/* Process declarations and variables for C++ compiler. Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Process declarations and symbol lookup for C++ front end. Also constructs types; the standard scalar types at initialization, and structure, union, array and enum types when they are declared. */ /* ??? not all decl nodes are given the most useful possible line numbers. For example, the CONST_DECLs for enum values. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "expr.h" #include "flags.h" #include "cp-tree.h" #include "tree-inline.h" #include "decl.h" #include "output.h" #include "except.h" #include "toplev.h" #include "hashtab.h" #include "tm_p.h" #include "target.h" #include "c-common.h" #include "c-pragma.h" #include "diagnostic.h" #include "intl.h" #include "debug.h" #include "timevar.h" #include "tree-flow.h" #include "pointer-set.h" static tree grokparms (tree parmlist, tree *); static const char *redeclaration_error_message (tree, tree); static int decl_jump_unsafe (tree); static void require_complete_types_for_parms (tree); static int ambi_op_p (enum tree_code); static int unary_op_p (enum tree_code); static void push_local_name (tree); static tree grok_reference_init (tree, tree, tree, tree *); static tree grokvardecl (tree, tree, const cp_decl_specifier_seq *, int, int, tree); static void record_unknown_type (tree, const char *); static tree builtin_function_1 (tree, tree, bool); static tree build_library_fn_1 (tree, enum tree_code, tree); static int member_function_or_else (tree, tree, enum overload_flags); static void bad_specifiers (tree, const char *, int, int, int, int, int); static void check_for_uninitialized_const_var (tree); static hashval_t typename_hash (const void *); static int typename_compare (const void *, const void *); static tree local_variable_p_walkfn (tree *, int *, void *); static tree record_builtin_java_type (const char *, int); static const char *tag_name (enum tag_types); static tree lookup_and_check_tag (enum tag_types, tree, tag_scope, bool); static int walk_namespaces_r (tree, walk_namespaces_fn, void *); static void maybe_deduce_size_from_array_init (tree, tree); static void layout_var_decl (tree); static void maybe_commonize_var (tree); static tree check_initializer (tree, tree, int, tree *); static void make_rtl_for_nonlocal_decl (tree, tree, const char *); static void save_function_data (tree); static void check_function_type (tree, tree); static void finish_constructor_body (void); static void begin_destructor_body (void); static void finish_destructor_body (void); static tree create_array_type_for_decl (tree, tree, tree); static tree get_atexit_node (void); static tree get_dso_handle_node (void); static tree start_cleanup_fn (void); static void end_cleanup_fn (void); static tree cp_make_fname_decl (tree, int); static void initialize_predefined_identifiers (void); static tree check_special_function_return_type (special_function_kind, tree, tree); static tree push_cp_library_fn (enum tree_code, tree); static tree build_cp_library_fn (tree, enum tree_code, tree); static void store_parm_decls (tree); static void initialize_local_var (tree, tree); static void expand_static_init (tree, tree); static tree next_initializable_field (tree); /* The following symbols are subsumed in the cp_global_trees array, and listed here individually for documentation purposes. C++ extensions tree wchar_decl_node; tree vtable_entry_type; tree delta_type_node; tree __t_desc_type_node; tree class_type_node; tree unknown_type_node; Array type `vtable_entry_type[]' tree vtbl_type_node; tree vtbl_ptr_type_node; Namespaces, tree std_node; tree abi_node; A FUNCTION_DECL which can call `abort'. Not necessarily the one that the user will declare, but sufficient to be called by routines that want to abort the program. tree abort_fndecl; The FUNCTION_DECL for the default `::operator delete'. tree global_delete_fndecl; Used by RTTI tree type_info_type_node, tinfo_decl_id, tinfo_decl_type; tree tinfo_var_id; */ tree cp_global_trees[CPTI_MAX]; /* Indicates that there is a type value in some namespace, although that is not necessarily in scope at the moment. */ tree global_type_node; /* The node that holds the "name" of the global scope. */ tree global_scope_name; #define local_names cp_function_chain->x_local_names /* A list of objects which have constructors or destructors which reside in the global scope. The decl is stored in the TREE_VALUE slot and the initializer is stored in the TREE_PURPOSE slot. */ tree static_aggregates; /* -- end of C++ */ /* A node for the integer constants 2, and 3. */ tree integer_two_node, integer_three_node; /* Used only for jumps to as-yet undefined labels, since jumps to defined labels can have their validity checked immediately. */ struct named_label_use_entry GTY(()) { struct named_label_use_entry *next; /* The binding level to which this entry is *currently* attached. This is initially the binding level in which the goto appeared, but is modified as scopes are closed. */ struct cp_binding_level *binding_level; /* The head of the names list that was current when the goto appeared, or the inner scope popped. These are the decls that will *not* be skipped when jumping to the label. */ tree names_in_scope; /* The location of the goto, for error reporting. */ location_t o_goto_locus; /* True if an OpenMP structured block scope has been closed since the goto appeared. This means that the branch from the label will illegally exit an OpenMP scope. */ bool in_omp_scope; }; /* A list of all LABEL_DECLs in the function that have names. Here so we can clear out their names' definitions at the end of the function, and so we can check the validity of jumps to these labels. */ struct named_label_entry GTY(()) { /* The decl itself. */ tree label_decl; /* The binding level to which the label is *currently* attached. This is initially set to the binding level in which the label is defined, but is modified as scopes are closed. */ struct cp_binding_level *binding_level; /* The head of the names list that was current when the label was defined, or the inner scope popped. These are the decls that will be skipped when jumping to the label. */ tree names_in_scope; /* A tree list of all decls from all binding levels that would be crossed by a backward branch to the label. */ tree bad_decls; /* A list of uses of the label, before the label is defined. */ struct named_label_use_entry *uses; /* The following bits are set after the label is defined, and are updated as scopes are popped. They indicate that a backward jump to the label will illegally enter a scope of the given flavor. */ bool in_try_scope; bool in_catch_scope; bool in_omp_scope; }; #define named_labels cp_function_chain->x_named_labels /* The number of function bodies which we are currently processing. (Zero if we are at namespace scope, one inside the body of a function, two inside the body of a function in a local class, etc.) */ int function_depth; /* To avoid unwanted recursion, finish_function defers all mark_used calls encountered during its execution until it finishes. */ bool defer_mark_used_calls; VEC(tree, gc) *deferred_mark_used_calls; /* States indicating how grokdeclarator() should handle declspecs marked with __attribute__((deprecated)). An object declared as __attribute__((deprecated)) suppresses warnings of uses of other deprecated items. */ enum deprecated_states deprecated_state = DEPRECATED_NORMAL; /* A TREE_LIST of VAR_DECLs. The TREE_PURPOSE is a RECORD_TYPE or UNION_TYPE; the TREE_VALUE is a VAR_DECL with that type. At the time the VAR_DECL was declared, the type was incomplete. */ static GTY(()) tree incomplete_vars; /* Returns the kind of template specialization we are currently processing, given that it's declaration contained N_CLASS_SCOPES explicit scope qualifications. */ tmpl_spec_kind current_tmpl_spec_kind (int n_class_scopes) { int n_template_parm_scopes = 0; int seen_specialization_p = 0; int innermost_specialization_p = 0; struct cp_binding_level *b; /* Scan through the template parameter scopes. */ for (b = current_binding_level; b->kind == sk_template_parms; b = b->level_chain) { /* If we see a specialization scope inside a parameter scope, then something is wrong. That corresponds to a declaration like: template template <> ... which is always invalid since [temp.expl.spec] forbids the specialization of a class member template if the enclosing class templates are not explicitly specialized as well. */ if (b->explicit_spec_p) { if (n_template_parm_scopes == 0) innermost_specialization_p = 1; else seen_specialization_p = 1; } else if (seen_specialization_p == 1) return tsk_invalid_member_spec; ++n_template_parm_scopes; } /* Handle explicit instantiations. */ if (processing_explicit_instantiation) { if (n_template_parm_scopes != 0) /* We've seen a template parameter list during an explicit instantiation. For example: template template void f(int); This is erroneous. */ return tsk_invalid_expl_inst; else return tsk_expl_inst; } if (n_template_parm_scopes < n_class_scopes) /* We've not seen enough template headers to match all the specialized classes present. For example: template void R::S::f(int); This is invalid; there needs to be one set of template parameters for each class. */ return tsk_insufficient_parms; else if (n_template_parm_scopes == n_class_scopes) /* We're processing a non-template declaration (even though it may be a member of a template class.) For example: template void S::f(int); The `class T' matches the `S', leaving no template headers corresponding to the `f'. */ return tsk_none; else if (n_template_parm_scopes > n_class_scopes + 1) /* We've got too many template headers. For example: template <> template void f (T); There need to be more enclosing classes. */ return tsk_excessive_parms; else /* This must be a template. It's of the form: template template void S::f(U); This is a specialization if the innermost level was a specialization; otherwise it's just a definition of the template. */ return innermost_specialization_p ? tsk_expl_spec : tsk_template; } /* Exit the current scope. */ void finish_scope (void) { poplevel (0, 0, 0); } /* When a label goes out of scope, check to see if that label was used in a valid manner, and issue any appropriate warnings or errors. */ static void pop_label (tree label, tree old_value) { if (!processing_template_decl) { if (DECL_INITIAL (label) == NULL_TREE) { location_t location; error ("label %q+D used but not defined", label); location = input_location; /* FIXME want (input_filename, (line)0) */ /* Avoid crashing later. */ define_label (location, DECL_NAME (label)); } else warn_for_unused_label (label); } SET_IDENTIFIER_LABEL_VALUE (DECL_NAME (label), old_value); } /* At the end of a function, all labels declared within the function go out of scope. BLOCK is the top-level block for the function. */ static int pop_labels_1 (void **slot, void *data) { struct named_label_entry *ent = (struct named_label_entry *) *slot; tree block = (tree) data; pop_label (ent->label_decl, NULL_TREE); /* Put the labels into the "variables" of the top-level block, so debugger can see them. */ TREE_CHAIN (ent->label_decl) = BLOCK_VARS (block); BLOCK_VARS (block) = ent->label_decl; htab_clear_slot (named_labels, slot); return 1; } static void pop_labels (tree block) { if (named_labels) { htab_traverse (named_labels, pop_labels_1, block); named_labels = NULL; } } /* At the end of a block with local labels, restore the outer definition. */ static void pop_local_label (tree label, tree old_value) { struct named_label_entry dummy; void **slot; pop_label (label, old_value); dummy.label_decl = label; slot = htab_find_slot (named_labels, &dummy, NO_INSERT); htab_clear_slot (named_labels, slot); } /* The following two routines are used to interface to Objective-C++. The binding level is purposely treated as an opaque type. */ void * objc_get_current_scope (void) { return current_binding_level; } /* The following routine is used by the NeXT-style SJLJ exceptions; variables get marked 'volatile' so as to not be clobbered by _setjmp()/_longjmp() calls. All variables in the current scope, as well as parent scopes up to (but not including) ENCLOSING_BLK shall be thusly marked. */ void objc_mark_locals_volatile (void *enclosing_blk) { struct cp_binding_level *scope; for (scope = current_binding_level; scope && scope != enclosing_blk; scope = scope->level_chain) { tree decl; for (decl = scope->names; decl; decl = TREE_CHAIN (decl)) objc_volatilize_decl (decl); /* Do not climb up past the current function. */ if (scope->kind == sk_function_parms) break; } } /* Update data for defined and undefined labels when leaving a scope. */ static int poplevel_named_label_1 (void **slot, void *data) { struct named_label_entry *ent = (struct named_label_entry *) *slot; struct cp_binding_level *bl = (struct cp_binding_level *) data; struct cp_binding_level *obl = bl->level_chain; if (ent->binding_level == bl) { tree decl; for (decl = ent->names_in_scope; decl; decl = TREE_CHAIN (decl)) if (decl_jump_unsafe (decl)) ent->bad_decls = tree_cons (NULL, decl, ent->bad_decls); ent->binding_level = obl; ent->names_in_scope = obl->names; switch (bl->kind) { case sk_try: ent->in_try_scope = true; break; case sk_catch: ent->in_catch_scope = true; break; case sk_omp: ent->in_omp_scope = true; break; default: break; } } else if (ent->uses) { struct named_label_use_entry *use; for (use = ent->uses; use ; use = use->next) if (use->binding_level == bl) { use->binding_level = obl; use->names_in_scope = obl->names; if (bl->kind == sk_omp) use->in_omp_scope = true; } } return 1; } /* Exit a binding level. Pop the level off, and restore the state of the identifier-decl mappings that were in effect when this level was entered. If KEEP == 1, this level had explicit declarations, so and create a "block" (a BLOCK node) for the level to record its declarations and subblocks for symbol table output. If FUNCTIONBODY is nonzero, this level is the body of a function, so create a block as if KEEP were set and also clear out all label names. If REVERSE is nonzero, reverse the order of decls before putting them into the BLOCK. */ tree poplevel (int keep, int reverse, int functionbody) { tree link; /* The chain of decls was accumulated in reverse order. Put it into forward order, just for cleanliness. */ tree decls; int tmp = functionbody; int real_functionbody; tree subblocks; tree block; tree decl; int leaving_for_scope; scope_kind kind; timevar_push (TV_NAME_LOOKUP); restart: block = NULL_TREE; gcc_assert (current_binding_level->kind != sk_class); real_functionbody = (current_binding_level->kind == sk_cleanup ? ((functionbody = 0), tmp) : functionbody); subblocks = functionbody >= 0 ? current_binding_level->blocks : 0; gcc_assert (!VEC_length(cp_class_binding, current_binding_level->class_shadowed)); /* We used to use KEEP == 2 to indicate that the new block should go at the beginning of the list of blocks at this binding level, rather than the end. This hack is no longer used. */ gcc_assert (keep == 0 || keep == 1); if (current_binding_level->keep) keep = 1; /* Any uses of undefined labels, and any defined labels, now operate under constraints of next binding contour. */ if (cfun && !functionbody && named_labels) htab_traverse (named_labels, poplevel_named_label_1, current_binding_level); /* Get the decls in the order they were written. Usually current_binding_level->names is in reverse order. But parameter decls were previously put in forward order. */ if (reverse) current_binding_level->names = decls = nreverse (current_binding_level->names); else decls = current_binding_level->names; /* If there were any declarations or structure tags in that level, or if this level is a function body, create a BLOCK to record them for the life of this function. */ block = NULL_TREE; if (keep == 1 || functionbody) block = make_node (BLOCK); if (block != NULL_TREE) { BLOCK_VARS (block) = decls; BLOCK_SUBBLOCKS (block) = subblocks; } /* In each subblock, record that this is its superior. */ if (keep >= 0) for (link = subblocks; link; link = BLOCK_CHAIN (link)) BLOCK_SUPERCONTEXT (link) = block; /* We still support the old for-scope rules, whereby the variables in a for-init statement were in scope after the for-statement ended. We only use the new rules if flag_new_for_scope is nonzero. */ leaving_for_scope = current_binding_level->kind == sk_for && flag_new_for_scope == 1; /* Before we remove the declarations first check for unused variables. */ if (warn_unused_variable && !processing_template_decl) for (decl = getdecls (); decl; decl = TREE_CHAIN (decl)) if (TREE_CODE (decl) == VAR_DECL && ! TREE_USED (decl) && ! DECL_IN_SYSTEM_HEADER (decl) && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl)) warning (OPT_Wunused_variable, "unused variable %q+D", decl); /* Remove declarations for all the DECLs in this level. */ for (link = decls; link; link = TREE_CHAIN (link)) { if (leaving_for_scope && TREE_CODE (link) == VAR_DECL && DECL_NAME (link)) { tree name = DECL_NAME (link); cxx_binding *ob; tree ns_binding; ob = outer_binding (name, IDENTIFIER_BINDING (name), /*class_p=*/true); if (!ob) ns_binding = IDENTIFIER_NAMESPACE_VALUE (name); else ns_binding = NULL_TREE; if (ob && ob->scope == current_binding_level->level_chain) /* We have something like: int i; for (int i; ;); and we are leaving the `for' scope. There's no reason to keep the binding of the inner `i' in this case. */ pop_binding (name, link); else if ((ob && (TREE_CODE (ob->value) == TYPE_DECL)) || (ns_binding && TREE_CODE (ns_binding) == TYPE_DECL)) /* Here, we have something like: typedef int I; void f () { for (int I; ;); } We must pop the for-scope binding so we know what's a type and what isn't. */ pop_binding (name, link); else { /* Mark this VAR_DECL as dead so that we can tell we left it there only for backward compatibility. */ DECL_DEAD_FOR_LOCAL (link) = 1; /* Keep track of what should have happened when we popped the binding. */ if (ob && ob->value) { SET_DECL_SHADOWED_FOR_VAR (link, ob->value); DECL_HAS_SHADOWED_FOR_VAR_P (link) = 1; } /* Add it to the list of dead variables in the next outermost binding to that we can remove these when we leave that binding. */ current_binding_level->level_chain->dead_vars_from_for = tree_cons (NULL_TREE, link, current_binding_level->level_chain-> dead_vars_from_for); /* Although we don't pop the cxx_binding, we do clear its SCOPE since the scope is going away now. */ IDENTIFIER_BINDING (name)->scope = current_binding_level->level_chain; } } else { tree name; /* Remove the binding. */ decl = link; if (TREE_CODE (decl) == TREE_LIST) decl = TREE_VALUE (decl); name = decl; if (TREE_CODE (name) == OVERLOAD) name = OVL_FUNCTION (name); gcc_assert (DECL_P (name)); pop_binding (DECL_NAME (name), decl); } } /* Remove declarations for any `for' variables from inner scopes that we kept around. */ for (link = current_binding_level->dead_vars_from_for; link; link = TREE_CHAIN (link)) pop_binding (DECL_NAME (TREE_VALUE (link)), TREE_VALUE (link)); /* Restore the IDENTIFIER_TYPE_VALUEs. */ for (link = current_binding_level->type_shadowed; link; link = TREE_CHAIN (link)) SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (link), TREE_VALUE (link)); /* Restore the IDENTIFIER_LABEL_VALUEs for local labels. */ for (link = current_binding_level->shadowed_labels; link; link = TREE_CHAIN (link)) pop_local_label (TREE_VALUE (link), TREE_PURPOSE (link)); /* There may be OVERLOADs (wrapped in TREE_LISTs) on the BLOCK_VARs list if a `using' declaration put them there. The debugging back ends won't understand OVERLOAD, so we remove them here. Because the BLOCK_VARS are (temporarily) shared with CURRENT_BINDING_LEVEL->NAMES we must do this fixup after we have popped all the bindings. */ if (block) { tree* d; for (d = &BLOCK_VARS (block); *d; ) { if (TREE_CODE (*d) == TREE_LIST) *d = TREE_CHAIN (*d); else d = &TREE_CHAIN (*d); } } /* If the level being exited is the top level of a function, check over all the labels. */ if (functionbody) { /* Since this is the top level block of a function, the vars are the function's parameters. Don't leave them in the BLOCK because they are found in the FUNCTION_DECL instead. */ BLOCK_VARS (block) = 0; pop_labels (block); } kind = current_binding_level->kind; if (kind == sk_cleanup) { tree stmt; /* If this is a temporary binding created for a cleanup, then we'll have pushed a statement list level. Pop that, create a new BIND_EXPR for the block, and insert it into the stream. */ stmt = pop_stmt_list (current_binding_level->statement_list); stmt = c_build_bind_expr (block, stmt); add_stmt (stmt); } leave_scope (); if (functionbody) { /* The current function is being defined, so its DECL_INITIAL should be error_mark_node. */ gcc_assert (DECL_INITIAL (current_function_decl) == error_mark_node); DECL_INITIAL (current_function_decl) = block; } else if (block) current_binding_level->blocks = chainon (current_binding_level->blocks, block); /* If we did not make a block for the level just exited, any blocks made for inner levels (since they cannot be recorded as subblocks in that level) must be carried forward so they will later become subblocks of something else. */ else if (subblocks) current_binding_level->blocks = chainon (current_binding_level->blocks, subblocks); /* Each and every BLOCK node created here in `poplevel' is important (e.g. for proper debugging information) so if we created one earlier, mark it as "used". */ if (block) TREE_USED (block) = 1; /* All temporary bindings created for cleanups are popped silently. */ if (kind == sk_cleanup) goto restart; POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, block); } /* Insert BLOCK at the end of the list of subblocks of the current binding level. This is used when a BIND_EXPR is expanded, to handle the BLOCK node inside the BIND_EXPR. */ void insert_block (tree block) { TREE_USED (block) = 1; current_binding_level->blocks = chainon (current_binding_level->blocks, block); } /* Walk all the namespaces contained NAMESPACE, including NAMESPACE itself, calling F for each. The DATA is passed to F as well. */ static int walk_namespaces_r (tree name_space, walk_namespaces_fn f, void* data) { int result = 0; tree current = NAMESPACE_LEVEL (name_space)->namespaces; result |= (*f) (name_space, data); for (; current; current = TREE_CHAIN (current)) result |= walk_namespaces_r (current, f, data); return result; } /* Walk all the namespaces, calling F for each. The DATA is passed to F as well. */ int walk_namespaces (walk_namespaces_fn f, void* data) { return walk_namespaces_r (global_namespace, f, data); } /* Call wrapup_globals_declarations for the globals in NAMESPACE. If DATA is non-NULL, this is the last time we will call wrapup_global_declarations for this NAMESPACE. */ int wrapup_globals_for_namespace (tree name_space, void* data) { struct cp_binding_level *level = NAMESPACE_LEVEL (name_space); VEC(tree,gc) *statics = level->static_decls; tree *vec = VEC_address (tree, statics); int len = VEC_length (tree, statics); int last_time = (data != 0); if (last_time) { check_global_declarations (vec, len); emit_debug_global_declarations (vec, len); return 0; } /* Write out any globals that need to be output. */ return wrapup_global_declarations (vec, len); } /* In C++, you don't have to write `struct S' to refer to `S'; you can just use `S'. We accomplish this by creating a TYPE_DECL as if the user had written `typedef struct S S'. Create and return the TYPE_DECL for TYPE. */ tree create_implicit_typedef (tree name, tree type) { tree decl; decl = build_decl (TYPE_DECL, name, type); DECL_ARTIFICIAL (decl) = 1; /* There are other implicit type declarations, like the one *within* a class that allows you to write `S::S'. We must distinguish amongst these. */ SET_DECL_IMPLICIT_TYPEDEF_P (decl); TYPE_NAME (type) = decl; return decl; } /* Remember a local name for name-mangling purposes. */ static void push_local_name (tree decl) { size_t i, nelts; tree t, name; timevar_push (TV_NAME_LOOKUP); name = DECL_NAME (decl); nelts = VEC_length (tree, local_names); for (i = 0; i < nelts; i++) { t = VEC_index (tree, local_names, i); if (DECL_NAME (t) == name) { if (!DECL_LANG_SPECIFIC (decl)) retrofit_lang_decl (decl); DECL_LANG_SPECIFIC (decl)->decl_flags.u2sel = 1; if (DECL_LANG_SPECIFIC (t)) DECL_DISCRIMINATOR (decl) = DECL_DISCRIMINATOR (t) + 1; else DECL_DISCRIMINATOR (decl) = 1; VEC_replace (tree, local_names, i, decl); timevar_pop (TV_NAME_LOOKUP); return; } } VEC_safe_push (tree, gc, local_names, decl); timevar_pop (TV_NAME_LOOKUP); } /* Subroutine of duplicate_decls: return truthvalue of whether or not types of these decls match. For C++, we must compare the parameter list so that `int' can match `int&' in a parameter position, but `int&' is not confused with `const int&'. */ int decls_match (tree newdecl, tree olddecl) { int types_match; if (newdecl == olddecl) return 1; if (TREE_CODE (newdecl) != TREE_CODE (olddecl)) /* If the two DECLs are not even the same kind of thing, we're not interested in their types. */ return 0; if (TREE_CODE (newdecl) == FUNCTION_DECL) { tree f1 = TREE_TYPE (newdecl); tree f2 = TREE_TYPE (olddecl); tree p1 = TYPE_ARG_TYPES (f1); tree p2 = TYPE_ARG_TYPES (f2); if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl) && ! (DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl))) return 0; if (TREE_CODE (f1) != TREE_CODE (f2)) return 0; if (same_type_p (TREE_TYPE (f1), TREE_TYPE (f2))) { if (p2 == NULL_TREE && DECL_EXTERN_C_P (olddecl) && (DECL_BUILT_IN (olddecl) #ifndef NO_IMPLICIT_EXTERN_C || (DECL_IN_SYSTEM_HEADER (newdecl) && !DECL_CLASS_SCOPE_P (newdecl)) || (DECL_IN_SYSTEM_HEADER (olddecl) && !DECL_CLASS_SCOPE_P (olddecl)) #endif )) { types_match = self_promoting_args_p (p1); if (p1 == void_list_node) TREE_TYPE (newdecl) = TREE_TYPE (olddecl); } #ifndef NO_IMPLICIT_EXTERN_C else if (p1 == NULL_TREE && (DECL_EXTERN_C_P (olddecl) && DECL_IN_SYSTEM_HEADER (olddecl) && !DECL_CLASS_SCOPE_P (olddecl)) && (DECL_EXTERN_C_P (newdecl) && DECL_IN_SYSTEM_HEADER (newdecl) && !DECL_CLASS_SCOPE_P (newdecl))) { types_match = self_promoting_args_p (p2); TREE_TYPE (newdecl) = TREE_TYPE (olddecl); } #endif else types_match = compparms (p1, p2); } else types_match = 0; } else if (TREE_CODE (newdecl) == TEMPLATE_DECL) { if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != TREE_CODE (DECL_TEMPLATE_RESULT (olddecl))) return 0; if (!comp_template_parms (DECL_TEMPLATE_PARMS (newdecl), DECL_TEMPLATE_PARMS (olddecl))) return 0; if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL) types_match = same_type_p (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl)), TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl))); else types_match = decls_match (DECL_TEMPLATE_RESULT (olddecl), DECL_TEMPLATE_RESULT (newdecl)); } else { /* Need to check scope for variable declaration (VAR_DECL). For typedef (TYPE_DECL), scope is ignored. */ if (TREE_CODE (newdecl) == VAR_DECL && CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl) /* [dcl.link] Two declarations for an object with C language linkage with the same name (ignoring the namespace that qualify it) that appear in different namespace scopes refer to the same object. */ && !(DECL_EXTERN_C_P (olddecl) && DECL_EXTERN_C_P (newdecl))) return 0; if (TREE_TYPE (newdecl) == error_mark_node) types_match = TREE_TYPE (olddecl) == error_mark_node; else if (TREE_TYPE (olddecl) == NULL_TREE) types_match = TREE_TYPE (newdecl) == NULL_TREE; else if (TREE_TYPE (newdecl) == NULL_TREE) types_match = 0; else types_match = comptypes (TREE_TYPE (newdecl), TREE_TYPE (olddecl), COMPARE_REDECLARATION); } return types_match; } /* If NEWDECL is `static' and an `extern' was seen previously, warn about it. OLDDECL is the previous declaration. Note that this does not apply to the C++ case of declaring a variable `extern const' and then later `const'. Don't complain about built-in functions, since they are beyond the user's control. */ void warn_extern_redeclared_static (tree newdecl, tree olddecl) { tree name; if (TREE_CODE (newdecl) == TYPE_DECL || TREE_CODE (newdecl) == TEMPLATE_DECL || TREE_CODE (newdecl) == CONST_DECL || TREE_CODE (newdecl) == NAMESPACE_DECL) return; /* Don't get confused by static member functions; that's a different use of `static'. */ if (TREE_CODE (newdecl) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (newdecl)) return; /* If the old declaration was `static', or the new one isn't, then then everything is OK. */ if (DECL_THIS_STATIC (olddecl) || !DECL_THIS_STATIC (newdecl)) return; /* It's OK to declare a builtin function as `static'. */ if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_ARTIFICIAL (olddecl)) return; name = DECL_ASSEMBLER_NAME (newdecl); permerror (input_location, "%qD was declared % and later %", newdecl); permerror (input_location, "previous declaration of %q+D", olddecl); } /* NEW_DECL is a redeclaration of OLD_DECL; both are functions or function templates. If their exception specifications do not match, issue a diagnostic. */ static void check_redeclaration_exception_specification (tree new_decl, tree old_decl) { tree new_type; tree old_type; tree new_exceptions; tree old_exceptions; new_type = TREE_TYPE (new_decl); new_exceptions = TYPE_RAISES_EXCEPTIONS (new_type); old_type = TREE_TYPE (old_decl); old_exceptions = TYPE_RAISES_EXCEPTIONS (old_type); /* [except.spec] If any declaration of a function has an exception-specification, all declarations, including the definition and an explicit specialization, of that function shall have an exception-specification with the same set of type-ids. */ if ((pedantic || ! DECL_IN_SYSTEM_HEADER (old_decl)) && ! DECL_IS_BUILTIN (old_decl) && flag_exceptions && !comp_except_specs (new_exceptions, old_exceptions, /*exact=*/true)) { error ("declaration of %qF throws different exceptions", new_decl); error ("from previous declaration %q+F", old_decl); } } #define GNU_INLINE_P(fn) (DECL_DECLARED_INLINE_P (fn) \ && lookup_attribute ("gnu_inline", \ DECL_ATTRIBUTES (fn))) /* If NEWDECL is a redeclaration of OLDDECL, merge the declarations. If the redeclaration is invalid, a diagnostic is issued, and the error_mark_node is returned. Otherwise, OLDDECL is returned. If NEWDECL is not a redeclaration of OLDDECL, NULL_TREE is returned. NEWDECL_IS_FRIEND is true if NEWDECL was declared as a friend. */ tree duplicate_decls (tree newdecl, tree olddecl, bool newdecl_is_friend) { unsigned olddecl_uid = DECL_UID (olddecl); int olddecl_friend = 0, types_match = 0, hidden_friend = 0; int new_defines_function = 0; tree new_template; if (newdecl == olddecl) return olddecl; types_match = decls_match (newdecl, olddecl); /* If either the type of the new decl or the type of the old decl is an error_mark_node, then that implies that we have already issued an error (earlier) for some bogus type specification, and in that case, it is rather pointless to harass the user with yet more error message about the same declaration, so just pretend the types match here. */ if (TREE_TYPE (newdecl) == error_mark_node || TREE_TYPE (olddecl) == error_mark_node) return error_mark_node; if (DECL_P (olddecl) && TREE_CODE (newdecl) == FUNCTION_DECL && TREE_CODE (olddecl) == FUNCTION_DECL && (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl))) { if (DECL_DECLARED_INLINE_P (newdecl) && DECL_UNINLINABLE (newdecl) && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl))) /* Already warned elsewhere. */; else if (DECL_DECLARED_INLINE_P (olddecl) && DECL_UNINLINABLE (olddecl) && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl))) /* Already warned. */; else if (DECL_DECLARED_INLINE_P (newdecl) && DECL_UNINLINABLE (olddecl) && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl))) { warning (OPT_Wattributes, "function %q+D redeclared as inline", newdecl); warning (OPT_Wattributes, "previous declaration of %q+D " "with attribute noinline", olddecl); } else if (DECL_DECLARED_INLINE_P (olddecl) && DECL_UNINLINABLE (newdecl) && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl))) { warning (OPT_Wattributes, "function %q+D redeclared with " "attribute noinline", newdecl); warning (OPT_Wattributes, "previous declaration of %q+D was inline", olddecl); } } /* Check for redeclaration and other discrepancies. */ if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_ARTIFICIAL (olddecl)) { gcc_assert (!DECL_HIDDEN_FRIEND_P (olddecl)); if (TREE_CODE (newdecl) != FUNCTION_DECL) { /* Avoid warnings redeclaring built-ins which have not been explicitly declared. */ if (DECL_ANTICIPATED (olddecl)) return NULL_TREE; /* If you declare a built-in or predefined function name as static, the old definition is overridden, but optionally warn this was a bad choice of name. */ if (! TREE_PUBLIC (newdecl)) { warning (OPT_Wshadow, "shadowing %s function %q#D", DECL_BUILT_IN (olddecl) ? "built-in" : "library", olddecl); /* Discard the old built-in function. */ return NULL_TREE; } /* If the built-in is not ansi, then programs can override it even globally without an error. */ else if (! DECL_BUILT_IN (olddecl)) warning (0, "library function %q#D redeclared as non-function %q#D", olddecl, newdecl); else { error ("declaration of %q#D", newdecl); error ("conflicts with built-in declaration %q#D", olddecl); } return NULL_TREE; } else if (!types_match) { /* Avoid warnings redeclaring built-ins which have not been explicitly declared. */ if (DECL_ANTICIPATED (olddecl)) { /* Deal with fileptr_type_node. FILE type is not known at the time we create the builtins. */ tree t1, t2; for (t1 = TYPE_ARG_TYPES (TREE_TYPE (newdecl)), t2 = TYPE_ARG_TYPES (TREE_TYPE (olddecl)); t1 || t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2)) if (!t1 || !t2) break; else if (TREE_VALUE (t2) == fileptr_type_node) { tree t = TREE_VALUE (t1); if (TREE_CODE (t) == POINTER_TYPE && TYPE_NAME (TREE_TYPE (t)) && DECL_NAME (TYPE_NAME (TREE_TYPE (t))) == get_identifier ("FILE") && compparms (TREE_CHAIN (t1), TREE_CHAIN (t2))) { tree oldargs = TYPE_ARG_TYPES (TREE_TYPE (olddecl)); TYPE_ARG_TYPES (TREE_TYPE (olddecl)) = TYPE_ARG_TYPES (TREE_TYPE (newdecl)); types_match = decls_match (newdecl, olddecl); if (types_match) return duplicate_decls (newdecl, olddecl, newdecl_is_friend); TYPE_ARG_TYPES (TREE_TYPE (olddecl)) = oldargs; } } else if (! same_type_p (TREE_VALUE (t1), TREE_VALUE (t2))) break; } else if ((DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl)) || compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)), TYPE_ARG_TYPES (TREE_TYPE (olddecl)))) { /* A near match; override the builtin. */ if (TREE_PUBLIC (newdecl)) { warning (0, "new declaration %q#D", newdecl); warning (0, "ambiguates built-in declaration %q#D", olddecl); } else warning (OPT_Wshadow, "shadowing %s function %q#D", DECL_BUILT_IN (olddecl) ? "built-in" : "library", olddecl); } else /* Discard the old built-in function. */ return NULL_TREE; /* Replace the old RTL to avoid problems with inlining. */ COPY_DECL_RTL (newdecl, olddecl); } /* Even if the types match, prefer the new declarations type for built-ins which have not been explicitly declared, for exception lists, etc... */ else if (DECL_ANTICIPATED (olddecl)) { tree type = TREE_TYPE (newdecl); tree attribs = (*targetm.merge_type_attributes) (TREE_TYPE (olddecl), type); type = cp_build_type_attribute_variant (type, attribs); TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = type; } /* If a function is explicitly declared "throw ()", propagate that to the corresponding builtin. */ if (DECL_BUILT_IN_CLASS (olddecl) == BUILT_IN_NORMAL && DECL_ANTICIPATED (olddecl) && TREE_NOTHROW (newdecl) && !TREE_NOTHROW (olddecl) && built_in_decls [DECL_FUNCTION_CODE (olddecl)] != NULL_TREE && built_in_decls [DECL_FUNCTION_CODE (olddecl)] != olddecl && types_match) TREE_NOTHROW (built_in_decls [DECL_FUNCTION_CODE (olddecl)]) = 1; /* Whether or not the builtin can throw exceptions has no bearing on this declarator. */ TREE_NOTHROW (olddecl) = 0; if (DECL_THIS_STATIC (newdecl) && !DECL_THIS_STATIC (olddecl)) { /* If a builtin function is redeclared as `static', merge the declarations, but make the original one static. */ DECL_THIS_STATIC (olddecl) = 1; TREE_PUBLIC (olddecl) = 0; /* Make the old declaration consistent with the new one so that all remnants of the builtin-ness of this function will be banished. */ SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl)); COPY_DECL_RTL (newdecl, olddecl); } } else if (TREE_CODE (olddecl) != TREE_CODE (newdecl)) { /* C++ Standard, 3.3, clause 4: "[Note: a namespace name or a class template name must be unique in its declarative region (7.3.2, clause 14). ]" */ if (TREE_CODE (olddecl) != NAMESPACE_DECL && TREE_CODE (newdecl) != NAMESPACE_DECL && (TREE_CODE (olddecl) != TEMPLATE_DECL || TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) != TYPE_DECL) && (TREE_CODE (newdecl) != TEMPLATE_DECL || TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != