/* Process declarations and variables for C compiler. Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Process declarations and symbol lookup for C front end. Also constructs types; the standard scalar types at initialization, and structure, union, array and enum types when they are declared. */ /* ??? not all decl nodes are given the most useful possible line numbers. For example, the CONST_DECLs for enum values. */ #include "config.h" #include "system.h" #include "tree.h" #include "rtl.h" #include "expr.h" #include "flags.h" #include "cp-tree.h" #include "decl.h" #include "lex.h" #include "defaults.h" #include "output.h" #include "except.h" #include "toplev.h" #include "../hash.h" #include "ggc.h" #include "tm_p.h" extern int current_class_depth; extern tree global_namespace; extern int (*valid_lang_attribute) PARAMS ((tree, tree, tree, tree)); #ifndef BOOL_TYPE_SIZE #ifdef SLOW_BYTE_ACCESS /* In the new ABI, `bool' has size and alignment `1', on all platforms. */ #define BOOL_TYPE_SIZE \ ((SLOW_BYTE_ACCESS && !flag_new_abi) ? (POINTER_SIZE) : (CHAR_TYPE_SIZE)) #else #define BOOL_TYPE_SIZE CHAR_TYPE_SIZE #endif #endif static tree grokparms PARAMS ((tree)); static const char *redeclaration_error_message PARAMS ((tree, tree)); static void push_binding_level PARAMS ((struct binding_level *, int, int)); static void pop_binding_level PARAMS ((void)); static void suspend_binding_level PARAMS ((void)); static void resume_binding_level PARAMS ((struct binding_level *)); static struct binding_level *make_binding_level PARAMS ((void)); static void declare_namespace_level PARAMS ((void)); static int decl_jump_unsafe PARAMS ((tree)); static void storedecls PARAMS ((tree)); static void require_complete_types_for_parms PARAMS ((tree)); static int ambi_op_p PARAMS ((enum tree_code)); static int unary_op_p PARAMS ((enum tree_code)); static tree store_bindings PARAMS ((tree, tree)); static tree lookup_tag_reverse PARAMS ((tree, tree)); static tree obscure_complex_init PARAMS ((tree, tree)); static tree lookup_name_real PARAMS ((tree, int, int, int)); static void warn_extern_redeclared_static PARAMS ((tree, tree)); static void grok_reference_init PARAMS ((tree, tree, tree)); static tree grokfndecl PARAMS ((tree, tree, tree, tree, int, enum overload_flags, tree, tree, int, int, int, int, int, int, tree)); static tree grokvardecl PARAMS ((tree, tree, RID_BIT_TYPE *, int, int, tree)); static tree lookup_tag PARAMS ((enum tree_code, tree, struct binding_level *, int)); static void set_identifier_type_value_with_scope PARAMS ((tree, tree, struct binding_level *)); static void record_unknown_type PARAMS ((tree, const char *)); static tree build_library_fn_1 PARAMS ((tree, enum tree_code, tree)); static int member_function_or_else PARAMS ((tree, tree, enum overload_flags)); static void bad_specifiers PARAMS ((tree, const char *, int, int, int, int, int)); static tree maybe_process_template_type_declaration PARAMS ((tree, int, struct binding_level*)); static void check_for_uninitialized_const_var PARAMS ((tree)); static unsigned long typename_hash PARAMS ((hash_table_key)); static boolean typename_compare PARAMS ((hash_table_key, hash_table_key)); static void push_binding PARAMS ((tree, tree, struct binding_level*)); static int add_binding PARAMS ((tree, tree)); static void pop_binding PARAMS ((tree, tree)); static tree local_variable_p_walkfn PARAMS ((tree *, int *, void *)); static tree find_binding PARAMS ((tree, tree)); static tree select_decl PARAMS ((tree, int)); static int lookup_flags PARAMS ((int, int)); static tree qualify_lookup PARAMS ((tree, int)); static tree record_builtin_java_type PARAMS ((const char *, int)); static const char *tag_name PARAMS ((enum tag_types code)); static void find_class_binding_level PARAMS ((void)); static struct binding_level *innermost_nonclass_level PARAMS ((void)); static void warn_about_implicit_typename_lookup PARAMS ((tree, tree)); static int walk_namespaces_r PARAMS ((tree, walk_namespaces_fn, void *)); static int walk_globals_r PARAMS ((tree, void *)); static void add_decl_to_level PARAMS ((tree, struct binding_level *)); static tree make_label_decl PARAMS ((tree, int)); static void use_label PARAMS ((tree)); static void check_previous_goto_1 PARAMS ((tree, struct binding_level *, tree, const char *, int)); static void check_previous_goto PARAMS ((struct named_label_use_list *)); static void check_switch_goto PARAMS ((struct binding_level *)); static void check_previous_gotos PARAMS ((tree)); static void pop_label PARAMS ((tree, tree)); static void pop_labels PARAMS ((tree)); static void maybe_deduce_size_from_array_init PARAMS ((tree, tree)); static void layout_var_decl PARAMS ((tree)); static void maybe_commonize_var PARAMS ((tree)); static tree check_initializer PARAMS ((tree, tree)); static void make_rtl_for_nonlocal_decl PARAMS ((tree, tree, const char *)); static void push_cp_function_context PARAMS ((struct function *)); static void pop_cp_function_context PARAMS ((struct function *)); static void mark_binding_level PARAMS ((void *)); static void mark_named_label_lists PARAMS ((void *, void *)); static void mark_cp_function_context PARAMS ((struct function *)); static void mark_saved_scope PARAMS ((void *)); static void mark_lang_function PARAMS ((struct cp_language_function *)); static void save_function_data PARAMS ((tree)); static void check_function_type PARAMS ((tree, tree)); static void destroy_local_var PARAMS ((tree)); static void finish_constructor_body PARAMS ((void)); static void finish_destructor_body PARAMS ((void)); static tree create_array_type_for_decl PARAMS ((tree, tree, tree)); static tree get_atexit_node PARAMS ((void)); static tree get_dso_handle_node PARAMS ((void)); static tree start_cleanup_fn PARAMS ((void)); static void end_cleanup_fn PARAMS ((void)); static tree cp_make_fname_decl PARAMS ((tree, const char *, int)); static void initialize_predefined_identifiers PARAMS ((void)); static tree check_special_function_return_type PARAMS ((special_function_kind, tree, tree, tree)); static tree push_cp_library_fn PARAMS ((enum tree_code, tree)); static tree build_cp_library_fn PARAMS ((tree, enum tree_code, tree)); static void store_parm_decls PARAMS ((tree)); static int cp_missing_noreturn_ok_p PARAMS ((tree)); #if defined (DEBUG_CP_BINDING_LEVELS) static void indent PARAMS ((void)); #endif /* Erroneous argument lists can use this *IFF* they do not modify it. */ tree error_mark_list; /* The following symbols are subsumed in the cp_global_trees array, and listed here individually for documentation purposes. C++ extensions tree wchar_decl_node; tree vtable_entry_type; tree delta_type_node; #if 0 Old rtti stuff. tree __baselist_desc_type_node; tree __i_desc_type_node, __m_desc_type_node; tree __t_desc_array_type, __i_desc_array_type, __m_desc_array_type; #endif tree __t_desc_type_node; #if 0 tree __tp_desc_type_node; #endif tree ti_desc_type_node; tree bltn_desc_type_node, ptr_desc_type_node; tree ary_desc_type_node, func_desc_type_node, enum_desc_type_node; tree class_desc_type_node, si_class_desc_type_node, vmi_class_desc_type_node; tree ptm_desc_type_node; tree base_desc_type_node; #if 0 Not needed yet? May be needed one day? tree __bltn_desc_array_type, __user_desc_array_type, __class_desc_array_type; tree __ptr_desc_array_type, __attr_dec_array_type, __func_desc_array_type; tree __ptmf_desc_array_type, __ptmd_desc_array_type; #endif tree class_type_node, record_type_node, union_type_node, enum_type_node; tree unknown_type_node; Array type `vtable_entry_type[]' tree vtbl_type_node; tree vtbl_ptr_type_node; Namespaces, tree std_node; tree abi_node; A FUNCTION_DECL which can call `abort'. Not necessarily the one that the user will declare, but sufficient to be called by routines that want to abort the program. tree abort_fndecl; The FUNCTION_DECL for the default `::operator delete'. tree global_delete_fndecl; Used by RTTI tree type_info_type_node, tinfo_decl_id, tinfo_decl_type; tree tinfo_var_id; */ tree cp_global_trees[CPTI_MAX]; /* Indicates that there is a type value in some namespace, although that is not necessarily in scope at the moment. */ static tree global_type_node; /* If non-zero, this is the number of times we have entered the `std' namespace when we are treating that namespace as an alias for the global namespace. */ static int in_fake_std; /* Expect only namespace names now. */ static int only_namespace_names; /* Used only for jumps to as-yet undefined labels, since jumps to defined labels can have their validity checked immediately. */ struct named_label_use_list { struct binding_level *binding_level; tree names_in_scope; tree label_decl; const char *filename_o_goto; int lineno_o_goto; struct named_label_use_list *next; }; #define named_label_uses cp_function_chain->x_named_label_uses /* A list of objects which have constructors or destructors which reside in the global scope. The decl is stored in the TREE_VALUE slot and the initializer is stored in the TREE_PURPOSE slot. */ tree static_aggregates; /* -- end of C++ */ /* A node for the integer constants 2, and 3. */ tree integer_two_node, integer_three_node; /* Parsing a function declarator leaves here a chain of structure and enum types declared in the parmlist. */ static tree last_function_parm_tags; /* Similar, for last_function_parm_tags. */ tree last_function_parms; static tree current_function_parm_tags; /* A list of all LABEL_DECLs in the function that have names. Here so we can clear out their names' definitions at the end of the function, and so we can check the validity of jumps to these labels. */ struct named_label_list { struct binding_level *binding_level; tree names_in_scope; tree old_value; tree label_decl; tree bad_decls; int eh_region; struct named_label_list *next; }; #define named_labels cp_function_chain->x_named_labels /* Set to 0 at beginning of a function definition, and whenever a label (case or named) is defined. Set to value of expression returned from function when that value can be transformed into a named return value. */ tree current_function_return_value; /* Nonzero means use the ISO C94 dialect of C. */ int flag_isoc94; /* Nonzero means use the ISO C99 dialect of C. */ int flag_isoc99; /* Nonzero means we are a hosted implementation for code shared with C. */ int flag_hosted = 1; /* Nonzero means add default format_arg attributes for functions not in ISO C. */ int flag_noniso_default_format_attributes = 1; /* Nonzero if we want to conserve space in the .o files. We do this by putting uninitialized data and runtime initialized data into .common instead of .data at the expense of not flagging multiple definitions. */ extern int flag_conserve_space; /* C and C++ flags are in decl2.c. */ /* Flag used when debugging spew.c */ extern int spew_debug; /* A expression of value 0 with the same precision as a sizetype node, but signed. */ tree signed_size_zero_node; /* The name of the anonymous namespace, throughout this translation unit. */ tree anonymous_namespace_name; /* The number of function bodies which we are currently processing. (Zero if we are at namespace scope, one inside the body of a function, two inside the body of a function in a local class, etc.) */ int function_depth; /* For each binding contour we allocate a binding_level structure which records the names defined in that contour. Contours include: 0) the global one 1) one for each function definition, where internal declarations of the parameters appear. 2) one for each compound statement, to record its declarations. The current meaning of a name can be found by searching the levels from the current one out to the global one. Off to the side, may be the class_binding_level. This exists only to catch class-local declarations. It is otherwise nonexistent. Also there may be binding levels that catch cleanups that must be run when exceptions occur. Thus, to see whether a name is bound in the current scope, it is not enough to look in the CURRENT_BINDING_LEVEL. You should use lookup_name_current_level instead. */ /* Note that the information in the `names' component of the global contour is duplicated in the IDENTIFIER_GLOBAL_VALUEs of all identifiers. */ struct binding_level { /* A chain of _DECL nodes for all variables, constants, functions, and typedef types. These are in the reverse of the order supplied. There may be OVERLOADs on this list, too, but they are wrapped in TREE_LISTs; the TREE_VALUE is the OVERLOAD. */ tree names; /* A list of structure, union and enum definitions, for looking up tag names. It is a chain of TREE_LIST nodes, each of whose TREE_PURPOSE is a name, or NULL_TREE; and whose TREE_VALUE is a RECORD_TYPE, UNION_TYPE, or ENUMERAL_TYPE node. C++: the TREE_VALUE nodes can be simple types for component_bindings. */ tree tags; /* A list of USING_DECL nodes. */ tree usings; /* A list of used namespaces. PURPOSE is the namespace, VALUE the common ancestor with this binding_level's namespace. */ tree using_directives; /* If this binding level is the binding level for a class, then class_shadowed is a TREE_LIST. The TREE_PURPOSE of each node is the name of an entity bound in the class. The TREE_TYPE is the DECL bound by this name in the class. */ tree class_shadowed; /* Similar to class_shadowed, but for IDENTIFIER_TYPE_VALUE, and is used for all binding levels. In addition the TREE_VALUE is the IDENTIFIER_TYPE_VALUE before we entered the class. */ tree type_shadowed; /* A TREE_LIST. Each TREE_VALUE is the LABEL_DECL for a local label in this scope. The TREE_PURPOSE is the previous value of the IDENTIFIER_LABEL VALUE. */ tree shadowed_labels; /* For each level (except not the global one), a chain of BLOCK nodes for all the levels that were entered and exited one level down. */ tree blocks; /* The _TYPE node for this level, if parm_flag == 2. */ tree this_class; /* The binding level which this one is contained in (inherits from). */ struct binding_level *level_chain; /* List of decls in `names' that have incomplete structure or union types. */ tree incomplete; /* List of VAR_DECLS saved from a previous for statement. These would be dead in ISO-conforming code, but might be referenced in ARM-era code. These are stored in a TREE_LIST; the TREE_VALUE is the actual declaration. */ tree dead_vars_from_for; /* 1 for the level that holds the parameters of a function. 2 for the level that holds a class declaration. */ unsigned parm_flag : 2; /* 1 means make a BLOCK for this level regardless of all else. 2 for temporary binding contours created by the compiler. */ unsigned keep : 2; /* Nonzero if this level "doesn't exist" for tags. */ unsigned tag_transparent : 1; /* Nonzero if this level can safely have additional cleanup-needing variables added to it. */ unsigned more_cleanups_ok : 1; unsigned have_cleanups : 1; /* Nonzero if this scope is for storing the decls for template parameters and generic decls; these decls will be discarded and replaced with a TEMPLATE_DECL. */ unsigned template_parms_p : 1; /* Nonzero if this scope corresponds to the `<>' in a `template <>' clause. Whenever this flag is set, TEMPLATE_PARMS_P will be set as well. */ unsigned template_spec_p : 1; /* This is set for a namespace binding level. */ unsigned namespace_p : 1; /* True if this level is that of a for-statement where we need to worry about ambiguous (ARM or ISO) scope rules. */ unsigned is_for_scope : 1; /* True if this level corresponds to an EH region, as for a try block. Currently this information is only available while building the tree structure. */ unsigned eh_region : 1; /* Four bits left for this word. */ #if defined(DEBUG_CP_BINDING_LEVELS) /* Binding depth at which this level began. */ unsigned binding_depth; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ }; #define NULL_BINDING_LEVEL ((struct binding_level *) NULL) /* The binding level currently in effect. */ #define current_binding_level \ (cfun \ ? cp_function_chain->bindings \ : scope_chain->bindings) /* The binding level of the current class, if any. */ #define class_binding_level scope_chain->class_bindings /* A chain of binding_level structures awaiting reuse. */ static struct binding_level *free_binding_level; /* The outermost binding level, for names of file scope. This is created when the compiler is started and exists through the entire run. */ static struct binding_level *global_binding_level; /* Nonzero means unconditionally make a BLOCK for the next level pushed. */ static int keep_next_level_flag; #if defined(DEBUG_CP_BINDING_LEVELS) static int binding_depth = 0; static int is_class_level = 0; static void indent () { register unsigned i; for (i = 0; i < binding_depth*2; i++) putc (' ', stderr); } #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ static tree pushdecl_with_scope PARAMS ((tree, struct binding_level *)); static void push_binding_level (newlevel, tag_transparent, keep) struct binding_level *newlevel; int tag_transparent, keep; { /* Add this level to the front of the chain (stack) of levels that are active. */ memset ((char*) newlevel, 0, sizeof (struct binding_level)); newlevel->level_chain = current_binding_level; current_binding_level = newlevel; newlevel->tag_transparent = tag_transparent; newlevel->more_cleanups_ok = 1; newlevel->keep = keep; #if defined(DEBUG_CP_BINDING_LEVELS) newlevel->binding_depth = binding_depth; indent (); fprintf (stderr, "push %s level 0x%08x line %d\n", (is_class_level) ? "class" : "block", newlevel, lineno); is_class_level = 0; binding_depth++; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ } /* Find the innermost enclosing class scope, and reset CLASS_BINDING_LEVEL appropriately. */ static void find_class_binding_level () { struct binding_level *level = current_binding_level; while (level && level->parm_flag != 2) level = level->level_chain; if (level && level->parm_flag == 2) class_binding_level = level; else class_binding_level = 0; } static void pop_binding_level () { if (global_binding_level) { /* Cannot pop a level, if there are none left to pop. */ if (current_binding_level == global_binding_level) my_friendly_abort (123); } /* Pop the current level, and free the structure for reuse. */ #if defined(DEBUG_CP_BINDING_LEVELS) binding_depth--; indent (); fprintf (stderr, "pop %s level 0x%08x line %d\n", (is_class_level) ? "class" : "block", current_binding_level, lineno); if (is_class_level != (current_binding_level == class_binding_level)) { indent (); fprintf (stderr, "XXX is_class_level != (current_binding_level == class_binding_level)\n"); } is_class_level = 0; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ { register struct binding_level *level = current_binding_level; current_binding_level = current_binding_level->level_chain; level->level_chain = free_binding_level; #if 0 /* defined(DEBUG_CP_BINDING_LEVELS) */ if (level->binding_depth != binding_depth) abort (); #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ free_binding_level = level; find_class_binding_level (); } } static void suspend_binding_level () { if (class_binding_level) current_binding_level = class_binding_level; if (global_binding_level) { /* Cannot suspend a level, if there are none left to suspend. */ if (current_binding_level == global_binding_level) my_friendly_abort (123); } /* Suspend the current level. */ #if defined(DEBUG_CP_BINDING_LEVELS) binding_depth--; indent (); fprintf (stderr, "suspend %s level 0x%08x line %d\n", (is_class_level) ? "class" : "block", current_binding_level, lineno); if (is_class_level != (current_binding_level == class_binding_level)) { indent (); fprintf (stderr, "XXX is_class_level != (current_binding_level == class_binding_level)\n"); } is_class_level = 0; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ current_binding_level = current_binding_level->level_chain; find_class_binding_level (); } static void resume_binding_level (b) struct binding_level *b; { /* Resuming binding levels is meant only for namespaces, and those cannot nest into classes. */ my_friendly_assert(!class_binding_level, 386); /* Also, resuming a non-directly nested namespace is a no-no. */ my_friendly_assert(b->level_chain == current_binding_level, 386); current_binding_level = b; #if defined(DEBUG_CP_BINDING_LEVELS) b->binding_depth = binding_depth; indent (); fprintf (stderr, "resume %s level 0x%08x line %d\n", (is_class_level) ? "class" : "block", b, lineno); is_class_level = 0; binding_depth++; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ } /* Create a new `struct binding_level'. */ static struct binding_level * make_binding_level () { /* NOSTRICT */ return (struct binding_level *) xmalloc (sizeof (struct binding_level)); } /* Nonzero if we are currently in the global binding level. */ int global_bindings_p () { return current_binding_level == global_binding_level; } /* Return the innermost binding level that is not for a class scope. */ static struct binding_level * innermost_nonclass_level () { struct binding_level *b; b = current_binding_level; while (b->parm_flag == 2) b = b->level_chain; return b; } /* Nonzero if we are currently in a toplevel binding level. This means either the global binding level or a namespace in a toplevel binding level. Since there are no non-toplevel namespace levels, this really means any namespace or template parameter level. We also include a class whose context is toplevel. */ int toplevel_bindings_p () { struct binding_level *b = innermost_nonclass_level (); return b->namespace_p || b->template_parms_p; } /* Nonzero if this is a namespace scope, or if we are defining a class which is itself at namespace scope, or whose enclosing class is such a class, etc. */ int namespace_bindings_p () { struct binding_level *b = innermost_nonclass_level (); return b->namespace_p; } /* If KEEP is non-zero, make a BLOCK node for the next binding level, unconditionally. Otherwise, use the normal logic to decide whether or not to create a BLOCK. */ void keep_next_level (keep) int keep; { keep_next_level_flag = keep; } /* Nonzero if the current level needs to have a BLOCK made. */ int kept_level_p () { return (current_binding_level->blocks != NULL_TREE || current_binding_level->keep || current_binding_level->names != NULL_TREE || (current_binding_level->tags != NULL_TREE && !current_binding_level->tag_transparent)); } static void declare_namespace_level () { current_binding_level->namespace_p = 1; } /* Returns non-zero if this scope was created to store template parameters. */ int template_parm_scope_p () { return current_binding_level->template_parms_p; } /* Returns the kind of template specialization we are currently processing, given that it's declaration contained N_CLASS_SCOPES explicit scope qualifications. */ tmpl_spec_kind current_tmpl_spec_kind (n_class_scopes) int n_class_scopes; { int n_template_parm_scopes = 0; int seen_specialization_p = 0; int innermost_specialization_p = 0; struct binding_level *b; /* Scan through the template parameter scopes. */ for (b = current_binding_level; b->template_parms_p; b = b->level_chain) { /* If we see a specialization scope inside a parameter scope, then something is wrong. That corresponds to a declaration like: template template <> ... which is always illegal since [temp.expl.spec] forbids the specialization of a class member template if the enclosing class templates are not explicitly specialized as well. */ if (b->template_spec_p) { if (n_template_parm_scopes == 0) innermost_specialization_p = 1; else seen_specialization_p = 1; } else if (seen_specialization_p == 1) return tsk_invalid_member_spec; ++n_template_parm_scopes; } /* Handle explicit instantiations. */ if (processing_explicit_instantiation) { if (n_template_parm_scopes != 0) /* We've seen a template parameter list during an explicit instantiation. For example: template template void f(int); This is erroneous. */ return tsk_invalid_expl_inst; else return tsk_expl_inst; } if (n_template_parm_scopes < n_class_scopes) /* We've not seen enough template headers to match all the specialized classes present. For example: template void R::S::f(int); This is illegal; there needs to be one set of template parameters for each class. */ return tsk_insufficient_parms; else if (n_template_parm_scopes == n_class_scopes) /* We're processing a non-template declaration (even though it may be a member of a template class.) For example: template void S::f(int); The `class T' maches the `S', leaving no template headers corresponding to the `f'. */ return tsk_none; else if (n_template_parm_scopes > n_class_scopes + 1) /* We've got too many template headers. For example: template <> template void f (T); There need to be more enclosing classes. */ return tsk_excessive_parms; else /* This must be a template. It's of the form: template template void S::f(U); This is a specialization if the innermost level was a specialization; otherwise it's just a definition of the template. */ return innermost_specialization_p ? tsk_expl_spec : tsk_template; } void set_class_shadows (shadows) tree shadows; { class_binding_level->class_shadowed = shadows; } /* Enter a new binding level. If TAG_TRANSPARENT is nonzero, do so only for the name space of variables, not for that of tags. */ void pushlevel (tag_transparent) int tag_transparent; { struct binding_level *newlevel; if (cfun && !doing_semantic_analysis_p ()) return; /* Reuse or create a struct for this binding level. */ #if defined(DEBUG_CP_BINDING_LEVELS) if (0) #else /* !defined(DEBUG_CP_BINDING_LEVELS) */ if (free_binding_level) #endif /* !defined(DEBUG_CP_BINDING_LEVELS) */ { newlevel = free_binding_level; free_binding_level = free_binding_level->level_chain; } else newlevel = make_binding_level (); push_binding_level (newlevel, tag_transparent, keep_next_level_flag); GNU_xref_start_scope ((HOST_WIDE_INT) newlevel); keep_next_level_flag = 0; } /* Enter a new scope. The KIND indicates what kind of scope is being created. */ void begin_scope (sk) scope_kind sk; { pushlevel (0); switch (sk) { case sk_template_spec: current_binding_level->template_spec_p = 1; /* Fall through. */ case sk_template_parms: current_binding_level->template_parms_p = 1; break; default: my_friendly_abort (20000309); } } /* Exit the current scope. */ void finish_scope () { poplevel (0, 0, 0); } void note_level_for_for () { current_binding_level->is_for_scope = 1; } /* Record that the current binding level represents a try block. */ void note_level_for_eh () { current_binding_level->eh_region = 1; } /* For a binding between a name and an entity at a block scope, this is the `struct binding_level' for the block. */ #define BINDING_LEVEL(NODE) \ (((struct tree_binding*)NODE)->scope.level) /* A free list of CPLUS_BINDING nodes, connected by their TREE_CHAINs. */ static tree free_bindings; /* Make DECL the innermost binding for ID. The LEVEL is the binding level at which this declaration is being bound. */ static void push_binding (id, decl, level) tree id; tree decl; struct binding_level* level; { tree binding; if (free_bindings) { binding = free_bindings; free_bindings = TREE_CHAIN (binding); } else binding = make_node (CPLUS_BINDING); /* Now, fill in the binding information. */ BINDING_VALUE (binding) = decl; BINDING_TYPE (binding) = NULL_TREE; BINDING_LEVEL (binding) = level; INHERITED_VALUE_BINDING_P (binding) = 0; LOCAL_BINDING_P (binding) = (level != class_binding_level); BINDING_HAS_LEVEL_P (binding) = 1; /* And put it on the front of the list of bindings for ID. */ TREE_CHAIN (binding) = IDENTIFIER_BINDING (id); IDENTIFIER_BINDING (id) = binding; } /* ID is already bound in the current scope. But, DECL is an additional binding for ID in the same scope. This is the `struct stat' hack whereby a non-typedef class-name or enum-name can be bound at the same level as some other kind of entity. It's the responsibility of the caller to check that inserting this name is legal here. Returns nonzero if the new binding was successful. */ static int add_binding (id, decl) tree id; tree decl; { tree binding = IDENTIFIER_BINDING (id); int ok = 1; if (TREE_CODE (decl) == TYPE_DECL && DECL_ARTIFICIAL (decl)) /* The new name is the type name. */ BINDING_TYPE (binding) = decl; else if (!BINDING_VALUE (binding)) /* This situation arises when push_class_level_binding moves an inherited type-binding out of the way to make room for a new value binding. */ BINDING_VALUE (binding) = decl; else if (TREE_CODE (BINDING_VALUE (binding)) == TYPE_DECL && DECL_ARTIFICIAL (BINDING_VALUE (binding))) { /* The old binding was a type name. It was placed in BINDING_VALUE because it was thought, at the point it was declared, to be the only entity with such a name. Move the type name into the type slot; it is now hidden by the new binding. */ BINDING_TYPE (binding) = BINDING_VALUE (binding); BINDING_VALUE (binding) = decl; INHERITED_VALUE_BINDING_P (binding) = 0; } else if (TREE_CODE (BINDING_VALUE (binding)) == TYPE_DECL && TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl) == DECL_NAME (BINDING_VALUE (binding)) && same_type_p (TREE_TYPE (decl), TREE_TYPE (BINDING_VALUE (binding)))) /* We have two typedef-names, both naming the same type to have the same name. This is OK because of: [dcl.typedef] In a given scope, a typedef specifier can be used to redefine the name of any type declared in that scope to refer to the type to which it already refers. */ ok = 0; /* There can be two block-scope declarations of the same variable, so long as they are `extern' declarations. */ else if (TREE_CODE (decl) == VAR_DECL && TREE_CODE (BINDING_VALUE (binding)) == VAR_DECL && DECL_EXTERNAL (decl) && DECL_EXTERNAL (BINDING_VALUE (binding))) { duplicate_decls (decl, BINDING_VALUE (binding)); ok = 0; } else { cp_error ("declaration of `%#D'", decl); cp_error_at ("conflicts with previous declaration `%#D'", BINDING_VALUE (binding)); ok = 0; } return ok; } /* Add DECL to the list of things declared in B. */ static void add_decl_to_level (decl, b) tree decl; struct binding_level *b; { /* We build up the list in reverse order, and reverse it later if necessary. */ TREE_CHAIN (decl) = b->names; b->names = decl; } /* Bind DECL to ID in the current_binding_level, assumed to be a local binding level. If PUSH_USING is set in FLAGS, we know that DECL doesn't really belong to this binding level, that it got here through a using-declaration. */ void push_local_binding (id, decl, flags) tree id; tree decl; int flags; { struct binding_level *b; /* Skip over any local classes. This makes sense if we call push_local_binding with a friend decl of a local class. */ b = current_binding_level; while (b->parm_flag == 2) b = b->level_chain; if (lookup_name_current_level (id)) { /* Supplement the existing binding. */ if (!add_binding (id, decl)) /* It didn't work. Something else must be bound at this level. Do not add DECL to the list of things to pop later. */ return; } else /* Create a new binding. */ push_binding (id, decl, b); if (TREE_CODE (decl) == OVERLOAD || (flags & PUSH_USING)) /* We must put the OVERLOAD into a TREE_LIST since the TREE_CHAIN of an OVERLOAD is already used. Similarly for decls that got here through a using-declaration. */ decl = build_tree_list (NULL_TREE, decl); /* And put DECL on the list of things declared by the current binding level. */ add_decl_to_level (decl, b); } /* Bind DECL to ID in the class_binding_level. Returns nonzero if the binding was successful. */ int push_class_binding (id, decl) tree id; tree decl; { int result = 1; tree binding = IDENTIFIER_BINDING (id); tree context; /* Note that we declared this value so that we can issue an error if this an illegal redeclaration of a name already used for some other purpose. */ note_name_declared_in_class (id, decl); if (binding && BINDING_LEVEL (binding) == class_binding_level) /* Supplement the existing binding. */ result = add_binding (id, decl); else /* Create a new binding. */ push_binding (id, decl, class_binding_level); /* Update the IDENTIFIER_CLASS_VALUE for this ID to be the class-level declaration. Note that we do not use DECL here because of the possibility of the `struct stat' hack; if DECL is a class-name or enum-name we might prefer a field-name, or some such. */ IDENTIFIER_CLASS_VALUE (id) = BINDING_VALUE (IDENTIFIER_BINDING (id)); /* If this is a binding from a base class, mark it as such. */ binding = IDENTIFIER_BINDING (id); if (BINDING_VALUE (binding) == decl && TREE_CODE (decl) != TREE_LIST) { /* Any implicit typename must be from a base-class. The context for an implicit typename declaration is always the derived class in which the lookup was done, so the checks based on the context of DECL below will not trigger. */ if (IMPLICIT_TYPENAME_TYPE_DECL_P (decl)) INHERITED_VALUE_BINDING_P (binding) = 1; else { if (TREE_CODE (decl) == OVERLOAD) context = CP_DECL_CONTEXT (OVL_CURRENT (decl)); else { my_friendly_assert (DECL_P (decl), 0); context = CP_DECL_CONTEXT (decl); } if (is_properly_derived_from (current_class_type, context)) INHERITED_VALUE_BINDING_P (binding) = 1; else INHERITED_VALUE_BINDING_P (binding) = 0; } } else if (BINDING_VALUE (binding) == decl) /* We only encounter a TREE_LIST when push_class_decls detects an ambiguity. Such an ambiguity can be overridden by a definition in this class. */ INHERITED_VALUE_BINDING_P (binding) = 1; return result; } /* Remove the binding for DECL which should be the innermost binding for ID. */ static void pop_binding (id, decl) tree id; tree decl; { tree binding; if (id == NULL_TREE) /* It's easiest to write the loops that call this function without checking whether or not the entities involved have names. We get here for such an entity. */ return; /* Get the innermost binding for ID. */ binding = IDENTIFIER_BINDING (id); /* The name should be bound. */ my_friendly_assert (binding != NULL_TREE, 0); /* The DECL will be either the ordinary binding or the type binding for this identifier. Remove that binding. */ if (BINDING_VALUE (binding) == decl) BINDING_VALUE (binding) = NULL_TREE; else if (BINDING_TYPE (binding) == decl) BINDING_TYPE (binding) = NULL_TREE; else my_friendly_abort (0); if (!BINDING_VALUE (binding) && !BINDING_TYPE (binding)) { /* We're completely done with the innermost binding for this identifier. Unhook it from the list of bindings. */ IDENTIFIER_BINDING (id) = TREE_CHAIN (binding); /* Add it to the free list. */ TREE_CHAIN (binding) = free_bindings; free_bindings = binding; /* Clear the BINDING_LEVEL so the garbage collector doesn't walk it. */ BINDING_LEVEL (binding) = NULL; } } /* When a label goes out of scope, check to see if that label was used in a valid manner, and issue any appropriate warnings or errors. */ static void pop_label (label, old_value) tree label; tree old_value; { if (!processing_template_decl && doing_semantic_analysis_p ()) { if (DECL_INITIAL (label) == NULL_TREE) { cp_error_at ("label `%D' used but not defined", label); /* Avoid crashing later. */ define_label (input_filename, 1, DECL_NAME (label)); } else if (warn_unused_label && !TREE_USED (label)) cp_warning_at ("label `%D' defined but not used", label); } SET_IDENTIFIER_LABEL_VALUE (DECL_NAME (label), old_value); } /* At the end of a function, all labels declared within the function go out of scope. BLOCK is the top-level block for the function. */ static void pop_labels (block) tree block; { struct named_label_list *link; /* Clear out the definitions of all label names, since their scopes end here. */ for (link = named_labels; link; link = link->next) { pop_label (link->label_decl, link->old_value); /* Put the labels into the "variables" of the top-level block, so debugger can see them. */ TREE_CHAIN (link->label_decl) = BLOCK_VARS (block); BLOCK_VARS (block) = link->label_decl; } named_labels = NULL; } /* Exit a binding level. Pop the level off, and restore the state of the identifier-decl mappings that were in effect when this level was entered. If KEEP == 1, this level had explicit declarations, so and create a "block" (a BLOCK node) for the level to record its declarations and subblocks for symbol table output. If FUNCTIONBODY is nonzero, this level is the body of a function, so create a block as if KEEP were set and also clear out all label names. If REVERSE is nonzero, reverse the order of decls before putting them into the BLOCK. */ tree poplevel (keep, reverse, functionbody) int keep; int reverse; int functionbody; { register tree link; /* The chain of decls was accumulated in reverse order. Put it into forward order, just for cleanliness. */ tree decls; int tmp = functionbody; int real_functionbody; tree tags; tree subblocks; tree block = NULL_TREE; tree decl; int leaving_for_scope; if (cfun && !doing_semantic_analysis_p ()) return NULL_TREE; my_friendly_assert (current_binding_level->parm_flag != 2, 19990916); real_functionbody = (current_binding_level->keep == 2 ? ((functionbody = 0), tmp) : functionbody); tags = functionbody >= 0 ? current_binding_level->tags : 0; subblocks = functionbody >= 0 ? current_binding_level->blocks : 0; my_friendly_assert (!current_binding_level->class_shadowed, 19990414); /* We used to use KEEP == 2 to indicate that the new block should go at the beginning of the list of blocks at this binding level, rather than the end. This hack is no longer used. */ my_friendly_assert (keep == 0 || keep == 1, 0); GNU_xref_end_scope ((HOST_WIDE_INT) current_binding_level, (HOST_WIDE_INT) current_binding_level->level_chain, current_binding_level->parm_flag, current_binding_level->keep); if (current_binding_level->keep == 1) keep = 1; /* Any uses of undefined labels, and any defined labels, now operate under constraints of next binding contour. */ if (cfun && !functionbody) { struct binding_level *level_chain; level_chain = current_binding_level->level_chain; if (level_chain) { struct named_label_use_list *uses; struct named_label_list *labels; for (labels = named_labels; labels; labels = labels->next) if (labels->binding_level == current_binding_level) { tree decl; if (current_binding_level->eh_region) labels->eh_region = 1; for (decl = labels->names_in_scope; decl; decl = TREE_CHAIN (decl)) if (decl_jump_unsafe (decl)) labels->bad_decls = tree_cons (NULL_TREE, decl, labels->bad_decls); labels->binding_level = level_chain; labels->names_in_scope = level_chain->names; } for (uses = named_label_uses; uses; uses = uses->next) if (uses->binding_level == current_binding_level) { uses->binding_level = level_chain; uses->names_in_scope = level_chain->names; } } } /* Get the decls in the order they were written. Usually current_binding_level->names is in reverse order. But parameter decls were previously put in forward order. */ if (reverse) current_binding_level->names = decls = nreverse (current_binding_level->names); else decls = current_binding_level->names; /* Output any nested inline functions within this block if they weren't already output. */ for (decl = decls; decl; decl = TREE_CHAIN (decl)) if (TREE_CODE (decl) == FUNCTION_DECL && ! TREE_ASM_WRITTEN (decl) && DECL_INITIAL (decl) != NULL_TREE && TREE_ADDRESSABLE (decl) && decl_function_context (decl) == current_function_decl) { /* If this decl was copied from a file-scope decl on account of a block-scope extern decl, propagate TREE_ADDRESSABLE to the file-scope decl. */ if (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE) TREE_ADDRESSABLE (DECL_ABSTRACT_ORIGIN (decl)) = 1; else { push_function_context (); output_inline_function (decl); pop_function_context (); } } /* When not in function-at-a-time mode, expand_end_bindings will warn about unused variables. But, in function-at-a-time mode expand_end_bindings is not passed the list of variables in the current scope, and therefore no warning is emitted. So, we explicitly warn here. */ if (!processing_template_decl) warn_about_unused_variables (getdecls ()); /* If there were any declarations or structure tags in that level, or if this level is a function body, create a BLOCK to record them for the life of this function. */ block = NULL_TREE; if (keep == 1 || functionbody) block = make_node (BLOCK); if (block != NULL_TREE) { BLOCK_VARS (block) = decls; BLOCK_SUBBLOCKS (block) = subblocks; } /* In each subblock, record that this is its superior. */ if (keep >= 0) for (link = subblocks; link; link = TREE_CHAIN (link)) BLOCK_SUPERCONTEXT (link) = block; /* We still support the old for-scope rules, whereby the variables in a for-init statement were in scope after the for-statement ended. We only use the new rules in flag_new_for_scope is nonzero. */ leaving_for_scope = current_binding_level->is_for_scope && flag_new_for_scope == 1; /* Remove declarations for all the DECLs in this level. */ for (link = decls; link; link = TREE_CHAIN (link)) { if (leaving_for_scope && TREE_CODE (link) == VAR_DECL && DECL_NAME (link)) { tree outer_binding = TREE_CHAIN (IDENTIFIER_BINDING (DECL_NAME (link))); tree ns_binding; if (!outer_binding) ns_binding = IDENTIFIER_NAMESPACE_VALUE (DECL_NAME (link)); else ns_binding = NULL_TREE; if (outer_binding && (BINDING_LEVEL (outer_binding) == current_binding_level->level_chain)) /* We have something like: int i; for (int i; ;); and we are leaving the `for' scope. There's no reason to keep the binding of the inner `i' in this case. */ pop_binding (DECL_NAME (link), link); else if ((outer_binding && (TREE_CODE (BINDING_VALUE (outer_binding)) == TYPE_DECL)) || (ns_binding && TREE_CODE (ns_binding) == TYPE_DECL)) /* Here, we have something like: typedef int I; void f () { for (int I; ;); } We must pop the for-scope binding so we know what's a type and what isn't. */ pop_binding (DECL_NAME (link), link); else { /* Mark this VAR_DECL as dead so that we can tell we left it there only for backward compatibility. */ DECL_DEAD_FOR_LOCAL (link) = 1; /* Keep track of what should of have happenned when we popped the binding. */ if (outer_binding && BINDING_VALUE (outer_binding)) DECL_SHADOWED_FOR_VAR (link) = BINDING_VALUE (outer_binding); /* Add it to the list of dead variables in the next outermost binding to that we can remove these when we leave that binding. */ current_binding_level->level_chain->dead_vars_from_for = tree_cons (NULL_TREE, link, current_binding_level->level_chain-> dead_vars_from_for); /* Although we don't pop the CPLUS_BINDING, we do clear its BINDING_LEVEL since the level is going away now. */ BINDING_LEVEL (IDENTIFIER_BINDING (DECL_NAME (link))) = 0; } } else { /* Remove the binding. */ decl = link; if (TREE_CODE (decl) == TREE_LIST) decl = TREE_VALUE (decl); if (DECL_P (decl)) pop_binding (DECL_NAME (decl), decl); else if (TREE_CODE (decl) == OVERLOAD) pop_binding (DECL_NAME (OVL_FUNCTION (decl)), decl); else my_friendly_abort (0); } } /* Remove declarations for any `for' variables from inner scopes that we kept around. */ for (link = current_binding_level->dead_vars_from_for; link; link = TREE_CHAIN (link)) pop_binding (DECL_NAME (TREE_VALUE (link)), TREE_VALUE (link)); /* Restore the IDENTIFIER_TYPE_VALUEs. */ for (link = current_binding_level->type_shadowed; link; link = TREE_CHAIN (link)) SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link), TREE_VALUE (link)); /* Restore the IDENTIFIER_LABEL_VALUEs for local labels. */ for (link = current_binding_level->shadowed_labels; link; link = TREE_CHAIN (link)) pop_label (TREE_VALUE (link), TREE_PURPOSE (link)); /* There may be OVERLOADs (wrapped in TREE_LISTs) on the BLOCK_VARs list if a `using' declaration put them there. The debugging back-ends won't understand OVERLOAD, so we remove them here. Because the BLOCK_VARS are (temporarily) shared with CURRENT_BINDING_LEVEL->NAMES we must do this fixup after we have popped all the bindings. */ if (block) { tree* d; for (d = &BLOCK_VARS (block); *d; ) { if (TREE_CODE (*d) == TREE_LIST) *d = TREE_CHAIN (*d); else d = &TREE_CHAIN (*d); } } /* If the level being exited is the top level of a function, check over all the labels. */ if (functionbody) { /* Since this is the top level block of a function, the vars are the function's parameters. Don't leave them in the BLOCK because they are found in the FUNCTION_DECL instead. */ BLOCK_VARS (block) = 0; pop_labels (block); } tmp = current_binding_level->keep; pop_binding_level (); if (functionbody) DECL_INITIAL (current_function_decl) = block; else if (block) current_binding_level->blocks = chainon (current_binding_level->blocks, block); /* If we did not make a block for the level just exited, any blocks made for inner levels (since they cannot be recorded as subblocks in that level) must be carried forward so they will later become subblocks of something else. */ else if (subblocks) current_binding_level->blocks = chainon (current_binding_level->blocks, subblocks); /* Each and every BLOCK node created here in `poplevel' is important (e.g. for proper debugging information) so if we created one earlier, mark it as "used". */ if (block) TREE_USED (block) = 1; /* Take care of compiler's internal binding structures. */ if (tmp == 2) { tree scope_stmts; scope_stmts = add_scope_stmt (/*begin_p=*/0, /*partial_p=*/1); if (block) { SCOPE_STMT_BLOCK (TREE_PURPOSE (scope_stmts)) = block; SCOPE_STMT_BLOCK (TREE_VALUE (scope_stmts)) = block; } block = poplevel (keep, reverse, functionbody); } return block; } /* Delete the node BLOCK from the current binding level. This is used for the block inside a stmt expr ({...