exp = resolve_offset_ref (exp); exp = convert_from_reference (exp); t = stabilize_reference (exp); t = build_expr_type_conversion (WANT_POINTER, t, 1); if (t == NULL_TREE || t == error_mark_node) { error ("type `%#T' argument given to `delete', expected pointer", TREE_TYPE (exp)); return error_mark_node; } if (doing_vec == 2) { maxindex = cp_build_binary_op (MINUS_EXPR, size, integer_one_node); pedwarn ("anachronistic use of array size in vector delete"); } type = TREE_TYPE (t); /* As of Valley Forge, you can delete a pointer to const. */ /* You can't delete functions. */ if (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE) { error ("cannot delete a function. Only pointer-to-objects are valid arguments to `delete'"); return error_mark_node; } /* Deleting ptr to void is undefined behaviour [expr.delete/3]. */ if (TREE_CODE (TREE_TYPE (type)) == VOID_TYPE) { warning ("deleting `%T' is undefined", type); doing_vec = 0; } /* An array can't have been allocated by new, so complain. */ if (TREE_CODE (t) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == VAR_DECL && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == ARRAY_TYPE) warning ("deleting array `%#D'", TREE_OPERAND (t, 0)); /* Deleting a pointer with the value zero is valid and has no effect. */ if (integer_zerop (t)) return build1 (NOP_EXPR, void_type_node, t); if (doing_vec) return build_vec_delete (t, maxindex, sfk_deleting_destructor, use_global_delete); else return build_delete (type, t, sfk_deleting_destructor, LOOKUP_NORMAL, use_global_delete); } /* Report an error if the indicated template declaration is not the sort of thing that should be a member template. */ void check_member_template (tmpl) tree tmpl; { tree decl; my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 0); decl = DECL_TEMPLATE_RESULT (tmpl); if (TREE_CODE (decl) == FUNCTION_DECL || (TREE_CODE (decl) == TYPE_DECL && IS_AGGR_TYPE (TREE_TYPE (decl)))) { if (current_function_decl) /* 14.5.2.2 [temp.mem] A local class shall not have member templates. */ error ("invalid declaration of member template `%#D' in local class", decl); if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl)) { /* 14.5.2.3 [temp.mem] A member function template shall not be virtual. */ error ("invalid use of `virtual' in template declaration of `%#D'", decl); DECL_VIRTUAL_P (decl) = 0; } /* The debug-information generating code doesn't know what to do with member templates. */ DECL_IGNORED_P (tmpl) = 1; } else error ("template declaration of `%#D'", decl); } /* Return true iff TYPE is a valid Java parameter or return type. */ static int acceptable_java_type (type) tree type; { if (TREE_CODE (type) == VOID_TYPE || TYPE_FOR_JAVA (type)) return 1; if (TREE_CODE (type) == POINTER_TYPE || TREE_CODE (type) == REFERENCE_TYPE) { type = TREE_TYPE (type); if (TREE_CODE (type) == RECORD_TYPE) { tree args; int i; if (! TYPE_FOR_JAVA (type)) return 0; if (! CLASSTYPE_TEMPLATE_INFO (type)) return 1; args = CLASSTYPE_TI_ARGS (type); i = TREE_VEC_LENGTH (args); while (--i >= 0) { type = TREE_VEC_ELT (args, i); if (TREE_CODE (type) == POINTER_TYPE) type = TREE_TYPE (type); if (! TYPE_FOR_JAVA (type)) return 0; } return 1; } } return 0; } /* For a METHOD in a Java class CTYPE, return 1 if the parameter and return types are valid Java types. Otherwise, print appropriate error messages, and return 0. */ int check_java_method (method) tree method; { int jerr = 0; tree arg_types = TYPE_ARG_TYPES (TREE_TYPE (method)); tree ret_type = TREE_TYPE (TREE_TYPE (method)); if (! acceptable_java_type (ret_type)) { error ("Java method '%D' has non-Java return type `%T'", method, ret_type); jerr++; } for (; arg_types != NULL_TREE; arg_types = TREE_CHAIN (arg_types)) { tree type = TREE_VALUE (arg_types); if (! acceptable_java_type (type)) { error ("Java method '%D' has non-Java parameter type `%T'", method, type); jerr++; } } return jerr ? 0 : 1; } /* Sanity check: report error if this function FUNCTION is not really a member of the class (CTYPE) it is supposed to belong to. CNAME is the same here as it is for grokclassfn above. */ tree check_classfn (ctype, function) tree ctype, function; { tree fn_name = DECL_NAME (function); tree fndecl, fndecls; tree method_vec = CLASSTYPE_METHOD_VEC (complete_type (ctype)); tree *methods = 0; tree *end = 0; if (DECL_USE_TEMPLATE (function) && !(TREE_CODE (function) == TEMPLATE_DECL && DECL_TEMPLATE_SPECIALIZATION (function)) && is_member_template (DECL_TI_TEMPLATE (function))) /* Since this is a specialization of a member template, we're not going to find the declaration in the class. For example, in: struct S { template void f(T); }; template <> void S::f(int); we're not going to find `S::f(int)', but there's no reason we should, either. We let our callers know we didn't find the method, but we don't complain. */ return NULL_TREE; if (method_vec != 0) { methods = &TREE_VEC_ELT (method_vec, 0); end = TREE_VEC_END (method_vec); /* First suss out ctors and dtors. */ if (*methods && fn_name == DECL_NAME (OVL_CURRENT (*methods)) && DECL_CONSTRUCTOR_P (function)) goto got_it; if (*++methods && fn_name == DECL_NAME (OVL_CURRENT (*methods)) && DECL_DESTRUCTOR_P (function)) goto got_it; while (++methods != end && *methods) { fndecl = *methods; if (fn_name == DECL_NAME (OVL_CURRENT (*methods))) { got_it: for (fndecls = *methods; fndecls != NULL_TREE; fndecls = OVL_NEXT (fndecls)) { fndecl = OVL_CURRENT (fndecls); /* We cannot simply call decls_match because this doesn't work for static member functions that are pretending to be methods, and because the name may have been changed by asm("new_name"). */ if (DECL_NAME (function) == DECL_NAME (fndecl)) { tree p1 = TYPE_ARG_TYPES (TREE_TYPE (function)); tree p2 = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); /* Get rid of the this parameter on functions that become static. */ if (DECL_STATIC_FUNCTION_P (fndecl) && TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE) p1 = TREE_CHAIN (p1); if (same_type_p (TREE_TYPE (TREE_TYPE (function)), TREE_TYPE (TREE_TYPE (fndecl))) && compparms (p1, p2) && (DECL_TEMPLATE_SPECIALIZATION (function) == DECL_TEMPLATE_SPECIALIZATION (fndecl)) && (!DECL_TEMPLATE_SPECIALIZATION (function) || (DECL_TI_TEMPLATE (function) == DECL_TI_TEMPLATE (fndecl)))) return fndecl; } } break; /* loser */ } } } if (methods != end && *methods) { tree fndecl = *methods; error ("prototype for `%#D' does not match any in class `%T'", function, ctype); cp_error_at ("candidate%s: %+#D", OVL_NEXT (fndecl) ? "s are" : " is", OVL_CURRENT (fndecl)); while (fndecl = OVL_NEXT (fndecl), fndecl) cp_error_at (" %#D", OVL_CURRENT(fndecl)); } else { methods = 0; if (!COMPLETE_TYPE_P (ctype)) cxx_incomplete_type_error (function, ctype); else error ("no `%#D' member function declared in class `%T'", function, ctype); } /* If we did not find the method in the class, add it to avoid spurious errors (unless the CTYPE is not yet defined, in which case we'll only confuse ourselves when the function is declared properly within the class. */ if (COMPLETE_TYPE_P (ctype)) add_method (ctype, function, /*error_p=*/1); return NULL_TREE; } /* We have just processed the DECL, which is a static data member. Its initializer, if present, is INIT. The ASMSPEC_TREE, if present, is the assembly-language name for the data member. FLAGS is as for cp_finish_decl. */ void finish_static_data_member_decl (decl, init, asmspec_tree, flags) tree decl; tree init; tree asmspec_tree; int flags; { my_friendly_assert (TREE_PUBLIC (decl), 0); DECL_CONTEXT (decl) = current_class_type; /* We cannot call pushdecl here, because that would fill in the TREE_CHAIN of our decl. Instead, we modify cp_finish_decl to do the right thing, namely, to put this decl out straight away. */ /* current_class_type can be NULL_TREE in case of error. */ if (!asmspec_tree && current_class_type) DECL_INITIAL (decl) = error_mark_node; if (! processing_template_decl) { if (!pending_statics) VARRAY_TREE_INIT (pending_statics, 32, "pending_statics"); VARRAY_PUSH_TREE (pending_statics, decl); } if (LOCAL_CLASS_P (current_class_type)) pedwarn ("local class `%#T' shall not have static data member `%#D'", current_class_type, decl); /* Static consts need not be initialized in the class definition. */ if (init != NULL_TREE && TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl))) { static int explained = 0; error ("initializer invalid for static member with constructor"); if (!explained) { error ("(an out of class initialization is required)"); explained = 1; } init = NULL_TREE; } /* Force the compiler to know when an uninitialized static const member is being used. */ if (CP_TYPE_CONST_P (TREE_TYPE (decl)) && init == 0) TREE_USED (decl) = 1; DECL_INITIAL (decl) = init; DECL_IN_AGGR_P (decl) = 1; cp_finish_decl (decl, init, asmspec_tree, flags); } /* Process the specs, declarator (NULL if omitted) and width (NULL if omitted) of a structure component, returning a _DECL node. QUALS is a list of type qualifiers for this decl (such as for declaring const member functions). This is done during the parsing of the struct declaration. The _DECL nodes are chained together and the lot of them are ultimately passed to `build_struct' to make the RECORD_TYPE node. If class A defines that certain functions in class B are friends, then the way I have set things up, it is B who is interested in permission granted by A. However, it is in A's context that these declarations are parsed. By returning a void_type_node, class A does not attempt to incorporate the declarations of the friends within its structure. DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING CHANGES TO CODE IN `start_method'. */ tree grokfield (declarator, declspecs, init, asmspec_tree, attrlist) tree declarator, declspecs, init, asmspec_tree, attrlist; { tree value; const char *asmspec = 0; int flags = LOOKUP_ONLYCONVERTING; /* Convert () initializers to = initializers. */ if (init == NULL_TREE && declarator != NULL_TREE && TREE_CODE (declarator) == CALL_EXPR && TREE_OPERAND (declarator, 0) && (TREE_CODE (TREE_OPERAND (declarator, 0)) == IDENTIFIER_NODE || TREE_CODE (TREE_OPERAND (declarator, 0)) == SCOPE_REF) && parmlist_is_exprlist (CALL_DECLARATOR_PARMS (declarator))) { /* It's invalid to try to initialize a data member using a functional notation, e.g.: struct S { static int i (3); }; Explain that to the user. */ static int explained; error ("invalid data member initialization"); if (!explained) { error ("(use `=' to initialize static data members)"); explained = 1; } declarator = TREE_OPERAND (declarator, 0); flags = 0; } if (declspecs == NULL_TREE && TREE_CODE (declarator) == SCOPE_REF && TREE_CODE (TREE_OPERAND (declarator, 1)) == IDENTIFIER_NODE) { /* Access declaration */ if (! IS_AGGR_TYPE_CODE (TREE_CODE (TREE_OPERAND (declarator, 0)))) ; else if (TREE_COMPLEXITY (declarator) == current_class_depth) pop_nested_class (); return do_class_using_decl (declarator); } if (init && TREE_CODE (init) == TREE_LIST && TREE_VALUE (init) == error_mark_node && TREE_CHAIN (init) == NULL_TREE) init = NULL_TREE; value = grokdeclarator (declarator, declspecs, FIELD, init != 0, &attrlist); if (! value || value == error_mark_node) /* friend or constructor went bad. */ return value; if (TREE_TYPE (value) == error_mark_node) return error_mark_node; /* Pass friendly classes back. */ if (TREE_CODE (value) == VOID_TYPE) return void_type_node; if (DECL_NAME (value) != NULL_TREE && IDENTIFIER_POINTER (DECL_NAME (value))[0] == '_' && ! strcmp (IDENTIFIER_POINTER (DECL_NAME (value)), "_vptr")) error ("member `%D' conflicts with virtual function table field name", value); /* Stash away type declarations. */ if (TREE_CODE (value) == TYPE_DECL) { DECL_NONLOCAL (value) = 1; DECL_CONTEXT (value) = current_class_type; if (CLASS_TYPE_P (TREE_TYPE (value))) CLASSTYPE_GOT_SEMICOLON (TREE_TYPE (value)) = 1; if (processing_template_decl) value = push_template_decl (value); return value; } if (DECL_IN_AGGR_P (value)) { error ("`%D' is already defined in `%T'", value, DECL_CONTEXT (value)); return void_type_node; } if (asmspec_tree) asmspec = TREE_STRING_POINTER (asmspec_tree); if (init) { if (TREE_CODE (value) == FUNCTION_DECL) { grok_function_init (value, init); init = NULL_TREE; } else if (pedantic && TREE_CODE (value) != VAR_DECL) /* Already complained in grokdeclarator. */ init = NULL_TREE; else { /* We allow initializers to become parameters to base initializers. */ if (TREE_CODE (init) == TREE_LIST) { if (TREE_CHAIN (init) == NULL_TREE) init = TREE_VALUE (init); else init = digest_init (TREE_TYPE (value), init, (tree *)0); } if (TREE_CODE (init) == CONST_DECL) init = DECL_INITIAL (init); else if (TREE_READONLY_DECL_P (init)) init = decl_constant_value (init); else if (TREE_CODE (init) == CONSTRUCTOR) init = digest_init (TREE_TYPE (value), init, (tree *)0); if (init == error_mark_node) /* We must make this look different than `error_mark_node' because `decl_const_value' would mis-interpret it as only meaning that this VAR_DECL is defined. */ init = build1 (NOP_EXPR, TREE_TYPE (value), init); else if (processing_template_decl) ; else if (! TREE_CONSTANT (init)) { /* We can allow references to things that are effectively static, since references are initialized with the address. */ if (TREE_CODE (TREE_TYPE (value)) != REFERENCE_TYPE || (TREE_STATIC (init) == 0 && (!DECL_P (init) || DECL_EXTERNAL (init) == 0))) { error ("field initializer is not constant"); init = error_mark_node; } } } } if (processing_template_decl && ! current_function_decl && (TREE_CODE (value) == VAR_DECL || TREE_CODE (value) == FUNCTION_DECL)) value = push_template_decl (value); if (attrlist) cplus_decl_attributes (&value, attrlist, 0); if (TREE_CODE (value) == VAR_DECL) { finish_static_data_member_decl (value, init, asmspec_tree, flags); return value; } if (TREE_CODE (value) == FIELD_DECL) { if (asmspec) error ("`asm' specifiers are not