TYPE_DECL)) { if ((TREE_CODE (olddecl) == TYPE_DECL && DECL_ARTIFICIAL (olddecl) && TREE_CODE (newdecl) != TYPE_DECL) || (TREE_CODE (newdecl) == TYPE_DECL && DECL_ARTIFICIAL (newdecl) && TREE_CODE (olddecl) != TYPE_DECL)) { /* We do nothing special here, because C++ does such nasty things with TYPE_DECLs. Instead, just let the TYPE_DECL get shadowed, and know that if we need to find a TYPE_DECL for a given name, we can look in the IDENTIFIER_TYPE_VALUE slot of the identifier. */ return NULL_TREE; } if ((TREE_CODE (newdecl) == FUNCTION_DECL && DECL_FUNCTION_TEMPLATE_P (olddecl)) || (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_FUNCTION_TEMPLATE_P (newdecl))) return NULL_TREE; } error ("%q#D redeclared as different kind of symbol", newdecl); if (TREE_CODE (olddecl) == TREE_LIST) olddecl = TREE_VALUE (olddecl); error ("previous declaration of %q+#D", olddecl); return error_mark_node; } else if (!types_match) { if (CP_DECL_CONTEXT (newdecl) != CP_DECL_CONTEXT (olddecl)) /* These are certainly not duplicate declarations; they're from different scopes. */ return NULL_TREE; if (TREE_CODE (newdecl) == TEMPLATE_DECL) { /* The name of a class template may not be declared to refer to any other template, class, function, object, namespace, value, or type in the same scope. */ if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == TYPE_DECL || TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL) { error ("declaration of template %q#D", newdecl); error ("conflicts with previous declaration %q+#D", olddecl); } else if (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == FUNCTION_DECL && TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == FUNCTION_DECL && compparms (TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (olddecl))), TYPE_ARG_TYPES (TREE_TYPE (DECL_TEMPLATE_RESULT (newdecl)))) && comp_template_parms (DECL_TEMPLATE_PARMS (newdecl), DECL_TEMPLATE_PARMS (olddecl)) /* Template functions can be disambiguated by return type. */ && same_type_p (TREE_TYPE (TREE_TYPE (newdecl)), TREE_TYPE (TREE_TYPE (olddecl)))) { error ("new declaration %q#D", newdecl); error ("ambiguates old declaration %q+#D", olddecl); } return NULL_TREE; } if (TREE_CODE (newdecl) == FUNCTION_DECL) { if (DECL_EXTERN_C_P (newdecl) && DECL_EXTERN_C_P (olddecl)) { error ("declaration of C function %q#D conflicts with", newdecl); error ("previous declaration %q+#D here", olddecl); } else if (compparms (TYPE_ARG_TYPES (TREE_TYPE (newdecl)), TYPE_ARG_TYPES (TREE_TYPE (olddecl)))) { error ("new declaration %q#D", newdecl); error ("ambiguates old declaration %q+#D", olddecl); return error_mark_node; } else return NULL_TREE; } else { error ("conflicting declaration %q#D", newdecl); error ("%q+D has a previous declaration as %q#D", olddecl, olddecl); return error_mark_node; } } else if (TREE_CODE (newdecl) == FUNCTION_DECL && ((DECL_TEMPLATE_SPECIALIZATION (olddecl) && (!DECL_TEMPLATE_INFO (newdecl) || (DECL_TI_TEMPLATE (newdecl) != DECL_TI_TEMPLATE (olddecl)))) || (DECL_TEMPLATE_SPECIALIZATION (newdecl) && (!DECL_TEMPLATE_INFO (olddecl) || (DECL_TI_TEMPLATE (olddecl) != DECL_TI_TEMPLATE (newdecl)))))) /* It's OK to have a template specialization and a non-template with the same type, or to have specializations of two different templates with the same type. Note that if one is a specialization, and the other is an instantiation of the same template, that we do not exit at this point. That situation can occur if we instantiate a template class, and then specialize one of its methods. This situation is valid, but the declarations must be merged in the usual way. */ return NULL_TREE; else if (TREE_CODE (newdecl) == FUNCTION_DECL && ((DECL_TEMPLATE_INSTANTIATION (olddecl) && !DECL_USE_TEMPLATE (newdecl)) || (DECL_TEMPLATE_INSTANTIATION (newdecl) && !DECL_USE_TEMPLATE (olddecl)))) /* One of the declarations is a template instantiation, and the other is not a template at all. That's OK. */ return NULL_TREE; else if (TREE_CODE (newdecl) == NAMESPACE_DECL) { /* In [namespace.alias] we have: In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in that declarative region to refer only to the namespace to which it already refers. Therefore, if we encounter a second alias directive for the same alias, we can just ignore the second directive. */ if (DECL_NAMESPACE_ALIAS (newdecl) && (DECL_NAMESPACE_ALIAS (newdecl) == DECL_NAMESPACE_ALIAS (olddecl))) return olddecl; /* [namespace.alias] A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same declarative region. A namespace-name defined at global scope shall not be declared as the name of any other entity in any global scope of the program. */ error ("declaration of namespace %qD conflicts with", newdecl); error ("previous declaration of namespace %q+D here", olddecl); return error_mark_node; } else { const char *errmsg = redeclaration_error_message (newdecl, olddecl); if (errmsg) { error_at (DECL_SOURCE_LOCATION (newdecl), errmsg, newdecl); if (DECL_NAME (olddecl) != NULL_TREE) error ((DECL_INITIAL (olddecl) && namespace_bindings_p ()) ? "%q+#D previously defined here" : "%q+#D previously declared here", olddecl); return error_mark_node; } else if (TREE_CODE (olddecl) == FUNCTION_DECL && DECL_INITIAL (olddecl) != NULL_TREE && TYPE_ARG_TYPES (TREE_TYPE (olddecl)) == NULL_TREE && TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != NULL_TREE) { /* Prototype decl follows defn w/o prototype. */ warning (0, "prototype for %q+#D", newdecl); warning (0, "%Jfollows non-prototype definition here", olddecl); } else if ((TREE_CODE (olddecl) == FUNCTION_DECL || TREE_CODE (olddecl) == VAR_DECL) && DECL_LANGUAGE (newdecl) != DECL_LANGUAGE (olddecl)) { /* [dcl.link] If two declarations of the same function or object specify different linkage-specifications ..., the program is ill-formed.... Except for functions with C++ linkage, a function declaration without a linkage specification shall not precede the first linkage specification for that function. A function can be declared without a linkage specification after an explicit linkage specification has been seen; the linkage explicitly specified in the earlier declaration is not affected by such a function declaration. DR 563 raises the question why the restrictions on functions should not also apply to objects. Older versions of G++ silently ignore the linkage-specification for this example: namespace N { extern int i; extern "C" int i; } which is clearly wrong. Therefore, we now treat objects like functions. */ if (current_lang_depth () == 0) { /* There is no explicit linkage-specification, so we use the linkage from the previous declaration. */ if (!DECL_LANG_SPECIFIC (newdecl)) retrofit_lang_decl (newdecl); SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl)); } else { error ("previous declaration of %q+#D with %qL linkage", olddecl, DECL_LANGUAGE (olddecl)); error ("conflicts with new declaration with %qL linkage", DECL_LANGUAGE (newdecl)); } } if (DECL_LANG_SPECIFIC (olddecl) && DECL_USE_TEMPLATE (olddecl)) ; else if (TREE_CODE (olddecl) == FUNCTION_DECL) { tree t1 = TYPE_ARG_TYPES (TREE_TYPE (olddecl)); tree t2 = TYPE_ARG_TYPES (TREE_TYPE (newdecl)); int i = 1; if (TREE_CODE (TREE_TYPE (newdecl)) == METHOD_TYPE) t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2); for (; t1 && t1 != void_list_node; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2), i++) if (TREE_PURPOSE (t1) && TREE_PURPOSE (t2)) { if (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))) { permerror (input_location, "default argument given for parameter %d of %q#D", i, newdecl); permerror (input_location, "after previous specification in %q+#D", olddecl); } else { error ("default argument given for parameter %d of %q#D", i, newdecl); error ("after previous specification in %q+#D", olddecl); } } } } /* Do not merge an implicit typedef with an explicit one. In: class A; ... typedef class A A __attribute__ ((foo)); the attribute should apply only to the typedef. */ if (TREE_CODE (olddecl) == TYPE_DECL && (DECL_IMPLICIT_TYPEDEF_P (olddecl) || DECL_IMPLICIT_TYPEDEF_P (newdecl))) return NULL_TREE; /* If new decl is `static' and an `extern' was seen previously, warn about it. */ warn_extern_redeclared_static (newdecl, olddecl); /* We have committed to returning 1 at this point. */ if (TREE_CODE (newdecl) == FUNCTION_DECL) { /* Now that functions must hold information normally held by field decls, there is extra work to do so that declaration information does not get destroyed during definition. */ if (DECL_VINDEX (olddecl)) DECL_VINDEX (newdecl) = DECL_VINDEX (olddecl); if (DECL_CONTEXT (olddecl)) DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl); DECL_STATIC_CONSTRUCTOR (newdecl) |= DECL_STATIC_CONSTRUCTOR (olddecl); DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl); DECL_PURE_VIRTUAL_P (newdecl) |= DECL_PURE_VIRTUAL_P (olddecl); DECL_VIRTUAL_P (newdecl) |= DECL_VIRTUAL_P (olddecl); DECL_INVALID_OVERRIDER_P (newdecl) |= DECL_INVALID_OVERRIDER_P (olddecl); DECL_THIS_STATIC (newdecl) |= DECL_THIS_STATIC (olddecl); if (DECL_OVERLOADED_OPERATOR_P (olddecl) != ERROR_MARK) SET_OVERLOADED_OPERATOR_CODE (newdecl, DECL_OVERLOADED_OPERATOR_P (olddecl)); new_defines_function = DECL_INITIAL (newdecl) != NULL_TREE; /* Optionally warn about more than one declaration for the same name, but don't warn about a function declaration followed by a definition. */ if (warn_redundant_decls && ! DECL_ARTIFICIAL (olddecl) && !(new_defines_function && DECL_INITIAL (olddecl) == NULL_TREE) /* Don't warn about extern decl followed by definition. */ && !(DECL_EXTERNAL (olddecl) && ! DECL_EXTERNAL (newdecl)) /* Don't warn about friends, let add_friend take care of it. */ && ! (newdecl_is_friend || DECL_FRIEND_P (olddecl))) { warning (OPT_Wredundant_decls, "redundant redeclaration of %qD in same scope", newdecl); warning (OPT_Wredundant_decls, "previous declaration of %q+D", olddecl); } if (DECL_DELETED_FN (newdecl)) { error ("deleted definition of %qD", newdecl); error ("after previous declaration %q+D", olddecl); } } /* Deal with C++: must preserve virtual function table size. */ if (TREE_CODE (olddecl) == TYPE_DECL) { tree newtype = TREE_TYPE (newdecl); tree oldtype = TREE_TYPE (olddecl); if (newtype != error_mark_node && oldtype != error_mark_node && TYPE_LANG_SPECIFIC (newtype) && TYPE_LANG_SPECIFIC (oldtype)) CLASSTYPE_FRIEND_CLASSES (newtype) = CLASSTYPE_FRIEND_CLASSES (oldtype); DECL_ORIGINAL_TYPE (newdecl) = DECL_ORIGINAL_TYPE (olddecl); } /* Copy all the DECL_... slots specified in the new decl except for any that we copy here from the old type. */ DECL_ATTRIBUTES (newdecl) = (*targetm.merge_decl_attributes) (olddecl, newdecl); if (TREE_CODE (newdecl) == TEMPLATE_DECL) { tree old_result; tree new_result; old_result = DECL_TEMPLATE_RESULT (olddecl); new_result = DECL_TEMPLATE_RESULT (newdecl); TREE_TYPE (olddecl) = TREE_TYPE (old_result); DECL_TEMPLATE_SPECIALIZATIONS (olddecl) = chainon (DECL_TEMPLATE_SPECIALIZATIONS (olddecl), DECL_TEMPLATE_SPECIALIZATIONS (newdecl)); DECL_ATTRIBUTES (old_result) = (*targetm.merge_decl_attributes) (old_result, new_result); if (DECL_FUNCTION_TEMPLATE_P (newdecl)) { if (GNU_INLINE_P (old_result) != GNU_INLINE_P (new_result) && DECL_INITIAL (new_result)) { if (DECL_INITIAL (old_result)) DECL_UNINLINABLE (old_result) = 1; else DECL_UNINLINABLE (old_result) = DECL_UNINLINABLE (new_result); DECL_EXTERNAL (old_result) = DECL_EXTERNAL (new_result); DECL_NOT_REALLY_EXTERN (old_result) = DECL_NOT_REALLY_EXTERN (new_result); DECL_INTERFACE_KNOWN (old_result) = DECL_INTERFACE_KNOWN (new_result); DECL_DECLARED_INLINE_P (old_result) = DECL_DECLARED_INLINE_P (new_result); DECL_DISREGARD_INLINE_LIMITS (old_result) |= DECL_DISREGARD_INLINE_LIMITS (new_result); } else { DECL_DECLARED_INLINE_P (old_result) |= DECL_DECLARED_INLINE_P (new_result); DECL_DISREGARD_INLINE_LIMITS (old_result) |= DECL_DISREGARD_INLINE_LIMITS (new_result); check_redeclaration_exception_specification (newdecl, olddecl); } } /* If the new declaration is a definition, update the file and line information on the declaration, and also make the old declaration the same definition. */ if (DECL_INITIAL (new_result) != NULL_TREE) { DECL_SOURCE_LOCATION (olddecl) = DECL_SOURCE_LOCATION (old_result) = DECL_SOURCE_LOCATION (newdecl); DECL_INITIAL (old_result) = DECL_INITIAL (new_result); if (DECL_FUNCTION_TEMPLATE_P (newdecl)) DECL_ARGUMENTS (old_result) = DECL_ARGUMENTS (new_result); } return olddecl; } if (types_match) { /* Automatically handles default parameters. */ tree oldtype = TREE_TYPE (olddecl); tree newtype; /* Merge the data types specified in the two decls. */ newtype = merge_types (TREE_TYPE (newdecl), TREE_TYPE (olddecl)); /* If merge_types produces a non-typedef type, just use the old type. */ if (TREE_CODE (newdecl) == TYPE_DECL && newtype == DECL_ORIGINAL_TYPE (newdecl)) newtype = oldtype; if (TREE_CODE (newdecl) == VAR_DECL) { DECL_THIS_EXTERN (newdecl) |= DECL_THIS_EXTERN (olddecl); DECL_INITIALIZED_P (newdecl) |= DECL_INITIALIZED_P (olddecl); DECL_NONTRIVIALLY_INITIALIZED_P (newdecl) |= DECL_NONTRIVIALLY_INITIALIZED_P (olddecl); DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (newdecl) |= DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (olddecl); /* Merge the threadprivate attribute from OLDDECL into NEWDECL. */ if (DECL_LANG_SPECIFIC (olddecl) && CP_DECL_THREADPRIVATE_P (olddecl)) { /* Allocate a LANG_SPECIFIC structure for NEWDECL, if needed. */ if (!DECL_LANG_SPECIFIC (newdecl)) retrofit_lang_decl (newdecl); DECL_TLS_MODEL (newdecl) = DECL_TLS_MODEL (olddecl); CP_DECL_THREADPRIVATE_P (newdecl) = 1; } } /* Do this after calling `merge_types' so that default parameters don't confuse us. */ else if (TREE_CODE (newdecl) == FUNCTION_DECL) check_redeclaration_exception_specification (newdecl, olddecl); TREE_TYPE (newdecl) = TREE_TYPE (olddecl) = newtype; if (TREE_CODE (newdecl) == FUNCTION_DECL) check_default_args (newdecl); /* Lay the type out, unless already done. */ if (! same_type_p (newtype, oldtype) && TREE_TYPE (newdecl) != error_mark_node && !(processing_template_decl && uses_template_parms (newdecl))) layout_type (TREE_TYPE (newdecl)); if ((TREE_CODE (newdecl) == VAR_DECL || TREE_CODE (newdecl) == PARM_DECL || TREE_CODE (newdecl) == RESULT_DECL || TREE_CODE (newdecl) == FIELD_DECL || TREE_CODE (newdecl) == TYPE_DECL) && !(processing_template_decl && uses_template_parms (newdecl))) layout_decl (newdecl, 0); /* Merge the type qualifiers. */ if (TREE_READONLY (newdecl)) TREE_READONLY (olddecl) = 1; if (TREE_THIS_VOLATILE (newdecl)) TREE_THIS_VOLATILE (olddecl) = 1; if (TREE_NOTHROW (newdecl)) TREE_NOTHROW (olddecl) = 1; /* Merge deprecatedness. */ if (TREE_DEPRECATED (newdecl)) TREE_DEPRECATED (olddecl) = 1; /* Preserve function specific target and optimization options */ if (TREE_CODE (newdecl) == FUNCTION_DECL) { if (DECL_FUNCTION_SPECIFIC_TARGET (olddecl) && !DECL_FUNCTION_SPECIFIC_TARGET (newdecl)) DECL_FUNCTION_SPECIFIC_TARGET (newdecl) = DECL_FUNCTION_SPECIFIC_TARGET (olddecl); if (DECL_FUNCTION_SPECIFIC_OPTIMIZATION (olddecl) && !DECL_FUNCTION_SPECIFIC_OPTIMIZATION (newdecl)) DECL_FUNCTION_SPECIFIC_OPTIMIZATION (newdecl) = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (olddecl); } /* Merge the initialization information. */ if (DECL_INITIAL (newdecl) == NULL_TREE && DECL_INITIAL (olddecl) != NULL_TREE) { DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl); DECL_SOURCE_LOCATION (newdecl) = DECL_SOURCE_LOCATION (olddecl); if (CAN_HAVE_FULL_LANG_DECL_P (newdecl) && DECL_LANG_SPECIFIC (newdecl) && DECL_LANG_SPECIFIC (olddecl)) { DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl); DECL_STRUCT_FUNCTION (newdecl) = DECL_STRUCT_FUNCTION (olddecl); } } /* Merge the section attribute. We want to issue an error if the sections conflict but that must be done later in decl_attributes since we are called before attributes are assigned. */ if (DECL_SECTION_NAME (newdecl) == NULL_TREE) DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl); if (TREE_CODE (newdecl) == FUNCTION_DECL) { DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl) |= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl); DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl); TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl); TREE_NOTHROW (newdecl) |= TREE_NOTHROW (olddecl); DECL_IS_MALLOC (newdecl) |= DECL_IS_MALLOC (olddecl); DECL_IS_OPERATOR_NEW (newdecl) |= DECL_IS_OPERATOR_NEW (olddecl); DECL_PURE_P (newdecl) |= DECL_PURE_P (olddecl); TREE_READONLY (newdecl) |= TREE_READONLY (olddecl); DECL_LOOPING_CONST_OR_PURE_P (newdecl) |= DECL_LOOPING_CONST_OR_PURE_P (olddecl); /* Keep the old RTL. */ COPY_DECL_RTL (olddecl, newdecl); } else if (TREE_CODE (newdecl) == VAR_DECL && (DECL_SIZE (olddecl) || !DECL_SIZE (newdecl))) { /* Keep the old RTL. We cannot keep the old RTL if the old declaration was for an incomplete object and the new declaration is not since many attributes of the RTL will change. */ COPY_DECL_RTL (olddecl, newdecl); } } /* If cannot merge, then use the new type and qualifiers, and don't preserve the old rtl. */ else { /* Clean out any memory we had of the old declaration. */ tree oldstatic = value_member (olddecl, static_aggregates); if (oldstatic) TREE_VALUE (oldstatic) = error_mark_node; TREE_TYPE (olddecl) = TREE_TYPE (newdecl); TREE_READONLY (olddecl) = TREE_READONLY (newdecl); TREE_THIS_VOLATILE (olddecl) = TREE_THIS_VOLATILE (newdecl); TREE_SIDE_EFFECTS (olddecl) = TREE_SIDE_EFFECTS (newdecl); } /* Merge the storage class information. */ merge_weak (newdecl, olddecl); DECL_ONE_ONLY (newdecl) |= DECL_ONE_ONLY (olddecl); DECL_DEFER_OUTPUT (newdecl) |= DECL_DEFER_OUTPUT (olddecl); TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl); TREE_STATIC (olddecl) = TREE_STATIC (newdecl) |= TREE_STATIC (olddecl); if (! DECL_EXTERNAL (olddecl)) DECL_EXTERNAL (newdecl) = 0; new_template = NULL_TREE; if (DECL_LANG_SPECIFIC (newdecl) && DECL_LANG_SPECIFIC (olddecl)) { bool new_redefines_gnu_inline = false; if (new_defines_function && ((DECL_INTERFACE_KNOWN (olddecl) && TREE_CODE (olddecl) == FUNCTION_DECL) || (TREE_CODE (olddecl) == TEMPLATE_DECL && (TREE_CODE (DECL_TEMPLATE_RESULT (olddecl)) == FUNCTION_DECL)))) { tree fn = olddecl; if (TREE_CODE (fn) == TEMPLATE_DECL) fn = DECL_TEMPLATE_RESULT (olddecl); new_redefines_gnu_inline = GNU_INLINE_P (fn) && DECL_INITIAL (fn); } if (!new_redefines_gnu_inline) { DECL_INTERFACE_KNOWN (newdecl) |= DECL_INTERFACE_KNOWN (olddecl); DECL_NOT_REALLY_EXTERN (newdecl) |= DECL_NOT_REALLY_EXTERN (olddecl); DECL_COMDAT (newdecl) |= DECL_COMDAT (olddecl); } DECL_TEMPLATE_INSTANTIATED (newdecl) |= DECL_TEMPLATE_INSTANTIATED (olddecl); /* If the OLDDECL is an instantiation and/or specialization, then the NEWDECL must be too. But, it may not yet be marked as such if the caller has created NEWDECL, but has not yet figured out that it is a redeclaration. */ if (!DECL_USE_TEMPLATE (newdecl)) DECL_USE_TEMPLATE (newdecl) = DECL_USE_TEMPLATE (olddecl); /* Don't really know how much of the language-specific values we should copy from old to new. */ DECL_IN_AGGR_P (newdecl) = DECL_IN_AGGR_P (olddecl); DECL_LANG_SPECIFIC (newdecl)->decl_flags.u2 = DECL_LANG_SPECIFIC (olddecl)->decl_flags.u2; DECL_NONCONVERTING_P (newdecl) = DECL_NONCONVERTING_P (olddecl); DECL_REPO_AVAILABLE_P (newdecl) = DECL_REPO_AVAILABLE_P (olddecl); if (DECL_TEMPLATE_INFO (newdecl)) new_template = DECL_TI_TEMPLATE (newdecl); DECL_TEMPLATE_INFO (newdecl) = DECL_TEMPLATE_INFO (olddecl); DECL_INITIALIZED_IN_CLASS_P (newdecl) |= DECL_INITIALIZED_IN_CLASS_P (olddecl); olddecl_friend = DECL_FRIEND_P (olddecl); hidden_friend = (DECL_ANTICIPATED (olddecl) && DECL_HIDDEN_FRIEND_P (olddecl) && newdecl_is_friend); /* Only functions have DECL_BEFRIENDING_CLASSES. */ if (TREE_CODE (newdecl) == FUNCTION_DECL || DECL_FUNCTION_TEMPLATE_P (newdecl)) { DECL_BEFRIENDING_CLASSES (newdecl) = chainon (DECL_BEFRIENDING_CLASSES (newdecl), DECL_BEFRIENDING_CLASSES (olddecl)); /* DECL_THUNKS is only valid for virtual functions, otherwise it is a DECL_FRIEND_CONTEXT. */ if (DECL_VIRTUAL_P (newdecl)) DECL_THUNKS (newdecl) = DECL_THUNKS (olddecl); } } if (TREE_CODE (newdecl) == FUNCTION_DECL) { if (DECL_TEMPLATE_INSTANTIATION (olddecl) && !DECL_TEMPLATE_INSTANTIATION (newdecl)) { /* If newdecl is not a specialization, then it is not a template-related function at all. And that means that we should have exited above, returning 0. */ gcc_assert (DECL_TEMPLATE_SPECIALIZATION (newdecl)); if (TREE_USED (olddecl)) /* From [temp.expl.spec]: If a template, a member template or the member of a class template is explicitly specialized then that specialization shall be declared before the first use of that specialization that would cause an implicit instantiation to take place, in every translation unit in which such a use occurs. */ error ("explicit specialization of %qD after first use", olddecl); SET_DECL_TEMPLATE_SPECIALIZATION (olddecl); /* Don't propagate visibility from the template to the specialization here. We'll do that in determine_visibility if appropriate. */ DECL_VISIBILITY_SPECIFIED (olddecl) = 0; /* [temp.expl.spec/14] We don't inline explicit specialization just because the primary template says so. */ } else if (new_defines_function && DECL_INITIAL (olddecl)) { /* Never inline re-defined extern inline functions. FIXME: this could be better handled by keeping both function as separate declarations. */ DECL_UNINLINABLE (newdecl) = 1; } else { if (DECL_PENDING_INLINE_INFO (newdecl) == 0) DECL_PENDING_INLINE_INFO (newdecl) = DECL_PENDING_INLINE_INFO (olddecl); DECL_DECLARED_INLINE_P (newdecl) |= DECL_DECLARED_INLINE_P (olddecl); DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl) = (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl)); DECL_DISREGARD_INLINE_LIMITS (newdecl) = DECL_DISREGARD_INLINE_LIMITS (olddecl) = (DECL_DISREGARD_INLINE_LIMITS (newdecl) || DECL_DISREGARD_INLINE_LIMITS (olddecl)); } /* Preserve abstractness on cloned [cd]tors. */ DECL_ABSTRACT (newdecl) = DECL_ABSTRACT (olddecl); if (! types_match) { SET_DECL_LANGUAGE (olddecl, DECL_LANGUAGE (newdecl)); COPY_DECL_ASSEMBLER_NAME (newdecl, olddecl); COPY_DECL_RTL (newdecl, olddecl); } if (! types_match || new_defines_function) { /* These need to be copied so that the names are available. Note that if the types do match, we'll preserve inline info and other bits, but if not, we won't. */ DECL_ARGUMENTS (olddecl) = DECL_ARGUMENTS (newdecl); DECL_RESULT (olddecl) = DECL_RESULT (newdecl); } if (new_defines_function) /* If defining a function declared with other language linkage, use the previously declared language linkage. */ SET_DECL_LANGUAGE (newdecl, DECL_LANGUAGE (olddecl)); else if (types_match) { /* If redeclaring a builtin function, and not a definition, it stays built in. */ if (DECL_BUILT_IN (olddecl)) { DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl); DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl); /* If we're keeping the built-in definition, keep the rtl, regardless of declaration matches. */ COPY_DECL_RTL (olddecl, newdecl); } DECL_RESULT (newdecl) = DECL_RESULT (olddecl); /* Don't clear out the arguments if we're redefining a function. */ if (DECL_ARGUMENTS (olddecl)) DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl); } } else if (TREE_CODE (newdecl) == NAMESPACE_DECL) NAMESPACE_LEVEL (newdecl) = NAMESPACE_LEVEL (olddecl); /* Now preserve various other info from the definition. */ TREE_ADDRESSABLE (newdecl) = TREE_ADDRESSABLE (olddecl); TREE_ASM_WRITTEN (newdecl) = TREE_ASM_WRITTEN (olddecl); DECL_COMMON (newdecl) = DECL_COMMON (olddecl); COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl); /* Warn about conflicting visibility specifications. */ if (DECL_VISIBILITY_SPECIFIED (olddecl) && DECL_VISIBILITY_SPECIFIED (newdecl) && DECL_VISIBILITY (newdecl) != DECL_VISIBILITY (olddecl)) { warning (OPT_Wattributes, "%q+D: visibility attribute ignored " "because it", newdecl); warning (OPT_Wattributes, "%Jconflicts with previous " "declaration here", olddecl); } /* Choose the declaration which specified visibility. */ if (DECL_VISIBILITY_SPECIFIED (olddecl)) { DECL_VISIBILITY (newdecl) = DECL_VISIBILITY (olddecl); DECL_VISIBILITY_SPECIFIED (newdecl) = 1; } /* Init priority used to be merged from newdecl to olddecl by the memcpy, so keep this behavior. */ if (TREE_CODE (newdecl) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (newdecl)) { SET_DECL_INIT_PRIORITY (olddecl, DECL_INIT_PRIORITY (newdecl)); DECL_HAS_INIT_PRIORITY_P (olddecl) = 1; } /* The DECL_LANG_SPECIFIC information in OLDDECL will be replaced with that from NEWDECL below. */ if (DECL_LANG_SPECIFIC (olddecl)) { gcc_assert (DECL_LANG_SPECIFIC (olddecl) != DECL_LANG_SPECIFIC (newdecl)); ggc_free (DECL_LANG_SPECIFIC (olddecl)); } /* Merge the USED information. */ if (TREE_USED (olddecl)) TREE_USED (newdecl) = 1; else if (TREE_USED (newdecl)) TREE_USED (olddecl) = 1; if (TREE_CODE (newdecl) == FUNCTION_DECL) { int function_size; function_size = sizeof (struct tree_decl_common); memcpy ((char *) olddecl + sizeof (struct tree_common), (char *) newdecl + sizeof (struct tree_common), function_size - sizeof (struct tree_common)); memcpy ((char *) olddecl + sizeof (struct tree_decl_common), (char *) newdecl + sizeof (struct tree_decl_common), sizeof (struct tree_function_decl) - sizeof (struct tree_decl_common)); if (new_template) /* If newdecl is a template instantiation, it is possible that the following sequence of events has occurred: o A friend function was declared in a class template. The class template was instantiated. o The instantiation of the friend declaration was recorded on the instantiation list, and is newdecl. o Later, however, instantiate_class_template called pushdecl on the newdecl to perform name injection. But, pushdecl in turn called duplicate_decls when it discovered that another declaration of a global function with the same name already existed. o Here, in duplicate_decls, we decided to clobber newdecl. If we're going to do that, we'd better make sure that olddecl, and not newdecl, is on the list of instantiations so that if we try to do the instantiation again we won't get the clobbered declaration. */ reregister_specialization (newdecl, new_template, olddecl); } else { size_t size = tree_code_size (TREE_CODE (olddecl)); memcpy ((char *) olddecl + sizeof (struct tree_common), (char *) newdecl + sizeof (struct tree_common), sizeof (struct tree_decl_common) - sizeof (struct tree_common)); switch (TREE_CODE (olddecl)) { case LABEL_DECL: case VAR_DECL: case RESULT_DECL: case PARM_DECL: case FIELD_DECL: case TYPE_DECL: case CONST_DECL: { memcpy ((char *) olddecl + sizeof (struct tree_decl_common), (char *) newdecl + sizeof (struct tree_decl_common), size - sizeof (struct tree_decl_common) + TREE_CODE_LENGTH (TREE_CODE (newdecl)) * sizeof (char *)); } break; default: memcpy ((char *) olddecl + sizeof (struct tree_decl_common), (char *) newdecl + sizeof (struct tree_decl_common), sizeof (struct tree_decl_non_common) - sizeof (struct tree_decl_common) + TREE_CODE_LENGTH (TREE_CODE (newdecl)) * sizeof (char *)); break; } } DECL_UID (olddecl) = olddecl_uid; if (olddecl_friend) DECL_FRIEND_P (olddecl) = 1; if (hidden_friend) { DECL_ANTICIPATED (olddecl) = 1; DECL_HIDDEN_FRIEND_P (olddecl) = 1; } /* NEWDECL contains the merged attribute lists. Update OLDDECL to be the same. */ DECL_ATTRIBUTES (olddecl) = DECL_ATTRIBUTES (newdecl); /* If OLDDECL had its DECL_RTL instantiated, re-invoke make_decl_rtl so that encode_section_info has a chance to look at the new decl flags and attributes. */ if (DECL_RTL_SET_P (olddecl) && (TREE_CODE (olddecl) == FUNCTION_DECL || (TREE_CODE (olddecl) == VAR_DECL && TREE_STATIC (olddecl)))) make_decl_rtl (olddecl); /* The NEWDECL will no longer be needed. Because every out-of-class declaration of a member results in a call to duplicate_decls, freeing these nodes represents in a significant savings. */ ggc_free (newdecl); return olddecl; } /* Return zero if the declaration NEWDECL is valid when the declaration OLDDECL (assumed to be for the same name) has already been seen. Otherwise return an error message format string with a %s where the identifier should go. */ static const char * redeclaration_error_message (tree newdecl, tree olddecl) { if (TREE_CODE (newdecl) == TYPE_DECL) { /* Because C++ can put things into name space for free, constructs like "typedef struct foo { ... } foo" would look like an erroneous redeclaration. */ if (same_type_p (TREE_TYPE (newdecl), TREE_TYPE (olddecl))) return NULL; else return "redefinition of %q#D"; } else if (TREE_CODE (newdecl) == FUNCTION_DECL) { /* If this is a pure function, its olddecl will actually be the original initialization to `0' (which we force to call abort()). Don't complain about redefinition in this case. */ if (DECL_LANG_SPECIFIC (olddecl) && DECL_PURE_VIRTUAL_P (olddecl) && DECL_INITIAL (olddecl) == NULL_TREE) return NULL; /* If both functions come from different namespaces, this is not a redeclaration - this is a conflict with a used function. */ if (DECL_NAMESPACE_SCOPE_P (olddecl) && DECL_CONTEXT (olddecl) != DECL_CONTEXT (newdecl) && ! decls_match (olddecl, newdecl)) return "%qD conflicts with used function"; /* We'll complain about linkage mismatches in warn_extern_redeclared_static. */ /* Defining the same name twice is no good. */ if (DECL_INITIAL (olddecl) != NULL_TREE && DECL_INITIAL (newdecl) != NULL_TREE) { if (DECL_NAME (olddecl) == NULL_TREE) return "%q#D not declared in class"; else if (!GNU_INLINE_P (olddecl) || GNU_INLINE_P (newdecl)) return "redefinition of %q#D"; } if (DECL_DECLARED_INLINE_P (olddecl) && DECL_DECLARED_INLINE_P (newdecl)) { bool olda = GNU_INLINE_P (olddecl); bool newa = GNU_INLINE_P (newdecl); if (olda != newa) { if (newa) return "%q+D redeclared inline with % attribute"; else return "%q+D redeclared inline without % attribute"; } } return NULL; } else if (TREE_CODE (newdecl) == TEMPLATE_DECL) { tree nt, ot; if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) == TYPE_DECL) { if (COMPLETE_TYPE_P (TREE_TYPE (newdecl)) && COMPLETE_TYPE_P (TREE_TYPE (olddecl))) return "redefinition of %q#D"; return NULL; } if (TREE_CODE (DECL_TEMPLATE_RESULT (newdecl)) != FUNCTION_DECL || (DECL_TEMPLATE_RESULT (newdecl) == DECL_TEMPLATE_RESULT (olddecl))) return NULL; nt = DECL_TEMPLATE_RESULT (newdecl); if (DECL_TEMPLATE_INFO (nt)) nt = DECL_TEMPLATE_RESULT (template_for_substitution (nt)); ot = DECL_TEMPLATE_RESULT (olddecl); if (DECL_TEMPLATE_INFO (ot)) ot = DECL_TEMPLATE_RESULT (template_for_substitution (ot)); if (DECL_INITIAL (nt) && DECL_INITIAL (ot) && (!GNU_INLINE_P (ot) || GNU_INLINE_P (nt))) return "redefinition of %q#D"; if (DECL_DECLARED_INLINE_P (ot) && DECL_DECLARED_INLINE_P (nt)) { bool olda = GNU_INLINE_P (ot); bool newa = GNU_INLINE_P (nt); if (olda != newa) { if (newa) return "%q+D redeclared inline with % attribute"; else return "%q+D redeclared inline without % attribute"; } } /* Core issue #226 (C++0x): If a friend function template declaration specifies a default template-argument, that declaration shall be a definition and shall be the only declaration of the function template in the translation unit. */ if ((cxx_dialect != cxx98) && TREE_CODE (ot) == FUNCTION_DECL && DECL_FRIEND_P (ot) && !check_default_tmpl_args (nt, DECL_TEMPLATE_PARMS (newdecl), /*is_primary=*/1, /*is_partial=*/0, /*is_friend_decl=*/2)) return "redeclaration of friend %q#D may not have default template arguments"; return NULL; } else if (TREE_CODE (newdecl) == VAR_DECL && DECL_THREAD_LOCAL_P (newdecl) != DECL_THREAD_LOCAL_P (olddecl) && (! DECL_LANG_SPECIFIC (olddecl) || ! CP_DECL_THREADPRIVATE_P (olddecl) || DECL_THREAD_LOCAL_P (newdecl))) { /* Only variables can be thread-local, and all declarations must agree on this property. */ if (DECL_THREAD_LOCAL_P (newdecl)) return "thread-local declaration of %q#D follows " "non-thread-local declaration"; else return "non-thread-local declaration of %q#D follows " "thread-local declaration"; } else if (toplevel_bindings_p () || DECL_NAMESPACE_SCOPE_P (newdecl)) { /* The objects have been declared at namespace scope. If either is a member of an anonymous union, then this is an invalid redeclaration. For example: int i; union { int i; }; is invalid. */ if ((TREE_CODE (newdecl) == VAR_DECL && DECL_ANON_UNION_VAR_P (newdecl)) || (TREE_CODE (olddecl) == VAR_DECL && DECL_ANON_UNION_VAR_P (olddecl))) return "redeclaration of %q#D"; /* If at least one declaration is a reference, there is no conflict. For example: int i = 3; extern int i; is valid. */ if (DECL_EXTERNAL (newdecl) || DECL_EXTERNAL (olddecl)) return NULL; /* Reject two definitions. */ return "redefinition of %q#D"; } else { /* Objects declared with block scope: */ /* Reject two definitions, and reject a definition together with an external reference. */ if (!