}) so that the block can be reinserted where appropriate. */ void delete_block (block) tree block; { tree t; if (current_binding_level->blocks == block) current_binding_level->blocks = TREE_CHAIN (block); for (t = current_binding_level->blocks; t;) { if (TREE_CHAIN (t) == block) TREE_CHAIN (t) = TREE_CHAIN (block); else t = TREE_CHAIN (t); } TREE_CHAIN (block) = NULL_TREE; /* Clear TREE_USED which is always set by poplevel. The flag is set again if insert_block is called. */ TREE_USED (block) = 0; } /* Insert BLOCK at the end of the list of subblocks of the current binding level. This is used when a BIND_EXPR is expanded, to handle the BLOCK node inside the BIND_EXPR. */ void insert_block (block) tree block; { TREE_USED (block) = 1; current_binding_level->blocks = chainon (current_binding_level->blocks, block); } /* Set the BLOCK node for the innermost scope (the one we are currently in). */ void set_block (block) tree block ATTRIBUTE_UNUSED; { /* The RTL expansion machinery requires us to provide this callback, but it is not applicable in function-at-a-time mode. */ my_friendly_assert (cfun && !doing_semantic_analysis_p (), 20000911); } /* Do a pushlevel for class declarations. */ void pushlevel_class () { register struct binding_level *newlevel; /* Reuse or create a struct for this binding level. */ #if defined(DEBUG_CP_BINDING_LEVELS) if (0) #else /* !defined(DEBUG_CP_BINDING_LEVELS) */ if (free_binding_level) #endif /* !defined(DEBUG_CP_BINDING_LEVELS) */ { newlevel = free_binding_level; free_binding_level = free_binding_level->level_chain; } else newlevel = make_binding_level (); #if defined(DEBUG_CP_BINDING_LEVELS) is_class_level = 1; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ push_binding_level (newlevel, 0, 0); class_binding_level = current_binding_level; class_binding_level->parm_flag = 2; class_binding_level->this_class = current_class_type; } /* ...and a poplevel for class declarations. */ void poplevel_class () { register struct binding_level *level = class_binding_level; tree shadowed; my_friendly_assert (level != 0, 354); /* If we're leaving a toplevel class, don't bother to do the setting of IDENTIFIER_CLASS_VALUE to NULL_TREE, since first of all this slot shouldn't even be used when current_class_type isn't set, and second, if we don't touch it here, we're able to use the cache effect if the next time we're entering a class scope, it is the same class. */ if (current_class_depth != 1) { struct binding_level* b; /* Clear out our IDENTIFIER_CLASS_VALUEs. */ for (shadowed = level->class_shadowed; shadowed; shadowed = TREE_CHAIN (shadowed)) IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (shadowed)) = NULL_TREE; /* Find the next enclosing class, and recreate IDENTIFIER_CLASS_VALUEs appropriate for that class. */ b = level->level_chain; while (b && b->parm_flag != 2) b = b->level_chain; if (b) for (shadowed = b->class_shadowed; shadowed; shadowed = TREE_CHAIN (shadowed)) { tree t; t = IDENTIFIER_BINDING (TREE_PURPOSE (shadowed)); while (t && BINDING_LEVEL (t) != b) t = TREE_CHAIN (t); if (t) IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (shadowed)) = BINDING_VALUE (t); } } else /* Remember to save what IDENTIFIER's were bound in this scope so we can recover from cache misses. */ { previous_class_type = current_class_type; previous_class_values = class_binding_level->class_shadowed; } for (shadowed = level->type_shadowed; shadowed; shadowed = TREE_CHAIN (shadowed)) SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (shadowed), TREE_VALUE (shadowed)); /* Remove the bindings for all of the class-level declarations. */ for (shadowed = level->class_shadowed; shadowed; shadowed = TREE_CHAIN (shadowed)) pop_binding (TREE_PURPOSE (shadowed), TREE_TYPE (shadowed)); GNU_xref_end_scope ((HOST_WIDE_INT) class_binding_level, (HOST_WIDE_INT) class_binding_level->level_chain, class_binding_level->parm_flag, class_binding_level->keep); /* Now, pop out of the binding level which we created up in the `pushlevel_class' routine. */ #if defined(DEBUG_CP_BINDING_LEVELS) is_class_level = 1; #endif /* defined(DEBUG_CP_BINDING_LEVELS) */ pop_binding_level (); } /* We are entering the scope of a class. Clear IDENTIFIER_CLASS_VALUE for any names in enclosing classes. */ void clear_identifier_class_values () { tree t; if (!class_binding_level) return; for (t = class_binding_level->class_shadowed; t; t = TREE_CHAIN (t)) IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (t)) = NULL_TREE; } /* Returns non-zero if T is a virtual function table. */ int vtable_decl_p (t, data) tree t; void *data ATTRIBUTE_UNUSED; { return (TREE_CODE (t) == VAR_DECL && DECL_VIRTUAL_P (t)); } /* Returns non-zero if T is a TYPE_DECL for a type with virtual functions. */ int vtype_decl_p (t, data) tree t; void *data ATTRIBUTE_UNUSED; { return (TREE_CODE (t) == TYPE_DECL && TREE_CODE (TREE_TYPE (t)) == RECORD_TYPE && TYPE_POLYMORPHIC_P (TREE_TYPE (t))); } /* Return the declarations that are members of the namespace NS. */ tree cp_namespace_decls (ns) tree ns; { return NAMESPACE_LEVEL (ns)->names; } /* Walk all the namespaces contained NAMESPACE, including NAMESPACE itself, calling F for each. The DATA is passed to F as well. */ static int walk_namespaces_r (namespace, f, data) tree namespace; walk_namespaces_fn f; void *data; { tree current; int result = 0; result |= (*f) (namespace, data); for (current = cp_namespace_decls (namespace); current; current = TREE_CHAIN (current)) { if (TREE_CODE (current) != NAMESPACE_DECL || DECL_NAMESPACE_ALIAS (current)) continue; if (!DECL_LANG_SPECIFIC (current)) { /* Hmm. std. */ my_friendly_assert (current == fake_std_node, 393); continue; } /* We found a namespace. */ result |= walk_namespaces_r (current, f, data); } return result; } /* Walk all the namespaces, calling F for each. The DATA is passed to F as well. */ int walk_namespaces (f, data) walk_namespaces_fn f; void *data; { return walk_namespaces_r (global_namespace, f, data); } struct walk_globals_data { walk_globals_pred p; walk_globals_fn f; void *data; }; /* Walk the global declarations in NAMESPACE. Whenever one is found for which P returns non-zero, call F with its address. If any call to F returns a non-zero value, return a non-zero value. */ static int walk_globals_r (namespace, data) tree namespace; void *data; { struct walk_globals_data* wgd = (struct walk_globals_data *) data; walk_globals_pred p = wgd->p; walk_globals_fn f = wgd->f; void *d = wgd->data; tree *t; int result = 0; t = &NAMESPACE_LEVEL (namespace)->names; while (*t) { tree glbl = *t; if ((*p) (glbl, d)) result |= (*f) (t, d); /* If F changed *T, then *T still points at the next item to examine. */ if (*t == glbl) t = &TREE_CHAIN (*t); } return result; } /* Walk the global declarations. Whenever one is found for which P returns non-zero, call F with its address. If any call to F returns a non-zero value, return a non-zero value. */ int walk_globals (p, f, data) walk_globals_pred p; walk_globals_fn f; void *data; { struct walk_globals_data wgd; wgd.p = p; wgd.f = f; wgd.data = data; return walk_namespaces (walk_globals_r, &wgd); } /* Call wrapup_globals_declarations for the globals in NAMESPACE. If DATA is non-NULL, this is the last time we will call wrapup_global_declarations for this NAMESPACE. */ int wrapup_globals_for_namespace (namespace, data) tree namespace; void *data; { tree globals = cp_namespace_decls (namespace); int len = list_length (globals); tree *vec = (tree *) alloca (sizeof (tree) * len); int i; int result; tree decl; int last_time = (data != 0); if (last_time && namespace == global_namespace) /* Let compile_file handle the global namespace. */ return 0; /* Process the decls in reverse order--earliest first. Put them into VEC from back to front, then take out from front. */ for (i = 0, decl = globals; i < len; i++, decl = TREE_CHAIN (decl)) vec[len - i - 1] = decl; if (last_time) { check_global_declarations (vec, len); return 0; } /* Temporarily mark vtables as external. That prevents wrapup_global_declarations from writing them out; we must process them ourselves in finish_vtable_vardecl. */ for (i = 0; i < len; ++i) if (vtable_decl_p (vec[i], /*data=*/0) && !DECL_EXTERNAL (vec[i])) { DECL_NOT_REALLY_EXTERN (vec[i]) = 1; DECL_EXTERNAL (vec[i]) = 1; } /* Write out any globals that need to be output. */ result = wrapup_global_declarations (vec, len); /* Undo the hack to DECL_EXTERNAL above. */ for (i = 0; i < len; ++i) if (vtable_decl_p (vec[i], /*data=*/0) && DECL_NOT_REALLY_EXTERN (vec[i])) { DECL_NOT_REALLY_EXTERN (vec[i]) = 0; DECL_EXTERNAL (vec[i]) = 0; } return result; } /* Mark ARG (which is really a struct binding_level **) for GC. */ static void mark_binding_level (arg) void *arg; { struct binding_level *lvl = *(struct binding_level **)arg; for (; lvl; lvl = lvl->level_chain) { ggc_mark_tree (lvl->names); ggc_mark_tree (lvl->tags); ggc_mark_tree (lvl->usings); ggc_mark_tree (lvl->using_directives); ggc_mark_tree (lvl->class_shadowed); ggc_mark_tree (lvl->type_shadowed); ggc_mark_tree (lvl->shadowed_labels); ggc_mark_tree (lvl->blocks); ggc_mark_tree (lvl->this_class); ggc_mark_tree (lvl->incomplete); ggc_mark_tree (lvl->dead_vars_from_for); } } static void mark_named_label_lists (labs, uses) void *labs; void *uses; { struct named_label_list *l = *(struct named_label_list **)labs; struct named_label_use_list *u = *(struct named_label_use_list **)uses; for (; l; l = l->next) { ggc_mark (l); mark_binding_level (l->binding_level); ggc_mark_tree (l->old_value); ggc_mark_tree (l->label_decl); ggc_mark_tree (l->bad_decls); } for (; u; u = u->next) ggc_mark (u); } /* For debugging. */ static int no_print_functions = 0; static int no_print_builtins = 0; void print_binding_level (lvl) struct binding_level *lvl; { tree t; int i = 0, len; fprintf (stderr, " blocks="); fprintf (stderr, HOST_PTR_PRINTF, lvl->blocks); fprintf (stderr, " n_incomplete=%d parm_flag=%d keep=%d", list_length (lvl->incomplete), lvl->parm_flag, lvl->keep); if (lvl->tag_transparent) fprintf (stderr, " tag-transparent"); if (lvl->more_cleanups_ok) fprintf (stderr, " more-cleanups-ok"); if (lvl->have_cleanups) fprintf (stderr, " have-cleanups"); fprintf (stderr, "\n"); if (lvl->names) { fprintf (stderr, " names:\t"); /* We can probably fit 3 names to a line? */ for (t = lvl->names; t; t = TREE_CHAIN (t)) { if (no_print_functions && (TREE_CODE (t) == FUNCTION_DECL)) continue; if (no_print_builtins && (TREE_CODE (t) == TYPE_DECL) && (!strcmp (DECL_SOURCE_FILE (t),""))) continue; /* Function decls tend to have longer names. */ if (TREE_CODE (t) == FUNCTION_DECL) len = 3; else len = 2; i += len; if (i > 6) { fprintf (stderr, "\n\t"); i = len; } print_node_brief (stderr, "", t, 0); if (t == error_mark_node) break; } if (i) fprintf (stderr, "\n"); } if (lvl->tags) { fprintf (stderr, " tags:\t"); i = 0; for (t = lvl->tags; t; t = TREE_CHAIN (t)) { if (TREE_PURPOSE (t) == NULL_TREE) len = 3; else if (TREE_PURPOSE (t) == TYPE_IDENTIFIER (TREE_VALUE (t))) len = 2; else len = 4; i += len; if (i > 5) { fprintf (stderr, "\n\t"); i = len; } if (TREE_PURPOSE (t) == NULL_TREE) { print_node_brief (stderr, ""); } else if (TREE_PURPOSE (t) == TYPE_IDENTIFIER (TREE_VALUE (t))) print_node_brief (stderr, "", TREE_VALUE (t), 0); else { print_node_brief (stderr, ""); } } if (i) fprintf (stderr, "\n"); } if (lvl->class_shadowed) { fprintf (stderr, " class-shadowed:"); for (t = lvl->class_shadowed; t; t = TREE_CHAIN (t)) { fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t))); } fprintf (stderr, "\n"); } if (lvl->type_shadowed) { fprintf (stderr, " type-shadowed:"); for (t = lvl->type_shadowed; t; t = TREE_CHAIN (t)) { fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t))); } fprintf (stderr, "\n"); } } void print_other_binding_stack (stack) struct binding_level *stack; { struct binding_level *level; for (level = stack; level != global_binding_level; level = level->level_chain) { fprintf (stderr, "binding level "); fprintf (stderr, HOST_PTR_PRINTF, level); fprintf (stderr, "\n"); print_binding_level (level); } } void print_binding_stack () { struct binding_level *b; fprintf (stderr, "current_binding_level="); fprintf (stderr, HOST_PTR_PRINTF, current_binding_level); fprintf (stderr, "\nclass_binding_level="); fprintf (stderr, HOST_PTR_PRINTF, class_binding_level); fprintf (stderr, "\nglobal_binding_level="); fprintf (stderr, HOST_PTR_PRINTF, global_binding_level); fprintf (stderr, "\n"); if (class_binding_level) { for (b = class_binding_level; b; b = b->level_chain) if (b == current_binding_level) break; if (b) b = class_binding_level; else b = current_binding_level; } else b = current_binding_level; print_other_binding_stack (b); fprintf (stderr, "global:\n"); print_binding_level (global_binding_level); } /* Namespace binding access routines: The namespace_bindings field of the identifier is polymorphic, with three possible values: NULL_TREE, a list of CPLUS_BINDINGS, or any other tree_node indicating the BINDING_VALUE of global_namespace. */ /* Check whether the a binding for the name to scope is known. Assumes that the bindings of the name are already a list of bindings. Returns the binding found, or NULL_TREE. */ static tree find_binding (name, scope) tree name; tree scope; { tree iter, prev = NULL_TREE; scope = ORIGINAL_NAMESPACE (scope); for (iter = IDENTIFIER_NAMESPACE_BINDINGS (name); iter; iter = TREE_CHAIN (iter)) { my_friendly_assert (TREE_CODE (iter) == CPLUS_BINDING, 374); if (BINDING_SCOPE (iter) == scope) { /* Move binding found to the front of the list, so subsequent lookups will find it faster. */ if (prev) { TREE_CHAIN (prev) = TREE_CHAIN (iter); TREE_CHAIN (iter) = IDENTIFIER_NAMESPACE_BINDINGS (name); IDENTIFIER_NAMESPACE_BINDINGS (name) = iter; } return iter; } prev = iter; } return NULL_TREE; } /* Always returns a binding for name in scope. If the namespace_bindings is not a list, convert it to one first. If no binding is found, make a new one. */ tree binding_for_name (name, scope) tree name; tree scope; { tree b = IDENTIFIER_NAMESPACE_BINDINGS (name); tree result; scope = ORIGINAL_NAMESPACE (scope); if (b && TREE_CODE (b) != CPLUS_BINDING) { /* Get rid of optimization for global scope. */ IDENTIFIER_NAMESPACE_BINDINGS (name) = NULL_TREE; BINDING_VALUE (binding_for_name (name, global_namespace)) = b; b = IDENTIFIER_NAMESPACE_BINDINGS (name); } if (b && (result = find_binding (name, scope))) return result; /* Not found, make a new one. */ result = make_node (CPLUS_BINDING); TREE_CHAIN (result) = b; IDENTIFIER_NAMESPACE_BINDINGS (name) = result; BINDING_SCOPE (result) = scope; BINDING_TYPE (result) = NULL_TREE; BINDING_VALUE (result) = NULL_TREE; return result; } /* Return the binding value for name in scope, considering that namespace_binding may or may not be a list of CPLUS_BINDINGS. */ tree namespace_binding (name, scope) tree name; tree scope; { tree b = IDENTIFIER_NAMESPACE_BINDINGS (name); if (b == NULL_TREE) return NULL_TREE; if (scope == NULL_TREE) scope = global_namespace; if (TREE_CODE (b) != CPLUS_BINDING) return (scope == global_namespace) ? b : NULL_TREE; name = find_binding (name,scope); if (name == NULL_TREE) return name; return BINDING_VALUE (name); } /* Set the binding value for name in scope. If modifying the binding of global_namespace is attempted, try to optimize it. */ void set_namespace_binding (name, scope, val) tree name; tree scope; tree val; { tree b; if (scope == NULL_TREE) scope = global_namespace; if (scope == global_namespace) { b = IDENTIFIER_NAMESPACE_BINDINGS (name); if (b == NULL_TREE || TREE_CODE (b) != CPLUS_BINDING) { IDENTIFIER_NAMESPACE_BINDINGS (name) = val; return; } } b = binding_for_name (name, scope); BINDING_VALUE (b) = val; } /* Push into the scope of the NAME namespace. If NAME is NULL_TREE, then we select a name that is unique to this compilation unit. */ void push_namespace (name) tree name; { tree d = NULL_TREE; int need_new = 1; int implicit_use = 0; int global = 0; if (!global_namespace) { /* This must be ::. */ my_friendly_assert (name == get_identifier ("::"), 377); global = 1; } else if (!name) { /* The name of anonymous namespace is unique for the translation unit. */ if (!anonymous_namespace_name) anonymous_namespace_name = get_file_function_name ('N'); name = anonymous_namespace_name; d = IDENTIFIER_NAMESPACE_VALUE (name); if (d) /* Reopening anonymous namespace. */ need_new = 0; implicit_use = 1; } else if (current_namespace == global_namespace && !flag_honor_std && name == std_identifier) { in_fake_std++; return; } else { /* Check whether this is an extended namespace definition. */ d = IDENTIFIER_NAMESPACE_VALUE (name); if (d != NULL_TREE && TREE_CODE (d) == NAMESPACE_DECL) { need_new = 0; if (DECL_NAMESPACE_ALIAS (d)) { cp_error ("namespace alias `%D' not allowed here, assuming `%D'", d, DECL_NAMESPACE_ALIAS (d)); d = DECL_NAMESPACE_ALIAS (d); } } } if (need_new) { /* Make a new namespace, binding the name to it. */ d = build_lang_decl (NAMESPACE_DECL, name, void_type_node); /* The global namespace is not pushed, and the global binding level is set elsewhere. */ if (!global) { DECL_CONTEXT (d) = FROB_CONTEXT (current_namespace); d = pushdecl (d); pushlevel (0); declare_namespace_level (); NAMESPACE_LEVEL (d) = current_binding_level; } } else resume_binding_level (NAMESPACE_LEVEL (d)); if (implicit_use) do_using_directive (d); /* Enter the name space. */ current_namespace = d; } /* Pop from the scope of the current namespace. */ void pop_namespace () { if (current_namespace == global_namespace) { my_friendly_assert (in_fake_std > 0, 980421); in_fake_std--; return; } current_namespace = CP_DECL_CONTEXT (current_namespace); /* The binding level is not popped, as it might be re-opened later. */ suspend_binding_level (); } /* Push into the scope of the namespace NS, even if it is deeply nested within another namespace. */ void push_nested_namespace (ns) tree ns; { if (ns == global_namespace) push_to_top_level (); else { push_nested_namespace (CP_DECL_CONTEXT (ns)); push_namespace (DECL_NAME (ns)); } } /* Pop back from the scope of the namespace NS, which was previously entered with push_nested_namespace. */ void pop_nested_namespace (ns) tree ns; { while (ns != global_namespace) { pop_namespace (); ns = CP_DECL_CONTEXT (ns); } pop_from_top_level (); } /* Subroutines for reverting temporarily to top-level for instantiation of templates and such. We actually need to clear out the class- and local-value slots of all identifiers, so that only the global values are at all visible. Simply setting current_binding_level to the global scope isn't enough, because more binding levels may be pushed. */ struct saved_scope *scope_chain; /* Mark ARG (which is really a struct saved_scope **) for GC. */ static void mark_saved_scope (arg) void *arg; { struct saved_scope *t = *(struct saved_scope **)arg; while (t) { mark_binding_level (&t->class_bindings); ggc_mark_tree (t->old_bindings); ggc_mark_tree (t->old_namespace); ggc_mark_tree (t->class_name); ggc_mark_tree (t->class_type); ggc_mark_tree (t->access_specifier); ggc_mark_tree (t->function_decl); if (t->lang_base) ggc_mark_tree_varray (t->lang_base); ggc_mark_tree (t->lang_name); ggc_mark_tree (t->template_parms); ggc_mark_tree (t->x_previous_class_type); ggc_mark_tree (t->x_previous_class_values); ggc_mark_tree (t->x_saved_tree); ggc_mark_tree (t->incomplete); ggc_mark_tree (t->lookups); mark_stmt_tree (&t->x_stmt_tree); mark_binding_level (&t->bindings); t = t->prev; } } static tree store_bindings (names, old_bindings) tree names, old_bindings; { tree t; tree search_bindings = old_bindings; for (t = names; t; t = TREE_CHAIN (t)) { tree binding, t1, id; if (TREE_CODE (t) == TREE_LIST) id = TREE_PURPOSE (t); else id = DECL_NAME (t); if (!id /* Note that we may have an IDENTIFIER_CLASS_VALUE even when we have no IDENTIFIER_BINDING if we have left the class scope, but cached the class-level declarations. */ || !(IDENTIFIER_BINDING (id) || IDENTIFIER_CLASS_VALUE (id))) continue; for (t1 = search_bindings; t1; t1 = TREE_CHAIN (t1)) if (TREE_VEC_ELT (t1, 0) == id) goto skip_it; my_friendly_assert (TREE_CODE (id) == IDENTIFIER_NODE, 135); binding = make_tree_vec (4); TREE_VEC_ELT (binding, 0) = id; TREE_VEC_ELT (binding, 1) = REAL_IDENTIFIER_TYPE_VALUE (id); TREE_VEC_ELT (binding, 2) = IDENTIFIER_BINDING (id); TREE_VEC_ELT (binding, 3) = IDENTIFIER_CLASS_VALUE (id); IDENTIFIER_BINDING (id) = NULL_TREE; IDENTIFIER_CLASS_VALUE (id) = NULL_TREE; TREE_CHAIN (binding) = old_bindings; old_bindings = binding; skip_it: ; } return old_bindings; } void maybe_push_to_top_level (pseudo) int pseudo; { struct saved_scope *s; struct binding_level *b; tree old_bindings; int need_pop; s = (struct saved_scope *) xcalloc (1, sizeof (struct saved_scope)); b = scope_chain ? current_binding_level : 0; /* If we're in the middle of some function, save our state. */ if (cfun) { need_pop = 1; push_function_context_to (NULL_TREE); } else need_pop = 0; old_bindings = NULL_TREE; if (scope_chain && previous_class_type) old_bindings = store_bindings (previous_class_values, old_bindings); /* Have to include global_binding_level, because class-level decls aren't listed anywhere useful. */ for (; b; b = b->level_chain) { tree t; /* Template IDs are inserted into the global level. If they were inserted into namespace level, finish_file wouldn't find them when doing pending instantiations. Therefore, don't stop at namespace level, but continue until :: . */ if (b == global_binding_level || (pseudo && b->template_parms_p)) break; old_bindings = store_bindings (b->names, old_bindings); /* We also need to check class_shadowed to save class-level type bindings, since pushclass doesn't fill in b->names. */ if (b->parm_flag == 2) old_bindings = store_bindings (b->class_shadowed, old_bindings); /* Unwind type-value slots back to top level. */ for (t = b->type_shadowed; t; t = TREE_CHAIN (t)) SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (t), TREE_VALUE (t)); } s->prev = scope_chain; s->old_bindings = old_bindings; s->bindings = b; s->need_pop_function_context = need_pop; s->function_decl = current_function_decl; scope_chain = s; current_function_decl = NULL_TREE; VARRAY_TREE_INIT (current_lang_base, 10, "current_lang_base"); current_lang_stack = &VARRAY_TREE (current_lang_base, 0); current_lang_name = lang_name_cplusplus; current_namespace = global_namespace; } void push_to_top_level () { maybe_push_to_top_level (0); } void pop_from_top_level () { struct saved_scope *s = scope_chain; tree t; /* Clear out class-level bindings cache. */ if (previous_class_type) invalidate_class_lookup_cache (); VARRAY_FREE (current_lang_base); scope_chain = s->prev; for (t = s->old_bindings; t; t = TREE_CHAIN (t)) { tree id = TREE_VEC_ELT (t, 0); SET_IDENTIFIER_TYPE_VALUE (id, TREE_VEC_ELT (t, 1)); IDENTIFIER_BINDING (id) = TREE_VEC_ELT (t, 2); IDENTIFIER_CLASS_VALUE (id) = TREE_VEC_ELT (t, 3); } /* If we were in the middle of compiling a function, restore our state. */ if (s->need_pop_function_context) pop_function_context_from (NULL_TREE); current_function_decl = s->function_decl; free (s); } /* Push a definition of struct, union or enum tag "name". into binding_level "b". "type" should be the type node, We assume that the tag "name" is not already defined. Note that the definition may really be just a forward reference. In that case, the TYPE_SIZE will be a NULL_TREE. C++ gratuitously puts all these tags in the name space. */ /* When setting the IDENTIFIER_TYPE_VALUE field of an identifier ID, record the shadowed value for this binding contour. TYPE is the type that ID maps to. */ static void set_identifier_type_value_with_scope (id, type, b) tree id; tree type; struct binding_level *b; { if (!b->namespace_p) { /* Shadow the marker, not the real thing, so that the marker gets restored later. */ tree old_type_value = REAL_IDENTIFIER_TYPE_VALUE (id); b->type_shadowed = tree_cons (id, old_type_value, b->type_shadowed); } else { tree binding = binding_for_name (id, current_namespace); BINDING_TYPE (binding) = type; /* Store marker instead of real type. */ type = global_type_node; } SET_IDENTIFIER_TYPE_VALUE (id, type); } /* As set_identifier_type_value_with_scope, but using current_binding_level. */ void set_identifier_type_value (id, type) tree id; tree type; { set_identifier_type_value_with_scope (id, type, current_binding_level); } /* Return the type associated with id. */ tree identifier_type_value (id) tree id; { /* There is no type with that name, anywhere. */ if (REAL_IDENTIFIER_TYPE_VALUE (id) == NULL_TREE) return NULL_TREE; /* This is not the type marker, but the real thing. */ if (REAL_IDENTIFIER_TYPE_VALUE (id) != global_type_node) return REAL_IDENTIFIER_TYPE_VALUE (id); /* Have to search for it. It must be on the global level, now. Ask lookup_name not to return non-types. */ id = lookup_name_real (id, 2, 1, 0); if (id) return TREE_TYPE (id); return NULL_TREE; } /* Pop off extraneous binding levels left over due to syntax errors. We don't pop past namespaces, as they might be valid. */ void pop_everything () { #ifdef DEBUG_CP_BINDING_LEVELS fprintf (stderr, "XXX entering pop_everything ()\n"); #endif while (!toplevel_bindings_p ()) { if (current_binding_level->parm_flag == 2) pop_nested_class (); else poplevel (0, 0, 0); } #ifdef DEBUG_CP_BINDING_LEVELS fprintf (stderr, "XXX leaving pop_everything ()\n"); #endif } /* The type TYPE is being declared. If it is a class template, or a specialization of a class template, do any processing required and perform error-checking. If IS_FRIEND is non-zero, this TYPE is being declared a friend. B is the binding level at which this TYPE should be bound. Returns the TYPE_DECL for TYPE, which may have been altered by this processing. */ static tree maybe_process_template_type_declaration (type, globalize, b) tree type; int globalize; struct binding_level* b; { tree decl = TYPE_NAME (type); if (processing_template_parmlist) /* You can't declare a new template type in a template parameter list. But, you can declare a non-template type: template struct S; is a forward-declaration of `A'. */ ; else { maybe_check_template_type (type); my_friendly_assert (IS_AGGR_TYPE (type) || TREE_CODE (type) == ENUMERAL_TYPE, 0); if (processing_template_decl) { /* This may change after the call to push_template_decl_real, but we want the original value. */ tree name = DECL_NAME (decl); decl = push_template_decl_real (decl, globalize); /* If the current binding level is the binding level for the template parameters (see the comment in begin_template_parm_list) and the enclosing level is a class scope, and we're not looking at a friend, push the declaration of the member class into the class scope. In the friend case, push_template_decl will already have put the friend into global scope, if appropriate. */ if (TREE_CODE (type) != ENUMERAL_TYPE && !globalize && b->template_parms_p && b->level_chain->parm_flag == 2) { finish_member_declaration (CLASSTYPE_TI_TEMPLATE (type)); /* Put this tag on the list of tags for the class, since that won't happen below because B is not the class binding level, but is instead the pseudo-global level. */ b->level_chain->tags = tree_cons (name, type, b->level_chain->tags); if (!COMPLETE_TYPE_P (current_class_type)) CLASSTYPE_TAGS (current_class_type) = b->level_chain->tags; } } } return decl; } /* In C++, you don't have to write `struct S' to refer to `S'; you can just use `S'. We accomplish this by creating a TYPE_DECL as if the user had written `typedef struct S S'. Create and return the TYPE_DECL for TYPE. */ tree create_implicit_typedef (name, type) tree name; tree type; { tree decl; decl = build_decl (TYPE_DECL, name, type); DECL_ARTIFICIAL (decl) = 1; /* There are other implicit type declarations, like the one *within* a class that allows you to write `S::S'. We must distinguish amongst these. */ SET_DECL_IMPLICIT_TYPEDEF_P (decl); TYPE_NAME (type) = decl; return decl; } /* Push a tag name NAME for struct/class/union/enum type TYPE. Normally put it into the inner-most non-tag-transparent scope, but if GLOBALIZE is true, put it in the inner-most non-class scope. The latter is needed for implicit declarations. */ void pushtag (name, type, globalize) tree name, type; int globalize; { register struct binding_level *b; b = current_binding_level; while (b->tag_transparent || (globalize && b->parm_flag == 2)) b = b->level_chain; b->tags = tree_cons (name, type, b->tags); if (name) { /* Do C++ gratuitous typedefing. */ if (IDENTIFIER_TYPE_VALUE (name) != type) { register tree d = NULL_TREE; int in_class = 0; tree context = TYPE_CONTEXT (type); if (! context) { tree cs = current_scope (); if (! globalize) context = cs; else if (cs != NULL_TREE && TYPE_P (cs)) /* When declaring a friend class of a local class, we want to inject the newly named class into the scope containing the local class, not the namespace scope. */ context = decl_function_context (get_type_decl (cs)); } if (!context) context = current_namespace; if ((b->template_parms_p && b->level_chain->parm_flag == 2) || b->parm_flag == 2) in_class = 1; if (current_lang_name == lang_name_java) TYPE_FOR_JAVA (type) = 1; d = create_implicit_typedef (name, type); DECL_CONTEXT (d) = FROB_CONTEXT (context); if (! in_class) set_identifier_type_value_with_scope (name, type, b); d = maybe_process_template_type_declaration (type, globalize, b); if (b->parm_flag == 2) { if (!PROCESSING_REAL_TEMPLATE_DECL_P ()) /* Put this TYPE_DECL on the TYPE_FIELDS list for the class. But if it's a member template class, we want the TEMPLATE_DECL, not the TYPE_DECL, so this is done later. */ finish_member_declaration (d); else pushdecl_class_level (d); } else d = pushdecl_with_scope (d, b); if (ANON_AGGRNAME_P (name)) DECL_IGNORED_P (d) = 1; TYPE_CONTEXT (type) = DECL_CONTEXT (d); DECL_ASSEMBLER_NAME (d) = DECL_NAME (d); /* If this is a local class, keep track of it. We need this information for name-mangling, and so that it is possible to find all function definitions in a translation unit in a convenient way. (It's otherwise tricky to find a member function definition it's only pointed to from within a local class.) */ if (TYPE_CONTEXT (type) && TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL && !processing_template_decl) VARRAY_PUSH_TREE (local_classes, type); if (!uses_template_parms (type)) { if (flag_new_abi) DECL_ASSEMBLER_NAME (d) = mangle_type (type); else DECL_ASSEMBLER_NAME (d) = get_identifier (build_overload_name (type, 1, 1)); } } if (b->parm_flag == 2) { if (!COMPLETE_TYPE_P (current_class_type)) CLASSTYPE_TAGS (current_class_type) = b->tags; } } if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL) /* Use the canonical TYPE_DECL for this node. */ TYPE_STUB_DECL (type) = TYPE_NAME (type); else { /* Create a fake NULL-named TYPE_DECL node whose TREE_TYPE will be the tagged type we just added to the current binding level. This fake NULL-named TYPE_DECL node helps dwarfout.c to know when it needs to output a representation of a tagged type, and it also gives us a convenient place to record the "scope start" address for the tagged type. */ tree d = build_decl (TYPE_DECL, NULL_TREE, type); TYPE_STUB_DECL (type) = pushdecl_with_scope (d, b); } } /* Counter used to create anonymous type names. */ static int anon_cnt = 0; /* Return an IDENTIFIER which can be used as a name for anonymous structs and unions. */ tree make_anon_name () { char buf[32]; sprintf (buf, ANON_AGGRNAME_FORMAT, anon_cnt++); return get_identifier (buf); } /* Clear the TREE_PURPOSE slot of tags which have anonymous typenames. This keeps dbxout from getting confused. */ void clear_anon_tags () { register struct binding_level *b; register tree tags; static int last_cnt = 0; /* Fast out if no new anon names were declared. */ if (last_cnt == anon_cnt) return; b = current_binding_level; while (b->tag_transparent) b = b->level_chain; tags = b->tags; while (tags) { /* A NULL purpose means we have already processed all tags from here to the end of the list. */ if (TREE_PURPOSE (tags) == NULL_TREE) break; if (ANON_AGGRNAME_P (TREE_PURPOSE (tags))) TREE_PURPOSE (tags) = NULL_TREE; tags = TREE_CHAIN (tags); } last_cnt = anon_cnt; } /* Subroutine of duplicate_decls: return truthvalue of whether or not types of these decls match. For C++, we must compare the parameter list so that `int' can match `int&' in a parameter position, but `int&' is not confused with `const int&'. */ int decls_match (newdecl, olddecl) tree newdecl, olddecl; { int types_match; if (newdecl == olddecl) return 1; if (TREE_CODE (newdecl) != TREE_CODE (olddecl)) /* If the two DECLs are not even the same kind of thing, we're not interested in their types. */ return 0; if (TREE_CODE (newdecl) == FUNCTION_DECL) { tree f1 = TREE_TYPE (newdecl); tree f2 = TREE_TYPE (olddecl); tree p1 = TYPE_ARG_TYPES (f1); tree p2 = TYPE_ARG_TYPES (f2); if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl) && ! (DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl))) return 0; if (TREE_CODE (f1) != TREE_CODE (f2)) return 0; if (same_type_p (TREE_TYPE (f1), TREE_TYPE (f2))) { if (p2 == NULL_TREE && DECL_EXTERN_C_P (olddecl) && (DECL_BUILT_IN (olddecl) #ifndef NO_IMPLICIT_EXTERN_C || (DECL_IN_SYSTEM_HEADER (newdecl) && !DECL_CLASS_SCOPE_P (newdecl)) || (DECL_IN_SYSTEM_HEADER (olddecl) && !DECL_CLASS_SCOPE_P (olddecl)) #endif )) { types_match = self_promoting_args_p (p1); if (p1 == void_list_node) TREE_TYPE (newdecl) = TREE_TYPE (olddecl); } #ifndef NO_IMPLICIT_EXTERN_C else if (p1 == NULL_TREE && (DECL_EXTERN_C_P (olddecl) && DECL_IN_SYSTEM_HEADER (olddecl) && !DECL_CLASS_SCOPE_P (olddecl)) && (DECL_EXTERN_C_P (newdecl) && DECL_IN_SYSTEM_HEADER (newdecl) && !DECL_CLASS_SCOPE_P (newdecl))) { types_match = self_promoting_args_p (p2); TREE_TYPE (newdecl) = TREE_TYPE (olddecl); } #endif else types_match = compparms (p1, p2); } else types_match = 0; } else if (TREE_CODE (newdecl) == TEMPLATE_DECL) { if (!comp_template_parms (DECL_TEMPLATE_PARMS (newdecl), DECL_TEMPLATE_PARMS (olddecl))) return 0; if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != TREE_CODE (DECL_TEMPLATE_RESULT (olddecl))) return 0; if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL) types_match = 1; else types_match = decls_match (DECL_TEMPLATE_RESULT (olddecl), DECL_TEMPLATE_RESULT (newdecl)); } else { if (TREE_TYPE (newdecl) == error_mark_node) types_match = TREE_TYPE (olddecl) == error_mark_node; else if (TREE_TYPE (olddecl) == NULL_TREE) types_match = TREE_TYPE (newdecl) == NULL_TREE; else if (TREE_TYPE (newdecl) == NULL_TREE) types_match = 0; else types_match = comptypes (TREE_TYPE (newdecl), TREE_TYPE (olddecl), COMPARE_REDECLARATION); } return types_match; } /* If NEWDECL is `static' and an `extern' was seen previously, warn about it. OLDDECL is the previous declaration. Note that this does not apply to the C++ case of declaring a variable `extern const' and then later `const'. Don't complain about built-in functions, since they are beyond the user's control. */ static void warn_extern_redeclared_static (newdecl, olddecl) tree newdecl, olddecl; { static const char *explicit_extern_static_warning = "`%D' was declared `extern' and later `static'"; static const char *implicit_extern_static_warning = "`%D' was declared implicitly `extern' and later `static'"; tree name; if (TREE_CODE (newdecl) == TYPE_DECL || TREE_CODE (newdecl) == TEMPLATE_DECL || TREE_CODE (newdecl) == CONST_DECL) return; /* Don't get confused by static member functions; that's a different use of `static'. */ if (TREE_CODE (newdecl) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (newdecl)) return; /* If the old declaration was `static', or the new one isn't, then then everything is OK. */ if (DECL_THIS_STATIC (olddecl) || !DECL_THIS_STATIC (newdecl)) return; /* It's OK to declare a builtin function as `static'. */ if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_ARTIFICIAL (olddecl)) return; name = DECL_ASSEMBLER_NAME (newdecl); cp_pedwarn (IDENTIFIER_IMPLICIT_DECL (name) ? implicit_extern_static_warning : explicit_extern_static_warning, newdecl); cp_pedwarn_at ("previous declaration of `%D'", olddecl); } /* Handle when a new declaration NEWDECL has the same name as an old one OLDDECL in the same binding contour. Prints an error message if appropriate. If safely possible, alter OLDDECL to look like NEWDECL, and return 1. Otherwise, return 0. */ int duplicate_decls (newdecl, olddecl) tree newdecl, olddecl; { unsigned olddecl_uid = DECL_UID (olddecl); int olddecl_friend = 0, types_match = 0; int new_defines_function = 0; if (newdecl == olddecl) return 1; types_match = decls_match (newdecl, olddecl); /* If either the type of the new decl or the type of the old decl is an error_mark_node, then that implies that we have already issued an error (earlier) for some bogus type specification, and in that case, it is rather pointless to harass the user with yet more error message about the same declaration, so just pretend the types match here. */ if (TREE_TYPE (newdecl) == error_mark_node || TREE_TYPE (olddecl) == error_mark_node) types_match = 1; /* Check for redeclaration and other discrepancies. */ if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_ARTIFICIAL (olddecl)) { if (TREE_CODE (newdecl) != FUNCTION_DECL) { /* If you declare a built-in or predefined function name as static, the old definition is overridden, but optionally warn this was a bad choice of name. */ if (! TREE_PUBLIC (newdecl)) { if (warn_shadow) cp_warning ("shadowing %s function `%#D'", DECL_BUILT_IN (olddecl) ? "built-in" : "library", olddecl); /* Discard the old built-in function. */ return 0; } /* If the built-in is not ansi, then programs can override it even globally without an error. */ else if (! DECL_BUILT_IN (olddecl)) cp_warning ("library function `%#D' redeclared as non-function `%#D'", olddecl, newdecl); else { cp_error ("declaration of `%#D'", newdecl); cp_error ("conflicts with built-in declaration `%#D'", olddecl); } return 0; } else if (!types_match) { if ((DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl)) || compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)), TYPE_ARG_TYPES (TREE_TYPE (olddecl)))) { /* A near match; override the builtin. */ if (TREE_PUBLIC (newdecl)) { cp_warning ("new declaration `%#D'", newdecl); cp_warning ("ambiguates built-in declaration `%#D'", olddecl); } else if (warn_shadow) cp_warning ("shadowing %s function `%#D'", DECL_BUILT_IN (olddecl) ? "built-in" : "library", olddecl); } else /* Discard the old built-in function. */ return 0; } if (DECL_THIS_STATIC (newdecl) && !DECL_THIS_STATIC (olddecl)) { /* If a builtin function is redeclared as `static', merge the declarations, but make the original one static. */ DECL_THIS_STATIC (olddecl) = 1; TREE_PUBLIC (olddecl) = 0; /* Make the old declaration consistent with the new one so that all remnants of the builtin-ness of this function will be banished. */ DECL_LANGUAGE (olddecl) = DECL_LANGUAGE (newdecl); DECL_RTL (olddecl) = DECL_RTL (newdecl); DECL_ASSEMBLER_NAME (olddecl) = DECL_ASSEMBLER_NAME (newdecl); SET_IDENTIFIER_GLOBAL_VALUE (DECL_ASSEMBLER_NAME (newdecl), newdecl); } } else if (TREE_CODE (olddecl) != TREE_CODE (newdecl)) { if ((TREE_CODE (olddecl) == TYPE_DECL && DECL_ARTIFICIAL (olddecl) && TREE_CODE (newdecl) != TYPE_DECL && ! (TREE_CODE (newdecl) == TEMPLATE_DECL && TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL)) || (TREE_CODE (newdecl) == TYPE_DECL && DECL_ARTIFICIAL (newdecl) && TREE_CODE (olddecl) != TYPE_DECL && ! (TREE_CODE (olddecl) == TEMPLATE_DECL && (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == TYPE_DECL)))) { /* We do nothing special here, because C++ does such nasty things with TYPE_DECLs. Instead, just let the TYPE_DECL get shadowed, and know that if we need to find a TYPE_DECL for a given name, we can look in the IDENTIFIER_TYPE_VALUE slot of the identifier. */ return 0; } if ((TREE_CODE (newdecl) == FUNCTION_DECL && DECL_FUNCTION_TEMPLATE_P (olddecl)) || (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_FUNCTION_TEMPLATE_P (newdecl))) return 0; cp_error ("`%#D' redeclared as different kind of symbol", newdecl); if (TREE_CODE (olddecl) == TREE_LIST) olddecl = TREE_VALUE (olddecl); cp_error_at ("previous declaration of `%#D'", olddecl); /* New decl is completely inconsistent with the old one => tell caller to replace the old one. */ return 0; } else if (!types_match) { if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl)) /* These are certainly not duplicate declarations; they're from different scopes. */ return 0; if (TREE_CODE (newdecl) == TEMPLATE_DECL) { /* The name of a class template may not be declared to refer to any other template, class, function, object, namespace, value, or type in the same scope. */ if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == TYPE_DECL || TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL) { cp_error ("declaration of template `%#D'", newdecl); cp_error_at ("conflicts with previous declaration `%#D'", olddecl); } else if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == FUNCTION_DECL && TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == FUNCTION_DECL && compparms (TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl))), TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl)))) && comp_template_parms (DECL_TEMPLATE_PARMS (newdecl), DECL_TEMPLATE_PARMS (olddecl))) { cp_error ("new declaration `%#D'", newdecl); cp_error_at ("ambiguates old declaration `%#D'", olddecl); } return 0; } if (TREE_CODE (newdecl) == FUNCTION_DECL) { if (DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl)) { cp_error ("declaration of C function `%#D' conflicts with", newdecl); cp_error_at ("previous declaration `%#D' here", olddecl); } else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)), TYPE_ARG_TYPES (TREE_TYPE (olddecl)))) { cp_error ("new declaration `%#D'", newdecl); cp_error_at ("ambiguates old declaration `%#D'", olddecl); } else return 0; } /* Already complained about this, so don't do so again. */ else if (current_class_type == NULL_TREE || IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (newdecl)) != current_class_type) { cp_error ("conflicting types for `%#D'", newdecl); cp_error_at ("previous declaration as `%#D'", olddecl); } } else if (TREE_CODE (newdecl) == FUNCTION_DECL && ((DECL_TEMPLATE_SPECIALIZATION (olddecl) && (!DECL_TEMPLATE_INFO (newdecl) || (DECL_TI_TEMPLATE (newdecl) != DECL_TI_TEMPLATE (olddecl)))) || (DECL_TEMPLATE_SPECIALIZATION (newdecl) && (!DECL_TEMPLATE_INFO (olddecl) || (DECL_TI_TEMPLATE (olddecl) != DECL_TI_TEMPLATE (newdecl)))))) /* It's OK to have a template specialization and a non-template with the same type, or to have specializations of two different templates with the same type. Note that if one is a specialization, and the other is an instantiation of the same template, that we do not exit at this point. That situation can occur if we instantiate a template class, and then specialize one of its methods. This situation is legal, but the declarations must be merged in the usual way. */ return 0; else if (TREE_CODE (newdecl) == FUNCTION_DECL && ((DECL_TEMPLATE_INSTANTIATION (olddecl) && !DECL_USE_TEMPLATE (newdecl)) || (DECL_TEMPLATE_INSTANTIATION (newdecl) && !DECL_USE_TEMPLATE (olddecl)))) /* One of the declarations is a template instantiation, and the other is not a template at all. That's OK. */ return 0; else if (TREE_CODE (newdecl) == NAMESPACE_DECL && DECL_NAMESPACE_ALIAS (newdecl) && DECL_NAMESPACE_ALIAS (newdecl) == DECL_NAMESPACE_ALIAS (olddecl)) /* Redeclaration of namespace alias, ignore it. */ return 1; else { const char *errmsg = redeclaration_error_message (newdecl, olddecl); if (errmsg) { cp_error (errmsg, newdecl); if (DECL_NAME (olddecl) != NULL_TREE) cp_error_at ((DECL_INITIAL (olddecl) && namespace_bindings_p ()) ? "`%#D' previously defined here" : "`%#D' previously declared here", olddecl); } else if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_INITIAL (olddecl) != NULL_TREE && TYPE_ARG_TYPES (TREE_TYPE (olddecl)) == NULL_TREE && TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != NULL_TREE) { /* Prototype decl follows defn w/o prototype. */ cp_warning_at ("prototype for `%#D'", newdecl); cp_warning_at ("follows non-prototype definition here", olddecl); } else if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_LANGUAGE (newdecl) != DECL_LANGUAGE (olddecl)) { /* extern "C" int foo (); int foo () { bar (); } is OK. */ if (current_lang_stack == &VARRAY_TREE (current_lang_base, 0)) DECL_LANGUAGE (newdecl) = DECL_LANGUAGE (olddecl); else { cp_error_at ("previous declaration of `%#D' with %L linkage", olddecl, DECL_LANGUAGE (olddecl)); cp_error ("conflicts with new declaration with %L linkage", DECL_LANGUAGE (newdecl)); } } if (DECL_LANG_SPECIFIC (olddecl) && DECL_USE_TEMPLATE (olddecl)) ; else if (TREE_CODE (olddecl) == FUNCTION_DECL) { tree t1 = TYPE_ARG_TYPES (TREE_TYPE (olddecl)); tree t2 = TYPE_ARG_TYPES (TREE_TYPE (newdecl)); int i = 1; if (TREE_CODE (TREE_TYPE (newdecl)) == METHOD_TYPE) t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2); for (; t1 && t1 != void_list_node; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2), i++) if (TREE_PURPOSE (t1) && TREE_PURPOSE (t2)) { if (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))) { if (pedantic) { cp_pedwarn ("default argument given for parameter %d of `%#D'", i, newdecl); cp_pedwarn_at ("after previous specification in `%#D'", olddecl); } } else { cp_error ("default argument given for parameter %d of `%#D'", i, newdecl); cp_error_at ("after previous specification in `%#D'", olddecl); } } if (DECL_THIS_INLINE (newdecl) && ! DECL_THIS_INLINE (olddecl) && TREE_ADDRESSABLE (olddecl) && warn_inline) { cp_warning ("`%#D' was used before it was declared inline", newdecl); cp_warning_at ("previous non-inline declaration here", olddecl); } } } /* If new decl is `static' and an `extern' was seen previously, warn about it. */ warn_extern_redeclared_static (newdecl, olddecl); /* We have committed to returning 1 at this point. */ if (TREE_CODE (newdecl) == FUNCTION_DECL) { /* Now that functions must hold information normally held by field decls, there is extra work to do so that declaration information does not get destroyed during definition. */ if (DECL_VINDEX (olddecl)) DECL_VINDEX (newdecl) = DECL_VINDEX (olddecl); if (DECL_VIRTUAL_CONTEXT (olddecl)) DECL_VIRTUAL_CONTEXT (newdecl) = DECL_VIRTUAL_CONTEXT (olddecl); if (DECL_CONTEXT (olddecl)) DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl); if (DECL_PENDING_INLINE_INFO (newdecl) == 0) DECL_PENDING_INLINE_INFO (newdecl) = DECL_PENDING_INLINE_INFO (olddecl); DECL_STATIC_CONSTRUCTOR (newdecl) |= DECL_STATIC_CONSTRUCTOR (olddecl); DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl); DECL_PURE_VIRTUAL_P (newdecl) |= DECL_PURE_VIRTUAL_P (olddecl); DECL_VIRTUAL_P (newdecl) |= DECL_VIRTUAL_P (olddecl); DECL_NEEDS_FINAL_OVERRIDER_P (newdecl) |= DECL_NEEDS_FINAL_OVERRIDER_P (olddecl); DECL_THIS_STATIC (newdecl) |= DECL_THIS_STATIC (olddecl); DECL_LANG_SPECIFIC (newdecl)->u2 = DECL_LANG_SPECIFIC (olddecl)->u2; new_defines_function = DECL_INITIAL (newdecl) != NULL_TREE; /* Optionally warn about more than one declaration for the same name, but don't warn about a function declaration followed by a definition. */ if (warn_redundant_decls && ! DECL_ARTIFICIAL (olddecl) && !(new_defines_function && DECL_INITIAL (olddecl) == NULL_TREE) /* Don't warn about extern decl followed by definition. */ && !(DECL_EXTERNAL (olddecl) && ! DECL_EXTERNAL (newdecl)) /* Don't warn about friends, let add_friend take care of it. */ && ! DECL_FRIEND_P (newdecl)) { cp_warning ("redundant redeclaration of `%D' in same scope", newdecl); cp_warning_at ("previous declaration of `%D'", olddecl); } } /* Deal with C++: must preserve virtual function table size. */ if (TREE_CODE (olddecl) == TYPE_DECL) { register tree newtype = TREE_TYPE (newdecl); register tree oldtype = TREE_TYPE (olddecl); if (newtype != error_mark_node && oldtype != error_mark_node && TYPE_LANG_SPECIFIC (newtype) && TYPE_LANG_SPECIFIC (oldtype)) { CLASSTYPE_VSIZE (newtype) = CLASSTYPE_VSIZE (oldtype); CLASSTYPE_FRIEND_CLASSES (newtype) = CLASSTYPE_FRIEND_CLASSES (oldtype); } DECL_ORIGINAL_TYPE (newdecl) = DECL_ORIGINAL_TYPE (olddecl); } /* Copy all the DECL_... slots specified in the new decl except for any that we copy here from the old type. */ DECL_MACHINE_ATTRIBUTES (newdecl) = merge_machine_decl_attributes (olddecl, newdecl); if (TREE_CODE (newdecl) == TEMPLATE_DECL) { TREE_TYPE (olddecl) = TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl)); DECL_TEMPLATE_SPECIALIZATIONS (olddecl) = chainon (DECL_TEMPLATE_SPECIALIZATIONS (olddecl), DECL_TEMPLATE_SPECIALIZATIONS (newdecl)); return 1; } if (types_match) { /* Automatically handles default parameters. */ tree oldtype = TREE_TYPE (olddecl); tree newtype; /* Merge the data types specified in the two decls. */ newtype = common_type (TREE_TYPE (newdecl), TREE_TYPE (olddecl)); /* If common_type produces a non-typedef type, just use the old type. */ if (TREE_CODE (newdecl) == TYPE_DECL && newtype == DECL_ORIGINAL_TYPE (newdecl)) newtype = oldtype; if (TREE_CODE (newdecl) == VAR_DECL) DECL_THIS_EXTERN (newdecl) |= DECL_THIS_EXTERN (olddecl); /* Do this after calling `common_type' so that default parameters don't confuse us. */ else if (TREE_CODE (newdecl) == FUNCTION_DECL && (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl)) != TYPE_RAISES_EXCEPTIONS (TREE_TYPE (olddecl)))) { TREE_TYPE (newdecl) = build_exception_variant (newtype, TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl))); TREE_TYPE (olddecl) = build_exception_variant (newtype, TYPE_RAISES_EXCEPTIONS (oldtype)); if ((pedantic || ! DECL_IN_SYSTEM_HEADER (olddecl)) && DECL_SOURCE_LINE (olddecl) != 0 && flag_exceptions && !comp_except_specs (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (newdecl)), TYPE_RAISES_EXCEPTIONS (TREE_TYPE (olddecl)), 1)) { cp_error ("declaration of `%F' throws different exceptions", newdecl); cp_error_at ("than previous declaration `%F'", olddecl); } } TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = newtype; /* Lay the type out, unless already done. */ if (! same_type_p (newtype, oldtype) && TREE_TYPE (newdecl) != error_mark_node && !(processing_template_decl && uses_template_parms (newdecl))) layout_type (TREE_TYPE (newdecl)); if ((TREE_CODE (newdecl) == VAR_DECL || TREE_CODE (newdecl) == PARM_DECL || TREE_CODE (newdecl) == RESULT_DECL || TREE_CODE (newdecl) == FIELD_DECL || TREE_CODE (newdecl) == TYPE_DECL) && !