permitted on non-static data members"); if (DECL_INITIAL (value) == error_mark_node) init = error_mark_node; cp_finish_decl (value, init, NULL_TREE, flags); DECL_INITIAL (value) = init; DECL_IN_AGGR_P (value) = 1; return value; } if (TREE_CODE (value) == FUNCTION_DECL) { if (asmspec) { /* This must override the asm specifier which was placed by grokclassfn. Lay this out fresh. */ SET_DECL_RTL (value, NULL_RTX); SET_DECL_ASSEMBLER_NAME (value, get_identifier (asmspec)); } if (!DECL_FRIEND_P (value)) grok_special_member_properties (value); cp_finish_decl (value, init, asmspec_tree, flags); /* Pass friends back this way. */ if (DECL_FRIEND_P (value)) return void_type_node; DECL_IN_AGGR_P (value) = 1; return value; } abort (); /* NOTREACHED */ return NULL_TREE; } /* Like `grokfield', but for bitfields. WIDTH is non-NULL for bit fields only, and is an INTEGER_CST node. */ tree grokbitfield (declarator, declspecs, width) tree declarator, declspecs, width; { register tree value = grokdeclarator (declarator, declspecs, BITFIELD, 0, NULL); if (! value) return NULL_TREE; /* friends went bad. */ /* Pass friendly classes back. */ if (TREE_CODE (value) == VOID_TYPE) return void_type_node; if (TREE_CODE (value) == TYPE_DECL) { error ("cannot declare `%D' to be a bit-field type", value); return NULL_TREE; } /* Usually, finish_struct_1 catches bitfields with invalid types. But, in the case of bitfields with function type, we confuse ourselves into thinking they are member functions, so we must check here. */ if (TREE_CODE (value) == FUNCTION_DECL) { error ("cannot declare bit-field `%D' with function type", DECL_NAME (value)); return NULL_TREE; } if (DECL_IN_AGGR_P (value)) { error ("`%D' is already defined in the class %T", value, DECL_CONTEXT (value)); return void_type_node; } if (TREE_STATIC (value)) { error ("static member `%D' cannot be a bit-field", value); return NULL_TREE; } cp_finish_decl (value, NULL_TREE, NULL_TREE, 0); if (width != error_mark_node) { constant_expression_warning (width); DECL_INITIAL (value) = width; SET_DECL_C_BIT_FIELD (value); } DECL_IN_AGGR_P (value) = 1; return value; } tree grokoptypename (declspecs, declarator) tree declspecs, declarator; { tree t = grokdeclarator (declarator, declspecs, TYPENAME, 0, NULL); return mangle_conv_op_name_for_type (t); } /* When a function is declared with an initializer, do the right thing. Currently, there are two possibilities: class B { public: // initialization possibility #1. virtual void f () = 0; int g (); }; class D1 : B { public: int d1; // error, no f (); }; class D2 : B { public: int d2; void f (); }; class D3 : B { public: int d3; // initialization possibility #2 void f () = B::f; }; */ static void grok_function_init (decl, init) tree decl; tree init; { /* An initializer for a function tells how this function should be inherited. */ tree type = TREE_TYPE (decl); if (TREE_CODE (type) == FUNCTION_TYPE) error ("initializer specified for non-member function `%D'", decl); else if (integer_zerop (init)) DECL_PURE_VIRTUAL_P (decl) = 1; else error ("invalid initializer for virtual method `%D'", decl); } void cplus_decl_attributes (decl, attributes, flags) tree *decl, attributes; int flags; { if (*decl == NULL_TREE || *decl == void_type_node) return; if (TREE_CODE (*decl) == TEMPLATE_DECL) decl = &DECL_TEMPLATE_RESULT (*decl); decl_attributes (decl, attributes, flags); if (TREE_CODE (*decl) == TYPE_DECL) SET_IDENTIFIER_TYPE_VALUE (DECL_NAME (*decl), TREE_TYPE (*decl)); } /* CONSTRUCTOR_NAME: Return the name for the constructor (or destructor) for the specified class. Argument can be RECORD_TYPE, TYPE_DECL, or IDENTIFIER_NODE. When given a template, this routine doesn't lose the specialization. */ tree constructor_name_full (thing) tree thing; { if (TREE_CODE (thing) == TEMPLATE_TYPE_PARM || TREE_CODE (thing) == BOUND_TEMPLATE_TEMPLATE_PARM || TREE_CODE (thing) == TYPENAME_TYPE) thing = TYPE_NAME (thing); else if (IS_AGGR_TYPE_CODE (TREE_CODE (thing))) { if (TYPE_WAS_ANONYMOUS (thing) && TYPE_HAS_CONSTRUCTOR (thing)) thing = DECL_NAME (OVL_CURRENT (TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (thing), 0))); else thing = TYPE_NAME (thing); } if (TREE_CODE (thing) == TYPE_DECL || (TREE_CODE (thing) == TEMPLATE_DECL && TREE_CODE (DECL_TEMPLATE_RESULT (thing)) == TYPE_DECL)) thing = DECL_NAME (thing); my_friendly_assert (TREE_CODE (thing) == IDENTIFIER_NODE, 197); return thing; } /* CONSTRUCTOR_NAME: Return the name for the constructor (or destructor) for the specified class. Argument can be RECORD_TYPE, TYPE_DECL, or IDENTIFIER_NODE. When given a template, return the plain unspecialized name. */ tree constructor_name (thing) tree thing; { tree t; thing = constructor_name_full (thing); t = IDENTIFIER_TEMPLATE (thing); if (!t) return thing; return t; } /* Returns TRUE if NAME is the name for the constructor for TYPE. */ bool constructor_name_p (tree name, tree type) { return (name == constructor_name (type) || name == constructor_name_full (type)); } /* Defer the compilation of the FN until the end of compilation. */ void defer_fn (fn) tree fn; { if (DECL_DEFERRED_FN (fn)) return; DECL_DEFERRED_FN (fn) = 1; if (!deferred_fns) VARRAY_TREE_INIT (deferred_fns, 32, "deferred_fns"); VARRAY_PUSH_TREE (deferred_fns, fn); } /* Hunts through the global anonymous union ANON_DECL, building appropriate VAR_DECLs. Stores cleanups on the list of ELEMS, and returns a VAR_DECL whose size is the same as the size of the ANON_DECL, if one is available. FIXME: we should really handle anonymous unions by binding the names of the members to COMPONENT_REFs rather than this kludge. */ static tree build_anon_union_vars (anon_decl, elems, static_p, external_p) tree anon_decl; tree* elems; int static_p; int external_p; { tree type = TREE_TYPE (anon_decl); tree main_decl = NULL_TREE; tree field; /* Rather than write the code to handle the non-union case, just give an error. */ if (TREE_CODE (type) != UNION_TYPE) error ("anonymous struct not inside named type"); for (field = TYPE_FIELDS (type); field != NULL_TREE; field = TREE_CHAIN (field)) { tree decl; if (DECL_ARTIFICIAL (field)) continue; if (TREE_CODE (field) != FIELD_DECL) { cp_pedwarn_at ("`%#D' invalid; an anonymous union can only have non-static data members", field); continue; } if (TREE_PRIVATE (field)) cp_pedwarn_at ("private member `%#D' in anonymous union", field); else if (TREE_PROTECTED (field)) cp_pedwarn_at ("protected member `%#D' in anonymous union", field); if (DECL_NAME (field) == NULL_TREE && ANON_AGGR_TYPE_P (TREE_TYPE (field))) { decl = build_anon_union_vars (field, elems, static_p, external_p); if (!decl) continue; } else if (DECL_NAME (field) == NULL_TREE) continue; else { decl = build_decl (VAR_DECL, DECL_NAME (field), TREE_TYPE (field)); /* tell `pushdecl' that this is not tentative. */ DECL_INITIAL (decl) = error_mark_node; TREE_PUBLIC (decl) = 0; TREE_STATIC (decl) = static_p; DECL_EXTERNAL (decl) = external_p; decl = pushdecl (decl); DECL_INITIAL (decl) = NULL_TREE; } /* Only write out one anon union element--choose the largest one. We used to try to find one the same size as the union, but that fails if the ABI forces us to align the union more strictly. */ if (main_decl == NULL_TREE || tree_int_cst_lt (DECL_SIZE (main_decl), DECL_SIZE (decl))) { if (main_decl) TREE_ASM_WRITTEN (main_decl) = 1; main_decl = decl; } else /* ??? This causes there to be no debug info written out about this decl. */ TREE_ASM_WRITTEN (decl) = 1; if (DECL_NAME (field) == NULL_TREE && ANON_AGGR_TYPE_P (TREE_TYPE (field))) /* The remainder of the processing was already done in the recursive call. */ continue; /* If there's a cleanup to do, it belongs in the TREE_PURPOSE of the following TREE_LIST. */ *elems = tree_cons (NULL_TREE, decl, *elems); TREE_TYPE (*elems) = type; } return main_decl; } /* Finish off the processing of a UNION_TYPE structure. If the union is an anonymous union, then all members must be laid out together. PUBLIC_P is nonzero if this union is not declared static. */ void finish_anon_union (anon_union_decl) tree anon_union_decl; { tree type = TREE_TYPE (anon_union_decl); tree main_decl; int public_p = TREE_PUBLIC (anon_union_decl); int static_p = TREE_STATIC (anon_union_decl); int external_p = DECL_EXTERNAL (anon_union_decl); /* The VAR_DECL's context is the same as the TYPE's context. */ DECL_CONTEXT (anon_union_decl) = DECL_CONTEXT (TYPE_NAME (type)); if (TYPE_FIELDS (type) == NULL_TREE) return; if (public_p) { error ("namespace-scope anonymous aggregates must be static"); return; } main_decl = build_anon_union_vars (anon_union_decl, &DECL_ANON_UNION_ELEMS (anon_union_decl), static_p, external_p); if (main_decl == NULL_TREE) { warning ("anonymous aggregate with no members"); return; } if (static_p) { make_decl_rtl (main_decl, 0); COPY_DECL_RTL (main_decl, anon_union_decl); expand_anon_union_decl (anon_union_decl, NULL_TREE, DECL_ANON_UNION_ELEMS (anon_union_decl)); } else add_decl_stmt (anon_union_decl); } /* Finish processing a builtin type TYPE. It's name is NAME, its fields are in the array FIELDS. LEN is the number of elements in FIELDS minus one, or put another way, it is the maximum subscript used in FIELDS. It is given the same alignment as ALIGN_TYPE. */ void finish_builtin_type (type, name, fields, len, align_type) tree type; const char *name; tree fields[]; int len; tree align_type; { register int i; TYPE_FIELDS (type) = fields[0]; for (i = 0; i < len; i++) { layout_type (TREE_TYPE (fields[i])); DECL_FIELD_CONTEXT (fields[i]) = type; TREE_CHAIN (fields[i]) = fields[i+1]; } DECL_FIELD_CONTEXT (fields[i]) = type; TYPE_ALIGN (type) = TYPE_ALIGN (align_type); TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type); layout_type (type); #if 0 /* not yet, should get fixed properly later */ TYPE_NAME (type) = make_type_decl (get_identifier (name), type); #else TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type); #endif TYPE_STUB_DECL (type) = TYPE_NAME (type); layout_decl (TYPE_NAME (type), 0); } /* Auxiliary functions to make type signatures for `operator new' and `operator delete' correspond to what compiler will be expecting. */ tree coerce_new_type (type) tree type; { int e = 0; tree args = TYPE_ARG_TYPES (type); my_friendly_assert (TREE_CODE (type) == FUNCTION_TYPE, 20001107); if (!same_type_p (TREE_TYPE (type), ptr_type_node)) e = 1, error ("`operator new' must return type `%T'", ptr_type_node); if (!args || args == void_list_node || !same_type_p (TREE_VALUE (args), c_size_type_node)) { e = 2; if (args && args != void_list_node) args = TREE_CHAIN (args); pedwarn ("`operator new' takes type `size_t' (`%T') as first parameter", c_size_type_node); } switch (e) { case 2: args = tree_cons (NULL_TREE, c_size_type_node, args); /* FALLTHROUGH */ case 1: type = build_exception_variant (build_function_type (ptr_type_node, args), TYPE_RAISES_EXCEPTIONS (type)); /* FALLTHROUGH */ default:; } return type; } tree coerce_delete_type (type) tree type; { int e = 0; tree args = TYPE_ARG_TYPES (type); my_friendly_assert (TREE_CODE (type) == FUNCTION_TYPE, 20001107); if (!same_type_p (TREE_TYPE (type), void_type_node)) e = 1, error ("`operator delete' must return type `%T'", void_type_node); if (!args || args == void_list_node || !same_type_p (TREE_VALUE (args), ptr_type_node)) { e = 2; if (args && args != void_list_node) args = TREE_CHAIN (args); error ("`operator delete' takes type `%T' as first parameter", ptr_type_node); } switch (e) { case 2: args = tree_cons (NULL_TREE, ptr_type_node, args); /* FALLTHROUGH */ case 1: type = build_exception_variant (build_function_type (void_type_node, args), TYPE_RAISES_EXCEPTIONS (type)); /* FALLTHROUGH */ default:; } return type; } static void mark_vtable_entries (decl) tree decl; { tree entries = CONSTRUCTOR_ELTS (DECL_INITIAL (decl)); for (; entries; entries = TREE_CHAIN (entries)) { tree fnaddr = TREE_VALUE (entries); tree fn; if (TREE_CODE (fnaddr) != ADDR_EXPR && TREE_CODE (fnaddr) != FDESC_EXPR) /* This entry is an offset: a virtual base class offset, a virtual call offset, an RTTI offset, etc. */ continue; fn = TREE_OPERAND (fnaddr, 0); TREE_ADDRESSABLE (fn) = 1; /* When we don't have vcall offsets, we output thunks whenever we output the vtables that contain them. With vcall offsets, we know all the thunks we'll need when we emit a virtual function, so we emit the thunks there instead. */ if (DECL_THUNK_P (fn)) use_thunk (fn, /*emit_p=*/0); mark_used (fn); } } /* Set DECL up to have the closest approximation of "initialized common" linkage available. */ void comdat_linkage (decl) tree decl; { if (flag_weak) make_decl_one_only (decl); else if (TREE_CODE (decl) == FUNCTION_DECL || (TREE_CODE (decl) == VAR_DECL && DECL_ARTIFICIAL (decl))) /* We can just emit function and compiler-generated variables statically; having multiple copies is (for the most part) only a waste of space. There are two correctness issues, however: the address of a template instantiation with external linkage should be the same, independent of what translation unit asks for the address, and this will not hold when we emit multiple copies of the function. However, there's little else we can do. Also, by default, the typeinfo implementation assumes that there will be only one copy of the string used as the name for each type. Therefore, if weak symbols are unavailable, the run-time library should perform a more conservative check; it should perform a string comparison, rather than an address comparison. */ TREE_PUBLIC (decl) = 0; else { /* Static data member template instantiations, however, cannot have multiple copies. */ if (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node) DECL_COMMON (decl) = 1; else if (EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl))) { DECL_COMMON (decl) = 1; DECL_INITIAL (decl) = error_mark_node; } else { /* We can't do anything useful; leave vars for explicit instantiation. */ DECL_EXTERNAL (decl) = 1; DECL_NOT_REALLY_EXTERN (decl) = 0; } } if (DECL_LANG_SPECIFIC (decl)) DECL_COMDAT (decl) = 1; } /* For win32 we also want to put explicit instantiations in linkonce sections, so that they will be merged with implicit instantiations; otherwise we get duplicate symbol errors. */ void maybe_make_one_only (decl) tree decl; { /* We used to say that this was not necessary on targets that support weak symbols, because the implicit instantiations will defer to the explicit one. However, that's not actually the case in SVR4; a strong definition after a weak one is an error. Also, not making explicit instantiations one_only means that we can end up with two copies of some template instantiations. */ if (! flag_weak) return; /* We can't set DECL_COMDAT on functions, or finish_file will think we can get away with not emitting them if they aren't used. We need to for variables so that cp_finish_decl will update their linkage, because their DECL_INITIAL may not have been set properly yet. */ make_decl_one_only (decl); if (TREE_CODE (decl) == VAR_DECL) { DECL_COMDAT (decl) = 1; /* Mark it needed so we don't forget to emit it. */ TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)) = 1; } } /* Returns the virtual function with which the vtable for TYPE is emitted, or NULL_TREE if that heuristic is not applicable to TYPE. */ static tree key_method (type) tree type; { tree method; if (TYPE_FOR_JAVA (type) || CLASSTYPE_TEMPLATE_INSTANTIATION (type) || CLASSTYPE_INTERFACE_KNOWN (type)) return NULL_TREE; for (method = TYPE_METHODS (type); method != NULL_TREE; method = TREE_CHAIN (method)) if (DECL_VINDEX (method) != NULL_TREE && ! DECL_DECLARED_INLINE_P (method) && (! DECL_PURE_VIRTUAL_P (method) #if 0 /* This would be nice, but we didn't think of it in time. */ || DECL_DESTRUCTOR_P (method) #endif )) return method; return NULL_TREE; } /* Set TREE_PUBLIC and/or DECL_EXTERN on the vtable DECL, based on TYPE and other static flags. Note that anything public is tagged TREE_PUBLIC, whether it's public in this file or in another one. */ void import_export_vtable (decl, type, final) tree decl, type; int final; { if (DECL_INTERFACE_KNOWN (decl)) return; if (TYPE_FOR_JAVA (type)) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = 1; DECL_INTERFACE_KNOWN (decl) = 1; } else if (CLASSTYPE_INTERFACE_KNOWN (type)) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = CLASSTYPE_INTERFACE_ONLY (type); DECL_INTERFACE_KNOWN (decl) = 1; } else { /* We can only wait to decide if we have real non-inline virtual functions in our class, or if we come from a template. */ int found = (CLASSTYPE_TEMPLATE_INSTANTIATION (type) || key_method (type)); if (final || ! found) { comdat_linkage (decl); DECL_EXTERNAL (decl) = 0; } else { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = 1; } } } /* Determine whether or not we want to specifically import or export CTYPE, using various heuristics. */ static void import_export_class (ctype) tree ctype; { /* -1 for imported, 1 for exported. */ int import_export = 0; /* It only makes sense to call this function at EOF. The reason is that this function looks at whether or not the first non-inline non-abstract virtual member function has been defined in this translation unit. But, we can't possibly know that until we've seen the entire translation unit. */ my_friendly_assert (at_eof, 20000226); if (CLASSTYPE_INTERFACE_KNOWN (ctype)) return; /* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma interface, we will have CLASSTYPE_INTERFACE_ONLY set but not CLASSTYPE_INTERFACE_KNOWN. In that case, we don't want to use this heuristic because someone will supply a #pragma implementation elsewhere, and deducing it here would produce a conflict. */ if (CLASSTYPE_INTERFACE_ONLY (ctype)) return; if (lookup_attribute ("dllimport", TYPE_ATTRIBUTES (ctype))) import_export = -1; else if (lookup_attribute ("dllexport", TYPE_ATTRIBUTES (ctype))) import_export = 1; /* If we got -fno-implicit-templates, we import template classes that weren't explicitly instantiated. */ if (import_export == 0 && CLASSTYPE_IMPLICIT_INSTANTIATION (ctype) && ! flag_implicit_templates) import_export = -1; /* Base our import/export status on that of the first non-inline, non-pure virtual function, if any. */ if (import_export == 0 && TYPE_POLYMORPHIC_P (ctype)) { tree method = key_method (ctype); if (method) import_export = (DECL_REALLY_EXTERN (method) ? -1 : 1); } #ifdef MULTIPLE_SYMBOL_SPACES if (import_export == -1) import_export = 0; #endif if (import_export) { SET_CLASSTYPE_INTERFACE_KNOWN (ctype); CLASSTYPE_INTERFACE_ONLY (ctype) = (import_export < 0); } } /* We need to describe to the assembler the relationship between a vtable and the vtable of the parent class. */ static void output_vtable_inherit (vars) tree vars; { tree parent; rtx child_rtx, parent_rtx; child_rtx = XEXP (DECL_RTL (vars), 0); /* strip the mem ref */ parent = binfo_for_vtable (vars); if (parent == TYPE_BINFO (DECL_CONTEXT (vars))) parent_rtx = const0_rtx; else if (parent) { parent = get_vtbl_decl_for_binfo (TYPE_BINFO (BINFO_TYPE (parent))); parent_rtx = XEXP (DECL_RTL (parent), 0); /* strip the mem ref */ } else abort (); assemble_vtable_inherit (child_rtx, parent_rtx); } static int finish_vtable_vardecl (t, data) tree *t; void *data ATTRIBUTE_UNUSED; { tree vars = *t; tree ctype = DECL_CONTEXT (vars); import_export_class (ctype); import_export_vtable (vars, ctype, 1); if (! DECL_EXTERNAL (vars) && DECL_NEEDED_P (vars) && ! TREE_ASM_WRITTEN (vars)) { if (TREE_TYPE (vars) == void_type_node) /* It is a dummy vtable made by get_vtable_decl. Ignore it. */ return 0; /* Write it out. */ mark_vtable_entries (vars); if (TREE_TYPE (DECL_INITIAL (vars)) == 0) store_init_value (vars, DECL_INITIAL (vars)); if (write_symbols == DWARF_DEBUG || write_symbols == DWARF2_DEBUG) { /* Mark the VAR_DECL node representing the vtable itself as a "gratuitous" one, thereby forcing dwarfout.c to ignore it. It is rather important that such things be ignored because any effort to actually generate DWARF for them will run into trouble when/if we encounter code like: #pragma interface struct S { virtual void member (); }; because the artificial declaration of the vtable itself (as manufactured by the g++ front end) will say that the vtable is a static member of `S' but only *after* the debug output for the definition of `S' has already been output. This causes grief because the DWARF entry for the definition of the vtable will try to refer back to an earlier *declaration* of the vtable as a static member of `S' and there won't be one. We might be able to arrange to have the "vtable static member" attached to the member list for `S' before the debug info for `S' get written (which would solve the problem) but that would require more intrusive changes to the g++ front end. */ DECL_IGNORED_P (vars) = 1; } /* Always make vtables weak. */ if (flag_weak) comdat_linkage (vars); rest_of_decl_compilation (vars, NULL, 1, 1); if (flag_vtable_gc) output_vtable_inherit (vars); /* Because we're only doing syntax-checking, we'll never end up actually marking the variable as written. */ if (flag_syntax_only) TREE_ASM_WRITTEN (vars) = 1; /* Since we're writing out the vtable here, also write the debug info. */ note_debug_info_needed (ctype); return 1; } /* If the references to this class' vtables were optimized away, still emit the appropriate debugging information. See dfs_debug_mark. */ if (DECL_COMDAT (vars) && CLASSTYPE_DEBUG_REQUESTED (ctype)) note_debug_info_needed (ctype); return 0; } static int prune_vtable_vardecl (t, data) tree *t; void *data ATTRIBUTE_UNUSED; { *t = TREE_CHAIN (*t); return 1; } /* Determines the proper settings of TREE_PUBLIC and DECL_EXTERNAL for an inline function or template instantiation at end-of-file. */ void import_export_decl (decl) tree decl; { if (DECL_INTERFACE_KNOWN (decl)) return; if (DECL_TEMPLATE_INSTANTIATION (decl) || DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (decl)) { DECL_NOT_REALLY_EXTERN (decl) = 1; if ((DECL_IMPLICIT_INSTANTIATION (decl) || DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (decl)) && (flag_implicit_templates || (flag_implicit_inline_templates && DECL_DECLARED_INLINE_P (decl)))) { if (!TREE_PUBLIC (decl)) /* Templates are allowed to have internal linkage. See [basic.link]. */ ; else comdat_linkage (decl); } else { DECL_EXTERNAL (decl) = 1; DECL_NOT_REALLY_EXTERN (decl) = 0; } } else if (DECL_FUNCTION_MEMBER_P (decl)) { if (!DECL_DECLARED_INLINE_P (decl)) { tree ctype = DECL_CONTEXT (decl); import_export_class (ctype); if (CLASSTYPE_INTERFACE_KNOWN (ctype)) { DECL_NOT_REALLY_EXTERN (decl) = ! (CLASSTYPE_INTERFACE_ONLY (ctype) || (DECL_DECLARED_INLINE_P (decl) && ! flag_implement_inlines && !DECL_VINDEX (decl))); if (!DECL_NOT_REALLY_EXTERN (decl)) DECL_EXTERNAL (decl) = 1; /* Always make artificials weak. */ if (DECL_ARTIFICIAL (decl) && flag_weak) comdat_linkage (decl); else maybe_make_one_only (decl); } } else comdat_linkage (decl); } else comdat_linkage (decl); DECL_INTERFACE_KNOWN (decl) = 1; } /* Here, we only decide whether or not the tinfo node should be emitted with the vtable. IS_IN_LIBRARY is non-zero iff the typeinfo for TYPE should be in the runtime library. */ void import_export_tinfo (decl, type, is_in_library) tree decl; tree type; int is_in_library; { if (DECL_INTERFACE_KNOWN (decl)) return; if (IS_AGGR_TYPE (type)) import_export_class (type); if (IS_AGGR_TYPE (type) && CLASSTYPE_INTERFACE_KNOWN (type) && TYPE_POLYMORPHIC_P (type) /* If -fno-rtti, we're not necessarily emitting this stuff with the class, so go ahead and emit it now. This can happen when a class is used in exception handling. */ && flag_rtti) { DECL_NOT_REALLY_EXTERN (decl) = !CLASSTYPE_INTERFACE_ONLY (type); DECL_COMDAT (decl) = 0; } else { DECL_NOT_REALLY_EXTERN (decl) = 1; DECL_COMDAT (decl) = 1; } /* Now override some cases. */ if (flag_weak) DECL_COMDAT (decl) = 1; else if (is_in_library) DECL_COMDAT (decl) = 0; DECL_INTERFACE_KNOWN (decl) = 1; } tree build_cleanup (decl) tree decl; { tree temp; tree type = TREE_TYPE (decl); if (TREE_CODE (type) == ARRAY_TYPE) temp = decl; else { cxx_mark_addressable (decl); temp = build1 (ADDR_EXPR, build_pointer_type (type), decl); } temp = build_delete (TREE_TYPE (temp), temp, sfk_complete_destructor, LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0); return temp; } /* Returns the initialization guard variable for the variable DECL, which has static storage duration. */ tree get_guard (decl) tree decl; { tree sname; tree guard; sname = mangle_guard_variable (decl); guard = IDENTIFIER_GLOBAL_VALUE (sname); if (! guard) { tree guard_type; /* We use a type that is big enough to contain a mutex as well as an integer counter. */ guard_type = long_long_integer_type_node; guard = build_decl (VAR_DECL, sname, guard_type); /* The guard should have the same linkage as what it guards. */ TREE_PUBLIC (guard) = TREE_PUBLIC (decl); TREE_STATIC (guard) = TREE_STATIC (decl); DECL_COMMON (guard) = DECL_COMMON (decl); DECL_ONE_ONLY (guard) = DECL_ONE_ONLY (decl); if (TREE_PUBLIC (decl)) DECL_WEAK (guard) = DECL_WEAK (decl); DECL_ARTIFICIAL (guard) = 1; TREE_USED (guard) = 1; pushdecl_top_level (guard); cp_finish_decl (guard, NULL_TREE, NULL_TREE, 0); } return guard; } /* Return those bits of the GUARD variable that should be set when the guarded entity is actually initialized. */ static tree get_guard_bits (guard) tree guard; { /* We only set the first byte of the guard, in order to leave room for a mutex in the high-order bits. */ guard = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (guard)), guard); guard = build1 (NOP_EXPR, build_pointer_type (char_type_node), guard); guard = build1 (INDIRECT_REF, char_type_node, guard); return guard; } /* Return an expression which determines whether or not the GUARD variable has already been initialized. */ tree get_guard_cond (guard) tree guard; { tree guard_value; /* Check to see if the GUARD is zero. */ guard = get_guard_bits (guard); guard_value = integer_zero_node; if (!same_type_p (TREE_TYPE (guard_value), TREE_TYPE (guard))) guard_value = convert (TREE_TYPE (guard), guard_value); return cp_build_binary_op (EQ_EXPR, guard, guard_value); } /* Return an expression which sets the GUARD variable, indicating that the variable being guarded has been initialized. */ tree set_guard (guard) tree guard; { tree guard_init; /* Set the GUARD to one. */ guard = get_guard_bits (guard); guard_init = integer_one_node; if (!same_type_p (TREE_TYPE (guard_init), TREE_TYPE (guard))) guard_init = convert (TREE_TYPE (guard), guard_init); return build_modify_expr (guard, NOP_EXPR, guard_init); } /* Start the process of running a particular set of global constructors or destructors. Subroutine of do_[cd]tors. */ static tree start_objects (method_type, initp) int method_type, initp; { tree fnname; tree body; char type[10]; /* Make ctor or dtor function. METHOD_TYPE may be 'I' or 'D'. */ if (initp != DEFAULT_INIT_PRIORITY) { char joiner; #ifdef JOINER joiner = JOINER; #else joiner = '_'; #endif sprintf (type, "%c%c%.5u", method_type, joiner, initp); } else sprintf (type, "%c", method_type); fnname = get_file_function_name_long (type); start_function (void_list_node, make_call_declarator (fnname, void_list_node, NULL_TREE, NULL_TREE), NULL_TREE, SF_DEFAULT); /* It can be a static function as long as collect2 does not have to scan the object file to find its ctor/dtor routine. */ TREE_PUBLIC (current_function_decl) = ! targetm.have_ctors_dtors; /* Mark this declaration as used to avoid spurious warnings. */ TREE_USED (current_function_decl) = 1; /* Mark this function as a global constructor or destructor. */ if (method_type == 'I') DECL_GLOBAL_CTOR_P (current_function_decl) = 1; else DECL_GLOBAL_DTOR_P (current_function_decl) = 1; DECL_LANG_SPECIFIC (current_function_decl)->decl_flags.u2sel = 