(DECL_EXTERNAL (newdecl) && DECL_EXTERNAL (olddecl))) return "redeclaration of %q#D"; return NULL; } } /* Hash and equality functions for the named_label table. */ static hashval_t named_label_entry_hash (const void *data) { const struct named_label_entry *ent = (const struct named_label_entry *) data; return DECL_UID (ent->label_decl); } static int named_label_entry_eq (const void *a, const void *b) { const struct named_label_entry *ent_a = (const struct named_label_entry *) a; const struct named_label_entry *ent_b = (const struct named_label_entry *) b; return ent_a->label_decl == ent_b->label_decl; } /* Create a new label, named ID. */ static tree make_label_decl (tree id, int local_p) { struct named_label_entry *ent; void **slot; tree decl; decl = build_decl (LABEL_DECL, id, void_type_node); DECL_CONTEXT (decl) = current_function_decl; DECL_MODE (decl) = VOIDmode; C_DECLARED_LABEL_FLAG (decl) = local_p; /* Say where one reference is to the label, for the sake of the error if it is not defined. */ DECL_SOURCE_LOCATION (decl) = input_location; /* Record the fact that this identifier is bound to this label. */ SET_IDENTIFIER_LABEL_VALUE (id, decl); /* Create the label htab for the function on demand. */ if (!named_labels) named_labels = htab_create_ggc (13, named_label_entry_hash, named_label_entry_eq, NULL); /* Record this label on the list of labels used in this function. We do this before calling make_label_decl so that we get the IDENTIFIER_LABEL_VALUE before the new label is declared. */ ent = GGC_CNEW (struct named_label_entry); ent->label_decl = decl; slot = htab_find_slot (named_labels, ent, INSERT); gcc_assert (*slot == NULL); *slot = ent; return decl; } /* Look for a label named ID in the current function. If one cannot be found, create one. (We keep track of used, but undefined, labels, and complain about them at the end of a function.) */ tree lookup_label (tree id) { tree decl; timevar_push (TV_NAME_LOOKUP); /* You can't use labels at global scope. */ if (current_function_decl == NULL_TREE) { error ("label %qE referenced outside of any function", id); POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, NULL_TREE); } /* See if we've already got this label. */ decl = IDENTIFIER_LABEL_VALUE (id); if (decl != NULL_TREE && DECL_CONTEXT (decl) == current_function_decl) POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl); decl = make_label_decl (id, /*local_p=*/0); POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl); } /* Declare a local label named ID. */ tree declare_local_label (tree id) { tree decl, shadow; /* Add a new entry to the SHADOWED_LABELS list so that when we leave this scope we can restore the old value of IDENTIFIER_TYPE_VALUE. */ shadow = tree_cons (IDENTIFIER_LABEL_VALUE (id), NULL_TREE, current_binding_level->shadowed_labels); current_binding_level->shadowed_labels = shadow; decl = make_label_decl (id, /*local_p=*/1); TREE_VALUE (shadow) = decl; return decl; } /* Returns nonzero if it is ill-formed to jump past the declaration of DECL. Returns 2 if it's also a real problem. */ static int decl_jump_unsafe (tree decl) { if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl) || TREE_TYPE (decl) == error_mark_node) return 0; if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)) || DECL_NONTRIVIALLY_INITIALIZED_P (decl)) return 2; if (pod_type_p (TREE_TYPE (decl))) return 0; /* The POD stuff is just pedantry; why should it matter if the class contains a field of pointer to member type? */ return 1; } /* A subroutine of check_previous_goto_1 to identify a branch to the user. */ static void identify_goto (tree decl, const location_t *locus) { if (decl) permerror (input_location, "jump to label %qD", decl); else permerror (input_location, "jump to case label"); if (locus) permerror (input_location, "%H from here", locus); } /* Check that a single previously seen jump to a newly defined label is OK. DECL is the LABEL_DECL or 0; LEVEL is the binding_level for the jump context; NAMES are the names in scope in LEVEL at the jump context; LOCUS is the source position of the jump or 0. Returns true if all is well. */ static bool check_previous_goto_1 (tree decl, struct cp_binding_level* level, tree names, bool exited_omp, const location_t *locus) { struct cp_binding_level *b; bool identified = false, saw_eh = false, saw_omp = false; if (exited_omp) { identify_goto (decl, locus); error (" exits OpenMP structured block"); identified = saw_omp = true; } for (b = current_binding_level; b ; b = b->level_chain) { tree new_decls, old_decls = (b == level ? names : NULL_TREE); for (new_decls = b->names; new_decls != old_decls; new_decls = TREE_CHAIN (new_decls)) { int problem = decl_jump_unsafe (new_decls); if (! problem) continue; if (!identified) { identify_goto (decl, locus); identified = true; } if (problem > 1) error (" crosses initialization of %q+#D", new_decls); else permerror (input_location, " enters scope of non-POD %q+#D", new_decls); } if (b == level) break; if ((b->kind == sk_try || b->kind == sk_catch) && !saw_eh) { if (!identified) { identify_goto (decl, locus); identified = true; } if (b->kind == sk_try) error (" enters try block"); else error (" enters catch block"); saw_eh = true; } if (b->kind == sk_omp && !saw_omp) { if (!identified) { identify_goto (decl, locus); identified = true; } error (" enters OpenMP structured block"); saw_omp = true; } } return !identified; } static void check_previous_goto (tree decl, struct named_label_use_entry *use) { check_previous_goto_1 (decl, use->binding_level, use->names_in_scope, use->in_omp_scope, &use->o_goto_locus); } static bool check_switch_goto (struct cp_binding_level* level) { return check_previous_goto_1 (NULL_TREE, level, level->names, false, NULL); } /* Check that a new jump to a label DECL is OK. Called by finish_goto_stmt. */ void check_goto (tree decl) { struct named_label_entry *ent, dummy; bool saw_catch = false, identified = false; tree bad; /* We can't know where a computed goto is jumping. So we assume that it's OK. */ if (TREE_CODE (decl) != LABEL_DECL) return; /* We didn't record any information about this label when we created it, and there's not much point since it's trivial to analyze as a return. */ if (decl == cdtor_label) return; dummy.label_decl = decl; ent = (struct named_label_entry *) htab_find (named_labels, &dummy); gcc_assert (ent != NULL); /* If the label hasn't been defined yet, defer checking. */ if (! DECL_INITIAL (decl)) { struct named_label_use_entry *new_use; /* Don't bother creating another use if the last goto had the same data, and will therefore create the same set of errors. */ if (ent->uses && ent->uses->names_in_scope == current_binding_level->names) return; new_use = GGC_NEW (struct named_label_use_entry); new_use->binding_level = current_binding_level; new_use->names_in_scope = current_binding_level->names; new_use->o_goto_locus = input_location; new_use->in_omp_scope = false; new_use->next = ent->uses; ent->uses = new_use; return; } if (ent->in_try_scope || ent->in_catch_scope || ent->in_omp_scope || ent->bad_decls) { permerror (input_location, "jump to label %q+D", decl); permerror (input_location, " from here"); identified = true; } for (bad = ent->bad_decls; bad; bad = TREE_CHAIN (bad)) { tree b = TREE_VALUE (bad); int u = decl_jump_unsafe (b); if (u > 1 && DECL_ARTIFICIAL (b)) { /* Can't skip init of __exception_info. */ error ("%J enters catch block", b); saw_catch = true; } else if (u > 1) error (" skips initialization of %q+#D", b); else permerror (input_location, " enters scope of non-POD %q+#D", b); } if (ent->in_try_scope) error (" enters try block"); else if (ent->in_catch_scope && !saw_catch) error (" enters catch block"); if (ent->in_omp_scope) error (" enters OpenMP structured block"); else if (flag_openmp) { struct cp_binding_level *b; for (b = current_binding_level; b ; b = b->level_chain) { if (b == ent->binding_level) break; if (b->kind == sk_omp) { if (!identified) { permerror (input_location, "jump to label %q+D", decl); permerror (input_location, " from here"); identified = true; } error (" exits OpenMP structured block"); break; } } } } /* Check that a return is ok wrt OpenMP structured blocks. Called by finish_return_stmt. Returns true if all is well. */ bool check_omp_return (void) { struct cp_binding_level *b; for (b = current_binding_level; b ; b = b->level_chain) if (b->kind == sk_omp) { error ("invalid exit from OpenMP structured block"); return false; } return true; } /* Define a label, specifying the location in the source file. Return the LABEL_DECL node for the label. */ tree define_label (location_t location, tree name) { struct named_label_entry *ent, dummy; struct cp_binding_level *p; tree decl; timevar_push (TV_NAME_LOOKUP); decl = lookup_label (name); dummy.label_decl = decl; ent = (struct named_label_entry *) htab_find (named_labels, &dummy); gcc_assert (ent != NULL); /* After labels, make any new cleanups in the function go into their own new (temporary) binding contour. */ for (p = current_binding_level; p->kind != sk_function_parms; p = p->level_chain) p->more_cleanups_ok = 0; if (name == get_identifier ("wchar_t")) permerror (input_location, "label named wchar_t"); if (DECL_INITIAL (decl) != NULL_TREE) { error ("duplicate label %qD", decl); POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node); } else { struct named_label_use_entry *use; /* Mark label as having been defined. */ DECL_INITIAL (decl) = error_mark_node; /* Say where in the source. */ DECL_SOURCE_LOCATION (decl) = location; ent->binding_level = current_binding_level; ent->names_in_scope = current_binding_level->names; for (use = ent->uses; use ; use = use->next) check_previous_goto (decl, use); ent->uses = NULL; } POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, decl); } struct cp_switch { struct cp_binding_level *level; struct cp_switch *next; /* The SWITCH_STMT being built. */ tree switch_stmt; /* A splay-tree mapping the low element of a case range to the high element, or NULL_TREE if there is no high element. Used to determine whether or not a new case label duplicates an old case label. We need a tree, rather than simply a hash table, because of the GNU case range extension. */ splay_tree cases; }; /* A stack of the currently active switch statements. The innermost switch statement is on the top of the stack. There is no need to mark the stack for garbage collection because it is only active during the processing of the body of a function, and we never collect at that point. */ static struct cp_switch *switch_stack; /* Called right after a switch-statement condition is parsed. SWITCH_STMT is the switch statement being parsed. */ void push_switch (tree switch_stmt) { struct cp_switch *p = XNEW (struct cp_switch); p->level = current_binding_level; p->next = switch_stack; p->switch_stmt = switch_stmt; p->cases = splay_tree_new (case_compare, NULL, NULL); switch_stack = p; } void pop_switch (void) { struct cp_switch *cs = switch_stack; location_t switch_location; /* Emit warnings as needed. */ if (EXPR_HAS_LOCATION (cs->switch_stmt)) switch_location = EXPR_LOCATION (cs->switch_stmt); else switch_location = input_location; if (!processing_template_decl) c_do_switch_warnings (cs->cases, switch_location, SWITCH_STMT_TYPE (cs->switch_stmt), SWITCH_STMT_COND (cs->switch_stmt)); splay_tree_delete (cs->cases); switch_stack = switch_stack->next; free (cs); } /* Note that we've seen a definition of a case label, and complain if this is a bad place for one. */ tree finish_case_label (tree low_value, tree high_value) { tree cond, r; struct cp_binding_level *p; if (processing_template_decl) { tree label; /* For templates, just add the case label; we'll do semantic analysis at instantiation-time. */ label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); return add_stmt (build_case_label (low_value, high_value, label)); } /* Find the condition on which this switch statement depends. */ cond = SWITCH_STMT_COND (switch_stack->switch_stmt); if (cond && TREE_CODE (cond) == TREE_LIST) cond = TREE_VALUE (cond); if (!check_switch_goto (switch_stack->level)) return error_mark_node; r = c_add_case_label (switch_stack->cases, cond, TREE_TYPE (cond), low_value, high_value); /* After labels, make any new cleanups in the function go into their own new (temporary) binding contour. */ for (p = current_binding_level; p->kind != sk_function_parms; p = p->level_chain) p->more_cleanups_ok = 0; return r; } /* Hash a TYPENAME_TYPE. K is really of type `tree'. */ static hashval_t typename_hash (const void* k) { hashval_t hash; const_tree const t = (const_tree) k; hash = (htab_hash_pointer (TYPE_CONTEXT (t)) ^ htab_hash_pointer (DECL_NAME (TYPE_NAME (t)))); return hash; } typedef struct typename_info { tree scope; tree name; tree template_id; bool enum_p; bool class_p; } typename_info; /* Compare two TYPENAME_TYPEs. K1 is really of type `tree', K2 is really of type `typename_info*' */ static int typename_compare (const void * k1, const void * k2) { const_tree const t1 = (const_tree) k1; const typename_info *const t2 = (const typename_info *) k2; return (DECL_NAME (TYPE_NAME (t1)) == t2->name && TYPE_CONTEXT (t1) == t2->scope && TYPENAME_TYPE_FULLNAME (t1) == t2->template_id && TYPENAME_IS_ENUM_P (t1) == t2->enum_p && TYPENAME_IS_CLASS_P (t1) == t2->class_p); } /* Build a TYPENAME_TYPE. If the type is `typename T::t', CONTEXT is the type of `T', NAME is the IDENTIFIER_NODE for `t'. Returns the new TYPENAME_TYPE. */ static GTY ((param_is (union tree_node))) htab_t typename_htab; static tree build_typename_type (tree context, tree name, tree fullname, enum tag_types tag_type) { tree t; tree d; typename_info ti; void **e; hashval_t hash; if (typename_htab == NULL) typename_htab = htab_create_ggc (61, &typename_hash, &typename_compare, NULL); ti.scope = FROB_CONTEXT (context); ti.name = name; ti.template_id = fullname; ti.enum_p = tag_type == enum_type; ti.class_p = (tag_type == class_type || tag_type == record_type || tag_type == union_type); hash = (htab_hash_pointer (ti.scope) ^ htab_hash_pointer (ti.name)); /* See if we already have this type. */ e = htab_find_slot_with_hash (typename_htab, &ti, hash, INSERT); if (*e) t = (tree) *e; else { /* Build the TYPENAME_TYPE. */ t = cxx_make_type (TYPENAME_TYPE); TYPE_CONTEXT (t) = ti.scope; TYPENAME_TYPE_FULLNAME (t) = ti.template_id; TYPENAME_IS_ENUM_P (t) = ti.enum_p; TYPENAME_IS_CLASS_P (t) = ti.class_p; /* Build the corresponding TYPE_DECL. */ d = build_decl (TYPE_DECL, name, t); TYPE_NAME (TREE_TYPE (d)) = d; TYPE_STUB_DECL (TREE_TYPE (d)) = d; DECL_CONTEXT (d) = FROB_CONTEXT (context); DECL_ARTIFICIAL (d) = 1; /* Store it in the hash table. */ *e = t; /* TYPENAME_TYPEs must always be compared structurally, because they may or may not resolve down to another type depending on the currently open classes. */ SET_TYPE_STRUCTURAL_EQUALITY (t); } return t; } /* Resolve `typename CONTEXT::NAME'. TAG_TYPE indicates the tag provided to name the type. Returns an appropriate type, unless an error occurs, in which case error_mark_node is returned. If we locate a non-artificial TYPE_DECL and TF_KEEP_TYPE_DECL is set, we return that, rather than the _TYPE it corresponds to, in other cases we look through the type decl. If TF_ERROR is set, complain about errors, otherwise be quiet. */ tree make_typename_type (tree context, tree name, enum tag_types tag_type, tsubst_flags_t complain) { tree fullname; tree t; bool want_template; if (name == error_mark_node || context == NULL_TREE || context == error_mark_node) return error_mark_node; if (TYPE_P (name)) { if (!(TYPE_LANG_SPECIFIC (name) && (CLASSTYPE_IS_TEMPLATE (name) || CLASSTYPE_USE_TEMPLATE (name)))) name = TYPE_IDENTIFIER (name); else /* Create a TEMPLATE_ID_EXPR for the type. */ name = build_nt (TEMPLATE_ID_EXPR, CLASSTYPE_TI_TEMPLATE (name), CLASSTYPE_TI_ARGS (name)); } else if (TREE_CODE (name) == TYPE_DECL) name = DECL_NAME (name); fullname = name; if (TREE_CODE (name) == TEMPLATE_ID_EXPR) { name = TREE_OPERAND (name, 0); if (TREE_CODE (name) == TEMPLATE_DECL) name = TREE_OPERAND (fullname, 0) = DECL_NAME (name); else if (TREE_CODE (name) == OVERLOAD) { error ("%qD is not a type", name); return error_mark_node; } } if (TREE_CODE (name) == TEMPLATE_DECL) { error ("%qD used without template parameters", name); return error_mark_node; } gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); gcc_assert (TYPE_P (context)); /* When the CONTEXT is a dependent type, NAME could refer to a dependent base class of CONTEXT. So we cannot peek inside it, even if CONTEXT is a currently open scope. */ if (dependent_type_p (context)) return build_typename_type (context, name, fullname, tag_type); if (!MAYBE_CLASS_TYPE_P (context)) { if (complain & tf_error) error ("%q#T is not a class", context); return error_mark_node; } want_template = TREE_CODE (fullname) == TEMPLATE_ID_EXPR; /* We should only set WANT_TYPE when we're a nested typename type. Then we can give better diagnostics if we find a non-type. */ t = lookup_field (context, name, 0, /*want_type=*/true); if (!t) { if (complain & tf_error) error (want_template ? "no class template named %q#T in %q#T" : "no type named %q#T in %q#T", name, context); return error_mark_node; } if (want_template && !DECL_CLASS_TEMPLATE_P (t)) { if (complain & tf_error) error ("% names %q#T, which is not a class template", context, name, t); return error_mark_node; } if (!want_template && TREE_CODE (t) != TYPE_DECL) { if (complain & tf_error) error ("% names %q#T, which is not a type", context, name, t); return error_mark_node; } if (complain & tf_error) perform_or_defer_access_check (TYPE_BINFO (context), t, t); if (want_template) return lookup_template_class (t, TREE_OPERAND (fullname, 1), NULL_TREE, context, /*entering_scope=*/0, tf_warning_or_error | tf_user); if (DECL_ARTIFICIAL (t) || !(complain & tf_keep_type_decl)) t = TREE_TYPE (t); return t; } /* Resolve `CONTEXT::template NAME'. Returns a TEMPLATE_DECL if the name can be resolved or an UNBOUND_CLASS_TEMPLATE, unless an error occurs, in which case error_mark_node is returned. If PARM_LIST is non-NULL, also make sure that the template parameter list of TEMPLATE_DECL matches. If COMPLAIN zero, don't complain about any errors that occur. */ tree make_unbound_class_template (tree context, tree name, tree parm_list, tsubst_flags_t complain) { tree t; tree d; if (TYPE_P (name)) name = TYPE_IDENTIFIER (name); else if (DECL_P (name)) name = DECL_NAME (name); gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); if (!dependent_type_p (context) || currently_open_class (context)) { tree tmpl = NULL_TREE; if (MAYBE_CLASS_TYPE_P (context)) tmpl = lookup_field (context, name, 0, false); if (!tmpl || !DECL_CLASS_TEMPLATE_P (tmpl)) { if (complain & tf_error) error ("no class template named %q#T in %q#T", name, context); return error_mark_node; } if (parm_list && !comp_template_parms (DECL_TEMPLATE_PARMS (tmpl), parm_list)) { if (complain & tf_error) { error ("template parameters do not match template"); error ("%q+D declared here", tmpl); } return error_mark_node; } if (complain & tf_error) perform_or_defer_access_check (TYPE_BINFO (context), tmpl, tmpl); return tmpl; } /* Build the UNBOUND_CLASS_TEMPLATE. */ t = cxx_make_type (UNBOUND_CLASS_TEMPLATE); TYPE_CONTEXT (t) = FROB_CONTEXT (context); TREE_TYPE (t) = NULL_TREE; SET_TYPE_STRUCTURAL_EQUALITY (t); /* Build the corresponding TEMPLATE_DECL. */ d = build_decl (TEMPLATE_DECL, name, t); TYPE_NAME (TREE_TYPE (d)) = d; TYPE_STUB_DECL (TREE_TYPE (d)) = d; DECL_CONTEXT (d) = FROB_CONTEXT (context); DECL_ARTIFICIAL (d) = 1; DECL_TEMPLATE_PARMS (d) = parm_list; return t; } /* Push the declarations of builtin types into the namespace. RID_INDEX is the index of the builtin type in the array RID_POINTERS. NAME is the name used when looking up the builtin type. TYPE is the _TYPE node for the builtin type. */ void record_builtin_type (enum rid rid_index, const char* name, tree type) { tree rname = NULL_TREE, tname = NULL_TREE; tree tdecl = NULL_TREE; if ((int) rid_index < (int) RID_MAX) rname = ridpointers[(int) rid_index]; if (name) tname = get_identifier (name); /* The calls to SET_IDENTIFIER_GLOBAL_VALUE below should be eliminated. Built-in types should not be looked up name; their names are keywords that the parser can recognize. However, there is code in c-common.c that uses identifier_global_value to look up built-in types by name. */ if (tname) { tdecl = build_decl (TYPE_DECL, tname, type); DECL_ARTIFICIAL (tdecl) = 1; SET_IDENTIFIER_GLOBAL_VALUE (tname, tdecl); } if (rname) { if (!tdecl) { tdecl = build_decl (TYPE_DECL, rname, type); DECL_ARTIFICIAL (tdecl) = 1; } SET_IDENTIFIER_GLOBAL_VALUE (rname, tdecl); } if (!TYPE_NAME (type)) TYPE_NAME (type) = tdecl; if (tdecl) debug_hooks->type_decl (tdecl, 0); } /* Record one of the standard Java types. * Declare it as having the given NAME. * If SIZE > 0, it is the size of one of the integral types; * otherwise it is the negative of the size of one of the other types. */ static tree record_builtin_java_type (const char* name, int size) { tree type, decl; if (size > 0) type = make_signed_type (size); else if (size > -32) { /* "__java_char" or ""__java_boolean". */ type = make_unsigned_type (-size); /*if (size == -1) TREE_SET_CODE (type, BOOLEAN_TYPE);*/ } else { /* "__java_float" or ""__java_double". */ type = make_node (REAL_TYPE); TYPE_PRECISION (type) = - size; layout_type (type); } record_builtin_type (RID_MAX, name, type); decl = TYPE_NAME (type); /* Suppress generate debug symbol entries for these types, since for normal C++ they are just clutter. However, push_lang_context undoes this if extern "Java" is seen. */ DECL_IGNORED_P (decl) = 1; TYPE_FOR_JAVA (type) = 1; return type; } /* Push a type into the namespace so that the back ends ignore it. */ static void record_unknown_type (tree type, const char* name) { tree decl = pushdecl (build_decl (TYPE_DECL, get_identifier (name), type)); /* Make sure the "unknown type" typedecl gets ignored for debug info. */ DECL_IGNORED_P (decl) = 1; TYPE_DECL_SUPPRESS_DEBUG (decl) = 1; TYPE_SIZE (type) = TYPE_SIZE (void_type_node); TYPE_ALIGN (type) = 1; TYPE_USER_ALIGN (type) = 0; TYPE_MODE (type) = TYPE_MODE (void_type_node); } /* A string for which we should create an IDENTIFIER_NODE at startup. */ typedef struct predefined_identifier { /* The name of the identifier. */ const char *const name; /* The place where the IDENTIFIER_NODE should be stored. */ tree *const node; /* Nonzero if this is the name of a constructor or destructor. */ const int ctor_or_dtor_p; } predefined_identifier; /* Create all the predefined identifiers. */ static void initialize_predefined_identifiers (void) { const predefined_identifier *pid; /* A table of identifiers to create at startup. */ static const predefined_identifier predefined_identifiers[] = { { "C++", &lang_name_cplusplus, 0 }, { "C", &lang_name_c, 0 }, { "Java", &lang_name_java, 0 }, /* Some of these names have a trailing space so that it is impossible for them to conflict with names written by users. */ { "__ct ", &ctor_identifier, 1 }, { "__base_ctor ", &base_ctor_identifier, 1 }, { "__comp_ctor ", &complete_ctor_identifier, 1 }, { "__dt ", &dtor_identifier, 1 }, { "__comp_dtor ", &complete_dtor_identifier, 1 }, { "__base_dtor ", &base_dtor_identifier, 1 }, { "__deleting_dtor ", &deleting_dtor_identifier, 1 }, { IN_CHARGE_NAME, &in_charge_identifier, 0 }, { "nelts", &nelts_identifier, 0 }, { THIS_NAME, &this_identifier, 0 }, { VTABLE_DELTA_NAME, &delta_identifier, 0 }, { VTABLE_PFN_NAME, &pfn_identifier, 0 }, { "_vptr", &vptr_identifier, 0 }, { "__vtt_parm", &vtt_parm_identifier, 0 }, { "::", &global_scope_name, 0 }, { "std", &std_identifier, 0 }, { NULL, NULL, 0 } }; for (pid = predefined_identifiers; pid->name; ++pid) { *pid->node = get_identifier (pid->name); if (pid->ctor_or_dtor_p) IDENTIFIER_CTOR_OR_DTOR_P (*pid->node) = 1; } } /* Create the predefined scalar types of C, and some nodes representing standard constants (0, 1, (void *)0). Initialize the global binding level. Make definitions for built-in primitive functions. */ void cxx_init_decl_processing (void) { tree void_ftype; tree void_ftype_ptr; build_common_tree_nodes (flag_signed_char, false); /* Create all the identifiers we need. */ initialize_predefined_identifiers (); /* Create the global variables. */ push_to_top_level (); current_function_decl = NULL_TREE; current_binding_level = NULL; /* Enter the global namespace. */ gcc_assert (global_namespace == NULL_TREE); global_namespace = build_lang_decl (NAMESPACE_DECL, global_scope_name, void_type_node); TREE_PUBLIC (global_namespace) = 1; begin_scope (sk_namespace, global_namespace); current_lang_name = NULL_TREE; if (flag_visibility_ms_compat) default_visibility = VISIBILITY_HIDDEN; /* Initially, C. */ current_lang_name = lang_name_c; /* Create the `std' namespace. */ push_namespace (std_identifier); std_node = current_namespace; pop_namespace (); c_common_nodes_and_builtins (); java_byte_type_node = record_builtin_java_type ("__java_byte", 8); java_short_type_node = record_builtin_java_type ("__java_short", 16); java_int_type_node = record_builtin_java_type ("__java_int", 32); java_long_type_node = record_builtin_java_type ("__java_long", 64); java_float_type_node = record_builtin_java_type ("__java_float", -32); java_double_type_node = record_builtin_java_type ("__java_double", -64); java_char_type_node = record_builtin_java_type ("__java_char", -16); java_boolean_type_node = record_builtin_java_type ("__java_boolean", -1); integer_two_node = build_int_cst (NULL_TREE, 2); integer_three_node = build_int_cst (NULL_TREE, 3); record_builtin_type (RID_BOOL, "bool", boolean_type_node); truthvalue_type_node = boolean_type_node; truthvalue_false_node = boolean_false_node; truthvalue_true_node = boolean_true_node; empty_except_spec = build_tree_list (NULL_TREE, NULL_TREE); #if 0 record_builtin_type (RID_MAX, NULL, string_type_node); #endif delta_type_node = ptrdiff_type_node; vtable_index_type = ptrdiff_type_node; vtt_parm_type = build_pointer_type (const_ptr_type_node); void_ftype = build_function_type (void_type_node, void_list_node); void_ftype_ptr = build_function_type (void_type_node, tree_cons (NULL_TREE, ptr_type_node, void_list_node)); void_ftype_ptr = build_exception_variant (void_ftype_ptr, empty_except_spec); /* C++ extensions */ unknown_type_node = make_node (UNKNOWN_TYPE); record_unknown_type (unknown_type_node, "unknown type"); /* Indirecting an UNKNOWN_TYPE node yields an UNKNOWN_TYPE node. */ TREE_TYPE (unknown_type_node) = unknown_type_node; /* Looking up TYPE_POINTER_TO and TYPE_REFERENCE_TO yield the same result. */ TYPE_POINTER_TO (unknown_type_node) = unknown_type_node; TYPE_REFERENCE_TO (unknown_type_node) = unknown_type_node; init_list_type_node = make_node (UNKNOWN_TYPE); record_unknown_type (init_list_type_node, "init list"); { /* Make sure we get a unique function type, so we can give its pointer type a name. (This wins for gdb.) */ tree vfunc_type = make_node (FUNCTION_TYPE); TREE_TYPE (vfunc_type) = integer_type_node; TYPE_ARG_TYPES (vfunc_type) = NULL_TREE; layout_type (vfunc_type); vtable_entry_type = build_pointer_type (vfunc_type); } record_builtin_type (RID_MAX, VTBL_PTR_TYPE, vtable_entry_type); vtbl_type_node = build_cplus_array_type (vtable_entry_type, NULL_TREE); layout_type (vtbl_type_node); vtbl_type_node = build_qualified_type (vtbl_type_node, TYPE_QUAL_CONST); record_builtin_type (RID_MAX, NULL, vtbl_type_node); vtbl_ptr_type_node = build_pointer_type (vtable_entry_type); layout_type (vtbl_ptr_type_node); record_builtin_type (RID_MAX, NULL, vtbl_ptr_type_node); push_namespace (get_identifier ("__cxxabiv1")); abi_node = current_namespace; pop_namespace (); global_type_node = make_node (LANG_TYPE); record_unknown_type (global_type_node, "global type"); /* Now, C++. */ current_lang_name = lang_name_cplusplus; { tree bad_alloc_id; tree bad_alloc_type_node; tree bad_alloc_decl; tree newtype, deltype; tree ptr_ftype_sizetype; push_namespace (std_identifier); bad_alloc_id = get_identifier ("bad_alloc"); bad_alloc_type_node = make_class_type (RECORD_TYPE); TYPE_CONTEXT (bad_alloc_type_node) = current_namespace; bad_alloc_decl = create_implicit_typedef (bad_alloc_id, bad_alloc_type_node); DECL_CONTEXT (bad_alloc_decl) = current_namespace; TYPE_STUB_DECL (bad_alloc_type_node) = bad_alloc_decl; pop_namespace (); ptr_ftype_sizetype = build_function_type (ptr_type_node, tree_cons (NULL_TREE, size_type_node, void_list_node)); newtype = build_exception_variant (ptr_ftype_sizetype, add_exception_specifier (NULL_TREE, bad_alloc_type_node, -1)); deltype = build_exception_variant (void_ftype_ptr, empty_except_spec); push_cp_library_fn (NEW_EXPR, newtype); push_cp_library_fn (VEC_NEW_EXPR, newtype); global_delete_fndecl = push_cp_library_fn (DELETE_EXPR, deltype); push_cp_library_fn (VEC_DELETE_EXPR, deltype); } abort_fndecl = build_library_fn_ptr ("__cxa_pure_virtual", void_ftype); /* Perform other language dependent initializations. */ init_class_processing (); init_rtti_processing (); if (flag_exceptions) init_exception_processing (); if (! supports_one_only ()) flag_weak = 0; make_fname_decl = cp_make_fname_decl; start_fname_decls (); /* Show we use EH for cleanups. */ if (flag_exceptions) using_eh_for_cleanups (); } /* Generate an initializer for a function naming variable from NAME. NAME may be NULL, to indicate a dependent name. TYPE_P is filled in with the type of the init. */ tree cp_fname_init (const char* name, tree *type_p) { tree domain = NULL_TREE; tree type; tree init = NULL_TREE; size_t length = 0; if (name) { length = strlen (name); domain = build_index_type (size_int (length)); init = build_string (length + 1, name); } type = build_qualified_type (char_type_node, TYPE_QUAL_CONST); type = build_cplus_array_type (type, domain); *type_p = type; if (init) TREE_TYPE (init) = type; else init = error_mark_node; return init; } /* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give the decl, NAME is the initialization string and TYPE_DEP indicates whether NAME depended on the type of the function. We make use of that to detect __PRETTY_FUNCTION__ inside a template fn. This is being done lazily at the point of first use, so we mustn't push the decl now. */ static tree cp_make_fname_decl (tree id, int type_dep) { const char *const name = (type_dep && processing_template_decl ? NULL : fname_as_string (type_dep)); tree type; tree init = cp_fname_init (name, &type); tree decl = build_decl (VAR_DECL, id, type); if (name) free (CONST_CAST (char *, name)); /* As we're using pushdecl_with_scope, we must set the context. */ DECL_CONTEXT (decl) = current_function_decl; DECL_PRETTY_FUNCTION_P (decl) = type_dep; TREE_STATIC (decl) = 1; TREE_READONLY (decl) = 1; DECL_ARTIFICIAL (decl) = 1; TREE_USED (decl) = 1; if (current_function_decl) { struct cp_binding_level *b = current_binding_level; while (b->level_chain->kind != sk_function_parms) b = b->level_chain; pushdecl_with_scope (decl, b, /*is_friend=*/false); cp_finish_decl (decl, init, /*init_const_expr_p=*/false, NULL_TREE, LOOKUP_ONLYCONVERTING); } else pushdecl_top_level_and_finish (decl, init); return decl; } static tree builtin_function_1 (tree decl, tree context, bool is_global) { tree id = DECL_NAME (decl); const char *name = IDENTIFIER_POINTER (id); retrofit_lang_decl (decl); /* All nesting of C++ functions is lexical; there is never a "static chain" in the sense of GNU C nested functions. */ DECL_NO_STATIC_CHAIN (decl) = 1; DECL_ARTIFICIAL (decl) = 1; SET_OVERLOADED_OPERATOR_CODE (decl, ERROR_MARK); SET_DECL_LANGUAGE (decl, lang_c); /* Runtime library routines are, by definition, available in an external shared object. */ DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT; DECL_VISIBILITY_SPECIFIED (decl) = 1; DECL_CONTEXT (decl) = context; if (is_global) pushdecl_top_level (decl); else pushdecl (decl); /* A function in the user's namespace should have an explicit declaration before it is used. Mark the built-in function as anticipated but not actually declared. */ if (name[0] != '_' || name[1] != '_') DECL_ANTICIPATED (decl) = 1; else if (strncmp (name + 2, "builtin_", strlen ("builtin_")) != 0) { size_t len = strlen (name); /* Treat __*_chk fortification functions as anticipated as well, unless they are __builtin_*. */ if (len > strlen ("___chk") && memcmp (name + len - strlen ("_chk"), "_chk", strlen ("_chk") + 1) == 0) DECL_ANTICIPATED (decl) = 1; } return decl; } tree cxx_builtin_function (tree decl) { tree id = DECL_NAME (decl); const char *name = IDENTIFIER_POINTER (id); /* All builtins that don't begin with an '_' should additionally go in the 'std' namespace. */ if (name[0] != '_') { tree decl2 = copy_node(decl); push_namespace (std_identifier); builtin_function_1 (decl2, std_node, false); pop_namespace (); } return builtin_function_1 (decl, NULL_TREE, false); } /* Like cxx_builtin_function, but guarantee the function is added to the global scope. This is to allow function specific options to add new machine dependent builtins when the target ISA changes via attribute((target(...))) which saves space on program startup if the program does not use non-generic ISAs. */ tree cxx_builtin_function_ext_scope (tree decl) { tree id = DECL_NAME (decl); const char *name = IDENTIFIER_POINTER (id); /* All builtins that don't begin with an '_' should additionally go in the 'std' namespace. */ if (name[0] != '_') { tree decl2 = copy_node(decl); push_namespace (std_identifier); builtin_function_1 (decl2, std_node, true); pop_namespace (); } return builtin_function_1 (decl, NULL_TREE, true); } /* Generate a FUNCTION_DECL with the typical flags for a runtime library function. Not called directly. */ static tree build_library_fn_1 (tree name, enum tree_code operator_code, tree type) { tree fn = build_lang_decl (FUNCTION_DECL, name, type); DECL_EXTERNAL (fn) = 1; TREE_PUBLIC (fn) = 1; DECL_ARTIFICIAL (fn) = 1; SET_OVERLOADED_OPERATOR_CODE (fn, operator_code); SET_DECL_LANGUAGE (fn, lang_c); /* Runtime library routines are, by definition, available in an external shared object. */ DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT; DECL_VISIBILITY_SPECIFIED (fn) = 1; return fn; } /* Returns the _DECL for a library function with C linkage. We assume that such functions never throw; if this is incorrect, callers should unset TREE_NOTHROW. */ static tree build_library_fn (tree name, tree type) { tree fn = build_library_fn_1 (name, ERROR_MARK, type); TREE_NOTHROW (fn) = 1; return fn; } /* Returns the _DECL for a library function with C++ linkage. */ static tree build_cp_library_fn (tree name, enum tree_code operator_code, tree type) { tree fn = build_library_fn_1 (name, operator_code, type); TREE_NOTHROW (fn) = TYPE_NOTHROW_P (type); DECL_CONTEXT (fn) = FROB_CONTEXT (current_namespace); SET_DECL_LANGUAGE (fn, lang_cplusplus); return fn; } /* Like build_library_fn, but takes a C string instead of an IDENTIFIER_NODE. */ tree build_library_fn_ptr (const char* name, tree type) { return build_library_fn (get_identifier (name), type); } /* Like build_cp_library_fn, but takes a C string instead of an IDENTIFIER_NODE. */ tree build_cp_library_fn_ptr (const char* name, tree type) { return build_cp_library_fn (get_identifier (name), ERROR_MARK, type); } /* Like build_library_fn, but also pushes the function so that we will be able to find it via IDENTIFIER_GLOBAL_VALUE. Also, the function may throw exceptions listed in RAISES. */ tree push_library_fn (tree name, tree type, tree raises) { tree fn; if (raises) type = build_exception_variant (type, raises); fn = build_library_fn (name, type); pushdecl_top_level (fn); return fn; } /* Like build_cp_library_fn, but also pushes the function so that it will be found by normal lookup. */ static tree push_cp_library_fn (enum tree_code operator_code, tree type) { tree fn = build_cp_library_fn (ansi_opname (operator_code), operator_code, type); pushdecl (fn); return fn; } /* Like push_library_fn, but takes a TREE_LIST of parm types rather than a FUNCTION_TYPE. */ tree push_void_library_fn (tree name, tree parmtypes) { tree type = build_function_type (void_type_node, parmtypes); return push_library_fn (name, type, NULL_TREE); } /* Like push_library_fn, but also note that this function throws and does not return. Used for __throw_foo and the like. */ tree push_throw_library_fn (tree name, tree type) { tree fn = push_library_fn (name, type, NULL_TREE); TREE_THIS_VOLATILE (fn) = 1; TREE_NOTHROW (fn) = 0; return fn; } /* When we call finish_struct for an anonymous union, we create default copy constructors and such. But, an anonymous union shouldn't have such things; this function undoes the damage to the anonymous union type T. (The reason that we create the synthesized methods is that we don't distinguish `union { int i; }' from `typedef union { int i; } U'. The first is an anonymous union; the second is just an ordinary union type.) */ void fixup_anonymous_aggr (tree t) { tree *q; /* Wipe out memory of synthesized methods. */ TYPE_HAS_USER_CONSTRUCTOR (t) = 0; TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 0; TYPE_HAS_INIT_REF (t) = 0; TYPE_HAS_CONST_INIT_REF (t) = 0; TYPE_HAS_ASSIGN_REF (t) = 0; TYPE_HAS_CONST_ASSIGN_REF (t) = 0; /* Splice the implicitly generated functions out of the TYPE_METHODS list. */ q = &TYPE_METHODS (t); while (*q) { if (DECL_ARTIFICIAL (*q)) *q = TREE_CHAIN (*q); else q = &TREE_CHAIN (*q); } /* ISO C++ 9.5.3. Anonymous unions may not have function members. */ if (TYPE_METHODS (t)) { tree decl = TYPE_MAIN_DECL (t); if (TREE_CODE (t) != UNION_TYPE) error ("%Jan anonymous struct cannot have function members", decl); else error ("%Jan anonymous union cannot have function members", decl); } /* Anonymous aggregates cannot have fields with ctors, dtors or complex assignment operators (because they cannot have these methods themselves). For anonymous unions this is already checked because they are not allowed in any union, otherwise we have to check it. */ if (TREE_CODE (t) != UNION_TYPE) { tree field, type; for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field)) if (TREE_CODE (field) == FIELD_DECL) { type = TREE_TYPE (field); if (CLASS_TYPE_P (type)) { if (TYPE_NEEDS_CONSTRUCTING (type)) error ("member %q+#D with constructor not allowed " "in anonymous aggregate", field); if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) error ("member %q+#D with destructor not allowed " "in anonymous aggregate", field); if (TYPE_HAS_COMPLEX_ASSIGN_REF (type)) error ("member %q+#D with copy assignment operator " "not allowed in anonymous aggregate", field); } } } } /* Make sure that a declaration with no declarator is well-formed, i.e. just declares a tagged type or anonymous union. Returns the type declared; or NULL_TREE if none. */ tree check_tag_decl (cp_decl_specifier_seq *declspecs) { int saw_friend = declspecs->specs[(int)ds_friend] != 0; int saw_typedef = declspecs->specs[(int)ds_typedef] != 0; /* If a class, struct, or enum type is declared by the DECLSPECS (i.e, if a class-specifier, enum-specifier, or non-typename elaborated-type-specifier appears in the DECLSPECS), DECLARED_TYPE is set to the corresponding type. */ tree declared_type = NULL_TREE; bool error_p = false; if (declspecs->multiple_types_p) error ("multiple types in one declaration"); else if (declspecs->redefined_builtin_type) { if (!in_system_header) permerror (input_location, "redeclaration of C++ built-in type %qT", declspecs->redefined_builtin_type); return NULL_TREE; } if (declspecs->type && TYPE_P (declspecs->type) && ((TREE_CODE (declspecs->type) != TYPENAME_TYPE && MAYBE_CLASS_TYPE_P (declspecs->type)) || TREE_CODE (declspecs->type) == ENUMERAL_TYPE)) declared_type = declspecs->type; else if (declspecs->type == error_mark_node) error_p = true; if (declared_type == NULL_TREE && ! saw_friend && !error_p) permerror (input_location, "declaration does not declare anything"); /* Check for an anonymous union. */ else if (declared_type && RECORD_OR_UNION_CODE_P (TREE_CODE (declared_type)) && TYPE_ANONYMOUS_P (declared_type)) { /* 7/3 In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (clause 9) or enumeration (7.