(processing_template_decl && uses_template_parms (newdecl))) layout_decl (newdecl, 0); /* Merge the type qualifiers. */ if (TREE_READONLY (newdecl)) TREE_READONLY (olddecl) = 1; if (TREE_THIS_VOLATILE (newdecl)) TREE_THIS_VOLATILE (olddecl) = 1; /* Merge the initialization information. */ if (DECL_INITIAL (newdecl) == NULL_TREE && DECL_INITIAL (olddecl) != NULL_TREE) { DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl); DECL_SOURCE_FILE (newdecl) = DECL_SOURCE_FILE (olddecl); DECL_SOURCE_LINE (newdecl) = DECL_SOURCE_LINE (olddecl); if (CAN_HAVE_FULL_LANG_DECL_P (newdecl) && DECL_LANG_SPECIFIC (newdecl) && DECL_LANG_SPECIFIC (olddecl)) DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl); } /* Merge the section attribute. We want to issue an error if the sections conflict but that must be done later in decl_attributes since we are called before attributes are assigned. */ if (DECL_SECTION_NAME (newdecl) == NULL_TREE) DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl); /* Keep the old rtl since we can safely use it. */ DECL_RTL (newdecl) = DECL_RTL (olddecl); if (TREE_CODE (newdecl) == FUNCTION_DECL) { DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl) |= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl); DECL_NO_CHECK_MEMORY_USAGE (newdecl) |= DECL_NO_CHECK_MEMORY_USAGE (olddecl); DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl); } } /* If cannot merge, then use the new type and qualifiers, and don't preserve the old rtl. */ else { /* Clean out any memory we had of the old declaration. */ tree oldstatic = value_member (olddecl, static_aggregates); if (oldstatic) TREE_VALUE (oldstatic) = error_mark_node; TREE_TYPE (olddecl) = TREE_TYPE (newdecl); TREE_READONLY (olddecl) = TREE_READONLY (newdecl); TREE_THIS_VOLATILE (olddecl) = TREE_THIS_VOLATILE (newdecl); TREE_SIDE_EFFECTS (olddecl) = TREE_SIDE_EFFECTS (newdecl); } /* Merge the storage class information. */ DECL_WEAK (newdecl) |= DECL_WEAK (olddecl); DECL_ONE_ONLY (newdecl) |= DECL_ONE_ONLY (olddecl); DECL_DEFER_OUTPUT (newdecl) |= DECL_DEFER_OUTPUT (olddecl); TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl); TREE_STATIC (olddecl) = TREE_STATIC (newdecl) |= TREE_STATIC (olddecl); if (! DECL_EXTERNAL (olddecl)) DECL_EXTERNAL (newdecl) = 0; if (DECL_LANG_SPECIFIC (newdecl) && DECL_LANG_SPECIFIC (olddecl)) { DECL_INTERFACE_KNOWN (newdecl) |= DECL_INTERFACE_KNOWN (olddecl); DECL_NOT_REALLY_EXTERN (newdecl) |= DECL_NOT_REALLY_EXTERN (olddecl); DECL_COMDAT (newdecl) |= DECL_COMDAT (olddecl); DECL_TEMPLATE_INSTANTIATED (newdecl) |= DECL_TEMPLATE_INSTANTIATED (olddecl); /* Don't really know how much of the language-specific values we should copy from old to new. */ DECL_IN_AGGR_P (newdecl) = DECL_IN_AGGR_P (olddecl); DECL_ACCESS (newdecl) = DECL_ACCESS (olddecl); DECL_NONCONVERTING_P (newdecl) = DECL_NONCONVERTING_P (olddecl); DECL_TEMPLATE_INFO (newdecl) = DECL_TEMPLATE_INFO (olddecl); DECL_INITIALIZED_IN_CLASS_P (newdecl) |= DECL_INITIALIZED_IN_CLASS_P (olddecl); olddecl_friend = DECL_FRIEND_P (olddecl); /* Only functions have DECL_BEFRIENDING_CLASSES. */ if (TREE_CODE (newdecl) == FUNCTION_DECL || DECL_FUNCTION_TEMPLATE_P (newdecl)) DECL_BEFRIENDING_CLASSES (newdecl) = chainon (DECL_BEFRIENDING_CLASSES (newdecl), DECL_BEFRIENDING_CLASSES (olddecl)); } if (TREE_CODE (newdecl) == FUNCTION_DECL) { if (DECL_TEMPLATE_INSTANTIATION (olddecl) && !DECL_TEMPLATE_INSTANTIATION (newdecl)) { /* If newdecl is not a specialization, then it is not a template-related function at all. And that means that we shoud have exited above, returning 0. */ my_friendly_assert (DECL_TEMPLATE_SPECIALIZATION (newdecl), 0); if (TREE_USED (olddecl)) /* From [temp.expl.spec]: If a template, a member template or the member of a class template is explicitly specialized then that specialization shall be declared before the first use of that specialization that would cause an implicit instantiation to take place, in every translation unit in which such a use occurs. */ cp_error ("explicit specialization of %D after first use", olddecl); SET_DECL_TEMPLATE_SPECIALIZATION (olddecl); } DECL_THIS_INLINE (newdecl) |= DECL_THIS_INLINE (olddecl); /* If either decl says `inline', this fn is inline, unless its definition was passed already. */ if (DECL_INLINE (newdecl) && DECL_INITIAL (olddecl) == NULL_TREE) DECL_INLINE (olddecl) = 1; DECL_INLINE (newdecl) = DECL_INLINE (olddecl); if (! types_match) { DECL_LANGUAGE (olddecl) = DECL_LANGUAGE (newdecl); DECL_ASSEMBLER_NAME (olddecl) = DECL_ASSEMBLER_NAME (newdecl); DECL_RTL (olddecl) = DECL_RTL (newdecl); } if (! types_match || new_defines_function) { /* These need to be copied so that the names are available. Note that if the types do match, we'll preserve inline info and other bits, but if not, we won't. */ DECL_ARGUMENTS (olddecl) = DECL_ARGUMENTS (newdecl); DECL_RESULT (olddecl) = DECL_RESULT (newdecl); } if (new_defines_function) /* If defining a function declared with other language linkage, use the previously declared language linkage. */ DECL_LANGUAGE (newdecl) = DECL_LANGUAGE (olddecl); else if (types_match) { /* If redeclaring a builtin function, and not a definition, it stays built in. */ if (DECL_BUILT_IN (olddecl)) { DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl); DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl); /* If we're keeping the built-in definition, keep the rtl, regardless of declaration matches. */ DECL_RTL (newdecl) = DECL_RTL (olddecl); } else DECL_FRAME_SIZE (newdecl) = DECL_FRAME_SIZE (olddecl); DECL_RESULT (newdecl) = DECL_RESULT (olddecl); if ((DECL_SAVED_INSNS (newdecl) = DECL_SAVED_INSNS (olddecl))) /* Previously saved insns go together with the function's previous definition. */ DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl); /* Don't clear out the arguments if we're redefining a function. */ if (DECL_ARGUMENTS (olddecl)) DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl); } } if (TREE_CODE (newdecl) == NAMESPACE_DECL) { NAMESPACE_LEVEL (newdecl) = NAMESPACE_LEVEL (olddecl); } /* Now preserve various other info from the definition. */ TREE_ADDRESSABLE (newdecl) = TREE_ADDRESSABLE (olddecl); TREE_ASM_WRITTEN (newdecl) = TREE_ASM_WRITTEN (olddecl); DECL_COMMON (newdecl) = DECL_COMMON (olddecl); DECL_ASSEMBLER_NAME (newdecl) = DECL_ASSEMBLER_NAME (olddecl); if (TREE_CODE (newdecl) == FUNCTION_DECL) { int function_size; function_size = sizeof (struct tree_decl); bcopy ((char *) newdecl + sizeof (struct tree_common), (char *) olddecl + sizeof (struct tree_common), function_size - sizeof (struct tree_common)); if (DECL_TEMPLATE_INSTANTIATION (newdecl)) { /* If newdecl is a template instantiation, it is possible that the following sequence of events has occurred: o A friend function was declared in a class template. The class template was instantiated. o The instantiation of the friend declaration was recorded on the instantiation list, and is newdecl. o Later, however, instantiate_class_template called pushdecl on the newdecl to perform name injection. But, pushdecl in turn called duplicate_decls when it discovered that another declaration of a global function with the same name already existed. o Here, in duplicate_decls, we decided to clobber newdecl. If we're going to do that, we'd better make sure that olddecl, and not newdecl, is on the list of instantiations so that if we try to do the instantiation again we won't get the clobbered declaration. */ tree tmpl = DECL_TI_TEMPLATE (newdecl); tree decls = DECL_TEMPLATE_SPECIALIZATIONS (tmpl); for (; decls; decls = TREE_CHAIN (decls)) if (TREE_VALUE (decls) == newdecl) TREE_VALUE (decls) = olddecl; } } else { bcopy ((char *) newdecl + sizeof (struct tree_common), (char *) olddecl + sizeof (struct tree_common), sizeof (struct tree_decl) - sizeof (struct tree_common) + tree_code_length [(int)TREE_CODE (newdecl)] * sizeof (char *)); } DECL_UID (olddecl) = olddecl_uid; if (olddecl_friend) DECL_FRIEND_P (olddecl) = 1; /* NEWDECL contains the merged attribute lists. Update OLDDECL to be the same. */ DECL_MACHINE_ATTRIBUTES (olddecl) = DECL_MACHINE_ATTRIBUTES (newdecl); return 1; } /* Record a decl-node X as belonging to the current lexical scope. Check for errors (such as an incompatible declaration for the same name already seen in the same scope). Returns either X or an old decl for the same name. If an old decl is returned, it may have been smashed to agree with what X says. */ tree pushdecl (x) tree x; { register tree t; register tree name; int need_new_binding; /* We shouldn't be calling pushdecl when we're generating RTL for a function that we already did semantic analysis on previously. */ my_friendly_assert (!cfun || doing_semantic_analysis_p (), 19990913); need_new_binding = 1; if (DECL_TEMPLATE_PARM_P (x)) /* Template parameters have no context; they are not X::T even when declared within a class or namespace. */ ; else { if (current_function_decl && x != current_function_decl /* A local declaration for a function doesn't constitute nesting. */ && !(TREE_CODE (x) == FUNCTION_DECL && !DECL_INITIAL (x)) /* A local declaration for an `extern' variable is in the scope of the current namespace, not the current function. */ && !(TREE_CODE (x) == VAR_DECL && DECL_EXTERNAL (x)) && !DECL_CONTEXT (x)) DECL_CONTEXT (x) = current_function_decl; /* If this is the declaration for a namespace-scope function, but the declaration itself is in a local scope, mark the declaration. */ if (TREE_CODE (x) == FUNCTION_DECL && DECL_NAMESPACE_SCOPE_P (x) && current_function_decl && x != current_function_decl) DECL_LOCAL_FUNCTION_P (x) = 1; } name = DECL_NAME (x); if (name) { int different_binding_level = 0; if (TREE_CODE (name) == TEMPLATE_ID_EXPR) name = TREE_OPERAND (name, 0); /* In case this decl was explicitly namespace-qualified, look it up in its namespace context. */ if (TREE_CODE (x) == VAR_DECL && DECL_NAMESPACE_SCOPE_P (x) && namespace_bindings_p ()) t = namespace_binding (name, DECL_CONTEXT (x)); else t = lookup_name_current_level (name); /* [basic.link] If there is a visible declaration of an entity with linkage having the same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block scope declaration declares that same entity and receives the linkage of the previous declaration. */ if (! t && current_function_decl && x != current_function_decl && (TREE_CODE (x) == FUNCTION_DECL || TREE_CODE (x) == VAR_DECL) && DECL_EXTERNAL (x)) { /* Look in block scope. */ t = IDENTIFIER_VALUE (name); /* Or in the innermost namespace. */ if (! t) t = namespace_binding (name, DECL_CONTEXT (x)); /* Does it have linkage? Note that if this isn't a DECL, it's an OVERLOAD, which is OK. */ if (t && DECL_P (t) && ! (TREE_STATIC (t) || DECL_EXTERNAL (t))) t = NULL_TREE; if (t) different_binding_level = 1; } /* If we are declaring a function, and the result of name-lookup was an OVERLOAD, look for an overloaded instance that is actually the same as the function we are declaring. (If there is one, we have to merge our declaration with the previous declaration.) */ if (t && TREE_CODE (t) == OVERLOAD) { tree match; if (TREE_CODE (x) == FUNCTION_DECL) for (match = t; match; match = OVL_NEXT (match)) { if (DECL_ASSEMBLER_NAME (OVL_CURRENT (t)) == DECL_ASSEMBLER_NAME (x)) break; } else /* Just choose one. */ match = t; if (match) t = OVL_CURRENT (match); else t = NULL_TREE; } if (t == error_mark_node) { /* error_mark_node is 0 for a while during initialization! */ t = NULL_TREE; cp_error_at ("`%#D' used prior to declaration", x); } else if (t != NULL_TREE) { if (different_binding_level) { if (decls_match (x, t)) /* The standard only says that the local extern inherits linkage from the previous decl; in particular, default args are not shared. It would be nice to propagate inlining info, though. FIXME. */ TREE_PUBLIC (x) = TREE_PUBLIC (t); } else if (TREE_CODE (t) == PARM_DECL) { if (DECL_CONTEXT (t) == NULL_TREE) fatal ("parse errors have confused me too much"); /* Check for duplicate params. */ if (duplicate_decls (x, t)) return t; } else if ((DECL_EXTERN_C_FUNCTION_P (x) || DECL_FUNCTION_TEMPLATE_P (x)) && is_overloaded_fn (t)) /* Don't do anything just yet. */; else if (t == wchar_decl_node) { if (pedantic && ! DECL_IN_SYSTEM_HEADER (x)) cp_pedwarn ("redeclaration of wchar_t as `%T'", TREE_TYPE (x)); /* Throw away the redeclaration. */ return t; } else if (TREE_CODE (t) != TREE_CODE (x)) { if (duplicate_decls (x, t)) return t; } else if (duplicate_decls (x, t)) { if (TREE_CODE (t) == TYPE_DECL) SET_IDENTIFIER_TYPE_VALUE (name, TREE_TYPE (t)); else if (TREE_CODE (t) == FUNCTION_DECL) check_default_args (t); return t; } else if (DECL_MAIN_P (x)) { /* A redeclaration of main, but not a duplicate of the previous one. [basic.start.main] This function shall not be overloaded. */ cp_error_at ("invalid redeclaration of `%D'", t); cp_error ("as `%D'", x); /* We don't try to push this declaration since that causes a crash. */ return x; } } check_template_shadow (x); /* If this is a function conjured up by the backend, massage it so it looks friendly. */ if (DECL_NON_THUNK_FUNCTION_P (x) && ! DECL_LANG_SPECIFIC (x)) { retrofit_lang_decl (x); DECL_LANGUAGE (x) = lang_c; } if (DECL_NON_THUNK_FUNCTION_P (x) && ! DECL_FUNCTION_MEMBER_P (x)) { t = push_overloaded_decl (x, PUSH_LOCAL); if (t != x) return t; if (!namespace_bindings_p ()) /* We do not need to create a binding for this name; push_overloaded_decl will have already done so if necessary. */ need_new_binding = 0; } else if (DECL_FUNCTION_TEMPLATE_P (x) && DECL_NAMESPACE_SCOPE_P (x)) { t = push_overloaded_decl (x, PUSH_GLOBAL); if (t == x) add_decl_to_level (x, NAMESPACE_LEVEL (CP_DECL_CONTEXT (t))); return t; } /* If declaring a type as a typedef, copy the type (unless we're at line 0), and install this TYPE_DECL as the new type's typedef name. See the extensive comment in ../c-decl.c (pushdecl). */ if (TREE_CODE (x) == TYPE_DECL) { tree type = TREE_TYPE (x); if (DECL_SOURCE_LINE (x) == 0) { if (TYPE_NAME (type) == 0) TYPE_NAME (type) = x; } else if (type != error_mark_node && TYPE_NAME (type) != x /* We don't want to copy the type when all we're doing is making a TYPE_DECL for the purposes of inlining. */ && (!TYPE_NAME (type) || TYPE_NAME (type) != DECL_ABSTRACT_ORIGIN (x))) { DECL_ORIGINAL_TYPE (x) = type; type = build_type_copy (type); TYPE_STUB_DECL (type) = TYPE_STUB_DECL (DECL_ORIGINAL_TYPE (x)); TYPE_NAME (type) = x; TREE_TYPE (x) = type; } if (type != error_mark_node && TYPE_NAME (type) && TYPE_IDENTIFIER (type)) set_identifier_type_value_with_scope (DECL_NAME (x), type, current_binding_level); } /* Multiple external decls of the same identifier ought to match. We get warnings about inline functions where they are defined. We get warnings about other functions from push_overloaded_decl. Avoid duplicate warnings where they are used. */ if (TREE_PUBLIC (x) && TREE_CODE (x) != FUNCTION_DECL) { tree decl; decl = IDENTIFIER_NAMESPACE_VALUE (name); if (decl && TREE_CODE (decl) == OVERLOAD) decl = OVL_FUNCTION (decl); if (decl && decl != error_mark_node && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl)) /* If different sort of thing, we already gave an error. */ && TREE_CODE (decl) == TREE_CODE (x) && !same_type_p (TREE_TYPE (x), TREE_TYPE (decl))) { cp_pedwarn ("type mismatch with previous external decl", x); cp_pedwarn_at ("previous external decl of `%#D'", decl); } } /* This name is new in its binding level. Install the new declaration and return it. */ if (namespace_bindings_p ()) { /* Install a global value. */ /* If the first global decl has external linkage, warn if we later see static one. */ if (IDENTIFIER_GLOBAL_VALUE (name) == NULL_TREE && TREE_PUBLIC (x)) TREE_PUBLIC (name) = 1; /* Bind the mangled name for the entity. In the future, we should not need to do this; mangled names are an implementation detail of which the front-end should not need to be aware. */ if (!(TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x) && t != NULL_TREE) /* For an ordinary function, we create a binding from the mangled name (i.e., NAME) to the DECL. But, for an `extern "C"' function, the mangled name and the ordinary name are the same so we need not do this. */ && !DECL_EXTERN_C_FUNCTION_P (x)) { tree mangled_name; if (TREE_CODE (x) == TYPE_DECL || TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == NAMESPACE_DECL) mangled_name = name; else mangled_name = DECL_ASSEMBLER_NAME (x); if (TREE_CODE (x) == FUNCTION_DECL) my_friendly_assert ((IDENTIFIER_GLOBAL_VALUE (mangled_name) == NULL_TREE) || (IDENTIFIER_GLOBAL_VALUE (mangled_name) == x), 378); SET_IDENTIFIER_NAMESPACE_VALUE (mangled_name, x); } /* Don't forget if the function was used via an implicit decl. */ if (IDENTIFIER_IMPLICIT_DECL (name) && TREE_USED (IDENTIFIER_IMPLICIT_DECL (name))) TREE_USED (x) = 1; /* Don't forget if its address was taken in that way. */ if (IDENTIFIER_IMPLICIT_DECL (name) && TREE_ADDRESSABLE (IDENTIFIER_IMPLICIT_DECL (name))) TREE_ADDRESSABLE (x) = 1; /* Warn about mismatches against previous implicit decl. */ if (IDENTIFIER_IMPLICIT_DECL (name) != NULL_TREE /* If this real decl matches the implicit, don't complain. */ && ! (TREE_CODE (x) == FUNCTION_DECL && TREE_TYPE (TREE_TYPE (x)) == integer_type_node)) cp_warning ("`%D' was previously implicitly declared to return `int'", x); /* If new decl is `static' and an `extern' was seen previously, warn about it. */ if (x != NULL_TREE && t != NULL_TREE && decls_match (x, t)) warn_extern_redeclared_static (x, t); } else { /* Here to install a non-global value. */ tree oldlocal = IDENTIFIER_VALUE (name); tree oldglobal = IDENTIFIER_NAMESPACE_VALUE (name); if (need_new_binding) { push_local_binding (name, x, 0); /* Because push_local_binding will hook X on to the current_binding_level's name list, we don't want to do that again below. */ need_new_binding = 0; } /* If this is a TYPE_DECL, push it into the type value slot. */ if (TREE_CODE (x) == TYPE_DECL) set_identifier_type_value_with_scope (name, TREE_TYPE (x), current_binding_level); /* Clear out any TYPE_DECL shadowed by a namespace so that we won't think this is a type. The C struct hack doesn't go through namespaces. */ if (TREE_CODE (x) == NAMESPACE_DECL) set_identifier_type_value_with_scope (name, NULL_TREE, current_binding_level); if (oldlocal) { tree d = oldlocal; while (oldlocal && TREE_CODE (oldlocal) == VAR_DECL && DECL_DEAD_FOR_LOCAL (oldlocal)) oldlocal = DECL_SHADOWED_FOR_VAR (oldlocal); if (oldlocal == NULL_TREE) oldlocal = IDENTIFIER_NAMESPACE_VALUE (DECL_NAME (d)); } /* If this is an extern function declaration, see if we have a global definition or declaration for the function. */ if (oldlocal == NULL_TREE && DECL_EXTERNAL (x) && oldglobal != NULL_TREE && TREE_CODE (x) == FUNCTION_DECL && TREE_CODE (oldglobal) == FUNCTION_DECL) { /* We have one. Their types must agree. */ if (decls_match (x, oldglobal)) /* OK */; else { cp_warning ("extern declaration of `%#D' doesn't match", x); cp_warning_at ("global declaration `%#D'", oldglobal); } } /* If we have a local external declaration, and no file-scope declaration has yet been seen, then if we later have a file-scope decl it must not be static. */ if (oldlocal == NULL_TREE && oldglobal == NULL_TREE && DECL_EXTERNAL (x) && TREE_PUBLIC (x)) TREE_PUBLIC (name) = 1; /* Warn if shadowing an argument at the top level of the body. */ if (oldlocal != NULL_TREE && !DECL_EXTERNAL (x) /* Inline decls shadow nothing. */ && !DECL_FROM_INLINE (x) && TREE_CODE (oldlocal) == PARM_DECL /* Don't complain if it's from an enclosing function. */ && DECL_CONTEXT (oldlocal) == current_function_decl && TREE_CODE (x) != PARM_DECL) { /* Go to where the parms should be and see if we find them there. */ struct binding_level *b = current_binding_level->level_chain; if (cleanup_label) b = b->level_chain; /* ARM $8.3 */ if (b->parm_flag == 1) cp_error ("declaration of `%#D' shadows a parameter", name); } /* Maybe warn if shadowing something else. */ if (warn_shadow && !DECL_EXTERNAL (x) /* Inline decls shadow nothing. */ && !DECL_FROM_INLINE (x) /* No shadow warnings for internally generated vars. */ && ! DECL_ARTIFICIAL (x) /* No shadow warnings for vars made for inlining. */ && ! DECL_FROM_INLINE (x)) { if (oldlocal != NULL_TREE && TREE_CODE (oldlocal) == PARM_DECL) warning ("declaration of `%s' shadows a parameter", IDENTIFIER_POINTER (name)); else if (IDENTIFIER_CLASS_VALUE (name) != NULL_TREE && current_class_ptr && !TREE_STATIC (name)) warning ("declaration of `%s' shadows a member of `this'", IDENTIFIER_POINTER (name)); else if (oldlocal != NULL_TREE) warning ("declaration of `%s' shadows previous local", IDENTIFIER_POINTER (name)); else if (oldglobal != NULL_TREE) /* XXX shadow warnings in outer-more namespaces */ warning ("declaration of `%s' shadows global declaration", IDENTIFIER_POINTER (name)); } } if (TREE_CODE (x) == FUNCTION_DECL) check_default_args (x); /* Keep count of variables in this level with incomplete type. */ if (TREE_CODE (x) == VAR_DECL && TREE_TYPE (x) != error_mark_node && ((!COMPLETE_TYPE_P (TREE_TYPE (x)) && PROMOTES_TO_AGGR_TYPE (TREE_TYPE (x), ARRAY_TYPE)) /* RTTI TD entries are created while defining the type_info. */ || (TYPE_LANG_SPECIFIC (TREE_TYPE (x)) && TYPE_BEING_DEFINED (TREE_TYPE (x))))) { if (namespace_bindings_p ()) namespace_scope_incomplete = tree_cons (NULL_TREE, x, namespace_scope_incomplete); else current_binding_level->incomplete = tree_cons (NULL_TREE, x, current_binding_level->incomplete); } } if (need_new_binding) add_decl_to_level (x, DECL_NAMESPACE_SCOPE_P (x) ? NAMESPACE_LEVEL (CP_DECL_CONTEXT (x)) : current_binding_level); return x; } /* Same as pushdecl, but define X in binding-level LEVEL. We rely on the caller to set DECL_CONTEXT properly. */ static tree pushdecl_with_scope (x, level) tree x; struct binding_level *level; { register struct binding_level *b; tree function_decl = current_function_decl; current_function_decl = NULL_TREE; if (level->parm_flag == 2) { b = class_binding_level; class_binding_level = level; pushdecl_class_level (x); class_binding_level = b; } else { b = current_binding_level; current_binding_level = level; x = pushdecl (x); current_binding_level = b; } current_function_decl = function_decl; return x; } /* Like pushdecl, only it places X in the current namespace, if appropriate. */ tree pushdecl_namespace_level (x) tree x; { register struct binding_level *b = current_binding_level; register tree t; t = pushdecl_with_scope (x, NAMESPACE_LEVEL (current_namespace)); /* Now, the type_shadowed stack may screw us. Munge it so it does what we want. */ if (TREE_CODE (x) == TYPE_DECL) { tree name = DECL_NAME (x); tree newval; tree *ptr = (tree *)0; for (; b != global_binding_level; b = b->level_chain) { tree shadowed = b->type_shadowed; for (; shadowed; shadowed = TREE_CHAIN (shadowed)) if (TREE_PURPOSE (shadowed) == name) { ptr = &TREE_VALUE (shadowed); /* Can't break out of the loop here because sometimes a binding level will have duplicate bindings for PT names. It's gross, but I haven't time to fix it. */ } } newval = TREE_TYPE (x); if (ptr == (tree *)0) { /* @@ This shouldn't be needed. My test case "zstring.cc" trips up here if this is changed to an assertion. --KR */ SET_IDENTIFIER_TYPE_VALUE (name, newval); } else { *ptr = newval; } } return t; } /* Like pushdecl, only it places X in GLOBAL_BINDING_LEVEL, if appropriate. */ tree pushdecl_top_level (x) tree x; { push_to_top_level (); x = pushdecl_namespace_level (x); pop_from_top_level (); return x; } /* Make the declaration of X appear in CLASS scope. */ void pushdecl_class_level (x) tree x; { /* Don't use DECL_ASSEMBLER_NAME here! Everything that looks in class scope looks for the pre-mangled name. */ register tree name; if (TREE_CODE (x) == OVERLOAD) x = OVL_CURRENT (x); name = DECL_NAME (x); if (name) { push_class_level_binding (name, x); if (TREE_CODE (x) == TYPE_DECL) set_identifier_type_value (name, TREE_TYPE (x)); } else if (ANON_AGGR_TYPE_P (TREE_TYPE (x))) { tree f; for (f = TYPE_FIELDS (TREE_TYPE (x)); f; f = TREE_CHAIN (f)) pushdecl_class_level (f); } } /* Enter DECL into the symbol table, if that's appropriate. Returns DECL, or a modified version thereof. */ tree maybe_push_decl (decl) tree decl; { tree type = TREE_TYPE (decl); /* Add this decl to the current binding level, but not if it comes from another scope, e.g. a static member variable. TEM may equal DECL or it may be a previous decl of the same name. */ if (decl == error_mark_node || (TREE_CODE (decl) != PARM_DECL && DECL_CONTEXT (decl) != NULL_TREE /* Definitions of namespace members outside their namespace are possible. */ && TREE_CODE (DECL_CONTEXT (decl)) != NAMESPACE_DECL) || (TREE_CODE (decl) == TEMPLATE_DECL && !namespace_bindings_p ()) || TREE_CODE (type) == UNKNOWN_TYPE /* The declaration of a template specialization does not affect the functions available for overload resolution, so we do not call pushdecl. */ || (TREE_CODE (decl) == FUNCTION_DECL && DECL_TEMPLATE_SPECIALIZATION (decl))) return decl; else return pushdecl (decl); } /* Make the declaration(s) of X appear in CLASS scope under the name NAME. */ void push_class_level_binding (name, x) tree name; tree x; { tree binding; /* The class_binding_level will be NULL if x is a template parameter name in a member template. */ if (!class_binding_level) return; /* Make sure that this new member does not have the same name as a template parameter. */ if (TYPE_BEING_DEFINED (current_class_type)) check_template_shadow (x); /* If this declaration shadows a declaration from an enclosing class, then we will need to restore IDENTIFIER_CLASS_VALUE when we leave this class. Record the shadowed declaration here. */ binding = IDENTIFIER_BINDING (name); if (binding && ((TREE_CODE (x) == OVERLOAD && BINDING_VALUE (binding) && is_overloaded_fn (BINDING_VALUE (binding))) || INHERITED_VALUE_BINDING_P (binding))) { tree shadow; tree old_decl; /* If the old binding was from a base class, and was for a tag name, slide it over to make room for the new binding. The old binding is still visible if explicitly qualified with a class-key. */ if (INHERITED_VALUE_BINDING_P (binding) && BINDING_VALUE (binding) && TREE_CODE (BINDING_VALUE (binding)) == TYPE_DECL && DECL_ARTIFICIAL (BINDING_VALUE (binding)) && !(TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x))) { old_decl = BINDING_TYPE (binding); BINDING_TYPE (binding) = BINDING_VALUE (binding); BINDING_VALUE (binding) = NULL_TREE; INHERITED_VALUE_BINDING_P (binding) = 0; } else old_decl = BINDING_VALUE (binding); /* Find the previous binding of name on the class-shadowed list, and update it. */ for (shadow = class_binding_level->class_shadowed; shadow; shadow = TREE_CHAIN (shadow)) if (TREE_PURPOSE (shadow) == name && TREE_TYPE (shadow) == old_decl) { BINDING_VALUE (binding) = x; INHERITED_VALUE_BINDING_P (binding) = 0; TREE_TYPE (shadow) = x; IDENTIFIER_CLASS_VALUE (name) = x; return; } } /* If we didn't replace an existing binding, put the binding on the stack of bindings for the identifier, and update the shadowed list. */ if (push_class_binding (name, x)) { class_binding_level->class_shadowed = tree_cons (name, NULL, class_binding_level->class_shadowed); /* Record the value we are binding NAME to so that we can know what to pop later. */ TREE_TYPE (class_binding_level->class_shadowed) = x; } } /* Insert another USING_DECL into the current binding level, returning this declaration. If this is a redeclaration, do nothing, and return NULL_TREE if this not in namespace scope (in namespace scope, a using decl might extend any previous bindings). */ tree push_using_decl (scope, name) tree scope; tree name; { tree decl; my_friendly_assert (TREE_CODE (scope) == NAMESPACE_DECL, 383); my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 384); for (decl = current_binding_level->usings; decl; decl = TREE_CHAIN (decl)) if (DECL_INITIAL (decl) == scope && DECL_NAME (decl) == name) break; if (decl) return namespace_bindings_p () ? decl : NULL_TREE; decl = build_lang_decl (USING_DECL, name, void_type_node); DECL_INITIAL (decl) = scope; TREE_CHAIN (decl) = current_binding_level->usings; current_binding_level->usings = decl; return decl; } /* Add namespace to using_directives. Return NULL_TREE if nothing was changed (i.e. there was already a directive), or the fresh TREE_LIST otherwise. */ tree push_using_directive (used) tree used; { tree ud = current_binding_level->using_directives; tree iter, ancestor; /* Check if we already have this. */ if (purpose_member (used, ud) != NULL_TREE) return NULL_TREE; /* Recursively add all namespaces used. */ for (iter = DECL_NAMESPACE_USING (used); iter; iter = TREE_CHAIN (iter)) push_using_directive (TREE_PURPOSE (iter)); ancestor = namespace_ancestor (current_decl_namespace (), used); ud = current_binding_level->using_directives; ud = tree_cons (used, ancestor, ud); current_binding_level->using_directives = ud; return ud; } /* DECL is a FUNCTION_DECL for a non-member function, which may have other definitions already in place. We get around this by making the value of the identifier point to a list of all the things that want to be referenced by that name. It is then up to the users of that name to decide what to do with that list. DECL may also be a TEMPLATE_DECL, with a FUNCTION_DECL in its DECL_TEMPLATE_RESULT. It is dealt with the same way. FLAGS is a bitwise-or of the following values: PUSH_LOCAL: Bind DECL in the current scope, rather than at namespace scope. PUSH_USING: DECL is being pushed as the result of a using declaration. The value returned may be a previous declaration if we guessed wrong about what language DECL should belong to (C or C++). Otherwise, it's always DECL (and never something that's not a _DECL). */ tree push_overloaded_decl (decl, flags) tree decl; int flags; { tree name = DECL_NAME (decl); tree old; tree new_binding; int doing_global = (namespace_bindings_p () || !(flags & PUSH_LOCAL)); if (doing_global) old = namespace_binding (name, DECL_CONTEXT (decl)); else old = lookup_name_current_level (name); if (old) { if (TREE_CODE (old) == TYPE_DECL && DECL_ARTIFICIAL (old)) { tree t = TREE_TYPE (old); if (IS_AGGR_TYPE (t) && warn_shadow && (! DECL_IN_SYSTEM_HEADER (decl) || ! DECL_IN_SYSTEM_HEADER (old))) cp_warning ("`%#D' hides constructor for `%#T'", decl, t); old = NULL_TREE; } else if (is_overloaded_fn (old)) { tree tmp; for (tmp = old; tmp; tmp = OVL_NEXT (tmp)) { tree fn = OVL_CURRENT (tmp); if (TREE_CODE (tmp) == OVERLOAD && OVL_USED (tmp) && !(flags & PUSH_USING) && compparms (TYPE_ARG_TYPES (TREE_TYPE (fn)), TYPE_ARG_TYPES (TREE_TYPE (decl)))) cp_error ("`%#D' conflicts with previous using declaration `%#D'", decl, fn); if (duplicate_decls (decl, fn)) return fn; } } else if (old == error_mark_node) /* Ignore the undefined symbol marker. */ old = NULL_TREE; else { cp_error_at ("previous non-function declaration `%#D'", old); cp_error ("conflicts with function declaration `%#D'", decl); return decl; } } if (old || TREE_CODE (decl) == TEMPLATE_DECL) { if (old && TREE_CODE (old) != OVERLOAD) new_binding = ovl_cons (decl, ovl_cons (old, NULL_TREE)); else new_binding = ovl_cons (decl, old); if (flags & PUSH_USING) OVL_USED (new_binding) = 1; } else /* NAME is not ambiguous. */ new_binding = decl; if (doing_global) set_namespace_binding (name, current_namespace, new_binding); else { /* We only create an OVERLOAD if there was a previous binding at this level, or if decl is a template. In the former case, we need to remove the old binding and replace it with the new binding. We must also run through the NAMES on the binding level where the name was bound to update the chain. */ if (TREE_CODE (new_binding) == OVERLOAD && old) { tree *d; for (d = &BINDING_LEVEL (IDENTIFIER_BINDING (name))->names; *d; d = &TREE_CHAIN (*d)) if (*d == old || (TREE_CODE (*d) == TREE_LIST && TREE_VALUE (*d) == old)) { if (TREE_CODE (*d) == TREE_LIST) /* Just replace the old binding with the new. */ TREE_VALUE (*d) = new_binding; else /* Build a TREE_LIST to wrap the OVERLOAD. */ *d = tree_cons (NULL_TREE, new_binding, TREE_CHAIN (*d)); /* And update the CPLUS_BINDING node. */ BINDING_VALUE (IDENTIFIER_BINDING (name)) = new_binding; return decl; } /* We should always find a previous binding in this case. */ my_friendly_abort (0); } /* Install the new binding. */ push_local_binding (name, new_binding, flags); } return decl; } /* Generate an implicit declaration for identifier FUNCTIONID as a function of type int (). Print a warning if appropriate. */ tree implicitly_declare (functionid) tree functionid; { register tree decl; /* We used to reuse an old implicit decl here, but this loses with inline functions because it can clobber the saved decl chains. */ decl = build_lang_decl (FUNCTION_DECL, functionid, default_function_type); DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; /* ISO standard says implicit declarations are in the innermost block. So we record the decl in the standard fashion. */ pushdecl (decl); rest_of_decl_compilation (decl, NULL_PTR, 0, 0); if (warn_implicit /* Only one warning per identifier. */ && IDENTIFIER_IMPLICIT_DECL (functionid) == NULL_TREE) { cp_pedwarn ("implicit declaration of function `%#D'", decl); } SET_IDENTIFIER_IMPLICIT_DECL (functionid, decl); return decl; } /* Return zero if the declaration NEWDECL is valid when the declaration OLDDECL (assumed to be for the same name) has already been seen. Otherwise return an error message format string with a %s where the identifier should go. */ static const char * redeclaration_error_message (newdecl, olddecl) tree newdecl, olddecl; { if (TREE_CODE (newdecl) == TYPE_DECL) { /* Because C++ can put things into name space for free, constructs like "typedef struct foo { ... } foo" would look like an erroneous redeclaration. */ if (same_type_p (TREE_TYPE (newdecl), TREE_TYPE (olddecl))) return 0; else return "redefinition of `%#D'"; } else if (TREE_CODE (newdecl) == FUNCTION_DECL) { /* If this is a pure function, its olddecl will actually be the original initialization to `0' (which we force to call abort()). Don't complain about redefinition in this case. */ if (DECL_LANG_SPECIFIC (olddecl) && DECL_PURE_VIRTUAL_P (olddecl)) return 0; /* If both functions come from different namespaces, this is not a redeclaration - this is a conflict with a used function. */ if (DECL_NAMESPACE_SCOPE_P (olddecl) && DECL_CONTEXT (olddecl) != DECL_CONTEXT (newdecl)) return "`%D' conflicts with used function"; /* We'll complain about linkage mismatches in warn_extern_redeclared_static. */ /* Defining the same name twice is no good. */ if (DECL_INITIAL (olddecl) != NULL_TREE && DECL_INITIAL (newdecl) != NULL_TREE) { if (DECL_NAME (olddecl) == NULL_TREE) return "`%#D' not declared in class"; else return "redefinition of `%#D'"; } return 0; } else if (TREE_CODE (newdecl) == TEMPLATE_DECL) { if ((TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == FUNCTION_DECL && (DECL_TEMPLATE_RESULT (newdecl) != DECL_TEMPLATE_RESULT (olddecl)) && DECL_INITIAL (DECL_TEMPLATE_RESULT (newdecl)) && DECL_INITIAL (DECL_TEMPLATE_RESULT (olddecl))) || (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL && COMPLETE_TYPE_P (TREE_TYPE (newdecl)) && COMPLETE_TYPE_P (TREE_TYPE (olddecl)))) return "redefinition of `%#D'"; return 0; } else if (toplevel_bindings_p () || DECL_NAMESPACE_SCOPE_P (newdecl)) { /* Objects declared at top level: */ /* If at least one is a reference, it's ok. */ if (DECL_EXTERNAL (newdecl) || DECL_EXTERNAL (olddecl)) return 0; /* Reject two definitions. */ return "redefinition of `%#D'"; } else { /* Objects declared with block scope: */ /* Reject two definitions, and reject a definition together with an external reference. */ if (!(DECL_EXTERNAL (newdecl) && DECL_EXTERNAL (olddecl))) return "redeclaration of `%#D'"; return 0; } } /* Create a new label, named ID. */ static tree make_label_decl (id, local_p) tree id; int local_p; { tree decl; decl = build_decl (LABEL_DECL, id, void_type_node); if (expanding_p) /* Make sure every label has an rtx. */ label_rtx (decl); DECL_CONTEXT (decl) = current_function_decl; DECL_MODE (decl) = VOIDmode; C_DECLARED_LABEL_FLAG (decl) = local_p; /* Say where one reference is to the label, for the sake of the error if it is not defined. */ DECL_SOURCE_LINE (decl) = lineno; DECL_SOURCE_FILE (decl) = input_filename; /* Record the fact that this identifier is bound to this label. */ SET_IDENTIFIER_LABEL_VALUE (id, decl); return decl; } /* Record this label on the list of used labels so that we can check at the end of the function to see whether or not the label was actually defined, and so we can check when the label is defined whether this use is valid. */ static void use_label (decl) tree decl; { if (named_label_uses == NULL || named_label_uses->names_in_scope != current_binding_level->names || named_label_uses->label_decl != decl) { struct named_label_use_list *new_ent; new_ent = ((struct named_label_use_list *) ggc_alloc (sizeof (struct named_label_use_list))); new_ent->label_decl = decl; new_ent->names_in_scope = current_binding_level->names; new_ent->binding_level = current_binding_level; new_ent->lineno_o_goto = lineno; new_ent->filename_o_goto = input_filename; new_ent->next = named_label_uses; named_label_uses = new_ent; } } /* Look for a label named ID in the current function. If one cannot be found, create one. (We keep track of used, but undefined, labels, and complain about them at the end of a function.) */ tree lookup_label (id) tree id; { tree decl; struct named_label_list *ent; /* You can't use labels at global scope. */ if (current_function_decl == NULL_TREE) { error ("label `%s' referenced outside of any function", IDENTIFIER_POINTER (id)); return NULL_TREE; } /* See if we've already got this label. */ decl = IDENTIFIER_LABEL_VALUE (id); if (decl != NULL_TREE && DECL_CONTEXT (decl) == current_function_decl) return decl; /* Record this label on the list of labels used in this function. We do this before calling make_label_decl so that we get the IDENTIFIER_LABEL_VALUE before the new label is declared. */ ent = ((struct named_label_list *) ggc_alloc_cleared (sizeof (struct named_label_list))); ent->old_value = IDENTIFIER_LABEL_VALUE (id); ent->next = named_labels; named_labels = ent; /* We need a new label. */ decl = make_label_decl (id, /*local_p=*/0); /* Now fill in the information we didn't have before. */ ent->label_decl = decl; return decl; } /* Declare a local label named ID. */ tree declare_local_label (id) tree id; { tree decl; /* Add a new entry to the SHADOWED_LABELS list so that when we leave this scope we can restore the old value of IDENTIFIER_TYPE_VALUE. */ current_binding_level->shadowed_labels = tree_cons (IDENTIFIER_LABEL_VALUE (id), NULL_TREE, current_binding_level->shadowed_labels); /* Look for the label. */ decl = make_label_decl (id, /*local_p=*/1); /* Now fill in the information we didn't have before. */ TREE_VALUE (current_binding_level->shadowed_labels) = decl; return decl; } /* Returns nonzero if it is ill-formed to jump past the declaration of DECL. Returns 2 if it's also a real problem. */ static int decl_jump_unsafe (decl) tree decl; { if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl)) return 0; if (DECL_INITIAL (decl) == NULL_TREE && pod_type_p (TREE_TYPE (decl))) return 0; /* This is really only important if we're crossing an initialization. The POD stuff is just pedantry; why should it matter if the class contains a field of pointer to member type? */ if (DECL_INITIAL (decl) || (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)))) return 2; return 1; } /* Check that a single previously seen jump to a newly defined label is OK. DECL is the LABEL_DECL or 0; LEVEL is the binding_level for the jump context; NAMES are the names in scope in LEVEL at the jump context; FILE and LINE are the source position of the jump or 0. */ static void check_previous_goto_1 (decl, level, names, file, line) tree decl; struct binding_level *level; tree names; const char *file; int line; { int identified = 0; int saw_eh = 0; struct binding_level *b = current_binding_level; for (; b; b = b->level_chain) { tree new_decls = b->names; tree old_decls = (b == level ? names : NULL_TREE); for (; new_decls != old_decls; new_decls = TREE_CHAIN (new_decls)) { int problem = decl_jump_unsafe (new_decls); if (! problem) continue; if (! identified) { if (decl) cp_pedwarn ("jump to label `%D'", decl); else pedwarn ("jump to case label"); if (file) pedwarn_with_file_and_line (file, line, " from here"); identified = 1; } if (problem > 1 && DECL_ARTIFICIAL (new_decls)) /* Can't skip init of __exception_info. */ cp_error_at (" enters catch block", new_decls); else if (problem > 1) cp_error_at (" crosses initialization of `%#D'", new_decls); else cp_pedwarn_at (" enters scope of non-POD `%#D'", new_decls); } if (b == level) break; if (b->eh_region && ! saw_eh) { if (! identified) { if (decl) cp_pedwarn ("jump to label `%D'", decl); else pedwarn ("jump to case label"); if (file) pedwarn_with_file_and_line (file, line, " from here"); identified = 1; } error (" enters try block"); saw_eh = 1; } } } static void check_previous_goto (use) struct named_label_use_list *use; { check_previous_goto_1 (use->label_decl, use->binding_level, use->names_in_scope, use->filename_o_goto, use->lineno_o_goto); } static void check_switch_goto (level) struct binding_level *level; { check_previous_goto_1 (NULL_TREE, level, level->names, NULL, 0); } /* Check that any previously seen jumps to a newly defined label DECL are OK. Called by define_label. */ static void check_previous_gotos (decl) tree decl; { struct named_label_use_list **usep; if (! TREE_USED (decl)) return; for (usep = &named_label_uses; *usep; ) { struct named_label_use_list *use = *usep; if (use->label_decl == decl) { check_previous_goto (use); *usep = use->next; } else usep = &(use->next); } } /* Check that a new jump to a label DECL is OK. Called by finish_goto_stmt. */ void check_goto (decl) tree decl; { int identified = 0; tree bad; struct named_label_list *lab; /* We can't know where a computed goto is jumping. So we assume that it's OK. */ if (! DECL_P (decl)) return; /* If the label hasn't been defined yet, defer checking. */ if (! DECL_INITIAL (decl)) { use_label (decl); return; } for (lab = named_labels; lab; lab = lab->next) if (decl == lab->label_decl) break; /* If the label is not on named_labels it's a gcc local label, so it must be in an outer scope, so jumping to it is always OK. */ if (lab == 0) return; if ((lab->eh_region || lab->bad_decls) && !identified) { cp_pedwarn_at ("jump to label `%D'", decl); pedwarn (" from here"); identified = 1; } for (bad = lab->bad_decls; bad; bad = TREE_CHAIN (bad)) { tree b = TREE_VALUE (bad); int u = decl_jump_unsafe (b); if (u > 1 && DECL_ARTIFICIAL (b)) /* Can't skip init of __exception_info. */ cp_error_at (" enters catch block", b); else if (u > 1) cp_error_at (" skips initialization of `%#D'", b); else cp_pedwarn_at (" enters scope of non-POD `%#D'", b); } if (lab->eh_region) error (" enters try block"); } /* Define a label, specifying the location in the source file. Return the LABEL_DECL node for the label, if the definition is valid. Otherwise return 0. */ tree define_label (filename, line, name) const char *filename; int line; tree name; { tree decl = lookup_label (name); struct named_label_list *ent; register struct binding_level *p; for (ent = named_labels; ent; ent = ent->next) if (ent->label_decl == decl) break; /* After labels, make any new cleanups in the function go into their own new (temporary) binding contour. */ for (p = current_binding_level; !(p->parm_flag); p = p->level_chain) p->more_cleanups_ok = 0; if (name == get_identifier ("wchar_t")) cp_pedwarn ("label named wchar_t"); if (DECL_INITIAL (decl) != NULL_TREE) { cp_error ("duplicate label `%D'", decl); return 0; } else { /* Mark label as having been defined. */ DECL_INITIAL (decl) = error_mark_node; /* Say where in the source. */ DECL_SOURCE_FILE (decl) = filename; DECL_SOURCE_LINE (decl) = line; if (ent) { ent->names_in_scope = current_binding_level->names; ent->binding_level = current_binding_level; } check_previous_gotos (decl); current_function_return_value = NULL_TREE; return decl; } } struct cp_switch { struct binding_level *level; struct cp_switch *next; /* The SWITCH_STMT being built. */ tree switch_stmt; /* A splay-tree mapping the low element of a case range to the high element, or NULL_TREE if there is no high element. Used to determine whether or not a new case label duplicates an old case label. We need a tree, rather than simply a hash table, because of the GNU case range extension. */ splay_tree cases; }; /* A stack of the currently active switch statements. The innermost switch statement is on the top of the stack. There is no need to mark the stack for garbage collection because it is only active during the processing of the body of a function, and we never collect at that point. */ static struct cp_switch *switch_stack; /* Called right after a switch-statement condition is parsed. SWITCH_STMT is the switch statement being parsed. */ void push_switch (switch_stmt) tree switch_stmt; { struct cp_switch *p = (struct cp_switch *) xmalloc (sizeof (struct cp_switch)); p->level = current_binding_level; p->next = switch_stack; p->switch_stmt = switch_stmt; p->cases = splay_tree_new (case_compare, NULL, NULL); switch_stack = p; } void pop_switch () { struct cp_switch *cs; cs = switch_stack; splay_tree_delete (cs->cases); switch_stack = switch_stack->next; free (cs); } /* Note that we've seen a definition of a case label, and complain if this is a bad place for one. */ tree finish_case_label (low_value, high_value) tree low_value; tree high_value; { tree cond, r; register struct binding_level *p; if (! switch_stack) { if (high_value) error ("case label not within a switch statement"); else if (low_value) cp_error ("case label `%E' not within a switch statement", low_value); else error ("`default' label not within a switch statement"); return NULL_TREE; } if (processing_template_decl) { tree label; /* For templates, just add the case label; we'll do semantic analysis at instantiation-time. */ label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); return add_stmt (build_case_label (low_value, high_value, label)); } /* Find the condition on which this switch statement depends. */ cond = SWITCH_COND (switch_stack->switch_stmt); if (cond && TREE_CODE (cond) == TREE_LIST) cond = TREE_VALUE (cond); r = c_add_case_label (switch_stack->cases, cond, low_value, high_value); if (r == error_mark_node) r = NULL_TREE; check_switch_goto (switch_stack->level); /* After labels, make any new cleanups in the function go into their own new (temporary) binding contour. */ for (p = current_binding_level; !(p->parm_flag); p = p->level_chain) p->more_cleanups_ok = 0; current_function_return_value = NULL_TREE; return r; } /* Return the list of declarations of the current level. Note that this list is in reverse order unless/until you nreverse it; and when you do nreverse it, you must store the result back using `storedecls' or you will lose. */ tree getdecls () { return current_binding_level->names; } /* Return the list of type-tags (for structs, etc) of the current level. */ tree gettags () { return current_binding_level->tags; } /* Store the list of declarations of the current level. This is done for the parameter declarations of a function being defined, after they are modified in the light of any missing parameters. */ static void storedecls (decls) tree decls; { current_binding_level->names = decls; } /* Similarly, store the list of tags of the current level. */ void storetags (tags) tree tags; { current_binding_level->tags = tags; } /* Given NAME, an IDENTIFIER_NODE, return the structure (or union or enum) definition for that name. Searches binding levels from BINDING_LEVEL up to the global level. If THISLEVEL_ONLY is nonzero, searches only the specified context (but skips any tag-transparent contexts to find one that is meaningful for tags). FORM says which kind of type the caller wants; it is RECORD_TYPE or UNION_TYPE or ENUMERAL_TYPE. If the wrong kind of type is found, and it's not a template, an error is reported. */ static tree lookup_tag (form, name, binding_level, thislevel_only) enum tree_code form; tree name; struct binding_level *binding_level; int thislevel_only; { register struct binding_level *level; /* Non-zero if, we should look past a template parameter level, even if THISLEVEL_ONLY. */ int allow_template_parms_p = 1; for (level = binding_level; level; level = level->level_chain) { register tree tail; if (ANON_AGGRNAME_P (name)) for (tail = level->tags; tail; tail = TREE_CHAIN (tail)) { /* There's no need for error checking here, because anon names are unique throughout the compilation. */ if (TYPE_IDENTIFIER (TREE_VALUE (tail)) == name) return TREE_VALUE (tail); } else if (level->namespace_p) /* Do namespace lookup. */ for (tail = current_namespace; 1; tail = CP_DECL_CONTEXT (tail)) { tree old = binding_for_name (name, tail); /* If we just skipped past a template parameter level, even though THISLEVEL_ONLY, and we find a template class declaration, then we use the _TYPE node for the template. See the example below. */ if (thislevel_only && !allow_template_parms_p && old && BINDING_VALUE (old) && DECL_CLASS_TEMPLATE_P (BINDING_VALUE (old))) old = TREE_TYPE (BINDING_VALUE (old)); else old = BINDING_TYPE (old); /* If it has an original type, it is a typedef, and we should not return it. */ if (old && DECL_ORIGINAL_TYPE (TYPE_NAME (old))) old = NULL_TREE; if (old && TREE_CODE (old) != form && !(form != ENUMERAL_TYPE && TREE_CODE (old) == TEMPLATE_DECL)) { cp_error ("`%#D' redeclared as %C", old, form); return NULL_TREE; } if (old) return old; if (thislevel_only || tail == global_namespace) return NULL_TREE; } else for (tail = level->tags; tail; tail = TREE_CHAIN (tail)) { if (TREE_PURPOSE (tail) == name) { enum tree_code code = TREE_CODE (TREE_VALUE (tail)); /* Should tighten this up; it'll probably permit UNION_TYPE and a struct template, for example. */ if (code != form && !