1; GLOBAL_INIT_PRIORITY (current_function_decl) = initp; body = begin_compound_stmt (/*has_no_scope=*/0); /* We cannot allow these functions to be elided, even if they do not have external linkage. And, there's no point in deferring copmilation of thes functions; they're all going to have to be out anyhow. */ current_function_cannot_inline = "static constructors and destructors cannot be inlined"; return body; } /* Finish the process of running a particular set of global constructors or destructors. Subroutine of do_[cd]tors. */ static void finish_objects (method_type, initp, body) int method_type, initp; tree body; { tree fn; /* Finish up. */ finish_compound_stmt (/*has_no_scope=*/0, body); fn = finish_function (0); expand_body (fn); /* When only doing semantic analysis, and no RTL generation, we can't call functions that directly emit assembly code; there is no assembly file in which to put the code. */ if (flag_syntax_only) return; if (targetm.have_ctors_dtors) { rtx fnsym = XEXP (DECL_RTL (fn), 0); if (method_type == 'I') (* targetm.asm_out.constructor) (fnsym, initp); else (* targetm.asm_out.destructor) (fnsym, initp); } } /* The names of the parameters to the function created to handle initializations and destructions for objects with static storage duration. */ #define INITIALIZE_P_IDENTIFIER "__initialize_p" #define PRIORITY_IDENTIFIER "__priority" /* The name of the function we create to handle initializations and destructions for objects with static storage duration. */ #define SSDF_IDENTIFIER "__static_initialization_and_destruction" /* The declaration for the __INITIALIZE_P argument. */ static GTY(()) tree initialize_p_decl; /* The declaration for the __PRIORITY argument. */ static GTY(()) tree priority_decl; /* The declaration for the static storage duration function. */ static GTY(()) tree ssdf_decl; /* All the static storage duration functions created in this translation unit. */ static GTY(()) varray_type ssdf_decls; /* A map from priority levels to information about that priority level. There may be many such levels, so efficient lookup is important. */ static splay_tree priority_info_map; /* Begins the generation of the function that will handle all initialization and destruction of objects with static storage duration. The function generated takes two parameters of type `int': __INITIALIZE_P and __PRIORITY. If __INITIALIZE_P is non-zero, it performs initializations. Otherwise, it performs destructions. It only performs those initializations or destructions with the indicated __PRIORITY. The generated function returns no value. It is assumed that this function will only be called once per translation unit. */ static tree start_static_storage_duration_function () { static unsigned ssdf_number; tree parm_types; tree type; tree body; char id[sizeof (SSDF_IDENTIFIER) + 1 /* '\0' */ + 32]; /* Create the identifier for this function. It will be of the form SSDF_IDENTIFIER_. */ sprintf (id, "%s_%u", SSDF_IDENTIFIER, ssdf_number++); if (ssdf_number == 0) { /* Overflow occurred. That means there are at least 4 billion initialization functions. */ sorry ("too many initialization functions required"); abort (); } /* Create the parameters. */ parm_types = void_list_node; parm_types = tree_cons (NULL_TREE, integer_type_node, parm_types); parm_types = tree_cons (NULL_TREE, integer_type_node, parm_types); type = build_function_type (void_type_node, parm_types); /* Create the FUNCTION_DECL itself. */ ssdf_decl = build_lang_decl (FUNCTION_DECL, get_identifier (id), type); TREE_PUBLIC (ssdf_decl) = 0; DECL_ARTIFICIAL (ssdf_decl) = 1; /* Put this function in the list of functions to be called from the static constructors and destructors. */ if (!ssdf_decls) { VARRAY_TREE_INIT (ssdf_decls, 32, "ssdf_decls"); /* Take this opportunity to initialize the map from priority numbers to information about that priority level. */ priority_info_map = splay_tree_new (splay_tree_compare_ints, /*delete_key_fn=*/0, /*delete_value_fn=*/ (splay_tree_delete_value_fn) &free); /* We always need to generate functions for the DEFAULT_INIT_PRIORITY so enter it now. That way when we walk priorities later, we'll be sure to find the DEFAULT_INIT_PRIORITY. */ get_priority_info (DEFAULT_INIT_PRIORITY); } VARRAY_PUSH_TREE (ssdf_decls, ssdf_decl); /* Create the argument list. */ initialize_p_decl = cp_build_parm_decl (get_identifier (INITIALIZE_P_IDENTIFIER), integer_type_node); DECL_CONTEXT (initialize_p_decl) = ssdf_decl; TREE_USED (initialize_p_decl) = 1; priority_decl = cp_build_parm_decl (get_identifier (PRIORITY_IDENTIFIER), integer_type_node); DECL_CONTEXT (priority_decl) = ssdf_decl; TREE_USED (priority_decl) = 1; TREE_CHAIN (initialize_p_decl) = priority_decl; DECL_ARGUMENTS (ssdf_decl) = initialize_p_decl; /* Put the function in the global scope. */ pushdecl (ssdf_decl); /* Start the function itself. This is equivalent to declarating the function as: static void __ssdf (int __initialize_p, init __priority_p); It is static because we only need to call this function from the various constructor and destructor functions for this module. */ start_function (/*specs=*/NULL_TREE, ssdf_decl, /*attrs=*/NULL_TREE, SF_PRE_PARSED); /* Set up the scope of the outermost block in the function. */ body = begin_compound_stmt (/*has_no_scope=*/0); /* This function must not be deferred because we are depending on its compilation to tell us what is TREE_SYMBOL_REFERENCED. */ current_function_cannot_inline = "static storage duration functions cannot be inlined"; return body; } /* Finish the generation of the function which performs initialization and destruction of objects with static storage duration. After this point, no more such objects can be created. */ static void finish_static_storage_duration_function (body) tree body; { /* Close out the function. */ finish_compound_stmt (/*has_no_scope=*/0, body); expand_body (finish_function (0)); } /* Return the information about the indicated PRIORITY level. If no code to handle this level has yet been generated, generate the appropriate prologue. */ static priority_info get_priority_info (priority) int priority; { priority_info pi; splay_tree_node n; n = splay_tree_lookup (priority_info_map, (splay_tree_key) priority); if (!n) { /* Create a new priority information structure, and insert it into the map. */ pi = (priority_info) xmalloc (sizeof (struct priority_info_s)); pi->initializations_p = 0; pi->destructions_p = 0; splay_tree_insert (priority_info_map, (splay_tree_key) priority, (splay_tree_value) pi); } else pi = (priority_info) n->value; return pi; } /* Set up to handle the initialization or destruction of DECL. If INITP is non-zero, we are initializing the variable. Otherwise, we are destroying it. */ static tree start_static_initialization_or_destruction (decl, initp) tree decl; int initp; { tree guard_if_stmt = NULL_TREE; int priority; tree cond; tree guard; tree init_cond; priority_info pi; /* Figure out the priority for this declaration. */ priority = DECL_INIT_PRIORITY (decl); if (!priority) priority = DEFAULT_INIT_PRIORITY; /* Remember that we had an initialization or finalization at this priority. */ pi = get_priority_info (priority); if (initp) pi->initializations_p = 1; else pi->destructions_p = 1; /* Trick the compiler into thinking we are at the file and line where DECL was declared so that error-messages make sense, and so that the debugger will show somewhat sensible file and line information. */ input_filename = DECL_SOURCE_FILE (decl); lineno = DECL_SOURCE_LINE (decl); /* Because of: [class.access.spec] Access control for implicit calls to the constructors, the conversion functions, or the destructor called to create and destroy a static data member is performed as if these calls appeared in the scope of the member's class. we pretend we are in a static member function of the class of which the DECL is a member. */ if (member_p (decl)) { DECL_CONTEXT (current_function_decl) = DECL_CONTEXT (decl); DECL_STATIC_FUNCTION_P (current_function_decl) = 1; } /* Conditionalize this initialization on being in the right priority and being initializing/finalizing appropriately. */ guard_if_stmt = begin_if_stmt (); cond = cp_build_binary_op (EQ_EXPR, priority_decl, build_int_2 (priority, 0)); init_cond = initp ? integer_one_node : integer_zero_node; init_cond = cp_build_binary_op (EQ_EXPR, initialize_p_decl, init_cond); cond = cp_build_binary_op (TRUTH_ANDIF_EXPR, cond, init_cond); /* Assume we don't need a guard. */ guard = NULL_TREE; /* We need a guard if this is an object with external linkage that might be initialized in more than one place. (For example, a static data member of a template, when the data member requires construction.) */ if (TREE_PUBLIC (decl) && (DECL_COMMON (decl) || DECL_ONE_ONLY (decl) || DECL_WEAK (decl))) { tree guard_cond; guard = get_guard (decl); /* When using __cxa_atexit, we just check the GUARD as we would for a local static. */ if (flag_use_cxa_atexit) { /* When using __cxa_atexit, we never try to destroy anything from a static destructor. */ my_friendly_assert (initp, 20000629); guard_cond = get_guard_cond (guard); } /* If we don't have __cxa_atexit, then we will be running destructors from .fini sections, or their equivalents. So, we need to know how many times we've tried to initialize this object. We do initializations only if the GUARD is zero, i.e., if we are the first to initialize the variable. We do destructions only if the GUARD is one, i.e., if we are the last to destroy the variable. */ else if (initp) guard_cond = cp_build_binary_op (EQ_EXPR, build_unary_op (PREINCREMENT_EXPR, guard, /*noconvert=*/1), integer_one_node); else guard_cond = cp_build_binary_op (EQ_EXPR, build_unary_op (PREDECREMENT_EXPR, guard, /*noconvert=*/1), integer_zero_node); cond = cp_build_binary_op (TRUTH_ANDIF_EXPR, cond, guard_cond); } finish_if_stmt_cond (cond, guard_if_stmt); /* If we're using __cxa_atexit, we have not already set the GUARD, so we must do so now. */ if (guard && initp && flag_use_cxa_atexit) finish_expr_stmt (set_guard (guard)); return guard_if_stmt; } /* We've just finished generating code to do an initialization or finalization. GUARD_IF_STMT is the if-statement we used to guard the initialization. */ static void finish_static_initialization_or_destruction (guard_if_stmt) tree guard_if_stmt; { finish_then_clause (guard_if_stmt); finish_if_stmt (); /* Now that we're done with DECL we don't need to pretend to be a member of its class any longer. */ DECL_CONTEXT (current_function_decl) = NULL_TREE; DECL_STATIC_FUNCTION_P (current_function_decl) = 0; } /* Generate code to do the static initialization of DECL. The initialization is INIT. If DECL may be initialized more than once in different object files, GUARD is the guard variable to check. PRIORITY is the priority for the initialization. */ static void do_static_initialization (decl, init) tree decl; tree init; { tree expr; tree guard_if_stmt; /* Set up for the initialization. */ guard_if_stmt = start_static_initialization_or_destruction (decl, /*initp=*/1); /* Do the initialization itself. */ if (IS_AGGR_TYPE (TREE_TYPE (decl)) || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE) expr = build_aggr_init (decl, init, 0); else { expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init); TREE_SIDE_EFFECTS (expr) = 1; } finish_expr_stmt (expr); /* If we're using __cxa_atexit, register a a function that calls the destructor for the object. */ if (flag_use_cxa_atexit) register_dtor_fn (decl); /* Finsh up. */ finish_static_initialization_or_destruction (guard_if_stmt); } /* Generate code to do the static destruction of DECL. If DECL may be initialized more than once in different object files, GUARD is the guard variable to check. PRIORITY is the priority for the destruction. */ static void do_static_destruction (decl) tree decl; { tree guard_if_stmt; /* If we're using __cxa_atexit, then destructors are registered immediately after objects are initialized. */ my_friendly_assert (!flag_use_cxa_atexit, 20000121); /* If we don't need a destructor, there's nothing to do. */ if (TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl))) return; /* Actually do the destruction. */ guard_if_stmt = start_static_initialization_or_destruction (decl, /*initp=*/0); finish_expr_stmt (build_cleanup (decl)); finish_static_initialization_or_destruction (guard_if_stmt); } /* VARS is a list of variables with static storage duration which may need initialization and/or finalization. Remove those variables that don't really need to be initialized or finalized, and return the resulting list. The order in which the variables appear in VARS is in reverse order of the order in which they should actually be initialized. The list we return is in the unreversed order; i.e., the first variable should be initialized first. */ static tree prune_vars_needing_no_initialization (vars) tree vars; { tree var; tree result; for (var = vars, result = NULL_TREE; var; var = TREE_CHAIN (var)) { tree decl = TREE_VALUE (var); tree init = TREE_PURPOSE (var); /* Deal gracefully with error. */ if (decl == error_mark_node) continue; /* The only things that can be initialized are variables. */ my_friendly_assert (TREE_CODE (decl) == VAR_DECL, 19990420); /* If this object is not defined, we don't need to do anything here. */ if (DECL_EXTERNAL (decl)) continue; /* Also, if the initializer already contains errors, we can bail out now. */ if (init && TREE_CODE (init) == TREE_LIST && value_member (error_mark_node, init)) continue; /* This variable is going to need initialization and/or finalization, so we add it to the list. */ result = tree_cons (init, decl, result); } return result; } /* Make sure we have told the back end about all the variables in VARS. */ static void write_out_vars (vars) tree vars; { tree v; for (v = vars; v; v = TREE_CHAIN (v)) if (! TREE_ASM_WRITTEN (TREE_VALUE (v))) rest_of_decl_compilation (TREE_VALUE (v), 0, 1, 1); } /* Generate a static constructor (if CONSTRUCTOR_P) or destructor (otherwise) that will initialize all gobal objects with static storage duration having the indicated PRIORITY. */ static void generate_ctor_or_dtor_function (constructor_p, priority) int constructor_p; int priority; { char function_key; tree arguments; tree body; size_t i; /* We use `I' to indicate initialization and `D' to indicate destruction. */ if (constructor_p) function_key = 'I'; else function_key = 'D'; /* Begin the function. */ body = start_objects (function_key, priority); /* Call the static storage duration function with appropriate arguments. */ for (i = 0; i < ssdf_decls->elements_used; ++i) { arguments = tree_cons (NULL_TREE, build_int_2 (priority, 0), NULL_TREE); arguments = tree_cons (NULL_TREE, build_int_2 (constructor_p, 0), arguments); finish_expr_stmt (build_function_call (VARRAY_TREE (ssdf_decls, i), arguments)); } /* If we're generating code for the DEFAULT_INIT_PRIORITY, throw in calls to any functions marked with attributes indicating that they should be called at initialization- or destruction-time. */ if (priority == DEFAULT_INIT_PRIORITY) { tree fns; for (fns = constructor_p ? static_ctors : static_dtors; fns; fns = TREE_CHAIN (fns)) finish_expr_stmt (build_function_call (TREE_VALUE (fns), NULL_TREE)); } /* Close out the function. */ finish_objects (function_key, priority, body); } /* Generate constructor and destructor functions for the priority indicated by N. */ static int generate_ctor_and_dtor_functions_for_priority (n, data) splay_tree_node n; void *data ATTRIBUTE_UNUSED; { int priority = (int) n->key; priority_info pi = (priority_info) n->value; /* Generate the functions themselves, but only if they are really needed. */ if (pi->initializations_p || (priority == DEFAULT_INIT_PRIORITY && static_ctors)) generate_ctor_or_dtor_function (/*constructor_p=*/1, priority); if (pi->destructions_p || (priority == DEFAULT_INIT_PRIORITY && static_dtors)) generate_ctor_or_dtor_function (/*constructor_p=*/0, priority); /* Keep iterating. */ return 0; } /* This routine is called from the last rule in yyparse (). Its job is to create all the code needed to initialize and destroy the global aggregates. We do the destruction first, since that way we only need to reverse the decls once. */ void finish_file () { tree vars; int reconsider; size_t i; at_eof = 1; /* Bad parse errors. Just forget about it. */ if (! global_bindings_p () || current_class_type || decl_namespace_list) return; /* Otherwise, GDB can get confused, because in only knows about source for LINENO-1 lines. */ lineno -= 1; interface_unknown = 1; interface_only = 0; /* We now have to write out all the stuff we put off writing out. These include: o Template specializations that we have not yet instantiated, but which are needed. o Initialization and destruction for non-local objects with static storage duration. (Local objects with static storage duration are initialized when their scope is first entered, and are cleaned up via atexit.) o Virtual function tables. All of these may cause others to be needed. For example, instantiating one function may cause another to be needed, and generating the intiailzer for an object may cause templates to be instantiated, etc., etc. */ timevar_push (TV_VARCONST); emit_support_tinfos (); do { reconsider = 0; /* If there are templates that we've put off instantiating, do them now. */ instantiate_pending_templates (); /* Write out virtual tables as required. Note that writing out the virtual table for a template class may cause the instantiation of members of that class. */ if (walk_globals (vtable_decl_p, finish_vtable_vardecl, /*data=*/0)) reconsider = 1; /* Write out needed type info variables. Writing out one variable might cause others to be needed. */ if (walk_globals (unemitted_tinfo_decl_p, emit_tinfo_decl, /*data=*/0)) reconsider = 1; /* The list of objects with static storage duration is built up in reverse order. We clear STATIC_AGGREGATES so that any new aggregates added during the initialization of these will be initialized in the correct order when we next come around the loop. */ vars = prune_vars_needing_no_initialization (static_aggregates); static_aggregates = NULL_TREE; if (vars) { tree v; /* We need to start a new initialization function each time through the loop. That's because we need to know which vtables have been referenced, and TREE_SYMBOL_REFERENCED isn't computed until a function is finished, and written out. That's a deficiency in the back-end. When this is fixed, these initialization functions could all become inline, with resulting performance improvements. */ tree ssdf_body = start_static_storage_duration_function (); /* Make sure the back end knows about all the variables. */ write_out_vars (vars); /* First generate code to do all the initializations. */ for (v = vars; v; v = TREE_CHAIN (v)) do_static_initialization (TREE_VALUE (v), TREE_PURPOSE (v)); /* Then, generate code to do all the destructions. Do these in reverse order so that the most recently constructed variable is the first destroyed. If we're using __cxa_atexit, then we don't need to do this; functions were registered at initialization time to destroy the local statics. */ if (!flag_use_cxa_atexit) { vars = nreverse (vars); for (v = vars; v; v = TREE_CHAIN (v)) do_static_destruction (TREE_VALUE (v)); } else vars = NULL_TREE; /* Finish up the static storage duration function for this round. */ finish_static_storage_duration_function (ssdf_body); /* All those initializations and finalizations might cause us to need more inline functions, more template instantiations, etc. */ reconsider = 1; } /* Go through the various inline functions, and see if any need synthesizing. */ for (i = 0; i < deferred_fns_used; ++i) { tree decl = VARRAY_TREE (deferred_fns, i); import_export_decl (decl); if (DECL_ARTIFICIAL (decl) && ! DECL_INITIAL (decl) && TREE_USED (decl) && (! DECL_REALLY_EXTERN (decl) || DECL_INLINE (decl))) { /* Even though we're already at the top-level, we push there again. That way, when we pop back a few lines hence, all of our state is restored. Otherwise, finish_function doesn't clean things up, and we end up with CURRENT_FUNCTION_DECL set. */ push_to_top_level (); synthesize_method (decl); pop_from_top_level (); reconsider = 1; } } /* We lie to the back-end, pretending that some functions are not defined when they really are. This keeps these functions from being put out unnecessarily. But, we must stop lying when the functions are referenced, or if they are not comdat since they need to be put out now. This is done in a separate for cycle, because if some deferred function is contained in another deferred function later in deferred_fns varray, rest_of_compilation would skip this function and we really cannot expand the same function twice. */ for (i = 0; i < deferred_fns_used; ++i) { tree decl = VARRAY_TREE (deferred_fns, i); if (DECL_NOT_REALLY_EXTERN (decl) && DECL_INITIAL (decl) && DECL_NEEDED_P (decl)) DECL_EXTERNAL (decl) = 0; } for (i = 0; i < deferred_fns_used; ++i) { tree decl = VARRAY_TREE (deferred_fns, i); /* If we're going to need to write this function out, and there's already a body for it, create RTL for it now. (There might be no body if this is a method we haven't gotten around to synthesizing yet.) */ if (!DECL_EXTERNAL (decl) && DECL_NEEDED_P (decl) && DECL_SAVED_TREE (decl) && !TREE_ASM_WRITTEN (decl)) { int saved_not_really_extern; /* When we call finish_function in expand_body, it will try to reset DECL_NOT_REALLY_EXTERN so we save and restore it here. */ saved_not_really_extern = DECL_NOT_REALLY_EXTERN (decl); /* Generate RTL for this function now that we know we need it. */ expand_body (decl); /* Undo the damage done by finish_function. */ DECL_EXTERNAL (decl) = 0; DECL_NOT_REALLY_EXTERN (decl) = saved_not_really_extern; /* If we're compiling -fsyntax-only pretend that this function has been written out so that we don't try to expand it again. */ if (flag_syntax_only) TREE_ASM_WRITTEN (decl) = 1; reconsider = 1; } } if (deferred_fns_used && wrapup_global_declarations (&VARRAY_TREE (deferred_fns, 0), deferred_fns_used)) reconsider = 1; if (walk_namespaces (wrapup_globals_for_namespace, /*data=*/0)) reconsider = 1; /* Static data members are just like namespace-scope globals. */ for (i = 0; i < pending_statics_used; ++i) { tree decl = VARRAY_TREE (pending_statics, i); if (TREE_ASM_WRITTEN (decl)) continue; import_export_decl (decl); if (DECL_NOT_REALLY_EXTERN (decl) && ! DECL_IN_AGGR_P (decl)) DECL_EXTERNAL (decl) = 0; } if (pending_statics && wrapup_global_declarations (&VARRAY_TREE (pending_statics, 0), pending_statics_used)) reconsider = 1; } while (reconsider); /* We give C linkage to static constructors and destructors. */ push_lang_context (lang_name_c); /* Generate initialization and destruction functions for all priorities for which they are required. */ if (priority_info_map) splay_tree_foreach (priority_info_map, generate_ctor_and_dtor_functions_for_priority, /*data=*/0); /* We're done with the splay-tree now. */ if (priority_info_map) splay_tree_delete (priority_info_map); /* We're done with static constructors, so we can go back to "C++" linkage now. */ pop_lang_context (); /* Now delete from the chain of variables all virtual function tables. We output them all ourselves, because each will be treated specially. We don't do this if we're just doing semantic analysis, and not code-generation. */ if (!flag_syntax_only) walk_globals (vtable_decl_p, prune_vtable_vardecl, /*data=*/0); /* Now, issue warnings about static, but not defined, functions, etc., and emit debugging information. */ walk_namespaces (wrapup_globals_for_namespace, /*data=*/&reconsider); if (pending_statics) check_global_declarations (&VARRAY_TREE (pending_statics, 0), pending_statics_used); finish_repo (); /* The entire file is now complete. If requested, dump everything to a file. */ { int flags; FILE *stream = dump_begin (TDI_all, &flags); if (stream) { dump_node (global_namespace, flags & ~TDF_SLIM, stream); dump_end (TDI_all, stream); } } timevar_pop (TV_VARCONST); if (flag_detailed_statistics) { dump_tree_statistics (); dump_time_statistics (); } } /* This is something of the form 'A()()()()()+1' that has turned out to be an expr. Since it was parsed like a type, we need to wade through and fix that. Unfortunately, since operator() is left-associative, we can't use tail recursion. In the above example, TYPE is `A', and DECL is `()()()()()'. Maybe this shouldn't be recursive, but how often will it actually be used? (jason) */ tree reparse_absdcl_as_expr (type, decl) tree type, decl; { /* do build_functional_cast (type, NULL_TREE) at bottom */ if (TREE_OPERAND (decl, 0) == NULL_TREE) return build_functional_cast (type, NULL_TREE); /* recurse */ decl = reparse_absdcl_as_expr (type, TREE_OPERAND (decl, 0)); return finish_call_expr (decl, NULL_TREE, /*disallow_virtual=*/false); } /* This is something of the form `int ((int)(int)(int)1)' that has turned out to be an expr. Since it was parsed like a type, we need to wade through and fix that. Since casts are right-associative, we are reversing the order, so we don't have to recurse. In the above example, DECL is the `(int)(int)(int)', and EXPR is the `1'. */ tree reparse_absdcl_as_casts (decl, expr) tree decl, expr; { tree type; int non_void_p = 0; if (TREE_CODE (expr) == CONSTRUCTOR && TREE_TYPE (expr) == 0) { type = groktypename (TREE_VALUE (CALL_DECLARATOR_PARMS (decl))); decl = TREE_OPERAND (decl, 0); if (processing_template_decl) TREE_TYPE (expr) = type; else { expr = digest_init (type, expr, (tree *) 0); if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type)) { int failure = complete_array_type (type, expr, 1); my_friendly_assert (!failure, 78); } } } while (decl) { type = groktypename (TREE_VALUE (CALL_DECLARATOR_PARMS (decl))); decl = TREE_OPERAND (decl, 0); if (!VOID_TYPE_P (type)) non_void_p = 1; expr = build_c_cast (type, expr); } if (warn_old_style_cast && ! in_system_header && non_void_p && current_lang_name != lang_name_c) warning ("use of old-style cast"); return expr; } /* T is the parse tree for an expression. Return the expression after performing semantic analysis. */ tree build_expr_from_tree (t) tree t; { if (t == NULL_TREE || t == error_mark_node) return t; switch (TREE_CODE (t)) { case IDENTIFIER_NODE: return do_identifier (t, 0, NULL_TREE); case LOOKUP_EXPR: if (LOOKUP_EXPR_GLOBAL (t)) { tree token = TREE_OPERAND (t, 0); return do_scoped_id (token, IDENTIFIER_GLOBAL_VALUE (token)); } else return do_identifier (TREE_OPERAND (t, 0), 0, NULL_TREE); case TEMPLATE_ID_EXPR: { tree template; tree args; tree object; template = build_expr_from_tree (TREE_OPERAND (t, 0)); args = build_expr_from_tree (TREE_OPERAND (t, 1)); if (TREE_CODE (template) == COMPONENT_REF) { object = TREE_OPERAND (template, 0); template = TREE_OPERAND (template, 1); } else object = NULL_TREE; template = lookup_template_function (template, args); if (object) return build (COMPONENT_REF, TREE_TYPE (template), object, template); else return template; } case INDIRECT_REF: return build_x_indirect_ref (build_expr_from_tree (TREE_OPERAND (t, 0)), "unary *"); case CAST_EXPR: return build_functional_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case REINTERPRET_CAST_EXPR: return build_reinterpret_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case CONST_CAST_EXPR: return build_const_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case DYNAMIC_CAST_EXPR: return build_dynamic_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case STATIC_CAST_EXPR: return build_static_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case PREDECREMENT_EXPR: case PREINCREMENT_EXPR: case POSTDECREMENT_EXPR: case POSTINCREMENT_EXPR: case NEGATE_EXPR: case BIT_NOT_EXPR: case