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-type-specifier with a class-key (9.1), or an enum-specifier. In these cases and whenever a class-specifier or enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names being declared by the declaration (as class-name, enum-names, or enumerators, depending on the syntax). In such cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall introduce one or more names into the program, or shall redeclare a name introduced by a previous declaration. [Example: enum { }; // ill-formed typedef class { }; // ill-formed --end example] */ if (saw_typedef) { error ("missing type-name in typedef-declaration"); return NULL_TREE; } /* Anonymous unions are objects, so they can have specifiers. */; SET_ANON_AGGR_TYPE_P (declared_type); if (TREE_CODE (declared_type) != UNION_TYPE && !in_system_header) pedwarn (input_location, OPT_pedantic, "ISO C++ prohibits anonymous structs"); } else { if (declspecs->specs[(int)ds_inline] || declspecs->specs[(int)ds_virtual]) error ("%qs can only be specified for functions", declspecs->specs[(int)ds_inline] ? "inline" : "virtual"); else if (saw_friend && (!current_class_type || current_scope () != current_class_type)) error ("% can only be specified inside a class"); else if (declspecs->specs[(int)ds_explicit]) error ("% can only be specified for constructors"); else if (declspecs->storage_class) error ("a storage class can only be specified for objects " "and functions"); else if (declspecs->specs[(int)ds_const] || declspecs->specs[(int)ds_volatile] || declspecs->specs[(int)ds_restrict] || declspecs->specs[(int)ds_thread]) error ("qualifiers can only be specified for objects " "and functions"); else if (saw_typedef) warning (0, "% was ignored in this declaration"); } return declared_type; } /* Called when a declaration is seen that contains no names to declare. If its type is a reference to a structure, union or enum inherited from a containing scope, shadow that tag name for the current scope with a forward reference. If its type defines a new named structure or union or defines an enum, it is valid but we need not do anything here. Otherwise, it is an error. C++: may have to grok the declspecs to learn about static, complain for anonymous unions. Returns the TYPE declared -- or NULL_TREE if none. */ tree shadow_tag (cp_decl_specifier_seq *declspecs) { tree t = check_tag_decl (declspecs); if (!t) return NULL_TREE; if (declspecs->attributes) { warning (0, "attribute ignored in declaration of %q+#T", t); warning (0, "attribute for %q+#T must follow the %qs keyword", t, class_key_or_enum_as_string (t)); } if (maybe_process_partial_specialization (t) == error_mark_node) return NULL_TREE; /* This is where the variables in an anonymous union are declared. An anonymous union declaration looks like: union { ... } ; because there is no declarator after the union, the parser sends that declaration here. */ if (ANON_AGGR_TYPE_P (t)) { fixup_anonymous_aggr (t); if (TYPE_FIELDS (t)) { tree decl = grokdeclarator (/*declarator=*/NULL, declspecs, NORMAL, 0, NULL); finish_anon_union (decl); } } return t; } /* Decode a "typename", such as "int **", returning a ..._TYPE node. */ tree groktypename (cp_decl_specifier_seq *type_specifiers, const cp_declarator *declarator) { tree attrs; tree type; attrs = type_specifiers->attributes; type_specifiers->attributes = NULL_TREE; type = grokdeclarator (declarator, type_specifiers, TYPENAME, 0, &attrs); if (attrs && type != error_mark_node) { if (CLASS_TYPE_P (type)) warning (OPT_Wattributes, "ignoring attributes applied to class type %qT " "outside of definition", type); else if (MAYBE_CLASS_TYPE_P (type)) /* A template type parameter or other dependent type. */ warning (OPT_Wattributes, "ignoring attributes applied to dependent " "type %qT without an associated declaration", type); else cplus_decl_attributes (&type, attrs, 0); } return type; } /* Process a DECLARATOR for a function-scope variable declaration, namespace-scope variable declaration, or function declaration. (Function definitions go through start_function; class member declarations appearing in the body of the class go through grokfield.) The DECL corresponding to the DECLARATOR is returned. If an error occurs, the error_mark_node is returned instead. DECLSPECS are the decl-specifiers for the declaration. INITIALIZED is SD_INITIALIZED if an explicit initializer is present, or SD_DEFAULTED for an explicitly defaulted function, or SD_DELETED for an explicitly deleted function, but 0 (SD_UNINITIALIZED) if this is a variable implicitly initialized via a default constructor. ATTRIBUTES and PREFIX_ATTRIBUTES are GNU attributes associated with this declaration. *PUSHED_SCOPE_P is set to the scope entered in this function, if any; if set, the caller is responsible for calling pop_scope. */ tree start_decl (const cp_declarator *declarator, cp_decl_specifier_seq *declspecs, int initialized, tree attributes, tree prefix_attributes, tree *pushed_scope_p) { tree decl; tree type; tree context; bool was_public; int flags; *pushed_scope_p = NULL_TREE; /* An object declared as __attribute__((deprecated)) suppresses warnings of uses of other deprecated items. */ if (lookup_attribute ("deprecated", attributes)) deprecated_state = DEPRECATED_SUPPRESS; attributes = chainon (attributes, prefix_attributes); decl = grokdeclarator (declarator, declspecs, NORMAL, initialized, &attributes); deprecated_state = DEPRECATED_NORMAL; if (decl == NULL_TREE || TREE_CODE (decl) == VOID_TYPE || decl == error_mark_node) return error_mark_node; type = TREE_TYPE (decl); context = DECL_CONTEXT (decl); if (context) { *pushed_scope_p = push_scope (context); /* We are only interested in class contexts, later. */ if (TREE_CODE (context) == NAMESPACE_DECL) context = NULL_TREE; } if (initialized) /* Is it valid for this decl to have an initializer at all? If not, set INITIALIZED to zero, which will indirectly tell `cp_finish_decl' to ignore the initializer once it is parsed. */ switch (TREE_CODE (decl)) { case TYPE_DECL: error ("typedef %qD is initialized (use decltype instead)", decl); return error_mark_node; case FUNCTION_DECL: if (initialized == SD_DELETED) /* We'll handle the rest of the semantics later, but we need to set this now so it's visible to duplicate_decls. */ DECL_DELETED_FN (decl) = 1; break; default: break; } if (initialized) { if (! toplevel_bindings_p () && DECL_EXTERNAL (decl)) warning (0, "declaration of %q#D has % and is initialized", decl); DECL_EXTERNAL (decl) = 0; if (toplevel_bindings_p ()) TREE_STATIC (decl) = 1; } /* If this is a typedef that names the class for linkage purposes (7.1.3p8), apply any attributes directly to the type. */ if (TREE_CODE (decl) == TYPE_DECL && TAGGED_TYPE_P (TREE_TYPE (decl)) && decl == TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (decl)))) flags = ATTR_FLAG_TYPE_IN_PLACE; else flags = 0; /* Set attributes here so if duplicate decl, will have proper attributes. */ cplus_decl_attributes (&decl, attributes, flags); /* Dllimported symbols cannot be defined. Static data members (which can be initialized in-class and dllimported) go through grokfield, not here, so we don't need to exclude those decls when checking for a definition. */ if (initialized && DECL_DLLIMPORT_P (decl)) { error ("definition of %q#D is marked %", decl); DECL_DLLIMPORT_P (decl) = 0; } /* If #pragma weak was used, mark the decl weak now. */ maybe_apply_pragma_weak (decl); if (TREE_CODE (decl) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (decl) && DECL_UNINLINABLE (decl) && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl))) warning (0, "inline function %q+D given attribute noinline", decl); if (context && COMPLETE_TYPE_P (complete_type (context))) { if (TREE_CODE (decl) == VAR_DECL) { tree field = lookup_field (context, DECL_NAME (decl), 0, false); if (field == NULL_TREE || TREE_CODE (field) != VAR_DECL) error ("%q#D is not a static member of %q#T", decl, context); else { if (DECL_CONTEXT (field) != context) { if (!same_type_p (DECL_CONTEXT (field), context)) permerror (input_location, "ISO C++ does not permit %<%T::%D%> " "to be defined as %<%T::%D%>", DECL_CONTEXT (field), DECL_NAME (decl), context, DECL_NAME (decl)); DECL_CONTEXT (decl) = DECL_CONTEXT (field); } if (processing_specialization && template_class_depth (context) == 0 && CLASSTYPE_TEMPLATE_SPECIALIZATION (context)) error ("template header not allowed in member definition " "of explicitly specialized class"); /* Static data member are tricky; an in-class initialization still doesn't provide a definition, so the in-class declaration will have DECL_EXTERNAL set, but will have an initialization. Thus, duplicate_decls won't warn about this situation, and so we check here. */ if (initialized && DECL_INITIALIZED_IN_CLASS_P (field)) error ("duplicate initialization of %qD", decl); if (duplicate_decls (decl, field, /*newdecl_is_friend=*/false)) decl = field; } } else { tree field = check_classfn (context, decl, (processing_template_decl > template_class_depth (context)) ? current_template_parms : NULL_TREE); if (field && field != error_mark_node && duplicate_decls (decl, field, /*newdecl_is_friend=*/false)) decl = field; } /* cp_finish_decl sets DECL_EXTERNAL if DECL_IN_AGGR_P is set. */ DECL_IN_AGGR_P (decl) = 0; /* Do not mark DECL as an explicit specialization if it was not already marked as an instantiation; a declaration should never be marked as a specialization unless we know what template is being specialized. */ if (DECL_LANG_SPECIFIC (decl) && DECL_USE_TEMPLATE (decl)) { SET_DECL_TEMPLATE_SPECIALIZATION (decl); /* [temp.expl.spec] An explicit specialization of a static data member of a template is a definition if the declaration includes an initializer; otherwise, it is a declaration. We check for processing_specialization so this only applies to the new specialization syntax. */ if (!initialized && processing_specialization) DECL_EXTERNAL (decl) = 1; } if (DECL_EXTERNAL (decl) && ! DECL_TEMPLATE_SPECIALIZATION (decl)) permerror (input_location, "declaration of %q#D outside of class is not definition", decl); } was_public = TREE_PUBLIC (decl); /* Enter this declaration into the symbol table. */ decl = maybe_push_decl (decl); if (processing_template_decl) decl = push_template_decl (decl); if (decl == error_mark_node) return error_mark_node; /* Tell the back end to use or not use .common as appropriate. If we say -fconserve-space, we want this to save .data space, at the expense of wrong semantics. If we say -fno-conserve-space, we want this to produce errors about redefs; to do this we force variables into the data segment. */ if (flag_conserve_space && TREE_CODE (decl) == VAR_DECL && TREE_PUBLIC (decl) && !DECL_THREAD_LOCAL_P (decl) && !have_global_bss_p ()) DECL_COMMON (decl) = 1; if (TREE_CODE (decl) == VAR_DECL && DECL_NAMESPACE_SCOPE_P (decl) && !TREE_PUBLIC (decl) && !was_public && !DECL_THIS_STATIC (decl) && !DECL_ARTIFICIAL (decl)) { /* This is a const variable with implicit 'static'. Set DECL_THIS_STATIC so we can tell it from variables that are !TREE_PUBLIC because of the anonymous namespace. */ gcc_assert (cp_type_readonly (TREE_TYPE (decl))); DECL_THIS_STATIC (decl) = 1; } if (!processing_template_decl && TREE_CODE (decl) == VAR_DECL) start_decl_1 (decl, initialized); return decl; } /* Process the declaration of a variable DECL. INITIALIZED is true iff DECL is explicitly initialized. (INITIALIZED is false if the variable is initialized via an implicitly-called constructor.) This function must be called for ordinary variables (including, for example, implicit instantiations of templates), but must not be called for template declarations. */ void start_decl_1 (tree decl, bool initialized) { tree type; bool complete_p; bool aggregate_definition_p; gcc_assert (!processing_template_decl); if (error_operand_p (decl)) return; gcc_assert (TREE_CODE (decl) == VAR_DECL); type = TREE_TYPE (decl); complete_p = COMPLETE_TYPE_P (type); aggregate_definition_p = MAYBE_CLASS_TYPE_P (type) && !DECL_EXTERNAL (decl); /* If an explicit initializer is present, or if this is a definition of an aggregate, then we need a complete type at this point. (Scalars are always complete types, so there is nothing to check.) This code just sets COMPLETE_P; errors (if necessary) are issued below. */ if ((initialized || aggregate_definition_p) && !complete_p && COMPLETE_TYPE_P (complete_type (type))) { complete_p = true; /* We will not yet have set TREE_READONLY on DECL if the type was "const", but incomplete, before this point. But, now, we have a complete type, so we can try again. */ cp_apply_type_quals_to_decl (cp_type_quals (type), decl); } if (initialized) /* Is it valid for this decl to have an initializer at all? */ { /* Don't allow initializations for incomplete types except for arrays which might be completed by the initialization. */ if (complete_p) ; /* A complete type is ok. */ else if (type_uses_auto (type)) ; /* An auto type is ok. */ else if (TREE_CODE (type) != ARRAY_TYPE) { error ("variable %q#D has initializer but incomplete type", decl); type = TREE_TYPE (decl) = error_mark_node; } else if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (type)))) { if (DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl)) error ("elements of array %q#D have incomplete type", decl); /* else we already gave an error in start_decl. */ } } else if (aggregate_definition_p && !complete_p) { if (type_uses_auto (type)) error ("declaration of %q#D has no initializer", decl); else error ("aggregate %q#D has incomplete type and cannot be defined", decl); /* Change the type so that assemble_variable will give DECL an rtl we can live with: (mem (const_int 0)). */ type = TREE_TYPE (decl) = error_mark_node; } /* Create a new scope to hold this declaration if necessary. Whether or not a new scope is necessary cannot be determined until after the type has been completed; if the type is a specialization of a class template it is not until after instantiation has occurred that TYPE_HAS_NONTRIVIAL_DESTRUCTOR will be set correctly. */ maybe_push_cleanup_level (type); } /* Handle initialization of references. DECL, TYPE, and INIT have the same meaning as in cp_finish_decl. *CLEANUP must be NULL on entry, but will be set to a new CLEANUP_STMT if a temporary is created that must be destroyed subsequently. Returns an initializer expression to use to initialize DECL, or NULL if the initialization can be performed statically. Quotes on semantics can be found in ARM 8.4.3. */ static tree grok_reference_init (tree decl, tree type, tree init, tree *cleanup) { tree tmp; if (init == NULL_TREE) { if ((DECL_LANG_SPECIFIC (decl) == 0 || DECL_IN_AGGR_P (decl) == 0) && ! DECL_THIS_EXTERN (decl)) error ("%qD declared as reference but not initialized", decl); return NULL_TREE; } if (TREE_CODE (init) == CONSTRUCTOR) { error ("ISO C++ forbids use of initializer list to " "initialize reference %qD", decl); return NULL_TREE; } if (TREE_CODE (init) == TREE_LIST) init = build_x_compound_expr_from_list (init, "initializer"); if (TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE && TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE) /* Note: default conversion is only called in very special cases. */ init = decay_conversion (init); /* Convert INIT to the reference type TYPE. This may involve the creation of a temporary, whose lifetime must be the same as that of the reference. If so, a DECL_EXPR for the temporary will be added just after the DECL_EXPR for DECL. That's why we don't set DECL_INITIAL for local references (instead assigning to them explicitly); we need to allow the temporary to be initialized first. */ tmp = initialize_reference (type, init, decl, cleanup); if (tmp == error_mark_node) return NULL_TREE; else if (tmp == NULL_TREE) { error ("cannot initialize %qT from %qT", type, TREE_TYPE (init)); return NULL_TREE; } if (TREE_STATIC (decl) && !TREE_CONSTANT (tmp)) return tmp; DECL_INITIAL (decl) = tmp; return NULL_TREE; } /* Subroutine of check_initializer. We're initializing a DECL of std::initializer_list TYPE from a braced-init-list INIT, and need to extend the lifetime of the underlying array to match that of the decl, just like for reference initialization. CLEANUP is as for grok_reference_init. */ static tree build_init_list_var_init (tree decl, tree type, tree init, tree *cleanup) { tree aggr_init, array, arrtype; init = perform_implicit_conversion (type, init, tf_warning_or_error); aggr_init = TARGET_EXPR_INITIAL (init); init = build2 (INIT_EXPR, type, decl, init); array = AGGR_INIT_EXPR_ARG (aggr_init, 1); arrtype = TREE_TYPE (array); STRIP_NOPS (array); gcc_assert (TREE_CODE (array) == ADDR_EXPR); array = TREE_OPERAND (array, 0); /* If the array is constant, finish_compound_literal already made it a static variable and we don't need to do anything here. */ if (decl && TREE_CODE (array) == TARGET_EXPR) { tree subinit; tree var = set_up_extended_ref_temp (decl, array, cleanup, &subinit); var = build_address (var); var = convert (arrtype, var); AGGR_INIT_EXPR_ARG (aggr_init, 1) = var; init = build2 (COMPOUND_EXPR, TREE_TYPE (init), subinit, init); } return init; } /* Designated initializers in arrays are not supported in GNU C++. The parser cannot detect this error since it does not know whether a given brace-enclosed initializer is for a class type or for an array. This function checks that CE does not use a designated initializer. If it does, an error is issued. Returns true if CE is valid, i.e., does not have a designated initializer. */ static bool check_array_designated_initializer (const constructor_elt *ce) { /* Designated initializers for array elements are not supported. */ if (ce->index) { /* The parser only allows identifiers as designated initializers. */ gcc_assert (TREE_CODE (ce->index) == IDENTIFIER_NODE); error ("name %qD used in a GNU-style designated " "initializer for an array", ce->index); return false; } return true; } /* When parsing `int a[] = {1, 2};' we don't know the size of the array until we finish parsing the initializer. If that's the situation we're in, update DECL accordingly. */ static void maybe_deduce_size_from_array_init (tree decl, tree init) { tree type = TREE_TYPE (decl); if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) == NULL_TREE && TREE_CODE (decl) != TYPE_DECL) { /* do_default is really a C-ism to deal with tentative definitions. But let's leave it here to ease the eventual merge. */ int do_default = !DECL_EXTERNAL (decl); tree initializer = init ? init : DECL_INITIAL (decl); int failure = 0; /* Check that there are no designated initializers in INIT, as those are not supported in GNU C++, and as the middle-end will crash if presented with a non-numeric designated initializer. */ if (initializer && TREE_CODE (initializer) == CONSTRUCTOR) { VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initializer); constructor_elt *ce; HOST_WIDE_INT i; for (i = 0; VEC_iterate (constructor_elt, v, i, ce); ++i) if (!check_array_designated_initializer (ce)) failure = 1; } if (!failure) { failure = cp_complete_array_type (&TREE_TYPE (decl), initializer, do_default); if (failure == 1) { error ("initializer fails to determine size of %qD", decl); TREE_TYPE (decl) = error_mark_node; } else if (failure == 2) { if (do_default) { error ("array size missing in %qD", decl); TREE_TYPE (decl) = error_mark_node; } /* If a `static' var's size isn't known, make it extern as well as static, so it does not get allocated. If it's not `static', then don't mark it extern; finish_incomplete_decl will give it a default size and it will get allocated. */ else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl)) DECL_EXTERNAL (decl) = 1; } else if (failure == 3) { error ("zero-size array %qD", decl); TREE_TYPE (decl) = error_mark_node; } } cp_apply_type_quals_to_decl (cp_type_quals (TREE_TYPE (decl)), decl); layout_decl (decl, 0); } } /* Set DECL_SIZE, DECL_ALIGN, etc. for DECL (a VAR_DECL), and issue any appropriate error messages regarding the layout. */ static void layout_var_decl (tree decl) { tree type; type = TREE_TYPE (decl); if (type == error_mark_node) return; /* If we haven't already layed out this declaration, do so now. Note that we must not call complete type for an external object because it's type might involve templates that we are not supposed to instantiate yet. (And it's perfectly valid to say `extern X x' for some incomplete type `X'.) */ if (!DECL_EXTERNAL (decl)) complete_type (type); if (!DECL_SIZE (decl) && TREE_TYPE (decl) != error_mark_node && (COMPLETE_TYPE_P (type) || (TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type) && COMPLETE_TYPE_P (TREE_TYPE (type))))) layout_decl (decl, 0); if (!DECL_EXTERNAL (decl) && DECL_SIZE (decl) == NULL_TREE) { /* An automatic variable with an incomplete type: that is an error. Don't talk about array types here, since we took care of that message in grokdeclarator. */ error ("storage size of %qD isn't known", decl); TREE_TYPE (decl) = error_mark_node; } #if 0 /* Keep this code around in case we later want to control debug info based on whether a type is "used". (jason 1999-11-11) */ else if (!DECL_EXTERNAL (decl) && MAYBE_CLASS_TYPE_P (ttype)) /* Let debugger know it should output info for this type. */ note_debug_info_needed (ttype); if (TREE_STATIC (decl) && DECL_CLASS_SCOPE_P (decl)) note_debug_info_needed (DECL_CONTEXT (decl)); #endif if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl)) && DECL_SIZE (decl) != NULL_TREE && ! TREE_CONSTANT (DECL_SIZE (decl))) { if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST) constant_expression_warning (DECL_SIZE (decl)); else { error ("storage size of %qD isn't constant", decl); TREE_TYPE (decl) = error_mark_node; } } } /* If a local static variable is declared in an inline function, or if we have a weak definition, we must endeavor to create only one instance of the variable at link-time. */ static void maybe_commonize_var (tree decl) { /* Static data in a function with comdat linkage also has comdat linkage. */ if (TREE_STATIC (decl) /* Don't mess with __FUNCTION__. */ && ! DECL_ARTIFICIAL (decl) && DECL_FUNCTION_SCOPE_P (decl) /* Unfortunately, import_export_decl has not always been called before the function is processed, so we cannot simply check DECL_COMDAT. */ && (DECL_COMDAT (DECL_CONTEXT (decl)) || ((DECL_DECLARED_INLINE_P (DECL_CONTEXT (decl)) || DECL_TEMPLATE_INSTANTIATION (DECL_CONTEXT (decl))) && TREE_PUBLIC (DECL_CONTEXT (decl))))) { if (flag_weak) { /* With weak symbols, we simply make the variable COMDAT; that will cause copies in multiple translations units to be merged. */ comdat_linkage (decl); } else { if (DECL_INITIAL (decl) == NULL_TREE || DECL_INITIAL (decl) == error_mark_node) { /* Without weak symbols, we can use COMMON to merge uninitialized variables. */ TREE_PUBLIC (decl) = 1; DECL_COMMON (decl) = 1; } else { /* While for initialized variables, we must use internal linkage -- which means that multiple copies will not be merged. */ TREE_PUBLIC (decl) = 0; DECL_COMMON (decl) = 0; warning (0, "sorry: semantics of inline function static " "data %q+#D are wrong (you'll wind up " "with multiple copies)", decl); warning (0, "%J you can work around this by removing " "the initializer", decl); } } } else if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl)) /* Set it up again; we might have set DECL_INITIAL since the last time. */ comdat_linkage (decl); } /* Issue an error message if DECL is an uninitialized const variable. */ static void check_for_uninitialized_const_var (tree decl) { tree type = TREE_TYPE (decl); /* ``Unless explicitly declared extern, a const object does not have external linkage and must be initialized. ($8.4; $12.1)'' ARM 7.1.6 */ if (TREE_CODE (decl) == VAR_DECL && TREE_CODE (type) != REFERENCE_TYPE && CP_TYPE_CONST_P (type) && !TYPE_NEEDS_CONSTRUCTING (type) && !DECL_INITIAL (decl)) error ("uninitialized const %qD", decl); } /* Structure holding the current initializer being processed by reshape_init. CUR is a pointer to the current element being processed, END is a pointer after the last element present in the initializer. */ typedef struct reshape_iterator_t { constructor_elt *cur; constructor_elt *end; } reshape_iter; static tree reshape_init_r (tree, reshape_iter *, bool); /* FIELD is a FIELD_DECL or NULL. In the former case, the value returned is the next FIELD_DECL (possibly FIELD itself) that can be initialized. If there are no more such fields, the return value will be NULL. */ static tree next_initializable_field (tree field) { while (field && (TREE_CODE (field) != FIELD_DECL || (DECL_C_BIT_FIELD (field) && !DECL_NAME (field)) || DECL_ARTIFICIAL (field))) field = TREE_CHAIN (field); return field; } /* Subroutine of reshape_init_array and reshape_init_vector, which does the actual work. ELT_TYPE is the element type of the array. MAX_INDEX is an INTEGER_CST representing the size of the array minus one (the maximum index), or NULL_TREE if the array was declared without specifying the size. D is the iterator within the constructor. */ static tree reshape_init_array_1 (tree elt_type, tree max_index, reshape_iter *d) { tree new_init; bool sized_array_p = (max_index != NULL_TREE); unsigned HOST_WIDE_INT max_index_cst = 0; unsigned HOST_WIDE_INT index; /* The initializer for an array is always a CONSTRUCTOR. */ new_init = build_constructor (init_list_type_node, NULL); if (sized_array_p) { /* Minus 1 is used for zero sized arrays. */ if (integer_all_onesp (max_index)) return new_init; if (host_integerp (max_index, 1)) max_index_cst = tree_low_cst (max_index, 1); /* sizetype is sign extended, not zero extended. */ else max_index_cst = tree_low_cst (fold_convert (size_type_node, max_index), 1); } /* Loop until there are no more initializers. */ for (index = 0; d->cur != d->end && (!sized_array_p || index <= max_index_cst); ++index) { tree elt_init; check_array_designated_initializer (d->cur); elt_init = reshape_init_r (elt_type, d, /*first_initializer_p=*/false); if (elt_init == error_mark_node) return error_mark_node; CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (new_init), NULL_TREE, elt_init); } return new_init; } /* Subroutine of reshape_init_r, processes the initializers for arrays. Parameters are the same of reshape_init_r. */ static tree reshape_init_array (tree type, reshape_iter *d) { tree max_index = NULL_TREE; gcc_assert (TREE_CODE (type) == ARRAY_TYPE); if (TYPE_DOMAIN (type)) max_index = array_type_nelts (type); return reshape_init_array_1 (TREE_TYPE (type), max_index, d); } /* Subroutine of reshape_init_r, processes the initializers for vectors. Parameters are the same of reshape_init_r. */ static tree reshape_init_vector (tree type, reshape_iter *d) { tree max_index = NULL_TREE; tree rtype; gcc_assert (TREE_CODE (type) == VECTOR_TYPE); if (COMPOUND_LITERAL_P (d->cur->value)) { tree value = d->cur->value; if (!same_type_p (TREE_TYPE (value), type)) { error ("invalid type %qT as initializer for a vector of type %qT", TREE_TYPE (d->cur->value), type); value = error_mark_node; } ++d->cur; return value; } /* For a vector, the representation type is a struct containing a single member which is an array of the appropriate size. */ rtype = TYPE_DEBUG_REPRESENTATION_TYPE (type); if (rtype && TYPE_DOMAIN (TREE_TYPE (TYPE_FIELDS (rtype)))) max_index = array_type_nelts (TREE_TYPE (TYPE_FIELDS (rtype))); return reshape_init_array_1 (TREE_TYPE (type), max_index, d); } /* Subroutine of reshape_init_r, processes the initializers for classes or union. Parameters are the same of reshape_init_r. */ static tree reshape_init_class (tree type, reshape_iter *d, bool first_initializer_p) { tree field; tree new_init; gcc_assert (CLASS_TYPE_P (type)); /* The initializer for a class is always a CONSTRUCTOR. */ new_init = build_constructor (init_list_type_node, NULL); field = next_initializable_field (TYPE_FIELDS (type)); if (!field) { /* [dcl.init.aggr] An initializer for an aggregate member that is an empty class shall have the form of an empty initializer-list {}. */ if (!first_initializer_p) { error ("initializer for %qT must be brace-enclosed", type); return error_mark_node; } return new_init; } /* Loop through the initializable fields, gathering initializers. */ while (d->cur != d->end) { tree field_init; /* Handle designated initializers, as an extension. */ if (d->cur->index) { field = lookup_field_1 (type, d->cur->index, /*want_type=*/false); if (!field || TREE_CODE (field) != FIELD_DECL) { error ("%qT has no non-static data member named %qD", type, d->cur->index); return error_mark_node; } } /* If we processed all the member of the class, we are done. */ if (!field) break; field_init = reshape_init_r (TREE_TYPE (field), d, /*first_initializer_p=*/false); CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (new_init), field, field_init); /* [dcl.init.aggr] When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer for the first member of the union. */ if (TREE_CODE (type) == UNION_TYPE) break; field = next_initializable_field (TREE_CHAIN (field)); } return new_init; } /* Subroutine of reshape_init, which processes a single initializer (part of a CONSTRUCTOR). TYPE is the type of the variable being initialized, D is the iterator within the CONSTRUCTOR which points to the initializer to process. FIRST_INITIALIZER_P is true if this is the first initializer of the CONSTRUCTOR node. */ static tree reshape_init_r (tree type, reshape_iter *d, bool first_initializer_p) { tree init = d->cur->value; if (error_operand_p (init)) return error_mark_node; /* A non-aggregate type is always initialized with a single initializer. */ if (!CP_AGGREGATE_TYPE_P (type)) { /* It is invalid to initialize a non-aggregate type with a brace-enclosed initializer before C++0x. We need to check for BRACE_ENCLOSED_INITIALIZER_P here because of g++.old-deja/g++.mike/p7626.C: a pointer-to-member constant is a CONSTRUCTOR (with a record type). */ if (TREE_CODE (init) == CONSTRUCTOR && BRACE_ENCLOSED_INITIALIZER_P (init)) /* p7626.C */ { if (SCALAR_TYPE_P (type)) { error ("braces around scalar initializer for type %qT", type); init = error_mark_node; } else maybe_warn_cpp0x ("extended initializer lists"); } d->cur++; return init; } /* [dcl.init.aggr] All implicit type conversions (clause _conv_) are considered when initializing the aggregate member with an initializer from an initializer-list. If the initializer can initialize a member, the member is initialized. Otherwise, if the member is itself a non-empty subaggregate, brace elision is assumed and the initializer is considered for the initialization of the first member of the subaggregate. */ if (TREE_CODE (init) != CONSTRUCTOR && can_convert_arg (type, TREE_TYPE (init), init, LOOKUP_NORMAL)) { d->cur++; return init; } /* [dcl.init.string] A char array (whether plain char, signed char, or unsigned char) can be initialized by a string-literal (optionally enclosed in braces); a wchar_t array can be initialized by a wide string-literal (optionally enclosed in braces). */ if (TREE_CODE (type) == ARRAY_TYPE && char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type)))) { tree str_init = init; /* Strip one level of braces if and only if they enclose a single element (as allowed by [dcl.init.string]). */ if (!first_initializer_p && TREE_CODE (str_init) == CONSTRUCTOR && VEC_length (constructor_elt, CONSTRUCTOR_ELTS (str_init)) == 1) { str_init = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (str_init), 0)->value; } /* If it's a string literal, then it's the initializer for the array as a whole. Otherwise, continue with normal initialization for array types (one value per array element). */ if (TREE_CODE (str_init) == STRING_CST) { d->cur++; return str_init; } } /* The following cases are about aggregates. If we are not within a full initializer already, and there is not a CONSTRUCTOR, it means that there is a missing set of braces (that is, we are processing the case for which reshape_init exists). */ if (!first_initializer_p) { if (TREE_CODE (init) == CONSTRUCTOR) { if (TREE_TYPE (init) && TYPE_PTRMEMFUNC_P (TREE_TYPE (init))) /* There is no need to reshape pointer-to-member function initializers, as they are always constructed correctly by the front end. */ ; else if (COMPOUND_LITERAL_P (init)) /* For a nested compound literal, there is no need to reshape since brace elision is not allowed. Even if we decided to allow it, we should add a call to reshape_init in finish_compound_literal, before calling digest_init, so changing this code would still not be necessary. */ gcc_assert (!BRACE_ENCLOSED_INITIALIZER_P (init)); else { ++d->cur; gcc_assert (BRACE_ENCLOSED_INITIALIZER_P (init)); return reshape_init (type, init); } } warning (OPT_Wmissing_braces, "missing braces around initializer for %qT", type); } /* Dispatch to specialized routines. */ if (CLASS_TYPE_P (type)) return reshape_init_class (type, d, first_initializer_p); else if (TREE_CODE (type) == ARRAY_TYPE) return reshape_init_array (type, d); else if (TREE_CODE (type) == VECTOR_TYPE) return reshape_init_vector (type, d); else gcc_unreachable(); } /* Undo the brace-elision allowed by [dcl.init.aggr] in a brace-enclosed aggregate initializer. INIT is the CONSTRUCTOR containing the list of initializers describing a brace-enclosed initializer for an entity of the indicated aggregate TYPE. It may not presently match the shape of the TYPE; for example: struct S { int a; int b; }; struct S a[] = { 1, 2, 3, 4 }; Here INIT will hold a VEC of four elements, rather than a VEC of two elements, each itself a VEC of two elements. This routine transforms INIT from the former form into the latter. The revised CONSTRUCTOR node is returned. */ tree reshape_init (tree type, tree init) { VEC(constructor_elt, gc) *v; reshape_iter d; tree new_init; gcc_assert (BRACE_ENCLOSED_INITIALIZER_P (init)); v = CONSTRUCTOR_ELTS (init); /* An empty constructor does not need reshaping, and it is always a valid initializer. */ if (VEC_empty (constructor_elt, v)) return init; /* Recurse on this CONSTRUCTOR. */ d.cur = VEC_index (constructor_elt, v, 0); d.end = d.cur + VEC_length (constructor_elt, v); new_init = reshape_init_r (type, &d, true); if (new_init == error_mark_node) return error_mark_node; /* Make sure all the element of the constructor were used. Otherwise, issue an error about exceeding initializers. */ if (d.cur != d.end) error ("too many initializers for %qT", type); return new_init; } /* Verify array initializer. Returns true if errors have been reported. */ bool check_array_initializer (tree decl, tree type, tree init) { tree element_type = TREE_TYPE (type); /* The array type itself need not be complete, because the initializer may tell us how many elements are in the array. But, the elements of the array must be complete. */ if (!COMPLETE_TYPE_P (complete_type (element_type))) { if (decl) error ("elements of array %q#D have incomplete type", decl); else error ("elements of array %q#T have incomplete type", type); return true; } /* It is not valid to initialize a VLA. */ if (init && ((COMPLETE_TYPE_P (type) && !TREE_CONSTANT (TYPE_SIZE (type))) || !TREE_CONSTANT (TYPE_SIZE (element_type)))) { if (decl) error ("variable-sized object %qD may not be initialized", decl); else error ("variable-sized compound literal"); return true; } return false; } /* Subroutine of check_initializer; args are passed down from that function. Set stmts_are_full_exprs_p to 1 across a call to build_aggr_init. */ static tree build_aggr_init_full_exprs (tree decl, tree init, int flags) { int saved_stmts_are_full_exprs_p = 0; if (building_stmt_tree ()) { saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p (); current_stmt_tree ()->stmts_are_full_exprs_p = 1; } init = build_aggr_init (decl, init, flags, tf_warning_or_error); if (building_stmt_tree ()) current_stmt_tree ()->stmts_are_full_exprs_p = saved_stmts_are_full_exprs_p; return init; } /* Verify INIT (the initializer for DECL), and record the initialization in DECL_INITIAL, if appropriate. CLEANUP is as for grok_reference_init. If the return value is non-NULL, it is an expression that must be evaluated dynamically to initialize DECL. */ static tree check_initializer (tree decl, tree init, int flags, tree *cleanup) { tree type = TREE_TYPE (decl); tree init_code = NULL; /* Things that are going to be initialized need to have complete type. */ TREE_TYPE (decl) = type = complete_type (TREE_TYPE (decl)); if (type == error_mark_node) /* We will have already complained. */ return NULL_TREE; if (TREE_CODE (type) == ARRAY_TYPE) { if (check_array_initializer (decl, type, init)) return NULL_TREE; } else if (!COMPLETE_TYPE_P (type)) { error ("%qD has incomplete type", decl); TREE_TYPE (decl) = error_mark_node; return NULL_TREE; } else /* There is no way to make a variable-sized class type in GNU C++. */ gcc_assert (TREE_CONSTANT (TYPE_SIZE (type))); if (init && BRACE_ENCLOSED_INITIALIZER_P (init)) { int init_len = VEC_length (constructor_elt, CONSTRUCTOR_ELTS (init)); if (SCALAR_TYPE_P (type)) { if (init_len == 0) { maybe_warn_cpp0x ("extended initializer lists"); init = build_zero_init (type, NULL_TREE, false); } else if (init_len != 1) { error ("scalar object %qD requires one element in initializer", decl); TREE_TYPE (decl) = error_mark_node; return NULL_TREE; } } } if (TREE_CODE (decl) == CONST_DECL) { gcc_assert (TREE_CODE (type) != REFERENCE_TYPE); DECL_INITIAL (decl) = init; gcc_assert (init != NULL_TREE); init = NULL_TREE; } else if (!DECL_EXTERNAL (decl) && TREE_CODE (type) == REFERENCE_TYPE) init = grok_reference_init (decl, type, init, cleanup); else if (init) { /* Do not reshape constructors of vectors (they don't need to be reshaped. */ if (BRACE_ENCLOSED_INITIALIZER_P (init)) { if (is_std_init_list (type)) return build_init_list_var_init (decl, type, init, cleanup); else if (TYPE_NON_AGGREGATE_CLASS (type)) { /* Don't reshape if the class has constructors. */ if (cxx_dialect == cxx98) error ("in C++98 %qD must be initialized by constructor, " "not by %<{...