(form != ENUMERAL_TYPE && code == TEMPLATE_DECL)) { /* Definition isn't the kind we were looking for. */ cp_error ("`%#D' redeclared as %C", TREE_VALUE (tail), form); return NULL_TREE; } return TREE_VALUE (tail); } } if (thislevel_only && ! level->tag_transparent) { if (level->template_parms_p && allow_template_parms_p) { /* We must deal with cases like this: template struct S; template struct S {}; When looking up `S', for the second declaration, we would like to find the first declaration. But, we are in the pseudo-global level created for the template parameters, rather than the (surrounding) namespace level. Thus, we keep going one more level, even though THISLEVEL_ONLY is non-zero. */ allow_template_parms_p = 0; continue; } else return NULL_TREE; } } return NULL_TREE; } #if 0 void set_current_level_tags_transparency (tags_transparent) int tags_transparent; { current_binding_level->tag_transparent = tags_transparent; } #endif /* Given a type, find the tag that was defined for it and return the tag name. Otherwise return 0. However, the value can never be 0 in the cases in which this is used. C++: If NAME is non-zero, this is the new name to install. This is done when replacing anonymous tags with real tag names. */ static tree lookup_tag_reverse (type, name) tree type; tree name; { register struct binding_level *level; for (level = current_binding_level; level; level = level->level_chain) { register tree tail; for (tail = level->tags; tail; tail = TREE_CHAIN (tail)) { if (TREE_VALUE (tail) == type) { if (name) TREE_PURPOSE (tail) = name; return TREE_PURPOSE (tail); } } } return NULL_TREE; } /* Look up NAME in the NAMESPACE. */ tree lookup_namespace_name (namespace, name) tree namespace, name; { tree val; tree template_id = NULL_TREE; my_friendly_assert (TREE_CODE (namespace) == NAMESPACE_DECL, 370); if (TREE_CODE (name) == NAMESPACE_DECL) /* This happens for A::B when B is a namespace. */ return name; else if (TREE_CODE (name) == TEMPLATE_DECL) { /* This happens for A::B where B is a template, and there are no template arguments. */ cp_error ("invalid use of `%D'", name); return error_mark_node; } namespace = ORIGINAL_NAMESPACE (namespace); if (TREE_CODE (name) == TEMPLATE_ID_EXPR) { template_id = name; name = TREE_OPERAND (name, 0); if (TREE_CODE (name) == OVERLOAD) name = DECL_NAME (OVL_CURRENT (name)); else if (DECL_P (name)) name = DECL_NAME (name); } my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 373); val = make_node (CPLUS_BINDING); if (!qualified_lookup_using_namespace (name, namespace, val, 0)) return error_mark_node; if (BINDING_VALUE (val)) { val = BINDING_VALUE (val); if (template_id) { if (DECL_CLASS_TEMPLATE_P (val)) val = lookup_template_class (val, TREE_OPERAND (template_id, 1), /*in_decl=*/NULL_TREE, /*context=*/NULL_TREE, /*entering_scope=*/0); else if (DECL_FUNCTION_TEMPLATE_P (val) || TREE_CODE (val) == OVERLOAD) val = lookup_template_function (val, TREE_OPERAND (template_id, 1)); else { cp_error ("`%D::%D' is not a template", namespace, name); return error_mark_node; } } /* If we have a single function from a using decl, pull it out. */ if (TREE_CODE (val) == OVERLOAD && ! really_overloaded_fn (val)) val = OVL_FUNCTION (val); return val; } cp_error ("`%D' undeclared in namespace `%D'", name, namespace); return error_mark_node; } /* Hash a TYPENAME_TYPE. K is really of type `tree'. */ static unsigned long typename_hash (k) hash_table_key k; { unsigned long hash; tree t; t = (tree) k; hash = (((unsigned long) TYPE_CONTEXT (t)) ^ ((unsigned long) DECL_NAME (TYPE_NAME (t)))); return hash; } /* Compare two TYPENAME_TYPEs. K1 and K2 are really of type `tree'. */ static boolean typename_compare (k1, k2) hash_table_key k1; hash_table_key k2; { tree t1; tree t2; tree d1; tree d2; t1 = (tree) k1; t2 = (tree) k2; d1 = TYPE_NAME (t1); d2 = TYPE_NAME (t2); return (DECL_NAME (d1) == DECL_NAME (d2) && same_type_p (TYPE_CONTEXT (t1), TYPE_CONTEXT (t2)) && ((TREE_TYPE (t1) != NULL_TREE) == (TREE_TYPE (t2) != NULL_TREE)) && same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)) && TYPENAME_TYPE_FULLNAME (t1) == TYPENAME_TYPE_FULLNAME (t2)); } /* Build a TYPENAME_TYPE. If the type is `typename T::t', CONTEXT is the type of `T', NAME is the IDENTIFIER_NODE for `t'. If BASE_TYPE is non-NULL, this type is being created by the implicit typename extension, and BASE_TYPE is a type named `t' in some base class of `T' which depends on template parameters. Returns the new TYPENAME_TYPE. */ tree build_typename_type (context, name, fullname, base_type) tree context; tree name; tree fullname; tree base_type; { tree t; tree d; struct hash_entry* e; static struct hash_table ht; if (!ht.table) { static struct hash_table *h = &ht; if (!hash_table_init (&ht, &hash_newfunc, &typename_hash, &typename_compare)) fatal ("virtual memory exhausted"); ggc_add_tree_hash_table_root (&h, 1); } /* Build the TYPENAME_TYPE. */ t = make_aggr_type (TYPENAME_TYPE); TYPE_CONTEXT (t) = FROB_CONTEXT (context); TYPENAME_TYPE_FULLNAME (t) = fullname; TREE_TYPE (t) = base_type; /* Build the corresponding TYPE_DECL. */ d = build_decl (TYPE_DECL, name, t); TYPE_NAME (TREE_TYPE (d)) = d; TYPE_STUB_DECL (TREE_TYPE (d)) = d; DECL_CONTEXT (d) = FROB_CONTEXT (context); DECL_ARTIFICIAL (d) = 1; /* See if we already have this type. */ e = hash_lookup (&ht, t, /*create=*/false, /*copy=*/0); if (e) t = (tree) e->key; else /* Insert the type into the table. */ hash_lookup (&ht, t, /*create=*/true, /*copy=*/0); return t; } /* Resolve `typename CONTEXT::NAME'. Returns an appropriate type, unless an error occurs, in which case error_mark_node is returned. If COMPLAIN zero, don't complain about any errors that occur. */ tree make_typename_type (context, name, complain) tree context, name; int complain; { tree fullname; if (TYPE_P (name)) { if (!(TYPE_LANG_SPECIFIC (name) && (CLASSTYPE_IS_TEMPLATE (name) || CLASSTYPE_USE_TEMPLATE (name)))) name = TYPE_IDENTIFIER (name); else /* Create a TEMPLATE_ID_EXPR for the type. */ name = build_nt (TEMPLATE_ID_EXPR, CLASSTYPE_TI_TEMPLATE (name), CLASSTYPE_TI_ARGS (name)); } else if (TREE_CODE (name) == TYPE_DECL) name = DECL_NAME (name); fullname = name; if (TREE_CODE (name) == TEMPLATE_ID_EXPR) { name = TREE_OPERAND (name, 0); if (TREE_CODE (name) == TEMPLATE_DECL) name = TREE_OPERAND (fullname, 0) = DECL_NAME (name); } if (TREE_CODE (name) != IDENTIFIER_NODE) my_friendly_abort (2000); if (TREE_CODE (context) == NAMESPACE_DECL) { /* We can get here from typename_sub0 in the explicit_template_type expansion. Just fail. */ if (complain) cp_error ("no class template named `%#T' in `%#T'", name, context); return error_mark_node; } if (! uses_template_parms (context) || currently_open_class (context)) { if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR) { tree tmpl = NULL_TREE; if (IS_AGGR_TYPE (context)) tmpl = lookup_field (context, name, 0, 0); if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl)) { if (complain) cp_error ("no class template named `%#T' in `%#T'", name, context); return error_mark_node; } return lookup_template_class (tmpl, TREE_OPERAND (fullname, 1), NULL_TREE, context, /*entering_scope=*/0); } else { tree t; if (!IS_AGGR_TYPE (context)) { if (complain) cp_error ("no type named `%#T' in `%#T'", name, context); return error_mark_node; } t = lookup_field (context, name, 0, 1); if (t) return TREE_TYPE (t); } } /* If the CONTEXT is not a template type, then either the field is there now or its never going to be. */ if (!uses_template_parms (context)) { if (complain) cp_error ("no type named `%#T' in `%#T'", name, context); return error_mark_node; } return build_typename_type (context, name, fullname, NULL_TREE); } /* Select the right _DECL from multiple choices. */ static tree select_decl (binding, flags) tree binding; int flags; { tree val; val = BINDING_VALUE (binding); /* When we implicitly declare some builtin entity, we mark it DECL_ANTICIPATED, so that we know to ignore it until it is really declared. */ if (val && DECL_P (val) && DECL_LANG_SPECIFIC (val) && DECL_ANTICIPATED (val)) return NULL_TREE; if (LOOKUP_NAMESPACES_ONLY (flags)) { /* We are not interested in types. */ if (val && TREE_CODE (val) == NAMESPACE_DECL) return val; return NULL_TREE; } /* If we could have a type and we have nothing or we need a type and have none. */ if (BINDING_TYPE (binding) && (!val || ((flags & LOOKUP_PREFER_TYPES) && TREE_CODE (val) != TYPE_DECL))) val = TYPE_STUB_DECL (BINDING_TYPE (binding)); /* Don't return non-types if we really prefer types. */ else if (val && LOOKUP_TYPES_ONLY (flags) && TREE_CODE (val) != TYPE_DECL && (TREE_CODE (val) != TEMPLATE_DECL || !DECL_CLASS_TEMPLATE_P (val))) val = NULL_TREE; return val; } /* Unscoped lookup of a global: iterate over current namespaces, considering using-directives. If SPACESP is non-NULL, store a list of the namespaces we've considered in it. */ tree unqualified_namespace_lookup (name, flags, spacesp) tree name; int flags; tree *spacesp; { tree b = make_node (CPLUS_BINDING); tree initial = current_decl_namespace(); tree scope = initial; tree siter; struct binding_level *level; tree val = NULL_TREE; if (spacesp) *spacesp = NULL_TREE; for (; !val; scope = CP_DECL_CONTEXT (scope)) { if (spacesp) *spacesp = tree_cons (scope, NULL_TREE, *spacesp); val = binding_for_name (name, scope); /* Initialize binding for this context. */ BINDING_VALUE (b) = BINDING_VALUE (val); BINDING_TYPE (b) = BINDING_TYPE (val); /* Add all _DECLs seen through local using-directives. */ for (level = current_binding_level; !level->namespace_p; level = level->level_chain) if (!lookup_using_namespace (name, b, level->using_directives, scope, flags, spacesp)) /* Give up because of error. */ return error_mark_node; /* Add all _DECLs seen through global using-directives. */ /* XXX local and global using lists should work equally. */ siter = initial; while (1) { if (!lookup_using_namespace (name, b, DECL_NAMESPACE_USING (siter), scope, flags, spacesp)) /* Give up because of error. */ return error_mark_node; if (siter == scope) break; siter = CP_DECL_CONTEXT (siter); } val = select_decl (b, flags); if (scope == global_namespace) break; } return val; } /* Combine prefer_type and namespaces_only into flags. */ static int lookup_flags (prefer_type, namespaces_only) int prefer_type, namespaces_only; { if (namespaces_only) return LOOKUP_PREFER_NAMESPACES; if (prefer_type > 1) return LOOKUP_PREFER_TYPES; if (prefer_type > 0) return LOOKUP_PREFER_BOTH; return 0; } /* Given a lookup that returned VAL, use FLAGS to decide if we want to ignore it or not. Subroutine of lookup_name_real. */ static tree qualify_lookup (val, flags) tree val; int flags; { if (val == NULL_TREE) return val; if ((flags & LOOKUP_PREFER_NAMESPACES) && TREE_CODE (val) == NAMESPACE_DECL) return val; if ((flags & LOOKUP_PREFER_TYPES) && (TREE_CODE (val) == TYPE_DECL || ((flags & LOOKUP_TEMPLATES_EXPECTED) && DECL_CLASS_TEMPLATE_P (val)))) return val; if (flags & (LOOKUP_PREFER_NAMESPACES | LOOKUP_PREFER_TYPES)) return NULL_TREE; return val; } /* Any other BINDING overrides an implicit TYPENAME. Warn about that. */ static void warn_about_implicit_typename_lookup (typename, binding) tree typename; tree binding; { tree subtype = TREE_TYPE (TREE_TYPE (typename)); tree name = DECL_NAME (typename); if (! (TREE_CODE (binding) == TEMPLATE_DECL && CLASSTYPE_TEMPLATE_INFO (subtype) && CLASSTYPE_TI_TEMPLATE (subtype) == binding) && ! (TREE_CODE (binding) == TYPE_DECL && same_type_p (TREE_TYPE (binding), subtype))) { cp_warning ("lookup of `%D' finds `%#D'", name, binding); cp_warning (" instead of `%D' from dependent base class", typename); cp_warning (" (use `typename %T::%D' if that's what you meant)", constructor_name (current_class_type), name); } } /* Look up NAME in the current binding level and its superiors in the namespace of variables, functions and typedefs. Return a ..._DECL node of some kind representing its definition if there is only one such declaration, or return a TREE_LIST with all the overloaded definitions if there are many, or return 0 if it is undefined. If PREFER_TYPE is > 0, we prefer TYPE_DECLs or namespaces. If PREFER_TYPE is > 1, we reject non-type decls (e.g. namespaces). If PREFER_TYPE is -2, we're being called from yylex(). (UGLY) Otherwise we prefer non-TYPE_DECLs. If NONCLASS is non-zero, we don't look for the NAME in class scope, using IDENTIFIER_CLASS_VALUE. */ static tree lookup_name_real (name, prefer_type, nonclass, namespaces_only) tree name; int prefer_type, nonclass, namespaces_only; { tree t; tree val = NULL_TREE; int yylex = 0; tree from_obj = NULL_TREE; int flags; int val_is_implicit_typename = 0; /* Hack: copy flag set by parser, if set. */ if (only_namespace_names) namespaces_only = 1; if (prefer_type == -2) { extern int looking_for_typename; tree type = NULL_TREE; yylex = 1; prefer_type = looking_for_typename; flags = lookup_flags (prefer_type, namespaces_only); /* If the next thing is '<', class templates are types. */ if (looking_for_template) flags |= LOOKUP_TEMPLATES_EXPECTED; /* std:: becomes :: for now. */ if (got_scope && got_scope == fake_std_node) got_scope = void_type_node; if (got_scope) type = got_scope; else if (got_object != error_mark_node) type = got_object; if (type) { if (type == error_mark_node) return error_mark_node; if (TREE_CODE (type) == TYPENAME_TYPE && TREE_TYPE (type)) type = TREE_TYPE (type); if (TYPE_P (type)) type = complete_type (type); if (TREE_CODE (type) == VOID_TYPE) type = global_namespace; if (TREE_CODE (type) == NAMESPACE_DECL) { val = make_node (CPLUS_BINDING); flags |= LOOKUP_COMPLAIN; if (!qualified_lookup_using_namespace (name, type, val, flags)) return NULL_TREE; val = select_decl (val, flags); } else if (! IS_AGGR_TYPE (type) || TREE_CODE (type) == TEMPLATE_TYPE_PARM || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM || TREE_CODE (type) == TYPENAME_TYPE) /* Someone else will give an error about this if needed. */ val = NULL_TREE; else if (type == current_class_type) val = IDENTIFIER_CLASS_VALUE (name); else { val = lookup_member (type, name, 0, prefer_type); type_access_control (type, val); /* Restore the containing TYPENAME_TYPE if we looked through it before. */ if (got_scope && got_scope != type && val && TREE_CODE (val) == TYPE_DECL && TREE_CODE (TREE_TYPE (val)) == TYPENAME_TYPE) TYPE_CONTEXT (TREE_TYPE (val)) = got_scope; } } else val = NULL_TREE; if (got_scope) goto done; else if (got_object && val) { from_obj = val; val = NULL_TREE; } } else { flags = lookup_flags (prefer_type, namespaces_only); /* If we're not parsing, we need to complain. */ flags |= LOOKUP_COMPLAIN; } /* First, look in non-namespace scopes. */ if (current_class_type == NULL_TREE) nonclass = 1; for (t = IDENTIFIER_BINDING (name); t; t = TREE_CHAIN (t)) { tree binding; if (!LOCAL_BINDING_P (t) && nonclass) /* We're not looking for class-scoped bindings, so keep going. */ continue; /* If this is the kind of thing we're looking for, we're done. */ if (qualify_lookup (BINDING_VALUE (t), flags)) binding = BINDING_VALUE (t); else if ((flags & LOOKUP_PREFER_TYPES) && qualify_lookup (BINDING_TYPE (t), flags)) binding = BINDING_TYPE (t); else binding = NULL_TREE; /* Handle access control on types from enclosing or base classes. */ if (binding && ! yylex && BINDING_LEVEL (t) && BINDING_LEVEL (t)->parm_flag == 2) type_access_control (BINDING_LEVEL (t)->this_class, binding); if (binding && (!val || !IMPLICIT_TYPENAME_TYPE_DECL_P (binding))) { if (val_is_implicit_typename && !yylex) warn_about_implicit_typename_lookup (val, binding); val = binding; val_is_implicit_typename = IMPLICIT_TYPENAME_TYPE_DECL_P (val); if (!val_is_implicit_typename) break; } } /* Now lookup in namespace scopes. */ if (!val || val_is_implicit_typename) { t = unqualified_namespace_lookup (name, flags, 0); if (t) { if (val_is_implicit_typename && !yylex) warn_about_implicit_typename_lookup (val, t); val = t; } } done: if (val) { /* This should only warn about types used in qualified-ids. */ if (from_obj && from_obj != val) { if (looking_for_typename && TREE_CODE (from_obj) == TYPE_DECL && TREE_CODE (val) == TYPE_DECL && ! same_type_p (TREE_TYPE (from_obj), TREE_TYPE (val))) cp_pedwarn ("\ lookup of `%D' in the scope of `%#T' (`%#T') \ does not match lookup in the current scope (`%#T')", name, got_object, TREE_TYPE (from_obj), TREE_TYPE (val)); /* We don't change val to from_obj if got_object depends on template parms because that breaks implicit typename for destructor calls. */ if (! uses_template_parms (got_object)) val = from_obj; } /* If we have a single function from a using decl, pull it out. */ if (TREE_CODE (val) == OVERLOAD && ! really_overloaded_fn (val)) val = OVL_FUNCTION (val); } else if (from_obj) val = from_obj; return val; } tree lookup_name_nonclass (name) tree name; { return lookup_name_real (name, 0, 1, 0); } tree lookup_function_nonclass (name, args) tree name; tree args; { return lookup_arg_dependent (name, lookup_name_nonclass (name), args); } tree lookup_name_namespace_only (name) tree name; { /* type-or-namespace, nonclass, namespace_only */ return lookup_name_real (name, 1, 1, 1); } tree lookup_name (name, prefer_type) tree name; int prefer_type; { return lookup_name_real (name, prefer_type, 0, 0); } /* Similar to `lookup_name' but look only in the innermost non-class binding level. */ tree lookup_name_current_level (name) tree name; { struct binding_level *b; tree t = NULL_TREE; b = current_binding_level; while (b->parm_flag == 2) b = b->level_chain; if (b->namespace_p) { t = IDENTIFIER_NAMESPACE_VALUE (name); /* extern "C" function() */ if (t != NULL_TREE && TREE_CODE (t) == TREE_LIST) t = TREE_VALUE (t); } else if (IDENTIFIER_BINDING (name) && LOCAL_BINDING_P (IDENTIFIER_BINDING (name))) { while (1) { if (BINDING_LEVEL (IDENTIFIER_BINDING (name)) == b) return IDENTIFIER_VALUE (name); if (b->keep == 2) b = b->level_chain; else break; } } return t; } /* Like lookup_name_current_level, but for types. */ tree lookup_type_current_level (name) tree name; { register tree t = NULL_TREE; my_friendly_assert (! current_binding_level->namespace_p, 980716); if (REAL_IDENTIFIER_TYPE_VALUE (name) != NULL_TREE && REAL_IDENTIFIER_TYPE_VALUE (name) != global_type_node) { struct binding_level *b = current_binding_level; while (1) { if (purpose_member (name, b->type_shadowed)) return REAL_IDENTIFIER_TYPE_VALUE (name); if (b->keep == 2) b = b->level_chain; else break; } } return t; } void begin_only_namespace_names () { only_namespace_names = 1; } void end_only_namespace_names () { only_namespace_names = 0; } /* Push the declarations of builtin types into the namespace. RID_INDEX is the index of the builtin type in the array RID_POINTERS. NAME is the name used when looking up the builtin type. TYPE is the _TYPE node for the builtin type. */ void record_builtin_type (rid_index, name, type) enum rid rid_index; const char *name; tree type; { tree rname = NULL_TREE, tname = NULL_TREE; tree tdecl = NULL_TREE; if ((int) rid_index < (int) RID_MAX) rname = ridpointers[(int) rid_index]; if (name) tname = get_identifier (name); TYPE_BUILT_IN (type) = 1; if (tname) { tdecl = pushdecl (build_decl (TYPE_DECL, tname, type)); set_identifier_type_value (tname, NULL_TREE); if ((int) rid_index < (int) RID_MAX) /* Built-in types live in the global namespace. */ SET_IDENTIFIER_GLOBAL_VALUE (tname, tdecl); } if (rname != NULL_TREE) { if (tname != NULL_TREE) { set_identifier_type_value (rname, NULL_TREE); SET_IDENTIFIER_GLOBAL_VALUE (rname, tdecl); } else { tdecl = pushdecl (build_decl (TYPE_DECL, rname, type)); set_identifier_type_value (rname, NULL_TREE); } } } /* Record one of the standard Java types. * Declare it as having the given NAME. * If SIZE > 0, it is the size of one of the integral types; * otherwise it is the negative of the size of one of the other types. */ static tree record_builtin_java_type (name, size) const char *name; int size; { tree type, decl; if (size > 0) type = make_signed_type (size); else if (size > -32) { /* "__java_char" or ""__java_boolean". */ type = make_unsigned_type (-size); /*if (size == -1) TREE_SET_CODE (type, BOOLEAN_TYPE);*/ } else { /* "__java_float" or ""__java_double". */ type = make_node (REAL_TYPE); TYPE_PRECISION (type) = - size; layout_type (type); } record_builtin_type (RID_MAX, name, type); decl = TYPE_NAME (type); /* Suppress generate debug symbol entries for these types, since for normal C++ they are just clutter. However, push_lang_context undoes this if extern "Java" is seen. */ DECL_IGNORED_P (decl) = 1; TYPE_FOR_JAVA (type) = 1; return type; } /* Push a type into the namespace so that the back-ends ignore it. */ static void record_unknown_type (type, name) tree type; const char *name; { tree decl = pushdecl (build_decl (TYPE_DECL, get_identifier (name), type)); /* Make sure the "unknown type" typedecl gets ignored for debug info. */ DECL_IGNORED_P (decl) = 1; TYPE_DECL_SUPPRESS_DEBUG (decl) = 1; TYPE_SIZE (type) = TYPE_SIZE (void_type_node); TYPE_ALIGN (type) = 1; TYPE_USER_ALIGN (type) = 0; TYPE_MODE (type) = TYPE_MODE (void_type_node); } /* An string for which we should create an IDENTIFIER_NODE at startup. */ typedef struct predefined_identifier { /* The name of the identifier. */ const char *name; /* The place where the IDENTIFIER_NODE should be stored. */ tree *node; /* Non-zero if this is the name of a constructor or destructor. */ int ctor_or_dtor_p; } predefined_identifier; /* Create all the predefined identifiers. */ static void initialize_predefined_identifiers () { struct predefined_identifier *pid; /* A table of identifiers to create at startup. */ static predefined_identifier predefined_identifiers[] = { { "C++", &lang_name_cplusplus, 0 }, { "C", &lang_name_c, 0 }, { "Java", &lang_name_java, 0 }, { CTOR_NAME, &ctor_identifier, 1 }, { "__base_ctor", &base_ctor_identifier, 1 }, { "__comp_ctor", &complete_ctor_identifier, 1 }, { DTOR_NAME, &dtor_identifier, 1 }, { "__comp_dtor", &complete_dtor_identifier, 1 }, { "__base_dtor", &base_dtor_identifier, 1 }, { "__deleting_dtor", &deleting_dtor_identifier, 1 }, { VTABLE_DELTA2_NAME, &delta2_identifier, 0 }, { VTABLE_DELTA_NAME, &delta_identifier, 0 }, { IN_CHARGE_NAME, &in_charge_identifier, 0 }, { VTABLE_INDEX_NAME, &index_identifier, 0 }, { "nelts", &nelts_identifier, 0 }, { THIS_NAME, &this_identifier, 0 }, { VTABLE_PFN_NAME, &pfn_identifier, 0 }, { "__pfn_or_delta2", &pfn_or_delta2_identifier, 0 }, { "_vptr", &vptr_identifier, 0 }, { "__cp_push_exception", &cp_push_exception_identifier, 0 }, { "__vtt_parm", &vtt_parm_identifier, 0 }, { "std", &std_identifier, 0 }, { NULL, NULL, 0 } }; for (pid = predefined_identifiers; pid->name; ++pid) { *pid->node = get_identifier (pid->name); if (pid->ctor_or_dtor_p) IDENTIFIER_CTOR_OR_DTOR_P (*pid->node) = 1; } } /* Create the predefined scalar types of C, and some nodes representing standard constants (0, 1, (void *)0). Initialize the global binding level. Make definitions for built-in primitive functions. */ void init_decl_processing () { tree fields[20]; /* Check to see that the user did not specify an invalid combination of command-line options. */ if (flag_new_abi && !flag_vtable_thunks) fatal ("the new ABI requires vtable thunks"); /* Create all the identifiers we need. */ initialize_predefined_identifiers (); /* Fill in back-end hooks. */ init_lang_status = &push_cp_function_context; free_lang_status = &pop_cp_function_context; mark_lang_status = &mark_cp_function_context; lang_safe_from_p = &c_safe_from_p; lang_dump_tree = &cp_dump_tree; lang_missing_noreturn_ok_p = &cp_missing_noreturn_ok_p; cp_parse_init (); init_decl2 (); init_pt (); /* Create the global variables. */ push_to_top_level (); /* Enter the global namespace. */ my_friendly_assert (global_namespace == NULL_TREE, 375); push_namespace (get_identifier ("::")); global_namespace = current_namespace; current_lang_name = NULL_TREE; /* Adjust various flags based on command-line settings. */ if (! flag_permissive && ! pedantic) flag_pedantic_errors = 1; if (!flag_no_inline) flag_inline_trees = 1; /* Initially, C. */ current_lang_name = lang_name_c; current_function_decl = NULL_TREE; current_binding_level = NULL_BINDING_LEVEL; free_binding_level = NULL_BINDING_LEVEL; build_common_tree_nodes (flag_signed_char); error_mark_list = build_tree_list (error_mark_node, error_mark_node); TREE_TYPE (error_mark_list) = error_mark_node; /* Make the binding_level structure for global names. */ pushlevel (0); global_binding_level = current_binding_level; /* The global level is the namespace level of ::. */ NAMESPACE_LEVEL (global_namespace) = global_binding_level; declare_namespace_level (); /* Create the `std' namespace. */ if (flag_honor_std) { push_namespace (std_identifier); std_node = current_namespace; pop_namespace (); fake_std_node = error_mark_node; } else { fake_std_node = build_decl (NAMESPACE_DECL, std_identifier, void_type_node); pushdecl (fake_std_node); } c_common_nodes_and_builtins (); java_byte_type_node = record_builtin_java_type ("__java_byte", 8); java_short_type_node = record_builtin_java_type ("__java_short", 16); java_int_type_node = record_builtin_java_type ("__java_int", 32); java_long_type_node = record_builtin_java_type ("__java_long", 64); java_float_type_node = record_builtin_java_type ("__java_float", -32); java_double_type_node = record_builtin_java_type ("__java_double", -64); java_char_type_node = record_builtin_java_type ("__java_char", -16); java_boolean_type_node = record_builtin_java_type ("__java_boolean", -1); integer_two_node = build_int_2 (2, 0); TREE_TYPE (integer_two_node) = integer_type_node; integer_three_node = build_int_2 (3, 0); TREE_TYPE (integer_three_node) = integer_type_node; boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE); TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE); TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0); TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node; TYPE_PRECISION (boolean_type_node) = 1; record_builtin_type (RID_BOOL, "bool", boolean_type_node); boolean_false_node = build_int_2 (0, 0); TREE_TYPE (boolean_false_node) = boolean_type_node; boolean_true_node = build_int_2 (1, 0); TREE_TYPE (boolean_true_node) = boolean_type_node; signed_size_zero_node = build_int_2 (0, 0); TREE_TYPE (signed_size_zero_node) = make_signed_type (TYPE_PRECISION (sizetype)); empty_except_spec = build_tree_list (NULL_TREE, NULL_TREE); #if 0 record_builtin_type (RID_MAX, NULL_PTR, string_type_node); #endif if (flag_new_abi) delta_type_node = ptrdiff_type_node; else if (flag_huge_objects) delta_type_node = long_integer_type_node; else delta_type_node = short_integer_type_node; if (flag_new_abi) vtable_index_type = ptrdiff_type_node; else vtable_index_type = delta_type_node; vtt_parm_type = build_pointer_type (const_ptr_type_node); lang_type_promotes_to = convert_type_from_ellipsis; void_ftype_ptr = build_exception_variant (void_ftype_ptr, empty_except_spec); /* C++ extensions */ unknown_type_node = make_node (UNKNOWN_TYPE); record_unknown_type (unknown_type_node, "unknown type"); /* Indirecting an UNKNOWN_TYPE node yields an UNKNOWN_TYPE node. */ TREE_TYPE (unknown_type_node) = unknown_type_node; TREE_TYPE (null_node) = type_for_size (POINTER_SIZE, 0); /* Looking up TYPE_POINTER_TO and TYPE_REFERENCE_TO yield the same result. */ TYPE_POINTER_TO (unknown_type_node) = unknown_type_node; TYPE_REFERENCE_TO (unknown_type_node) = unknown_type_node; if (flag_vtable_thunks) { /* Make sure we get a unique function type, so we can give its pointer type a name. (This wins for gdb.) */ tree vfunc_type = make_node (FUNCTION_TYPE); TREE_TYPE (vfunc_type) = integer_type_node; TYPE_ARG_TYPES (vfunc_type) = NULL_TREE; layout_type (vfunc_type); vtable_entry_type = build_pointer_type (vfunc_type); } else { vtable_entry_type = make_aggr_type (RECORD_TYPE); fields[0] = build_decl (FIELD_DECL, delta_identifier, delta_type_node); fields[1] = build_decl (FIELD_DECL, index_identifier, delta_type_node); fields[2] = build_decl (FIELD_DECL, pfn_identifier, ptr_type_node); finish_builtin_type (vtable_entry_type, VTBL_PTR_TYPE, fields, 2, double_type_node); /* Make this part of an invisible union. */ fields[3] = copy_node (fields[2]); TREE_TYPE (fields[3]) = delta_type_node; DECL_NAME (fields[3]) = delta2_identifier; DECL_MODE (fields[3]) = TYPE_MODE (delta_type_node); DECL_SIZE (fields[3]) = TYPE_SIZE (delta_type_node); DECL_SIZE_UNIT (fields[3]) = TYPE_SIZE_UNIT (delta_type_node); TREE_UNSIGNED (fields[3]) = 0; TREE_CHAIN (fields[2]) = fields[3]; vtable_entry_type = build_qualified_type (vtable_entry_type, TYPE_QUAL_CONST); } record_builtin_type (RID_MAX, VTBL_PTR_TYPE, vtable_entry_type); vtbl_type_node = build_cplus_array_type (vtable_entry_type, NULL_TREE); layout_type (vtbl_type_node); vtbl_type_node = build_qualified_type (vtbl_type_node, TYPE_QUAL_CONST); record_builtin_type (RID_MAX, NULL_PTR, vtbl_type_node); vtbl_ptr_type_node = build_pointer_type (vtable_entry_type); layout_type (vtbl_ptr_type_node); record_builtin_type (RID_MAX, NULL_PTR, vtbl_ptr_type_node); if (flag_new_abi) { push_namespace (get_identifier ("__cxxabiv1")); abi_node = current_namespace; pop_namespace (); } global_type_node = make_node (LANG_TYPE); record_unknown_type (global_type_node, "global type"); /* Now, C++. */ current_lang_name = lang_name_cplusplus; { tree bad_alloc_type_node, newtype, deltype; if (flag_honor_std) push_namespace (std_identifier); bad_alloc_type_node = xref_tag (class_type_node, get_identifier ("bad_alloc"), 1); if (flag_honor_std) pop_namespace (); newtype = build_exception_variant (ptr_ftype_sizetype, add_exception_specifier (NULL_TREE, bad_alloc_type_node, -1)); deltype = build_exception_variant (void_ftype_ptr, empty_except_spec); push_cp_library_fn (NEW_EXPR, newtype); push_cp_library_fn (VEC_NEW_EXPR, newtype); global_delete_fndecl = push_cp_library_fn (DELETE_EXPR, deltype); push_cp_library_fn (VEC_DELETE_EXPR, deltype); } abort_fndecl = build_library_fn_ptr ((flag_new_abi ? "__cxa_pure_virtual" : "__pure_virtual"), void_ftype); /* Perform other language dependent initializations. */ init_class_processing (); init_init_processing (); init_search_processing (); init_rtti_processing (); if (flag_exceptions) init_exception_processing (); if (flag_no_inline) { flag_inline_functions = 0; } if (! supports_one_only ()) flag_weak = 0; /* Create the global bindings for __FUNCTION__ and __PRETTY_FUNCTION__. */ function_id_node = get_identifier ("__FUNCTION__"); pretty_function_id_node = get_identifier ("__PRETTY_FUNCTION__"); func_id_node = get_identifier ("__func__"); make_fname_decl = cp_make_fname_decl; declare_function_name (); /* Prepare to check format strings against argument lists. */ init_function_format_info (); /* Show we use EH for cleanups. */ using_eh_for_cleanups (); valid_lang_attribute = cp_valid_lang_attribute; /* Maintain consistency. Perhaps we should just complain if they say -fwritable-strings? */ if (flag_writable_strings) flag_const_strings = 0; /* Add GC roots for all of our global variables. */ ggc_add_tree_root (c_global_trees, sizeof c_global_trees / sizeof(tree)); ggc_add_tree_root (cp_global_trees, sizeof cp_global_trees / sizeof(tree)); ggc_add_tree_root (&integer_three_node, 1); ggc_add_tree_root (&integer_two_node, 1); ggc_add_tree_root (&signed_size_zero_node, 1); ggc_add_tree_root (&size_one_node, 1); ggc_add_tree_root (&size_zero_node, 1); ggc_add_root (&global_binding_level, 1, sizeof global_binding_level, mark_binding_level); ggc_add_root (&scope_chain, 1, sizeof scope_chain, &mark_saved_scope); ggc_add_tree_root (&static_ctors, 1); ggc_add_tree_root (&static_dtors, 1); ggc_add_tree_root (&lastiddecl, 1); ggc_add_tree_root (&last_function_parm_tags, 1); ggc_add_tree_root (¤t_function_return_value, 1); ggc_add_tree_root (¤t_function_parm_tags, 1); ggc_add_tree_root (&last_function_parms, 1); ggc_add_tree_root (&error_mark_list, 1); ggc_add_tree_root (&global_namespace, 1); ggc_add_tree_root (&global_type_node, 1); ggc_add_tree_root (&anonymous_namespace_name, 1); ggc_add_tree_root (&got_object, 1); ggc_add_tree_root (&got_scope, 1); ggc_add_tree_root (¤t_lang_name, 1); ggc_add_tree_root (&static_aggregates, 1); ggc_add_tree_root (&free_bindings, 1); } /* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give the decl, NAME is the initialization string and TYPE_DEP indicates whether NAME depended on the type of the function. We make use of that to detect __PRETTY_FUNCTION__ inside a template fn. Because we build a tree for the function before emitting any of it, we don't need to treat the VAR_DECL specially. We can decide whether to emit it later, if it was used. */ static tree cp_make_fname_decl (id, name, type_dep) tree id; const char *name; int type_dep; { tree decl, type, init; size_t length = strlen (name); tree domain = NULL_TREE; if (!processing_template_decl) type_dep = 0; if (!type_dep) domain = build_index_type (size_int (length)); type = build_cplus_array_type (build_qualified_type (char_type_node, TYPE_QUAL_CONST), domain); decl = build_decl (VAR_DECL, id, type); TREE_STATIC (decl) = 1; TREE_READONLY (decl) = 1; DECL_SOURCE_LINE (decl) = 0; DECL_ARTIFICIAL (decl) = 1; DECL_IN_SYSTEM_HEADER (decl) = 1; pushdecl (decl); if (processing_template_decl) decl = push_template_decl (decl); if (type_dep) { init = build (FUNCTION_NAME, type); DECL_PRETTY_FUNCTION_P (decl) = 1; } else { init = build_string (length + 1, name); TREE_TYPE (init) = type; } DECL_INITIAL (decl) = init; cp_finish_decl (decl, init, NULL_TREE, LOOKUP_ONLYCONVERTING); /* We will have to make sure we only emit this, if it is actually used. */ return decl; } /* Entry point for the benefit of c_common_nodes_and_builtins. Make a definition for a builtin function named NAME and whose data type is TYPE. TYPE should be a function type with argument types. CLASS and CODE tell later passes how to compile calls to this function. See tree.h for possible values. If LIBNAME is nonzero, use that for DECL_ASSEMBLER_NAME, the name to be called if we can't opencode the function. */ tree builtin_function (name, type, code, class, libname) const char *name; tree type; int code; enum built_in_class class; const char *libname; { tree decl = build_library_fn_1 (get_identifier (name), ERROR_MARK, type); DECL_BUILT_IN_CLASS (decl) = class; DECL_FUNCTION_CODE (decl) = code; my_friendly_assert (DECL_CONTEXT (decl) == NULL_TREE, 392); /* All builtins that don't begin with an `_' should go in the `std' namespace. */ if (flag_honor_std && name[0] != '_') { push_namespace (std_identifier); DECL_CONTEXT (decl) = std_node; } pushdecl (decl); if (flag_honor_std && name[0] != '_') pop_namespace (); /* Since `pushdecl' relies on DECL_ASSEMBLER_NAME instead of DECL_NAME, we cannot change DECL_ASSEMBLER_NAME until we have installed this function in the namespace. */ if (libname) DECL_ASSEMBLER_NAME (decl) = get_identifier (libname); make_function_rtl (decl); /* Warn if a function in the namespace for users is used without an occasion to consider it declared. */ if (name[0] != '_' || name[1] != '_') DECL_ANTICIPATED (decl) = 1; return decl; } /* Generate a FUNCTION_DECL with the typical flags for a runtime library function. Not called directly. */ static tree build_library_fn_1 (name, operator_code, type) tree name; enum tree_code operator_code; tree type; { tree fn = build_lang_decl (FUNCTION_DECL, name, type); DECL_EXTERNAL (fn) = 1; TREE_PUBLIC (fn) = 1; DECL_ARTIFICIAL (fn) = 1; TREE_NOTHROW (fn) = 1; SET_OVERLOADED_OPERATOR_CODE (fn, operator_code); return fn; } /* Returns the _DECL for a library function with C linkage. We assume that such functions never throw; if this is incorrect, callers should unset TREE_NOTHROW. */ tree build_library_fn (name, type) tree name; tree type; { tree fn = build_library_fn_1 (name, ERROR_MARK, type); make_function_rtl (fn); return fn; } /* Returns the _DECL for a library function with C++ linkage. */ static tree build_cp_library_fn (name, operator_code, type) tree name; enum tree_code operator_code; tree type; { tree fn = build_library_fn_1 (name, operator_code, type); TREE_NOTHROW (fn) = TYPE_NOTHROW_P (type); DECL_CONTEXT (fn) = FROB_CONTEXT (current_namespace); set_mangled_name_for_decl (fn); make_function_rtl (fn); return fn; } /* Like build_library_fn, but takes a C string instead of an IDENTIFIER_NODE. */ tree build_library_fn_ptr (name, type) const char *name; tree type; { return build_library_fn (get_identifier (name), type); } /* Like build_cp_library_fn, but takes a C string instead of an IDENTIFIER_NODE. */ tree build_cp_library_fn_ptr (name, type) const char *name; tree type; { return build_cp_library_fn (get_identifier (name), ERROR_MARK, type); } /* Like build_library_fn, but also pushes the function so that we will be able to find it via IDENTIFIER_GLOBAL_VALUE. */ tree push_library_fn (name, type) tree name, type; { tree fn = build_library_fn (name, type); pushdecl_top_level (fn); return fn; } /* Like build_cp_library_fn, but also pushes the function so that it will be found by normal lookup. */ static tree push_cp_library_fn (operator_code, type) enum tree_code operator_code; tree type; { tree fn = build_cp_library_fn (ansi_opname (operator_code), operator_code, type); pushdecl (fn); return fn; } /* Like push_library_fn, but takes a TREE_LIST of parm types rather than a FUNCTION_TYPE. */ tree push_void_library_fn (name, parmtypes) tree name, parmtypes; { tree type = build_function_type (void_type_node, parmtypes); return push_library_fn (name, type); } /* Like push_library_fn, but also note that this function throws and does not return. Used for __throw_foo and the like. */ tree push_throw_library_fn (name, type) tree name, type; { tree fn = push_library_fn (name, type); TREE_THIS_VOLATILE (fn) = 1; TREE_NOTHROW (fn) = 0; return fn; } /* When we call finish_struct for an anonymous union, we create default copy constructors and such. But, an anonymous union shouldn't have such things; this function undoes the damage to the anonymous union type T. (The reason that we create the synthesized methods is that we don't distinguish `union { int i; }' from `typedef union { int i; } U'. The first is an anonymous union; the second is just an ordinary union type.) */ void fixup_anonymous_aggr (t) tree t; { tree *q; /* Wipe out memory of synthesized methods */ TYPE_HAS_CONSTRUCTOR (t) = 0; TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 0; TYPE_HAS_INIT_REF (t) = 0; TYPE_HAS_CONST_INIT_REF (t) = 0; TYPE_HAS_ASSIGN_REF (t) = 0; TYPE_HAS_CONST_ASSIGN_REF (t) = 0; /* Splice the implicitly generated functions out of the TYPE_METHODS list. */ q = &TYPE_METHODS (t); while (*q) { if (DECL_ARTIFICIAL (*q)) *q = TREE_CHAIN (*q); else q = &TREE_CHAIN (*q); } /* ISO C++ 9.5.3. Anonymous unions may not have function members. */ if (TYPE_METHODS (t)) cp_error_at ("an anonymous union cannot have function members", t); } /* Make sure that a declaration with no declarator is well-formed, i.e. just defines a tagged type or anonymous union. Returns the type defined, if any. */ tree check_tag_decl (declspecs) tree declspecs; { int found_type = 0; int saw_friend = 0; tree ob_modifier = NULL_TREE; register tree link; register tree t = NULL_TREE; for (link = declspecs; link; link = TREE_CHAIN (link)) { register tree value = TREE_VALUE (link); if (TYPE_P (value) || (TREE_CODE (value) == IDENTIFIER_NODE && IDENTIFIER_GLOBAL_VALUE (value) && TYPE_P (IDENTIFIER_GLOBAL_VALUE (value)))) { ++found_type; if ((TREE_CODE (value) != TYPENAME_TYPE && IS_AGGR_TYPE (value)) || TREE_CODE (value) == ENUMERAL_TYPE) { my_friendly_assert (TYPE_MAIN_DECL (value) != NULL_TREE, 261); t = value; } } else if (value == ridpointers[(int) RID_FRIEND]) { if (current_class_type == NULL_TREE || current_scope () != current_class_type) ob_modifier = value; else saw_friend = 1; } else if (value == ridpointers[(int) RID_STATIC] || value == ridpointers[(int) RID_EXTERN] || value == ridpointers[(int) RID_AUTO] || value == ridpointers[(int) RID_REGISTER] || value == ridpointers[(int) RID_INLINE] || value == ridpointers[(int) RID_VIRTUAL] || value == ridpointers[(int) RID_CONST] || value == ridpointers[(int) RID_VOLATILE] || value == ridpointers[(int) RID_EXPLICIT]) ob_modifier = value; } if (found_type > 1) error ("multiple types in one declaration"); if (t == NULL_TREE && ! saw_friend) pedwarn ("declaration does not declare anything"); /* Check for an anonymous union. We're careful accessing TYPE_IDENTIFIER because some built-in types, like pointer-to-member types, do not have TYPE_NAME. */ else if (t && IS_AGGR_TYPE_CODE (TREE_CODE (t)) && TYPE_NAME (t) && ANON_AGGRNAME_P (TYPE_IDENTIFIER (t))) { /* Anonymous unions are objects, so they can have specifiers. */; SET_ANON_AGGR_TYPE_P (t); if (TREE_CODE (t) != UNION_TYPE && pedantic && ! in_system_header) pedwarn ("ISO C++ prohibits anonymous structs"); } else if (ob_modifier) { if (ob_modifier == ridpointers[(int) RID_INLINE] || ob_modifier == ridpointers[(int) RID_VIRTUAL]) cp_error ("`%D' can only be specified for functions", ob_modifier); else if (ob_modifier == ridpointers[(int) RID_FRIEND]) cp_error ("`%D' can only be specified inside a class", ob_modifier); else if (ob_modifier == ridpointers[(int) RID_EXPLICIT]) cp_error ("`%D' can only be specified for constructors", ob_modifier); else cp_error ("`%D' can only be specified for objects and functions", ob_modifier); } return t; } /* Called when a declaration is seen that contains no names to declare. If its type is a reference to a structure, union or enum inherited from a containing scope, shadow that tag name for the current scope with a forward reference. If its type defines a new named structure or union or defines an enum, it is valid but we need not do anything here. Otherwise, it is an error. C++: may have to grok the declspecs to learn about static, complain for anonymous unions. */ void shadow_tag (declspecs) tree declspecs; { tree t = check_tag_decl (declspecs); if (t) maybe_process_partial_specialization (t); /* This is where the variables in an anonymous union are declared. An anonymous union declaration looks like: union { ... } ; because there is no declarator after the union, the parser sends that declaration here. */ if (t && ANON_AGGR_TYPE_P (t)) { fixup_anonymous_aggr (t); if (TYPE_FIELDS (t)) { tree decl = grokdeclarator (NULL_TREE, declspecs, NORMAL, 0, NULL_TREE); finish_anon_union (decl); } } } /* Decode a "typename", such as "int **", returning a ..._TYPE node. */ tree groktypename (typename) tree typename; { if (TREE_CODE (typename) != TREE_LIST) return typename; return grokdeclarator (TREE_VALUE (typename), TREE_PURPOSE (typename), TYPENAME, 0, NULL_TREE); } /* Decode a declarator in an ordinary declaration or data definition. This is called as soon as the type information and variable name have been parsed, before parsing the initializer if any. Here we create the ..._DECL node, fill in its type, and put it on the list of decls for the current context. The ..._DECL node is returned as the value. Exception: for arrays where the length is not specified, the type is left null, to be filled in by `cp_finish_decl'. Function definitions do not come here; they go to start_function instead. However, external and forward declarations of functions do go through here. Structure field declarations are done by grokfield and not through here. */ tree start_decl (declarator, declspecs, initialized, attributes, prefix_attributes) tree declarator, declspecs; int initialized; tree attributes, prefix_attributes; { register tree decl; register tree type, tem; tree context; extern int have_extern_spec; extern int used_extern_spec; tree attrlist; #if 0 /* See code below that used this. */ int init_written = initialized; #endif /* This should only be done once on the top most decl. */ if (have_extern_spec && !used_extern_spec) { declspecs = tree_cons (NULL_TREE, get_identifier ("extern"), declspecs); used_extern_spec = 1; } if (attributes || prefix_attributes) attrlist = build_tree_list (attributes, prefix_attributes); else attrlist = NULL_TREE; decl = grokdeclarator (declarator, declspecs, NORMAL, initialized, attrlist); if (decl == NULL_TREE || TREE_CODE (decl) == VOID_TYPE) return NULL_TREE; type = TREE_TYPE (decl); if (type == error_mark_node) return NULL_TREE; context = DECL_CONTEXT (decl); if (initialized && context && TREE_CODE (context) == NAMESPACE_DECL && context != current_namespace && TREE_CODE (decl) == VAR_DECL) { /* When parsing the initializer, lookup should use the object's namespace. */ push_decl_namespace (context); } /* We are only interested in class contexts, later. */ if (context && TREE_CODE (context) == NAMESPACE_DECL) context = NULL_TREE; if (initialized) /* Is it valid for this decl to have an initializer at all? If not, set INITIALIZED to zero, which will indirectly tell `cp_finish_decl' to ignore the initializer once it is parsed. */ switch (TREE_CODE (decl)) { case TYPE_DECL: /* typedef foo = bar means give foo the same type as bar. We haven't parsed bar yet, so `cp_finish_decl' will fix that up. Any other case of an initialization in a TYPE_DECL is an error. */ if (pedantic || list_length (declspecs) > 1) { cp_error ("typedef `%D' is initialized", decl); initialized = 0; } break; case FUNCTION_DECL: cp_error ("function `%#D' is initialized like a variable", decl); initialized = 0; break; default: break; } if (initialized) { if (! toplevel_bindings_p () && DECL_EXTERNAL (decl)) cp_warning ("declaration of `%#D' has `extern' and is initialized", decl); DECL_EXTERNAL (decl) = 0; if (toplevel_bindings_p ()) TREE_STATIC (decl) = 1; /* Tell `pushdecl' this is an initialized decl even though we don't yet have the initializer expression. Also tell `cp_finish_decl' it may store the real initializer. */ DECL_INITIAL (decl) = error_mark_node; } #ifdef SET_DEFAULT_DECL_ATTRIBUTES SET_DEFAULT_DECL_ATTRIBUTES (decl, attributes); #endif /* Set attributes here so if duplicate decl, will have proper attributes. */ cplus_decl_attributes (decl, attributes, prefix_attributes); if (context && COMPLETE_TYPE_P (complete_type (context))) { push_nested_class (context, 2); if (TREE_CODE (decl) == VAR_DECL) { tree field = lookup_field (context, DECL_NAME (decl), 0, 0); if (field == NULL_TREE || TREE_CODE (field) != VAR_DECL) cp_error ("`%#D' is not a static member of `%#T'", decl, context); else { if (DECL_CONTEXT (field) != context) { cp_pedwarn ("ISO C++ does not permit `%T::%D' to be defined as `%T::%D'", DECL_CONTEXT (field), DECL_NAME (decl), context, DECL_NAME (decl)); DECL_CONTEXT (decl) = DECL_CONTEXT (field); } /* Static data member are tricky; an in-class initialization still doesn't provide a definition, so the in-class declaration will have DECL_EXTERNAL set, but will have an initialization. Thus, duplicate_decls won't warn about this situation, and so we check here. */ if (DECL_INITIAL (decl) && DECL_INITIAL (field)) cp_error ("duplicate initialization of %D", decl); if (duplicate_decls (decl, field)) decl = field; } } else { tree field = check_classfn (context, decl); if (field && duplicate_decls (decl, field)) decl = field; } /* cp_finish_decl sets DECL_EXTERNAL if DECL_IN_AGGR_P is set. */ DECL_IN_AGGR_P (decl) = 0; if ((DECL_LANG_SPECIFIC (decl) && DECL_USE_TEMPLATE (decl)) || CLASSTYPE_TEMPLATE_INSTANTIATION (context)) { SET_DECL_TEMPLATE_SPECIALIZATION (decl); /* [temp.expl.spec] An explicit specialization of a static data member of a template is a definition if the declaration includes an initializer; otherwise, it is a declaration. We check for processing_specialization so this only applies to the new specialization syntax. */ if (DECL_INITIAL (decl) == NULL_TREE && processing_specialization) DECL_EXTERNAL (decl) = 1; } if (DECL_EXTERNAL (decl) && ! DECL_TEMPLATE_SPECIALIZATION (decl)) cp_pedwarn ("declaration of `%#D' outside of class is not definition", decl); } /* Enter this declaration into the symbol table. */ tem = maybe_push_decl (decl); if (processing_template_decl) tem = push_template_decl (tem); #if ! defined (ASM_OUTPUT_BSS) && ! defined (ASM_OUTPUT_ALIGNED_BSS) /* Tell the back-end to use or not use .common as appropriate. If we say -fconserve-space, we want this to save .data space, at the expense of wrong semantics. If we say -fno-conserve-space, we want this to produce errors about redefs; to do this we force variables into the data segment. */ DECL_COMMON (tem) = flag_conserve_space || ! TREE_PUBLIC (tem); #endif if (! processing_template_decl) start_decl_1 (tem); return tem; } void start_decl_1 (decl) tree decl; { tree type = TREE_TYPE (decl); int initialized = (DECL_INITIAL (decl) != NULL_TREE); if (type == error_mark_node) return; /* If this type of object needs a cleanup, but we're not allowed to add any more objects with cleanups to the current scope, create a new binding level. */ if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) && current_binding_level->more_cleanups_ok == 0) { keep_next_level (2); pushlevel (1); clear_last_expr (); add_scope_stmt (/*begin_p=*/1, /*partial_p=*/1); } if (initialized) /* Is it valid for this decl to have an initializer at all? If not, set INITIALIZED to zero, which will indirectly tell `cp_finish_decl' to ignore the initializer once it is parsed. */ { /* Don't allow initializations for incomplete types except for arrays which might be completed by the initialization. */ if (COMPLETE_TYPE_P (complete_type (type))) ; /* A complete type is ok. */ else if (TREE_CODE (type) != ARRAY_TYPE) { cp_error ("variable `%#D' has initializer but incomplete type", decl); initialized = 0; type = TREE_TYPE (decl) = error_mark_node; } else if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (type)))) { if (DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl)) cp_error ("elements of array `%#D' have incomplete type", decl); /* else we already gave an error in start_decl. */ initialized = 0; } } if (!initialized && TREE_CODE (decl) != TYPE_DECL && TREE_CODE (decl) != TEMPLATE_DECL && type != error_mark_node && IS_AGGR_TYPE (type) && ! DECL_EXTERNAL (decl)) { if ((! processing_template_decl || ! uses_template_parms (type)) && !COMPLETE_TYPE_P (complete_type (type))) { cp_error ("aggregate `%#D' has