ABS_EXPR: case TRUTH_NOT_EXPR: case ADDR_EXPR: case CONVERT_EXPR: /* Unary + */ case REALPART_EXPR: case IMAGPART_EXPR: if (TREE_TYPE (t)) return t; return build_x_unary_op (TREE_CODE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: case BIT_AND_EXPR: case BIT_ANDTC_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case TRUNC_MOD_EXPR: case FLOOR_MOD_EXPR: case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case TRUTH_AND_EXPR: case TRUTH_OR_EXPR: case RSHIFT_EXPR: case LSHIFT_EXPR: case RROTATE_EXPR: case LROTATE_EXPR: case EQ_EXPR: case NE_EXPR: case MAX_EXPR: case MIN_EXPR: case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR: case MEMBER_REF: return build_x_binary_op (TREE_CODE (t), build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1))); case DOTSTAR_EXPR: return build_m_component_ref (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1))); case SCOPE_REF: return build_offset_ref (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)); case ARRAY_REF: if (TREE_OPERAND (t, 0) == NULL_TREE) /* new-type-id */ return build_nt (ARRAY_REF, NULL_TREE, build_expr_from_tree (TREE_OPERAND (t, 1))); return grok_array_decl (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1))); case SIZEOF_EXPR: case ALIGNOF_EXPR: { tree r = build_expr_from_tree (TREE_OPERAND (t, 0)); if (!TYPE_P (r)) return TREE_CODE (t) == SIZEOF_EXPR ? expr_sizeof (r) : c_alignof_expr (r); else return cxx_sizeof_or_alignof_type (r, TREE_CODE (t), true); } case MODOP_EXPR: return build_x_modify_expr (build_expr_from_tree (TREE_OPERAND (t, 0)), TREE_CODE (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (t, 2))); case ARROW_EXPR: return build_x_arrow (build_expr_from_tree (TREE_OPERAND (t, 0))); case NEW_EXPR: return build_new (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (t, 2)), NEW_EXPR_USE_GLOBAL (t)); case DELETE_EXPR: return delete_sanity (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1)), DELETE_EXPR_USE_VEC (t), DELETE_EXPR_USE_GLOBAL (t)); case COMPOUND_EXPR: if (TREE_OPERAND (t, 1) == NULL_TREE) return build_x_compound_expr (build_expr_from_tree (TREE_OPERAND (t, 0))); else abort (); case METHOD_CALL_EXPR: if (TREE_CODE (TREE_OPERAND (t, 0)) == SCOPE_REF) { tree ref = TREE_OPERAND (t, 0); tree name = TREE_OPERAND (ref, 1); if (TREE_CODE (name) == TEMPLATE_ID_EXPR) name = build_nt (TEMPLATE_ID_EXPR, TREE_OPERAND (name, 0), build_expr_from_tree (TREE_OPERAND (name, 1))); return build_scoped_method_call (build_expr_from_tree (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (ref, 0)), name, build_expr_from_tree (TREE_OPERAND (t, 2))); } else { tree fn = TREE_OPERAND (t, 0); /* We can get a TEMPLATE_ID_EXPR here on code like: x->f<2>(); so we must resolve that. However, we can also get things like a BIT_NOT_EXPR here, when referring to a destructor, and things like that are not correctly resolved by build_expr_from_tree. So, just use build_expr_from_tree when we really need it. */ if (TREE_CODE (fn) == TEMPLATE_ID_EXPR) fn = lookup_template_function (TREE_OPERAND (fn, 0), build_expr_from_tree (TREE_OPERAND (fn, 1))); return build_method_call (build_expr_from_tree (TREE_OPERAND (t, 1)), fn, build_expr_from_tree (TREE_OPERAND (t, 2)), NULL_TREE, LOOKUP_NORMAL); } case CALL_EXPR: if (TREE_CODE (TREE_OPERAND (t, 0)) == SCOPE_REF) { tree ref = TREE_OPERAND (t, 0); tree name = TREE_OPERAND (ref, 1); if (TREE_CODE (name) == TEMPLATE_ID_EXPR) name = build_nt (TEMPLATE_ID_EXPR, TREE_OPERAND (name, 0), build_expr_from_tree (TREE_OPERAND (name, 1))); return build_member_call (build_expr_from_tree (TREE_OPERAND (ref, 0)), name, build_expr_from_tree (TREE_OPERAND (t, 1))); } else { tree name = TREE_OPERAND (t, 0); tree id; tree args = build_expr_from_tree (TREE_OPERAND (t, 1)); if (args != NULL_TREE && TREE_CODE (name) == LOOKUP_EXPR && !LOOKUP_EXPR_GLOBAL (name) && TREE_CODE ((id = TREE_OPERAND (name, 0))) == IDENTIFIER_NODE && (!current_class_type || !lookup_member (current_class_type, id, 0, 0))) { /* Do Koenig lookup if there are no class members. */ name = do_identifier (id, 0, args); } else if (TREE_CODE (name) == TEMPLATE_ID_EXPR || ! really_overloaded_fn (name)) name = build_expr_from_tree (name); if (TREE_CODE (name) == OFFSET_REF) return build_offset_ref_call_from_tree (name, args); if (TREE_CODE (name) == COMPONENT_REF) return finish_object_call_expr (TREE_OPERAND (name, 1), TREE_OPERAND (name, 0), args); name = convert_from_reference (name); return build_call_from_tree (name, args, /*disallow_virtual=*/false); } case COND_EXPR: return build_x_conditional_expr (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (t, 2))); case PSEUDO_DTOR_EXPR: return (finish_pseudo_destructor_call_expr (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (t, 2)))); case TREE_LIST: { tree purpose, value, chain; if (t == void_list_node) return t; purpose = TREE_PURPOSE (t); if (purpose) purpose = build_expr_from_tree (purpose); value = TREE_VALUE (t); if (value) value = build_expr_from_tree (value); chain = TREE_CHAIN (t); if (chain && chain != void_type_node) chain = build_expr_from_tree (chain); return tree_cons (purpose, value, chain); } case COMPONENT_REF: { tree object = build_expr_from_tree (TREE_OPERAND (t, 0)); return finish_class_member_access_expr (object, TREE_OPERAND (t, 1)); } case THROW_EXPR: return build_throw (build_expr_from_tree (TREE_OPERAND (t, 0))); case CONSTRUCTOR: { tree r; tree elts; tree type = TREE_TYPE (t); bool purpose_p; /* digest_init will do the wrong thing if we let it. */ if (type && TYPE_PTRMEMFUNC_P (type)) return t; r = NULL_TREE; /* We do not want to process the purpose of aggregate initializers as they are identifier nodes which will be looked up by digest_init. */ purpose_p = !(type && IS_AGGR_TYPE (type)); for (elts = CONSTRUCTOR_ELTS (t); elts; elts = TREE_CHAIN (elts)) { tree purpose = TREE_PURPOSE (elts); tree value = TREE_VALUE (elts); if (purpose && purpose_p) purpose = build_expr_from_tree (purpose); value = build_expr_from_tree (value); r = tree_cons (purpose, value, r); } r = build_nt (CONSTRUCTOR, NULL_TREE, nreverse (r)); TREE_HAS_CONSTRUCTOR (r) = TREE_HAS_CONSTRUCTOR (t); if (type) return digest_init (type, r, 0); return r; } case TYPEID_EXPR: if (TYPE_P (TREE_OPERAND (t, 0))) return get_typeid (TREE_OPERAND (t, 0)); return build_typeid (build_expr_from_tree (TREE_OPERAND (t, 0))); case VAR_DECL: return convert_from_reference (t); case VA_ARG_EXPR: return build_va_arg (build_expr_from_tree (TREE_OPERAND (t, 0)), TREE_TYPE (t)); default: return t; } } /* FN is an OFFSET_REF indicating the function to call in parse-tree form; it has not yet been semantically analyzed. ARGS are the arguments to the function. They have already been semantically analzyed. */ tree build_offset_ref_call_from_tree (tree fn, tree args) { tree object_addr; my_friendly_assert (TREE_CODE (fn) == OFFSET_REF, 20020725); /* A qualified name corresponding to a non-static member function or a pointer-to-member is represented as an OFFSET_REF. For both of these function calls, FN will be an OFFSET_REF. struct A { void f(); }; void A::f() { (A::f) (); } struct B { void g(); }; void (B::*p)(); void B::g() { (this->*p)(); } */ /* This code is not really correct (for example, it does not handle the case that `A::f' is overloaded), but it is historically how we have handled this situation. */ object_addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (fn, 0), 0); if (TREE_CODE (TREE_OPERAND (fn, 1)) == FIELD_DECL) fn = resolve_offset_ref (fn); else { fn = TREE_OPERAND (fn, 1); fn = get_member_function_from_ptrfunc (&object_addr, fn); } args = tree_cons (NULL_TREE, object_addr, args); return build_function_call (fn, args); } /* FN indicates the function to call. Name resolution has been performed on FN. ARGS are the arguments to the function. They have already been semantically analyzed. DISALLOW_VIRTUAL is true if the function call should be determined at compile time, even if FN is virtual. */ tree build_call_from_tree (tree fn, tree args, bool disallow_virtual) { tree template_args; tree template_id; tree f; /* Check to see that name lookup has already been performed. */ my_friendly_assert (TREE_CODE (fn) != OFFSET_REF, 20020725); my_friendly_assert (TREE_CODE (fn) != SCOPE_REF, 20020725); /* In the future all of this should be eliminated. Instead, name-lookup for a member function should simply return a baselink, instead of a FUNCTION_DECL, TEMPLATE_DECL, or TEMPLATE_ID_EXPR. */ if (TREE_CODE (fn) == TEMPLATE_ID_EXPR) { template_id = fn; template_args = TREE_OPERAND (fn, 1); fn = TREE_OPERAND (fn, 0); } else { template_id = NULL_TREE; template_args = NULL_TREE; } f = (TREE_CODE (fn) == OVERLOAD) ? get_first_fn (fn) : fn; /* Make sure we have a baselink (rather than simply a FUNCTION_DECL) for a member function. */ if (current_class_type && ((TREE_CODE (f) == FUNCTION_DECL && DECL_FUNCTION_MEMBER_P (f)) || (DECL_FUNCTION_TEMPLATE_P (f) && DECL_FUNCTION_MEMBER_P (f)))) { f = lookup_member (current_class_type, DECL_NAME (f), /*protect=*/1, /*want_type=*/0); if (f) fn = f; } if (template_id) { if (BASELINK_P (fn)) BASELINK_FUNCTIONS (fn) = build_nt (TEMPLATE_ID_EXPR, BASELINK_FUNCTIONS (fn), template_args); else fn = template_id; } return finish_call_expr (fn, args, disallow_virtual); } /* This is something of the form `int (*a)++' that has turned out to be an expr. It was only converted into parse nodes, so we need to go through and build up the semantics. Most of the work is done by build_expr_from_tree, above. In the above example, TYPE is `int' and DECL is `*a'. */ tree reparse_decl_as_expr (type, decl) tree type, decl; { decl = build_expr_from_tree (decl); if (type) return build_functional_cast (type, build_tree_list (NULL_TREE, decl)); else return decl; } /* This is something of the form `int (*a)' that has turned out to be a decl. It was only converted into parse nodes, so we need to do the checking that make_{pointer,reference}_declarator do. */ tree finish_decl_parsing (decl) tree decl; { switch (TREE_CODE (decl)) { case IDENTIFIER_NODE: return decl; case INDIRECT_REF: return make_pointer_declarator (NULL_TREE, finish_decl_parsing (TREE_OPERAND (decl, 0))); case ADDR_EXPR: return make_reference_declarator (NULL_TREE, finish_decl_parsing (TREE_OPERAND (decl, 0))); case BIT_NOT_EXPR: TREE_OPERAND (decl, 0) = finish_decl_parsing (TREE_OPERAND (decl, 0)); return decl; case SCOPE_REF: push_nested_class (TREE_TYPE (TREE_OPERAND (decl, 0)), 3); TREE_COMPLEXITY (decl) = current_class_depth; return decl; case ARRAY_REF: TREE_OPERAND (decl, 0) = finish_decl_parsing (TREE_OPERAND (decl, 0)); return decl; case TREE_LIST: /* For attribute handling. */ TREE_VALUE (decl) = finish_decl_parsing (TREE_VALUE (decl)); return decl; case TEMPLATE_ID_EXPR: return decl; default: abort (); return NULL_TREE; } } /* Return 1 if root encloses child. */ static int is_namespace_ancestor (root, child) tree root, child; { if (root == child) return 1; if (root == global_namespace) return 1; if (child == global_namespace) return 0; return is_namespace_ancestor (root, CP_DECL_CONTEXT (child)); } /* Return the namespace that is the common ancestor of two given namespaces. */ tree namespace_ancestor (ns1, ns2) tree ns1, ns2; { if (is_namespace_ancestor (ns1, ns2)) return ns1; return namespace_ancestor (CP_DECL_CONTEXT (ns1), ns2); } /* Insert used into the using list of user. Set indirect_flag if this directive is not directly from the source. Also find the common ancestor and let our users know about the new namespace */ static void add_using_namespace (user, used, indirect) tree user; tree used; int indirect; { tree t; /* Using oneself is a no-op. */ if (user == used) return; my_friendly_assert (TREE_CODE (user) == NAMESPACE_DECL, 380); my_friendly_assert (TREE_CODE (used) == NAMESPACE_DECL, 380); /* Check if we already have this. */ t = purpose_member (used, DECL_NAMESPACE_USING (user)); if (t != NULL_TREE) { if (!indirect) /* Promote to direct usage. */ TREE_INDIRECT_USING (t) = 0; return; } /* Add used to the user's using list. */ DECL_NAMESPACE_USING (user) = tree_cons (used, namespace_ancestor (user, used), DECL_NAMESPACE_USING (user)); TREE_INDIRECT_USING (DECL_NAMESPACE_USING (user)) = indirect; /* Add user to the used's users list. */ DECL_NAMESPACE_USERS (used) = tree_cons (user, 0, DECL_NAMESPACE_USERS (used)); /* Recursively add all namespaces used. */ for (t = DECL_NAMESPACE_USING (used); t; t = TREE_CHAIN (t)) /* indirect usage */ add_using_namespace (user, TREE_PURPOSE (t), 1); /* Tell everyone using us about the new used namespaces. */ for (t = DECL_NAMESPACE_USERS (user); t; t = TREE_CHAIN (t)) add_using_namespace (TREE_PURPOSE (t), used, 1); } /* Combines two sets of overloaded functions into an OVERLOAD chain, removing duplicates. The first list becomes the tail of the result. The algorithm is O(n^2). We could get this down to O(n log n) by doing a sort on the addresses of the functions, if that becomes necessary. */ static tree merge_functions (s1, s2) tree s1; tree s2; { for (; s2; s2 = OVL_NEXT (s2)) { tree fn2 = OVL_CURRENT (s2); tree fns1; for (fns1 = s1; fns1; fns1 = OVL_NEXT (fns1)) { tree fn1 = OVL_CURRENT (fns1); /* If the function from S2 is already in S1, there is no need to add it again. For `extern "C"' functions, we might have two FUNCTION_DECLs for the same function, in different namespaces; again, we only need one of them. */ if (fn1 == fn2 || (DECL_EXTERN_C_P (fn1) && DECL_EXTERN_C_P (fn2) && DECL_NAME (fn1) == DECL_NAME (fn2))) break; } /* If we exhausted all of the functions in S1, FN2 is new. */ if (!fns1) s1 = build_overload (fn2, s1); } return s1; } /* This should return an error not all definitions define functions. It is not an error if we find two functions with exactly the same signature, only if these are selected in overload resolution. old is the current set of bindings, new the freshly-found