}%>", decl); init = build_tree_list (NULL_TREE, init); } else if ((*targetm.vector_opaque_p) (type)) { error ("opaque vector types cannot be initialized"); init = error_mark_node; } else init = reshape_init (type, init); } /* If DECL has an array type without a specific bound, deduce the array size from the initializer. */ maybe_deduce_size_from_array_init (decl, init); type = TREE_TYPE (decl); if (type == error_mark_node) return NULL_TREE; if (TYPE_NEEDS_CONSTRUCTING (type) || (CLASS_TYPE_P (type) && !BRACE_ENCLOSED_INITIALIZER_P (init))) return build_aggr_init_full_exprs (decl, init, flags); else if (TREE_CODE (init) != TREE_VEC) { init_code = store_init_value (decl, init); if (pedantic && TREE_CODE (type) == ARRAY_TYPE && DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) == STRING_CST && PAREN_STRING_LITERAL_P (DECL_INITIAL (decl))) warning (0, "array %qD initialized by parenthesized string literal %qE", decl, DECL_INITIAL (decl)); init = NULL; } } else if (DECL_EXTERNAL (decl)) ; else if (TYPE_P (type) && TYPE_NEEDS_CONSTRUCTING (type)) return build_aggr_init_full_exprs (decl, init, flags); else if (MAYBE_CLASS_TYPE_P (type)) { tree core_type = strip_array_types (type); if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)) error ("structure %qD with uninitialized const members", decl); if (CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)) error ("structure %qD with uninitialized reference members", decl); check_for_uninitialized_const_var (decl); } else check_for_uninitialized_const_var (decl); if (init && init != error_mark_node) init_code = build2 (INIT_EXPR, type, decl, init); return init_code; } /* If DECL is not a local variable, give it RTL. */ static void make_rtl_for_nonlocal_decl (tree decl, tree init, const char* asmspec) { int toplev = toplevel_bindings_p (); int defer_p; const char *filename; /* Set the DECL_ASSEMBLER_NAME for the object. */ if (asmspec) { /* The `register' keyword, when used together with an asm-specification, indicates that the variable should be placed in a particular register. */ if (TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)) { set_user_assembler_name (decl, asmspec); DECL_HARD_REGISTER (decl) = 1; } else { if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL) set_builtin_user_assembler_name (decl, asmspec); set_user_assembler_name (decl, asmspec); } } /* Handle non-variables up front. */ if (TREE_CODE (decl) != VAR_DECL) { rest_of_decl_compilation (decl, toplev, at_eof); return; } /* If we see a class member here, it should be a static data member. */ if (DECL_LANG_SPECIFIC (decl) && DECL_IN_AGGR_P (decl)) { gcc_assert (TREE_STATIC (decl)); /* An in-class declaration of a static data member should be external; it is only a declaration, and not a definition. */ if (init == NULL_TREE) gcc_assert (DECL_EXTERNAL (decl) || !TREE_PUBLIC (decl)); } /* We don't create any RTL for local variables. */ if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl)) return; /* We defer emission of local statics until the corresponding DECL_EXPR is expanded. */ defer_p = DECL_FUNCTION_SCOPE_P (decl) || DECL_VIRTUAL_P (decl); /* We try to defer namespace-scope static constants so that they are not emitted into the object file unnecessarily. */ filename = input_filename; if (!DECL_VIRTUAL_P (decl) && TREE_READONLY (decl) && DECL_INITIAL (decl) != NULL_TREE && DECL_INITIAL (decl) != error_mark_node && filename != NULL && ! EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl)) && toplev && !TREE_PUBLIC (decl)) { /* Fool with the linkage of static consts according to #pragma interface. */ struct c_fileinfo *finfo = get_fileinfo (filename); if (!finfo->interface_unknown && !TREE_PUBLIC (decl)) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = finfo->interface_only; } defer_p = 1; } /* Likewise for template instantiations. */ else if (DECL_LANG_SPECIFIC (decl) && DECL_IMPLICIT_INSTANTIATION (decl)) defer_p = 1; /* If we're not deferring, go ahead and assemble the variable. */ if (!defer_p) rest_of_decl_compilation (decl, toplev, at_eof); } /* walk_tree helper for wrap_temporary_cleanups, below. */ static tree wrap_cleanups_r (tree *stmt_p, int *walk_subtrees, void *data) { if (TYPE_P (*stmt_p)) { *walk_subtrees = 0; return NULL_TREE; } if (TREE_CODE (*stmt_p) == TARGET_EXPR) { tree guard = (tree)data; tree tcleanup = TARGET_EXPR_CLEANUP (*stmt_p); tcleanup = build2 (TRY_CATCH_EXPR, void_type_node, tcleanup, guard); /* Tell honor_protect_cleanup_actions to handle this as a separate cleanup. */ TRY_CATCH_IS_CLEANUP (tcleanup) = 1; TARGET_EXPR_CLEANUP (*stmt_p) = tcleanup; } return NULL_TREE; } /* We're initializing a local variable which has a cleanup GUARD. If there are any temporaries used in the initializer INIT of this variable, we need to wrap their cleanups with TRY_CATCH_EXPR (, GUARD) so that the variable will be cleaned up properly if one of them throws. Unfortunately, there's no way to express this properly in terms of nesting, as the regions for the temporaries overlap the region for the variable itself; if there are two temporaries, the variable needs to be the first thing destroyed if either of them throws. However, we only want to run the variable's cleanup if it actually got constructed. So we need to guard the temporary cleanups with the variable's cleanup if they are run on the normal path, but not if they are run on the exceptional path. We implement this by telling honor_protect_cleanup_actions to strip the variable cleanup from the exceptional path. */ static void wrap_temporary_cleanups (tree init, tree guard) { cp_walk_tree_without_duplicates (&init, wrap_cleanups_r, (void *)guard); } /* Generate code to initialize DECL (a local variable). */ static void initialize_local_var (tree decl, tree init) { tree type = TREE_TYPE (decl); tree cleanup; int already_used; gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == RESULT_DECL); gcc_assert (!TREE_STATIC (decl)); if (DECL_SIZE (decl) == NULL_TREE) { /* If we used it already as memory, it must stay in memory. */ DECL_INITIAL (decl) = NULL_TREE; TREE_ADDRESSABLE (decl) = TREE_USED (decl); return; } if (type == error_mark_node) return; /* Compute and store the initial value. */ already_used = TREE_USED (decl) || TREE_USED (type); /* Generate a cleanup, if necessary. */ cleanup = cxx_maybe_build_cleanup (decl); /* Perform the initialization. */ if (init) { int saved_stmts_are_full_exprs_p; /* If we're only initializing a single object, guard the destructors of any temporaries used in its initializer with its destructor. This isn't right for arrays because each element initialization is a full-expression. */ if (cleanup && TREE_CODE (type) != ARRAY_TYPE) wrap_temporary_cleanups (init, cleanup); gcc_assert (building_stmt_tree ()); saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p (); current_stmt_tree ()->stmts_are_full_exprs_p = 1; finish_expr_stmt (init); current_stmt_tree ()->stmts_are_full_exprs_p = saved_stmts_are_full_exprs_p; } /* Set this to 0 so we can tell whether an aggregate which was initialized was ever used. Don't do this if it has a destructor, so we don't complain about the 'resource allocation is initialization' idiom. Now set attribute((unused)) on types so decls of that type will be marked used. (see TREE_USED, above.) */ if (TYPE_NEEDS_CONSTRUCTING (type) && ! already_used && TYPE_HAS_TRIVIAL_DESTRUCTOR (type) && DECL_NAME (decl)) TREE_USED (decl) = 0; else if (already_used) TREE_USED (decl) = 1; if (cleanup) finish_decl_cleanup (decl, cleanup); } /* DECL is a VAR_DECL for a compiler-generated variable with static storage duration (like a virtual table) whose initializer is a compile-time constant. INIT must be either a TREE_LIST of values, or a CONSTRUCTOR. Initialize the variable and provide it to the back end. */ void initialize_artificial_var (tree decl, tree init) { gcc_assert (DECL_ARTIFICIAL (decl)); if (TREE_CODE (init) == TREE_LIST) init = build_constructor_from_list (TREE_TYPE (decl), init); gcc_assert (TREE_CODE (init) == CONSTRUCTOR); DECL_INITIAL (decl) = init; DECL_INITIALIZED_P (decl) = 1; determine_visibility (decl); layout_var_decl (decl); maybe_commonize_var (decl); make_rtl_for_nonlocal_decl (decl, init, /*asmspec=*/NULL); } /* INIT is the initializer for a variable, as represented by the parser. Returns true iff INIT is value-dependent. */ static bool value_dependent_init_p (tree init) { if (TREE_CODE (init) == TREE_LIST) /* A parenthesized initializer, e.g.: int i (3, 2); ? */ return any_value_dependent_elements_p (init); else if (TREE_CODE (init) == CONSTRUCTOR) /* A brace-enclosed initializer, e.g.: int i = { 3 }; ? */ { VEC(constructor_elt, gc) *elts; size_t nelts; size_t i; elts = CONSTRUCTOR_ELTS (init); nelts = VEC_length (constructor_elt, elts); for (i = 0; i < nelts; ++i) if (value_dependent_init_p (VEC_index (constructor_elt, elts, i)->value)) return true; } else /* It must be a simple expression, e.g., int i = 3; */ return value_dependent_expression_p (init); return false; } /* Finish processing of a declaration; install its line number and initial value. If the length of an array type is not known before, it must be determined now, from the initial value, or it is an error. INIT is the initializer (if any) for DECL. If INIT_CONST_EXPR_P is true, then INIT is an integral constant expression. FLAGS is LOOKUP_ONLYCONVERTING if the = init syntax was used, else 0 if the (init) syntax was used. */ void cp_finish_decl (tree decl, tree init, bool init_const_expr_p, tree asmspec_tree, int flags) { tree type; tree cleanup; const char *asmspec = NULL; int was_readonly = 0; bool var_definition_p = false; int saved_processing_template_decl; tree auto_node; if (decl == error_mark_node) return; else if (! decl) { if (init) error ("assignment (not initialization) in declaration"); return; } gcc_assert (TREE_CODE (decl) != RESULT_DECL); /* Parameters are handled by store_parm_decls, not cp_finish_decl. */ gcc_assert (TREE_CODE (decl) != PARM_DECL); type = TREE_TYPE (decl); if (type == error_mark_node) return; /* Assume no cleanup is required. */ cleanup = NULL_TREE; saved_processing_template_decl = processing_template_decl; /* If a name was specified, get the string. */ if (global_scope_p (current_binding_level)) asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree); if (asmspec_tree && asmspec_tree != error_mark_node) asmspec = TREE_STRING_POINTER (asmspec_tree); if (current_class_type && CP_DECL_CONTEXT (decl) == current_class_type && TYPE_BEING_DEFINED (current_class_type) && (DECL_INITIAL (decl) || init)) DECL_INITIALIZED_IN_CLASS_P (decl) = 1; auto_node = type_uses_auto (type); if (auto_node && !type_dependent_expression_p (init)) { type = TREE_TYPE (decl) = do_auto_deduction (type, init, auto_node); if (type == error_mark_node) return; } if (processing_template_decl) { bool type_dependent_p; /* Add this declaration to the statement-tree. */ if (at_function_scope_p ()) add_decl_expr (decl); type_dependent_p = dependent_type_p (type); if (check_for_bare_parameter_packs (init)) { init = NULL_TREE; DECL_INITIAL (decl) = NULL_TREE; } if (init && init_const_expr_p && TREE_CODE (decl) == VAR_DECL) { DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1; if (DECL_INTEGRAL_CONSTANT_VAR_P (decl)) TREE_CONSTANT (decl) = 1; } /* Generally, initializers in templates are expanded when the template is instantiated. But, if DECL is an integral constant static data member, then it can be used in future integral constant expressions, and its value must be available. */ if (!(init && DECL_CLASS_SCOPE_P (decl) && DECL_INTEGRAL_CONSTANT_VAR_P (decl) && !type_dependent_p && !value_dependent_init_p (init))) { if (init) DECL_INITIAL (decl) = init; if (TREE_CODE (decl) == VAR_DECL && !DECL_PRETTY_FUNCTION_P (decl) && !type_dependent_p) maybe_deduce_size_from_array_init (decl, init); goto finish_end; } if (TREE_CODE (init) == TREE_LIST) { /* If the parenthesized-initializer form was used (e.g., "int A::i(X)"), then INIT will be a TREE_LIST of initializer arguments. (There is generally only one.) We convert them individually. */ tree list = init; for (; list; list = TREE_CHAIN (list)) { tree elt = TREE_VALUE (list); TREE_VALUE (list) = fold_non_dependent_expr (elt); } } else init = fold_non_dependent_expr (init); processing_template_decl = 0; } /* Take care of TYPE_DECLs up front. */ if (TREE_CODE (decl) == TYPE_DECL) { if (type != error_mark_node && MAYBE_CLASS_TYPE_P (type) && DECL_NAME (decl)) { if (TREE_TYPE (DECL_NAME (decl)) && TREE_TYPE (decl) != type) warning (0, "shadowing previous type declaration of %q#D", decl); set_identifier_type_value (DECL_NAME (decl), decl); } /* If we have installed this as the canonical typedef for this type, and that type has not been defined yet, delay emitting the debug information for it, as we will emit it later. */ if (TYPE_MAIN_DECL (TREE_TYPE (decl)) == decl && !COMPLETE_TYPE_P (TREE_TYPE (decl))) TYPE_DECL_SUPPRESS_DEBUG (decl) = 1; rest_of_decl_compilation (decl, DECL_CONTEXT (decl) == NULL_TREE, at_eof); goto finish_end; } /* A reference will be modified here, as it is initialized. */ if (! DECL_EXTERNAL (decl) && TREE_READONLY (decl) && TREE_CODE (type) == REFERENCE_TYPE) { was_readonly = 1; TREE_READONLY (decl) = 0; } if (TREE_CODE (decl) == VAR_DECL) { /* Only PODs can have thread-local storage. Other types may require various kinds of non-trivial initialization. */ if (DECL_THREAD_LOCAL_P (decl) && !pod_type_p (TREE_TYPE (decl))) error ("%qD cannot be thread-local because it has non-POD type %qT", decl, TREE_TYPE (decl)); /* If this is a local variable that will need a mangled name, register it now. We must do this before processing the initializer for the variable, since the initialization might require a guard variable, and since the mangled name of the guard variable will depend on the mangled name of this variable. */ if (DECL_FUNCTION_SCOPE_P (decl) && TREE_STATIC (decl) && !DECL_ARTIFICIAL (decl)) push_local_name (decl); /* Convert the initializer to the type of DECL, if we have not already initialized DECL. */ if (!DECL_INITIALIZED_P (decl) /* If !DECL_EXTERNAL then DECL is being defined. In the case of a static data member initialized inside the class-specifier, there can be an initializer even if DECL is *not* defined. */ && (!DECL_EXTERNAL (decl) || init)) { if (TYPE_FOR_JAVA (type) && MAYBE_CLASS_TYPE_P (type)) { tree jclass = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass")); /* Allow libjava/prims.cc define primitive classes. */ if (init != NULL_TREE || jclass == NULL_TREE || TREE_CODE (jclass) != TYPE_DECL || !POINTER_TYPE_P (TREE_TYPE (jclass)) || !same_type_ignoring_top_level_qualifiers_p (type, TREE_TYPE (TREE_TYPE (jclass)))) error ("Java object %qD not allocated with %", decl); init = NULL_TREE; } if (init) { DECL_NONTRIVIALLY_INITIALIZED_P (decl) = 1; if (init_const_expr_p) { DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1; if (DECL_INTEGRAL_CONSTANT_VAR_P (decl)) TREE_CONSTANT (decl) = 1; } } init = check_initializer (decl, init, flags, &cleanup); /* Thread-local storage cannot be dynamically initialized. */ if (DECL_THREAD_LOCAL_P (decl) && init) { error ("%qD is thread-local and so cannot be dynamically " "initialized", decl); init = NULL_TREE; } /* Check that the initializer for a static data member was a constant. Although we check in the parser that the initializer is an integral constant expression, we do not simplify division-by-zero at the point at which it occurs. Therefore, in: struct S { static const int i = 7 / 0; }; we issue an error at this point. It would probably be better to forbid division by zero in integral constant expressions. */ if (DECL_EXTERNAL (decl) && init) { error ("%qD cannot be initialized by a non-constant expression" " when being declared", decl); DECL_INITIALIZED_IN_CLASS_P (decl) = 0; init = NULL_TREE; } /* Handle: [dcl.init] The memory occupied by any object of static storage duration is zero-initialized at program startup before any other initialization takes place. We cannot create an appropriate initializer until after the type of DECL is finalized. If DECL_INITIAL is set, then the DECL is statically initialized, and any necessary zero-initialization has already been performed. */ if (TREE_STATIC (decl) && !DECL_INITIAL (decl)) DECL_INITIAL (decl) = build_zero_init (TREE_TYPE (decl), /*nelts=*/NULL_TREE, /*static_storage_p=*/true); /* Remember that the initialization for this variable has taken place. */ DECL_INITIALIZED_P (decl) = 1; /* This declaration is the definition of this variable, unless we are initializing a static data member within the class specifier. */ if (!DECL_EXTERNAL (decl)) var_definition_p = true; } /* If the variable has an array type, lay out the type, even if there is no initializer. It is valid to index through the array, and we must get TYPE_ALIGN set correctly on the array type. */ else if (TREE_CODE (type) == ARRAY_TYPE) layout_type (type); } else if (TREE_CODE (decl) == FIELD_DECL && TYPE_FOR_JAVA (type) && MAYBE_CLASS_TYPE_P (type)) error ("non-static data member %qD has Java class type", decl); /* Add this declaration to the statement-tree. This needs to happen after the call to check_initializer so that the DECL_EXPR for a reference temp is added before the DECL_EXPR for the reference itself. */ if (at_function_scope_p ()) add_decl_expr (decl); /* Let the middle end know about variables and functions -- but not static data members in uninstantiated class templates. */ if (!saved_processing_template_decl && (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)) { if (TREE_CODE (decl) == VAR_DECL) { layout_var_decl (decl); maybe_commonize_var (decl); } /* This needs to happen after the linkage is set. */ determine_visibility (decl); if (var_definition_p && TREE_STATIC (decl)) { /* If a TREE_READONLY variable needs initialization at runtime, it is no longer readonly and we need to avoid MEM_READONLY_P being set on RTL created for it. */ if (init) { if (TREE_READONLY (decl)) TREE_READONLY (decl) = 0; was_readonly = 0; } else if (was_readonly) TREE_READONLY (decl) = 1; } make_rtl_for_nonlocal_decl (decl, init, asmspec); /* Check for abstractness of the type. Notice that there is no need to strip array types here since the check for those types is already done within create_array_type_for_decl. */ if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) abstract_virtuals_error (decl, TREE_TYPE (type)); else abstract_virtuals_error (decl, type); if (TREE_TYPE (decl) == error_mark_node) /* No initialization required. */ ; else if (TREE_CODE (decl) == FUNCTION_DECL) { if (init) { if (init == ridpointers[(int)RID_DELETE]) { /* fixme check this is 1st decl */ DECL_DELETED_FN (decl) = 1; DECL_DECLARED_INLINE_P (decl) = 1; DECL_INITIAL (decl) = error_mark_node; } else if (init == ridpointers[(int)RID_DEFAULT]) { if (!defaultable_fn_p (decl)) error ("%qD cannot be defaulted", decl); else { /* An out-of-class default definition is defined at the point where it is explicitly defaulted. */ DECL_DEFAULTED_FN (decl) = 1; if (DECL_INITIAL (decl) == error_mark_node) synthesize_method (decl); } } else error ("function %q#D is initialized like a variable", decl); } /* else no initialization required. */ } else if (DECL_EXTERNAL (decl) && ! (DECL_LANG_SPECIFIC (decl) && DECL_NOT_REALLY_EXTERN (decl))) { if (init) DECL_INITIAL (decl) = init; } /* A variable definition. */ else if (DECL_FUNCTION_SCOPE_P (decl) && !TREE_STATIC (decl)) /* Initialize the local variable. */ initialize_local_var (decl, init); /* If a variable is defined, and then a subsequent definition with external linkage is encountered, we will get here twice for the same variable. We want to avoid calling expand_static_init more than once. For variables that are not static data members, we can call expand_static_init only when we actually process the initializer. It is not legal to redeclare a static data member, so this issue does not arise in that case. */ else if (var_definition_p && TREE_STATIC (decl)) expand_static_init (decl, init); } /* If a CLEANUP_STMT was created to destroy a temporary bound to a reference, insert it in the statement-tree now. */ if (cleanup) push_cleanup (decl, cleanup, false); finish_end: processing_template_decl = saved_processing_template_decl; if (was_readonly) TREE_READONLY (decl) = 1; /* If this was marked 'used', be sure it will be output. */ if (lookup_attribute ("used", DECL_ATTRIBUTES (decl))) mark_decl_referenced (decl); } /* This is here for a midend callback from c-common.c. */ void finish_decl (tree decl, tree init, tree asmspec_tree) { cp_finish_decl (decl, init, /*init_const_expr_p=*/false, asmspec_tree, 0); } /* Returns a declaration for a VAR_DECL as if: extern "C" TYPE NAME; had been seen. Used to create compiler-generated global variables. */ static tree declare_global_var (tree name, tree type) { tree decl; push_to_top_level (); decl = build_decl (VAR_DECL, name, type); TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = 1; DECL_ARTIFICIAL (decl) = 1; /* If the user has explicitly declared this variable (perhaps because the code we are compiling is part of a low-level runtime library), then it is possible that our declaration will be merged with theirs by pushdecl. */ decl = pushdecl (decl); finish_decl (decl, NULL_TREE, NULL_TREE); pop_from_top_level (); return decl; } /* Returns the type for the argument to "__cxa_atexit" (or "atexit", if "__cxa_atexit" is not being used) corresponding to the function to be called when the program exits. */ static tree get_atexit_fn_ptr_type (void) { tree arg_types; tree fn_type; if (!atexit_fn_ptr_type_node) { if (flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit ()) /* The parameter to "__cxa_atexit" is "void (*)(void *)". */ arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node); else /* The parameter to "atexit" is "void (*)(void)". */ arg_types = void_list_node; fn_type = build_function_type (void_type_node, arg_types); atexit_fn_ptr_type_node = build_pointer_type (fn_type); } return atexit_fn_ptr_type_node; } /* Returns a pointer to the `atexit' function. Note that if FLAG_USE_CXA_ATEXIT is nonzero, then this will actually be the new `__cxa_atexit' function specified in the IA64 C++ ABI. */ static tree get_atexit_node (void) { tree atexit_fndecl; tree arg_types; tree fn_type; tree fn_ptr_type; const char *name; bool use_aeabi_atexit; if (atexit_node) return atexit_node; if (flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit ()) { /* The declaration for `__cxa_atexit' is: int __cxa_atexit (void (*)(void *), void *, void *) We build up the argument types and then then function type itself. */ use_aeabi_atexit = targetm.cxx.use_aeabi_atexit (); /* First, build the pointer-to-function type for the first argument. */ fn_ptr_type = get_atexit_fn_ptr_type (); /* Then, build the rest of the argument types. */ arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node); if (use_aeabi_atexit) { arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types); arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types); } else { arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types); arg_types = tree_cons (NULL_TREE, fn_ptr_type, arg_types); } /* And the final __cxa_atexit type. */ fn_type = build_function_type (integer_type_node, arg_types); fn_ptr_type = build_pointer_type (fn_type); if (use_aeabi_atexit) name = "__aeabi_atexit"; else name = "__cxa_atexit"; } else { /* The declaration for `atexit' is: int atexit (void (*)()); We build up the argument types and then then function type itself. */ fn_ptr_type = get_atexit_fn_ptr_type (); arg_types = tree_cons (NULL_TREE, fn_ptr_type, void_list_node); /* Build the final atexit type. */ fn_type = build_function_type (integer_type_node, arg_types); name = "atexit"; } /* Now, build the function declaration. */ push_lang_context (lang_name_c); atexit_fndecl = build_library_fn_ptr (name, fn_type); mark_used (atexit_fndecl); pop_lang_context (); atexit_node = decay_conversion (atexit_fndecl); return atexit_node; } /* Returns the __dso_handle VAR_DECL. */ static tree get_dso_handle_node (void) { if (dso_handle_node) return dso_handle_node; /* Declare the variable. */ dso_handle_node = declare_global_var (get_identifier ("__dso_handle"), ptr_type_node); return dso_handle_node; } /* Begin a new function with internal linkage whose job will be simply to destroy some particular variable. */ static GTY(()) int start_cleanup_cnt; static tree start_cleanup_fn (void) { char name[32]; tree fntype; tree fndecl; bool use_cxa_atexit = flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit (); push_to_top_level (); /* No need to mangle this. */ push_lang_context (lang_name_c); /* Build the name of the function. */ sprintf (name, "__tcf_%d", start_cleanup_cnt++); /* Build the function declaration. */ fntype = TREE_TYPE (get_atexit_fn_ptr_type ()); fndecl = build_lang_decl (FUNCTION_DECL, get_identifier (name), fntype); /* It's a function with internal linkage, generated by the compiler. */ TREE_PUBLIC (fndecl) = 0; DECL_ARTIFICIAL (fndecl) = 1; /* Make the function `inline' so that it is only emitted if it is actually needed. It is unlikely that it will be inlined, since it is only called via a function pointer, but we avoid unnecessary emissions this way. */ DECL_INTERFACE_KNOWN (fndecl) = 1; /* Build the parameter. */ if (use_cxa_atexit) { tree parmdecl; parmdecl = cp_build_parm_decl (NULL_TREE, ptr_type_node); DECL_CONTEXT (parmdecl) = fndecl; TREE_USED (parmdecl) = 1; DECL_ARGUMENTS (fndecl) = parmdecl; } pushdecl (fndecl); start_preparsed_function (fndecl, NULL_TREE, SF_PRE_PARSED); pop_lang_context (); return current_function_decl; } /* Finish the cleanup function begun by start_cleanup_fn. */ static void end_cleanup_fn (void) { expand_or_defer_fn (finish_function (0)); pop_from_top_level (); } /* Generate code to handle the destruction of DECL, an object with static storage duration. */ tree register_dtor_fn (tree decl) { tree cleanup; tree compound_stmt; tree args; tree fcall; tree type; bool use_dtor; type = TREE_TYPE (decl); if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type)) return void_zero_node; /* If we're using "__cxa_atexit" (or "__aeabi_atexit"), and DECL is a class object, we can just pass the destructor to "__cxa_atexit"; we don't have to build a temporary function to do the cleanup. */ use_dtor = (flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit () && CLASS_TYPE_P (type)); if (use_dtor) { int idx; /* Find the destructor. */ idx = lookup_fnfields_1 (type, complete_dtor_identifier); gcc_assert (idx >= 0); cleanup = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx); /* Make sure it is accessible. */ perform_or_defer_access_check (TYPE_BINFO (type), cleanup, cleanup); } else { /* Call build_cleanup before we enter the anonymous function so that any access checks will be done relative to the current scope, rather than the scope of the anonymous function. */ build_cleanup (decl); /* Now start the function. */ cleanup = start_cleanup_fn (); /* Now, recompute the cleanup. It may contain SAVE_EXPRs that refer to the original function, rather than the anonymous one. That will make the back end think that nested functions are in use, which causes confusion. */ push_deferring_access_checks (dk_no_check); fcall = build_cleanup (decl); pop_deferring_access_checks (); /* Create the body of the anonymous function. */ compound_stmt = begin_compound_stmt (BCS_FN_BODY); finish_expr_stmt (fcall); finish_compound_stmt (compound_stmt); end_cleanup_fn (); } /* Call atexit with the cleanup function. */ mark_used (cleanup); cleanup = build_address (cleanup); if (flag_use_cxa_atexit && !targetm.cxx.use_atexit_for_cxa_atexit ()) { tree addr; if (use_dtor) { /* We must convert CLEANUP to the type that "__cxa_atexit" expects. */ cleanup = build_nop (get_atexit_fn_ptr_type (), cleanup); /* "__cxa_atexit" will pass the address of DECL to the cleanup function. */ mark_used (decl); addr = build_address (decl); /* The declared type of the parameter to "__cxa_atexit" is "void *". For plain "T*", we could just let the machinery in cp_build_function_call convert it -- but if the type is "cv-qualified T *", then we need to convert it before passing it in, to avoid spurious errors. */ addr = build_nop (ptr_type_node, addr); } else /* Since the cleanup functions we build ignore the address they're given, there's no reason to pass the actual address in, and, in general, it's cheaper to pass NULL than any other value. */ addr = null_pointer_node; args = tree_cons (NULL_TREE, cp_build_unary_op (ADDR_EXPR, get_dso_handle_node (), 0, tf_warning_or_error), NULL_TREE); if (targetm.cxx.use_aeabi_atexit ()) { args = tree_cons (NULL_TREE, cleanup, args); args = tree_cons (NULL_TREE, addr, args); } else { args = tree_cons (NULL_TREE, addr, args); args = tree_cons (NULL_TREE, cleanup, args); } } else args = tree_cons (NULL_TREE, cleanup, NULL_TREE); return cp_build_function_call (get_atexit_node (), args, tf_warning_or_error); } /* DECL is a VAR_DECL with static storage duration. INIT, if present, is its initializer. Generate code to handle the construction and destruction of DECL. */ static void expand_static_init (tree decl, tree init) { gcc_assert (TREE_CODE (decl) == VAR_DECL); gcc_assert (TREE_STATIC (decl)); /* Some variables require no initialization. */ if (!init && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)) && TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl))) return; if (DECL_FUNCTION_SCOPE_P (decl)) { /* Emit code to perform this initialization but once. */ tree if_stmt = NULL_TREE, inner_if_stmt = NULL_TREE; tree then_clause = NULL_TREE, inner_then_clause = NULL_TREE; tree guard, guard_addr; tree acquire_fn, release_fn, abort_fn; tree flag, begin; /* Emit code to perform this initialization but once. This code looks like: static guard; if (!guard.first_byte) { if (__cxa_guard_acquire (&guard)) { bool flag = false; try { // Do initialization. flag = true; __cxa_guard_release (&guard); // Register variable for destruction at end of program. } catch { if (!flag) __cxa_guard_abort (&guard); } } Note that the `flag' variable is only set to 1 *after* the initialization is complete. This ensures that an exception, thrown during the construction, will cause the variable to reinitialized when we pass through this code again, as per: [stmt.dcl] If the initialization exits by throwing an exception, the initialization is not complete, so it will be tried again the next time control enters the declaration. This process should be thread-safe, too; multiple threads should not be able to initialize the variable more than once. */ /* Create the guard variable. */ guard = get_guard (decl); /* This optimization isn't safe on targets with relaxed memory consistency. On such targets we force synchronization in __cxa_guard_acquire. */ if (!targetm.relaxed_ordering || !flag_threadsafe_statics) { /* Begin the conditional initialization. */ if_stmt = begin_if_stmt (); finish_if_stmt_cond (get_guard_cond (guard), if_stmt); then_clause = begin_compound_stmt (BCS_NO_SCOPE); } if (flag_threadsafe_statics) { guard_addr = build_address (guard); acquire_fn = get_identifier ("__cxa_guard_acquire"); release_fn = get_identifier ("__cxa_guard_release"); abort_fn = get_identifier ("__cxa_guard_abort"); if (!get_global_value_if_present (acquire_fn, &acquire_fn)) { tree argtypes = tree_cons (NULL_TREE, TREE_TYPE (guard_addr), void_list_node); tree vfntype = build_function_type (void_type_node, argtypes); acquire_fn = push_library_fn (acquire_fn, build_function_type (integer_type_node, argtypes), NULL_TREE); release_fn = push_library_fn (release_fn, vfntype, NULL_TREE); abort_fn = push_library_fn (abort_fn, vfntype, NULL_TREE); } else { release_fn = identifier_global_value (release_fn); abort_fn = identifier_global_value (abort_fn); } inner_if_stmt = begin_if_stmt (); finish_if_stmt_cond (build_call_n (acquire_fn, 1, guard_addr), inner_if_stmt); inner_then_clause = begin_compound_stmt (BCS_NO_SCOPE); begin = get_target_expr (boolean_false_node); flag = TARGET_EXPR_SLOT (begin); TARGET_EXPR_CLEANUP (begin) = build3 (COND_EXPR, void_type_node, flag, void_zero_node, build_call_n (abort_fn, 1, guard_addr)); CLEANUP_EH_ONLY (begin) = 1; /* Do the initialization itself. */ init = add_stmt_to_compound (begin, init); init = add_stmt_to_compound (init, build2 (MODIFY_EXPR, void_type_node, flag, boolean_true_node)); init = add_stmt_to_compound (init, build_call_n (release_fn, 1, guard_addr)); } else init = add_stmt_to_compound (init, set_guard (guard)); /* Use atexit to register a function for destroying this static variable. */ init = add_stmt_to_compound (init, register_dtor_fn (decl)); finish_expr_stmt (init); if (flag_threadsafe_statics) { finish_compound_stmt (inner_then_clause); finish_then_clause (inner_if_stmt); finish_if_stmt (inner_if_stmt); } if (!targetm.relaxed_ordering || !flag_threadsafe_statics) { finish_compound_stmt (then_clause); finish_then_clause (if_stmt); finish_if_stmt (if_stmt); } } else static_aggregates = tree_cons (init, decl, static_aggregates); } /* Make TYPE a complete type based on INITIAL_VALUE. Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered, 2 if there was no information (in which case assume 0 if DO_DEFAULT), 3 if the initializer list is empty (in pedantic mode). */ int cp_complete_array_type (tree *ptype, tree initial_value, bool do_default) { int failure; tree type, elt_type; if (initial_value) { unsigned HOST_WIDE_INT i; tree value; /* An array of character type can be initialized from a brace-enclosed string constant. FIXME: this code is duplicated from reshape_init. Probably we should just call reshape_init here? */ if (char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (*ptype))) && TREE_CODE (initial_value) == CONSTRUCTOR && !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (initial_value))) { VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initial_value); tree value = VEC_index (constructor_elt, v, 0)->value; if (TREE_CODE (value) == STRING_CST && VEC_length (constructor_elt, v) == 1) initial_value = value; } /* If any of the elements are parameter packs, we can't actually complete this type now because the array size is dependent. */ if (TREE_CODE (initial_value) == CONSTRUCTOR) { FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (initial_value), i, value) { if (PACK_EXPANSION_P (value)) return 0; } } } failure = complete_array_type (ptype, initial_value, do_default); /* We can create the array before the element type is complete, which means that we didn't have these two bits set in the original type either. In completing the type, we are expected to propagate these bits. See also complete_type which does the same thing for arrays of fixed size. */ type = *ptype; if (TYPE_DOMAIN (type)) { elt_type = TREE_TYPE (type); TYPE_NEEDS_CONSTRUCTING (type) = TYPE_NEEDS_CONSTRUCTING (elt_type); TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type); } return failure; } /* Return zero if something is declared to be a member of type CTYPE when in the context of CUR_TYPE. STRING is the error message to print in that case. Otherwise, quietly return 1. */ static int member_function_or_else (tree ctype, tree cur_type, enum overload_flags flags) { if (ctype && ctype != cur_type) { if (flags == DTOR_FLAG) error ("destructor for alien class %qT cannot be a member", ctype); else error ("constructor for alien class %qT cannot be a member", ctype); return 0; } return 1; } /* Subroutine of `grokdeclarator'. */ /* Generate errors possibly applicable for a given set of specifiers. This is for ARM $7.1.2. */ static void bad_specifiers (tree object, const char* type, int virtualp, int quals, int inlinep, int friendp, int raises) { if (virtualp) error ("%qD declared as a % %s", object, type); if (inlinep) error ("%qD declared as an % %s", object, type); if (quals) error ("% and % function specifiers on " "%qD invalid in %s declaration", object, type); if (friendp) error ("%q+D declared as a friend", object); if (raises && (TREE_CODE (object) == TYPE_DECL || (!TYPE_PTRFN_P (TREE_TYPE (object)) && !TYPE_REFFN_P (TREE_TYPE (object)) && !TYPE_PTRMEMFUNC_P (TREE_TYPE (object))))) error ("%q+D declared with an exception specification", object); } /* DECL is a member function or static data member and is presently being defined. Check that the definition is taking place in a valid namespace. */ static void check_class_member_definition_namespace (tree decl) { /* These checks only apply to member functions and static data members. */ gcc_assert (TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL); /* We check for problems with specializations in pt.c in check_specialization_namespace, where we can issue better diagnostics. */ if (processing_specialization) return; /* There are no restrictions on the placement of explicit instantiations. */ if (processing_explicit_instantiation) return; /* [class.mfct] A member function definition that appears outside of the class definition shall appear in a namespace scope enclosing the class definition. [class.static.data] The definition for a static data member shall appear in a namespace scope enclosing the member's class definition. */ if (!is_ancestor (current_namespace, DECL_CONTEXT (decl))) permerror (input_location, "definition of %qD is not in namespace enclosing %qT", decl, DECL_CONTEXT (decl)); } /* Build a PARM_DECL for the "this" parameter. TYPE is the METHOD_TYPE for a non-static member function; QUALS are the cv-qualifiers that apply to the function. */ tree build_this_parm (tree type, cp_cv_quals quals) { tree this_type; tree qual_type; tree parm; cp_cv_quals this_quals; this_type = TREE_VALUE (TYPE_ARG_TYPES (type)); /* The `this' parameter is implicitly `const'; it cannot be assigned to. */ this_quals = (quals & TYPE_QUAL_RESTRICT) | TYPE_QUAL_CONST; qual_type = cp_build_qualified_type (this_type, this_quals); parm = build_artificial_parm (this_identifier, qual_type); cp_apply_type_quals_to_decl (this_quals, parm); return parm; } /* CTYPE is class type, or null if non-class. TYPE is type this FUNCTION_DECL should have, either FUNCTION_TYPE or METHOD_TYPE. DECLARATOR is the function's name. PARMS is a chain of PARM_DECLs for the function. VIRTUALP is truthvalue of whether the function is virtual or not. FLAGS are to be passed through to `grokclassfn'. QUALS are qualifiers indicating whether the function is `const' or `volatile'. RAISES is a list of exceptions that this function can raise. CHECK is 1 if we must find this method in CTYPE, 0 if we should not look, and -1 if we should not call `grokclassfn' at all. SFK is the kind of special function (if any) for the new function. Returns `NULL_TREE' if something goes wrong, after issuing applicable error messages. */ static tree grokfndecl (tree ctype, tree type, tree declarator, tree parms, tree orig_declarator, int virtualp, enum overload_flags flags, cp_cv_quals quals, tree raises, int check, int friendp, int publicp, int inlinep, special_function_kind sfk, bool funcdef_flag, int template_count, tree in_namespace, tree* attrlist, location_t location) { tree decl; int staticp = ctype && TREE_CODE (type) == FUNCTION_TYPE; tree t; if (raises) type = build_exception_variant (type, raises); decl = build_lang_decl (FUNCTION_DECL, declarator, type); /* If we have an explicit location, use it, otherwise use whatever build_lang_decl used (probably input_location). */ if (location != UNKNOWN_LOCATION) DECL_SOURCE_LOCATION (decl) = location; if (TREE_CODE (type) == METHOD_TYPE) { tree parm; parm = build_this_parm (type, quals); TREE_CHAIN (parm) = parms; parms = parm; } DECL_ARGUMENTS (decl) = parms; /* Propagate volatile out from type to decl. */ if (TYPE_VOLATILE (type)) TREE_THIS_VOLATILE (decl) = 1; /* Setup decl according to sfk. */ switch (sfk) { case