incomplete type and cannot be initialized", decl); /* Change the type so that assemble_variable will give DECL an rtl we can live with: (mem (const_int 0)). */ type = TREE_TYPE (decl) = error_mark_node; } else { /* If any base type in the hierarchy of TYPE needs a constructor, then we set initialized to 1. This way any nodes which are created for the purposes of initializing this aggregate will live as long as it does. This is necessary for global aggregates which do not have their initializers processed until the end of the file. */ initialized = TYPE_NEEDS_CONSTRUCTING (type); } } if (! initialized) DECL_INITIAL (decl) = NULL_TREE; } /* Handle initialization of references. These three arguments are from `cp_finish_decl', and have the same meaning here that they do there. Quotes on semantics can be found in ARM 8.4.3. */ static void grok_reference_init (decl, type, init) tree decl, type, init; { tree tmp; if (init == NULL_TREE) { if ((DECL_LANG_SPECIFIC (decl) == 0 || DECL_IN_AGGR_P (decl) == 0) && ! DECL_THIS_EXTERN (decl)) cp_error ("`%D' declared as reference but not initialized", decl); return; } if (init == error_mark_node) return; if (TREE_CODE (init) == CONSTRUCTOR) { cp_error ("ISO C++ forbids use of initializer list to initialize reference `%D'", decl); return; } if (TREE_CODE (init) == TREE_LIST) init = build_compound_expr (init); if (TREE_CODE (TREE_TYPE (init)) == REFERENCE_TYPE) init = convert_from_reference (init); if (TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE && TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE) { /* Note: default conversion is only called in very special cases. */ init = default_conversion (init); } /* Convert INIT to the reference type TYPE. This may involve the creation of a temporary, whose lifetime must be the same as that of the reference. If so, a DECL_STMT for the temporary will be added just after the DECL_STMT for DECL. That's why we don't set DECL_INITIAL for local references (instead assigning to them explicitly); we need to allow the temporary to be initialized first. */ tmp = convert_to_reference (type, init, CONV_IMPLICIT, LOOKUP_ONLYCONVERTING|LOOKUP_SPECULATIVELY|LOOKUP_NORMAL|DIRECT_BIND, decl); if (tmp == error_mark_node) return; else if (tmp != NULL_TREE) { init = tmp; tmp = save_expr (tmp); if (building_stmt_tree ()) { /* Initialize the declaration. */ tmp = build (INIT_EXPR, TREE_TYPE (decl), decl, tmp); finish_expr_stmt (tmp); } else DECL_INITIAL (decl) = tmp; } else { cp_error ("cannot initialize `%T' from `%T'", type, TREE_TYPE (init)); return; } if (TREE_STATIC (decl) && ! TREE_CONSTANT (DECL_INITIAL (decl))) { expand_static_init (decl, DECL_INITIAL (decl)); DECL_INITIAL (decl) = NULL_TREE; } return; } /* Fill in DECL_INITIAL with some magical value to prevent expand_decl from mucking with forces it does not comprehend (i.e. initialization with a constructor). If we are at global scope and won't go into COMMON, fill it in with a dummy CONSTRUCTOR to force the variable into .data; otherwise we can use error_mark_node. */ static tree obscure_complex_init (decl, init) tree decl, init; { if (! flag_no_inline && TREE_STATIC (decl)) { if (extract_init (decl, init)) return NULL_TREE; } #if ! defined (ASM_OUTPUT_BSS) && ! defined (ASM_OUTPUT_ALIGNED_BSS) if (toplevel_bindings_p () && ! DECL_COMMON (decl)) DECL_INITIAL (decl) = build (CONSTRUCTOR, TREE_TYPE (decl), NULL_TREE, NULL_TREE); else #endif DECL_INITIAL (decl) = error_mark_node; return init; } /* When parsing `int a[] = {1, 2};' we don't know the size of the array until we finish parsing the initializer. If that's the situation we're in, update DECL accordingly. */ static void maybe_deduce_size_from_array_init (decl, init) tree decl; tree init; { tree type = TREE_TYPE (decl); if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) == NULL_TREE && TREE_CODE (decl) != TYPE_DECL) { /* do_default is really a C-ism to deal with tentative definitions. But let's leave it here to ease the eventual merge. */ int do_default = !DECL_EXTERNAL (decl); tree initializer = init ? init : DECL_INITIAL (decl); int failure = complete_array_type (type, initializer, do_default); if (failure == 1) cp_error ("initializer fails to determine size of `%D'", decl); if (failure == 2) { if (do_default) cp_error ("array size missing in `%D'", decl); /* If a `static' var's size isn't known, make it extern as well as static, so it does not get allocated. If it's not `static', then don't mark it extern; finish_incomplete_decl will give it a default size and it will get allocated. */ else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl)) DECL_EXTERNAL (decl) = 1; } if (pedantic && TYPE_DOMAIN (type) != NULL_TREE && tree_int_cst_lt (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), integer_zero_node)) cp_error ("zero-size array `%D'", decl); layout_decl (decl, 0); } } /* Set DECL_SIZE, DECL_ALIGN, etc. for DECL (a VAR_DECL), and issue any appropriate error messages regarding the layout. */ static void layout_var_decl (decl) tree decl; { tree type = TREE_TYPE (decl); #if 0 tree ttype = target_type (type); #endif /* If we haven't already layed out this declaration, do so now. Note that we must not call complete type for an external object because it's type might involve templates that we are not supposed to isntantiate yet. (And it's perfectly legal to say `extern X x' for some incomplete type `X'.) */ if (!DECL_EXTERNAL (decl)) complete_type (type); if (!DECL_SIZE (decl) && COMPLETE_TYPE_P (type)) layout_decl (decl, 0); if (!DECL_EXTERNAL (decl) && DECL_SIZE (decl) == NULL_TREE) { /* An automatic variable with an incomplete type: that is an error. Don't talk about array types here, since we took care of that message in grokdeclarator. */ cp_error ("storage size of `%D' isn't known", decl); TREE_TYPE (decl) = error_mark_node; } #if 0 /* Keep this code around in case we later want to control debug info based on whether a type is "used". (jason 1999-11-11) */ else if (!DECL_EXTERNAL (decl) && IS_AGGR_TYPE (ttype)) /* Let debugger know it should output info for this type. */ note_debug_info_needed (ttype); if (TREE_STATIC (decl) && DECL_CLASS_SCOPE_P (decl)) note_debug_info_needed (DECL_CONTEXT (decl)); #endif if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl)) && DECL_SIZE (decl) != NULL_TREE && ! TREE_CONSTANT (DECL_SIZE (decl))) { if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST) constant_expression_warning (DECL_SIZE (decl)); else cp_error ("storage size of `%D' isn't constant", decl); } } /* If a local static variable is declared in an inline function, or if we have a weak definition, we must endeavor to create only one instance of the variable at link-time. */ static void maybe_commonize_var (decl) tree decl; { /* Static data in a function with comdat linkage also has comdat linkage. */ if (TREE_STATIC (decl) /* Don't mess with __FUNCTION__. */ && ! DECL_ARTIFICIAL (decl) && current_function_decl && DECL_CONTEXT (decl) == current_function_decl && (DECL_THIS_INLINE (current_function_decl) || DECL_TEMPLATE_INSTANTIATION (current_function_decl)) && TREE_PUBLIC (current_function_decl)) { /* Rather than try to get this right with inlining, we suppress inlining of such functions. */ current_function_cannot_inline = "function with static variable cannot be inline"; DECL_UNINLINABLE (current_function_decl) = 1; /* If flag_weak, we don't need to mess with this, as we can just make the function weak, and let it refer to its unique local copy. This works because we don't allow the function to be inlined. */ if (! flag_weak) { if (DECL_INTERFACE_KNOWN (current_function_decl)) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = DECL_EXTERNAL (current_function_decl); } else if (DECL_INITIAL (decl) == NULL_TREE || DECL_INITIAL (decl) == error_mark_node) { TREE_PUBLIC (decl) = 1; DECL_COMMON (decl) = 1; } /* else we lose. We can only do this if we can use common, which we can't if it has been initialized. */ if (TREE_PUBLIC (decl)) DECL_ASSEMBLER_NAME (decl) = build_static_name (current_function_decl, DECL_NAME (decl)); else { cp_warning_at ("sorry: semantics of inline function static data `%#D' are wrong (you'll wind up with multiple copies)", decl); cp_warning_at (" you can work around this by removing the initializer", decl); } } } else if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl)) /* Set it up again; we might have set DECL_INITIAL since the last time. */ comdat_linkage (decl); } /* Issue an error message if DECL is an uninitialized const variable. */ static void check_for_uninitialized_const_var (decl) tree decl; { tree type = TREE_TYPE (decl); /* ``Unless explicitly declared extern, a const object does not have external linkage and must be initialized. ($8.4; $12.1)'' ARM 7.1.6 */ if (TREE_CODE (decl) == VAR_DECL && TREE_CODE (type) != REFERENCE_TYPE && CP_TYPE_CONST_P (type) && !TYPE_NEEDS_CONSTRUCTING (type) && !DECL_INITIAL (decl)) cp_error ("uninitialized const `%D'", decl); } /* Verify INIT (the initializer for DECL), and record the initialization in DECL_INITIAL, if appropriate. Returns a new value for INIT. */ static tree check_initializer (decl, init) tree decl; tree init; { tree type; if (TREE_CODE (decl) == FIELD_DECL) return init; type = TREE_TYPE (decl); /* If `start_decl' didn't like having an initialization, ignore it now. */ if (init != NULL_TREE && DECL_INITIAL (decl) == NULL_TREE) init = NULL_TREE; /* Check the initializer. */ if (init) { /* Things that are going to be initialized need to have complete type. */ TREE_TYPE (decl) = type = complete_type (TREE_TYPE (decl)); if (type == error_mark_node) /* We will have already complained. */ init = NULL_TREE; else if (COMPLETE_TYPE_P (type) && !TREE_CONSTANT (TYPE_SIZE (type))) { cp_error ("variable-sized object `%D' may not be initialized", decl); init = NULL_TREE; } else if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (TREE_TYPE (type))) { cp_error ("elements of array `%#D' have incomplete type", decl); init = NULL_TREE; } else if (!COMPLETE_TYPE_P (type)) { cp_error ("`%D' has incomplete type", decl); TREE_TYPE (decl) = error_mark_node; init = NULL_TREE; } } if (TREE_CODE (decl) == CONST_DECL) { my_friendly_assert (TREE_CODE (decl) != REFERENCE_TYPE, 148); DECL_INITIAL (decl) = init; /* This will keep us from needing to worry about our obstacks. */ my_friendly_assert (init != NULL_TREE, 149); init = NULL_TREE; } else if (!DECL_EXTERNAL (decl) && TREE_CODE (type) == REFERENCE_TYPE) { if (TREE_STATIC (decl)) make_decl_rtl (decl, NULL_PTR, toplevel_bindings_p ()); grok_reference_init (decl, type, init); init = NULL_TREE; } else if (init) { if (TYPE_HAS_CONSTRUCTOR (type) || TYPE_NEEDS_CONSTRUCTING (type)) { if (TREE_CODE (type) == ARRAY_TYPE) init = digest_init (type, init, (tree *) 0); else if (TREE_CODE (init) == CONSTRUCTOR && TREE_HAS_CONSTRUCTOR (init)) { if (TYPE_NON_AGGREGATE_CLASS (type)) { cp_error ("`%D' must be initialized by constructor, not by `{...}'", decl); init = error_mark_node; } else goto dont_use_constructor; } } else { dont_use_constructor: if (TREE_CODE (init) != TREE_VEC) init = store_init_value (decl, init); } if (init) /* We must hide the initializer so that expand_decl won't try to do something it does not understand. */ init = obscure_complex_init (decl, init); } else if (DECL_EXTERNAL (decl)) ; else if (TYPE_P (type) && (IS_AGGR_TYPE (type) || TYPE_NEEDS_CONSTRUCTING (type))) { tree core_type = strip_array_types (type); if (! TYPE_NEEDS_CONSTRUCTING (core_type)) { if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)) cp_error ("structure `%D' with uninitialized const members", decl); if (CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)) cp_error ("structure `%D' with uninitialized reference members", decl); } check_for_uninitialized_const_var (decl); if (COMPLETE_TYPE_P (type) && TYPE_NEEDS_CONSTRUCTING (type)) init = obscure_complex_init (decl, NULL_TREE); } else check_for_uninitialized_const_var (decl); return init; } /* If DECL is not a local variable, give it RTL. */ static void make_rtl_for_nonlocal_decl (decl, init, asmspec) tree decl; tree init; const char *asmspec; { int toplev = toplevel_bindings_p (); int defer_p; /* Handle non-variables up front. */ if (TREE_CODE (decl) != VAR_DECL) { rest_of_decl_compilation (decl, asmspec, toplev, at_eof); return; } /* If we see a class member here, it should be a static data member. */ if (DECL_LANG_SPECIFIC (decl) && DECL_IN_AGGR_P (decl)) { my_friendly_assert (TREE_STATIC (decl), 19990828); /* An in-class declaration of a static data member should be external; it is only a declaration, and not a definition. */ if (init == NULL_TREE) my_friendly_assert (DECL_EXTERNAL (decl), 20000723); } /* Set the DECL_ASSEMBLER_NAME for the variable. */ if (asmspec) DECL_ASSEMBLER_NAME (decl) = get_identifier (asmspec); /* We don't create any RTL for local variables. */ if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl)) return; /* We defer emission of local statics until the corresponding DECL_STMT is expanded. */ defer_p = DECL_FUNCTION_SCOPE_P (decl) || DECL_VIRTUAL_P (decl); /* We try to defer namespace-scope static constants so that they are not emitted into the object file unncessarily. */ if (!DECL_VIRTUAL_P (decl) && TREE_READONLY (decl) && DECL_INITIAL (decl) != NULL_TREE && DECL_INITIAL (decl) != error_mark_node && ! EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl)) && toplev && !TREE_PUBLIC (decl)) { /* Fool with the linkage according to #pragma interface. */ if (!interface_unknown) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = interface_only; } defer_p = 1; } /* If we're deferring the variable, just make RTL. Do not actually emit the variable. */ if (defer_p) make_decl_rtl (decl, asmspec, toplev); /* If we're not deferring, go ahead and assemble the variable. */ else rest_of_decl_compilation (decl, asmspec, toplev, at_eof); } /* The old ARM scoping rules injected variables declared in the initialization statement of a for-statement into the surrounding scope. We support this usage, in order to be backward-compatible. DECL is a just-declared VAR_DECL; if necessary inject its declaration into the surrounding scope. */ void maybe_inject_for_scope_var (decl) tree decl; { if (!DECL_NAME (decl)) return; if (current_binding_level->is_for_scope) { struct binding_level *outer = current_binding_level->level_chain; /* Check to see if the same name is already bound at the outer level, either because it was directly declared, or because a dead for-decl got preserved. In either case, the code would not have been valid under the ARM scope rules, so clear is_for_scope for the current_binding_level. Otherwise, we need to preserve the temp slot for decl to last into the outer binding level. */ tree outer_binding = TREE_CHAIN (IDENTIFIER_BINDING (DECL_NAME (decl))); if (outer_binding && BINDING_LEVEL (outer_binding) == outer && (TREE_CODE (BINDING_VALUE (outer_binding)) == VAR_DECL) && DECL_DEAD_FOR_LOCAL (BINDING_VALUE (outer_binding))) { BINDING_VALUE (outer_binding) = DECL_SHADOWED_FOR_VAR (BINDING_VALUE (outer_binding)); current_binding_level->is_for_scope = 0; } else if (DECL_IN_MEMORY_P (decl)) preserve_temp_slots (DECL_RTL (decl)); } } /* Generate code to initialize DECL (a local variable). */ void initialize_local_var (decl, init, flags) tree decl; tree init; int flags; { tree type = TREE_TYPE (decl); /* If the type is bogus, don't bother initializing the variable. */ if (type == error_mark_node) return; if (DECL_SIZE (decl) == NULL_TREE && !TREE_STATIC (decl)) { /* If we used it already as memory, it must stay in memory. */ DECL_INITIAL (decl) = NULL_TREE; TREE_ADDRESSABLE (decl) = TREE_USED (decl); } /* Local statics are handled differently from ordinary automatic variables. */ if (TREE_STATIC (decl)) { if (TYPE_NEEDS_CONSTRUCTING (type) || init != NULL_TREE || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) expand_static_init (decl, init); return; } if (DECL_SIZE (decl) && type != error_mark_node) { int already_used; /* Compute and store the initial value. */ already_used = TREE_USED (decl) || TREE_USED (type); if (init || TYPE_NEEDS_CONSTRUCTING (type)) { int saved_stmts_are_full_exprs_p; my_friendly_assert (building_stmt_tree (), 20000906); saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p (); current_stmt_tree ()->stmts_are_full_exprs_p = 1; finish_expr_stmt (build_aggr_init (decl, init, flags)); current_stmt_tree ()->stmts_are_full_exprs_p = saved_stmts_are_full_exprs_p; } /* Set this to 0 so we can tell whether an aggregate which was initialized was ever used. Don't do this if it has a destructor, so we don't complain about the 'resource allocation is initialization' idiom. Now set attribute((unused)) on types so decls of that type will be marked used. (see TREE_USED, above.) */ if (TYPE_NEEDS_CONSTRUCTING (type) && ! already_used && TYPE_HAS_TRIVIAL_DESTRUCTOR (type) && DECL_NAME (decl)) TREE_USED (decl) = 0; else if (already_used) TREE_USED (decl) = 1; } } /* Generate code to destroy DECL (a local variable). */ static void destroy_local_var (decl) tree decl; { tree type = TREE_TYPE (decl); tree cleanup; /* Only variables get cleaned up. */ if (TREE_CODE (decl) != VAR_DECL) return; /* And only things with destructors need cleaning up. */ if (type == error_mark_node || TYPE_HAS_TRIVIAL_DESTRUCTOR (type)) return; if (TREE_CODE (decl) == VAR_DECL && (DECL_EXTERNAL (decl) || TREE_STATIC (decl))) /* We don't clean up things that aren't defined in this translation unit, or that need a static cleanup. The latter are handled by finish_file. */ return; /* Compute the cleanup. */ cleanup = maybe_build_cleanup (decl); /* Record the cleanup required for this declaration. */ if (DECL_SIZE (decl) && TREE_TYPE (decl) != error_mark_node && cleanup) finish_decl_cleanup (decl, cleanup); } /* Finish processing of a declaration; install its line number and initial value. If the length of an array type is not known before, it must be determined now, from the initial value, or it is an error. INIT holds the value of an initializer that should be allowed to escape the normal rules. FLAGS is LOOKUP_ONLYCONVERTING if the = init syntax was used, else 0 if the (init) syntax was used. */ void cp_finish_decl (decl, init, asmspec_tree, flags) tree decl, init; tree asmspec_tree; int flags; { register tree type; tree ttype = NULL_TREE; const char *asmspec = NULL; int was_readonly = 0; if (! decl) { if (init) error ("assignment (not initialization) in declaration"); return; } /* If a name was specified, get the string. */ if (asmspec_tree) asmspec = TREE_STRING_POINTER (asmspec_tree); if (init && TREE_CODE (init) == NAMESPACE_DECL) { cp_error ("cannot initialize `%D' to namespace `%D'", decl, init); init = NULL_TREE; } if (current_class_type && CP_DECL_CONTEXT (decl) == current_class_type && TYPE_BEING_DEFINED (current_class_type) && (DECL_INITIAL (decl) || init)) DECL_INITIALIZED_IN_CLASS_P (decl) = 1; if (TREE_CODE (decl) == VAR_DECL && DECL_CONTEXT (decl) && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL && DECL_CONTEXT (decl) != current_namespace && init) { /* Leave the namespace of the object. */ pop_decl_namespace (); } type = TREE_TYPE (decl); if (type == error_mark_node) return; /* Add this declaration to the statement-tree. */ if (building_stmt_tree () && at_function_scope_p () && TREE_CODE (decl) != RESULT_DECL) add_decl_stmt (decl); if (TYPE_HAS_MUTABLE_P (type)) TREE_READONLY (decl) = 0; if (processing_template_decl) { if (init && DECL_INITIAL (decl)) DECL_INITIAL (decl) = init; goto finish_end0; } /* Parameters are handled by store_parm_decls, not cp_finish_decl. */ my_friendly_assert (TREE_CODE (decl) != PARM_DECL, 19990828); /* Take care of TYPE_DECLs up front. */ if (TREE_CODE (decl) == TYPE_DECL) { if (init && DECL_INITIAL (decl)) { /* typedef foo = bar; store the type of bar as the type of foo. */ TREE_TYPE (decl) = type = TREE_TYPE (init); DECL_INITIAL (decl) = init = NULL_TREE; } if (type != error_mark_node && IS_AGGR_TYPE (type) && DECL_NAME (decl)) { if (TREE_TYPE (DECL_NAME (decl)) && TREE_TYPE (decl) != type) cp_warning ("shadowing previous type declaration of `%#D'", decl); set_identifier_type_value (DECL_NAME (decl), type); CLASSTYPE_GOT_SEMICOLON (type) = 1; } GNU_xref_decl (current_function_decl, decl); /* If we have installed this as the canonical typedef for this type, and that type has not been defined yet, delay emitting the debug information for it, as we will emit it later. */ if (TYPE_MAIN_DECL (TREE_TYPE (decl)) == decl && !COMPLETE_TYPE_P (TREE_TYPE (decl))) TYPE_DECL_SUPPRESS_DEBUG (decl) = 1; rest_of_decl_compilation (decl, NULL_PTR, DECL_CONTEXT (decl) == NULL_TREE, at_eof); goto finish_end; } if (TREE_CODE (decl) != FUNCTION_DECL) ttype = target_type (type); if (! DECL_EXTERNAL (decl) && TREE_READONLY (decl) && TYPE_NEEDS_CONSTRUCTING (type)) { /* Currently, GNU C++ puts constants in text space, making them impossible to initialize. In the future, one would hope for an operating system which understood the difference between initialization and the running of a program. */ was_readonly = 1; TREE_READONLY (decl) = 0; } if (TREE_CODE (decl) == FIELD_DECL && asmspec) { /* This must override the asm specifier which was placed by grokclassfn. Lay this out fresh. */ DECL_RTL (TREE_TYPE (decl)) = NULL_RTX; DECL_ASSEMBLER_NAME (decl) = get_identifier (asmspec); make_decl_rtl (decl, asmspec, 0); } /* Deduce size of array from initialization, if not already known. */ maybe_deduce_size_from_array_init (decl, init); init = check_initializer (decl, init); GNU_xref_decl (current_function_decl, decl); if (TREE_CODE (decl) == VAR_DECL) layout_var_decl (decl); /* Output the assembler code and/or RTL code for variables and functions, unless the type is an undefined structure or union. If not, it will get done when the type is completed. */ if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == RESULT_DECL) { if (TREE_CODE (decl) == VAR_DECL) maybe_commonize_var (decl); make_rtl_for_nonlocal_decl (decl, init, asmspec); if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) abstract_virtuals_error (decl, strip_array_types (TREE_TYPE (type))); else abstract_virtuals_error (decl, strip_array_types (type)); if (TREE_CODE (decl) == FUNCTION_DECL) ; else if (DECL_EXTERNAL (decl) && ! (DECL_LANG_SPECIFIC (decl) && DECL_NOT_REALLY_EXTERN (decl))) { if (init) DECL_INITIAL (decl) = init; } else if (TREE_CODE (CP_DECL_CONTEXT (decl)) == FUNCTION_DECL) { /* This is a local declaration. */ if (doing_semantic_analysis_p ()) maybe_inject_for_scope_var (decl); /* Initialize the local variable. But, if we're building a statement-tree, we'll do the initialization when we expand the tree. */ if (processing_template_decl) { if (init || DECL_INITIAL (decl) == error_mark_node) DECL_INITIAL (decl) = init; } else { /* If we're not building RTL, then we need to do so now. */ my_friendly_assert (building_stmt_tree (), 20000906); /* Initialize the variable. */ initialize_local_var (decl, init, flags); /* Clean up the variable. */ destroy_local_var (decl); } } else if (TREE_STATIC (decl) && type != error_mark_node) { /* Cleanups for static variables are handled by `finish_file'. */ if (TYPE_NEEDS_CONSTRUCTING (type) || init != NULL_TREE || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) expand_static_init (decl, init); } finish_end0: /* Undo call to `pushclass' that was done in `start_decl' due to initialization of qualified member variable. I.e., Foo::x = 10; */ { tree context = CP_DECL_CONTEXT (decl); if (context && TYPE_P (context) && (TREE_CODE (decl) == VAR_DECL /* We also have a pushclass done that we need to undo here if we're at top level and declare a method. */ || TREE_CODE (decl) == FUNCTION_DECL) /* If size hasn't been set, we're still defining it, and therefore inside the class body; don't pop the binding level.. */ && COMPLETE_TYPE_P (context) && context == current_class_type) pop_nested_class (); } } finish_end: if (was_readonly) TREE_READONLY (decl) = 1; } /* This is here for a midend callback from c-common.c */ void finish_decl (decl, init, asmspec_tree) tree decl, init; tree asmspec_tree; { cp_finish_decl (decl, init, asmspec_tree, 0); } /* Returns a declaration for a VAR_DECL as if: extern "C" TYPE NAME; had been seen. Used to create compiler-generated global variables. */ tree declare_global_var (name, type) tree name; tree type; { tree decl; push_to_top_level (); decl = build_decl (VAR_DECL, name, type); TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = 1; DECL_ARTIFICIAL (decl) = 1; pushdecl (decl); cp_finish_decl (decl, NULL_TREE, NULL_TREE, 0); pop_from_top_level (); return decl; } /* Returns a pointer to the `atexit' function. Note that if FLAG_USE_CXA_ATEXIT is non-zero, then this will actually be the new `__cxa_atexit' function specified in the IA64 C++ ABI. */ static tree get_atexit_node () { tree atexit_fndecl; tree arg_types; tree fn_type; tree fn_ptr_type; const char *name; if (atexit_node) return atexit_node; if (flag_use_cxa_atexit) { /* The declaration for `__cxa_atexit' is: int __cxa_atexit (void (*)(void *), void *, void *) We build up the argument types and then then function type itself. */ /* First, build the pointer-to-function type for the first argument. */ arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node); fn_type = build_function_type (void_type_node, arg_types); fn_ptr_type = build_pointer_type (fn_type); /* Then, build the rest of the argument types. */ arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node); arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types); arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types); /* And the final __cxa_atexit type. */ fn_type = build_function_type (integer_type_node, arg_types); fn_ptr_type = build_pointer_type (fn_type); name = "__cxa_atexit"; } else { /* The declaration for `atexit' is: int atexit (void (*)()); We build up the argument types and then then function type itself. */ fn_type = build_function_type (void_type_node, void_list_node); fn_ptr_type = build_pointer_type (fn_type); arg_types = tree_cons (NULL_TREE, fn_ptr_type, void_list_node); /* Build the final atexit type. */ fn_type = build_function_type (integer_type_node, arg_types); name = "atexit"; } /* Now, build the function declaration. */ push_lang_context (lang_name_c); atexit_fndecl = build_library_fn_ptr (name, fn_type); mark_used (atexit_fndecl); pop_lang_context (); atexit_node = default_conversion (atexit_fndecl); return atexit_node; } /* Returns the __dso_handle VAR_DECL. */ static tree get_dso_handle_node () { if (dso_handle_node) return dso_handle_node; /* Declare the variable. */ dso_handle_node = declare_global_var (get_identifier ("__dso_handle"), ptr_type_node); return dso_handle_node; } /* Begin a new function with internal linkage whose job will be simply to destroy some particular variable. */ static tree start_cleanup_fn () { static int counter = 0; int old_interface_unknown = interface_unknown; char name[32]; tree parmtypes; tree fntype; tree fndecl; push_to_top_level (); /* No need to mangle this. */ push_lang_context (lang_name_c); interface_unknown = 1; /* Build the parameter-types. */ parmtypes = void_list_node; /* Functions passed to __cxa_atexit take an additional parameter. We'll just ignore it. After we implement the new calling convention for destructors, we can eliminate the use of additional cleanup functions entirely in the -fnew-abi case. */ if (flag_use_cxa_atexit) parmtypes = tree_cons (NULL_TREE, ptr_type_node, parmtypes); /* Build the function type itself. */ fntype = build_function_type (void_type_node, parmtypes); /* Build the name of the function. */ sprintf (name, "__tcf_%d", counter++); /* Build the function declaration. */ fndecl = build_lang_decl (FUNCTION_DECL, get_identifier (name), fntype); /* It's a function with internal linkage, generated by the compiler. */ TREE_PUBLIC (fndecl) = 0; DECL_ARTIFICIAL (fndecl) = 1; /* Make the function `inline' so that it is only emitted if it is actually needed. It is unlikely that it will be inlined, since it is only called via a function pointer, but we avoid unncessary emissions this way. */ DECL_INLINE (fndecl) = 1; /* Build the parameter. */ if (flag_use_cxa_atexit) { tree parmdecl; parmdecl = build_decl (PARM_DECL, NULL_TREE, ptr_type_node); DECL_CONTEXT (parmdecl) = fndecl; DECL_ARG_TYPE (parmdecl) = ptr_type_node; TREE_USED (parmdecl) = 1; DECL_ARGUMENTS (fndecl) = parmdecl; } pushdecl (fndecl); start_function (/*specs=*/NULL_TREE, fndecl, NULL_TREE, SF_PRE_PARSED); do_pushlevel (); interface_unknown = old_interface_unknown; pop_lang_context (); return current_function_decl; } /* Finish the cleanup function begun by start_cleanup_fn. */ static void end_cleanup_fn () { do_poplevel (); expand_body (finish_function (0)); pop_from_top_level (); } /* Generate code to handle the destruction of DECL, an object with static storage duration. */ void register_dtor_fn (decl) tree decl; { tree cleanup; tree compound_stmt; tree args; tree fcall; int saved_flag_access_control; if (TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl))) return; /* Call build_cleanup before we enter the anonymous function so that any access checks will be done relative to the current scope, rather than the scope of the anonymous function. */ build_cleanup (decl); /* Now start the function. */ cleanup = start_cleanup_fn (); /* Now, recompute the cleanup. It may contain SAVE_EXPRs that refer to the original function, rather than the anonymous one. That will make the back-end think that nested functions are in use, which causes confusion. */ saved_flag_access_control = flag_access_control; flag_access_control = 0; fcall = build_cleanup (decl); flag_access_control = saved_flag_access_control; /* Create the body of the anonymous function. */ compound_stmt = begin_compound_stmt (/*has_no_scope=*/0); finish_expr_stmt (fcall); finish_compound_stmt (/*has_no_scope=*/0, compound_stmt); end_cleanup_fn (); /* Call atexit with the cleanup function. */ mark_addressable (cleanup); cleanup = build_unary_op (ADDR_EXPR, cleanup, 0); if (flag_use_cxa_atexit) { args = tree_cons (NULL_TREE, get_dso_handle_node (), NULL_TREE); args = tree_cons (NULL_TREE, null_pointer_node, args); args = tree_cons (NULL_TREE, cleanup, args); } else args = tree_cons (NULL_TREE, cleanup, NULL_TREE); finish_expr_stmt (build_function_call (get_atexit_node (), args)); } void expand_static_init (decl, init) tree decl; tree init; { tree oldstatic = value_member (decl, static_aggregates); if (oldstatic) { if (TREE_PURPOSE (oldstatic) && init != NULL_TREE) cp_error ("multiple initializations given for `%D'", decl); } else if (! toplevel_bindings_p ()) { /* Emit code to perform this initialization but once. */ tree if_stmt; tree then_clause; tree assignment; tree guard; tree guard_init; /* Emit code to perform this initialization but once. This code looks like: static int guard = 0; if (!guard) { // Do initialization. guard = 1; // Register variable for destruction at end of program. } Note that the `temp' variable is only set to 1 *after* the initialization is complete. This ensures that an exception, thrown during the construction, will cause the variable to reinitialized when we pass through this code again, as per: [stmt.dcl] If the initialization exits by throwing an exception, the initialization is not complete, so it will be tried again the next time control enters the declaration. In theory, this process should be thread-safe, too; multiple threads should not be able to initialize the variable more than once. We don't yet attempt to ensure thread-safety. */ /* Create the guard variable. */ guard = get_guard (decl); /* Begin the conditional initialization. */ if_stmt = begin_if_stmt (); finish_if_stmt_cond (get_guard_cond (guard), if_stmt); then_clause = begin_compound_stmt (/*has_no_scope=*/0); /* Do the initialization itself. */ if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)) || (init && TREE_CODE (init) == TREE_LIST)) assignment = build_aggr_init (decl, init, 0); else if (init) /* The initialization we're doing here is just a bitwise copy. */ assignment = build (INIT_EXPR, TREE_TYPE (decl), decl, init); else assignment = NULL_TREE; /* Once the assignment is complete, set TEMP to 1. Since the construction of the static object is complete at this point, we want to make sure TEMP is set to 1 even if a temporary constructed during the initialization throws an exception when it is destroyed. So, we combine the initialization and the assignment to TEMP into a single expression, ensuring that when we call finish_expr_stmt the cleanups will not be run until after TEMP is set to 1. */ guard_init = set_guard (guard); if (assignment) { assignment = tree_cons (NULL_TREE, assignment, build_tree_list (NULL_TREE, guard_init)); assignment = build_compound_expr (assignment); } else assignment = guard_init; finish_expr_stmt (assignment); /* Use atexit to register a function for destroying this static variable. */ register_dtor_fn (decl); finish_compound_stmt (/*has_no_scope=*/0, then_clause); finish_then_clause (if_stmt); finish_if_stmt (); } else static_aggregates = tree_cons (init, decl, static_aggregates); } /* Finish the declaration of a catch-parameter. */ tree start_handler_parms (declspecs, declarator) tree declspecs; tree declarator; { tree decl; if (declspecs) { decl = grokdeclarator (declarator, declspecs, CATCHPARM, 1, NULL_TREE); if (decl == NULL_TREE) error ("invalid catch parameter"); } else decl = NULL_TREE; return decl; } /* Make TYPE a complete type based on INITIAL_VALUE. Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered, 2 if there was no information (in which case assume 0 if DO_DEFAULT). */ int complete_array_type (type, initial_value, do_default) tree type, initial_value; int do_default; { register tree maxindex = NULL_TREE; int value = 0; if (initial_value) { /* An array of character type can be initialized from a brace-enclosed string constant. */ if (char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type))) && TREE_CODE (initial_value) == CONSTRUCTOR && CONSTRUCTOR_ELTS (initial_value) && (TREE_CODE (TREE_VALUE (CONSTRUCTOR_ELTS (initial_value))) == STRING_CST) && TREE_CHAIN (CONSTRUCTOR_ELTS (initial_value)) == NULL_TREE) initial_value = TREE_VALUE (CONSTRUCTOR_ELTS (initial_value)); /* Note MAXINDEX is really the maximum index, one less than the size. */ if (TREE_CODE (initial_value) == STRING_CST) { int eltsize = int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value))); maxindex = build_int_2 ((TREE_STRING_LENGTH (initial_value) / eltsize) - 1, 0); } else if (TREE_CODE (initial_value) == CONSTRUCTOR) { tree elts = CONSTRUCTOR_ELTS (initial_value); maxindex = ssize_int (-1); for (; elts; elts = TREE_CHAIN (elts)) { if (TREE_PURPOSE (elts)) maxindex = TREE_PURPOSE (elts); else maxindex = size_binop (PLUS_EXPR, maxindex, ssize_int (1)); } maxindex = copy_node (maxindex); } else { /* Make an error message unless that happened already. */ if (initial_value != error_mark_node) value = 1; else initial_value = NULL_TREE; /* Prevent further error messages. */ maxindex = build_int_2 (0, 0); } } if (!maxindex) { if (do_default) maxindex = build_int_2 (0, 0); value = 2; } if (maxindex) { tree itype; tree domain; domain = build_index_type (maxindex); TYPE_DOMAIN (type) = domain; if (! TREE_TYPE (maxindex)) TREE_TYPE (maxindex) = domain; if (initial_value) itype = TREE_TYPE (initial_value); else itype = NULL; if (itype && !TYPE_DOMAIN (itype)) TYPE_DOMAIN (itype) = domain; /* The type of the main variant should never be used for arrays of different sizes. It should only ever be completed with the size of the array. */ if (! TYPE_DOMAIN (TYPE_MAIN_VARIANT (type))) TYPE_DOMAIN (TYPE_MAIN_VARIANT (type)) = domain; } /* Lay out the type now that we can get the real answer. */ layout_type (type); return value; } /* Return zero if something is declared to be a member of type CTYPE when in the context of CUR_TYPE. STRING is the error message to print in that case. Otherwise, quietly return 1. */ static int member_function_or_else (ctype, cur_type, flags) tree ctype, cur_type; enum overload_flags flags; { if (ctype && ctype != cur_type) { if (flags == DTOR_FLAG) cp_error ("destructor for alien class `%T' cannot be a member", ctype); else cp_error ("constructor for alien class `%T' cannot be a member", ctype); return 0; } return 1; } /* Subroutine of `grokdeclarator'. */ /* Generate errors possibly applicable for a given set of specifiers. This is for ARM $7.1.2. */ static void bad_specifiers (object, type, virtualp, quals, inlinep, friendp, raises) tree object; const char *type; int virtualp, quals, friendp, raises, inlinep; { if (virtualp) cp_error ("`%D' declared as a `virtual' %s", object, type); if (inlinep) cp_error ("`%D' declared as an `inline' %s", object, type); if (quals) cp_error ("`const' and `volatile' function specifiers on `%D' invalid in %s declaration", object, type); if (friendp) cp_error_at ("`%D' declared as a friend", object); if (raises) cp_error_at ("`%D' declared with an exception specification", object); } /* CTYPE is class type, or null if non-class. TYPE is type this FUNCTION_DECL should have, either FUNCTION_TYPE or METHOD_TYPE. DECLARATOR is the function's name. VIRTUALP is truthvalue of whether the function is virtual or not. FLAGS are to be passed through to `grokclassfn'. QUALS are qualifiers indicating whether the function is `const' or `volatile'. RAISES is a list of exceptions that this function can raise. CHECK is 1 if we must find this method in CTYPE, 0 if we should not look, and -1 if we should not call `grokclassfn' at all. Returns `NULL_TREE' if something goes wrong, after issuing applicable error messages. */ static tree grokfndecl (ctype, type, declarator, orig_declarator, virtualp, flags, quals, raises, check, friendp, publicp, inlinep, funcdef_flag, template_count, in_namespace) tree ctype, type; tree declarator; tree orig_declarator; int virtualp; enum overload_flags flags; tree quals, raises; int check, friendp, publicp, inlinep, funcdef_flag, template_count; tree in_namespace; { tree cname, decl; int staticp = ctype && TREE_CODE (type) == FUNCTION_TYPE; int has_default_arg = 0; tree t; if (ctype) cname = TREE_CODE (TYPE_NAME (ctype)) == TYPE_DECL ? TYPE_IDENTIFIER (ctype) : TYPE_NAME (ctype); else cname = NULL_TREE; if (raises) { type = build_exception_variant (type, raises); } decl = build_lang_decl (FUNCTION_DECL, declarator, type); /* Propagate volatile out from type to decl. */ if (TYPE_VOLATILE (type)) TREE_THIS_VOLATILE (decl) = 1; /* If this decl has namespace scope, set that up. */ if (in_namespace) set_decl_namespace (decl, in_namespace, friendp); else if (!ctype) DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace); /* `main' and builtins have implicit 'C' linkage. */ if ((MAIN_NAME_P (declarator) || (IDENTIFIER_LENGTH (declarator) > 10 && IDENTIFIER_POINTER (declarator)[0] == '_' && IDENTIFIER_POINTER (declarator)[1] == '_' && strncmp (IDENTIFIER_POINTER (declarator)+2, "builtin_", 8) == 0)) && current_lang_name == lang_name_cplusplus && ctype == NULL_TREE /* NULL_TREE means global namespace. */ && DECL_CONTEXT (decl) == NULL_TREE) DECL_LANGUAGE (decl) = lang_c; /* Should probably propagate const out from type to decl I bet (mrs). */ if (staticp) { DECL_STATIC_FUNCTION_P (decl) = 1; DECL_CONTEXT (decl) = ctype; } if (ctype) DECL_CONTEXT (decl) = ctype; if (ctype == NULL_TREE && DECL_MAIN_P (decl)) { if (processing_template_decl) error ("cannot declare `::main' to be a template"); if (inlinep) error ("cannot declare `::main' to be inline"); if (!publicp) error ("cannot declare `::main' to be static"); if (!same_type_p (TREE_TYPE (TREE_TYPE (decl)), integer_type_node)) error ("`main' must return `int'"); inlinep = 0; publicp = 1; } /* Members of anonymous types and local classes have no linkage; make them internal. */ if (ctype && (ANON_AGGRNAME_P (TYPE_IDENTIFIER (ctype)) || decl_function_context (TYPE_MAIN_DECL (ctype)))) publicp = 0; if (publicp) { /* [basic.link]: A name with no linkage (notably, the name of a class or enumeration declared in a local scope) shall not be used to declare an entity with linkage. Only check this for public decls for now. */ t = no_linkage_check (TREE_TYPE (decl)); if (t) { if (ANON_AGGRNAME_P (TYPE_IDENTIFIER (t))) { if (DECL_EXTERN_C_P (decl)) /* Allow this; it's pretty common in C. */; else cp_pedwarn ("non-local function `%#D' uses anonymous type", decl); } else cp_pedwarn ("non-local function `%#D' uses local type `%T'", decl, t); } } TREE_PUBLIC (decl) = publicp; if (! publicp) { DECL_INTERFACE_KNOWN (decl) = 1; DECL_NOT_REALLY_EXTERN (decl) = 1; } if (inlinep) DECL_THIS_INLINE (decl) = DECL_INLINE (decl) = 1; DECL_EXTERNAL (decl) = 1; if (quals != NULL_TREE && TREE_CODE (type) == FUNCTION_TYPE) { cp_error ("%smember function `%D' cannot have `%T' method qualifier", (ctype ? "static " : "non-"), decl, TREE_VALUE (quals)); quals = NULL_TREE; } if (IDENTIFIER_OPNAME_P (DECL_NAME (decl))) grok_op_properties (decl, virtualp, check < 0); if (ctype && decl_function_context (decl)) DECL_NO_STATIC_CHAIN (decl) = 1; for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t)) if (TREE_PURPOSE (t) && TREE_CODE (TREE_PURPOSE (t)) == DEFAULT_ARG) { has_default_arg = 1; break; } if (friendp && TREE_CODE (orig_declarator) == TEMPLATE_ID_EXPR) { if (funcdef_flag) cp_error ("defining explicit specialization `%D' in friend declaration", orig_declarator); else { tree fns = TREE_OPERAND (orig_declarator, 0); tree args = TREE_OPERAND (orig_declarator, 1); if (PROCESSING_REAL_TEMPLATE_DECL_P ()) { /* Something like `template friend void f()'. */ cp_error ("invalid use of template-id `%D' in declaration of primary template", orig_declarator); return NULL_TREE; } /* A friend declaration of the form friend void f<>(). Record the information in the TEMPLATE_ID_EXPR. */ SET_DECL_IMPLICIT_INSTANTIATION (decl); if (TREE_CODE (fns) == COMPONENT_REF) { /* Due to bison parser ickiness, we will have already looked up an operator_name or PFUNCNAME within the current class (see template_id in parse.y). If the current class contains such a name, we'll get a COMPONENT_REF here. Undo that. */ my_friendly_assert (TREE_TYPE (TREE_OPERAND (fns, 0)) == current_class_type, 20001120); fns = TREE_OPERAND (fns, 1); } my_friendly_assert (TREE_CODE (fns) == IDENTIFIER_NODE || TREE_CODE (fns) == LOOKUP_EXPR || TREE_CODE (fns) == OVERLOAD, 20001120); DECL_TEMPLATE_INFO (decl) = tree_cons (fns, args, NULL_TREE); if (has_default_arg) { cp_error ("default arguments are not allowed in declaration of friend template specialization `%D'", decl); return NULL_TREE; } if (inlinep) { cp_error ("`inline' is not allowed in declaration of friend template specialization `%D'", decl); return NULL_TREE; } } } if (has_default_arg) add_defarg_fn (decl); /* Plain overloading: will not be grok'd by grokclassfn. */ if (! ctype && ! processing_template_decl && !DECL_EXTERN_C_P (decl) && (! DECL_USE_TEMPLATE (decl) || name_mangling_version < 1)) set_mangled_name_for_decl (decl); if (funcdef_flag) /* Make the init_value nonzero so pushdecl knows this is not tentative. error_mark_node is replaced later with the BLOCK. */ DECL_INITIAL (decl) = error_mark_node; if (TYPE_NOTHROW_P (type) || nothrow_libfn_p (decl)) TREE_NOTHROW (decl) = 1; /* Caller will do the rest of this. */ if (check < 0) return decl; if (flags == NO_SPECIAL && ctype && constructor_name (cname) == declarator) DECL_CONSTRUCTOR_P (decl) = 1; /* Function gets the ugly name, field gets the nice one. This call may change the type of the function (because of default parameters)! */ if (ctype != NULL_TREE) grokclassfn (ctype, decl, flags, quals); decl = check_explicit_specialization (orig_declarator, decl, template_count, 2 * (funcdef_flag != 0) + 4 * (friendp != 0)); if (decl == error_mark_node) return NULL_TREE; if (ctype != NULL_TREE && (! TYPE_FOR_JAVA (ctype) || check_java_method (decl)) && check) { tree old_decl; old_decl = check_classfn (ctype, decl); if (old_decl && TREE_CODE (old_decl) == TEMPLATE_DECL) /* Because grokfndecl is always supposed to return a FUNCTION_DECL, we pull out the DECL_TEMPLATE_RESULT here. We depend on our callers to figure out that its really a template that's being returned. */ old_decl = DECL_TEMPLATE_RESULT (old_decl); if (old_decl && DECL_STATIC_FUNCTION_P (old_decl) && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE) { /* Remove the `this' parm added by grokclassfn. XXX Isn't this done in start_function, too? */ revert_static_member_fn (decl); last_function_parms = TREE_CHAIN (last_function_parms); } if (old_decl && DECL_ARTIFICIAL (old_decl)) cp_error ("definition of implicitly-declared `%D'", old_decl); if (old_decl) { /* Since we've smashed OLD_DECL to its DECL_TEMPLATE_RESULT, we must do the same to DECL. */ if (TREE_CODE (decl) == TEMPLATE_DECL) decl = DECL_TEMPLATE_RESULT (decl); /* Attempt to merge the declarations. This can fail, in the case of some illegal specialization declarations. */ if (!duplicate_decls (decl, old_decl)) cp_error ("no `%#D' member function declared in class `%T'", decl, ctype); return old_decl; } } if (DECL_CONSTRUCTOR_P (decl) && !grok_ctor_properties (ctype, decl)) return NULL_TREE; if (ctype == NULL_TREE || check) return decl; if (virtualp) DECL_VIRTUAL_P (decl) = 1; return decl; } static tree grokvardecl (type, declarator, specbits_in, initialized, constp, in_namespace) tree type; tree declarator; RID_BIT_TYPE *specbits_in; int initialized; int constp; tree in_namespace; { tree decl; RID_BIT_TYPE specbits; specbits = *specbits_in; if (TREE_CODE (type) == OFFSET_TYPE) { /* If you declare a static member so that it can be initialized, the code will reach here. */ tree basetype = TYPE_OFFSET_BASETYPE (type); type = TREE_TYPE (type); decl = build_lang_decl (VAR_DECL, declarator, type); DECL_CONTEXT (decl) = basetype; /* DECL_ASSEMBLER_NAME is needed only for full-instantiated templates. */ if (!uses_template_parms (decl)) { if (flag_new_abi) DECL_ASSEMBLER_NAME (decl) = mangle_decl (decl); else DECL_ASSEMBLER_NAME (decl) = build_static_name (basetype, declarator); } } else { tree context; if (in_namespace) context = in_namespace; else if (namespace_bindings_p () || RIDBIT_SETP (RID_EXTERN, specbits)) context = current_namespace; else context = NULL_TREE; if (processing_template_decl && context) /* For global variables, declared in a template, we need the full lang_decl. */ decl = build_lang_decl (VAR_DECL, declarator, type); else decl = build_decl (VAR_DECL, declarator, type); if (context) set_decl_namespace (decl, context, 0); context = DECL_CONTEXT (decl); if (declarator && context && current_lang_name != lang_name_c) { if (flag_new_abi) DECL_ASSEMBLER_NAME (decl) = mangle_decl (decl); else DECL_ASSEMBLER_NAME (decl) = build_static_name (context, declarator); } } if (in_namespace) set_decl_namespace (decl, in_namespace, 0); if (RIDBIT_SETP (RID_EXTERN, specbits)) { DECL_THIS_EXTERN (decl) = 1; DECL_EXTERNAL (decl) = !initialized; } /* In class context, static means one per class, public access, and static storage. */ if (DECL_CLASS_SCOPE_P (decl)) { TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; DECL_EXTERNAL (decl) = 0; } /* At top level, either `static' or no s.c. makes a definition (perhaps tentative), and absence of `static' makes it public. */ else if (toplevel_bindings_p ()) { TREE_PUBLIC (decl) = (RIDBIT_NOTSETP (RID_STATIC, specbits) && (DECL_THIS_EXTERN (decl) || ! constp)); TREE_STATIC (decl) = ! DECL_EXTERNAL (decl); } /* Not at top level, only `static' makes a static definition. */ else { TREE_STATIC (decl) = !! RIDBIT_SETP (RID_STATIC, specbits); TREE_PUBLIC (decl) = DECL_EXTERNAL (decl); } if (TREE_PUBLIC (decl)) { /* [basic.link]: A name with no linkage (notably, the name of a class or enumeration declared in a local scope) shall not be used to declare an entity with linkage. Only check this for public decls for now. */ tree t = no_linkage_check (TREE_TYPE (decl)); if (t) { if (ANON_AGGRNAME_P (TYPE_IDENTIFIER (t))) /* Ignore for now; `enum { foo } e' is pretty common. */; else cp_pedwarn ("non-local variable `%#D' uses local type `%T'", decl, t); } } return decl; } /* Create and return a canonical pointer to member function type, for TYPE, which is a POINTER_TYPE to a METHOD_TYPE. */ tree build_ptrmemfunc_type (type) tree type; { tree fields[4]; tree t; tree u; tree unqualified_variant = NULL_TREE; if (type == error_mark_node) return type; /* If a canonical type already exists for this type, use it. We use this method instead of type_hash_canon, because it only does a simple equality check on the list of field members. */ if ((t = TYPE_GET_PTRMEMFUNC_TYPE (type))) return t; /* Make sure that we always have the unqualified pointer-to-member type first. */ if (CP_TYPE_QUALS (type) != TYPE_UNQUALIFIED) unqualified_variant = build_ptrmemfunc_type (TYPE_MAIN_VARIANT (type)); t = make_aggr_type (RECORD_TYPE); /* Let the front-end know this is