binding. XXX Do we want to give *all* candidates in case of ambiguity? XXX In what way should I treat extern declarations? XXX I don't want to repeat the entire duplicate_decls here */ static tree ambiguous_decl (name, old, new, flags) tree name; tree old; tree new; int flags; { tree val, type; my_friendly_assert (old != NULL_TREE, 393); /* Copy the value. */ val = BINDING_VALUE (new); if (val) switch (TREE_CODE (val)) { case TEMPLATE_DECL: /* If we expect types or namespaces, and not templates, or this is not a template class. */ if (LOOKUP_QUALIFIERS_ONLY (flags) && !DECL_CLASS_TEMPLATE_P (val)) val = NULL_TREE; break; case TYPE_DECL: if (LOOKUP_NAMESPACES_ONLY (flags)) val = NULL_TREE; break; case NAMESPACE_DECL: if (LOOKUP_TYPES_ONLY (flags)) val = NULL_TREE; break; case FUNCTION_DECL: /* Ignore built-in functions that are still anticipated. */ if (LOOKUP_QUALIFIERS_ONLY (flags) || DECL_ANTICIPATED (val)) val = NULL_TREE; break; default: if (LOOKUP_QUALIFIERS_ONLY (flags)) val = NULL_TREE; } if (!BINDING_VALUE (old)) BINDING_VALUE (old) = val; else if (val && val != BINDING_VALUE (old)) { if (is_overloaded_fn (BINDING_VALUE (old)) && is_overloaded_fn (val)) { BINDING_VALUE (old) = merge_functions (BINDING_VALUE (old), val); } else { /* Some declarations are functions, some are not. */ if (flags & LOOKUP_COMPLAIN) { /* If we've already given this error for this lookup, BINDING_VALUE (old) is error_mark_node, so let's not repeat ourselves. */ if (BINDING_VALUE (old) != error_mark_node) { error ("use of `%D' is ambiguous", name); cp_error_at (" first declared as `%#D' here", BINDING_VALUE (old)); } cp_error_at (" also declared as `%#D' here", val); } BINDING_VALUE (old) = error_mark_node; } } /* ... and copy the type. */ type = BINDING_TYPE (new); if (LOOKUP_NAMESPACES_ONLY (flags)) type = NULL_TREE; if (!BINDING_TYPE (old)) BINDING_TYPE (old) = type; else if (type && BINDING_TYPE (old) != type) { if (flags & LOOKUP_COMPLAIN) { error ("`%D' denotes an ambiguous type",name); cp_error_at (" first type here", BINDING_TYPE (old)); cp_error_at (" other type here", type); } } return old; } /* Subroutine of unualified_namespace_lookup: Add the bindings of NAME in used namespaces to VAL. We are currently looking for names in namespace SCOPE, so we look through USINGS for using-directives of namespaces which have SCOPE as a common ancestor with the current scope. Returns zero on errors. */ int lookup_using_namespace (name, val, usings, scope, flags, spacesp) tree name, val, usings, scope; int flags; tree *spacesp; { tree iter; tree val1; /* Iterate over all used namespaces in current, searching for using directives of scope. */ for (iter = usings; iter; iter = TREE_CHAIN (iter)) if (TREE_VALUE (iter) == scope) { if (spacesp) *spacesp = tree_cons (TREE_PURPOSE (iter), NULL_TREE, *spacesp); val1 = binding_for_name (name, TREE_PURPOSE (iter)); /* Resolve ambiguities. */ val = ambiguous_decl (name, val, val1, flags); } return BINDING_VALUE (val) != error_mark_node; } /* [namespace.qual] Accepts the NAME to lookup and its qualifying SCOPE. Returns the name/type pair found into the CPLUS_BINDING RESULT, or 0 on error. */ int qualified_lookup_using_namespace (name, scope, result, flags) tree name; tree scope; tree result; int flags; { /* Maintain a list of namespaces visited... */ tree seen = NULL_TREE; /* ... and a list of namespace yet to see. */ tree todo = NULL_TREE; tree usings; /* Look through namespace aliases. */ scope = ORIGINAL_NAMESPACE (scope); while (scope && (result != error_mark_node)) { seen = tree_cons (scope, NULL_TREE, seen); result = ambiguous_decl (name, result, binding_for_name (name, scope), flags); if (!BINDING_VALUE (result) && !BINDING_TYPE (result)) /* Consider using directives. */ for (usings = DECL_NAMESPACE_USING (scope); usings; usings = TREE_CHAIN (usings)) /* If this was a real directive, and we have not seen it. */ if (!TREE_INDIRECT_USING (usings) && !purpose_member (TREE_PURPOSE (usings), seen)) todo = tree_cons (TREE_PURPOSE (usings), NULL_TREE, todo); if (todo) { scope = TREE_PURPOSE (todo); todo = TREE_CHAIN (todo); } else scope = NULL_TREE; /* If there never was a todo list. */ } return result != error_mark_node; } /* [namespace.memdef]/2 */ /* Set the context of a declaration to scope. Complain if we are not outside scope. */ void set_decl_namespace (decl, scope, friendp) tree decl; tree scope; int friendp; { tree old; /* Get rid of namespace aliases. */ scope = ORIGINAL_NAMESPACE (scope); /* It is ok for friends to be qualified in parallel space. */ if (!friendp && !is_namespace_ancestor (current_namespace, scope)) error ("declaration of `%D' not in a namespace surrounding `%D'", decl, scope); DECL_CONTEXT (decl) = FROB_CONTEXT (scope); if (scope != current_namespace) { /* See whether this has been declared in the namespace. */ old = namespace_binding (DECL_NAME (decl), scope); if (!old) /* No old declaration at all. */ goto complain; /* A template can be explicitly specialized in any namespace. */ if (processing_explicit_instantiation) return; if (!is_overloaded_fn (decl)) /* Don't compare non-function decls with decls_match here, since it can't check for the correct constness at this point. pushdecl will find those errors later. */ return; /* Since decl is a function, old should contain a function decl. */ if (!is_overloaded_fn (old)) goto complain; if (processing_template_decl || processing_specialization) /* We have not yet called push_template_decl to turn the FUNCTION_DECL into a TEMPLATE_DECL, so the declarations won't match. But, we'll check later, when we construct the template. */ return; for (; old; old = OVL_NEXT (old)) if (decls_match (decl, OVL_CURRENT (old))) return; } else return; complain: error ("`%D' should have been declared inside `%D'", decl, scope); } /* Compute the namespace where a declaration is defined. */ static tree decl_namespace (decl) tree decl; { if (TYPE_P (decl)) decl = TYPE_STUB_DECL (decl); while (DECL_CONTEXT (decl)) { decl = DECL_CONTEXT (decl); if (TREE_CODE (decl) == NAMESPACE_DECL) return decl; if (TYPE_P (decl)) decl = TYPE_STUB_DECL (decl); my_friendly_assert (DECL_P (decl), 390); } return global_namespace; } /* Return the namespace where the current declaration is declared. */ tree current_decl_namespace () { tree result; /* If we have been pushed into a different namespace, use it. */ if (decl_namespace_list) return TREE_PURPOSE (decl_namespace_list); if (current_class_type) result = decl_namespace (TYPE_STUB_DECL (current_class_type)); else if (current_function_decl) result = decl_namespace (current_function_decl); else result = current_namespace; return result; } /* Temporarily set the namespace for the current declaration. */ void push_decl_namespace (decl) tree decl; { if (TREE_CODE (decl) != NAMESPACE_DECL) decl = decl_namespace (decl); decl_namespace_list = tree_cons (ORIGINAL_NAMESPACE (decl), NULL_TREE, decl_namespace_list); } void pop_decl_namespace () { decl_namespace_list = TREE_CHAIN (decl_namespace_list); } /* Enter a class or namespace scope. */ void push_scope (t) tree t; { if (TREE_CODE (t) == NAMESPACE_DECL) push_decl_namespace (t); else pushclass (t, 2); } /* Leave scope pushed by push_scope. */ void pop_scope (t) tree t; { if (TREE_CODE (t) == NAMESPACE_DECL) pop_decl_namespace (); else popclass (); } /* [basic.lookup.koenig] */ /* A non-zero return value in the functions below indicates an error. */ struct arg_lookup { tree name; tree namespaces; tree classes; tree functions; }; static int arg_assoc PARAMS ((struct arg_lookup*, tree)); static int arg_assoc_args PARAMS ((struct arg_lookup*, tree)); static int arg_assoc_type PARAMS ((struct arg_lookup*, tree)); static int add_function PARAMS ((struct arg_lookup *, tree)); static int arg_assoc_namespace PARAMS ((struct arg_lookup *, tree)); static int arg_assoc_class PARAMS ((struct arg_lookup *, tree)); static int arg_assoc_template_arg PARAMS ((struct arg_lookup*, tree)); /* Add a function to the lookup structure. Returns 1 on error. */ static int add_function (k, fn) struct arg_lookup *k; tree fn; { /* We used to check here to see if the function was already in the list, but that's O(n^2), which is just too expensive for function lookup. Now we deal with the occasional duplicate in joust. In doing this, we assume that the number of duplicates will be small compared to the total number of functions being compared, which should usually be the case. */ /* We must find only functions, or exactly one non-function. */ if (!k->functions) k->functions = fn; else if (is_overloaded_fn (k->functions) && is_overloaded_fn (fn)) k->functions = build_overload (fn, k->functions); else { tree f1 = OVL_CURRENT (k->functions); tree f2 = fn; if (is_overloaded_fn (f1)) { fn = f1; f1 = f2; f2 = fn; } cp_error_at ("`%D' is not a function,", f1); cp_error_at (" conflict with `%D'", f2); error (" in call to `%D'", k->name); return 1; } return 0; } /* Add functions of a namespace to the lookup structure. Returns 1 on error. */ static int arg_assoc_namespace (k, scope) struct arg_lookup *k; tree scope; { tree value; if (purpose_member (scope, k->namespaces)) return 0; k->namespaces = tree_cons (scope, NULL_TREE, k->namespaces); value = namespace_binding (k->name, scope); if (!value) return 0; for (; value; value = OVL_NEXT (value)) if (add_function (k, OVL_CURRENT (value))) return 1; return 0; } /* Adds everything associated with a template argument to the lookup structure. Returns 1 on error. */ static int arg_assoc_template_arg (k, arg) struct arg_lookup* k; tree arg; { /* [basic.lookup.koenig] If T is a template-id, its associated namespaces and classes are ... the namespaces and classes associated with the types of the template arguments provided for template type parameters (excluding template template parameters); the namespaces in which any template template arguments are defined; and the classes in which any member templates used as template template arguments are defined. [Note: non-type template arguments do not contribute to the set of associated namespaces. ] */ /* Consider first template template arguments. */ if (TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM || TREE_CODE (arg) == UNBOUND_CLASS_TEMPLATE) return 0; else if (TREE_CODE (arg) == TEMPLATE_DECL) { tree ctx = CP_DECL_CONTEXT (arg); /* It's not a member template. */ if (TREE_CODE (ctx) == NAMESPACE_DECL) return arg_assoc_namespace (k, ctx); /* Otherwise, it must be member template. */ else return arg_assoc_class (k, ctx); } /* It's not a template template argument, but it is a type template argument. */ else if (TYPE_P (arg)) return arg_assoc_type (k, arg); /* It's a non-type template argument. */ else return 0; } /* Adds everything associated with class to the lookup structure. Returns 1 on error. */ static int arg_assoc_class (k, type) struct arg_lookup* k; tree type; { tree list, friends, context; int i; /* Backend build structures, such as __builtin_va_list, aren't affected by all this. */ if (!CLASS_TYPE_P (type)) return 0; if (purpose_member (type, k->classes)) return 0; k->classes = tree_cons (type, NULL_TREE, k->classes); context = decl_namespace (TYPE_MAIN_DECL (type)); if (arg_assoc_namespace (k, context)) return 1; /* Process baseclasses. */ for (i = 0; i < CLASSTYPE_N_BASECLASSES (type); i++) if (arg_assoc_class (k, TYPE_BINFO_BASETYPE (type, i))) return 1; /* Process friends. */ for (list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type)); list; list = TREE_CHAIN (list)) if (k->name == TREE_PURPOSE (list)) for (friends = TREE_VALUE (list); friends; friends = TREE_CHAIN (friends)) /* Only interested in global functions with potentially hidden (i.e. unqualified) declarations. */ if (TREE_PURPOSE (friends) == error_mark_node && TREE_VALUE (friends) && decl_namespace (TREE_VALUE (friends)) == context) if (add_function (k, TREE_VALUE (friends))) return 1; /* Process template arguments. */ if (CLASSTYPE_TEMPLATE_INFO (type)) { list = INNERMOST_TEMPLATE_ARGS (CLASSTYPE_TI_ARGS (type)); for (i = 0; i < TREE_VEC_LENGTH (list); ++i) arg_assoc_template_arg (k, TREE_VEC_ELT (list, i)); } return 0; } /* Adds everything associated with a given type. Returns 1 on error. */ static int arg_assoc_type (k, type) struct arg_lookup *k; tree type; { switch (TREE_CODE (type)) { case VOID_TYPE: case INTEGER_TYPE: case REAL_TYPE: case COMPLEX_TYPE: case VECTOR_TYPE: case CHAR_TYPE: case BOOLEAN_TYPE: return 0; case RECORD_TYPE: if (TYPE_PTRMEMFUNC_P (type)) return arg_assoc_type (k, TYPE_PTRMEMFUNC_FN_TYPE (type)); return arg_assoc_class (k, type); case POINTER_TYPE: case REFERENCE_TYPE: case ARRAY_TYPE: return arg_assoc_type (k, TREE_TYPE (type)); case UNION_TYPE: case ENUMERAL_TYPE: return arg_assoc_namespace (k, decl_namespace (TYPE_MAIN_DECL (type))); case OFFSET_TYPE: /* Pointer to member: associate class type and value type. */ if (arg_assoc_type (k, TYPE_OFFSET_BASETYPE (type))) return 1; return arg_assoc_type (k, TREE_TYPE (type)); case METHOD_TYPE: /* The basetype is referenced in the first arg type, so just fall through. */ case FUNCTION_TYPE: /* Associate the parameter types. */ if (arg_assoc_args (k, TYPE_ARG_TYPES (type))) return 1; /* Associate the return type. */ return arg_assoc_type (k, TREE_TYPE (type)); case TEMPLATE_TYPE_PARM: case BOUND_TEMPLATE_TEMPLATE_PARM: return 0; case TYPENAME_TYPE: return 0; case LANG_TYPE: if (type == unknown_type_node) return 0; /* else fall through */ default: abort (); } return 0; } /* Adds everything associated with arguments. Returns 1 on error. */ static int arg_assoc_args (k, args) struct arg_lookup* k; tree args; { for (; args; args = TREE_CHAIN (args)) if (arg_assoc (k, TREE_VALUE (args))) return 1; return 0; } /* Adds everything associated with a given tree_node. Returns 1 on error. */ static int arg_assoc (k, n) struct arg_lookup* k; tree n; { if (n == error_mark_node) return 0; if (TYPE_P (n)) return arg_assoc_type (k, n); if (! type_unknown_p (n)) return arg_assoc_type (k, TREE_TYPE (n)); if (TREE_CODE (n) == ADDR_EXPR) n = TREE_OPERAND (n, 0); if (TREE_CODE (n) == COMPONENT_REF) n = TREE_OPERAND (n, 1); if (TREE_CODE (n) == OFFSET_REF) n = TREE_OPERAND (n, 1); while (TREE_CODE (n) == TREE_LIST) n = TREE_VALUE (n); if (TREE_CODE (n) == BASELINK) n = BASELINK_FUNCTIONS (n); if (TREE_CODE (n) == FUNCTION_DECL) return arg_assoc_type (k, TREE_TYPE (n)); if (TREE_CODE (n) == TEMPLATE_ID_EXPR) { /* [basic.lookup.koenig] If T is a template-id, its associated namespaces and classes are the namespace in which the template is defined; for member templates, the member template's class... */ tree template = TREE_OPERAND (n, 0); tree args = TREE_OPERAND (n, 1); tree ctx; tree arg; if (TREE_CODE (template) == COMPONENT_REF) template = TREE_OPERAND (template, 1); /* First, the template. There may actually be more than one if this is an overloaded function template. But, in that case, we only need the first; all the functions will be in the same namespace. */ template = OVL_CURRENT (template); ctx = CP_DECL_CONTEXT (template); if (TREE_CODE (ctx) == NAMESPACE_DECL) { if (arg_assoc_namespace (k, ctx) == 1) return 1; } /* It must be a member template. */ else if (arg_assoc_class (k, ctx) == 1) return 1; /* Now the arguments. */ for (arg = args; arg != NULL_TREE; arg = TREE_CHAIN (arg)) if (arg_assoc_template_arg (k, TREE_VALUE (arg)) == 1) return 1; } else { my_friendly_assert (TREE_CODE (n) == OVERLOAD, 980715); for (; n; n = OVL_CHAIN (n)) if (arg_assoc_type (k, TREE_TYPE (OVL_FUNCTION (n)))) return 1; } return 0; } /* Performs Koenig lookup depending on arguments, where fns are the functions found in normal lookup. */ tree lookup_arg_dependent (name, fns, args) tree name; tree fns; tree args; { struct arg_lookup k; tree fn = NULL_TREE; k.name = name; k.functions = fns; k.classes = NULL_TREE; /* Note that we've already looked at some namespaces during normal unqualified lookup, unless we found a decl in function scope. */ if (fns) fn = OVL_CURRENT (fns); if (fn && TREE_CODE (fn) == FUNCTION_DECL && DECL_LOCAL_FUNCTION_P (fn)) k.namespaces = NULL_TREE; else unqualified_namespace_lookup (name, 0, &k.namespaces); arg_assoc_args (&k, args); return k.functions; } /* Process a namespace-alias declaration. */ void do_namespace_alias (alias, namespace) tree alias, namespace; { if (TREE_CODE (namespace) != NAMESPACE_DECL) { /* The parser did not find it, so it's not there. */ error ("unknown namespace `%D'", namespace); return; } namespace = ORIGINAL_NAMESPACE (namespace); /* Build the alias. */ alias = build_lang_decl (NAMESPACE_DECL, alias, void_type_node); DECL_NAMESPACE_ALIAS (alias) = namespace; pushdecl (alias); } /* Check a non-member using-declaration. Return the name and scope being used, and the USING_DECL, or NULL_TREE on failure. */ static tree validate_nonmember_using_decl (decl, scope, name) tree decl; tree *scope; tree *name; { if (TREE_CODE (decl) == SCOPE_REF) { *scope = TREE_OPERAND (decl, 0); *name = TREE_OPERAND (decl, 1); if (!processing_template_decl) { /* [namespace.udecl] A using-declaration for a class member shall be a member-declaration. */ if(TREE_CODE (*scope) != NAMESPACE_DECL) { if (TYPE_P (*scope)) error ("`%T' is not a namespace", *scope); else error ("`%D' is not a namespace", *scope); return NULL_TREE; } /* 7.3.3/5 A using-declaration shall not name a template-id. */ if (TREE_CODE (*name) == TEMPLATE_ID_EXPR) { *name = TREE_OPERAND (*name, 0); error ("a using-declaration cannot specify a template-id. Try `using %D'", *name); return NULL_TREE; } } } else if (TREE_CODE (decl) == IDENTIFIER_NODE || TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == TEMPLATE_DECL) { *scope = global_namespace; *name = decl; } else if (TREE_CODE (decl) == NAMESPACE_DECL) { error ("namespace `%D' not allowed in using-declaration", decl); return NULL_TREE; } else abort (); if (DECL_P (*name)) *name = DECL_NAME (*name); /* Make a USING_DECL. */ return push_using_decl (*scope, *name); } /* Process local and global using-declarations. */ static void do_nonmember_using_decl (scope, name, oldval, oldtype, newval, newtype) tree scope, name; tree oldval, oldtype; tree *newval, *newtype; { tree decls; *newval = *newtype = NULL_TREE; decls = make_node (CPLUS_BINDING); if (!qualified_lookup_using_namespace (name, scope, decls, 0)) /* Lookup error */ return; if (!BINDING_VALUE (decls) && !BINDING_TYPE (decls)) { error ("`%D' not declared", name); return; } /* Check for using functions. */ if (BINDING_VALUE (decls) && is_overloaded_fn (BINDING_VALUE (decls))) { tree tmp, tmp1; if (oldval && !is_overloaded_fn (oldval)) { duplicate_decls (OVL_CURRENT (BINDING_VALUE (decls)), oldval); oldval = NULL_TREE; } *newval = oldval; for (tmp = BINDING_VALUE (decls); tmp; tmp = OVL_NEXT (tmp)) { tree new_fn = OVL_CURRENT (tmp); /* [namespace.udecl] If a function declaration in namespace scope or block scope has the same name and the same parameter types as a function introduced by a using declaration the program is ill-formed. */ for (tmp1 = oldval; tmp1; tmp1 = OVL_NEXT (tmp1)) { tree old_fn = OVL_CURRENT (tmp1); if (new_fn == old_fn) /* The function already exists in the current namespace. */ break; else if (OVL_USED (tmp1)) continue; /* this is a using decl */ else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (new_fn)), TYPE_ARG_TYPES (TREE_TYPE (old_fn)))) { /* If this using declaration introduces a function recognized as a built-in, no longer mark it as anticipated in this scope. */ if (DECL_ANTICIPATED (old_fn)) { DECL_ANTICIPATED (old_fn) = 0; break; } /* There was already a non-using declaration in this scope with the same parameter types. If both are the same extern "C" functions, that's ok. */ if (!decls_match (new_fn, old_fn)) error ("`%D' is already declared in this scope", name); break; } } /* If we broke out of the loop, there's no reason to add this function to the using declarations for this scope. */ if (tmp1) continue; *newval = build_overload (OVL_CURRENT (tmp), *newval); if (TREE_CODE (*newval) != OVERLOAD) *newval = ovl_cons (*newval, NULL_TREE); OVL_USED (*newval) = 1; } } else { *newval = BINDING_VALUE (decls); if (oldval) duplicate_decls (*newval, oldval); } *newtype = BINDING_TYPE (decls); if (oldtype && *newtype && oldtype != *newtype) { error ("using declaration `%D' introduced ambiguous type `%T'", name, oldtype); return; } } /* Process a using-declaration not appearing in class or local scope. */ void do_toplevel_using_decl (decl) tree decl; { tree scope, name, binding; tree oldval, oldtype, newval, newtype; decl = validate_nonmember_using_decl (decl, &scope, &name); if (decl == NULL_TREE) return; binding = binding_for_name (name, current_namespace); oldval = BINDING_VALUE (binding); oldtype = BINDING_TYPE (binding); do_nonmember_using_decl (scope, name, oldval, oldtype, &newval, &newtype); /* Copy declarations found. */ if (newval) BINDING_VALUE (binding) = newval; if (newtype) BINDING_TYPE (binding) = newtype; return; } /* Process a using-declaration at function scope. */ void do_local_using_decl (decl) tree decl; { tree scope, name; tree oldval, oldtype, newval, newtype; decl = validate_nonmember_using_decl (decl, &scope, &name); if (decl == NULL_TREE) return; if (building_stmt_tree () && at_function_scope_p ()) add_decl_stmt (decl); oldval = lookup_name_current_level (name); oldtype = lookup_type_current_level (name); do_nonmember_using_decl (scope, name, oldval, oldtype, &newval, &newtype); if (newval) { if (is_overloaded_fn (newval)) { tree fn, term; /* We only need to push declarations for those functions that were not already bound in the current level. The old value might be NULL_TREE, it might be a single function, or an OVERLOAD. */ if (oldval && TREE_CODE (oldval) == OVERLOAD) term = OVL_FUNCTION (oldval); else term = oldval; for (fn = newval; fn && OVL_CURRENT (fn) != term; fn = OVL_NEXT (fn)) push_overloaded_decl (OVL_CURRENT (fn), PUSH_LOCAL | PUSH_USING); } else push_local_binding (name, newval, PUSH_USING); } if (newtype) set_identifier_type_value (name, newtype); } tree do_class_using_decl (decl) tree decl; { tree name, value; if (TREE_CODE (decl) != SCOPE_REF || !TYPE_P (TREE_OPERAND (decl, 0))) { error ("using-declaration for non-member at class scope"); return NULL_TREE; } name = TREE_OPERAND (decl, 1); if (TREE_CODE (name) == BIT_NOT_EXPR) { error ("using-declaration for destructor"); return NULL_TREE; } else if (TREE_CODE (name) == TEMPLATE_ID_EXPR) { name = TREE_OPERAND (name, 0); error ("a using-declaration cannot specify a template-id. Try `using %T::%D'", TREE_OPERAND (decl, 0), name); return NULL_TREE; } if (TREE_CODE (name) == TYPE_DECL || TREE_CODE (name) == TEMPLATE_DECL) name = DECL_NAME (name); else if (BASELINK_P (name)) { name = BASELINK_FUNCTIONS (name); if (TREE_CODE (name) == TEMPLATE_ID_EXPR) name = TREE_OPERAND (name, 0); name = DECL_NAME (get_first_fn (name)); } my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 980716); value = build_lang_decl (USING_DECL, name, void_type_node); DECL_INITIAL (value) = TREE_OPERAND (decl, 0); return value; } /* Process a using-directive. */ void do_using_directive (namespace) tree namespace; { if (building_stmt_tree ()) add_stmt (build_stmt (USING_STMT, namespace)); /* using namespace A::B::C; */ if (TREE_CODE (namespace) == SCOPE_REF) namespace = TREE_OPERAND (namespace, 1); if (TREE_CODE (namespace) == IDENTIFIER_NODE) { /* Lookup in lexer did not find a namespace. */ if (!processing_template_decl) error ("namespace `%T' undeclared", namespace); return; } if (TREE_CODE (namespace) != NAMESPACE_DECL) { if (!processing_template_decl) error ("`%T' is not a namespace", namespace); return; } namespace = ORIGINAL_NAMESPACE (namespace); if (!toplevel_bindings_p ()) push_using_directive (namespace); else /* direct usage */ add_using_namespace (current_namespace, namespace, 0); } void check_default_args (x) tree x; { tree arg = TYPE_ARG_TYPES (TREE_TYPE (x)); int saw_def = 0, i = 0 - (TREE_CODE (TREE_TYPE (x)) == METHOD_TYPE); for (; arg && arg != void_list_node; arg = TREE_CHAIN (arg), ++i) { if (TREE_PURPOSE (arg)) saw_def = 1; else if (saw_def) { cp_error_at ("default argument missing for parameter %P of `%+#D'", i, x); break; } } } void mark_used (decl) tree decl; { TREE_USED (decl) = 1; if (processing_template_decl) return; if (!skip_evaluation) assemble_external (decl); /* Is it a synthesized method that needs to be synthesized? */ if (TREE_CODE (decl) == FUNCTION_DECL && DECL_NONSTATIC_MEMBER_FUNCTION_P (decl) && DECL_ARTIFICIAL (decl) && ! DECL_INITIAL (decl) /* Kludge: don't synthesize for default args. */ && current_function_decl) { synthesize_method (decl); /* If we've already synthesized the method we don't need to instantiate it, so we can return right away. */ return; } /* If this is a function or variable that is an instance of some template, we now know that we will need to actually do the instantiation. We check that DECL is not an explicit instantiation because that is not checked in instantiate_decl. */ if ((DECL_NON_THUNK_FUNCTION_P (decl) || TREE_CODE (decl) == VAR_DECL) && DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl) && (!DECL_EXPLICIT_INSTANTIATION (decl) || (TREE_CODE (decl) == FUNCTION_DECL && DECL_INLINE (decl)))) instantiate_decl (decl, /*defer_ok=*/1); } /* Helper function for class_head_decl and class_head_defn nonterminals. AGGR is the class, union or struct tag. SCOPE is the explicit scope used (NULL for no scope resolution). ID is the name. DEFN_P is true, if this is a definition of the class and NEW_TYPE_P is set to non-zero, if we push into the scope containing the to be defined aggregate. Return a TYPE_DECL for the type declared by ID in SCOPE. */ tree handle_class_head (tag_kind, scope, id, attributes, defn_p, new_type_p) enum tag_types tag_kind; tree scope, id, attributes; int defn_p; int *new_type_p; { tree decl = NULL_TREE; tree current = current_scope (); bool xrefd_p = false; if (current == NULL_TREE) current = current_namespace; *new_type_p = 0; if (scope) { if (TREE_CODE (id) == TYPE_DECL) /* We must bash typedefs back to the main decl of the type. Otherwise we become confused about scopes. */ decl = TYPE_MAIN_DECL (TREE_TYPE (id)); else if (DECL_CLASS_TEMPLATE_P (id)) decl = DECL_TEMPLATE_RESULT (id); else { if (TYPE_P (scope)) { /* According to the suggested resolution of core issue 180, 'typename' is assumed after a class-key. */ decl = make_typename_type (scope, id, tf_error); if (decl != error_mark_node) decl = TYPE_MAIN_DECL (decl); else decl = NULL_TREE; } else if (scope == current) { /* We've been given AGGR SCOPE::ID, when we're already inside SCOPE. Be nice about it. */ if (pedantic) pedwarn ("extra qualification `%T::' on member `%D' ignored", scope, id); } else error ("`%T' does not have a class or union named `%D'", scope, id); } } if (!decl) { decl = TYPE_MAIN_DECL (xref_tag (tag_kind, id, attributes, !defn_p)); xrefd_p = true; } if (!TYPE_BINFO (TREE_TYPE (decl))) { error ("`%T' is not a class or union type", decl); return error_mark_node; } if (defn_p) { /* For a definition, we want to enter the containing scope before looking up any base classes etc. Only do so, if this is different to the current scope. */ tree context = CP_DECL_CONTEXT (decl); *new_type_p = (current != context && TREE_CODE (context) != TEMPLATE_TYPE_PARM && TREE_CODE (context) != BOUND_TEMPLATE_TEMPLATE_PARM); if (*new_type_p) push_scope (context); if (TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE) /* It is valid to define a class with a different class key, and this changes the default member access. */ CLASSTYPE_DECLARED_CLASS (TREE_TYPE (decl)) = (tag_kind == class_type); if (!xrefd_p && PROCESSING_REAL_TEMPLATE_DECL_P ()) decl = push_template_decl (decl); } return decl; } #include "gt-cp-decl2.h"