sfk_constructor: case sfk_copy_constructor: DECL_CONSTRUCTOR_P (decl) = 1; break; case sfk_destructor: DECL_DESTRUCTOR_P (decl) = 1; break; default: break; } /* If pointers to member functions use the least significant bit to indicate whether a function is virtual, ensure a pointer to this function will have that bit clear. */ if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn && TREE_CODE (type) == METHOD_TYPE && DECL_ALIGN (decl) < 2 * BITS_PER_UNIT) DECL_ALIGN (decl) = 2 * BITS_PER_UNIT; if (friendp && TREE_CODE (orig_declarator) == TEMPLATE_ID_EXPR) { if (funcdef_flag) error ("defining explicit specialization %qD in friend declaration", orig_declarator); else { tree fns = TREE_OPERAND (orig_declarator, 0); tree args = TREE_OPERAND (orig_declarator, 1); if (PROCESSING_REAL_TEMPLATE_DECL_P ()) { /* Something like `template friend void f()'. */ error ("invalid use of template-id %qD in declaration " "of primary template", orig_declarator); return NULL_TREE; } /* A friend declaration of the form friend void f<>(). Record the information in the TEMPLATE_ID_EXPR. */ SET_DECL_IMPLICIT_INSTANTIATION (decl); if (TREE_CODE (fns) == COMPONENT_REF) { /* Due to bison parser ickiness, we will have already looked up an operator_name or PFUNCNAME within the current class (see template_id in parse.y). If the current class contains such a name, we'll get a COMPONENT_REF here. Undo that. */ gcc_assert (TREE_TYPE (TREE_OPERAND (fns, 0)) == current_class_type); fns = TREE_OPERAND (fns, 1); } gcc_assert (TREE_CODE (fns) == IDENTIFIER_NODE || TREE_CODE (fns) == OVERLOAD); DECL_TEMPLATE_INFO (decl) = tree_cons (fns, args, NULL_TREE); for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t)) if (TREE_PURPOSE (t) && TREE_CODE (TREE_PURPOSE (t)) == DEFAULT_ARG) { error ("default arguments are not allowed in declaration " "of friend template specialization %qD", decl); return NULL_TREE; } if (inlinep) { error ("% is not allowed in declaration of friend " "template specialization %qD", decl); return NULL_TREE; } } } /* If this decl has namespace scope, set that up. */ if (in_namespace) set_decl_namespace (decl, in_namespace, friendp); else if (!ctype) DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace); /* `main' and builtins have implicit 'C' linkage. */ if ((MAIN_NAME_P (declarator) || (IDENTIFIER_LENGTH (declarator) > 10 && IDENTIFIER_POINTER (declarator)[0] == '_' && IDENTIFIER_POINTER (declarator)[1] == '_' && strncmp (IDENTIFIER_POINTER (declarator)+2, "builtin_", 8) == 0)) && current_lang_name == lang_name_cplusplus && ctype == NULL_TREE /* NULL_TREE means global namespace. */ && DECL_CONTEXT (decl) == NULL_TREE) SET_DECL_LANGUAGE (decl, lang_c); /* Should probably propagate const out from type to decl I bet (mrs). */ if (staticp) { DECL_STATIC_FUNCTION_P (decl) = 1; DECL_CONTEXT (decl) = ctype; } if (ctype) { DECL_CONTEXT (decl) = ctype; if (funcdef_flag) check_class_member_definition_namespace (decl); } if (ctype == NULL_TREE && DECL_MAIN_P (decl)) { if (processing_template_decl) error ("cannot declare %<::main%> to be a template"); if (inlinep) error ("cannot declare %<::main%> to be inline"); if (!publicp) error ("cannot declare %<::main%> to be static"); inlinep = 0; publicp = 1; } /* Members of anonymous types and local classes have no linkage; make them internal. If a typedef is made later, this will be changed. */ if (ctype && (TYPE_ANONYMOUS_P (ctype) || decl_function_context (TYPE_MAIN_DECL (ctype)))) publicp = 0; if (publicp) { /* [basic.link]: A name with no linkage (notably, the name of a class or enumeration declared in a local scope) shall not be used to declare an entity with linkage. Only check this for public decls for now. See core 319, 389. */ t = no_linkage_check (TREE_TYPE (decl), /*relaxed_p=*/false); if (t) { if (TYPE_ANONYMOUS_P (t)) { if (DECL_EXTERN_C_P (decl)) /* Allow this; it's pretty common in C. */; else { permerror (input_location, "non-local function %q#D uses anonymous type", decl); if (DECL_ORIGINAL_TYPE (TYPE_NAME (t))) permerror (input_location, "%q+#D does not refer to the unqualified " "type, so it is not used for linkage", TYPE_NAME (t)); } } else permerror (input_location, "non-local function %q#D uses local type %qT", decl, t); } } TREE_PUBLIC (decl) = publicp; if (! publicp) { DECL_INTERFACE_KNOWN (decl) = 1; DECL_NOT_REALLY_EXTERN (decl) = 1; } /* If the declaration was declared inline, mark it as such. */ if (inlinep) DECL_DECLARED_INLINE_P (decl) = 1; DECL_EXTERNAL (decl) = 1; if (quals && TREE_CODE (type) == FUNCTION_TYPE) { error (ctype ? G_("static member function %qD cannot have cv-qualifier") : G_("non-member function %qD cannot have cv-qualifier"), decl); quals = TYPE_UNQUALIFIED; } if (IDENTIFIER_OPNAME_P (DECL_NAME (decl)) && !grok_op_properties (decl, /*complain=*/true)) return NULL_TREE; if (ctype && decl_function_context (decl)) DECL_NO_STATIC_CHAIN (decl) = 1; if (funcdef_flag) /* Make the init_value nonzero so pushdecl knows this is not tentative. error_mark_node is replaced later with the BLOCK. */ DECL_INITIAL (decl) = error_mark_node; if (TYPE_NOTHROW_P (type) || nothrow_libfn_p (decl)) TREE_NOTHROW (decl) = 1; /* Caller will do the rest of this. */ if (check < 0) return decl; if (ctype != NULL_TREE) grokclassfn (ctype, decl, flags); decl = check_explicit_specialization (orig_declarator, decl, template_count, 2 * funcdef_flag + 4 * (friendp != 0)); if (decl == error_mark_node) return NULL_TREE; if (attrlist) { cplus_decl_attributes (&decl, *attrlist, 0); *attrlist = NULL_TREE; } /* Check main's type after attributes have been applied. */ if (ctype == NULL_TREE && DECL_MAIN_P (decl)) { if (!same_type_p (TREE_TYPE (TREE_TYPE (decl)), integer_type_node)) { tree oldtypeargs = TYPE_ARG_TYPES (TREE_TYPE (decl)); tree newtype; error ("%<::main%> must return %"); newtype = build_function_type (integer_type_node, oldtypeargs); TREE_TYPE (decl) = newtype; } if (warn_main) check_main_parameter_types (decl); } if (ctype != NULL_TREE && (! TYPE_FOR_JAVA (ctype) || check_java_method (decl)) && check) { tree old_decl = check_classfn (ctype, decl, (processing_template_decl > template_class_depth (ctype)) ? current_template_parms : NULL_TREE); if (old_decl == error_mark_node) return NULL_TREE; if (old_decl) { tree ok; tree pushed_scope; if (TREE_CODE (old_decl) == TEMPLATE_DECL) /* Because grokfndecl is always supposed to return a FUNCTION_DECL, we pull out the DECL_TEMPLATE_RESULT here. We depend on our callers to figure out that its really a template that's being returned. */ old_decl = DECL_TEMPLATE_RESULT (old_decl); if (DECL_STATIC_FUNCTION_P (old_decl) && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE) /* Remove the `this' parm added by grokclassfn. XXX Isn't this done in start_function, too? */ revert_static_member_fn (decl); if (DECL_ARTIFICIAL (old_decl)) { error ("definition of implicitly-declared %qD", old_decl); return NULL_TREE; } /* Since we've smashed OLD_DECL to its DECL_TEMPLATE_RESULT, we must do the same to DECL. */ if (TREE_CODE (decl) == TEMPLATE_DECL) decl = DECL_TEMPLATE_RESULT (decl); /* Attempt to merge the declarations. This can fail, in the case of some invalid specialization declarations. */ pushed_scope = push_scope (ctype); ok = duplicate_decls (decl, old_decl, friendp); if (pushed_scope) pop_scope (pushed_scope); if (!ok) { error ("no %q#D member function declared in class %qT", decl, ctype); return NULL_TREE; } return old_decl; } } if (DECL_CONSTRUCTOR_P (decl) && !grok_ctor_properties (ctype, decl)) return NULL_TREE; if (ctype == NULL_TREE || check) return decl; if (virtualp) DECL_VIRTUAL_P (decl) = 1; return decl; } /* DECL is a VAR_DECL for a static data member. Set flags to reflect the linkage that DECL will receive in the object file. */ static void set_linkage_for_static_data_member (tree decl) { /* A static data member always has static storage duration and external linkage. Note that static data members are forbidden in local classes -- the only situation in which a class has non-external linkage. */ TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; /* For non-template classes, static data members are always put out in exactly those files where they are defined, just as with ordinary namespace-scope variables. */ if (!processing_template_decl) DECL_INTERFACE_KNOWN (decl) = 1; } /* Create a VAR_DECL named NAME with the indicated TYPE. If SCOPE is non-NULL, it is the class type or namespace containing the variable. If SCOPE is NULL, the variable should is created in the innermost enclosings scope. */ static tree grokvardecl (tree type, tree name, const cp_decl_specifier_seq *declspecs, int initialized, int constp, tree scope) { tree decl; tree explicit_scope; gcc_assert (!name || TREE_CODE (name) == IDENTIFIER_NODE); /* Compute the scope in which to place the variable, but remember whether or not that scope was explicitly specified by the user. */ explicit_scope = scope; if (!scope) { /* An explicit "extern" specifier indicates a namespace-scope variable. */ if (declspecs->storage_class == sc_extern) scope = current_namespace; else if (!at_function_scope_p ()) scope = current_scope (); } if (scope && (/* If the variable is a namespace-scope variable declared in a template, we need DECL_LANG_SPECIFIC. */ (TREE_CODE (scope) == NAMESPACE_DECL && processing_template_decl) /* Similarly for namespace-scope variables with language linkage other than C++. */ || (TREE_CODE (scope) == NAMESPACE_DECL && current_lang_name != lang_name_cplusplus) /* Similarly for static data members. */ || TYPE_P (scope))) decl = build_lang_decl (VAR_DECL, name, type); else decl = build_decl (VAR_DECL, name, type); if (explicit_scope && TREE_CODE (explicit_scope) == NAMESPACE_DECL) set_decl_namespace (decl, explicit_scope, 0); else DECL_CONTEXT (decl) = FROB_CONTEXT (scope); if (declspecs->storage_class == sc_extern) { DECL_THIS_EXTERN (decl) = 1; DECL_EXTERNAL (decl) = !initialized; } if (DECL_CLASS_SCOPE_P (decl)) { set_linkage_for_static_data_member (decl); /* This function is only called with out-of-class definitions. */ DECL_EXTERNAL (decl) = 0; check_class_member_definition_namespace (decl); } /* At top level, either `static' or no s.c. makes a definition (perhaps tentative), and absence of `static' makes it public. */ else if (toplevel_bindings_p ()) { TREE_PUBLIC (decl) = (declspecs->storage_class != sc_static && (DECL_THIS_EXTERN (decl) || ! constp)); TREE_STATIC (decl) = ! DECL_EXTERNAL (decl); } /* Not at top level, only `static' makes a static definition. */ else { TREE_STATIC (decl) = declspecs->storage_class == sc_static; TREE_PUBLIC (decl) = DECL_EXTERNAL (decl); } if (declspecs->specs[(int)ds_thread]) DECL_TLS_MODEL (decl) = decl_default_tls_model (decl); if (TREE_PUBLIC (decl)) { /* [basic.link]: A name with no linkage (notably, the name of a class or enumeration declared in a local scope) shall not be used to declare an entity with linkage. Only check this for public decls for now. */ tree t = no_linkage_check (TREE_TYPE (decl), /*relaxed_p=*/false); if (t) { if (TYPE_ANONYMOUS_P (t)) { if (DECL_EXTERN_C_P (decl)) /* Allow this; it's pretty common in C. */ ; else { /* DRs 132, 319 and 389 seem to indicate types with no linkage can only be used to declare extern "C" entities. Since it's not always an error in the ISO C++ 90 Standard, we only issue a warning. */ warning (0, "non-local variable %q#D uses anonymous type", decl); if (DECL_ORIGINAL_TYPE (TYPE_NAME (t))) warning (0, "%q+#D does not refer to the unqualified " "type, so it is not used for linkage", TYPE_NAME (t)); } } else warning (0, "non-local variable %q#D uses local type %qT", decl, t); } } else DECL_INTERFACE_KNOWN (decl) = 1; return decl; } /* Create and return a canonical pointer to member function type, for TYPE, which is a POINTER_TYPE to a METHOD_TYPE. */ tree build_ptrmemfunc_type (tree type) { tree field, fields; tree t; tree unqualified_variant = NULL_TREE; if (type == error_mark_node) return type; /* If a canonical type already exists for this type, use it. We use this method instead of type_hash_canon, because it only does a simple equality check on the list of field members. */ if ((t = TYPE_GET_PTRMEMFUNC_TYPE (type))) return t; /* Make sure that we always have the unqualified pointer-to-member type first. */ if (cp_type_quals (type) != TYPE_UNQUALIFIED) unqualified_variant = build_ptrmemfunc_type (TYPE_MAIN_VARIANT (type)); t = make_class_type (RECORD_TYPE); xref_basetypes (t, NULL_TREE); /* Let the front end know this is a pointer to member function... */ TYPE_PTRMEMFUNC_FLAG (t) = 1; /* ... and not really a class type. */ SET_CLASS_TYPE_P (t, 0); field = build_decl (FIELD_DECL, pfn_identifier, type); fields = field; field = build_decl (FIELD_DECL, delta_identifier, delta_type_node); TREE_CHAIN (field) = fields; fields = field; finish_builtin_struct (t, "__ptrmemfunc_type", fields, ptr_type_node); /* Zap out the name so that the back end will give us the debugging information for this anonymous RECORD_TYPE. */ TYPE_NAME (t) = NULL_TREE; /* If this is not the unqualified form of this pointer-to-member type, set the TYPE_MAIN_VARIANT for this type to be the unqualified type. Since they are actually RECORD_TYPEs that are not variants of each other, we must do this manually. */ if (cp_type_quals (type) != TYPE_UNQUALIFIED) { t = build_qualified_type (t, cp_type_quals (type)); TYPE_MAIN_VARIANT (t) = unqualified_variant; TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (unqualified_variant); TYPE_NEXT_VARIANT (unqualified_variant) = t; TREE_TYPE (TYPE_BINFO (t)) = t; } /* Cache this pointer-to-member type so that we can find it again later. */ TYPE_SET_PTRMEMFUNC_TYPE (type, t); if (TYPE_STRUCTURAL_EQUALITY_P (type)) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (type) != type) TYPE_CANONICAL (t) = build_ptrmemfunc_type (TYPE_CANONICAL (type)); return t; } /* Create and return a pointer to data member type. */ tree build_ptrmem_type (tree class_type, tree member_type) { if (TREE_CODE (member_type) == METHOD_TYPE) { tree arg_types; arg_types = TYPE_ARG_TYPES (member_type); class_type = (cp_build_qualified_type (class_type, cp_type_quals (TREE_TYPE (TREE_VALUE (arg_types))))); member_type = build_method_type_directly (class_type, TREE_TYPE (member_type), TREE_CHAIN (arg_types)); return build_ptrmemfunc_type (build_pointer_type (member_type)); } else { gcc_assert (TREE_CODE (member_type) != FUNCTION_TYPE); return build_offset_type (class_type, member_type); } } /* DECL is a VAR_DECL defined in-class, whose TYPE is also given. Check to see that the definition is valid. Issue appropriate error messages. Return 1 if the definition is particularly bad, or 0 otherwise. */ int check_static_variable_definition (tree decl, tree type) { /* Motion 10 at San Diego: If a static const integral data member is initialized with an integral constant expression, the initializer may appear either in the declaration (within the class), or in the definition, but not both. If it appears in the class, the member is a member constant. The file-scope definition is always required. */ if (!ARITHMETIC_TYPE_P (type) && TREE_CODE (type) != ENUMERAL_TYPE) { error ("invalid in-class initialization of static data member " "of non-integral type %qT", type); /* If we just return the declaration, crashes will sometimes occur. We therefore return void_type_node, as if this were a friend declaration, to cause callers to completely ignore this declaration. */ return 1; } else if (!CP_TYPE_CONST_P (type)) error ("ISO C++ forbids in-class initialization of non-const " "static member %qD", decl); else if (!INTEGRAL_TYPE_P (type)) pedwarn (input_location, OPT_pedantic, "ISO C++ forbids initialization of member constant " "%qD of non-integral type %qT", decl, type); return 0; } /* Given the SIZE (i.e., number of elements) in an array, compute an appropriate index type for the array. If non-NULL, NAME is the name of the thing being declared. */ tree compute_array_index_type (tree name, tree size) { tree type; tree itype; tree abi_1_itype = NULL_TREE; if (error_operand_p (size)) return error_mark_node; type = TREE_TYPE (size); /* The array bound must be an integer type. */ if (!dependent_type_p (type) && !INTEGRAL_TYPE_P (type)) { if (name) error ("size of array %qD has non-integral type %qT", name, type); else error ("size of array has non-integral type %qT", type); size = integer_one_node; type = TREE_TYPE (size); } if (value_dependent_expression_p (size)) { /* We cannot do any checking for a value-dependent SIZE. Just build the index type and mark that it requires structural equality checks. */ itype = build_index_type (build_min (MINUS_EXPR, sizetype, size, integer_one_node)); SET_TYPE_STRUCTURAL_EQUALITY (itype); return itype; } if (!abi_version_at_least (2) && processing_template_decl) /* For abi-1, we handled all instances in templates the same way, even when they were non-dependent. This affects the manglings produced. So, we do the normal checking for non-dependent sizes, but at the end we'll return the same type that abi-1 would have, but with TYPE_CANONICAL set to the "right" value that the current ABI would provide. */ abi_1_itype = build_index_type (build_min (MINUS_EXPR, sizetype, size, integer_one_node)); /* The size might be the result of a cast. */ STRIP_TYPE_NOPS (size); /* It might be a const variable or enumeration constant. */ size = integral_constant_value (size); /* Normally, the array-bound will be a constant. */ if (TREE_CODE (size) == INTEGER_CST) { /* Check to see if the array bound overflowed. Make that an error, no matter how generous we're being. */ constant_expression_error (size); /* An array must have a positive number of elements. */ if (INT_CST_LT (size, integer_zero_node)) { if (name) error ("size of array %qD is negative", name); else error ("size of array is negative"); size = integer_one_node; } /* As an extension we allow zero-sized arrays. We always allow them in system headers because glibc uses them. */ else if (integer_zerop (size) && !in_system_header) { if (name) pedwarn (input_location, OPT_pedantic, "ISO C++ forbids zero-size array %qD", name); else pedwarn (input_location, OPT_pedantic, "ISO C++ forbids zero-size array"); } } else if (TREE_CONSTANT (size)) { /* `(int) &fn' is not a valid array bound. */ if (name) error ("size of array %qD is not an integral constant-expression", name); else error ("size of array is not an integral constant-expression"); size = integer_one_node; } else if (pedantic && warn_vla != 0) { if (name) pedwarn (input_location, OPT_Wvla, "ISO C++ forbids variable length array %qD", name); else pedwarn (input_location, OPT_Wvla, "ISO C++ forbids variable length array"); } else if (warn_vla > 0) { if (name) warning (OPT_Wvla, "variable length array %qD is used", name); else warning (OPT_Wvla, "variable length array is used"); } if (processing_template_decl && !TREE_CONSTANT (size)) /* A variable sized array. */ itype = build_min (MINUS_EXPR, sizetype, size, integer_one_node); else { HOST_WIDE_INT saved_processing_template_decl; /* Compute the index of the largest element in the array. It is one less than the number of elements in the array. We save and restore PROCESSING_TEMPLATE_DECL so that computations in cp_build_binary_op will be appropriately folded. */ saved_processing_template_decl = processing_template_decl; processing_template_decl = 0; itype = cp_build_binary_op (input_location, MINUS_EXPR, cp_convert (ssizetype, size), cp_convert (ssizetype, integer_one_node), tf_warning_or_error); itype = fold (itype); processing_template_decl = saved_processing_template_decl; if (!TREE_CONSTANT (itype)) /* A variable sized array. */ itype = variable_size (itype); /* Make sure that there was no overflow when creating to a signed index type. (For example, on a 32-bit machine, an array with size 2^32 - 1 is too big.) */ else if (TREE_CODE (itype) == INTEGER_CST && TREE_OVERFLOW (itype)) { error ("overflow in array dimension"); TREE_OVERFLOW (itype) = 0; } } /* Create and return the appropriate index type. */ if (abi_1_itype) { tree t = build_index_type (itype); TYPE_CANONICAL (abi_1_itype) = TYPE_CANONICAL (t); return abi_1_itype; } else return build_index_type (itype); } /* Returns the scope (if any) in which the entity declared by DECLARATOR will be located. If the entity was declared with an unqualified name, NULL_TREE is returned. */ tree get_scope_of_declarator (const cp_declarator *declarator) { while (declarator && declarator->kind != cdk_id) declarator = declarator->declarator; /* If the declarator-id is a SCOPE_REF, the scope in which the declaration occurs is the first operand. */ if (declarator && declarator->u.id.qualifying_scope) return declarator->u.id.qualifying_scope; /* Otherwise, the declarator is not a qualified name; the entity will be declared in the current scope. */ return NULL_TREE; } /* Returns an ARRAY_TYPE for an array with SIZE elements of the indicated TYPE. If non-NULL, NAME is the NAME of the declaration with this type. */ static tree create_array_type_for_decl (tree name, tree type, tree size) { tree itype = NULL_TREE; const char* error_msg; /* If things have already gone awry, bail now. */ if (type == error_mark_node || size == error_mark_node) return error_mark_node; /* Assume that everything will go OK. */ error_msg = NULL; /* There are some types which cannot be array elements. */ switch (TREE_CODE (type)) { case VOID_TYPE: error_msg = "array of void"; break; case FUNCTION_TYPE: error_msg = "array of functions"; break; case REFERENCE_TYPE: error_msg = "array of references"; break; case METHOD_TYPE: error_msg = "array of function members"; break; default: break; } /* If something went wrong, issue an error-message and return. */ if (error_msg) { if (name) error ("declaration of %qD as %s", name, error_msg); else error ("creating %s", error_msg); return error_mark_node; } /* [dcl.array] The constant expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence. */ if (TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type)) { if (name) error ("declaration of %qD as multidimensional array must " "have bounds for all dimensions except the first", name); else error ("multidimensional array must have bounds for all " "dimensions except the first"); return error_mark_node; } /* Figure out the index type for the array. */ if (size) itype = compute_array_index_type (name, size); /* [dcl.array] T is called the array element type; this type shall not be [...] an abstract class type. */ abstract_virtuals_error (name, type); return build_cplus_array_type (type, itype); } /* Check that it's OK to declare a function with the indicated TYPE. SFK indicates the kind of special function (if any) that this function is. OPTYPE is the type given in a conversion operator declaration, or the class type for a constructor/destructor. Returns the actual return type of the function; that may be different than TYPE if an error occurs, or for certain special functions. */ static tree check_special_function_return_type (special_function_kind sfk, tree type, tree optype) { switch (sfk) { case sfk_constructor: if (type) error ("return type specification for constructor invalid"); if (targetm.cxx.cdtor_returns_this () && !TYPE_FOR_JAVA (optype)) type = build_pointer_type (optype); else type = void_type_node; break; case sfk_destructor: if (type) error ("return type specification for destructor invalid"); /* We can't use the proper return type here because we run into problems with ambiguous bases and covariant returns. Java classes are left unchanged because (void *) isn't a valid Java type, and we don't want to change the Java ABI. */ if (targetm.cxx.cdtor_returns_this () && !TYPE_FOR_JAVA (optype)) type = build_pointer_type (void_type_node); else type = void_type_node; break; case sfk_conversion: if (type) error ("return type specified for %", optype); type = optype; break; default: gcc_unreachable (); } return type; } /* A variable or data member (whose unqualified name is IDENTIFIER) has been declared with the indicated TYPE. If the TYPE is not acceptable, issue an error message and return a type to use for error-recovery purposes. */ tree check_var_type (tree identifier, tree type) { if (VOID_TYPE_P (type)) { if (!identifier) error ("unnamed variable or field declared void"); else if (TREE_CODE (identifier) == IDENTIFIER_NODE) { gcc_assert (!IDENTIFIER_OPNAME_P (identifier)); error ("variable or field %qE declared void", identifier); } else error ("variable or field declared void"); type = error_mark_node; } return type; } /* Given declspecs and a declarator (abstract or otherwise), determine the name and type of the object declared and construct a DECL node for it. DECLSPECS points to the representation of declaration-specifier sequence that precedes declarator. DECL_CONTEXT says which syntactic context this declaration is in: NORMAL for most contexts. Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL. FUNCDEF for a function definition. Like NORMAL but a few different error messages in each case. Return value may be zero meaning this definition is too screwy to try to parse. MEMFUNCDEF for a function definition. Like FUNCDEF but prepares to handle member functions (which have FIELD context). Return value may be zero meaning this definition is too screwy to try to parse. PARM for a parameter declaration (either within a function prototype or before a function body). Make a PARM_DECL, or return void_type_node. CATCHPARM for a parameter declaration before a catch clause. TYPENAME if for a typename (in a cast or sizeof). Don't make a DECL node; just return the ..._TYPE node. FIELD for a struct or union field; make a FIELD_DECL. BITFIELD for a field with specified width. INITIALIZED is as for start_decl. ATTRLIST is a pointer to the list of attributes, which may be NULL if there are none; *ATTRLIST may be modified if attributes from inside the declarator should be applied to the declaration. When this function is called, scoping variables (such as CURRENT_CLASS_TYPE) should reflect the scope in which the declaration occurs, not the scope in which the new declaration will be placed. For example, on: void S::f() { ... } when grokdeclarator is called for `S::f', the CURRENT_CLASS_TYPE should not be `S'. Returns a DECL (if a declarator is present), a TYPE (if there is no declarator, in cases like "struct S;"), or the ERROR_MARK_NODE if an error occurs. */ tree grokdeclarator (const cp_declarator *declarator, const cp_decl_specifier_seq *declspecs, enum decl_context decl_context, int initialized, tree* attrlist) { tree type = NULL_TREE; int longlong = 0; int virtualp, explicitp, friendp, inlinep, staticp; int explicit_int = 0; int explicit_char = 0; int defaulted_int = 0; tree dependent_name = NULL_TREE; tree typedef_decl = NULL_TREE; const char *name = NULL; tree typedef_type = NULL_TREE; /* True if this declarator is a function definition. */ bool funcdef_flag = false; cp_declarator_kind innermost_code = cdk_error; int bitfield = 0; #if 0 /* See the code below that used this. */ tree decl_attr = NULL_TREE; #endif /* Keep track of what sort of function is being processed so that we can warn about default return values, or explicit return values which do not match prescribed defaults. */ special_function_kind sfk = sfk_none; tree dname = NULL_TREE; tree ctor_return_type = NULL_TREE; enum overload_flags flags = NO_SPECIAL; /* cv-qualifiers that apply to the declarator, for a declaration of a member function. */ cp_cv_quals memfn_quals = TYPE_UNQUALIFIED; /* cv-qualifiers that apply to the type specified by the DECLSPECS. */ int type_quals; tree raises = NULL_TREE; int template_count = 0; tree returned_attrs = NULL_TREE; tree parms = NULL_TREE; const cp_declarator *id_declarator; /* The unqualified name of the declarator; either an IDENTIFIER_NODE, BIT_NOT_EXPR, or TEMPLATE_ID_EXPR. */ tree unqualified_id; /* The class type, if any, in which this entity is located, or NULL_TREE if none. Note that this value may be different from the current class type; for example if an attempt is made to declare "A::f" inside "B", this value will be "A". */ tree ctype = current_class_type; /* The NAMESPACE_DECL for the namespace in which this entity is located. If an unqualified name is used to declare the entity, this value will be NULL_TREE, even if the entity is located at namespace scope. */ tree in_namespace = NULL_TREE; cp_storage_class storage_class; bool unsigned_p, signed_p, short_p, long_p, thread_p; bool type_was_error_mark_node = false; bool parameter_pack_p = declarator? declarator->parameter_pack_p : false; bool set_no_warning = false; signed_p = declspecs->specs[(int)ds_signed]; unsigned_p = declspecs->specs[(int)ds_unsigned]; short_p = declspecs->specs[(int)ds_short]; long_p = declspecs->specs[(int)ds_long]; longlong = declspecs->specs[(int)ds_long] >= 2; thread_p = declspecs->specs[(int)ds_thread]; if (decl_context == FUNCDEF) funcdef_flag = true, decl_context = NORMAL; else if (decl_context == MEMFUNCDEF) funcdef_flag = true, decl_context = FIELD; else if (decl_context == BITFIELD) bitfield = 1, decl_context = FIELD; if (initialized > 1) funcdef_flag = true; /* Look inside a declarator for the name being declared and get it as a string, for an error message. */ for (id_declarator = declarator; id_declarator; id_declarator = id_declarator->declarator) { if (id_declarator->kind != cdk_id) innermost_code = id_declarator->kind; switch (id_declarator->kind) { case cdk_function: if (id_declarator->declarator && id_declarator->declarator->kind == cdk_id) { sfk = id_declarator->declarator->u.id.sfk; if (sfk == sfk_destructor) flags = DTOR_FLAG; } break; case cdk_id: { tree qualifying_scope = id_declarator->u.id.qualifying_scope; tree decl = id_declarator->u.id.unqualified_name; if (!decl) break; if (qualifying_scope) { if (at_function_scope_p ()) { /* [dcl.meaning] A declarator-id shall not be qualified except for ... None of the cases are permitted in block scope. */ if (qualifying_scope == global_namespace) error ("invalid use of qualified-name %<::%D%>", decl); else if (TYPE_P (qualifying_scope)) error ("invalid use of qualified-name %<%T::%D%>", qualifying_scope, decl); else error ("invalid use of qualified-name %<%D::%D%>", qualifying_scope, decl); return error_mark_node; } else if (TYPE_P (qualifying_scope)) { ctype = qualifying_scope; if (innermost_code != cdk_function && current_class_type && !UNIQUELY_DERIVED_FROM_P (ctype, current_class_type)) { error ("type %qT is not derived from type %qT", ctype, current_class_type); return error_mark_node; } } else if (TREE_CODE (qualifying_scope) == NAMESPACE_DECL) in_namespace = qualifying_scope; } switch (TREE_CODE (decl)) { case BIT_NOT_EXPR: { tree type; if (innermost_code != cdk_function) { error ("declaration of %qD as non-function", decl); return error_mark_node; } else if (!qualifying_scope && !(current_class_type && at_class_scope_p ())) { error ("declaration of %qD as non-member", decl); return error_mark_node; } type = TREE_OPERAND (decl, 0); name = IDENTIFIER_POINTER (constructor_name (type)); dname = decl; } break; case TEMPLATE_ID_EXPR: { tree fns = TREE_OPERAND (decl, 0); dname = fns; if (TREE_CODE (dname) != IDENTIFIER_NODE) { gcc_assert (is_overloaded_fn (dname)); dname = DECL_NAME (get_first_fn (dname)); } } /* Fall through. */ case IDENTIFIER_NODE: if (TREE_CODE (decl) == IDENTIFIER_NODE) dname = decl; if (C_IS_RESERVED_WORD (dname)) { error ("declarator-id missing; using reserved word %qD", dname); name = IDENTIFIER_POINTER (dname); } else if (!IDENTIFIER_TYPENAME_P (dname)) name = IDENTIFIER_POINTER (dname); else { gcc_assert (flags == NO_SPECIAL); flags = TYPENAME_FLAG; ctor_return_type = TREE_TYPE (dname); sfk = sfk_conversion; if (is_typename_at_global_scope (dname)) name = IDENTIFIER_POINTER (dname); else name = ""; } break; default: gcc_unreachable (); } break; } case cdk_array: case cdk_pointer: case cdk_reference: case cdk_ptrmem: break; case cdk_error: return error_mark_node; default: gcc_unreachable (); } if (id_declarator->kind == cdk_id) break; } /* [dcl.fct.edf] The declarator in a function-definition shall have the form D1 ( parameter-declaration-clause) ... */ if (funcdef_flag && innermost_code != cdk_function) { error ("function definition does not declare parameters"); return error_mark_node; } if (((dname && IDENTIFIER_OPNAME_P (dname)) || flags == TYPENAME_FLAG) && innermost_code != cdk_function && ! (ctype && !declspecs->any_specifiers_p)) { error ("declaration of %qD as non-function", dname); return error_mark_node; } /* Anything declared one level down from the top level must be one of the parameters of a function (because the body is at least two levels down). */ /* This heuristic cannot be applied to C++ nodes! Fixed, however, by not allowing C++ class definitions to specify their parameters with xdecls (must be spec.d in the parmlist). Since we now wait to push a class scope until we are sure that we are in a legitimate method context, we must set oldcname explicitly (since current_class_name is not yet alive). We also want to avoid calling this a PARM if it is in a namespace. */ if (decl_context == NORMAL && !toplevel_bindings_p ()) { struct cp_binding_level *b = current_binding_level; current_binding_level = b->level_chain; if (current_binding_level != 0 && toplevel_bindings_p ()) decl_context = PARM; current_binding_level = b; } if (name == NULL) name = decl_context == PARM ? "parameter" : "type name"; /* If there were multiple types specified in the decl-specifier-seq, issue an error message. */ if (declspecs->multiple_types_p) { error ("two or more data types in declaration of %qs", name); return error_mark_node; } if (declspecs->conflicting_specifiers_p) { error ("conflicting specifiers in declaration of %qs", name); return error_mark_node; } /* Extract the basic type from the decl-specifier-seq. */ type = declspecs->type; if (type == error_mark_node) { type = NULL_TREE; type_was_error_mark_node = true; } /* If the entire declaration is itself tagged as deprecated then suppress reports of deprecated items. */ if (type && TREE_DEPRECATED (type) && deprecated_state != DEPRECATED_SUPPRESS) warn_deprecated_use (type); if (type && TREE_CODE (type) == TYPE_DECL) { typedef_decl = type; type = TREE_TYPE (typedef_decl); if (TREE_DEPRECATED (type) && DECL_ARTIFICIAL (typedef_decl) && deprecated_state != DEPRECATED_SUPPRESS) warn_deprecated_use (type); } /* No type at all: default to `int', and set DEFAULTED_INT because it was not a user-defined typedef. */ if (type == NULL_TREE && (signed_p || unsigned_p || long_p || short_p)) { /* These imply 'int'. */ type = integer_type_node; defaulted_int = 1; } /* Gather flags. */ explicit_int = declspecs->explicit_int_p; explicit_char = declspecs->explicit_char_p; #if 0 /* See the code below that used this. */ if (typedef_decl) decl_attr = DECL_ATTRIBUTES (typedef_decl); #endif typedef_type = type; if (sfk != sfk_conversion) ctor_return_type = ctype; if (sfk != sfk_none) type = check_special_function_return_type (sfk, type, ctor_return_type); else if (type == NULL_TREE) { int is_main; explicit_int = -1; /* We handle `main' specially here, because 'main () { }' is so common. With no options, it is allowed. With -Wreturn-type, it is a warning. It is only an error with -pedantic-errors. */ is_main = (funcdef_flag && dname && MAIN_NAME_P (dname) && ctype == NULL_TREE && in_namespace == NULL_TREE && current_namespace == global_namespace); if (type_was_error_mark_node) /* We've already issued an error, don't complain more. */; else if (in_system_header || flag_ms_extensions) /* Allow it, sigh. */; else if (! is_main) permerror (input_location, "ISO C++ forbids declaration of %qs with no type", name); else if (pedantic) pedwarn (input_location, OPT_pedantic, "ISO C++ forbids declaration of %qs with no type", name); else warning (OPT_Wreturn_type, "ISO C++ forbids declaration of %qs with no type", name); type = integer_type_node; } ctype = NULL_TREE; /* Now process the modifiers that were specified and check for invalid combinations. */ /* Long double is a special combination. */ if (long_p && !longlong && TYPE_MAIN_VARIANT (type) == double_type_node) { long_p = false; type = build_qualified_type (long_double_type_node, cp_type_quals (type)); } /* Check all other uses of type modifiers. */ if (unsigned_p || signed_p || long_p || short_p) { int ok = 0; if ((signed_p || unsigned_p) && TREE_CODE (type) != INTEGER_TYPE) error ("% or % invalid for %qs", name); else if (signed_p && unsigned_p) error ("% and % specified together for %qs", name); else if (longlong && TREE_CODE (type) != INTEGER_TYPE) error ("% invalid for %qs", name); else if (long_p && TREE_CODE (type) == REAL_TYPE) error ("% invalid for %qs", name); else if (short_p && TREE_CODE (type) == REAL_TYPE) error ("% invalid for %qs", name); else if ((long_p || short_p) && TREE_CODE (type) != INTEGER_TYPE) error ("% or % invalid for %qs", name); else if ((long_p || short_p) && explicit_char) error ("% or % specified with char for %qs", name); else if (long_p && short_p) error ("% and % specified together for %qs", name); else if (type == char16_type_node || type == char32_type_node) { if (signed_p || unsigned_p) error ("% or % invalid for %qs", name); else if (short_p || long_p) error ("% or % invalid for %qs", name); } else { ok = 1; if (!explicit_int && !defaulted_int && !explicit_char && pedantic) { pedwarn (input_location, OPT_pedantic, "long, short, signed or unsigned used invalidly for %qs", name); if (flag_pedantic_errors) ok = 0; } } /* Discard the type modifiers if they are invalid. */ if (! ok) { unsigned_p = false; signed_p = false; long_p = false; short_p = false; longlong = 0; } } /* Decide whether an integer type is signed or not. Optionally treat bitfields as signed by default. */ if (unsigned_p /* [class.bit] It is implementation-defined whether a plain (neither explicitly signed or unsigned) char, short, int, or long bit-field is signed or unsigned. Naturally, we extend this to long long as well. Note that this does not include wchar_t. */ || (bitfield && !flag_signed_bitfields && !signed_p /* A typedef for plain `int' without `signed' can be controlled just like plain `int', but a typedef for `signed int' cannot be so controlled. */ && !(typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl)) && TREE_CODE (type) == INTEGER_TYPE && !same_type_p (TYPE_MAIN_VARIANT (type), wchar_type_node))) { if (longlong) type = long_long_unsigned_type_node; else if (long_p) type = long_unsigned_type_node; else if (short_p) type = short_unsigned_type_node; else if (type == char_type_node) type = unsigned_char_type_node; else if (typedef_decl) type = unsigned_type_for (type); else type = unsigned_type_node; } else if (signed_p && type == char_type_node) type = signed_char_type_node; else if (longlong) type = long_long_integer_type_node; else if (long_p) type = long_integer_type_node; else if (short_p) type = short_integer_type_node; if (declspecs->specs[(int)ds_complex]) { if (TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE) error ("complex invalid for %qs", name); /* If we just have "complex", it is equivalent to "complex double", but if any modifiers at all are specified it is the complex form of TYPE. E.g, "complex short" is "complex short int". */ else if (defaulted_int && ! longlong && ! (long_p || short_p || signed_p || unsigned_p)) type = complex_double_type_node; else if (type == integer_type_node) type = complex_integer_type_node; else if (type == float_type_node) type = complex_float_type_node; else if (type == double_type_node) type = complex_double_type_node; else if (type == long_double_type_node) type = complex_long_double_type_node; else type = build_complex_type (type); } type_quals = TYPE_UNQUALIFIED; if (declspecs->specs[(int)ds_const]) type_quals |= TYPE_QUAL_CONST; if (declspecs->specs[(int)ds_volatile]) type_quals |= TYPE_QUAL_VOLATILE; if (declspecs->specs[(int)ds_restrict]) type_quals |= TYPE_QUAL_RESTRICT; if (sfk == sfk_conversion && type_quals != TYPE_UNQUALIFIED) error ("qualifiers are not allowed on declaration of %", ctor_return_type); if (TREE_CODE (type) == FUNCTION_TYPE && type_quals != TYPE_UNQUALIFIED) { /* This was an error in C++98 (cv-qualifiers cannot be added to a function type), but DR 295 makes the code well-formed by dropping the extra qualifiers. */ if (pedantic) { tree bad_type = build_qualified_type (type, type_quals); pedwarn (input_location, OPT_pedantic, "ignoring %qV qualifiers added to function type %qT", bad_type, type); } type_quals = TYPE_UNQUALIFIED; } type_quals |= cp_type_quals (type); type = cp_build_qualified_type_real (type, type_quals, ((typedef_decl && !DECL_ARTIFICIAL (typedef_decl) ? tf_ignore_bad_quals : 0) | tf_warning_or_error)); /* We might have ignored or rejected some of the qualifiers. */ type_quals = cp_type_quals (type); staticp = 0; inlinep = !! declspecs->specs[(int)ds_inline]; virtualp = !! declspecs->specs[(int)ds_virtual]; explicitp = !! declspecs->specs[(int)ds_explicit]; storage_class = declspecs->storage_class; if (storage_class == sc_static) staticp = 1 + (decl_context == FIELD); if (virtualp && staticp == 2) { error ("member %qD cannot be declared both virtual and static", dname); storage_class = sc_none; staticp = 0; } friendp = !! declspecs->specs[(int)ds_friend]; if (dependent_name && !friendp) { error ("%<%T::%D%> is not a valid declarator", ctype, dependent_name); return error_mark_node; } /* Issue errors about use of storage classes for parameters. */ if (decl_context == PARM) { if (declspecs->specs[(int)ds_typedef]) { error ("typedef declaration invalid in parameter declaration"); return error_mark_node; } else if (storage_class == sc_static || storage_class == sc_extern || thread_p) error ("storage class specifiers invalid in parameter declarations"); } /* Give error if `virtual' is used outside of class declaration. */ if (virtualp && (current_class_name == NULL_TREE || decl_context != FIELD)) { error ("% outside class declaration"); virtualp = 0; } /* Static anonymous unions are dealt with here. */ if (staticp && decl_context == TYPENAME && declspecs->type && ANON_AGGR_TYPE_P (declspecs->type)) decl_context = FIELD; /* Warn about storage classes that are invalid for certain kinds of declarations (parameters, typenames, etc.). */ if (thread_p && ((storage_class && storage_class != sc_extern && storage_class != sc_static) || declspecs->specs[(int)ds_typedef])) { error ("multiple storage classes in declaration of %qs", name); thread_p = false; } if (decl_context != NORMAL && ((storage_class != sc_none && storage_class != sc_mutable) || thread_p)) { if ((decl_context == PARM || decl_context == CATCHPARM) && (storage_class == sc_register || storage_class == sc_auto)) ; else if (declspecs->specs[(int)ds_typedef]) ; else if (decl_context == FIELD /* C++ allows static class elements. */ && storage_class == sc_static) /* C++ also allows inlines and signed and unsigned elements, but in those cases we don't come in here. */ ; else { if (decl_context == FIELD) error ("storage class specified for %qs", name); else { if (decl_context == PARM || decl_context == CATCHPARM) error ("storage class specified for parameter %qs", name); else error ("storage class specified for typename"); } if (storage_class == sc_register || storage_class == sc_auto || storage_class == sc_extern || thread_p) storage_class = sc_none; } } else if (storage_class == sc_extern && funcdef_flag && ! toplevel_bindings_p ()) error ("nested function %qs declared %", name); else if (toplevel_bindings_p ()) { if (storage_class == sc_auto) error ("top-level declaration of %qs specifies %", name); } else if (thread_p && storage_class != sc_extern && storage_class != sc_static) { error ("function-scope %qs implicitly auto and declared %<__thread%>", name); thread_p = false; } if (storage_class && friendp) { error ("storage class specifiers invalid in friend function declarations"); storage_class = sc_none; staticp = 0; } if (!id_declarator) unqualified_id = NULL_TREE; else { unqualified_id = id_declarator->u.id.unqualified_name; switch (TREE_CODE (unqualified_id)) { case BIT_NOT_EXPR: unqualified_id = constructor_name (TREE_OPERAND (unqualified_id, 0)); break; case IDENTIFIER_NODE: case TEMPLATE_ID_EXPR: break; default: gcc_unreachable (); } } /* Determine the type of the entity declared by recurring on the declarator. */ for (; declarator; declarator = declarator->declarator) { const cp_declarator *inner_declarator; tree attrs; if (type == error_mark_node) return error_mark_node; attrs = declarator->attributes; if (attrs) { int attr_flags; attr_flags = 0; if (declarator == NULL || declarator->kind == cdk_id) attr_flags |= (int) ATTR_FLAG_DECL_NEXT; if (declarator->kind == cdk_function) attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT; if (declarator->kind == cdk_array) attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT; returned_attrs = decl_attributes (&type, chainon (returned_attrs, attrs), attr_flags); } if (declarator->kind == cdk_id) break; inner_declarator = declarator->declarator; switch (declarator->kind) { case cdk_array: type = create_array_type_for_decl (dname, type, declarator->u.array.bounds); break; case cdk_function: { tree arg_types; int funcdecl_p; /* Declaring a function type. Make sure we have a valid type for the function to return. */ if (type_quals != TYPE_UNQUALIFIED) { if (SCALAR_TYPE_P (type) || VOID_TYPE_P (type)) warning (OPT_Wignored_qualifiers, "type qualifiers ignored on function return type"); /* We now know that the TYPE_QUALS don't apply to the decl, but to its return type. */ type_quals = TYPE_UNQUALIFIED; set_no_warning = true; } /* Error about some types functions can't return. */ if (TREE_CODE (type) == FUNCTION_TYPE) { error ("%qs declared as function returning a function", name); return error_mark_node; } if (TREE_CODE (type) == ARRAY_TYPE) { error ("%qs declared as function returning an array", name); return error_mark_node; } /* Pick up type qualifiers which should be applied to `this'. */ memfn_quals = declarator->u.function.qualifiers; /* Pick up the exception specifications. */ raises = declarator->u.function.exception_specification; /* Handle a late-specified return type. */ type = splice_late_return_type (type, declarator->u.function.late_return_type); if (type == error_mark_node) return error_mark_node; /* Say it's a definition only for the CALL_EXPR closest to the identifier. */ funcdecl_p = inner_declarator && inner_declarator->kind == cdk_id; if (ctype == NULL_TREE && decl_context == FIELD && funcdecl_p && (friendp == 0 || dname == current_class_name)) ctype = current_class_type; if (ctype && (sfk == sfk_constructor || sfk == sfk_destructor)) { /* We are within a class's scope. If our declarator name is the same as the class name, and we are defining a function, then it is a constructor/destructor, and therefore returns a void type. */ /* ISO C++ 12.4/2. A destructor may not be declared const or volatile. A destructor may not be static. ISO C++ 12.1. A constructor may not be declared const or volatile. A constructor may not be virtual. A constructor may not be static. */ if (staticp == 2) error ((flags == DTOR_FLAG) ? "destructor cannot be static member function" : "constructor cannot be static member function"); if (memfn_quals) { error ((flags == DTOR_FLAG) ? "destructors may not be cv-qualified" : "constructors may not be cv-qualified"); memfn_quals = TYPE_UNQUALIFIED; } if (decl_context == FIELD && !member_function_or_else (ctype, current_class_type, flags)) return error_mark_node; if (flags != DTOR_FLAG) { /* It's a constructor. */ if (explicitp == 1) explicitp = 2; if (virtualp) { permerror (input_location, "constructors cannot be declared virtual"); virtualp = 0; } if (decl_context == FIELD && sfk != sfk_constructor) return error_mark_node; } if (decl_context == FIELD) staticp = 0; } else if (friendp) { if (initialized) error ("can't initialize friend function %qs", name); if (virtualp) { /* Cannot be both friend and virtual. */ error ("virtual functions cannot be friends"); friendp = 0; } if (decl_context == NORMAL) error ("friend declaration not in class definition"); if (current_function_decl && funcdef_flag) error ("can't define friend function %qs in a local " "class definition", name); } arg_types = grokparms (declarator->u.function.parameters, &parms); if (inner_declarator && inner_declarator->kind == cdk_id && inner_declarator->u.id.sfk == sfk_destructor && arg_types != void_list_node) { error ("destructors may not have parameters"); arg_types = void_list_node; parms = NULL_TREE; } type = build_function_type (type, arg_types); } break; case cdk_pointer: case cdk_reference: case cdk_ptrmem: /* Filter out pointers-to-references and references-to-references. We can get these if a TYPE_DECL is used. */ if (TREE_CODE (type) == REFERENCE_TYPE) { if (declarator->kind != cdk_reference) { error ("cannot declare pointer to %q#T", type); type = TREE_TYPE (type); } /* In C++0x, we allow reference to reference declarations that occur indirectly through typedefs [7.1.3/8 dcl.typedef] and template type arguments [14.3.1/4 temp.arg.type]. The check for direct reference to reference declarations, which are still forbidden, occurs below. Reasoning behind the change can be found in DR106, DR540, and the rvalue reference proposals. */ else if (cxx_dialect == cxx98) { error ("cannot declare reference to %q#T", type); type = TREE_TYPE (type); } } else if (VOID_TYPE_P (type)) { if (declarator->kind == cdk_reference) error ("cannot declare reference to %q#T", type); else if (declarator->kind == cdk_ptrmem) error ("cannot declare pointer to %q#T member", type); } /* We now know that the TYPE_QUALS don't apply to the decl, but to the target of the pointer. */ type_quals = TYPE_UNQUALIFIED; if (declarator->kind == cdk_ptrmem && (TREE_CODE (type) == FUNCTION_TYPE || (memfn_quals && TREE_CODE (type) == METHOD_TYPE))) { memfn_quals |= cp_type_quals (type); type = build_memfn_type (type, declarator->u.pointer.class_type, memfn_quals); memfn_quals = TYPE_UNQUALIFIED; } if (declarator->kind == cdk_reference) { /* In C++0x, the type we are creating a reference to might be a typedef which is itself a reference type. In that case, we follow the reference collapsing rules in [7.1.3/8 dcl.typedef] to create the final reference type: "If a typedef TD names a type that is a reference to a type T, an attempt to create the type 'lvalue reference to cv TD' creates the type 'lvalue reference to T,' while an attempt to create the type "rvalue reference to cv TD' creates the type TD." */ if (!VOID_TYPE_P (type)) type = cp_build_reference_type ((TREE_CODE (type) == REFERENCE_TYPE ? TREE_TYPE (type) : type), (declarator->u.reference.rvalue_ref && (TREE_CODE(type) != REFERENCE_TYPE || TYPE_REF_IS_RVALUE (type)))); /* In C++0x, we need this check for direct reference to reference declarations, which are forbidden by [8.3.2/5 dcl.ref]. Reference to reference declarations are only allowed indirectly through typedefs and template type arguments. Example: void foo(int & &); // invalid ref-to-ref decl typedef int & int_ref; void foo(int_ref &); // valid ref-to-ref decl */ if (inner_declarator && inner_declarator->kind == cdk_reference) error ("cannot declare reference to %q#T, which is not " "a typedef or a template type argument", type); } else if (TREE_CODE (type) == METHOD_TYPE) type = build_ptrmemfunc_type (build_pointer_type (type)); else if (declarator->kind == cdk_ptrmem) { gcc_assert (TREE_CODE (declarator->u.pointer.class_type) != NAMESPACE_DECL); if (declarator->u.pointer.class_type == error_mark_node) /* We will already have complained. */ type = error_mark_node; else type = build_ptrmem_type (declarator->u.pointer.class_type, type); } else type = build_pointer_type (type); /* Process a list of type modifier keywords (such as const or volatile) that were given inside the `*' or `&'. */ if (declarator->u.pointer.qualifiers) { type = cp_build_qualified_type (type, declarator->u.pointer.qualifiers); type_quals = cp_type_quals (type); } ctype = NULL_TREE; break; case cdk_error: break; default: gcc_unreachable (); } } if (unqualified_id && TREE_CODE (unqualified_id) == TEMPLATE_ID_EXPR && TREE_CODE (type) != FUNCTION_TYPE && TREE_CODE (type) != METHOD_TYPE) { error ("template-id %qD used as a declarator", unqualified_id); unqualified_id = dname; } /* If TYPE is a FUNCTION_TYPE, but the function name was explicitly qualified with a class-name, turn it into a METHOD_TYPE, unless we know that the function is static. We take advantage of this opportunity to do other processing that pertains to entities explicitly declared to be class members. Note that if DECLARATOR is non-NULL, we know it is a cdk_id declarator; otherwise, we would not have exited the loop above. */ if (declarator && declarator->u.id.qualifying_scope && TYPE_P (declarator->u.id.qualifying_scope)) { tree t; ctype = declarator->u.id.qualifying_scope; ctype = TYPE_MAIN_VARIANT (ctype); t = ctype; while (t != NULL_TREE && CLASS_TYPE_P (t)) { /* You're supposed to have one `template <...>' for every template class, but you don't need one for a full specialization. For example: template struct S{}; template <> struct S { void f(); }; void S::f () {} is correct; there shouldn't be a `template <>' for the definition of `S::f'. */ if (CLASSTYPE_TEMPLATE_SPECIALIZATION (t) && !any_dependent_template_arguments_p (CLASSTYPE_TI_ARGS (t))) /* T is an explicit (not partial) specialization. All containing classes must therefore also be explicitly specialized. */ break; if ((CLASSTYPE_USE_TEMPLATE (t) || CLASSTYPE_IS_TEMPLATE (t)) && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (t))) template_count += 1; t = TYPE_MAIN_DECL (t); t = DECL_CONTEXT (t); } if (ctype == current_class_type) { if (friendp) { permerror (input_location, "member functions are implicitly friends of their class"); friendp = 0; } else permerror (declarator->id_loc, "extra qualification %<%T::%> on member %qs", ctype, name); } else if (/* If the qualifying type is already complete, then we can skip the following checks. */ !COMPLETE_TYPE_P (ctype) && (/* If the function is being defined, then qualifying type must certainly be complete. */ funcdef_flag /* A friend declaration of "T::f" is OK, even if "T" is a template parameter. But, if this function is not a friend, the qualifying type must be a class. */ || (!friendp && !CLASS_TYPE_P (ctype)) /* For a declaration, the type need not be complete, if either it is dependent (since there is no meaningful definition of complete in that case) or the qualifying class is currently being defined. */ || !(dependent_type_p (ctype) || currently_open_class (ctype))) /* Check that the qualifying type is complete. */ && !complete_type_or_else (ctype, NULL_TREE)) return error_mark_node; else if (TREE_CODE (type) == FUNCTION_TYPE) { tree sname = declarator->u.id.unqualified_name; if (current_class_type && (!friendp || funcdef_flag)) { error (funcdef_flag ? "cannot define member function %<%T::%s%> within %<%T%>" : "cannot declare member function %<%T::%s%> within %<%T%>", ctype, name, current_class_type); return error_mark_node; } if (TREE_CODE (sname) == IDENTIFIER_NODE && NEW_DELETE_OPNAME_P (sname)) /* Overloaded operator new and operator delete are always static functions. */ ; else type = build_memfn_type (type, ctype, memfn_quals); } else if (declspecs->specs[(int)ds_typedef] && current_class_type) { error ("cannot declare member %<%T::%s%> within %qT", ctype, name, current_class_type); return error_mark_node; } } /* Now TYPE has the actual type. */ if (returned_attrs) { if (attrlist) *attrlist = chainon (returned_attrs, *attrlist); else attrlist = &returned_attrs; } /* Handle parameter packs. */ if (parameter_pack_p) { if (decl_context == PARM) /* Turn the type into a pack expansion.*/ type = make_pack_expansion (type); else error ("non-parameter %qs cannot be a parameter pack", name); } /* Did array size calculations overflow? */ if (TREE_CODE (type) == ARRAY_TYPE && COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST && TREE_OVERFLOW (TYPE_SIZE_UNIT (type))) { error ("size of array %qs is too large", name); /* If we proceed with the array type as it is, we'll eventually crash in tree_low_cst(). */ type = error_mark_node; } if ((decl_context == FIELD || decl_context == PARM) && !processing_template_decl && variably_modified_type_p (type, NULL_TREE)) { if (decl_context == FIELD) error ("data member may not have variably modified type %qT", type); else error ("parameter may not have variably modified type %qT", type); type = error_mark_node; } if (explicitp == 1 || (explicitp && friendp)) { /* [dcl.fct.spec] The explicit specifier shall only be used in declarations of constructors within a class definition. */ error ("only declarations of constructors can be %"); explicitp = 0; } if (storage_class == sc_mutable) { if (decl_context != FIELD || friendp) { error ("non-member %qs cannot be declared %", name); storage_class = sc_none; } else if (decl_context == TYPENAME || declspecs->specs[(int)ds_typedef]) { error ("non-object member %qs cannot be declared %", name); storage_class = sc_none; } else if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) { error ("function %qs cannot be declared %", name); storage_class = sc_none; } else if (staticp) { error ("static %qs cannot be declared %", name); storage_class = sc_none; } else if (type_quals & TYPE_QUAL_CONST) { error ("const %qs cannot be declared %", name); storage_class = sc_none; } } /* If this is declaring a typedef name, return a TYPE_DECL. */ if (declspecs->specs[(int)ds_typedef] && decl_context != TYPENAME) { tree decl; /* Note that the grammar rejects storage classes in typenames, fields or parameters. */ if (current_lang_name == lang_name_java) TYPE_FOR_JAVA (type) = 1; /* This declaration: typedef void f(int) const; declares a function type which is not a member of any particular class, but which is cv-qualified; for example "f S::*" declares a pointer to a const-qualified member function of S. We record the cv-qualification in the function type. */ if (memfn_quals && TREE_CODE (type) == FUNCTION_TYPE) { type = cp_build_qualified_type (type, memfn_quals); /* We have now dealt with these qualifiers. */ memfn_quals = TYPE_UNQUALIFIED; } if (decl_context == FIELD) decl = build_lang_decl (TYPE_DECL, unqualified_id, type); else decl = build_decl (TYPE_DECL, unqualified_id, type); if (id_declarator && declarator->u.id.qualifying_scope) { error ("%Jtypedef name may not be a nested-name-specifier", decl); TREE_TYPE (decl) = error_mark_node; } if (decl_context != FIELD) { if (!current_function_decl) DECL_CONTEXT (decl) = FROB_CONTEXT (current_namespace); else if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (current_function_decl) || (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (current_function_decl))) /* The TYPE_DECL is "abstract" because there will be clones of this constructor/destructor, and there will be copies of this TYPE_DECL generated in those clones. */ DECL_ABSTRACT (decl) = 1; } else if (constructor_name_p (unqualified_id, current_class_type)) permerror (input_location, "ISO C++ forbids nested type %qD with same name " "as enclosing class", unqualified_id); /* If the user declares "typedef struct {...} foo" then the struct will have an anonymous name. Fill that name in now. Nothing can refer to it, so nothing needs know about the name change. */ if (type != error_mark_node && unqualified_id && TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && TYPE_ANONYMOUS_P (type) && cp_type_quals (type) == TYPE_UNQUALIFIED) { tree oldname = TYPE_NAME (type); tree t; /* Replace the anonymous name with the real name everywhere. */ for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) if (TYPE_NAME (t) == oldname) TYPE_NAME (t) = decl; if (TYPE_LANG_SPECIFIC (type)) TYPE_WAS_ANONYMOUS (type) = 1; /* If this is a typedef within a template class, the nested type is a (non-primary) template. The name for the template needs updating as well. */ if (TYPE_LANG_SPECIFIC (type) && CLASSTYPE_TEMPLATE_INFO (type)) DECL_NAME (CLASSTYPE_TI_TEMPLATE (type)) = TYPE_IDENTIFIER (type); /* FIXME remangle member functions; member functions of a type with external linkage have external linkage. */ } if (signed_p || (typedef_decl && C_TYPEDEF_EXPLICITLY_SIGNED (typedef_decl))) C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1; bad_specifiers (decl, "type", virtualp, memfn_quals != TYPE_UNQUALIFIED, inlinep, friendp, raises != NULL_TREE); return decl; } /* Detect the case of an array type of unspecified size which came, as such, direct from a typedef name. We must copy the type, so that the array's domain can be individually set by the object's initializer. */ if (type && typedef_type && TREE_CODE (type) == ARRAY_TYPE && !TYPE_DOMAIN (type) && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (typedef_type)) type = build_cplus_array_type (TREE_TYPE (type), NULL_TREE); /* Detect where we're using a typedef of function type to declare a function. PARMS will not be set, so we must create it now. */ if (type == typedef_type && TREE_CODE (type) == FUNCTION_TYPE) { tree decls = NULL_TREE; tree args; for (args = TYPE_ARG_TYPES (type); args; args = TREE_CHAIN (args)) { tree decl = cp_build_parm_decl (NULL_TREE, TREE_VALUE (args)); TREE_CHAIN (decl) = decls; decls = decl; } parms = nreverse (decls); if (decl_context != TYPENAME) { /* A cv-qualifier-seq shall only be part of the function type for a non-static member function. [8.3.5/4 dcl.fct] */ if (cp_type_quals (type) != TYPE_UNQUALIFIED && (current_class_type == NULL_TREE || staticp) ) { error (staticp ? G_("qualified function types cannot be used to " "declare static member functions") : G_("qualified function types cannot be used to " "declare free functions")); type = TYPE_MAIN_VARIANT (type); } /* The qualifiers on the function type become the qualifiers on the non-static member function. */ memfn_quals |= cp_type_quals (type); } } /* If this is a type name (such as, in a cast or sizeof), compute the type and return it now. */ if (decl_context == TYPENAME) { /* Note that the grammar rejects storage classes in typenames, fields or parameters. */ if (type_quals != TYPE_UNQUALIFIED) type_quals = TYPE_UNQUALIFIED; /* Special case: "friend class foo" looks like a TYPENAME context. */ if (friendp) { if (type_quals != TYPE_UNQUALIFIED) { error ("type qualifiers specified for friend class declaration"); type_quals = TYPE_UNQUALIFIED; } if (inlinep) { error ("% specified for friend class declaration"); inlinep = 0; } if (!current_aggr) { /* Don't allow friend declaration without a class-key. */ if (TREE_CODE (type) == TEMPLATE_TYPE_PARM) permerror (input_location, "template parameters cannot be friends"); else if (TREE_CODE (type) == TYPENAME_TYPE) permerror (input_location, "friend declaration requires class-key, " "i.e. %", TYPE_CONTEXT (type), TYPENAME_TYPE_FULLNAME (type)); else permerror (input_location, "friend declaration requires class-key, " "i.e. %", type); } /* Only try to do this stuff if we didn't already give up. */ if (type != integer_type_node) { /* A friendly class? */ if (current_class_type) make_friend_class (current_class_type, TYPE_MAIN_VARIANT (type), /*complain=*/true); else error ("trying to make class %qT a friend of global scope", type); type = void_type_node; } } else if (memfn_quals) { if (ctype == NULL_TREE) { if (TREE_CODE (type) != METHOD_TYPE) error ("invalid qualifiers on non-member function type"); else ctype = TYPE_METHOD_BASETYPE (type); } if (ctype) type = build_memfn_type (type, ctype, memfn_quals); } return type; } else if (unqualified_id == NULL_TREE && decl_context != PARM && decl_context != CATCHPARM && TREE_CODE (type) != UNION_TYPE && ! bitfield) { error ("abstract declarator %qT used as declaration", type); return error_mark_node; } /* Only functions may be declared using an operator-function-id. */ if (unqualified_id && IDENTIFIER_OPNAME_P (unqualified_id) && TREE_CODE (type) != FUNCTION_TYPE && TREE_CODE (type) != METHOD_TYPE) { error ("declaration of %qD as non-function", unqualified_id); return error_mark_node; } /* We don't check parameter types here because we can emit a better error message later. */ if (decl_context != PARM) { type = check_var_type (unqualified_id, type); if (type == error_mark_node) return error_mark_node; } /* Now create the decl, which may be a VAR_DECL, a PARM_DECL or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE. */ if (decl_context == PARM || decl_context == CATCHPARM) { if (ctype || in_namespace) error ("cannot use %<::%> in parameter declaration"); /* A parameter declared as an array of T is really a pointer to T. One declared as a function is really a pointer to a function. One declared as a member is really a pointer to member. */ if (TREE_CODE (type) == ARRAY_TYPE) { /* Transfer const-ness of array into that of type pointed to. */ type = build_pointer_type (TREE_TYPE (type)); type_quals = TYPE_UNQUALIFIED; } else if (TREE_CODE (type) == FUNCTION_TYPE) type = build_pointer_type (type); } { tree decl; if (decl_context == PARM) { decl = cp_build_parm_decl (unqualified_id, type); bad_specifiers (decl, "parameter", virtualp, memfn_quals != TYPE_UNQUALIFIED, inlinep, friendp, raises != NULL_TREE); } else if (decl_context == FIELD) { /* The C99 flexible array extension. */ if (!staticp && TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type) == NULL_TREE) { tree itype = compute_array_index_type (dname, integer_zero_node); type = build_cplus_array_type (TREE_TYPE (type), itype); } if (type == error_mark_node) { /* Happens when declaring arrays of sizes which are error_mark_node, for example. */ decl = NULL_TREE; } else if (in_namespace && !friendp) { /* Something like struct S { int N::j; }; */ error ("invalid use of %<::%>"); return error_mark_node; } else if (TREE_CODE (type) == FUNCTION_TYPE) { int publicp = 0; tree function_context; if (friendp == 0) { if (ctype == NULL_TREE) ctype = current_class_type; if (ctype == NULL_TREE) { error ("can't make %qD into a method -- not in a class", unqualified_id); return error_mark_node; } /* ``A union may [ ... ] not [ have ] virtual functions.'' ARM 9.5 */ if (virtualp && TREE_CODE (ctype) == UNION_TYPE) { error ("function %qD declared virtual inside a union", unqualified_id); return error_mark_node; } if (NEW_DELETE_OPNAME_P (unqualified_id)) { if (virtualp) { error ("%qD cannot be declared virtual, since it " "is always static", unqualified_id); virtualp = 0; } } else if (staticp < 2) type = build_memfn_type (type, ctype, memfn_quals); } /* Check that the name used for a destructor makes sense. */ if (sfk == sfk_destructor) { if (!ctype) { gcc_assert (friendp); error ("expected qualified name in friend declaration " "for destructor %qD", id_declarator->u.id.unqualified_name); return error_mark_node; } if (!same_type_p (TREE_OPERAND (id_declarator->u.id.unqualified_name, 0), ctype)) { error ("declaration of %qD as member of %qT", id_declarator->u.id.unqualified_name, ctype); return error_mark_node; } } else if (sfk == sfk_constructor && friendp) { error ("expected qualified name in friend declaration " "for constructor %qD", id_declarator->u.id.unqualified_name); return error_mark_node; } /* Tell grokfndecl if it needs to set TREE_PUBLIC on the node. */ function_context = (ctype != NULL_TREE) ? decl_function_context (TYPE_MAIN_DECL (ctype)) : NULL_TREE; publicp = (! friendp || ! staticp) && function_context == NULL_TREE; decl = grokfndecl (ctype, type, TREE_CODE (unqualified_id) != TEMPLATE_ID_EXPR ? unqualified_id : dname, parms, unqualified_id, virtualp, flags, memfn_quals, raises, friendp ? -1 : 0, friendp, publicp, inlinep, sfk, funcdef_flag, template_count, in_namespace, attrlist, declarator->id_loc); if (decl == NULL_TREE) return error_mark_node; #if 0 /* This clobbers the attrs stored in `decl' from `attrlist'. */ /* The decl and setting of decl_attr is also turned off. */ decl = build_decl_attribute_variant (decl, decl_attr); #endif /* [class.conv.ctor] A constructor declared without the function-specifier explicit that can be called with a single parameter specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is called a converting constructor. */ if (explicitp == 2) DECL_NONCONVERTING_P (decl) = 1; else if (DECL_CONSTRUCTOR_P (decl)) { /* A constructor with no parms is not a conversion. Ignore any compiler-added parms. */ tree arg_types = FUNCTION_FIRST_USER_PARMTYPE (decl); if (arg_types == void_list_node) DECL_NONCONVERTING_P (decl) = 1; } } else if (TREE_CODE (type) == METHOD_TYPE) { /* We only get here for friend declarations of members of other classes. */ /* All method decls are public, so tell grokfndecl to set TREE_PUBLIC, also. */ decl = grokfndecl (ctype, type, TREE_CODE (unqualified_id) != TEMPLATE_ID_EXPR ? unqualified_id : dname, parms, unqualified_id, virtualp, flags, memfn_quals, raises, friendp ? -1 : 0, friendp, 1, 0, sfk, funcdef_flag, template_count, in_namespace, attrlist, declarator->id_loc); if (decl == NULL_TREE) return error_mark_node; } else if (!staticp && !dependent_type_p (type) && !COMPLETE_TYPE_P (complete_type (type)) && (TREE_CODE (type) != ARRAY_TYPE || initialized == 0)) { if (unqualified_id) error ("field %qD has incomplete type", unqualified_id); else error ("name %qT has incomplete type", type); /* If we're instantiating a template, tell them which instantiation made the field's type be incomplete. */ if (current_class_type && TYPE_NAME (current_class_type) && IDENTIFIER_TEMPLATE (TYPE_IDENTIFIER (current_class_type)) && declspecs->type && declspecs->type == type) error (" in instantiation of template %qT", current_class_type); return error_mark_node; } else { if (friendp) { error ("%qE is neither function nor member function; " "cannot be declared friend", unqualified_id); friendp = 0; } decl = NULL_TREE; } if (friendp) { /* Friends are treated specially. */ if (ctype == current_class_type) ; /* We already issued a permerror. */ else if (decl && DECL_NAME (decl)) { if (template_class_depth (current_class_type) == 0) { decl = check_explicit_specialization (unqualified_id, decl, template_count, 2 * funcdef_flag + 4); if (decl == error_mark_node) return error_mark_node; } decl = do_friend (ctype, unqualified_id, decl, *attrlist, flags, funcdef_flag); return decl; } else return error_mark_node; } /* Structure field. It may not be a function, except for C++. */ if (decl == NULL_TREE) { if (initialized) { if (!staticp) { /* An attempt is being made to initialize a non-static member. But, from [class.mem]: 4 A member-declarator can contain a constant-initializer only if it declares a static member (_class.static_) of integral or enumeration type, see _class.static.data_. This used to be relatively common practice, but the rest of the compiler does not correctly handle the initialization unless the member is static so we make it static below. */ permerror (input_location, "ISO C++ forbids initialization of member %qD", unqualified_id); permerror (input_location, "making %qD static", unqualified_id); staticp = 1; } if (uses_template_parms (type)) /* We'll check at instantiation time. */ ; else if (check_static_variable_definition (unqualified_id, type)) /* If we just return the declaration, crashes will sometimes occur. We therefore return void_type_node, as if this was a friend declaration, to cause callers to completely ignore this declaration. */ return error_mark_node; } if (staticp) { /* C++ allows static class members. All other work for this is done by grokfield. */ decl = build_lang_decl (VAR_DECL, unqualified_id, type); set_linkage_for_static_data_member (decl); /* Even if there is an in-class initialization, DECL is considered undefined until an out-of-class definition is provided. */ DECL_EXTERNAL (decl) = 1; if (thread_p) DECL_TLS_MODEL (decl) = decl_default_tls_model (decl); } else { decl = build_decl (FIELD_DECL, unqualified_id, type); DECL_NONADDRESSABLE_P (decl) = bitfield; if (bitfield && !unqualified_id) TREE_NO_WARNING (decl) = 1; if (storage_class == sc_mutable) { DECL_MUTABLE_P (decl) = 1; storage_class = sc_none; } } bad_specifiers (decl, "field", virtualp, memfn_quals != TYPE_UNQUALIFIED, inlinep, friendp, raises != NULL_TREE); } } else if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) { tree original_name; int publicp = 0; if (!unqualified_id) return error_mark_node; if (TREE_CODE (unqualified_id) == TEMPLATE_ID_EXPR) original_name = dname; else original_name = unqualified_id; if (storage_class == sc_auto) error ("storage class % invalid for function %qs", name); else if (storage_class == sc_register) error ("storage class % invalid for function %qs", name); else if (thread_p) error ("storage class %<__thread%> invalid for function %qs", name); /* Function declaration not at top level. Storage classes other than `extern' are not allowed and `extern' makes no difference. */ if (! toplevel_bindings_p () && (storage_class == sc_static || declspecs->specs[(int)ds_inline]) && pedantic) { if (storage_class == sc_static) pedwarn (input_location, OPT_pedantic, "% specified invalid for function %qs " "declared out of global scope", name); else pedwarn (input_location, OPT_pedantic, "% specifier invalid for function %qs " "declared out of global scope", name); } if (ctype == NULL_TREE) { if (virtualp) { error ("virtual non-class function %qs", name); virtualp = 0; } } else if (TREE_CODE (type) == FUNCTION_TYPE && staticp < 2 && !NEW_DELETE_OPNAME_P (original_name)) type = build_method_type_directly (ctype, TREE_TYPE (type), TYPE_ARG_TYPES (type)); /* Record presence of `static'. */ publicp = (ctype != NULL_TREE || storage_class == sc_extern || storage_class != sc_static); decl = grokfndecl (ctype, type, original_name, parms, unqualified_id, virtualp, flags, memfn_quals, raises, 1, friendp, publicp, inlinep, sfk, funcdef_flag, template_count, in_namespace, attrlist, declarator->id_loc); if (decl == NULL_TREE) return error_mark_node; if (staticp == 1) { int invalid_static = 0; /* Don't allow a static member function in a class, and forbid declaring main to be static. */ if (TREE_CODE (type) == METHOD_TYPE) { permerror (input_location, "cannot declare member function %qD to have " "static linkage", decl); invalid_static = 1; } else if (current_function_decl) { /* FIXME need arm citation */ error ("cannot declare static function inside another function"); invalid_static = 1; } if (invalid_static) { staticp = 0; storage_class = sc_none; } } } else { /* It's a variable. */ /* An uninitialized decl with `extern' is a reference. */ decl = grokvardecl (type, unqualified_id, declspecs, initialized, (type_quals & TYPE_QUAL_CONST) != 0, ctype ? ctype : in_namespace); bad_specifiers (decl, "variable", virtualp, memfn_quals != TYPE_UNQUALIFIED, inlinep, friendp, raises != NULL_TREE); if (ctype) { DECL_CONTEXT (decl) = ctype; if (staticp == 1) { permerror (input_location, "% may not be used when defining " "(as opposed to declaring) a static data member"); staticp = 0; storage_class = sc_none; } if (storage_class == sc_register && TREE_STATIC (decl)) { error ("static member %qD declared %", decl); storage_class = sc_none; } if (storage_class == sc_extern && pedantic) { pedwarn (input_location, OPT_pedantic, "cannot explicitly declare member %q#D to have " "extern linkage", decl); storage_class = sc_none; } } } if (storage_class == sc_extern && initialized && !funcdef_flag) { if (toplevel_bindings_p ()) { /* It's common practice (and completely valid) to have a const be initialized and declared extern. */ if (!