a pointer to member function... */ TYPE_PTRMEMFUNC_FLAG (t) = 1; /* ... and not really an aggregate. */ SET_IS_AGGR_TYPE (t, 0); if (!flag_new_abi) { u = make_aggr_type (UNION_TYPE); SET_IS_AGGR_TYPE (u, 0); fields[0] = build_decl (FIELD_DECL, pfn_identifier, type); fields[1] = build_decl (FIELD_DECL, delta2_identifier, delta_type_node); finish_builtin_type (u, "__ptrmemfunc_type", fields, 1, ptr_type_node); TYPE_NAME (u) = NULL_TREE; fields[0] = build_decl (FIELD_DECL, delta_identifier, delta_type_node); fields[1] = build_decl (FIELD_DECL, index_identifier, delta_type_node); fields[2] = build_decl (FIELD_DECL, pfn_or_delta2_identifier, u); finish_builtin_type (t, "__ptrmemfunc_type", fields, 2, ptr_type_node); } else { fields[0] = build_decl (FIELD_DECL, pfn_identifier, type); fields[1] = build_decl (FIELD_DECL, delta_identifier, delta_type_node); finish_builtin_type (t, "__ptrmemfunc_type", fields, 1, ptr_type_node); } /* Zap out the name so that the back-end will give us the debugging information for this anonymous RECORD_TYPE. */ TYPE_NAME (t) = NULL_TREE; /* If this is not the unqualified form of this pointer-to-member type, set the TYPE_MAIN_VARIANT for this type to be the unqualified type. Since they are actually RECORD_TYPEs that are not variants of each other, we must do this manually. */ if (CP_TYPE_QUALS (type) != TYPE_UNQUALIFIED) { t = build_qualified_type (t, CP_TYPE_QUALS (type)); TYPE_MAIN_VARIANT (t) = unqualified_variant; TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (unqualified_variant); TYPE_NEXT_VARIANT (unqualified_variant) = t; } /* Cache this pointer-to-member type so that we can find it again later. */ TYPE_SET_PTRMEMFUNC_TYPE (type, t); /* Seems to be wanted. */ CLASSTYPE_GOT_SEMICOLON (t) = 1; return t; } /* DECL is a VAR_DECL defined in-class, whose TYPE is also given. Check to see that the definition is valid. Issue appropriate error messages. Return 1 if the definition is particularly bad, or 0 otherwise. */ int check_static_variable_definition (decl, type) tree decl; tree type; { /* Motion 10 at San Diego: If a static const integral data member is initialized with an integral constant expression, the initializer may appear either in the declaration (within the class), or in the definition, but not both. If it appears in the class, the member is a member constant. The file-scope definition is always required. */ if (CLASS_TYPE_P (type) || TREE_CODE (type) == REFERENCE_TYPE) { cp_error ("invalid in-class initialization of static data member of non-integral type `%T'", type); /* If we just return the declaration, crashes will sometimes occur. We therefore return void_type_node, as if this was a friend declaration, to cause callers to completely ignore this declaration. */ return 1; } else if (!CP_TYPE_CONST_P (type)) cp_error ("ISO C++ forbids in-class initialization of non-const static member `%D'", decl); else if (pedantic && !INTEGRAL_TYPE_P (type)) cp_pedwarn ("ISO C++ forbids initialization of member constant `%D' of non-integral type `%T'", decl, type); return 0; } /* Given the SIZE (i.e., number of elements) in an array, compute an appropriate index type for the array. If non-NULL, NAME is the name of the thing being declared. */ tree compute_array_index_type (name, size) tree name; tree size; { tree itype; /* The size might be the result of a cast. */ STRIP_TYPE_NOPS (size); /* It might be a const variable or enumeration constant. */ size = decl_constant_value (size); /* If this involves a template parameter, it will be a constant at instantiation time, but we don't know what the value is yet. Even if no template parameters are involved, we may an expression that is not a constant; we don't even simplify `1 + 2' when processing a template. */ if (processing_template_decl) { /* Resolve a qualified reference to an enumerator or static const data member of ours. */ if (TREE_CODE (size) == SCOPE_REF && TREE_OPERAND (size, 0) == current_class_type) { tree t = lookup_field (current_class_type, TREE_OPERAND (size, 1), 0, 0); if (t) size = t; } return build_index_type (build_min (MINUS_EXPR, sizetype, size, integer_one_node)); } /* The array bound must be an integer type. */ if (TREE_CODE (TREE_TYPE (size)) != INTEGER_TYPE && TREE_CODE (TREE_TYPE (size)) != ENUMERAL_TYPE && TREE_CODE (TREE_TYPE (size)) != BOOLEAN_TYPE) { if (name) cp_error ("size of array `%D' has non-integer type", name); else cp_error ("size of array has non-integer type"); size = integer_one_node; } /* Normally, the array-bound will be a constant. */ if (TREE_CODE (size) == INTEGER_CST) { /* Check to see if the array bound overflowed. Make that an error, no matter how generous we're being. */ int old_flag_pedantic_errors = flag_pedantic_errors; int old_pedantic = pedantic; pedantic = flag_pedantic_errors = 1; constant_expression_warning (size); pedantic = old_pedantic; flag_pedantic_errors = old_flag_pedantic_errors; /* An array must have a positive number of elements. */ if (INT_CST_LT (size, integer_zero_node)) { if (name) cp_error ("size of array `%D' is negative", name); else cp_error ("size of array is negative"); size = integer_one_node; } /* Except that an extension we allow zero-sized arrays. We always allow them in system headers because glibc uses them. */ else if (integer_zerop (size) && pedantic && !in_system_header) { if (name) cp_pedwarn ("ISO C++ forbids zero-size array `%D'", name); else cp_pedwarn ("ISO C++ forbids zero-size array"); } } else if (TREE_CONSTANT (size)) { /* `(int) &fn' is not a valid array bound. */ if (name) cp_error ("size of array `%D' is not an integral constant-expression", name); else cp_error ("size of array is not an integral constant-expression"); } /* Compute the index of the largest element in the array. It is one less than the number of elements in the array. */ itype = fold (cp_build_binary_op (MINUS_EXPR, cp_convert (ssizetype, size), cp_convert (ssizetype, integer_one_node))); /* Check for variable-sized arrays. We allow such things as an extension, even though they are not allowed in ANSI/ISO C++. */ if (!TREE_CONSTANT (itype)) { if (pedantic) { if (name) cp_pedwarn ("ISO C++ forbids variable-size array `%D'", name); else cp_pedwarn ("ISO C++ forbids variable-size array"); } /* Create a variable-sized array index type. */ itype = variable_size (itype); } /* Make sure that there was no overflow when creating to a signed index type. (For example, on a 32-bit machine, an array with size 2^32 - 1 is too big.) */ else if (TREE_OVERFLOW (itype)) { error ("overflow in array dimension"); TREE_OVERFLOW (itype) = 0; } /* Create and return the appropriate index type. */ return build_index_type (itype); } /* Returns an ARRAY_TYPE for an array with SIZE elements of the indicated TYPE. If non-NULL, NAME is the NAME of the declaration with this type. */ static tree create_array_type_for_decl (name, type, size) tree name; tree type; tree size; { tree itype = NULL_TREE; const char* error_msg; /* If things have already gone awry, bail now. */ if (type == error_mark_node || size == error_mark_node) return error_mark_node; /* Assume that everything will go OK. */ error_msg = NULL; /* There are some types which cannot be array elements. */ switch (TREE_CODE (type)) { case VOID_TYPE: error_msg = "array of void"; break; case FUNCTION_TYPE: error_msg = "array of functions"; break; case REFERENCE_TYPE: error_msg = "array of references"; break; case OFFSET_TYPE: error_msg = "array of data members"; break; case METHOD_TYPE: error_msg = "array of function members"; break; default: break; } /* If something went wrong, issue an error-message and return. */ if (error_msg) { if (name) cp_error ("declaration of `%D' as %s", name, error_msg); else cp_error ("creating %s", error_msg); return error_mark_node; } /* [dcl.array] The constant expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence. */ if (TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type)) { cp_error ("declaration of `%D' as multidimensional array must have bounds for all dimensions except the first", name); return error_mark_node; } /* Figure out the index type for the array. */ if (size) itype = compute_array_index_type (name, size); return build_cplus_array_type (type, itype); } /* Check that it's OK to declare a function with the indicated TYPE. SFK indicates the kind of special function (if any) that this function is. CTYPE is the class of which this function is a member. OPTYPE is the type given in a conversion operator declaration. Returns the actual return type of the function; that may be different than TYPE if an error occurs, or for certain special functions. */ static tree check_special_function_return_type (sfk, type, ctype, optype) special_function_kind sfk; tree type; tree ctype; tree optype; { switch (sfk) { case sfk_constructor: if (type) cp_error ("return type specification for constructor invalid"); /* In the old ABI, we return `this'; in the new ABI we don't bother. */ type = flag_new_abi ? void_type_node : build_pointer_type (ctype); break; case sfk_destructor: if (type) cp_error ("return type specification for destructor invalid"); type = void_type_node; break; case sfk_conversion: if (type && !same_type_p (type, optype)) cp_error ("operator `%T' declared to return `%T'", optype, type); else if (type) cp_pedwarn ("return type specified for `operator %T'", optype); type = optype; break; default: my_friendly_abort (20000408); break; } return type; } /* Given declspecs and a declarator, determine the name and type of the object declared and construct a ..._DECL node for it. (In one case we can return a ..._TYPE node instead. For invalid input we sometimes return 0.) DECLSPECS is a chain of tree_list nodes whose value fields are the storage classes and type specifiers. DECL_CONTEXT says which syntactic context this declaration is in: NORMAL for most contexts. Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL. FUNCDEF for a function definition. Like NORMAL but a few different error messages in each case. Return value may be zero meaning this definition is too screwy to try to parse. MEMFUNCDEF for a function definition. Like FUNCDEF but prepares to handle member functions (which have FIELD context). Return value may be zero meaning this definition is too screwy to try to parse. PARM for a parameter declaration (either within a function prototype or before a function body). Make a PARM_DECL, or return void_type_node. CATCHPARM for a parameter declaration before a catch clause. TYPENAME if for a typename (in a cast or sizeof). Don't make a DECL node; just return the ..._TYPE node. FIELD for a struct or union field; make a FIELD_DECL. BITFIELD for a field with specified width. INITIALIZED is 1 if the decl has an initializer. ATTRLIST is a TREE_LIST node with prefix attributes in TREE_VALUE and normal attributes in TREE_PURPOSE, or NULL_TREE. In the TYPENAME case, DECLARATOR is really an abstract declarator. It may also be so in the PARM case, for a prototype where the argument type is specified but not the name. This function is where the complicated C meanings of `static' and `extern' are interpreted. For C++, if there is any monkey business to do, the function which calls this one must do it, i.e., prepending instance variables, renaming overloaded function names, etc. Note that for this C++, it is an error to define a method within a class which does not belong to that class. Except in the case where SCOPE_REFs are implicitly known (such as methods within a class being redundantly qualified), declarations which involve SCOPE_REFs are returned as SCOPE_REFs (class_name::decl_name). The caller must also deal with this. If a constructor or destructor is seen, and the context is FIELD, then the type gains the attribute TREE_HAS_x. If such a declaration is erroneous, NULL_TREE is returned. QUALS is used only for FUNCDEF and MEMFUNCDEF cases. For a member function, these are the qualifiers to give to the `this' pointer. We apply TYPE_QUAL_RESTRICT to the this ptr, not the object. May return void_type_node if the declarator turned out to be a friend. See grokfield for details. */ tree grokdeclarator (declarator, declspecs, decl_context, initialized, attrlist) tree declspecs; tree declarator; enum decl_context decl_context; int initialized; tree attrlist; { RID_BIT_TYPE specbits; int nclasses = 0; tree spec; tree type = NULL_TREE; int longlong = 0; int constp; int restrictp; int volatilep; int type_quals; int virtualp, explicitp, friendp, inlinep, staticp; int explicit_int = 0; int explicit_char = 0; int defaulted_int = 0; tree typedef_decl = NULL_TREE; const char *name; tree typedef_type = NULL_TREE; int funcdef_flag = 0; enum tree_code innermost_code = ERROR_MARK; int bitfield = 0; #if 0 /* See the code below that used this. */ tree decl_machine_attr = NULL_TREE; #endif /* Set this to error_mark_node for FIELD_DECLs we could not handle properly. All FIELD_DECLs we build here have `init' put into their DECL_INITIAL. */ tree init = NULL_TREE; /* Keep track of what sort of function is being processed so that we can warn about default return values, or explicit return values which do not match prescribed defaults. */ special_function_kind sfk = sfk_none; tree dname = NULL_TREE; tree ctype = current_class_type; tree ctor_return_type = NULL_TREE; enum overload_flags flags = NO_SPECIAL; tree quals = NULL_TREE; tree raises = NULL_TREE; int template_count = 0; tree in_namespace = NULL_TREE; tree inner_attrs; int ignore_attrs; RIDBIT_RESET_ALL (specbits); if (decl_context == FUNCDEF) funcdef_flag = 1, decl_context = NORMAL; else if (decl_context == MEMFUNCDEF) funcdef_flag = -1, decl_context = FIELD; else if (decl_context == BITFIELD) bitfield = 1, decl_context = FIELD; /* Look inside a declarator for the name being declared and get it as a string, for an error message. */ { tree *next = &declarator; register tree decl; name = NULL; while (next && *next) { decl = *next; switch (TREE_CODE (decl)) { case TREE_LIST: /* For attributes. */ next = &TREE_VALUE (decl); break; case COND_EXPR: ctype = NULL_TREE; next = &TREE_OPERAND (decl, 0); break; case BIT_NOT_EXPR: /* For C++ destructors! */ { tree name = TREE_OPERAND (decl, 0); tree rename = NULL_TREE; my_friendly_assert (flags == NO_SPECIAL, 152); flags = DTOR_FLAG; sfk = sfk_destructor; if (TREE_CODE (name) == TYPE_DECL) TREE_OPERAND (decl, 0) = name = constructor_name (name); my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 153); if (ctype == NULL_TREE) { if (current_class_type == NULL_TREE) { error ("destructors must be member functions"); flags = NO_SPECIAL; } else { tree t = constructor_name (current_class_name); if (t != name) rename = t; } } else { tree t = constructor_name (ctype); if (t != name) rename = t; } if (rename) { cp_error ("destructor `%T' must match class name `%T'", name, rename); TREE_OPERAND (decl, 0) = rename; } next = &name; } break; case ADDR_EXPR: /* C++ reference declaration */ /* Fall through. */ case ARRAY_REF: case INDIRECT_REF: ctype = NULL_TREE; innermost_code = TREE_CODE (decl); next = &TREE_OPERAND (decl, 0); break; case CALL_EXPR: if (parmlist_is_exprlist (CALL_DECLARATOR_PARMS (decl))) { /* This is actually a variable declaration using constructor syntax. We need to call start_decl and cp_finish_decl so we can get the variable initialized... */ tree attributes, prefix_attributes; *next = TREE_OPERAND (decl, 0); init = CALL_DECLARATOR_PARMS (decl); if (attrlist) { attributes = TREE_PURPOSE (attrlist); prefix_attributes = TREE_VALUE (attrlist); } else { attributes = NULL_TREE; prefix_attributes = NULL_TREE; } decl = start_decl (declarator, declspecs, 1, attributes, prefix_attributes); decl_type_access_control (decl); if (decl) { /* Look for __unused__ attribute */ if (TREE_USED (TREE_TYPE (decl))) TREE_USED (decl) = 1; finish_decl (decl, init, NULL_TREE); } else cp_error ("invalid declarator"); return 0; } innermost_code = TREE_CODE (decl); if (decl_context == FIELD && ctype == NULL_TREE) ctype = current_class_type; if (ctype && TREE_OPERAND (decl, 0) && (TREE_CODE (TREE_OPERAND (decl, 0)) == TYPE_DECL && ((DECL_NAME (TREE_OPERAND (decl, 0)) == constructor_name_full (ctype)) || (DECL_NAME (TREE_OPERAND (decl, 0)) == constructor_name (ctype))))) TREE_OPERAND (decl, 0) = constructor_name (ctype); next = &TREE_OPERAND (decl, 0); decl = *next; if (ctype != NULL_TREE && decl != NULL_TREE && flags != DTOR_FLAG && decl == constructor_name (ctype)) { sfk = sfk_constructor; ctor_return_type = ctype; } ctype = NULL_TREE; break; case TEMPLATE_ID_EXPR: { tree fns = TREE_OPERAND (decl, 0); if (TREE_CODE (fns) == LOOKUP_EXPR) fns = TREE_OPERAND (fns, 0); dname = fns; if (TREE_CODE (dname) == COMPONENT_REF) dname = TREE_OPERAND (dname, 1); if (TREE_CODE (dname) != IDENTIFIER_NODE) { my_friendly_assert (is_overloaded_fn (dname), 19990331); dname = DECL_NAME (get_first_fn (dname)); } } /* Fall through. */ case IDENTIFIER_NODE: if (TREE_CODE (decl) == IDENTIFIER_NODE) dname = decl; next = 0; if (C_IS_RESERVED_WORD (dname)) { cp_error ("declarator-id missing; using reserved word `%D'", dname); name = IDENTIFIER_POINTER (dname); } else if (!IDENTIFIER_TYPENAME_P (dname)) name = IDENTIFIER_POINTER (dname); else { my_friendly_assert (flags == NO_SPECIAL, 154); flags = TYPENAME_FLAG; ctor_return_type = TREE_TYPE (dname); sfk = sfk_conversion; if (IDENTIFIER_GLOBAL_VALUE (dname) && (TREE_CODE (IDENTIFIER_GLOBAL_VALUE (dname)) == TYPE_DECL)) name = IDENTIFIER_POINTER (dname); else name = ""; } break; /* C++ extension */ case SCOPE_REF: { /* Perform error checking, and decide on a ctype. */ tree cname = TREE_OPERAND (decl, 0); if (cname == NULL_TREE) ctype = NULL_TREE; else if (TREE_CODE (cname) == NAMESPACE_DECL) { ctype = NULL_TREE; in_namespace = TREE_OPERAND (decl, 0); TREE_OPERAND (decl, 0) = NULL_TREE; } else if (! is_aggr_type (cname, 1)) TREE_OPERAND (decl, 0) = NULL_TREE; /* Must test TREE_OPERAND (decl, 1), in case user gives us `typedef (class::memfunc)(int); memfunc *memfuncptr;' */ else if (TREE_OPERAND (decl, 1) && TREE_CODE (TREE_OPERAND (decl, 1)) == INDIRECT_REF) ctype = cname; else if (TREE_CODE (cname) == TEMPLATE_TYPE_PARM || TREE_CODE (cname) == BOUND_TEMPLATE_TEMPLATE_PARM) { cp_error ("`%T::%D' is not a valid declarator", cname, TREE_OPERAND (decl, 1)); cp_error (" perhaps you want `typename %T::%D' to make it a type", cname, TREE_OPERAND (decl, 1)); return void_type_node; } else if (ctype == NULL_TREE) ctype = cname; else if (TREE_COMPLEXITY (decl) == current_class_depth) TREE_OPERAND (decl, 0) = ctype; else { if (! UNIQUELY_DERIVED_FROM_P (cname, ctype)) { cp_error ("type `%T' is not derived from type `%T'", cname, ctype); TREE_OPERAND (decl, 0) = NULL_TREE; } else ctype = cname; } if (ctype && TREE_CODE (TREE_OPERAND (decl, 1)) == TYPE_DECL && ((DECL_NAME (TREE_OPERAND (decl, 1)) == constructor_name_full (ctype)) || (DECL_NAME (TREE_OPERAND (decl, 1)) == constructor_name (ctype)))) TREE_OPERAND (decl, 1) = constructor_name (ctype); next = &TREE_OPERAND (decl, 1); decl = *next; if (ctype) { if (TREE_CODE (decl) == IDENTIFIER_NODE && constructor_name (ctype) == decl) { sfk = sfk_constructor; ctor_return_type = ctype; } else if (TREE_CODE (decl) == BIT_NOT_EXPR && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE && (constructor_name (ctype) == TREE_OPERAND (decl, 0) || constructor_name_full (ctype) == TREE_OPERAND (decl, 0))) { sfk = sfk_destructor; ctor_return_type = ctype; flags = DTOR_FLAG; TREE_OPERAND (decl, 0) = constructor_name (ctype); next = &TREE_OPERAND (decl, 0); } } } break; case ERROR_MARK: next = 0; break; case TYPE_DECL: /* Parse error puts this typespec where a declarator should go. */ cp_error ("`%T' specified as declarator-id", DECL_NAME (decl)); if (TREE_TYPE (decl) == current_class_type) cp_error (" perhaps you want `%T' for a constructor", current_class_name); dname = DECL_NAME (decl); name = IDENTIFIER_POINTER (dname); /* Avoid giving two errors for this. */ IDENTIFIER_CLASS_VALUE (dname) = NULL_TREE; declspecs = tree_cons (NULL_TREE, integer_type_node, declspecs); *next = dname; next = 0; break; default: cp_compiler_error ("`%D' as declarator", decl); return 0; /* We used to do a 155 abort here. */ } } } /* A function definition's declarator must have the form of a function declarator. */ if (funcdef_flag && innermost_code != CALL_EXPR) return 0; if (((dname && IDENTIFIER_OPNAME_P (dname)) || flags == TYPENAME_FLAG) && innermost_code != CALL_EXPR && ! (ctype && declspecs == NULL_TREE)) { cp_error ("declaration of `%D' as non-function", dname); return void_type_node; } /* Anything declared one level down from the top level must be one of the parameters of a function (because the body is at least two levels down). */ /* This heuristic cannot be applied to C++ nodes! Fixed, however, by not allowing C++ class definitions to specify their parameters with xdecls (must be spec.d in the parmlist). Since we now wait to push a class scope until we are sure that we are in a legitimate method context, we must set oldcname explicitly (since current_class_name is not yet alive). We also want to avoid calling this a PARM if it is in a namespace. */ if (decl_context == NORMAL && !toplevel_bindings_p ()) { struct binding_level *b = current_binding_level; current_binding_level = b->level_chain; if (current_binding_level != 0 && toplevel_bindings_p ()) decl_context = PARM; current_binding_level = b; } if (name == NULL) name = decl_context == PARM ? "parameter" : "type name"; /* Look through the decl specs and record which ones appear. Some typespecs are defined as built-in typenames. Others, the ones that are modifiers of other types, are represented by bits in SPECBITS: set the bits for the modifiers that appear. Storage class keywords are also in SPECBITS. If there is a typedef name or a type, store the type in TYPE. This includes builtin typedefs such as `int'. Set EXPLICIT_INT if the type is `int' or `char' and did not come from a user typedef. Set LONGLONG if `long' is mentioned twice. For C++, constructors and destructors have their own fast treatment. */ for (spec = declspecs; spec; spec = TREE_CHAIN (spec)) { register int i; register tree id; /* Certain parse errors slip through. For example, `int class;' is not caught by the parser. Try weakly to recover here. */ if (TREE_CODE (spec) != TREE_LIST) return 0; id = TREE_VALUE (spec); if (TREE_CODE (id) == IDENTIFIER_NODE) { if (id == ridpointers[(int) RID_INT] || id == ridpointers[(int) RID_CHAR] || id == ridpointers[(int) RID_BOOL] || id == ridpointers[(int) RID_WCHAR]) { if (type) { if (id == ridpointers[(int) RID_BOOL]) error ("`bool' is now a keyword"); else cp_error ("extraneous `%T' ignored", id); } else { if (id == ridpointers[(int) RID_INT]) explicit_int = 1; else if (id == ridpointers[(int) RID_CHAR]) explicit_char = 1; type = TREE_TYPE (IDENTIFIER_GLOBAL_VALUE (id)); } goto found; } /* C++ aggregate types. */ if (IDENTIFIER_HAS_TYPE_VALUE (id)) { if (type) cp_error ("multiple declarations `%T' and `%T'", type, id); else type = IDENTIFIER_TYPE_VALUE (id); goto found; } for (i = (int) RID_FIRST_MODIFIER; i <= (int) RID_LAST_MODIFIER; i++) { if (ridpointers[i] == id) { if (i == (int) RID_LONG && RIDBIT_SETP (i, specbits)) { if (pedantic && ! in_system_header && warn_long_long) pedwarn ("ISO C++ does not support `long long'"); if (longlong) error ("`long long long' is too long for GCC"); else longlong = 1; } else if (RIDBIT_SETP (i, specbits)) pedwarn ("duplicate `%s'", IDENTIFIER_POINTER (id)); RIDBIT_SET (i, specbits); goto found; } } } /* C++ aggregate types. */ else if (TREE_CODE (id) == TYPE_DECL) { if (type) cp_error ("multiple declarations `%T' and `%T'", type, TREE_TYPE (id)); else { type = TREE_TYPE (id); TREE_VALUE (spec) = type; } goto found; } if (type) error ("two or more data types in declaration of `%s'", name); else if (TREE_CODE (id) == IDENTIFIER_NODE) { register tree t = lookup_name (id, 1); if (!t || TREE_CODE (t) != TYPE_DECL) error ("`%s' fails to be a typedef or built in type", IDENTIFIER_POINTER (id)); else { type = TREE_TYPE (t); #if 0 /* See the code below that used this. */ decl_machine_attr = DECL_MACHINE_ATTRIBUTES (id); #endif typedef_decl = t; } } else if (id != error_mark_node) /* Can't change CLASS nodes into RECORD nodes here! */ type = id; found: ; } typedef_type = type; /* No type at all: default to `int', and set DEFAULTED_INT because it was not a user-defined typedef. */ if (type == NULL_TREE && (RIDBIT_SETP (RID_SIGNED, specbits) || RIDBIT_SETP (RID_UNSIGNED, specbits) || RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits))) { /* These imply 'int'. */ type = integer_type_node; defaulted_int = 1; } if (sfk != sfk_none) type = check_special_function_return_type (sfk, type, ctor_return_type, ctor_return_type); else if (type == NULL_TREE) { int is_main; explicit_int = -1; /* We handle `main' specially here, because 'main () { }' is so common. With no options, it is allowed. With -Wreturn-type, it is a warning. It is only an error with -pedantic-errors. */ is_main = (funcdef_flag && MAIN_NAME_P (dname) && ctype == NULL_TREE && in_namespace == NULL_TREE && current_namespace == global_namespace); if (in_system_header || flag_ms_extensions) /* Allow it, sigh. */; else if (pedantic || ! is_main) cp_pedwarn ("ISO C++ forbids declaration of `%s' with no type", name); else if (warn_return_type) cp_warning ("ISO C++ forbids declaration of `%s' with no type", name); type = integer_type_node; } ctype = NULL_TREE; /* Now process the modifiers that were specified and check for invalid combinations. */ /* Long double is a special combination. */ if (RIDBIT_SETP (RID_LONG, specbits) && TYPE_MAIN_VARIANT (type) == double_type_node) { RIDBIT_RESET (RID_LONG, specbits); type = build_qualified_type (long_double_type_node, CP_TYPE_QUALS (type)); } /* Check all other uses of type modifiers. */ if (RIDBIT_SETP (RID_UNSIGNED, specbits) || RIDBIT_SETP (RID_SIGNED, specbits) || RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits)) { int ok = 0; if (TREE_CODE (type) == REAL_TYPE) error ("short, signed or unsigned invalid for `%s'", name); else if (TREE_CODE (type) != INTEGER_TYPE) error ("long, short, signed or unsigned invalid for `%s'", name); else if (RIDBIT_SETP (RID_LONG, specbits) && RIDBIT_SETP (RID_SHORT, specbits)) error ("long and short specified together for `%s'", name); else if ((RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits)) && explicit_char) error ("long or short specified with char for `%s'", name); else if ((RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits)) && TREE_CODE (type) == REAL_TYPE) error ("long or short specified with floating type for `%s'", name); else if (RIDBIT_SETP (RID_SIGNED, specbits) && RIDBIT_SETP (RID_UNSIGNED, specbits)) error ("signed and unsigned given together for `%s'", name); else { ok = 1; if (!explicit_int && !defaulted_int && !explicit_char && pedantic) { pedwarn ("long, short, signed or unsigned used invalidly for `%s'", name); if (flag_pedantic_errors) ok = 0; } } /* Discard the type modifiers if they are invalid. */ if (! ok) { RIDBIT_RESET (RID_UNSIGNED, specbits); RIDBIT_RESET (RID_SIGNED, specbits); RIDBIT_RESET (RID_LONG, specbits); RIDBIT_RESET (RID_SHORT, specbits); longlong = 0; } } if (RIDBIT_SETP (RID_COMPLEX, specbits) && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE) { error ("complex invalid for `%s'", name); RIDBIT_RESET (RID_COMPLEX, specbits); } /* Decide whether an integer type is signed or not. Optionally treat bitfields as signed by default. */ if (RIDBIT_SETP (RID_UNSIGNED, specbits) /* [class.bit] It is implementation-defined whether a plain (neither explicitly signed or unsigned) char, short, int, or long bit-field is signed or unsigned. Naturally, we extend this to long long as well. Note that this does not include wchar_t. */ || (bitfield && !flag_signed_bitfields && RIDBIT_NOTSETP (RID_SIGNED, specbits) /* A typedef for plain `int' without `signed' can be controlled just like plain `int', but a typedef for `signed int' cannot be so controlled. */ && !(typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl)) && (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == CHAR_TYPE) && !same_type_p (TYPE_MAIN_VARIANT (type), wchar_type_node))) { if (longlong) type = long_long_unsigned_type_node; else if (RIDBIT_SETP (RID_LONG, specbits)) type = long_unsigned_type_node; else if (RIDBIT_SETP (RID_SHORT, specbits)) type = short_unsigned_type_node; else if (type == char_type_node) type = unsigned_char_type_node; else if (typedef_decl) type = unsigned_type (type); else type = unsigned_type_node; } else if (RIDBIT_SETP (RID_SIGNED, specbits) && type == char_type_node) type = signed_char_type_node; else if (longlong) type = long_long_integer_type_node; else if (RIDBIT_SETP (RID_LONG, specbits)) type = long_integer_type_node; else if (RIDBIT_SETP (RID_SHORT, specbits)) type = short_integer_type_node; if (RIDBIT_SETP (RID_COMPLEX, specbits)) { /* If we just have "complex", it is equivalent to "complex double", but if any modifiers at all are specified it is the complex form of TYPE. E.g, "complex short" is "complex short int". */ if (defaulted_int && ! longlong && ! (RIDBIT_SETP (RID_LONG, specbits) || RIDBIT_SETP (RID_SHORT, specbits) || RIDBIT_SETP (RID_SIGNED, specbits) || RIDBIT_SETP (RID_UNSIGNED, specbits))) type = complex_double_type_node; else if (type == integer_type_node) type = complex_integer_type_node; else if (type == float_type_node) type = complex_float_type_node; else if (type == double_type_node) type = complex_double_type_node; else if (type == long_double_type_node) type = complex_long_double_type_node; else type = build_complex_type (type); } if (sfk == sfk_conversion && (RIDBIT_SETP (RID_CONST, specbits) || RIDBIT_SETP (RID_VOLATILE, specbits) || RIDBIT_SETP (RID_RESTRICT, specbits))) cp_error ("qualifiers are not allowed on declaration of `operator %T'", ctor_return_type); /* Set CONSTP if this declaration is `const', whether by explicit specification or via a typedef. Likewise for VOLATILEP. */ constp = !! RIDBIT_SETP (RID_CONST, specbits) + CP_TYPE_CONST_P (type); restrictp = !! RIDBIT_SETP (RID_RESTRICT, specbits) + CP_TYPE_RESTRICT_P (type); volatilep = !! RIDBIT_SETP (RID_VOLATILE, specbits) + CP_TYPE_VOLATILE_P (type); type_quals = ((constp ? TYPE_QUAL_CONST : 0) | (restrictp ? TYPE_QUAL_RESTRICT : 0) | (volatilep ? TYPE_QUAL_VOLATILE : 0)); type = cp_build_qualified_type (type, type_quals); staticp = 0; inlinep = !! RIDBIT_SETP (RID_INLINE, specbits); virtualp = RIDBIT_SETP (RID_VIRTUAL, specbits); RIDBIT_RESET (RID_VIRTUAL, specbits); explicitp = RIDBIT_SETP (RID_EXPLICIT, specbits) != 0; RIDBIT_RESET (RID_EXPLICIT, specbits); if (RIDBIT_SETP (RID_STATIC, specbits)) staticp = 1 + (decl_context == FIELD); if (virtualp && staticp == 2) { cp_error ("member `%D' cannot be declared both virtual and static", dname); staticp = 0; } friendp = RIDBIT_SETP (RID_FRIEND, specbits); RIDBIT_RESET (RID_FRIEND, specbits); /* Warn if two storage classes are given. Default to `auto'. */ if (RIDBIT_ANY_SET (specbits)) { if (RIDBIT_SETP (RID_STATIC, specbits)) nclasses++; if (RIDBIT_SETP (RID_EXTERN, specbits)) nclasses++; if (decl_context == PARM && nclasses > 0) error ("storage class specifiers invalid in parameter declarations"); if (RIDBIT_SETP (RID_TYPEDEF, specbits)) { if (decl_context == PARM) error ("typedef declaration invalid in parameter declaration"); nclasses++; } if (RIDBIT_SETP (RID_AUTO, specbits)) nclasses++; if (RIDBIT_SETP (RID_REGISTER, specbits)) nclasses++; } /* Give error if `virtual' is used outside of class declaration. */ if (virtualp && (current_class_name == NULL_TREE || decl_context != FIELD)) { error ("virtual outside class declaration"); virtualp = 0; } /* Static anonymous unions are dealt with here. */ if (staticp && decl_context == TYPENAME && TREE_CODE (declspecs) == TREE_LIST && ANON_AGGR_TYPE_P (TREE_VALUE (declspecs))) decl_context = FIELD; /* Warn about storage classes that are invalid for certain kinds of declarations (parameters, typenames, etc.). */ if (nclasses > 1) error ("multiple storage classes in declaration of `%s'", name); else if (decl_context != NORMAL && nclasses > 0) { if ((decl_context == PARM || decl_context == CATCHPARM) && (RIDBIT_SETP (RID_REGISTER, specbits) || RIDBIT_SETP (RID_AUTO, specbits))) ; else if (RIDBIT_SETP (RID_TYPEDEF, specbits)) ; else if (decl_context == FIELD /* C++ allows static class elements */ && RIDBIT_SETP (RID_STATIC, specbits)) /* C++ also allows inlines and signed and unsigned elements, but in those cases we don't come in here. */ ; else { if (decl_context == FIELD) { tree tmp = NULL_TREE; register int op = 0; if (declarator) { /* Avoid trying to get an operand off an identifier node. */ if (TREE_CODE (declarator) == IDENTIFIER_NODE) tmp = declarator; else tmp = TREE_OPERAND (declarator, 0); op = IDENTIFIER_OPNAME_P (tmp); if (IDENTIFIER_TYPENAME_P (tmp)) { if (IDENTIFIER_GLOBAL_VALUE (tmp) && (TREE_CODE (IDENTIFIER_GLOBAL_VALUE (tmp)) == TYPE_DECL)) name = IDENTIFIER_POINTER (tmp); else name = ""; } } error ("storage class specified for %s `%s'", op ? "member operator" : "field", name); } else { if (decl_context == PARM || decl_context == CATCHPARM) error ("storage class specified for parameter `%s'", name); else error ("storage class specified for typename"); } RIDBIT_RESET (RID_REGISTER, specbits); RIDBIT_RESET (RID_AUTO, specbits); RIDBIT_RESET (RID_EXTERN, specbits); } } else if (RIDBIT_SETP (RID_EXTERN, specbits) && initialized && !funcdef_flag) { if (toplevel_bindings_p ()) { /* It's common practice (and completely valid) to have a const be initialized and declared extern. */ if (!(type_quals & TYPE_QUAL_CONST)) warning ("`%s' initialized and declared `extern'", name); } else error ("`%s' has both `extern' and initializer", name); } else if (RIDBIT_SETP (RID_EXTERN, specbits) && funcdef_flag && ! toplevel_bindings_p ()) error ("nested function `%s' declared `extern'", name); else if (toplevel_bindings_p ()) { if (RIDBIT_SETP (RID_AUTO, specbits)) error ("top-level declaration of `%s' specifies `auto'", name); } if (nclasses > 0 && friendp) error ("storage class specifiers invalid in friend function declarations"); /* Now figure out the structure of the declarator proper. Descend through it, creating more complex types, until we reach the declared identifier (or NULL_TREE, in an absolute declarator). */ inner_attrs = NULL_TREE; ignore_attrs = 0; while (declarator && TREE_CODE (declarator) != IDENTIFIER_NODE && TREE_CODE (declarator) != TEMPLATE_ID_EXPR) { /* Each level of DECLARATOR is either an ARRAY_REF (for ...[..]), an INDIRECT_REF (for *...), a CALL_EXPR (for ...(...)), an identifier (for the name being declared) or a null pointer (for the place in an absolute declarator where the name was omitted). For the last two cases, we have just exited the loop. For C++ it could also be a SCOPE_REF (for class :: ...). In this case, we have converted sensible names to types, and those are the values we use to qualify the member name. an ADDR_EXPR (for &...), a BIT_NOT_EXPR (for destructors) At this point, TYPE is the type of elements of an array, or for a function to return, or for a pointer to point to. After this sequence of ifs, TYPE is the type of the array or function or pointer, and DECLARATOR has had its outermost layer removed. */ if (type == error_mark_node) { if (TREE_CODE (declarator) == SCOPE_REF) declarator = TREE_OPERAND (declarator, 1); else declarator = TREE_OPERAND (declarator, 0); continue; } if (quals != NULL_TREE && (declarator == NULL_TREE || TREE_CODE (declarator) != SCOPE_REF)) { if (ctype == NULL_TREE && TREE_CODE (type) == METHOD_TYPE) ctype = TYPE_METHOD_BASETYPE (type); if (ctype != NULL_TREE) { tree dummy = build_decl (TYPE_DECL, NULL_TREE, type); grok_method_quals (ctype, dummy, quals); type = TREE_TYPE (dummy); ctype = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))); quals = NULL_TREE; } } /* See the comment for the TREE_LIST case, below. */ if (ignore_attrs) ignore_attrs = 0; else if (inner_attrs) { decl_attributes (type, inner_attrs, NULL_TREE); inner_attrs = NULL_TREE; } switch (TREE_CODE (declarator)) { case TREE_LIST: { /* We encode a declarator with embedded attributes using a TREE_LIST. The attributes apply to the declarator directly inside them, so we have to skip an iteration before applying them to the type. If the declarator just inside is the declarator-id, we apply the attrs to the decl itself. */ inner_attrs = TREE_PURPOSE (declarator); ignore_attrs = 1; declarator = TREE_VALUE (declarator); } break; case ARRAY_REF: { register tree size; size = TREE_OPERAND (declarator, 1); /* VC++ spells a zero-sized array with []. */ if (size == NULL_TREE && decl_context == FIELD && ! staticp && ! RIDBIT_SETP (RID_TYPEDEF, specbits)) size = integer_zero_node; declarator = TREE_OPERAND (declarator, 0); type = create_array_type_for_decl (dname, type, size); /* VLAs never work as fields. */ if (decl_context == FIELD && !processing_template_decl && TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) != NULL_TREE && !TREE_CONSTANT (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))) { cp_error ("size of member `%D' is not constant", dname); /* Proceed with arbitrary constant size, so that offset computations don't get confused. */ type = create_array_type_for_decl (dname, TREE_TYPE (type), integer_one_node); } ctype = NULL_TREE; } break; case CALL_EXPR: { tree arg_types; int funcdecl_p; tree inner_parms = CALL_DECLARATOR_PARMS (declarator); tree inner_decl = TREE_OPERAND (declarator, 0); /* Declaring a function type. Make sure we have a valid type for the function to return. */ /* We now know that the TYPE_QUALS don't apply to the decl, but to its return type. */ type_quals = TYPE_UNQUALIFIED; /* Warn about some types functions can't return. */ if (TREE_CODE (type) == FUNCTION_TYPE) { error ("`%s' declared as function returning a function", name); type = integer_type_node; } if (TREE_CODE (type) == ARRAY_TYPE) { error ("`%s' declared as function returning an array", name); type = integer_type_node; } if (inner_decl && TREE_CODE (inner_decl) == SCOPE_REF) inner_decl = TREE_OPERAND (inner_decl, 1); if (inner_decl && TREE_CODE (inner_decl) == TEMPLATE_ID_EXPR) inner_decl = dname; /* Pick up type qualifiers which should be applied to `this'. */ quals = CALL_DECLARATOR_QUALS (declarator); /* Pick up the exception specifications. */ raises = CALL_DECLARATOR_EXCEPTION_SPEC (declarator); /* Say it's a definition only for the CALL_EXPR closest to the identifier. */ funcdecl_p = inner_decl && (TREE_CODE (inner_decl) == IDENTIFIER_NODE || TREE_CODE (inner_decl) == TEMPLATE_ID_EXPR || TREE_CODE (inner_decl) == BIT_NOT_EXPR); if (ctype == NULL_TREE && decl_context == FIELD && funcdecl_p && (friendp == 0 || dname == current_class_name)) ctype = current_class_type; if (ctype && sfk == sfk_conversion) TYPE_HAS_CONVERSION (ctype) = 1; if (ctype && constructor_name (ctype) == dname) { /* We are within a class's scope. If our declarator name is the same as the class name, and we are defining a function, then it is a constructor/destructor, and therefore returns a void type. */ if (flags == DTOR_FLAG) { /* ISO C++ 12.4/2. A destructor may not be declared const or volatile. A destructor may not be static. */ if (staticp == 2) error ("destructor cannot be static member function"); if (quals) { cp_error ("destructors may not be `%s'", IDENTIFIER_POINTER (TREE_VALUE (quals))); quals = NULL_TREE; } if (decl_context == FIELD) { if (! member_function_or_else (ctype, current_class_type, flags)) return void_type_node; } } else /* It's a constructor. */ { if (explicitp == 1) explicitp = 2; /* ISO C++ 12.1. A constructor may not be declared const or volatile. A constructor may not be virtual. A constructor may not be static. */ if (staticp == 2) error ("constructor cannot be static member function"); if (virtualp) { pedwarn ("constructors cannot be declared virtual"); virtualp = 0; } if (quals) { cp_error ("constructors may not be `%s'", IDENTIFIER_POINTER (TREE_VALUE (quals))); quals = NULL_TREE; } { RID_BIT_TYPE tmp_bits; memcpy (&tmp_bits, &specbits, sizeof (RID_BIT_TYPE)); RIDBIT_RESET (RID_INLINE, tmp_bits); RIDBIT_RESET (RID_STATIC, tmp_bits); if (RIDBIT_ANY_SET (tmp_bits)) error ("return value type specifier for constructor ignored"); } if (decl_context == FIELD) { if (! member_function_or_else (ctype, current_class_type, flags)) return void_type_node; TYPE_HAS_CONSTRUCTOR (ctype) = 1; if (sfk != sfk_constructor) return NULL_TREE; } } if (decl_context == FIELD) staticp = 0; } else if (friendp) { if (initialized) error ("can't initialize friend function `%s'", name); if (virtualp) { /* Cannot be both friend and virtual. */ error ("virtual functions cannot be friends"); RIDBIT_RESET (RID_FRIEND, specbits); friendp = 0; } if (decl_context == NORMAL) error ("friend declaration not in class definition"); if (current_function_decl && funcdef_flag) cp_error ("can't define friend function `%s' in a local class definition", name); } /* Construct the function type and go to the next inner layer of declarator. */ declarator = TREE_OPERAND (declarator, 0); /* FIXME: This is where default args should be fully processed. */ arg_types = grokparms (inner_parms); if (declarator && flags == DTOR_FLAG) { /* A destructor declared in the body of a class will be represented as a BIT_NOT_EXPR. But, we just want the underlying IDENTIFIER. */ if (TREE_CODE (declarator) == BIT_NOT_EXPR) declarator = TREE_OPERAND (declarator, 0); if (arg_types != void_list_node) { cp_error ("destructors may not have parameters"); arg_types = void_list_node; last_function_parms = NULL_TREE; } } /* ANSI says that `const int foo ();' does not make the function foo const. */ type = build_function_type (type, arg_types); { tree t; for (t = arg_types; t; t = TREE_CHAIN (t)) if (TREE_PURPOSE (t) && TREE_CODE (TREE_PURPOSE (t)) == DEFAULT_ARG) { add_defarg_fn (type); break; } } } break; case ADDR_EXPR: case INDIRECT_REF: /* Filter out pointers-to-references and references-to-references. We can get these if a TYPE_DECL is used. */ if (TREE_CODE (type) == REFERENCE_TYPE) { error ("cannot declare %s to references", TREE_CODE (declarator) == ADDR_EXPR ? "references" : "pointers"); declarator = TREE_OPERAND (declarator, 0); continue; } if (TREE_CODE (type) == OFFSET_TYPE && (TREE_CODE (TREE_TYPE (type)) == VOID_TYPE || TREE_CODE (TREE_TYPE (type)) == REFERENCE_TYPE)) { cp_error ("cannot declare pointer to `%#T' member", TREE_TYPE (type)); type = TREE_TYPE (type); } /* Merge any constancy or volatility into the target type for the pointer. */ /* We now know that the TYPE_QUALS don't apply to the decl, but to the target of the pointer. */ type_quals = TYPE_UNQUALIFIED; if (TREE_CODE (declarator) == ADDR_EXPR) { if (TREE_CODE (type) == VOID_TYPE) error ("invalid type: `void &'"); else type = build_reference_type (type); } else if (TREE_CODE (type) == METHOD_TYPE) type = build_ptrmemfunc_type (build_pointer_type (type)); else type = build_pointer_type (type); /* Process a list of type modifier keywords (such as const or volatile) that were given inside the `*' or `&'. */ if (TREE_TYPE (declarator)) { register tree typemodlist; int erred = 0; constp = 0; volatilep = 0; restrictp = 0; for (typemodlist = TREE_TYPE (declarator); typemodlist; typemodlist = TREE_CHAIN (typemodlist)) { tree qualifier = TREE_VALUE (typemodlist); if (qualifier == ridpointers[(int) RID_CONST]) constp++; else if (qualifier == ridpointers[(int) RID_VOLATILE]) volatilep++; else if (qualifier == ridpointers[(int) RID_RESTRICT]) restrictp++; else if (!erred) { erred = 1; error ("invalid type modifier within pointer declarator"); } } if (constp > 1) pedwarn ("duplicate `const'"); if (volatilep > 1) pedwarn ("duplicate `volatile'"); if (restrictp > 1) pedwarn ("duplicate `restrict'"); type_quals = ((constp ? TYPE_QUAL_CONST : 0) | (restrictp ? TYPE_QUAL_RESTRICT : 0) | (volatilep ? TYPE_QUAL_VOLATILE : 0)); if (TREE_CODE (declarator) == ADDR_EXPR && (constp || volatilep)) { if (constp) pedwarn ("discarding `const' applied to a reference"); if (volatilep) pedwarn ("discarding `volatile' applied to a reference"); type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE); } type = cp_build_qualified_type (type, type_quals); } declarator = TREE_OPERAND (declarator, 0); ctype = NULL_TREE; break; case SCOPE_REF: { /* We have converted type names to NULL_TREE if the name was bogus, or to a _TYPE node, if not. The variable CTYPE holds the type we will ultimately resolve to. The code here just needs to build up appropriate member types. */ tree sname = TREE_OPERAND (declarator, 1); tree t; /* Destructors can have their visibilities changed as well. */ if (TREE_CODE (sname) == BIT_NOT_EXPR) sname = TREE_OPERAND (sname, 0); if (TREE_COMPLEXITY (declarator) == 0) /* This needs to be here, in case we are called multiple times. */ ; else if (TREE_COMPLEXITY (declarator) == -1) /* Namespace member. */ pop_decl_namespace (); else if (friendp && (TREE_COMPLEXITY (declarator) < 2)) /* Don't fall out into global scope. Hides real bug? --eichin */ ; else if (! IS_AGGR_TYPE_CODE (TREE_CODE (TREE_OPERAND (declarator, 0)))) ; else if (TREE_COMPLEXITY (declarator) == current_class_depth) { /* Resolve any TYPENAME_TYPEs from the decl-specifier-seq that refer to ctype. They couldn't be resolved earlier because we hadn't pushed into the class yet. Example: resolve 'B::type' in 'B::type> B::f () { }'. */ if (current_template_parms && uses_template_parms (type) && uses_template_parms (current_class_type)) { tree args = current_template_args (); type = tsubst (type, args, /*complain=*/1, NULL_TREE); } /* This pop_nested_class corresponds to the push_nested_class used to push into class scope for parsing the argument list of a function decl, in qualified_id. */ pop_nested_class (); TREE_COMPLEXITY (declarator) = current_class_depth; } else my_friendly_abort (16); if (TREE_OPERAND (declarator, 0) == NULL_TREE) { /* We had a reference to a global decl, or perhaps we were given a non-aggregate typedef, in which case we cleared this out, and should just keep going as though it wasn't there. */ declarator = sname; continue; } ctype = TREE_OPERAND (declarator, 0); t = ctype; while (t != NULL_TREE && CLASS_TYPE_P (t)) { /* You're supposed to have one `template <...>' for every template class, but you don't need one for a full specialization. For example: template struct S{}; template <> struct S { void f(); }; void S::f () {} is correct; there shouldn't be a `template <>' for the definition of `S::f'. */ if (CLASSTYPE_TEMPLATE_INFO (t) && (CLASSTYPE_TEMPLATE_INSTANTIATION (t) || uses_template_parms (CLASSTYPE_TI_ARGS (t)))) template_count += 1; t = TYPE_MAIN_DECL (t); if (DECL_LANG_SPECIFIC (t)) t = DECL_CONTEXT (t); else t = NULL_TREE; } if (sname == NULL_TREE) goto done_scoping; if (TREE_CODE (sname) == IDENTIFIER_NODE) { /* This is the `standard' use of the scoping operator: basetype :: member . */ if (ctype == current_class_type) { /* class A { void A::f (); }; Is this ill-formed? */ if (pedantic) cp_pedwarn ("extra qualification `%T::' on member `%s' ignored", ctype, name); } else if (TREE_CODE (type) == FUNCTION_TYPE) { if (current_class_type == NULL_TREE || friendp) type = build_cplus_method_type (ctype, TREE_TYPE (type), TYPE_ARG_TYPES (type)); else { cp_error ("cannot declare member function `%T::%s' within `%T'", ctype, name, current_class_type); return void_type_node; } } else if (RIDBIT_SETP (RID_TYPEDEF, specbits) || COMPLETE_TYPE_P (complete_type (ctype))) { /* Have to move this code elsewhere in this function. this code is used for i.e., typedef int A::M; M *pm; It is? How? jason 10/2/94 */ if (current_class_type) { cp_error ("cannot declare member `%T::%s' within `%T'", ctype, name, current_class_type); return void_type_node; } type = build_offset_type (ctype, type); } else { incomplete_type_error (NULL_TREE, ctype); return error_mark_node; } declarator = sname; } else if (TREE_CODE (sname) == SCOPE_REF) my_friendly_abort (17); else { done_scoping: declarator = TREE_OPERAND (declarator, 1); if (declarator && TREE_CODE (declarator) == CALL_EXPR) /* In this case, we will deal with it later. */ ; else { if (TREE_CODE (type) == FUNCTION_TYPE) type = build_cplus_method_type (ctype, TREE_TYPE (type), TYPE_ARG_TYPES (type)); else type = build_offset_type (ctype, type); } } } break; case BIT_NOT_EXPR: declarator = TREE_OPERAND (declarator, 0); break; case RECORD_TYPE: case UNION_TYPE: case ENUMERAL_TYPE: declarator = NULL_TREE; break; case ERROR_MARK: declarator = NULL_TREE; break; default: my_friendly_abort (158); } } /* See the comment for the TREE_LIST case, above. */ if (inner_attrs) { if (! ignore_attrs) decl_attributes (type, inner_attrs, NULL_TREE); else if (attrlist) TREE_VALUE (attrlist) = chainon (inner_attrs, TREE_VALUE (attrlist)); else attrlist = build_tree_list (NULL_TREE, inner_attrs); } /* Now TYPE has the actual type. */ if (explicitp == 1 || (explicitp && friendp)) { /* [dcl.fct.spec] The explicit specifier shall only be used in declarations of constructors within a class definition. */ error ("only declarations of constructors can be `explicit'"); explicitp = 0; } if (RIDBIT_SETP (RID_MUTABLE, specbits)) { if (current_class_name == NULL_TREE || decl_context == PARM || friendp) { error ("non-member `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } else if (decl_context == TYPENAME || RIDBIT_SETP (RID_TYPEDEF, specbits)) { error ("non-object member `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } else if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) { error ("function `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } else if (staticp) { error ("static `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } else if (type_quals & TYPE_QUAL_CONST) { error ("const `%s' cannot be declared `mutable'", name); RIDBIT_RESET (RID_MUTABLE, specbits); } } if (declarator == NULL_TREE || TREE_CODE (declarator) == IDENTIFIER_NODE || (TREE_CODE (declarator) == TEMPLATE_ID_EXPR && (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE))) /* OK */; else if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR) { cp_error ("template-id `%D' used as a declarator", declarator); declarator = dname; } else /* Unexpected declarator format. */ my_friendly_abort (990210); /* If this is declaring a typedef name, return a TYPE_DECL. */ if (RIDBIT_SETP (RID_TYPEDEF, specbits) && decl_context != TYPENAME) { tree decl; /* Note that the grammar rejects storage classes in typenames, fields or parameters. */ if (current_lang_name == lang_name_java) TYPE_FOR_JAVA (type) = 1; if (decl_context == FIELD) { if (declarator == constructor_name (current_class_type)) cp_pedwarn ("ISO C++ forbids nested type `%D' with same name as enclosing class", declarator); decl = build_lang_decl (TYPE_DECL, declarator, type); } else decl = build_decl (TYPE_DECL, declarator, type); /* If the user declares "typedef struct {...} foo" then the struct will have an anonymous name. Fill that name in now. Nothing can refer to it, so nothing needs know about the name change. */ if (type != error_mark_node && declarator && TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && ANON_AGGRNAME_P (TYPE_IDENTIFIER (type)) && CP_TYPE_QUALS (type) == TYPE_UNQUALIFIED) { tree oldname = TYPE_NAME (type); tree t; /* Replace the anonymous name with the real name everywhere. */ lookup_tag_reverse (type, declarator); for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) if (TYPE_NAME (t) == oldname) TYPE_NAME (t) = decl; if (TYPE_LANG_SPECIFIC (type)) TYPE_WAS_ANONYMOUS (type) = 1; /* If this is a typedef within a template class, the nested type is a (non-primary) template. The name for the template needs updating as well. */ if (TYPE_LANG_SPECIFIC (type) && CLASSTYPE_TEMPLATE_INFO (type)) DECL_NAME (CLASSTYPE_TI_TEMPLATE (type)) = TYPE_IDENTIFIER (type); if (flag_new_abi) DECL_ASSEMBLER_NAME (decl) = mangle_type (type); else { /* XXX Temporarily set the scope. When returning, start_decl expects it as NULL_TREE, and will then then set it using pushdecl. */ my_friendly_assert (DECL_CONTEXT (decl) == NULL_TREE, 980404); if (current_class_type) DECL_CONTEXT (decl) = current_class_type; else DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace); DECL_ASSEMBLER_NAME (decl) = DECL_NAME (decl); DECL_ASSEMBLER_NAME (decl) = get_identifier (build_overload_name (type, 1, 1)); DECL_CONTEXT (decl) = NULL_TREE; } /* FIXME remangle member functions; member functions of a type with external linkage have external linkage. */ } if (TREE_CODE (type) == OFFSET_TYPE || TREE_CODE (type) == METHOD_TYPE) { cp_error_at ("typedef name may not be class-qualified", decl); return NULL_TREE; } else if (quals) { if (ctype == NULL_TREE) { if (TREE_CODE (type) != METHOD_TYPE) cp_error_at ("invalid type qualifier for non-member function type", decl); else ctype = TYPE_METHOD_BASETYPE (type); } if (ctype != NULL_TREE) grok_method_quals (ctype, decl, quals); } if (RIDBIT_SETP (RID_SIGNED, specbits) || (typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl))) C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1; bad_specifiers (decl, "type", virtualp, quals != NULL_TREE, inlinep, friendp, raises != NULL_TREE); if (initialized) error ("typedef declaration includes an initializer"); return decl; } /* Detect the case of an array type of unspecified size which came, as such, direct from a typedef name. We must copy the type, so that each identifier gets a distinct type, so that each identifier's size can be controlled separately by its own initializer. */ if (type == typedef_type && TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) == NULL_TREE) { type = build_cplus_array_type (TREE_TYPE (type), TYPE_DOMAIN (type)); } /* If this is a type name (such as, in a cast or sizeof), compute the type and return it now. */ if (decl_context == TYPENAME) { /* Note that the grammar rejects storage classes in typenames, fields or parameters. */ if (type_quals != TYPE_UNQUALIFIED) type_quals = TYPE_UNQUALIFIED; /* Special case: "friend class foo" looks like a TYPENAME context. */ if (friendp) { if (type_quals != TYPE_UNQUALIFIED) { cp_error ("type qualifiers specified for friend class declaration"); type_quals = TYPE_UNQUALIFIED; } if (inlinep) { cp_error ("`inline' specified for friend class declaration"); inlinep = 0; } /* Until core issue 180 is resolved, allow 'friend typename A::B'. But don't allow implicit typenames except with a class-key. */ if (!current_aggr && (TREE_CODE (type) != TYPENAME_TYPE || IMPLICIT_TYPENAME_P (type))) { if (TREE_CODE (type) == TEMPLATE_TYPE_PARM) cp_pedwarn ("template parameters cannot be friends"); else if (TREE_CODE (type) == TYPENAME_TYPE) cp_pedwarn ("\ friend declaration requires class-key, i.e. `friend class %T::%T'", constructor_name (current_class_type), TYPE_IDENTIFIER (type)); else cp_pedwarn ("\ friend declaration requires class-key, i.e. `friend %#T'", type); } /* Only try to do this stuff if we didn't already give up. */ if (type != integer_type_node) { decl_type_access_control (TYPE_NAME (type)); /* A friendly class? */ if (current_class_type) make_friend_class (current_class_type, TYPE_MAIN_VARIANT (type)); else cp_error ("trying to make class `%T' a friend of global scope", type); type = void_type_node; } } else if (quals) { if (ctype == NULL_TREE) { if (TREE_CODE (type) != METHOD_TYPE) cp_error ("invalid qualifiers on non-member function type"); else ctype = TYPE_METHOD_BASETYPE (type); } if (ctype) { tree dummy = build_decl (TYPE_DECL, declarator, type); grok_method_quals (ctype, dummy, quals); type = TREE_TYPE (dummy); } } return type; } else if (declarator == NULL_TREE && decl_context != PARM && decl_context != CATCHPARM && TREE_CODE (type) != UNION_TYPE && ! bitfield) { cp_error ("abstract declarator `%T' used as declaration", type); declarator = make_anon_name (); } /* `void' at top level (not within pointer) is allowed only in typedefs or type names. We don't complain about parms either, but that is because a better error message can be made later. */ if (TREE_CODE (type) == VOID_TYPE && decl_context != PARM) { if (! declarator) error ("unnamed variable or field declared void"); else if (TREE_CODE (declarator) == IDENTIFIER_NODE) { if (IDENTIFIER_OPNAME_P (declarator)) my_friendly_abort (356); else error ("variable or field `%s' declared void", name); } else error ("variable or field declared void"); type = integer_type_node; } /* Now create the decl, which may be a VAR_DECL, a PARM_DECL or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE. */ if (decl_context == PARM || decl_context == CATCHPARM) { if (ctype || in_namespace) error ("cannot use `::' in parameter declaration"); /* A parameter declared as an array of T is really a pointer to T. One declared as a function is really a pointer to a function. One declared as a member is really a pointer to member. */ if (TREE_CODE (type) == ARRAY_TYPE) { /* Transfer const-ness of array into that of type pointed to. */ type = build_pointer_type (TREE_TYPE (type)); type_quals = TYPE_UNQUALIFIED; } else if (TREE_CODE (type) == FUNCTION_TYPE) type = build_pointer_type (type); else if (TREE_CODE (type) == OFFSET_TYPE) type = build_pointer_type (type); } { register tree decl; if (decl_context == PARM) { decl = build_decl (PARM_DECL, declarator, type); bad_specifiers (decl, "parameter", virtualp, quals != NULL_TREE, inlinep, friendp, raises != NULL_TREE); /* Compute the type actually passed in the parmlist, for the case where there is no prototype. (For example, shorts and chars are passed as ints.) When there is a prototype, this is overridden later. */ DECL_ARG_TYPE (decl) = type_promotes_to (type); } else if (decl_context == FIELD) { if (type == error_mark_node) { /* Happens when declaring arrays of sizes which are error_mark_node, for example. */ decl = NULL_TREE; } else if (in_namespace && !friendp) { /* Something like struct S { int N::j; }; */ cp_error ("invalid use of `::'"); decl = NULL_TREE; } else if (TREE_CODE (type) == FUNCTION_TYPE) { int publicp = 0; tree function_context; /* We catch the others as conflicts with the builtin typedefs. */ if (friendp && declarator == ridpointers[(int) RID_SIGNED]) { cp_error ("function `%D' cannot be declared friend", declarator); friendp = 0; } if (friendp == 0) { if (ctype == NULL_TREE) ctype = current_class_type; if (ctype == NULL_TREE) { cp_error ("can't make `%D' into a method -- not in a class", declarator); return void_type_node; } /* ``A union may [ ... ] not [ have ] virtual functions.'' ARM 9.5 */ if (virtualp && TREE_CODE (ctype) == UNION_TYPE) { cp_error ("function `%D' declared virtual inside a union", declarator); return void_type_node; } if (declarator == ansi_opname (NEW_EXPR) || declarator == ansi_opname (VEC_NEW_EXPR) || declarator == ansi_opname (DELETE_EXPR) || declarator == ansi_opname (VEC_DELETE_EXPR)) { if (virtualp) { cp_error ("`%D' cannot be declared virtual, since it is always static", declarator); virtualp = 0; } } else if (staticp < 2) type = build_cplus_method_type (ctype, TREE_TYPE (type), TYPE_ARG_TYPES (type)); } /* Tell grokfndecl if it needs to set TREE_PUBLIC on the node. */ function_context = (ctype != NULL_TREE) ? decl_function_context (TYPE_MAIN_DECL (ctype)) : NULL_TREE; publicp = (! friendp || ! staticp) && function_context == NULL_TREE; decl = grokfndecl (ctype, type, TREE_CODE (declarator) != TEMPLATE_ID_EXPR ? declarator : dname, declarator, virtualp, flags, quals, raises, friendp ? -1 : 0, friendp, publicp, inlinep, funcdef_flag, template_count, in_namespace); if (decl == NULL_TREE) return decl; #if 0 /* This clobbers the attrs stored in `decl' from `attrlist'. */ /* The decl and setting of decl_machine_attr is also turned off. */ decl = build_decl_attribute_variant (decl, decl_machine_attr); #endif /* [class.conv.ctor] A constructor declared without the function-specifier explicit that can be called with a single parameter specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is called a converting constructor. */ if (explicitp == 2) DECL_NONCONVERTING_P (decl) = 1; else if (DECL_CONSTRUCTOR_P (decl)) { /* The constructor can be called with exactly one parameter if there is at least one parameter, and any subsequent parameters have default arguments. We don't look at the first parameter, which is really just the `this' parameter for the new object. */ tree arg_types = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (decl))); /* Skip the `in_chrg' argument too, if present. */ if (DECL_HAS_IN_CHARGE_PARM_P (decl)) arg_types = TREE_CHAIN (arg_types); if (arg_types == void_list_node || (arg_types && TREE_CHAIN (arg_types) && TREE_CHAIN (arg_types) != void_list_node && !TREE_PURPOSE (TREE_CHAIN (arg_types)))) DECL_NONCONVERTING_P (decl) = 1; } } else if (TREE_CODE (type) == METHOD_TYPE) { /* We only get here for friend declarations of members of other classes. */ /* All method decls are public, so tell grokfndecl to set TREE_PUBLIC, also. */ decl = grokfndecl (ctype, type, declarator, declarator, virtualp, flags, quals, raises, friendp ? -1 : 0, friendp, 1, 0, funcdef_flag, template_count, in_namespace); if (decl == NULL_TREE) return NULL_TREE; } else if (!staticp && ! processing_template_decl && !COMPLETE_TYPE_P (complete_type (type)) && (TREE_CODE (type) != ARRAY_TYPE || initialized == 0)) { if (declarator) cp_error ("field `%D' has incomplete type", declarator); else cp_error ("name `%T' has incomplete type", type); /* If we're instantiating a template, tell them which instantiation made the field's type be incomplete. */ if (current_class_type && TYPE_NAME (current_class_type) && IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (current_class_type)) && declspecs && TREE_VALUE (declspecs) && TREE_TYPE (TREE_VALUE (declspecs)) == type) cp_error (" in instantiation of template `%T'", current_class_type); type = error_mark_node; decl = NULL_TREE; } else { if (friendp) { error ("`%s' is neither function nor member function; cannot be declared friend", IDENTIFIER_POINTER (declarator)); friendp = 0; } decl = NULL_TREE; } if (friendp) { /* Friends are treated specially. */ if (ctype == current_class_type) warning ("member functions are implicitly friends of their class"); else { tree t = NULL_TREE; if (decl && DECL_NAME (decl)) { if (template_class_depth (current_class_type) == 0) { decl = check_explicit_specialization (declarator, decl, template_count, 2 * (funcdef_flag != 0) + 4); if (decl == error_mark_node) return error_mark_node; } t = do_friend (ctype, declarator, decl, last_function_parms, attrlist, flags, quals, funcdef_flag); } if (t && funcdef_flag) return t; return void_type_node; } } /* Structure field. It may not be a function, except for C++ */ if (decl == NULL_TREE) { if (initialized) { if (!staticp) { /* An attempt is being made to initialize a non-static member. But, from [class.mem]: 4 A member-declarator can contain a constant-initializer only if it declares a static member (_class.static_) of integral or enumeration type, see _class.static.data_. This used to be relatively common practice, but the rest of the compiler does not correctly handle the initialization unless the member is static so we make it static below. */ cp_pedwarn ("ISO C++ forbids initialization of member `%D'", declarator); cp_pedwarn ("making `%D' static", declarator); staticp = 1; } if (uses_template_parms (type)) /* We'll check at instantiation time. */ ; else if (check_static_variable_definition (declarator, type)) /* If we just return the declaration, crashes will sometimes occur. We therefore return void_type_node, as if this was a friend declaration, to cause callers to completely ignore this declaration. */ return void_type_node; } /* 9.2p13 [class.mem] */ if (declarator == constructor_name (current_class_type) /* The standard does not allow non-static data members here either, but we agreed at the 10/99 meeting to change that in TC 1 so that they are allowed in classes with no user-defined constructors. */ && staticp) cp_pedwarn ("ISO C++ forbids static data member `%D' with same name as enclosing class", declarator); if (staticp) { /* C++ allows static class members. All other work for this is done by grokfield. */ decl = build_lang_decl (VAR_DECL, declarator, type); TREE_STATIC (decl) = 1; /* In class context, 'static' means public access. */ TREE_PUBLIC (decl) = DECL_EXTERNAL (decl) = 1; } else { decl = build_decl (FIELD_DECL, declarator, type); DECL_NONADDRESSABLE_P (decl) = bitfield; if (RIDBIT_SETP (RID_MUTABLE, specbits)) { DECL_MUTABLE_P (decl) = 1; RIDBIT_RESET (RID_MUTABLE, specbits); } } bad_specifiers (decl, "field", virtualp, quals != NULL_TREE, inlinep, friendp, raises != NULL_TREE); } } else if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) { tree original_name; int publicp = 0; if (! declarator) return NULL_TREE; if (TREE_CODE (declarator) == TEMPLATE_ID_EXPR) original_name = dname; else original_name = declarator; if (RIDBIT_SETP (RID_AUTO, specbits)) error ("storage class `auto' invalid for function `%s'", name); else if (RIDBIT_SETP (RID_REGISTER, specbits)) error ("storage class `register' invalid for function `%s'", name); /* Function declaration not at top level. Storage classes other than `extern' are not allowed and `extern' makes no difference. */ if (! toplevel_bindings_p () && (RIDBIT_SETP (RID_STATIC, specbits) || RIDBIT_SETP (RID_INLINE, specbits)) && pedantic) { if (RIDBIT_SETP (RID_STATIC, specbits)) pedwarn ("storage class `static' invalid for function `%s' declared out of global scope", name); else pedwarn ("storage class `inline' invalid for function `%s' declared out of global scope", name); } if (ctype == NULL_TREE) { if (virtualp) { error ("virtual non-class function `%s'", name); virtualp = 0; } } else if (TREE_CODE (type) == FUNCTION_TYPE && staticp < 2) type = build_cplus_method_type (ctype, TREE_TYPE (type), TYPE_ARG_TYPES (type)); /* Record presence of `static'. */ publicp = (ctype != NULL_TREE || RIDBIT_SETP (RID_EXTERN, specbits) || !RIDBIT_SETP (RID_STATIC, specbits)); decl = grokfndecl (ctype, type, original_name, declarator, virtualp, flags, quals, raises, 1, friendp, publicp, inlinep, funcdef_flag, template_count, in_namespace); if (decl == NULL_TREE) return NULL_TREE; if (staticp == 1) { int illegal_static = 0; /* Don't allow a static member function in a class, and forbid declaring main to be static. */ if (TREE_CODE (type) == METHOD_TYPE) { cp_pedwarn ("cannot declare member function `%D' to have static linkage", decl); illegal_static = 1; } else if (current_function_decl) { /* FIXME need arm citation */ error ("cannot declare static function inside another function"); illegal_static = 1; } if (illegal_static) { staticp = 0; RIDBIT_RESET (RID_STATIC, specbits); } } } else { /* It's a variable. */ /* An uninitialized decl with `extern' is a reference. */ decl = grokvardecl (type, declarator, &specbits, initialized, (type_quals & TYPE_QUAL_CONST) != 0, in_namespace); bad_specifiers (decl, "variable", virtualp, quals != NULL_TREE, inlinep, friendp, raises != NULL_TREE); if (ctype) { DECL_CONTEXT (decl) = ctype; if (staticp == 1) { cp_pedwarn ("static member `%D' re-declared as static", decl); staticp = 0; RIDBIT_RESET (RID_STATIC, specbits); } if (RIDBIT_SETP (RID_REGISTER, specbits) && TREE_STATIC (decl)) { cp_error ("static member `%D' declared `register'", decl); RIDBIT_RESET (RID_REGISTER, specbits); } if (RIDBIT_SETP (RID_EXTERN, specbits) && pedantic) { cp_pedwarn ("cannot explicitly declare member `%#D' to have extern linkage", decl); RIDBIT_RESET (RID_EXTERN, specbits); } } } my_friendly_assert (!RIDBIT_SETP (RID_MUTABLE, specbits), 19990927); /* Record `register' declaration for warnings on & and in case doing stupid register allocation. */ if (RIDBIT_SETP (RID_REGISTER, specbits)) DECL_REGISTER (decl) = 1; if (RIDBIT_SETP (RID_EXTERN, specbits)) DECL_THIS_EXTERN (decl) = 1; if (RIDBIT_SETP (RID_STATIC, specbits)) DECL_THIS_STATIC (decl) = 1; /* Record constancy and volatility. There's no need to do this when processing a template; we'll do this for the instantiated declaration based on the type of DECL. */ if (!processing_template_decl) c_apply_type_quals_to_decl (type_quals, decl); return decl; } } /* Tell if a parmlist/exprlist looks like an exprlist or a parmlist. An empty exprlist is a parmlist. An exprlist which contains only identifiers at the global level is a parmlist. Otherwise, it is an exprlist. */ int parmlist_is_exprlist (exprs) tree exprs; { if (exprs == NULL_TREE || TREE_PARMLIST (exprs)) return 0; if (toplevel_bindings_p ()) { /* At the global level, if these are all identifiers, then it is a parmlist. */ while (exprs) { if (TREE_CODE (TREE_VALUE (exprs)) != IDENTIFIER_NODE) return 1; exprs = TREE_CHAIN (exprs); } return 0; } return 1; } /* Subroutine of start_function. Ensure that each of the parameter types (as listed in PARMS) is complete, as is required for a function definition. */ static void require_complete_types_for_parms (parms) tree parms; { for (; parms; parms = TREE_CHAIN (parms)) { if (VOID_TYPE_P (TREE_TYPE (parms))) /* grokparms will have already issued an error */ TREE_TYPE (parms) = error_mark_node; else if (complete_type_or_else (TREE_TYPE (parms), parms)) layout_decl (parms, 0); else TREE_TYPE (parms) = error_mark_node; } } /* Returns non-zero if T is a local variable. */ int local_variable_p (t) tree t; { if ((TREE_CODE (t) == VAR_DECL /* A VAR_DECL with a context that is a _TYPE is a static data member. */ && !TYPE_P (CP_DECL_CONTEXT (t)) /* Any other non-local variable must be at namespace scope. */ && !DECL_NAMESPACE_SCOPE_P (t)) || (TREE_CODE (t) == PARM_DECL)) return 1; return 0; } /* Returns non-zero if T is an automatic local variable or a label. (These are the declarations that need to be remapped when the code containing them is duplicated.) */ int nonstatic_local_decl_p (t) tree t; { return ((local_variable_p (t) && !TREE_STATIC (t)) || TREE_CODE (t) == LABEL_DECL || TREE_CODE (t) == RESULT_DECL); } /* Like local_variable_p, but suitable for use as a tree-walking function. */ static tree local_variable_p_walkfn (tp, walk_subtrees, data) tree *tp; int *walk_subtrees ATTRIBUTE_UNUSED; void *data ATTRIBUTE_UNUSED; { return ((local_variable_p (*tp) && !DECL_ARTIFICIAL (*tp)) ? *tp : NULL_TREE); } /* Check that ARG, which is a default-argument expression for a parameter DECL, is legal. Returns ARG, or ERROR_MARK_NODE, if something goes wrong. DECL may also be a _TYPE node, rather than a DECL, if there is no DECL available. */ tree check_default_argument (decl, arg) tree decl; tree arg; { tree var; tree decl_type; if (TREE_CODE (arg) == DEFAULT_ARG) /* We get a DEFAULT_ARG when looking at an in-class declaration with a default argument. Ignore the argument for now; we'll deal with it after the class is complete. */ return arg; if (processing_template_decl || uses_template_parms (arg)) /* We don't do anything checking until instantiation-time. Note that there may be uninstantiated arguments even for an instantiated function, since default arguments are not instantiated until they are needed. */ return arg; if (TYPE_P (decl)) { decl_type = decl; decl = NULL_TREE; } else decl_type = TREE_TYPE (decl); if (arg == error_mark_node || decl == error_mark_node || TREE_TYPE (arg) == error_mark_node || decl_type == error_mark_node) /* Something already went wrong. There's no need to check further. */ return error_mark_node; /* [dcl.fct.default] A default argument expression is implicitly converted to the parameter type. */ if (!TREE_TYPE (arg) || !can_convert_arg (decl_type, TREE_TYPE (arg), arg)) { if (decl) cp_error ("default argument for `%#D' has type `%T'", decl, TREE_TYPE (arg)); else cp_error ("default argument for parameter of type `%T' has type `%T'", decl_type, TREE_TYPE (arg)); return error_mark_node; } /* [dcl.fct.default] Local variables shall not be used in default argument expressions. The keyword `this' shall not be used in a default argument of a member function. */ var = walk_tree_without_duplicates (&arg, local_variable_p_walkfn, NULL); if (var) { cp_error ("default argument `%E' uses local variable `%D'", arg, var); return error_mark_node; } /* All is well. */ return arg; } /* Decode the list of parameter types for a function type. Given the list of things declared inside the parens, return a list of types. We determine whether ellipsis parms are used by PARMLIST_ELLIPSIS_P flag. If unset, we append void_list_node. A parmlist declared as `(void)' is accepted as the empty parmlist. Also set last_function_parms to the chain of PARM_DECLs. */ static tree grokparms (first_parm) tree first_parm; { tree result = NULL_TREE; tree decls = NULL_TREE; int ellipsis = !first_parm || PARMLIST_ELLIPSIS_P (first_parm); tree parm, chain; int any_error = 0; my_friendly_assert (!first_parm || TREE_PARMLIST (first_parm), 20001115); for (parm = first_parm; parm != NULL_TREE; parm = chain) { tree type = NULL_TREE; register tree decl = TREE_VALUE (parm); tree init = TREE_PURPOSE (parm); chain = TREE_CHAIN (parm); /* @@ weak defense against parse errors. */ if (TREE_CODE (decl) != VOID_TYPE && TREE_CODE (decl) != TREE_LIST) { /* Give various messages as the need arises. */ if (TREE_CODE (decl) == STRING_CST) cp_error ("invalid string constant `%E'", decl); else if (TREE_CODE (decl) == INTEGER_CST) error ("invalid integer constant in parameter list, did you forget to give parameter name?"); continue; } if (parm == void_list_node) break; decl = grokdeclarator (TREE_VALUE (decl), TREE_PURPOSE (decl), PARM, init != NULL_TREE, NULL_TREE); if (! decl || TREE_TYPE (decl) == error_mark_node) continue; type = TREE_TYPE (decl); if (VOID_TYPE_P (type)) { if (same_type_p (type, void_type_node) && !DECL_NAME (decl) && !result && !chain && !ellipsis) /* this is a parmlist of `(void)', which is ok. */ break; incomplete_type_error (decl, type); /* It's not a good idea to actually create parameters of type `void'; other parts of the compiler assume that a void type terminates the parameter list. */ type = error_mark_node; TREE_TYPE (decl) = error_mark_node; } if (type != error_mark_node) { /* Top-level qualifiers on the parameters are ignored for function types. */ type = TYPE_MAIN_VARIANT (type); if (TREE_CODE (type) == METHOD_TYPE) { cp_error ("parameter `%D' invalidly declared method type", decl); type = build_pointer_type (type); TREE_TYPE (decl) = type; } else if (TREE_CODE (type) == OFFSET_TYPE) { cp_error ("parameter `%D' invalidly declared offset type", decl); type = build_pointer_type (type); TREE_TYPE (decl) = type; } else if (abstract_virtuals_error (decl, type)) any_error = 1; /* Seems like a good idea. */ else if (POINTER_TYPE_P (type)) { /* [dcl.fct]/6, parameter types cannot contain pointers (references) to arrays of unknown bound. */ tree t = type; while (POINTER_TYPE_P (t) || (TREE_CODE (t) == ARRAY_TYPE && TYPE_DOMAIN (t) != NULL_TREE)) t = TREE_TYPE (t); if (TREE_CODE (t) == ARRAY_TYPE) cp_error ("parameter `%D' includes %s to array of unknown bound `%T'", decl, TYPE_PTR_P (type) ? "pointer" : "reference", t); } DECL_ARG_TYPE (decl) = TREE_TYPE (decl); if (PROMOTE_PROTOTYPES && (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == ENUMERAL_TYPE) && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)) DECL_ARG_TYPE (decl) = integer_type_node; if (!any_error && init) init = check_default_argument (decl, init); else init = NULL_TREE; } TREE_CHAIN (decl) = decls; decls = decl; result = tree_cons (init, type, result); } decls = nreverse (decls); result = nreverse (result); if (!ellipsis) result = chainon (result, void_list_node); last_function_parms = decls; return result; } /* Called from the parser to update an element of TYPE_ARG_TYPES for some FUNCTION_TYPE with the newly parsed version of its default argument, which was previously digested as text. See snarf_defarg et al in lex.c. */ void replace_defarg (arg, init) tree arg, init; { if (! processing_template_decl && ! can_convert_arg (TREE_VALUE (arg), TREE_TYPE (init), init)) cp_pedwarn ("invalid type `%T' for default argument to `%T'", TREE_TYPE (init), TREE_VALUE (arg)); TREE_PURPOSE (arg) = init; } /* D is a constructor or overloaded `operator='. Returns non-zero if D's arguments allow it to be a copy constructor, or copy assignment operator. */ int copy_args_p (d) tree d; { tree t; if (!DECL_FUNCTION_MEMBER_P (d)) return 0; t = FUNCTION_ARG_CHAIN (d); if (DECL_CONSTRUCTOR_P (d) && DECL_HAS_IN_CHARGE_PARM_P (d)) t = TREE_CHAIN (t); if (t && TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (t))) == DECL_CONTEXT (d)) && (TREE_CHAIN (t) == NULL_TREE || TREE_CHAIN (t) == void_list_node || TREE_PURPOSE (TREE_CHAIN (t)))) return 1; return 0; } /* These memoizing functions keep track of special properties which a class may have. `grok_ctor_properties' notices whether a class has a constructor of the form X(X&), and also complains if the class has a constructor of the form X(X). `grok_op_properties' takes notice of the various forms of operator= which are defined, as well as what sorts of type conversion may apply. Both functions take a FUNCTION_DECL as an argument. */ int grok_ctor_properties (ctype, decl) tree ctype, decl; { tree parmtypes = FUNCTION_ARG_CHAIN (decl); tree parmtype = parmtypes ? TREE_VALUE (parmtypes) : void_type_node; /* When a type has virtual baseclasses, a magical first int argument is added to any ctor so we can tell if the class has been initialized yet. This could screw things up in this function, so we deliberately ignore the leading int if we're in that situation. */ if (DECL_HAS_IN_CHARGE_PARM_P (decl)) { my_friendly_assert (parmtypes && TREE_VALUE (parmtypes) == integer_type_node, 980529); parmtypes = TREE_CHAIN (parmtypes); parmtype = TREE_VALUE (parmtypes); } /* [class.copy] A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X&, volatile X& or const volatile X&, and either there are no other parameters or else all other parameters have default arguments. */ if (TREE_CODE (parmtype) == REFERENCE_TYPE && TYPE_MAIN_VARIANT (TREE_TYPE (parmtype)) == ctype && sufficient_parms_p (TREE_CHAIN (parmtypes)) && !(DECL_TEMPLATE_INSTANTIATION (decl) && is_member_template (DECL_TI_TEMPLATE (decl)))) { TYPE_HAS_INIT_REF (ctype) = 1; if (CP_TYPE_CONST_P (TREE_TYPE (parmtype))) TYPE_HAS_CONST_INIT_REF (ctype) = 1; } /* [class.copy] A declaration of a constructor for a class X is ill-formed if its first parameter is of type (optionally cv-qualified) X and either there are no other parameters or else all other parameters have default arguments. We *don't* complain about member template instantiations that have this form, though; they can occur as we try to decide what constructor to use during overload resolution. Since overload resolution will never prefer such a constructor to the non-template copy constructor (which is either explicitly or implicitly defined), there's no need to worry about their existence. Theoretically, they should never even be instantiated, but that's hard to forestall. */ else if (TYPE_MAIN_VARIANT (parmtype) == ctype && sufficient_parms_p (TREE_CHAIN (parmtypes)) && !(DECL_TEMPLATE_INSTANTIATION (decl) && is_member_template (DECL_TI_TEMPLATE (decl)))) { cp_error ("invalid constructor; you probably meant `%T (const %T&)'", ctype, ctype); SET_IDENTIFIER_ERROR_LOCUS (DECL_NAME (decl), ctype); return 0; } else if (TREE_CODE (parmtype) == VOID_TYPE || TREE_PURPOSE (parmtypes) != NULL_TREE) TYPE_HAS_DEFAULT_CONSTRUCTOR (ctype) = 1; return 1; } /* An operator with this code is unary, but can also be binary. */ static int ambi_op_p (code) enum tree_code code; { return (code == INDIRECT_REF || code == ADDR_EXPR || code == CONVERT_EXPR || code == NEGATE_EXPR || code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR); } /* An operator with this name can only be unary. */ static int unary_op_p (code) enum tree_code code; { return (code == TRUTH_NOT_EXPR || code == BIT_NOT_EXPR || code == COMPONENT_REF || code == TYPE_EXPR); } /* Do a little sanity-checking on how they declared their operator. */ void grok_op_properties (decl, virtualp, friendp) tree decl; int virtualp, friendp; { tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (decl)); tree argtype; int methodp = (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE); tree name = DECL_NAME (decl); enum tree_code operator_code; int arity; /* Count the number of arguments. */ for (argtype = argtypes, arity = 0; argtype && argtype != void_list_node; argtype = TREE_CHAIN (argtype)) ++arity; if (current_class_type == NULL_TREE) friendp = 1; if (DECL_CONV_FN_P (decl)) operator_code = TYPE_EXPR; else do { #define DEF_OPERATOR(NAME, CODE, NEW_MANGLING, OLD_MANGING, ARITY, ASSN_P) \ if (ansi_opname (CODE) == name) \ { \ operator_code = CODE; \ break; \ } \ else if (ansi_assopname (CODE) == name) \ { \ operator_code = CODE; \ DECL_ASSIGNMENT_OPERATOR_P (decl) = 1; \ break; \ } #include "operators.def" #undef DEF_OPERATOR my_friendly_abort (20000527); } while (0); my_friendly_assert (operator_code != LAST_CPLUS_TREE_CODE, 20000526); SET_OVERLOADED_OPERATOR_CODE (decl, operator_code); if (! friendp) { switch (operator_code) { case CALL_EXPR: TYPE_OVERLOADS_CALL_EXPR (current_class_type) = 1; break; case ARRAY_REF: TYPE_OVERLOADS_ARRAY_REF (current_class_type) = 1; break; case COMPONENT_REF: case MEMBER_REF: TYPE_OVERLOADS_ARROW (current_class_type) = 1; break; case NEW_EXPR: TYPE_HAS_NEW_OPERATOR (current_class_type) = 1; break; case DELETE_EXPR: TYPE_GETS_DELETE (current_class_type) |= 1; break; case VEC_NEW_EXPR: TYPE_HAS_ARRAY_NEW_OPERATOR (current_class_type) = 1; break; case VEC_DELETE_EXPR: TYPE_GETS_DELETE (current_class_type) |= 2; break; default: break; } } if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR) { /* When the compiler encounters the definition of A::operator new, it doesn't look at the class declaration to find out if it's static. */ if (methodp) revert_static_member_fn (decl); TREE_TYPE (decl) = coerce_new_type (TREE_TYPE (decl)); } else if (operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR) { if (methodp) revert_static_member_fn (decl); TREE_TYPE (decl) = coerce_delete_type (TREE_TYPE (decl)); } else { /* An operator function must either be a non-static member function or have at least one parameter of a class, a reference to a class, an enumeration, or a reference to an enumeration. 13.4.0.6 */ if (! methodp || DECL_STATIC_FUNCTION_P (decl)) { if (operator_code == TYPE_EXPR || operator_code == CALL_EXPR || operator_code == COMPONENT_REF || operator_code == ARRAY_REF || operator_code == NOP_EXPR) cp_error ("`%D' must be a nonstatic member function", decl); else { tree p = argtypes; if (DECL_STATIC_FUNCTION_P (decl)) cp_error ("`%D' must be either a non-static member function or a non-member function", decl); if (p) for (; TREE_CODE (TREE_VALUE (p)) != VOID_TYPE ; p = TREE_CHAIN (p)) { tree arg = TREE_VALUE (p); if (TREE_CODE (arg) == REFERENCE_TYPE) arg = TREE_TYPE (arg); /* This lets bad template code slip through. */ if (IS_AGGR_TYPE (arg) || TREE_CODE (arg) == ENUMERAL_TYPE || TREE_CODE (arg) == TEMPLATE_TYPE_PARM || TREE_CODE (arg) == BOUND_TEMPLATE_TEMPLATE_PARM) goto foundaggr; } cp_error ("`%D' must have an argument of class or enumerated type", decl); foundaggr: ; } } if (operator_code == CALL_EXPR) return; /* No restrictions on args. */ if (IDENTIFIER_TYPENAME_P (name) && ! DECL_TEMPLATE_INFO (decl)) { tree t = TREE_TYPE (name); if (! friendp) { int ref = (TREE_CODE (t) == REFERENCE_TYPE); const char *what = 0; if (ref) t = TYPE_MAIN_VARIANT (TREE_TYPE (t)); if (TREE_CODE (t) == VOID_TYPE) what = "void"; else if (t == current_class_type) what = "the same type"; /* Don't force t to be complete here. */ else if (IS_AGGR_TYPE (t) && COMPLETE_TYPE_P (t) && DERIVED_FROM_P (t, current_class_type)) what = "a base class"; if (what) warning ("conversion to %s%s will never use a type conversion operator", ref ? "a reference to " : "", what); } } if (DECL_ASSIGNMENT_OPERATOR_P (decl) && operator_code == NOP_EXPR) { tree parmtype; if (arity != 2 && methodp) { cp_error ("`%D' must take exactly one argument", decl); return; } parmtype = TREE_VALUE (TREE_CHAIN (argtypes)); /* [class.copy] A user-declared copy assignment operator X::operator= is a non-static non-template member function of class X with exactly one parameter of type X, X&, const X&, volatile X& or const volatile X&. */ if (copy_assignment_arg_p (parmtype, virtualp) && !(DECL_TEMPLATE_INSTANTIATION (decl) && is_member_template (DECL_TI_TEMPLATE (decl))) && ! friendp) { TYPE_HAS_ASSIGN_REF (current_class_type) = 1; if (TREE_CODE (parmtype) != REFERENCE_TYPE || CP_TYPE_CONST_P (TREE_TYPE (parmtype))) TYPE_HAS_CONST_ASSIGN_REF (current_class_type) = 1; } } else if (operator_code == COND_EXPR) { /* 13.4.0.3 */ cp_error ("ISO C++ prohibits overloading operator ?:"); } else if (ambi_op_p (operator_code)) { if (arity == 1) /* We pick the one-argument operator codes by default, so we don't have to change anything. */ ; else if (arity == 2) { /* If we thought this was a unary operator, we now know it to be a binary operator. */ switch (operator_code) { case INDIRECT_REF: operator_code = MULT_EXPR; break; case ADDR_EXPR: operator_code = BIT_AND_EXPR; break; case CONVERT_EXPR: operator_code = PLUS_EXPR; break; case NEGATE_EXPR: operator_code = MINUS_EXPR; break; case PREINCREMENT_EXPR: operator_code = POSTINCREMENT_EXPR; break; case PREDECREMENT_EXPR: operator_code = POSTDECREMENT_EXPR; break; default: my_friendly_abort (20000527); } SET_OVERLOADED_OPERATOR_CODE (decl, operator_code); if ((operator_code == POSTINCREMENT_EXPR || operator_code == POSTDECREMENT_EXPR) && ! processing_template_decl && ! same_type_p (TREE_VALUE (TREE_CHAIN (argtypes)), integer_type_node)) { if (methodp) cp_error ("postfix `%D' must take `int' as its argument", decl); else cp_error ("postfix `%D' must take `int' as its second argument", decl); } } else { if (methodp) cp_error ("`%D' must take either zero or one argument", decl); else cp_error ("`%D' must take either one or two arguments", decl); } /* More Effective C++ rule 6. */ if (warn_ecpp && (operator_code == POSTINCREMENT_EXPR || operator_code == POSTDECREMENT_EXPR || operator_code == PREINCREMENT_EXPR || operator_code == PREDECREMENT_EXPR)) { tree arg = TREE_VALUE (argtypes); tree ret = TREE_TYPE (TREE_TYPE (decl)); if (methodp || TREE_CODE (arg) == REFERENCE_TYPE) arg = TREE_TYPE (arg); arg = TYPE_MAIN_VARIANT (arg); if (operator_code == PREINCREMENT_EXPR || operator_code == PREDECREMENT_EXPR) { if (TREE_CODE (ret) != REFERENCE_TYPE || !same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (ret)), arg)) cp_warning ("prefix `%D' should return `%T'", decl, build_reference_type (arg)); } else { if (!same_type_p (TYPE_MAIN_VARIANT (ret), arg)) cp_warning ("postfix `%D' should return `%T'", decl, arg); } } } else if (unary_op_p (operator_code)) { if (arity != 1) { if (methodp) cp_error ("`%D' must take `void'", decl); else cp_error ("`%D' must take exactly one argument", decl); } } else /* if (binary_op_p (operator_code)) */ { if (arity != 2) { if (methodp) cp_error ("`%D' must take exactly one argument", decl); else cp_error ("`%D' must take exactly two arguments", decl); } /* More Effective C++ rule 7. */ if (warn_ecpp && (operator_code == TRUTH_ANDIF_EXPR || operator_code == TRUTH_ORIF_EXPR || operator_code == COMPOUND_EXPR)) cp_warning ("user-defined `%D' always evaluates both arguments", decl); } /* Effective C++ rule 23. */ if (warn_ecpp && arity == 2 && (operator_code == PLUS_EXPR || operator_code == MINUS_EXPR || operator_code == TRUNC_DIV_EXPR || operator_code == MULT_EXPR) && TREE_CODE (TREE_TYPE (TREE_TYPE (decl))) == REFERENCE_TYPE) cp_warning ("`%D' should return by value", decl); /* 13.4.0.8 */ for (; argtypes && argtypes != void_list_node; argtypes = TREE_CHAIN (argtypes)) if (TREE_PURPOSE (argtypes)) { TREE_PURPOSE (argtypes) = NULL_TREE; if (operator_code == POSTINCREMENT_EXPR || operator_code == POSTDECREMENT_EXPR) { if (pedantic) cp_pedwarn ("`%D' cannot have default arguments", decl); } else cp_error ("`%D' cannot have default arguments", decl); } } } static const char * tag_name (code) enum tag_types code; { switch (code) { case record_type: return "struct"; case class_type: return "class"; case union_type: return "union "; case enum_type: return "enum"; default: my_friendly_abort (981122); } } /* Get the struct, enum or union (CODE says which) with tag NAME. Define the tag as a forward-reference if it is not defined. C++: If a class derivation is given, process it here, and report an error if multiple derivation declarations are not identical. If this is a definition, come in through xref_tag and only look in the current frame for the name (since C++ allows new names in any scope.) */ tree xref_tag (code_type_node, name, globalize) tree code_type_node; tree name; int globalize; { enum tag_types tag_code; enum tree_code code; register tree ref, t; struct binding_level *b = current_binding_level; int got_type = 0; tree attributes = NULL_TREE; tree context = NULL_TREE; /* If we are called from the parser, code_type_node will sometimes be a TREE_LIST. This indicates that the user wrote "class __attribute__ ((foo)) bar". Extract the attributes so we can use them later. */ if (TREE_CODE (code_type_node) == TREE_LIST) { attributes = TREE_PURPOSE (code_type_node); code_type_node = TREE_VALUE (code_type_node); } tag_code = (enum tag_types) tree_low_cst (code_type_node, 1); switch (tag_code) { case record_type: case class_type: code = RECORD_TYPE; break; case union_type: code = UNION_TYPE; break; case enum_type: code = ENUMERAL_TYPE; break; default: my_friendly_abort (18); } /* If a cross reference is requested, look up the type already defined for this tag and return it. */ if (TYPE_P (name)) { t = name; name = TYPE_IDENTIFIER (t); got_type = 1; } else t = IDENTIFIER_TYPE_VALUE (name); /* Warn about 'friend struct Inherited;' doing the wrong thing. */ if (t && globalize && TREE_CODE (t) == TYPENAME_TYPE) { static int explained; cp_warning ("`%s %T' declares a new type at namespace scope;\n\ to refer to the inherited type, say `%s %T::%T'%s", tag_name (tag_code), name, tag_name (tag_code), constructor_name (current_class_type), TYPE_IDENTIFIER (t), (!explained ? "\n\ (names from dependent base classes are not visible to unqualified name lookup)" : "")); explained = 1; } if (t && TREE_CODE (t) != code && TREE_CODE (t) != TEMPLATE_TYPE_PARM && TREE_CODE (t) != BOUND_TEMPLATE_TEMPLATE_PARM) t = NULL_TREE; if (! globalize) { /* If we know we are defining this tag, only look it up in this scope and don't try to find it as a type. */ ref = lookup_tag (code, name, b, 1); } else { if (t) { /* [dcl.type.elab] If the identifier resolves to a typedef-name or a template type-parameter, the elaborated-type-specifier is ill-formed. */ if (t != TYPE_MAIN_VARIANT (t) || (CLASS_TYPE_P (t) && TYPE_WAS_ANONYMOUS (t))) cp_pedwarn ("using typedef-name `%D' after `%s'", TYPE_NAME (t), tag_name (tag_code)); else if (TREE_CODE (t) == TEMPLATE_TYPE_PARM) cp_error ("using template type parameter `%T' after `%s'", t, tag_name (tag_code)); ref = t; } else ref = lookup_tag (code, name, b, 0); if (! ref) { /* Try finding it as a type declaration. If that wins, use it. */ ref = lookup_name (name, 1); if (ref != NULL_TREE && processing_template_decl && DECL_CLASS_TEMPLATE_P (ref) && template_class_depth (current_class_type) == 0) /* Since GLOBALIZE is true, we're declaring a global template, so we want this type. */ ref = DECL_TEMPLATE_RESULT (ref); if (ref && TREE_CODE (ref) == TYPE_DECL && TREE_CODE (TREE_TYPE (ref)) == code) ref = TREE_TYPE (ref); else ref = NULL_TREE; } if (ref && current_class_type && template_class_depth (current_class_type) && PROCESSING_REAL_TEMPLATE_DECL_P ()) { /* Since GLOBALIZE is non-zero, we are not looking at a definition of this tag. Since, in addition, we are currently processing a (member) template declaration of a template class, we must be very careful; consider: template struct S1 template struct S2 { template friend struct S1; }; Here, the S2::S1 declaration should not be confused with the outer declaration. In particular, the inner version should have a template parameter of level 2, not level 1. This would be particularly important if the member declaration were instead: template friend struct S1; say, when we should tsubst into `U' when instantiating S2. On the other hand, when presented with: template struct S1 { template struct S2 {}; template friend struct S2; }; we must find the inner binding eventually. We accomplish this by making sure that the new type we create to represent this declaration has the right TYPE_CONTEXT. */ context = TYPE_CONTEXT (ref); ref = NULL_TREE; } } if (! ref) { /* If no such tag is yet defined, create a forward-reference node and record it as the "definition". When a real declaration of this type is found, the forward-reference will be altered into a real type. */ if (code == ENUMERAL_TYPE) { cp_error ("use of enum `%#D' without previous declaration", name); ref = make_node (ENUMERAL_TYPE); /* Give the type a default layout like unsigned int to avoid crashing if it does not get defined. */ TYPE_MODE (ref) = TYPE_MODE (unsigned_type_node); TYPE_ALIGN (ref) = TYPE_ALIGN (unsigned_type_node); TYPE_USER_ALIGN (ref) = 0; TREE_UNSIGNED (ref) = 1; TYPE_PRECISION (ref) = TYPE_PRECISION (unsigned_type_node); TYPE_MIN_VALUE (ref) = TYPE_MIN_VALUE (unsigned_type_node); TYPE_MAX_VALUE (ref) = TYPE_MAX_VALUE (unsigned_type_node); /* Enable us to recognize when a type is created in class context. To do nested classes correctly, this should probably be cleared out when we leave this classes scope. Currently this in only done in `start_enum'. */ pushtag (name, ref, globalize); } else { struct binding_level *old_b = class_binding_level; ref = make_aggr_type (code); TYPE_CONTEXT (ref) = context; #ifdef NONNESTED_CLASSES /* Class types don't nest the way enums do. */ class_binding_level = (struct binding_level *)0; #endif pushtag (name, ref, globalize); class_binding_level = old_b; } } else { if (!globalize && processing_template_decl && IS_AGGR_TYPE (ref)) redeclare_class_template (ref, current_template_parms); } /* Until the type is defined, tentatively accept whatever structure tag the user hands us. */ if (!COMPLETE_TYPE_P (ref) && ref != current_class_type /* Have to check this, in case we have contradictory tag info. */ && IS_AGGR_TYPE_CODE (TREE_CODE (ref))) { if (tag_code == class_type) CLASSTYPE_DECLARED_CLASS (ref) = 1; else if (tag_code == record_type) CLASSTYPE_DECLARED_CLASS (ref) = 0; } TREE_TYPE (ref) = attributes; return ref; } tree xref_tag_from_type (old, id, globalize) tree old, id; int globalize; { tree code_type_node; if (TREE_CODE (old) == RECORD_TYPE) code_type_node = (CLASSTYPE_DECLARED_CLASS (old) ? class_type_node : record_type_node); else code_type_node = union_type_node; if (id == NULL_TREE) id = TYPE_IDENTIFIER (old); return xref_tag (code_type_node, id, globalize); } /* REF is a type (named NAME), for which we have just seen some baseclasses. BINFO is a list of those baseclasses; the TREE_PURPOSE is an access_* node, and the TREE_VALUE is the type of the base-class. CODE_TYPE_NODE indicates whether REF is a class, struct, or union. */ void xref_basetypes (code_type_node, name, ref, binfo) tree code_type_node; tree name, ref; tree binfo; { /* In the declaration `A : X, Y, ... Z' we mark all the types (A, X, Y, ..., Z) so we can check for duplicates. */ tree binfos; tree base; int i, len; enum tag_types tag_code = (enum tag_types) tree_low_cst (code_type_node, 1); if (tag_code == union_type) { cp_error ("derived union `%T' invalid", ref); return; } len = list_length (binfo); /* First, make sure that any templates in base-classes are instantiated. This ensures that if we call ourselves recursively we do not get confused about which classes are marked and which are not. */ for (base = binfo; base; base = TREE_CHAIN (base)) complete_type (TREE_VALUE (base)); SET_CLASSTYPE_MARKED (ref); BINFO_BASETYPES (TYPE_BINFO (ref)) = binfos = make_tree_vec (len); for (i = 0; binfo; binfo = TREE_CHAIN (binfo)) { /* The base of a derived struct is public by default. */ int via_public = (TREE_PURPOSE (binfo) == access_public_node || TREE_PURPOSE (binfo) == access_public_virtual_node || (tag_code != class_type && (TREE_PURPOSE (binfo) == access_default_node || TREE_PURPOSE (binfo) == access_default_virtual_node))); int via_protected = (TREE_PURPOSE (binfo) == access_protected_node || TREE_PURPOSE (binfo) == access_protected_virtual_node); int via_virtual = (TREE_PURPOSE (binfo) == access_private_virtual_node || TREE_PURPOSE (binfo) == access_protected_virtual_node || TREE_PURPOSE (binfo) == access_public_virtual_node || TREE_PURPOSE (binfo) == access_default_virtual_node); tree basetype = TREE_VALUE (binfo); tree base_binfo; if (basetype && TREE_CODE (basetype) == TYPE_DECL) basetype = TREE_TYPE (basetype); if (!basetype || (TREE_CODE (basetype) != RECORD_TYPE && TREE_CODE (basetype) != TYPENAME_TYPE && TREE_CODE (basetype) != TEMPLATE_TYPE_PARM && TREE_CODE (basetype) != BOUND_TEMPLATE_TEMPLATE_PARM)) { cp_error ("base type `%T' fails to be a struct or class type", TREE_VALUE (binfo)); continue; } GNU_xref_hier (name, basetype, via_public, via_virtual, 0); /* This code replaces similar code in layout_basetypes. We put the complete_type first for implicit `typename'. */ if (!COMPLETE_TYPE_P (basetype) && ! (current_template_parms && uses_template_parms (basetype))) { cp_error ("base class `%T' has incomplete type", basetype); continue; } else { if (CLASSTYPE_MARKED (basetype)) { if (basetype == ref) cp_error ("recursive type `%T' undefined", basetype); else cp_error ("duplicate base type `%T' invalid", basetype); continue; } if (TYPE_FOR_JAVA (basetype) && (current_lang_stack == &VARRAY_TREE (current_lang_base, 0))) TYPE_FOR_JAVA (ref) = 1; /* Note that the BINFO records which describe individual inheritances are *not* shared in the lattice! They cannot be shared because a given baseclass may be inherited with different `accessibility' by different derived classes. (Each BINFO record describing an individual inheritance contains flags which say what the `accessibility' of that particular inheritance is.) */ base_binfo = make_binfo (size_zero_node, basetype, CLASS_TYPE_P (basetype) ? TYPE_BINFO_VTABLE (basetype) : NULL_TREE, CLASS_TYPE_P (basetype) ? TYPE_BINFO_VIRTUALS (basetype) : NULL_TREE); TREE_VEC_ELT (binfos, i) = base_binfo; TREE_VIA_PUBLIC (base_binfo) = via_public; TREE_VIA_PROTECTED (base_binfo) = via_protected; TREE_VIA_VIRTUAL (base_binfo) = via_virtual; BINFO_INHERITANCE_CHAIN (base_binfo) = TYPE_BINFO (ref); /* We need to unshare the binfos now so that lookups during class definition work. */ unshare_base_binfos (base_binfo); SET_CLASSTYPE_MARKED (basetype); /* We are free to modify these bits because they are meaningless at top level, and BASETYPE is a top-level type. */ if (via_virtual || TYPE_USES_VIRTUAL_BASECLASSES (basetype)) { TYPE_USES_VIRTUAL_BASECLASSES (ref) = 1; /* Converting to a virtual base class requires looking up the offset of the virtual base. */ TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref) = 1; } if (CLASS_TYPE_P (basetype)) { TYPE_HAS_NEW_OPERATOR (ref) |= TYPE_HAS_NEW_OPERATOR (basetype); TYPE_HAS_ARRAY_NEW_OPERATOR (ref) |= TYPE_HAS_ARRAY_NEW_OPERATOR (basetype); TYPE_GETS_DELETE (ref) |= TYPE_GETS_DELETE (basetype); /* If the base-class uses multiple inheritance, so do we. */ TYPE_USES_MULTIPLE_INHERITANCE (ref) |= TYPE_USES_MULTIPLE_INHERITANCE (basetype); /* Likewise, if converting to a base of the base may require code, then we may need to generate code to convert to a base as well. */ TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref) |= TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (basetype); } i += 1; } } if (i) TREE_VEC_LENGTH (binfos) = i; else BINFO_BASETYPES (TYPE_BINFO (ref)) = NULL_TREE; if (i > 1) { TYPE_USES_MULTIPLE_INHERITANCE (ref) = 1; /* If there is more than one non-empty they cannot be at the same address. */ TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (ref) = 1; } /* Unmark all the types. */ while (--i >= 0) CLEAR_CLASSTYPE_MARKED (BINFO_TYPE (TREE_VEC_ELT (binfos, i))); CLEAR_CLASSTYPE_MARKED (ref); /* Now that we know all the base-classes, set up the list of virtual bases. */ get_vbase_types (ref); } /* Begin compiling the definition of an enumeration type. NAME is its name (or null if anonymous). Returns the type object, as yet incomplete. Also records info about it so that build_enumerator may be used to declare the individual values as they are read. */ tree start_enum (name) tree name; { register tree enumtype = NULL_TREE; struct binding_level *b = current_binding_level; /* If this is the real definition for a previous forward reference, fill in the contents in the same object that used to be the forward reference. */ if (name != NULL_TREE) enumtype = lookup_tag (ENUMERAL_TYPE, name, b, 1); if (enumtype != NULL_TREE && TREE_CODE (enumtype) == ENUMERAL_TYPE) { cp_error ("multiple definition of `%#T'", enumtype); cp_error_at ("previous definition here", enumtype); /* Clear out TYPE_VALUES, and start again. */ TYPE_VALUES (enumtype) = NULL_TREE; } else { enumtype = make_node (ENUMERAL_TYPE); pushtag (name, enumtype, 0); } if (current_class_type) TREE_ADDRESSABLE (b->tags) = 1; GNU_xref_decl (current_function_decl, enumtype); return enumtype; } /* After processing and defining all the values of an enumeration type, install their decls in the enumeration type and finish it off. ENUMTYPE is the type object and VALUES a list of name-value pairs. Returns ENUMTYPE. */ tree finish_enum (enumtype) tree enumtype; { register tree minnode = NULL_TREE, maxnode = NULL_TREE; /* Calculate the maximum value of any enumerator in this type. */ tree values = TYPE_VALUES (enumtype); if (values) { tree pair; for (pair = values; pair; pair = TREE_CHAIN (pair)) { tree decl; tree value; /* The TREE_VALUE is a CONST_DECL for this enumeration constant. */ decl = TREE_VALUE (pair); /* [dcl.enum] Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration. Prior to the closing brace, the type of each enumerator is the type of its initializing value. */ TREE_TYPE (decl) = enumtype; /* The DECL_INITIAL will be NULL if we are processing a template declaration and this enumeration constant had no explicit initializer. */ value = DECL_INITIAL (decl); if (value && !processing_template_decl) { /* Set the TREE_TYPE for the VALUE as well. That's so that when we call decl_constant_value we get an entity of the right type (but with the constant value). Since we shouldn't ever call decl_constant_value on a template type, there's no reason to do that when processing_template_decl. And, if the expression is something like a TEMPLATE_PARM_INDEX or a CAST_EXPR doing so will wreak havoc on the intended type of the expression. Of course, there's also no point in trying to compute minimum or maximum values if we're in a template. */ TREE_TYPE (value) = enumtype; if (!minnode) minnode = maxnode = value; else if (tree_int_cst_lt (maxnode, value)) maxnode = value; else if (tree_int_cst_lt (value, minnode)) minnode = value; } if (processing_template_decl) /* If this is just a template, leave the CONST_DECL alone. That way tsubst_copy will find CONST_DECLs for CONST_DECLs, and not INTEGER_CSTs. */ ; else /* In the list we're building up, we want the enumeration values, not the CONST_DECLs. */ TREE_VALUE (pair) = value; } } else maxnode = minnode = integer_zero_node; TYPE_VALUES (enumtype) = nreverse (values); if (processing_template_decl) { tree scope = current_scope (); if (scope && TREE_CODE (scope) == FUNCTION_DECL) add_stmt (build_min (TAG_DEFN, enumtype)); } else { int unsignedp = tree_int_cst_sgn (minnode) >= 0; int lowprec = min_precision (minnode, unsignedp); int highprec = min_precision (maxnode, unsignedp); int precision = MAX (lowprec, highprec); tree tem; TYPE_SIZE (enumtype) = NULL_TREE; /* Set TYPE_MIN_VALUE and TYPE_MAX_VALUE according to `precision'. */ TYPE_PRECISION (enumtype) = precision; if (unsignedp) fixup_unsigned_type (enumtype); else fixup_signed_type (enumtype); if (flag_short_enums || (precision > TYPE_PRECISION (integer_type_node))) /* Use the width of the narrowest normal C type which is wide enough. */ TYPE_PRECISION (enumtype) = TYPE_PRECISION (type_for_size (precision, 1)); else TYPE_PRECISION (enumtype) = TYPE_PRECISION (integer_type_node); TYPE_SIZE (enumtype) = 0; layout_type (enumtype); /* Fix up all variant types of this enum type. */ for (tem = TYPE_MAIN_VARIANT (enumtype); tem; tem = TYPE_NEXT_VARIANT (tem)) { TYPE_VALUES (tem) = TYPE_VALUES (enumtype); TYPE_MIN_VALUE (tem) = TYPE_MIN_VALUE (enumtype); TYPE_MAX_VALUE (tem) = TYPE_MAX_VALUE (enumtype); TYPE_SIZE (tem) = TYPE_SIZE (enumtype); TYPE_SIZE_UNIT (tem) = TYPE_SIZE_UNIT (enumtype); TYPE_MODE (tem) = TYPE_MODE (enumtype); TYPE_PRECISION (tem) = TYPE_PRECISION (enumtype); TYPE_ALIGN (tem) = TYPE_ALIGN (enumtype); TYPE_USER_ALIGN (tem) = TYPE_USER_ALIGN (enumtype); TREE_UNSIGNED (tem) = TREE_UNSIGNED (enumtype); } /* Finish debugging output for this type. */ rest_of_type_compilation (enumtype, namespace_bindings_p ()); } return enumtype; } /* Build and install a CONST_DECL for an enumeration constant of the enumeration type ENUMTYPE whose NAME and VALUE (if any) are provided. Assignment of sequential values by default is handled here. */ void build_enumerator (name, value, enumtype) tree name; tree value; tree enumtype; { tree decl; tree context; tree type; tree values; /* Remove no-op casts from the value. */ if (value) STRIP_TYPE_NOPS (value); if (! processing_template_decl) { /* Validate and default VALUE. */ if (value != NULL_TREE) { value = decl_constant_value (value); if (TREE_CODE (value) == INTEGER_CST) { value = default_conversion (value); constant_expression_warning (value); } else { cp_error ("enumerator value for `%D' not integer constant", name); value = NULL_TREE; } } /* Default based on previous value. */ if (value == NULL_TREE && ! processing_template_decl) { tree prev_value; if (TYPE_VALUES (enumtype)) { /* The next value is the previous value ... */ prev_value = DECL_INITIAL (TREE_VALUE (TYPE_VALUES (enumtype))); /* ... plus one. */ value = cp_build_binary_op (PLUS_EXPR, prev_value, integer_one_node); if (tree_int_cst_lt (value, prev_value)) cp_error ("overflow in enumeration values at `%D'", name); } else value = integer_zero_node; } /* Remove no-op casts from the value. */ if (value) STRIP_TYPE_NOPS (value); #if 0 /* To fix MAX_VAL enum consts. (bkoz) */ TREE_TYPE (value) = integer_type_node; #endif } /* We always have to copy here; not all INTEGER_CSTs are unshared. Even in other cases, we will later (in finish_enum) be setting the type of VALUE. But, we don't need to make a copy if this VALUE is one of the enumeration constants for this same enumeration type. */ for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values)) if (TREE_VALUE (values) == value) break; /* If we didn't break out of the loop, then we do need a copy. */ if (!values && value) value = copy_node (value); /* C++ associates enums with global, function, or class declarations. */ context = current_scope (); /* Build the actual enumeration constant. Note that the enumeration constants have the type of their initializers until the enumeration is complete: [ dcl.enum ] Following the closing brace of an enum-specifier, each enumer- ator has the type of its enumeration. Prior to the closing brace, the type of each enumerator is the type of its initializing value. In finish_enum we will reset the type. Of course, if we're processing a template, there may be no value. */ type = value ? TREE_TYPE (value) : NULL_TREE; if (context && context == current_class_type) /* This enum declaration is local to the class. We need the full lang_decl so that we can record DECL_CLASS_CONTEXT, for example. */ decl = build_lang_decl (CONST_DECL, name, type); else /* It's a global enum, or it's local to a function. (Note local to a function could mean local to a class method. */ decl = build_decl (CONST_DECL, name, type); DECL_CONTEXT (decl) = FROB_CONTEXT (context); DECL_INITIAL (decl) = value; TREE_READONLY (decl) = 1; if (context && context == current_class_type) /* In something like `struct S { enum E { i = 7 }; };' we put `i' on the TYPE_FIELDS list for `S'. (That's so that you can say things like `S::i' later.) */ finish_member_declaration (decl); else { pushdecl (decl); GNU_xref_decl (current_function_decl, decl); } /* Add this enumeration constant to the list for this type. */ TYPE_VALUES (enumtype) = tree_cons (name, decl, TYPE_VALUES (enumtype)); } /* We're defining DECL. Make sure that it's type is OK. */ static void check_function_type (decl, current_function_parms) tree decl; tree current_function_parms; { tree fntype = TREE_TYPE (decl); tree return_type = complete_type (TREE_TYPE (fntype)); /* In a function definition, arg types must be complete. */ require_complete_types_for_parms (current_function_parms); if (!COMPLETE_OR_VOID_TYPE_P (return_type)) { cp_error ("return type `%#T' is incomplete", TREE_TYPE (fntype)); /* Make it return void instead, but don't change the type of the DECL_RESULT, in case we have a named return value. */ if (TREE_CODE (fntype) == METHOD_TYPE) { tree ctype = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fntype))); TREE_TYPE (decl) = build_cplus_method_type (ctype, void_type_node, FUNCTION_ARG_CHAIN (decl)); } else TREE_TYPE (decl) = build_function_type (void_type_node, TYPE_ARG_TYPES (TREE_TYPE (decl))); TREE_TYPE (decl) = build_exception_variant (fntype, TYPE_RAISES_EXCEPTIONS (fntype)); } else abstract_virtuals_error (decl, TREE_TYPE (fntype)); } /* Create the FUNCTION_DECL for a function definition. DECLSPECS and DECLARATOR are the parts of the declaration; they describe the function's name and the type it returns, but twisted together in a fashion that parallels the syntax of C. FLAGS is a bitwise or of SF_PRE_PARSED (indicating that the DECLARATOR is really the DECL for the function we are about to process and that DECLSPECS should be ignored), SF_INCLASS_INLINE indicating that the function is an inline defined in-class. This function creates a binding context for the function body as well as setting up the FUNCTION_DECL in current_function_decl. Returns 1 on success. If the DECLARATOR is not suitable for a function (it defines a datum instead), we return 0, which tells yyparse to report a parse error. For C++, we must first check whether that datum makes any sense. For example, "class A local_a(1,2);" means that variable local_a is an aggregate of type A, which should have a constructor applied to it with the argument list [1, 2]. */ int start_function (declspecs, declarator, attrs, flags) tree declspecs, declarator, attrs; int flags; { tree decl1; tree ctype = NULL_TREE; tree fntype; tree restype; extern int have_extern_spec; extern int used_extern_spec; int doing_friend = 0; struct binding_level *bl; tree current_function_parms; /* Sanity check. */ my_friendly_assert (TREE_CODE (TREE_VALUE (void_list_node)) == VOID_TYPE, 160); my_friendly_assert (TREE_CHAIN (void_list_node) == NULL_TREE, 161); /* This should only be done once on the top most decl. */ if (have_extern_spec && !used_extern_spec) { declspecs = tree_cons (NULL_TREE, get_identifier ("extern"), declspecs); used_extern_spec = 1; } if (flags & SF_PRE_PARSED) { decl1 = declarator; fntype = TREE_TYPE (decl1); if (TREE_CODE (fntype) == METHOD_TYPE) ctype = TYPE_METHOD_BASETYPE (fntype); /* ISO C++ 11.4/5. A friend function defined in a class is in the (lexical) scope of the class in which it is defined. */ if (!ctype && DECL_FRIEND_P (decl1)) { ctype = DECL_FRIEND_CONTEXT (decl1); /* CTYPE could be null here if we're dealing with a template; for example, `inline friend float foo()' inside a template will have no CTYPE set. */ if (ctype && TREE_CODE (ctype) != RECORD_TYPE) ctype = NULL_TREE; else doing_friend = 1; } last_function_parms = DECL_ARGUMENTS (decl1); last_function_parm_tags = NULL_TREE; } else { decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, 1, NULL_TREE); /* If the declarator is not suitable for a function definition, cause a syntax error. */ if (decl1 == NULL_TREE || TREE_CODE (decl1) != FUNCTION_DECL) return 0; fntype = TREE_TYPE (decl1); restype = TREE_TYPE (fntype); if (CLASS_TYPE_P (restype) && !CLASSTYPE_GOT_SEMICOLON (restype)) { cp_error ("semicolon missing after declaration of `%#T'", restype); shadow_tag (build_tree_list (NULL_TREE, restype)); CLASSTYPE_GOT_SEMICOLON (restype) = 1; if (TREE_CODE (fntype) == FUNCTION_TYPE) fntype = build_function_type (integer_type_node, TYPE_ARG_TYPES (fntype)); else fntype = build_cplus_method_type (build_type_variant (TYPE_METHOD_BASETYPE (fntype), TREE_READONLY (decl1), TREE_SIDE_EFFECTS (decl1)), integer_type_node, TYPE_ARG_TYPES (fntype)); TREE_TYPE (decl1) = fntype; } if (TREE_CODE (fntype) == METHOD_TYPE) ctype = TYPE_METHOD_BASETYPE (fntype); else if (DECL_MAIN_P (decl1)) { /* If this doesn't return integer_type, complain. */ if (TREE_TYPE (TREE_TYPE (decl1)) != integer_type_node) { if (pedantic || warn_return_type) pedwarn ("return type for `main' changed to `int'"); TREE_TYPE (decl1) = fntype = default_function_type; } } } /* Sometimes we don't notice that a function is a static member, and build a METHOD_TYPE for it. Fix that up now. */ if (ctype != NULL_TREE && DECL_STATIC_FUNCTION_P (decl1) && TREE_CODE (TREE_TYPE (decl1)) == METHOD_TYPE) { revert_static_member_fn (decl1); last_function_parms = TREE_CHAIN (last_function_parms); ctype = NULL_TREE; } /* Warn if function was previously implicitly declared (but not if we warned then). */ if (! warn_implicit && IDENTIFIER_IMPLICIT_DECL (DECL_NAME (decl1)) != NULL_TREE) cp_warning_at ("`%D' implicitly declared before its definition", IDENTIFIER_IMPLICIT_DECL (DECL_NAME (decl1))); /* Set up current_class_type, and enter the scope of the class, if appropriate. */ if (ctype) push_nested_class (ctype, 1); else if (DECL_STATIC_FUNCTION_P (decl1)) push_nested_class (DECL_CONTEXT (decl1), 2); /* Now that we have entered the scope of the class, we must restore the bindings for any template parameters surrounding DECL1, if it is an inline member template. (Order is important; consider the case where a template parameter has the same name as a field of the class.) It is not until after this point that PROCESSING_TEMPLATE_DECL is guaranteed to be set up correctly. */ if (flags & SF_INCLASS_INLINE) maybe_begin_member_template_processing (decl1); /* Effective C++ rule 15. */ if (warn_ecpp && DECL_OVERLOADED_OPERATOR_P (decl1) == NOP_EXPR && TREE_CODE (TREE_TYPE (fntype)) == VOID_TYPE) cp_warning ("`operator=' should return a reference to `*this'"); /* Make the init_value nonzero so pushdecl knows this is not tentative. error_mark_node is replaced below (in poplevel) with the BLOCK. */ if (!DECL_INITIAL (decl1)) DECL_INITIAL (decl1) = error_mark_node; #ifdef SET_DEFAULT_DECL_ATTRIBUTES SET_DEFAULT_DECL_ATTRIBUTES (decl1, attrs); #endif /* This function exists in static storage. (This does not mean `static' in the C sense!) */ TREE_STATIC (decl1) = 1; /* We must call push_template_decl after current_class_type is set up. (If we are processing inline definitions after exiting a class scope, current_class_type will be NULL_TREE until set above by push_nested_class.) */ if (processing_template_decl) decl1 = push_template_decl (decl1); /* We are now in the scope of the function being defined. */ current_function_decl = decl1; /* Save the parm names or decls from this function's declarator where store_parm_decls will find them. */ current_function_parms = last_function_parms; current_function_parm_tags = last_function_parm_tags; /* Make sure the parameter and return types are reasonable. When you declare a function, these types can be incomplete, but they must be complete when you define the function. */ if (! processing_template_decl) check_function_type (decl1, current_function_parms); /* Build the return declaration for the function. */ restype = TREE_TYPE (fntype); if (!processing_template_decl) { if (!DECL_RESULT (decl1)) { DECL_RESULT (decl1) = build_decl (RESULT_DECL, 0, TYPE_MAIN_VARIANT (restype)); c_apply_type_quals_to_decl (CP_TYPE_QUALS (restype), DECL_RESULT (decl1)); } } else /* Just use `void'. Nobody will ever look at this anyhow. */ DECL_RESULT (decl1) = build_decl (RESULT_DECL, 0, void_type_node); /* Initialize RTL machinery. We cannot do this until CURRENT_FUNCTION_DECL and DECL_RESULT are set up. We do this even when processing a template; this is how we get CFUN set up, and our per-function variables initialized. FIXME factor out the non-RTL stuff. */ bl = current_binding_level; init_function_start (decl1, input_filename, lineno); current_binding_level = bl; /* Even though we're inside a function body, we still don't want to call expand_expr to calculate the size of a variable-sized array. We haven't necessarily assigned RTL to all variables yet, so it's not safe to try to expand expressions involving them. */ immediate_size_expand = 0; cfun->x_dont_save_pending_sizes_p = 1; /* Start the statement-tree, start the tree now. */ begin_stmt_tree (&DECL_SAVED_TREE (decl1)); /* Let the user know we're compiling this function. */ announce_function (decl1); /* Record the decl so that the function name is defined. If we already have a decl for this name, and it is a FUNCTION_DECL, use the old decl. */ if (!processing_template_decl && !(flags & SF_PRE_PARSED)) { /* A specialization is not used to guide overload resolution. */ if (!DECL_TEMPLATE_SPECIALIZATION (decl1) && ! DECL_FUNCTION_MEMBER_P (decl1)) decl1 = pushdecl (decl1); else { /* We need to set the DECL_CONTEXT. */ if (!DECL_CONTEXT (decl1) && DECL_TEMPLATE_INFO (decl1)) DECL_CONTEXT (decl1) = DECL_CONTEXT (DECL_TI_TEMPLATE (decl1)); /* And make sure we have enough default args. */ check_default_args (decl1); } fntype = TREE_TYPE (decl1); } /* Reset these in case the call to pushdecl changed them. */ current_function_decl = decl1; cfun->decl = decl1; /* If we are (erroneously) defining a function that we have already defined before, wipe out what we knew before. */ if (!DECL_PENDING_INLINE_P (decl1) && DECL_SAVED_FUNCTION_DATA (decl1)) { free (DECL_SAVED_FUNCTION_DATA (decl1)); DECL_SAVED_FUNCTION_DATA (decl1) = NULL; } if (ctype && !doing_friend && !DECL_STATIC_FUNCTION_P (decl1)) { /* We know that this was set up by `grokclassfn'. We do not wait until `store_parm_decls', since evil parse errors may never get us to that point. Here we keep the consistency between `current_class_type' and `current_class_ptr'. */ tree t = DECL_ARGUMENTS (decl1); my_friendly_assert (t != NULL_TREE && TREE_CODE (t) == PARM_DECL, 162); my_friendly_assert (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE, 19990811); cp_function_chain->x_current_class_ref = build_indirect_ref (t, NULL_PTR); cp_function_chain->x_current_class_ptr = t; /* Constructors and destructors need to know whether they're "in charge" of initializing virtual base classes. */ if (DECL_HAS_IN_CHARGE_PARM_P (decl1)) current_in_charge_parm = TREE_CHAIN (t); } if (DECL_INTERFACE_KNOWN (decl1)) { tree ctx = decl_function_context (decl1); if (DECL_NOT_REALLY_EXTERN (decl1)) DECL_EXTERNAL (decl1) = 0; if (ctx != NULL_TREE && DECL_THIS_INLINE (ctx) && TREE_PUBLIC (ctx)) /* This is a function in a local class in an extern inline function. */ comdat_linkage (decl1); } /* If this function belongs to an interface, it is public. If it belongs to someone else's interface, it is also external. This only affects inlines and template instantiations. */ else if (interface_unknown == 0 && (! DECL_TEMPLATE_INSTANTIATION (decl1) || flag_alt_external_templates)) { if (DECL_THIS_INLINE (decl1) || DECL_TEMPLATE_INSTANTIATION (decl1) || processing_template_decl) { DECL_EXTERNAL (decl1) = (interface_only || (DECL_THIS_INLINE (decl1) && ! flag_implement_inlines && !DECL_VINDEX (decl1))); /* For WIN32 we also want to put these in linkonce sections. */ maybe_make_one_only (decl1); } else DECL_EXTERNAL (decl1) = 0; DECL_NOT_REALLY_EXTERN (decl1) = 0; DECL_INTERFACE_KNOWN (decl1) = 1; } else if (interface_unknown && interface_only && (! DECL_TEMPLATE_INSTANTIATION (decl1) || flag_alt_external_templates)) { /* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma interface, we will have interface_only set but not interface_known. In that case, we don't want to use the normal heuristics because someone will supply a #pragma implementation elsewhere, and deducing it here would produce a conflict. */ comdat_linkage (decl1); DECL_EXTERNAL (decl1) = 0; DECL_INTERFACE_KNOWN (decl1) = 1; DECL_DEFER_OUTPUT (decl1) = 1; } else { /* This is a definition, not a reference. So clear DECL_EXTERNAL. */ DECL_EXTERNAL (decl1) = 0; if ((DECL_THIS_INLINE (decl1) || DECL_TEMPLATE_INSTANTIATION (decl1)) && ! DECL_INTERFACE_KNOWN (decl1) /* Don't try to defer nested functions for now. */ && ! decl_function_context (decl1)) DECL_DEFER_OUTPUT (decl1) = 1; else DECL_INTERFACE_KNOWN (decl1) = 1; } pushlevel (0); current_binding_level->parm_flag = 1; if (attrs) cplus_decl_attributes (decl1, NULL_TREE, attrs); /* We need to do this even if we aren't expanding yet so that assemble_external works. */ make_function_rtl (decl1); /* Promote the value to int before returning it. */ if (C_PROMOTING_INTEGER_TYPE_P (restype)) restype = type_promotes_to (restype); /* If this fcn was already referenced via a block-scope `extern' decl (or an implicit decl), propagate certain information about the usage. */ if (TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (decl1))) TREE_ADDRESSABLE (decl1) = 1; if (DECL_RESULT (decl1) == NULL_TREE) { DECL_RESULT (decl1) = build_decl (RESULT_DECL, 0, TYPE_MAIN_VARIANT (restype)); TREE_READONLY (DECL_RESULT (decl1)) = CP_TYPE_CONST_P (restype); TREE_THIS_VOLATILE (DECL_RESULT (decl1)) = CP_TYPE_VOLATILE_P (restype); } ++function_depth; if (DECL_DESTRUCTOR_P (decl1)) { dtor_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); DECL_CONTEXT (dtor_label) = current_function_decl; } /* Under the old ABI we return `this' from constructors, so we make ordinary `return' statements in constructors jump to CTOR_LABEL; from there we return `this'. Under the new ABI, we don't bother with any of this. By not setting CTOR_LABEL the remainder of the machinery is automatically disabled. */ else if (!flag_new_abi && DECL_CONSTRUCTOR_P (decl1)) { ctor_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); DECL_CONTEXT (ctor_label) = current_function_decl; } store_parm_decls (current_function_parms); return 1; } /* Store the parameter declarations into the current function declaration. This is called after parsing the parameter declarations, before digesting the body of the function. Also install to binding contour return value identifier, if any. */ static void store_parm_decls (current_function_parms) tree current_function_parms; { register tree fndecl = current_function_decl; register tree parm; int parms_have_cleanups = 0; tree cleanups = NULL_TREE; /* This is a list of types declared among parms in a prototype. */ tree parmtags = current_function_parm_tags; /* This is a chain of any other decls that came in among the parm declarations. If a parm is declared with enum {foo, bar} x; then CONST_DECLs for foo and bar are put here. */ tree nonparms = NULL_TREE; if (current_function_parms) { /* This case is when the function was defined with an ANSI prototype. The parms already have decls, so we need not do anything here except record them as in effect and complain if any redundant old-style parm decls were written. */ tree specparms = current_function_parms; tree next; /* Must clear this because it might contain TYPE_DECLs declared at class level. */ storedecls (NULL_TREE); /* If we're doing semantic analysis, then we'll call pushdecl for each of these. We must do them in reverse order so that they end in the correct forward order. */ specparms = nreverse (specparms); for (parm = specparms; parm; parm = next) { next = TREE_CHAIN (parm); if (TREE_CODE (parm) == PARM_DECL) { tree cleanup; if (DECL_NAME (parm) == NULL_TREE || TREE_CODE (parm) != VOID_TYPE) pushdecl (parm); else cp_error ("parameter `%D' declared void", parm); cleanup = (processing_template_decl ? NULL_TREE : maybe_build_cleanup (parm)); if (cleanup) cleanups = tree_cons (parm, cleanup, cleanups); } else { /* If we find an enum constant or a type tag, put it aside for the moment. */ TREE_CHAIN (parm) = NULL_TREE; nonparms = chainon (nonparms, parm); } } /* Get the decls in their original chain order and record in the function. This is all and only the PARM_DECLs that were pushed into scope by the loop above. */ DECL_ARGUMENTS (fndecl) = getdecls (); storetags (chainon (parmtags, gettags ())); } else DECL_ARGUMENTS (fndecl) = NULL_TREE; /* Now store the final chain of decls for the arguments as the decl-chain of the current lexical scope. Put the enumerators in as well, at the front so that DECL_ARGUMENTS is not modified. */ storedecls (chainon (nonparms, DECL_ARGUMENTS (fndecl))); /* Now that we have initialized the parms, we can start their cleanups. We cannot do this before, since expand_decl_cleanup should not be called before the parm can be used. */ while (cleanups) { finish_decl_cleanup (TREE_PURPOSE (cleanups), TREE_VALUE (cleanups)); cleanups = TREE_CHAIN (cleanups); } /* Create a binding contour which can be used to catch cleanup-generated temporaries. */ if (parms_have_cleanups) pushlevel (0); /* Do the starting of the exception specifications, if we have any. */ if (flag_exceptions && !processing_template_decl && flag_enforce_eh_specs && TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl))) current_eh_spec_try_block = expand_start_eh_spec (); } /* We have finished doing semantic analysis on DECL, but have not yet generated RTL for its body. Save away our current state, so that when we want to generate RTL later we know what to do. */ static void save_function_data (decl) tree decl; { struct cp_language_function *f; /* Save the language-specific per-function data so that we can get it back when we really expand this function. */ my_friendly_assert (!DECL_PENDING_INLINE_P (decl), 19990908); /* Make a copy. */ f = ((struct cp_language_function *) xmalloc (sizeof (struct cp_language_function))); memcpy (f, cp_function_chain, sizeof (struct cp_language_function)); DECL_SAVED_FUNCTION_DATA (decl) = f; /* Clear out the bits we don't need. */ f->base.x_stmt_tree.x_last_stmt = NULL_TREE; f->base.x_stmt_tree.x_last_expr_type = NULL_TREE; f->x_named_label_uses = NULL; f->bindings = NULL; /* When we get back here again, we will be expanding. */ f->x_expanding_p = 1; /* If we've already decided that we cannot inline this function, we must remember that fact when we actually go to expand the function. */ f->cannot_inline = current_function_cannot_inline; } /* At the end of every constructor we generate to code to return `this'. Do that now. */ static void finish_constructor_body () { /* Any return from a constructor will end up here. */ if (ctor_label) add_stmt (build_stmt (LABEL_STMT, ctor_label)); /* Clear CTOR_LABEL so that finish_return_stmt knows to really generate the return, rather than a goto to CTOR_LABEL. */ ctor_label = NULL_TREE; /* In check_return_expr we translate an empty return from a constructor to a return of `this'. */ finish_return_stmt (NULL_TREE); /* Mark the end of the constructor. */ add_stmt (build_stmt (CTOR_STMT)); } /* At the end of every destructor we generate code to restore virtual function tables to the values desired by base classes and to call to base class destructors. Do that now. */ static void finish_destructor_body () { tree compound_stmt; tree virtual_size; tree exprstmt; tree if_stmt; /* Create a block to contain all the extra code. */ compound_stmt = begin_compound_stmt (/*has_no_scope=*/0); /* Any return from a destructor will end up here. */ add_stmt (build_stmt (LABEL_STMT, dtor_label)); /* Generate the code to call destructor on base class. If this destructor belongs to a class with virtual functions, then set the virtual function table pointer to represent the type of our base class. */ /* This side-effect makes call to `build_delete' generate the code we have to have at the end of this destructor. `build_delete' will set the flag again. */ TYPE_HAS_DESTRUCTOR (current_class_type) = 0; exprstmt = build_delete (current_class_type, current_class_ref, sfk_base_destructor, LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL, 0); if (exprstmt != error_mark_node && (TREE_CODE (exprstmt) != NOP_EXPR || TREE_OPERAND (exprstmt, 0) != integer_zero_node || TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))) { if (exprstmt != void_zero_node) /* Don't call `expand_expr_stmt' if we're not going to do anything, since -Wall will give a diagnostic. */ finish_expr_stmt (exprstmt); /* Run destructors for all virtual baseclasses. */ if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type)) { tree vbases; tree if_stmt; if_stmt = begin_if_stmt (); finish_if_stmt_cond (build (BIT_AND_EXPR, integer_type_node, current_in_charge_parm, integer_two_node), if_stmt); vbases = CLASSTYPE_VBASECLASSES (current_class_type); /* The CLASSTYPE_VBASECLASSES list is in initialization order, so we have to march through it in reverse order. */ for (vbases = nreverse (copy_list (vbases)); vbases; vbases = TREE_CHAIN (vbases)) { tree vbase = TREE_VALUE (vbases); if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (vbase))) { tree vb = get_vbase (BINFO_TYPE (vbase), TYPE_BINFO (current_class_type)); finish_expr_stmt (build_scoped_method_call (current_class_ref, vb, base_dtor_identifier, NULL_TREE)); } } finish_then_clause (if_stmt); finish_if_stmt (); } } virtual_size = c_sizeof (current_class_type); /* At the end, call delete if that's what's requested. */ /* FDIS sez: At the point of definition of a virtual destructor (including an implicit definition), non-placement operator delete shall be looked up in the scope of the destructor's class and if found shall be accessible and unambiguous. This is somewhat unclear, but I take it to mean that if the class only defines placement deletes we don't do anything here. So we pass LOOKUP_SPECULATIVELY; delete_sanity will complain for us if they ever try to delete one of these. */ exprstmt = build_op_delete_call (DELETE_EXPR, current_class_ptr, virtual_size, LOOKUP_NORMAL | LOOKUP_SPECULATIVELY, NULL_TREE); if_stmt = begin_if_stmt (); finish_if_stmt_cond (build (BIT_AND_EXPR, integer_type_node, current_in_charge_parm, integer_one_node), if_stmt); finish_expr_stmt (exprstmt); finish_then_clause (if_stmt); finish_if_stmt (); /* Close the block we started above. */ finish_compound_stmt (/*has_no_scope=*/0, compound_stmt); } /* Finish up a function declaration and compile that function all the way to assembler language output. The free the storage for the function definition. FLAGS is a bitwise or of the following values: 1 - CALL_POPLEVEL An extra call to poplevel (and expand_end_bindings) must be made to take care of the binding contour for the base initializers. This is only relevant for constructors. 2 - INCLASS_INLINE We just finished processing the body of an in-class inline function definition. (This processing will have taken place after the class definition is complete.) */ tree finish_function (flags) int flags; { register tree fndecl = current_function_decl; tree fntype, ctype = NULL_TREE; int call_poplevel = (flags & 1) != 0; int inclass_inline = (flags & 2) != 0; int nested; /* When we get some parse errors, we can end up without a current_function_decl, so cope. */ if (fndecl == NULL_TREE) return error_mark_node; nested = function_depth > 1; fntype = TREE_TYPE (fndecl); /* TREE_READONLY (fndecl) = 1; This caused &foo to be of type ptr-to-const-function which then got a warning when stored in a ptr-to-function variable. */ my_friendly_assert (building_stmt_tree (), 20000911); /* For a cloned function, we've already got all the code we need; there's no need to add any extra bits. */ if (!DECL_CLONED_FUNCTION_P (fndecl)) { if (DECL_CONSTRUCTOR_P (fndecl)) { finish_constructor_body (); if (call_poplevel) do_poplevel (); } else if (DECL_DESTRUCTOR_P (fndecl) && !processing_template_decl) finish_destructor_body (); else if (DECL_MAIN_P (fndecl)) { /* Make it so that `main' always returns 0 by default. */ #ifdef VMS finish_return_stmt (integer_one_node); #else finish_return_stmt (integer_zero_node); #endif } /* Finish dealing with exception specifiers. */ if (flag_exceptions && !processing_template_decl && flag_enforce_eh_specs && TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl))) expand_end_eh_spec (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl)), current_eh_spec_try_block); } /* If we're saving up tree structure, tie off the function now. */ finish_stmt_tree (&DECL_SAVED_TREE (fndecl)); /* This must come after expand_function_end because cleanups might have declarations (from inline functions) that need to go into this function's blocks. */ if (current_binding_level->parm_flag != 1) my_friendly_abort (122); poplevel (1, 0, 1); /* Remember that we were in class scope. */ if (current_class_name) ctype = current_class_type; /* Must mark the RESULT_DECL as being in this function. */ DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl; /* Set the BLOCK_SUPERCONTEXT of the outermost function scope to point to the FUNCTION_DECL node itself. */ BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl; /* Save away current state, if appropriate. */ if (!processing_template_decl) save_function_data (fndecl); /* If this function calls `setjmp' it cannot be inlined. When `longjmp' is called it is not guaranteed to restore the value of local variables that have been modified since the call to `setjmp'. So, if were to inline this function into some caller `c', then when we `longjmp', we might not restore all variables in `c'. (It might seem, at first blush, that there's no way for this function to modify local variables in `c', but their addresses may have been stored somewhere accessible to this function.) */ if (!processing_template_decl && calls_setjmp_p (fndecl)) DECL_UNINLINABLE (fndecl) = 1; /* Clear out memory we no longer need. */ free_after_parsing (cfun); /* Since we never call rest_of_compilation, we never clear CFUN. Do so explicitly. */ free_after_compilation (cfun); cfun = NULL; /* If this is a in-class inline definition, we may have to pop the bindings for the template parameters that we added in maybe_begin_member_template_processing when start_function was called. */ if (inclass_inline) maybe_end_member_template_processing (); /* Leave the scope of the class. */ if (ctype) pop_nested_class (); --function_depth; /* Clean up. */ if (! nested) /* Let the error reporting routines know that we're outside a function. For a nested function, this value is used in pop_cp_function_context and then reset via pop_function_context. */ current_function_decl = NULL_TREE; return fndecl; } /* Create the FUNCTION_DECL for a function definition. DECLSPECS and DECLARATOR are the parts of the declaration; they describe the return type and the name of the function, but twisted together in a fashion that parallels the syntax of C. This function creates a binding context for the function body as well as setting up the FUNCTION_DECL in current_function_decl. Returns a FUNCTION_DECL on success. If the DECLARATOR is not suitable for a function (it defines a datum instead), we return 0, which tells yyparse to report a parse error. May return void_type_node indicating that this method is actually a friend. See grokfield for more details. Came here with a `.pushlevel' . DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING CHANGES TO CODE IN `grokfield'. */ tree start_method (declspecs, declarator, attrlist) tree declarator, declspecs, attrlist; { tree fndecl = grokdeclarator (declarator, declspecs, MEMFUNCDEF, 0, attrlist); /* Something too ugly to handle. */ if (fndecl == NULL_TREE) return NULL_TREE; /* Pass friends other than inline friend functions back. */ if (fndecl == void_type_node) return fndecl; if (TREE_CODE (fndecl) != FUNCTION_DECL) /* Not a function, tell parser to report parse error. */ return NULL_TREE; if (DECL_IN_AGGR_P (fndecl)) { if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (fndecl)) != current_class_type) { if (DECL_CONTEXT (fndecl) && TREE_CODE( DECL_CONTEXT (fndecl)) != NAMESPACE_DECL) cp_error ("`%D' is already defined in class `%T'", fndecl, DECL_CONTEXT (fndecl)); } return void_type_node; } check_template_shadow (fndecl); DECL_THIS_INLINE (fndecl) = 1; if (flag_default_inline) DECL_INLINE (fndecl) = 1; /* We process method specializations in finish_struct_1. */ if (processing_template_decl && !DECL_TEMPLATE_SPECIALIZATION (fndecl)) fndecl = push_template_decl (fndecl); if (! DECL_FRIEND_P (fndecl)) { if (TREE_CHAIN (fndecl)) { fndecl = copy_node (fndecl); TREE_CHAIN (fndecl) = NULL_TREE; } if (DECL_CONSTRUCTOR_P (fndecl)) { if (! grok_ctor_properties (current_class_type, fndecl)) return void_type_node; } else if (IDENTIFIER_OPNAME_P (DECL_NAME (fndecl))) grok_op_properties (fndecl, DECL_VIRTUAL_P (fndecl), 0); } cp_finish_decl (fndecl, NULL_TREE, NULL_TREE, 0); /* Make a place for the parms */ pushlevel (0); current_binding_level->parm_flag = 1; DECL_IN_AGGR_P (fndecl) = 1; return fndecl; } /* Go through the motions of finishing a function definition. We don't compile this method until after the whole class has been processed. FINISH_METHOD must return something that looks as though it came from GROKFIELD (since we are defining a method, after all). This is called after parsing the body of the function definition. STMTS is the chain of statements that makes up the function body. DECL is the ..._DECL that `start_method' provided. */ tree finish_method (decl) tree decl; { register tree fndecl = decl; tree old_initial; register tree link; if (decl == void_type_node) return decl; old_initial = DECL_INITIAL (fndecl); /* Undo the level for the parms (from start_method). This is like poplevel, but it causes nothing to be saved. Saving information here confuses symbol-table output routines. Besides, this information will be correctly output when this method is actually compiled. */ /* Clear out the meanings of the local variables of this level; also record in each decl which block it belongs to. */ for (link = current_binding_level->names; link; link = TREE_CHAIN (link)) { if (DECL_NAME (link) != NULL_TREE) pop_binding (DECL_NAME (link), link); my_friendly_assert (TREE_CODE (link) != FUNCTION_DECL, 163); DECL_CONTEXT (link) = NULL_TREE; } GNU_xref_end_scope ((HOST_WIDE_INT) current_binding_level, (HOST_WIDE_INT) current_binding_level->level_chain, current_binding_level->parm_flag, current_binding_level->keep); poplevel (0, 0, 0); DECL_INITIAL (fndecl) = old_initial; /* We used to check if the context of FNDECL was different from current_class_type as another way to get inside here. This didn't work for String.cc in libg++. */ if (DECL_FRIEND_P (fndecl)) { CLASSTYPE_INLINE_FRIENDS (current_class_type) = tree_cons (NULL_TREE, fndecl, CLASSTYPE_INLINE_FRIENDS (current_class_type)); decl = void_type_node; } return decl; } /* Called when a new struct TYPE is defined. If this structure or union completes the type of any previous variable declaration, lay it out and output its rtl. */ void hack_incomplete_structures (type) tree type; { tree *list; struct binding_level *level; if (!type) /* Don't do this for class templates. */ return; if (namespace_bindings_p ()) { level = 0; list = &namespace_scope_incomplete; } else { level = innermost_nonclass_level (); list = &level->incomplete; } while (1) { while (*list) { tree decl = TREE_VALUE (*list); if ((decl && TREE_TYPE (decl) == type) || (TREE_TYPE (decl) && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE && TREE_TYPE (TREE_TYPE (decl)) == type)) { int toplevel = toplevel_bindings_p (); if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE && TREE_TYPE (TREE_TYPE (decl)) == type) layout_type (TREE_TYPE (decl)); layout_decl (decl, 0); rest_of_decl_compilation (decl, NULL_PTR, toplevel, 0); if (! toplevel) { tree cleanup; expand_decl (decl); cleanup = maybe_build_cleanup (decl); expand_decl_init (decl); if (! expand_decl_cleanup (decl, cleanup)) cp_error ("parser lost in parsing declaration of `%D'", decl); } *list = TREE_CHAIN (*list); } else list = &TREE_CHAIN (*list); } /* Keep looking through artificial binding levels generated for local variables. */ if (level && level->keep == 2) { level = level->level_chain; list = &level->incomplete; } else break; } } /* If DECL is of a type which needs a cleanup, build that cleanup here. */ tree maybe_build_cleanup (decl) tree decl; { tree type = TREE_TYPE (decl); if (type != error_mark_node && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) { int flags = LOOKUP_NORMAL|LOOKUP_DESTRUCTOR; tree rval; if (TREE_CODE (type) == ARRAY_TYPE) rval = decl; else { mark_addressable (decl); rval = build_unary_op (ADDR_EXPR, decl, 0); } /* Optimize for space over speed here. */ if (! TYPE_USES_VIRTUAL_BASECLASSES (type) || flag_expensive_optimizations) flags |= LOOKUP_NONVIRTUAL; rval = build_delete (TREE_TYPE (rval), rval, sfk_complete_destructor, flags, 0); if (TYPE_USES_VIRTUAL_BASECLASSES (type) && ! TYPE_HAS_DESTRUCTOR (type)) rval = build_compound_expr (tree_cons (NULL_TREE, rval, build_tree_list (NULL_TREE, build_vbase_delete (type, decl)))); return rval; } return 0; } /* When a stmt has been parsed, this function is called. */ void finish_stmt () { /* Always assume this statement was not an expression statement. If it actually was an expression statement, its our callers responsibility to fix this up. */ last_expr_type = NULL_TREE; } /* DECL was originally constructed as a non-static member function, but turned out to be static. Update it accordingly. */ void revert_static_member_fn (decl) tree decl; { tree tmp; tree function = TREE_TYPE (decl); tree args = TYPE_ARG_TYPES (function); if (CP_TYPE_QUALS (TREE_TYPE (TREE_VALUE (args))) != TYPE_UNQUALIFIED) cp_error ("static member function `%#D' declared with type qualifiers", decl); args = TREE_CHAIN (args); tmp = build_function_type (TREE_TYPE (function), args); tmp = build_qualified_type (tmp, CP_TYPE_QUALS (function)); tmp = build_exception_variant (tmp, TYPE_RAISES_EXCEPTIONS (function)); TREE_TYPE (decl) = tmp; if (DECL_ARGUMENTS (decl)) DECL_ARGUMENTS (decl) = TREE_CHAIN (DECL_ARGUMENTS (decl)); DECL_STATIC_FUNCTION_P (decl) = 1; } /* Initialize the variables used during compilation of a C++ function. */ static void push_cp_function_context (f) struct function *f; { struct cp_language_function *p = ((struct cp_language_function *) xcalloc (1, sizeof (struct cp_language_function))); f->language = (struct language_function *) p; /* It takes an explicit call to expand_body to generate RTL for a function. */ expanding_p = 0; /* Whenever we start a new function, we destroy temporaries in the usual way. */ current_stmt_tree ()->stmts_are_full_exprs_p = 1; } /* Free the language-specific parts of F, now that we've finished compiling the function. */ static void pop_cp_function_context (f) struct function *f; { if (f->language) free (f->language); f->language = 0; } /* Mark P for GC. */ static void mark_lang_function (p) struct cp_language_function *p; { if (!p) return; mark_c_language_function (&p->base); ggc_mark_tree (p->x_ctor_label); ggc_mark_tree (p->x_dtor_label); ggc_mark_tree (p->x_current_class_ptr); ggc_mark_tree (p->x_current_class_ref); ggc_mark_tree (p->x_eh_spec_try_block); mark_named_label_lists (&p->x_named_labels, &p->x_named_label_uses); mark_binding_level (&p->bindings); } /* Mark the language-specific data in F for GC. */ static void mark_cp_function_context (f) struct function *f; { mark_lang_function ((struct cp_language_function *) f->language); } void lang_mark_tree (t) tree t; { enum tree_code code = TREE_CODE (t); if (code == IDENTIFIER_NODE) { struct lang_identifier *li = (struct lang_identifier *) t; struct lang_id2 *li2 = li->x; ggc_mark_tree (li->namespace_bindings); ggc_mark_tree (li->bindings); ggc_mark_tree (li->class_value); ggc_mark_tree (li->class_template_info); if (li2) { ggc_mark_tree (li2->label_value); ggc_mark_tree (li2->implicit_decl); ggc_mark_tree (li2->error_locus); } } else if (code == CPLUS_BINDING) { if (BINDING_HAS_LEVEL_P (t)) mark_binding_level (&BINDING_LEVEL (t)); else ggc_mark_tree (BINDING_SCOPE (t)); ggc_mark_tree (BINDING_VALUE (t)); } else if (code == OVERLOAD) ggc_mark_tree (OVL_FUNCTION (t)); else if (code == TEMPLATE_PARM_INDEX) ggc_mark_tree (TEMPLATE_PARM_DECL (t)); else if (TREE_CODE_CLASS (code) == 'd') { struct lang_decl *ld = DECL_LANG_SPECIFIC (t); if (ld) { ggc_mark (ld); c_mark_lang_decl (&ld->decl_flags.base); if (!DECL_GLOBAL_CTOR_P (t) && !DECL_GLOBAL_DTOR_P (t) && !DECL_THUNK_P (t)) ggc_mark_tree (ld->decl_flags.u2.access); else if (DECL_THUNK_P (t)) ggc_mark_tree (ld->decl_flags.u2.vcall_offset); if (TREE_CODE (t) != NAMESPACE_DECL) ggc_mark_tree (ld->decl_flags.u.template_info); else mark_binding_level (&NAMESPACE_LEVEL (t)); if (CAN_HAVE_FULL_LANG_DECL_P (t)) { ggc_mark_tree (ld->befriending_classes); ggc_mark_tree (ld->context); ggc_mark_tree (ld->cloned_function); if (!DECL_OVERLOADED_OPERATOR_P (t)) ggc_mark_tree (ld->u2.vtt_parm); if (TREE_CODE (t) == TYPE_DECL) ggc_mark_tree (ld->u.sorted_fields); else if (TREE_CODE (t) == FUNCTION_DECL && !DECL_PENDING_INLINE_P (t)) mark_lang_function (DECL_SAVED_FUNCTION_DATA (t)); } } } else if (TREE_CODE_CLASS (code) == 't') { struct lang_type *lt = TYPE_LANG_SPECIFIC (t); if (lt && !(TREE_CODE (t) == POINTER_TYPE && TREE_CODE (TREE_TYPE (t)) == METHOD_TYPE)) { ggc_mark (lt); ggc_mark_tree (lt->primary_base); ggc_mark_tree (lt->vfields); ggc_mark_tree (lt->vbases); ggc_mark_tree (lt->tags); ggc_mark_tree (lt->size); ggc_mark_tree (lt->pure_virtuals); ggc_mark_tree (lt->friend_classes); ggc_mark_tree (lt->rtti); ggc_mark_tree (lt->methods); ggc_mark_tree (lt->template_info); ggc_mark_tree (lt->befriending_classes); } else if (lt) /* In the case of pointer-to-member function types, the TYPE_LANG_SPECIFIC is really just a tree. */ ggc_mark_tree ((tree) lt); } } /* Return the IDENTIFIER_GLOBAL_VALUE of T, for use in common code, since the definition of IDENTIFIER_GLOBAL_VALUE is different for C and C++. */ tree identifier_global_value (t) tree t; { return IDENTIFIER_GLOBAL_VALUE (t); } /* Build the void_list_node (void_type_node having been created). */ tree build_void_list_node () { tree t = build_tree_list (NULL_TREE, void_type_node); TREE_PARMLIST (t) = 1; return t; } static int cp_missing_noreturn_ok_p (decl) tree decl; { /* A missing noreturn is ok for the `main' function. */ return MAIN_NAME_P (DECL_ASSEMBLER_NAME (decl)); }