(type_quals & TYPE_QUAL_CONST)) warning (0, "%qs initialized and declared %", name); } else { error ("%qs has both % and initializer", name); return error_mark_node; } } /* Record `register' declaration for warnings on & and in case doing stupid register allocation. */ if (storage_class == sc_register) DECL_REGISTER (decl) = 1; else if (storage_class == sc_extern) DECL_THIS_EXTERN (decl) = 1; else if (storage_class == sc_static) DECL_THIS_STATIC (decl) = 1; /* Record constancy and volatility on the DECL itself . There's no need to do this when processing a template; we'll do this for the instantiated declaration based on the type of DECL. */ if (!processing_template_decl) cp_apply_type_quals_to_decl (type_quals, decl); if (set_no_warning) TREE_NO_WARNING (decl) = 1; return decl; } } /* Subroutine of start_function. Ensure that each of the parameter types (as listed in PARMS) is complete, as is required for a function definition. */ static void require_complete_types_for_parms (tree parms) { for (; parms; parms = TREE_CHAIN (parms)) { if (dependent_type_p (TREE_TYPE (parms))) continue; if (!VOID_TYPE_P (TREE_TYPE (parms)) && complete_type_or_else (TREE_TYPE (parms), parms)) { relayout_decl (parms); DECL_ARG_TYPE (parms) = type_passed_as (TREE_TYPE (parms)); } else /* grokparms or complete_type_or_else will have already issued an error. */ TREE_TYPE (parms) = error_mark_node; } } /* Returns nonzero if T is a local variable. */ int local_variable_p (const_tree t) { if ((TREE_CODE (t) == VAR_DECL /* A VAR_DECL with a context that is a _TYPE is a static data member. */ && !TYPE_P (CP_DECL_CONTEXT (t)) /* Any other non-local variable must be at namespace scope. */ && !DECL_NAMESPACE_SCOPE_P (t)) || (TREE_CODE (t) == PARM_DECL)) return 1; return 0; } /* Like local_variable_p, but suitable for use as a tree-walking function. */ static tree local_variable_p_walkfn (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) { if (local_variable_p (*tp) && !DECL_ARTIFICIAL (*tp)) return *tp; else if (TYPE_P (*tp)) *walk_subtrees = 0; return NULL_TREE; } /* Check that ARG, which is a default-argument expression for a parameter DECL, is valid. Returns ARG, or ERROR_MARK_NODE, if something goes wrong. DECL may also be a _TYPE node, rather than a DECL, if there is no DECL available. */ tree check_default_argument (tree decl, tree arg) { tree var; tree decl_type; if (TREE_CODE (arg) == DEFAULT_ARG) /* We get a DEFAULT_ARG when looking at an in-class declaration with a default argument. Ignore the argument for now; we'll deal with it after the class is complete. */ return arg; if (TYPE_P (decl)) { decl_type = decl; decl = NULL_TREE; } else decl_type = TREE_TYPE (decl); if (arg == error_mark_node || decl == error_mark_node || TREE_TYPE (arg) == error_mark_node || decl_type == error_mark_node) /* Something already went wrong. There's no need to check further. */ return error_mark_node; /* [dcl.fct.default] A default argument expression is implicitly converted to the parameter type. */ if (!TREE_TYPE (arg) || !can_convert_arg (decl_type, TREE_TYPE (arg), arg, LOOKUP_NORMAL)) { if (decl) error ("default argument for %q#D has type %qT", decl, TREE_TYPE (arg)); else error ("default argument for parameter of type %qT has type %qT", decl_type, TREE_TYPE (arg)); return error_mark_node; } /* [dcl.fct.default] Local variables shall not be used in default argument expressions. The keyword `this' shall not be used in a default argument of a member function. */ var = cp_walk_tree_without_duplicates (&arg, local_variable_p_walkfn, NULL); if (var) { error ("default argument %qE uses local variable %qD", arg, var); return error_mark_node; } /* All is well. */ return arg; } /* Returns a deprecated type used within TYPE, or NULL_TREE if none. */ static tree type_is_deprecated (tree type) { enum tree_code code; if (TREE_DEPRECATED (type)) return type; if (TYPE_NAME (type) && TREE_DEPRECATED (TYPE_NAME (type))) return type; code = TREE_CODE (type); if (code == POINTER_TYPE || code == REFERENCE_TYPE || code == OFFSET_TYPE || code == FUNCTION_TYPE || code == METHOD_TYPE || code == ARRAY_TYPE) return type_is_deprecated (TREE_TYPE (type)); if (TYPE_PTRMEMFUNC_P (type)) return type_is_deprecated (TREE_TYPE (TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (type)))); return NULL_TREE; } /* Decode the list of parameter types for a function type. Given the list of things declared inside the parens, return a list of types. If this parameter does not end with an ellipsis, we append void_list_node. *PARMS is set to the chain of PARM_DECLs created. */ static tree grokparms (tree parmlist, tree *parms) { tree result = NULL_TREE; tree decls = NULL_TREE; tree parm; int any_error = 0; for (parm = parmlist; parm != NULL_TREE; parm = TREE_CHAIN (parm)) { tree type = NULL_TREE; tree init = TREE_PURPOSE (parm); tree decl = TREE_VALUE (parm); if (parm == void_list_node) break; if (! decl || TREE_TYPE (decl) == error_mark_node) continue; type = TREE_TYPE (decl); if (VOID_TYPE_P (type)) { if (same_type_p (type, void_type_node) && DECL_SELF_REFERENCE_P (type) && !DECL_NAME (decl) && !result && TREE_CHAIN (parm) == void_list_node) /* this is a parmlist of `(void)', which is ok. */ break; cxx_incomplete_type_error (decl, type); /* It's not a good idea to actually create parameters of type `void'; other parts of the compiler assume that a void type terminates the parameter list. */ type = error_mark_node; TREE_TYPE (decl) = error_mark_node; } if (type != error_mark_node && TYPE_FOR_JAVA (type) && MAYBE_CLASS_TYPE_P (type)) { error ("parameter %qD has Java class type", decl); type = error_mark_node; TREE_TYPE (decl) = error_mark_node; init = NULL_TREE; } if (type != error_mark_node) { if (deprecated_state != DEPRECATED_SUPPRESS) { tree deptype = type_is_deprecated (type); if (deptype) warn_deprecated_use (deptype); } /* Top-level qualifiers on the parameters are ignored for function types. */ type = cp_build_qualified_type (type, 0); if (TREE_CODE (type) == METHOD_TYPE) { error ("parameter %qD invalidly declared method type", decl); type = build_pointer_type (type); TREE_TYPE (decl) = type; } else if (abstract_virtuals_error (decl, type)) any_error = 1; /* Seems like a good idea. */ else if (POINTER_TYPE_P (type)) { /* [dcl.fct]/6, parameter types cannot contain pointers (references) to arrays of unknown bound. */ tree t = TREE_TYPE (type); int ptr = TYPE_PTR_P (type); while (1) { if (TYPE_PTR_P (t)) ptr = 1; else if (TREE_CODE (t) != ARRAY_TYPE) break; else if (!TYPE_DOMAIN (t)) break; t = TREE_TYPE (t); } if (TREE_CODE (t) == ARRAY_TYPE) error ("parameter %qD includes %s to array of unknown " "bound %qT", decl, ptr ? "pointer" : "reference", t); } if (any_error) init = NULL_TREE; else if (init && !processing_template_decl) init = check_default_argument (decl, init); } if (TREE_CODE (decl) == PARM_DECL && FUNCTION_PARAMETER_PACK_P (decl) && TREE_CHAIN (parm) && TREE_CHAIN (parm) != void_list_node) error ("parameter packs must be at the end of the parameter list"); TREE_CHAIN (decl) = decls; decls = decl; result = tree_cons (init, type, result); } decls = nreverse (decls); result = nreverse (result); if (parm) result = chainon (result, void_list_node); *parms = decls; return result; } /* D is a constructor or overloaded `operator='. Let T be the class in which D is declared. Then, this function returns: -1 if D's is an ill-formed constructor or copy assignment operator whose first parameter is of type `T'. 0 if D is not a copy constructor or copy assignment operator. 1 if D is a copy constructor or copy assignment operator whose first parameter is a reference to const qualified T. 2 if D is a copy constructor or copy assignment operator whose first parameter is a reference to non-const qualified T. This function can be used as a predicate. Positive values indicate a copy constructor and nonzero values indicate a copy assignment operator. */ int copy_fn_p (const_tree d) { tree args; tree arg_type; int result = 1; gcc_assert (DECL_FUNCTION_MEMBER_P (d)); if (TREE_CODE (d) == TEMPLATE_DECL || (DECL_TEMPLATE_INFO (d) && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (d)))) /* Instantiations of template member functions are never copy functions. Note that member functions of templated classes are represented as template functions internally, and we must accept those as copy functions. */ return 0; args = FUNCTION_FIRST_USER_PARMTYPE (d); if (!args) return 0; arg_type = TREE_VALUE (args); if (arg_type == error_mark_node) return 0; if (TYPE_MAIN_VARIANT (arg_type) == DECL_CONTEXT (d)) { /* Pass by value copy assignment operator. */ result = -1; } else if (TREE_CODE (arg_type) == REFERENCE_TYPE && !TYPE_REF_IS_RVALUE (arg_type) && TYPE_MAIN_VARIANT (TREE_TYPE (arg_type)) == DECL_CONTEXT (d)) { if (CP_TYPE_CONST_P (TREE_TYPE (arg_type))) result = 2; } else return 0; args = TREE_CHAIN (args); if (args && args != void_list_node && !TREE_PURPOSE (args)) /* There are more non-optional args. */ return 0; return result; } /* D is a constructor or overloaded `operator='. Let T be the class in which D is declared. Then, this function returns true when D is a move constructor or move assignment operator, false otherwise. */ bool move_fn_p (const_tree d) { tree args; tree arg_type; bool result = false; gcc_assert (DECL_FUNCTION_MEMBER_P (d)); if (cxx_dialect == cxx98) /* There are no move constructors if we are in C++98 mode. */ return false; if (TREE_CODE (d) == TEMPLATE_DECL || (DECL_TEMPLATE_INFO (d) && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (d)))) /* Instantiations of template member functions are never copy functions. Note that member functions of templated classes are represented as template functions internally, and we must accept those as copy functions. */ return 0; args = FUNCTION_FIRST_USER_PARMTYPE (d); if (!args) return 0; arg_type = TREE_VALUE (args); if (arg_type == error_mark_node) return 0; if (TREE_CODE (arg_type) == REFERENCE_TYPE && TYPE_REF_IS_RVALUE (arg_type) && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (arg_type)), DECL_CONTEXT (d))) result = true; args = TREE_CHAIN (args); if (args && args != void_list_node && !TREE_PURPOSE (args)) /* There are more non-optional args. */ return false; return result; } /* Remember any special properties of member function DECL. */ void grok_special_member_properties (tree decl) { tree class_type; if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl)) return; class_type = DECL_CONTEXT (decl); if (DECL_CONSTRUCTOR_P (decl)) { int ctor = copy_fn_p (decl); if (!DECL_ARTIFICIAL (decl)) TYPE_HAS_USER_CONSTRUCTOR (class_type) = 1; if (ctor > 0) { /* [class.copy] A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X&, volatile X& or const volatile X&, and either there are no other parameters or else all other parameters have default arguments. */ TYPE_HAS_INIT_REF (class_type) = 1; if (!DECL_DEFAULTED_FN (decl)) TYPE_HAS_COMPLEX_INIT_REF (class_type) = 1; if (ctor > 1) TYPE_HAS_CONST_INIT_REF (class_type) = 1; } else if (sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (decl))) TYPE_HAS_DEFAULT_CONSTRUCTOR (class_type) = 1; else if (is_list_ctor (decl)) TYPE_HAS_LIST_CTOR (class_type) = 1; } else if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR) { /* [class.copy] A non-template assignment operator for class X is a copy assignment operator if its parameter is of type X, X&, const X&, volatile X& or const volatile X&. */ int assop = copy_fn_p (decl); if (assop) { TYPE_HAS_ASSIGN_REF (class_type) = 1; if (!DECL_DEFAULTED_FN (decl)) TYPE_HAS_COMPLEX_ASSIGN_REF (class_type) = 1; if (assop != 1) TYPE_HAS_CONST_ASSIGN_REF (class_type) = 1; } } } /* Check a constructor DECL has the correct form. Complains if the class has a constructor of the form X(X). */ int grok_ctor_properties (const_tree ctype, const_tree decl) { int ctor_parm = copy_fn_p (decl); if (ctor_parm < 0) { /* [class.copy] A declaration of a constructor for a class X is ill-formed if its first parameter is of type (optionally cv-qualified) X and either there are no other parameters or else all other parameters have default arguments. We *don't* complain about member template instantiations that have this form, though; they can occur as we try to decide what constructor to use during overload resolution. Since overload resolution will never prefer such a constructor to the non-template copy constructor (which is either explicitly or implicitly defined), there's no need to worry about their existence. Theoretically, they should never even be instantiated, but that's hard to forestall. */ error ("invalid constructor; you probably meant %<%T (const %T&)%>", ctype, ctype); return 0; } return 1; } /* An operator with this code is unary, but can also be binary. */ static int ambi_op_p (enum tree_code code) { return (code == INDIRECT_REF || code == ADDR_EXPR || code == UNARY_PLUS_EXPR || code == NEGATE_EXPR || code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR); } /* An operator with this name can only be unary. */ static int unary_op_p (enum tree_code code) { return (code == TRUTH_NOT_EXPR || code == BIT_NOT_EXPR || code == COMPONENT_REF || code == TYPE_EXPR); } /* DECL is a declaration for an overloaded operator. If COMPLAIN is true, errors are issued for invalid declarations. */ bool grok_op_properties (tree decl, bool complain) { tree argtypes = TYPE_ARG_TYPES (TREE_TYPE (decl)); tree argtype; int methodp = (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE); tree name = DECL_NAME (decl); enum tree_code operator_code; int arity; bool ellipsis_p; tree class_type; /* Count the number of arguments and check for ellipsis. */ for (argtype = argtypes, arity = 0; argtype && argtype != void_list_node; argtype = TREE_CHAIN (argtype)) ++arity; ellipsis_p = !argtype; class_type = DECL_CONTEXT (decl); if (class_type && !CLASS_TYPE_P (class_type)) class_type = NULL_TREE; if (DECL_CONV_FN_P (decl)) operator_code = TYPE_EXPR; else do { #define DEF_OPERATOR(NAME, CODE, MANGLING, ARITY, ASSN_P) \ if (ansi_opname (CODE) == name) \ { \ operator_code = (CODE); \ break; \ } \ else if (ansi_assopname (CODE) == name) \ { \ operator_code = (CODE); \ DECL_ASSIGNMENT_OPERATOR_P (decl) = 1; \ break; \ } #include "operators.def" #undef DEF_OPERATOR gcc_unreachable (); } while (0); gcc_assert (operator_code != MAX_TREE_CODES); SET_OVERLOADED_OPERATOR_CODE (decl, operator_code); if (class_type) switch (operator_code) { case NEW_EXPR: TYPE_HAS_NEW_OPERATOR (class_type) = 1; break; case DELETE_EXPR: TYPE_GETS_DELETE (class_type) |= 1; break; case VEC_NEW_EXPR: TYPE_HAS_ARRAY_NEW_OPERATOR (class_type) = 1; break; case VEC_DELETE_EXPR: TYPE_GETS_DELETE (class_type) |= 2; break; default: break; } /* [basic.std.dynamic.allocation]/1: A program is ill-formed if an allocation function is declared in a namespace scope other than global scope or declared static in global scope. The same also holds true for deallocation functions. */ if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR || operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR) { if (DECL_NAMESPACE_SCOPE_P (decl)) { if (CP_DECL_CONTEXT (decl) != global_namespace) { error ("%qD may not be declared within a namespace", decl); return false; } else if (!TREE_PUBLIC (decl)) { error ("%qD may not be declared as static", decl); return false; } } } if (operator_code == NEW_EXPR || operator_code == VEC_NEW_EXPR) { TREE_TYPE (decl) = coerce_new_type (TREE_TYPE (decl)); DECL_IS_OPERATOR_NEW (decl) = 1; } else if (operator_code == DELETE_EXPR || operator_code == VEC_DELETE_EXPR) TREE_TYPE (decl) = coerce_delete_type (TREE_TYPE (decl)); else { /* An operator function must either be a non-static member function or have at least one parameter of a class, a reference to a class, an enumeration, or a reference to an enumeration. 13.4.0.6 */ if (! methodp || DECL_STATIC_FUNCTION_P (decl)) { if (operator_code == TYPE_EXPR || operator_code == CALL_EXPR || operator_code == COMPONENT_REF || operator_code == ARRAY_REF || operator_code == NOP_EXPR) { error ("%qD must be a nonstatic member function", decl); return false; } else { tree p; if (DECL_STATIC_FUNCTION_P (decl)) { error ("%qD must be either a non-static member " "function or a non-member function", decl); return false; } for (p = argtypes; p && p != void_list_node; p = TREE_CHAIN (p)) { tree arg = non_reference (TREE_VALUE (p)); if (arg == error_mark_node) return false; /* MAYBE_CLASS_TYPE_P, rather than CLASS_TYPE_P, is used because these checks are performed even on template functions. */ if (MAYBE_CLASS_TYPE_P (arg) || TREE_CODE (arg) == ENUMERAL_TYPE) break; } if (!p || p == void_list_node) { if (complain) error ("%qD must have an argument of class or " "enumerated type", decl); return false; } } } /* There are no restrictions on the arguments to an overloaded "operator ()". */ if (operator_code == CALL_EXPR) return true; /* Warn about conversion operators that will never be used. */ if (IDENTIFIER_TYPENAME_P (name) && ! DECL_TEMPLATE_INFO (decl) && warn_conversion /* Warn only declaring the function; there is no need to warn again about out-of-class definitions. */ && class_type == current_class_type) { tree t = TREE_TYPE (name); int ref = (TREE_CODE (t) == REFERENCE_TYPE); const char *what = 0; if (ref) t = TYPE_MAIN_VARIANT (TREE_TYPE (t)); if (TREE_CODE (t) == VOID_TYPE) what = "void"; else if (class_type) { if (t == class_type) what = "the same type"; /* Don't force t to be complete here. */ else if (MAYBE_CLASS_TYPE_P (t) && COMPLETE_TYPE_P (t) && DERIVED_FROM_P (t, class_type)) what = "a base class"; } if (what) warning (OPT_Wconversion, "conversion to %s%s will never use a type " "conversion operator", ref ? "a reference to " : "", what); } if (operator_code == COND_EXPR) { /* 13.4.0.3 */ error ("ISO C++ prohibits overloading operator ?:"); return false; } else if (ellipsis_p) { error ("%qD must not have variable number of arguments", decl); return false; } else if (ambi_op_p (operator_code)) { if (arity == 1) /* We pick the one-argument operator codes by default, so we don't have to change anything. */ ; else if (arity == 2) { /* If we thought this was a unary operator, we now know it to be a binary operator. */ switch (operator_code) { case INDIRECT_REF: operator_code = MULT_EXPR; break; case ADDR_EXPR: operator_code = BIT_AND_EXPR; break; case UNARY_PLUS_EXPR: operator_code = PLUS_EXPR; break; case NEGATE_EXPR: operator_code = MINUS_EXPR; break; case PREINCREMENT_EXPR: operator_code = POSTINCREMENT_EXPR; break; case PREDECREMENT_EXPR: operator_code = POSTDECREMENT_EXPR; break; default: gcc_unreachable (); } SET_OVERLOADED_OPERATOR_CODE (decl, operator_code); if ((operator_code == POSTINCREMENT_EXPR || operator_code == POSTDECREMENT_EXPR) && ! processing_template_decl && ! same_type_p (TREE_VALUE (TREE_CHAIN (argtypes)), integer_type_node)) { if (methodp) error ("postfix %qD must take % as its argument", decl); else error ("postfix %qD must take % as its second " "argument", decl); return false; } } else { if (methodp) error ("%qD must take either zero or one argument", decl); else error ("%qD must take either one or two arguments", decl); return false; } /* More Effective C++ rule 6. */ if (warn_ecpp && (operator_code == POSTINCREMENT_EXPR || operator_code == POSTDECREMENT_EXPR || operator_code == PREINCREMENT_EXPR || operator_code == PREDECREMENT_EXPR)) { tree arg = TREE_VALUE (argtypes); tree ret = TREE_TYPE (TREE_TYPE (decl)); if (methodp || TREE_CODE (arg) == REFERENCE_TYPE) arg = TREE_TYPE (arg); arg = TYPE_MAIN_VARIANT (arg); if (operator_code == PREINCREMENT_EXPR || operator_code == PREDECREMENT_EXPR) { if (TREE_CODE (ret) != REFERENCE_TYPE || !same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (ret)), arg)) warning (OPT_Weffc__, "prefix %qD should return %qT", decl, build_reference_type (arg)); } else { if (!same_type_p (TYPE_MAIN_VARIANT (ret), arg)) warning (OPT_Weffc__, "postfix %qD should return %qT", decl, arg); } } } else if (unary_op_p (operator_code)) { if (arity != 1) { if (methodp) error ("%qD must take %", decl); else error ("%qD must take exactly one argument", decl); return false; } } else /* if (binary_op_p (operator_code)) */ { if (arity != 2) { if (methodp) error ("%qD must take exactly one argument", decl); else error ("%qD must take exactly two arguments", decl); return false; } /* More Effective C++ rule 7. */ if (warn_ecpp && (operator_code == TRUTH_ANDIF_EXPR || operator_code == TRUTH_ORIF_EXPR || operator_code == COMPOUND_EXPR)) warning (OPT_Weffc__, "user-defined %qD always evaluates both arguments", decl); } /* Effective C++ rule 23. */ if (warn_ecpp && arity == 2 && !DECL_ASSIGNMENT_OPERATOR_P (decl) && (operator_code == PLUS_EXPR || operator_code == MINUS_EXPR || operator_code == TRUNC_DIV_EXPR || operator_code == MULT_EXPR || operator_code == TRUNC_MOD_EXPR) && TREE_CODE (TREE_TYPE (TREE_TYPE (decl))) == REFERENCE_TYPE) warning (OPT_Weffc__, "%qD should return by value", decl); /* [over.oper]/8 */ for (; argtypes && argtypes != void_list_node; argtypes = TREE_CHAIN (argtypes)) if (TREE_PURPOSE (argtypes)) { TREE_PURPOSE (argtypes) = NULL_TREE; if (operator_code == POSTINCREMENT_EXPR || operator_code == POSTDECREMENT_EXPR) { pedwarn (input_location, OPT_pedantic, "%qD cannot have default arguments", decl); } else { error ("%qD cannot have default arguments", decl); return false; } } } return true; } /* Return a string giving the keyword associate with CODE. */ static const char * tag_name (enum tag_types code) { switch (code) { case record_type: return "struct"; case class_type: return "class"; case union_type: return "union"; case enum_type: return "enum"; case typename_type: return "typename"; default: gcc_unreachable (); } } /* Name lookup in an elaborated-type-specifier (after the keyword indicated by TAG_CODE) has found the TYPE_DECL DECL. If the elaborated-type-specifier is invalid, issue a diagnostic and return error_mark_node; otherwise, return the *_TYPE to which it referred. If ALLOW_TEMPLATE_P is true, TYPE may be a class template. */ tree check_elaborated_type_specifier (enum tag_types tag_code, tree decl, bool allow_template_p) { tree type; /* In the case of: struct S { struct S *p; }; name lookup will find the TYPE_DECL for the implicit "S::S" typedef. Adjust for that here. */ if (DECL_SELF_REFERENCE_P (decl)) decl = TYPE_NAME (TREE_TYPE (decl)); type = TREE_TYPE (decl); /* Check TEMPLATE_TYPE_PARM first because DECL_IMPLICIT_TYPEDEF_P is false for this case as well. */ if (TREE_CODE (type) == TEMPLATE_TYPE_PARM) { error ("using template type parameter %qT after %qs", type, tag_name (tag_code)); return error_mark_node; } /* [dcl.type.elab] If the identifier resolves to a typedef-name or a template type-parameter, the elaborated-type-specifier is ill-formed. In other words, the only legitimate declaration to use in the elaborated type specifier is the implicit typedef created when the type is declared. */ else if (!DECL_IMPLICIT_TYPEDEF_P (decl) && tag_code != typename_type) { error ("using typedef-name %qD after %qs", decl, tag_name (tag_code)); error ("%q+D has a previous declaration here", decl); return error_mark_node; } else if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE && tag_code != enum_type && tag_code != typename_type) { error ("%qT referred to as %qs", type, tag_name (tag_code)); error ("%q+T has a previous declaration here", type); return error_mark_node; } else if (TREE_CODE (type) != ENUMERAL_TYPE && tag_code == enum_type) { error ("%qT referred to as enum", type); error ("%q+T has a previous declaration here", type); return error_mark_node; } else if (!allow_template_p && TREE_CODE (type) == RECORD_TYPE && CLASSTYPE_IS_TEMPLATE (type)) { /* If a class template appears as elaborated type specifier without a template header such as: template class C {}; void f(class C); // No template header here then the required template argument is missing. */ error ("template argument required for %<%s %T%>", tag_name (tag_code), DECL_NAME (CLASSTYPE_TI_TEMPLATE (type))); return error_mark_node; } return type; } /* Lookup NAME in elaborate type specifier in scope according to SCOPE and issue diagnostics if necessary. Return *_TYPE node upon success, NULL_TREE when the NAME is not found, and ERROR_MARK_NODE for type error. */ static tree lookup_and_check_tag (enum tag_types tag_code, tree name, tag_scope scope, bool template_header_p) { tree t; tree decl; if (scope == ts_global) { /* First try ordinary name lookup, ignoring hidden class name injected via friend declaration. */ decl = lookup_name_prefer_type (name, 2); /* If that fails, the name will be placed in the smallest non-class, non-function-prototype scope according to 3.3.1/5. We may already have a hidden name declared as friend in this scope. So lookup again but not ignoring hidden names. If we find one, that name will be made visible rather than creating a new tag. */ if (!decl) decl = lookup_type_scope (name, ts_within_enclosing_non_class); } else decl = lookup_type_scope (name, scope); if (decl && DECL_CLASS_TEMPLATE_P (decl)) decl = DECL_TEMPLATE_RESULT (decl); if (decl && TREE_CODE (decl) == TYPE_DECL) { /* Look for invalid nested type: class C { class C {}; }; */ if (scope == ts_current && DECL_SELF_REFERENCE_P (decl)) { error ("%qD has the same name as the class in which it is " "declared", decl); return error_mark_node; } /* Two cases we need to consider when deciding if a class template is allowed as an elaborated type specifier: 1. It is a self reference to its own class. 2. It comes with a template header. For example: template class C { class C *c1; // DECL_SELF_REFERENCE_P is true class D; }; template class C; // template_header_p is true template class C::D { class C *c2; // DECL_SELF_REFERENCE_P is true }; */ t = check_elaborated_type_specifier (tag_code, decl, template_header_p | DECL_SELF_REFERENCE_P (decl)); return t; } else if (decl && TREE_CODE (decl) == TREE_LIST) { error ("reference to %qD is ambiguous", name); print_candidates (decl); return error_mark_node; } else return NULL_TREE; } /* Get the struct, enum or union (TAG_CODE says which) with tag NAME. Define the tag as a forward-reference if it is not defined. If a declaration is given, process it here, and report an error if multiple declarations are not identical. SCOPE is TS_CURRENT when this is also a definition. Only look in the current frame for the name (since C++ allows new names in any scope.) It is TS_WITHIN_ENCLOSING_NON_CLASS if this is a friend declaration. Only look beginning from the current scope outward up till the nearest non-class scope. Otherwise it is TS_GLOBAL. TEMPLATE_HEADER_P is true when this declaration is preceded by a set of template parameters. */ tree xref_tag (enum tag_types tag_code, tree name, tag_scope scope, bool template_header_p) { enum tree_code code; tree t; tree context = NULL_TREE; timevar_push (TV_NAME_LOOKUP); gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); switch (tag_code) { case record_type: case class_type: code = RECORD_TYPE; break; case union_type: code = UNION_TYPE; break; case enum_type: code = ENUMERAL_TYPE; break; default: gcc_unreachable (); } /* In case of anonymous name, xref_tag is only called to make type node and push name. Name lookup is not required. */ if (ANON_AGGRNAME_P (name)) t = NULL_TREE; else t = lookup_and_check_tag (tag_code, name, scope, template_header_p); if (t == error_mark_node) POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node); if (scope != ts_current && t && current_class_type && template_class_depth (current_class_type) && template_header_p) { /* Since SCOPE is not TS_CURRENT, we are not looking at a definition of this tag. Since, in addition, we are currently processing a (member) template declaration of a template class, we must be very careful; consider: template struct S1 template struct S2 { template friend struct S1; }; Here, the S2::S1 declaration should not be confused with the outer declaration. In particular, the inner version should have a template parameter of level 2, not level 1. This would be particularly important if the member declaration were instead: template friend struct S1; say, when we should tsubst into `U' when instantiating S2. On the other hand, when presented with: template struct S1 { template struct S2 {}; template friend struct S2; }; we must find the inner binding eventually. We accomplish this by making sure that the new type we create to represent this declaration has the right TYPE_CONTEXT. */ context = TYPE_CONTEXT (t); t = NULL_TREE; } if (! t) { /* If no such tag is yet defined, create a forward-reference node and record it as the "definition". When a real declaration of this type is found, the forward-reference will be altered into a real type. */ if (code == ENUMERAL_TYPE) { error ("use of enum %q#D without previous declaration", name); POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node); } else { t = make_class_type (code); TYPE_CONTEXT (t) = context; t = pushtag (name, t, scope); } } else { if (template_header_p && MAYBE_CLASS_TYPE_P (t)) { if (!redeclare_class_template (t, current_template_parms)) POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node); } else if (!processing_template_decl && CLASS_TYPE_P (t) && CLASSTYPE_IS_TEMPLATE (t)) { error ("redeclaration of %qT as a non-template", t); error ("previous declaration %q+D", t); POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, error_mark_node); } /* Make injected friend class visible. */ if (scope != ts_within_enclosing_non_class && hidden_name_p (TYPE_NAME (t))) { DECL_ANTICIPATED (TYPE_NAME (t)) = 0; DECL_FRIEND_P (TYPE_NAME (t)) = 0; if (TYPE_TEMPLATE_INFO (t)) { DECL_ANTICIPATED (TYPE_TI_TEMPLATE (t)) = 0; DECL_FRIEND_P (TYPE_TI_TEMPLATE (t)) = 0; } } } POP_TIMEVAR_AND_RETURN (TV_NAME_LOOKUP, t); } tree xref_tag_from_type (tree old, tree id, tag_scope scope) { enum tag_types tag_kind; if (TREE_CODE (old) == RECORD_TYPE) tag_kind = (CLASSTYPE_DECLARED_CLASS (old) ? class_type : record_type); else tag_kind = union_type; if (id == NULL_TREE) id = TYPE_IDENTIFIER (old); return xref_tag (tag_kind, id, scope, false); } /* Create the binfo hierarchy for REF with (possibly NULL) base list BASE_LIST. For each element on BASE_LIST the TREE_PURPOSE is an access_* node, and the TREE_VALUE is the type of the base-class. Non-NULL TREE_TYPE indicates virtual inheritance. Returns true if the binfo hierarchy was successfully created, false if an error was detected. */ bool xref_basetypes (tree ref, tree base_list) { tree *basep; tree binfo, base_binfo; unsigned max_vbases = 0; /* Maximum direct & indirect virtual bases. */ unsigned max_bases = 0; /* Maximum direct bases. */ int i; tree default_access; tree igo_prev; /* Track Inheritance Graph Order. */ if (ref == error_mark_node) return false; /* The base of a derived class is private by default, all others are public. */ default_access = (TREE_CODE (ref) == RECORD_TYPE && CLASSTYPE_DECLARED_CLASS (ref) ? access_private_node : access_public_node); /* First, make sure that any templates in base-classes are instantiated. This ensures that if we call ourselves recursively we do not get confused about which classes are marked and which are not. */ basep = &base_list; while (*basep) { tree basetype = TREE_VALUE (*basep); if (!(processing_template_decl && uses_template_parms (basetype)) && !complete_type_or_else (basetype, NULL)) /* An incomplete type. Remove it from the list. */ *basep = TREE_CHAIN (*basep); else { max_bases++; if (TREE_TYPE (*basep)) max_vbases++; if (CLASS_TYPE_P (basetype)) max_vbases += VEC_length (tree, CLASSTYPE_VBASECLASSES (basetype)); basep = &TREE_CHAIN (*basep); } } TYPE_MARKED_P (ref) = 1; /* The binfo slot should be empty, unless this is an (ill-formed) redefinition. */ gcc_assert (!TYPE_BINFO (ref) || TYPE_SIZE (ref)); gcc_assert (TYPE_MAIN_VARIANT (ref) == ref); binfo = make_tree_binfo (max_bases); TYPE_BINFO (ref) = binfo; BINFO_OFFSET (binfo) = size_zero_node; BINFO_TYPE (binfo) = ref; if (max_bases) { BINFO_BASE_ACCESSES (binfo) = VEC_alloc (tree, gc, max_bases); /* An aggregate cannot have baseclasses. */ CLASSTYPE_NON_AGGREGATE (ref) = 1; if (TREE_CODE (ref) == UNION_TYPE) { error ("derived union %qT invalid", ref); return false; } } if (max_bases > 1) { if (TYPE_FOR_JAVA (ref)) { error ("Java class %qT cannot have multiple bases", ref); return false; } } if (max_vbases) { CLASSTYPE_VBASECLASSES (ref) = VEC_alloc (tree, gc, max_vbases); if (TYPE_FOR_JAVA (ref)) { error ("Java class %qT cannot have virtual bases", ref); return false; } } for (igo_prev = binfo; base_list; base_list = TREE_CHAIN (base_list)) { tree access = TREE_PURPOSE (base_list); int via_virtual = TREE_TYPE (base_list) != NULL_TREE; tree basetype = TREE_VALUE (base_list); if (access == access_default_node) access = default_access; if (PACK_EXPANSION_P (basetype)) basetype = PACK_EXPANSION_PATTERN (basetype); if (TREE_CODE (basetype) == TYPE_DECL) basetype = TREE_TYPE (basetype); if (!MAYBE_CLASS_TYPE_P (basetype) || TREE_CODE (basetype) == UNION_TYPE) { error ("base type %qT fails to be a struct or class type", basetype); return false; } if (TYPE_FOR_JAVA (basetype) && (current_lang_depth () == 0)) TYPE_FOR_JAVA (ref) = 1; base_binfo = NULL_TREE; if (CLASS_TYPE_P (basetype) && !dependent_type_p (basetype)) { base_binfo = TYPE_BINFO (basetype); /* The original basetype could have been a typedef'd type. */ basetype = BINFO_TYPE (base_binfo); /* Inherit flags from the base. */ TYPE_HAS_NEW_OPERATOR (ref) |= TYPE_HAS_NEW_OPERATOR (basetype); TYPE_HAS_ARRAY_NEW_OPERATOR (ref) |= TYPE_HAS_ARRAY_NEW_OPERATOR (basetype); TYPE_GETS_DELETE (ref) |= TYPE_GETS_DELETE (basetype); TYPE_HAS_CONVERSION (ref) |= TYPE_HAS_CONVERSION (basetype); CLASSTYPE_DIAMOND_SHAPED_P (ref) |= CLASSTYPE_DIAMOND_SHAPED_P (basetype); CLASSTYPE_REPEATED_BASE_P (ref) |= CLASSTYPE_REPEATED_BASE_P (basetype); } /* We must do this test after we've seen through a typedef type. */ if (TYPE_MARKED_P (basetype)) { if (basetype == ref) error ("recursive type %qT undefined", basetype); else error ("duplicate base type %qT invalid", basetype); return false; } if (PACK_EXPANSION_P (TREE_VALUE (base_list))) /* Regenerate the pack expansion for the bases. */ basetype = make_pack_expansion (basetype); TYPE_MARKED_P (basetype) = 1; base_binfo = copy_binfo (base_binfo, basetype, ref, &igo_prev, via_virtual); if (!BINFO_INHERITANCE_CHAIN (base_binfo)) BINFO_INHERITANCE_CHAIN (base_binfo) = binfo; BINFO_BASE_APPEND (binfo, base_binfo); BINFO_BASE_ACCESS_APPEND (binfo, access); } if (VEC_space (tree, CLASSTYPE_VBASECLASSES (ref), 1)) /* If we have space in the vbase vector, we must have shared at least one of them, and are therefore diamond shaped. */ CLASSTYPE_DIAMOND_SHAPED_P (ref) = 1; /* Unmark all the types. */ for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 0; TYPE_MARKED_P (ref) = 0; /* Now see if we have a repeated base type. */ if (!CLASSTYPE_REPEATED_BASE_P (ref)) { for (base_binfo = binfo; base_binfo; base_binfo = TREE_CHAIN (base_binfo)) { if (TYPE_MARKED_P (BINFO_TYPE (base_binfo))) { CLASSTYPE_REPEATED_BASE_P (ref) = 1; break; } TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 1; } for (base_binfo = binfo; base_binfo; base_binfo = TREE_CHAIN (base_binfo)) if (TYPE_MARKED_P (BINFO_TYPE (base_binfo))) TYPE_MARKED_P (BINFO_TYPE (base_binfo)) = 0; else break; } return true; } /* Begin compiling the definition of an enumeration type. NAME is its name, UNDERLYING_TYPE is the type that will be used as the storage for the enumeration type. This should be NULL_TREE if no storage type was specified. SCOPED_ENUM_P is true if this is a scoped enumeration type. Returns the type object, as yet incomplete. Also records info about it so that build_enumerator may be used to declare the individual values as they are read. */ tree start_enum (tree name, tree underlying_type, bool scoped_enum_p) { tree enumtype; gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); /* If this is the real definition for a previous forward reference, fill in the contents in the same object that used to be the forward reference. */ enumtype = lookup_and_check_tag (enum_type, name, /*tag_scope=*/ts_current, /*template_header_p=*/false); if (enumtype != NULL_TREE && TREE_CODE (enumtype) == ENUMERAL_TYPE) { error ("multiple definition of %q#T", enumtype); error ("%Jprevious definition here", TYPE_MAIN_DECL (enumtype)); /* Clear out TYPE_VALUES, and start again. */ TYPE_VALUES (enumtype) = NULL_TREE; } else { /* In case of error, make a dummy enum to allow parsing to continue. */ if (enumtype == error_mark_node) name = make_anon_name (); enumtype = make_node (ENUMERAL_TYPE); enumtype = pushtag (name, enumtype, /*tag_scope=*/ts_current); } if (scoped_enum_p) { SET_SCOPED_ENUM_P (enumtype, 1); begin_scope (sk_scoped_enum, enumtype); /* [C++0x dcl.enum]p5: If not explicitly specified, the underlying type of a scoped enumeration type is int. */ if (!underlying_type) underlying_type = integer_type_node; } if (underlying_type) { if (CP_INTEGRAL_TYPE_P (underlying_type)) { TYPE_MIN_VALUE (enumtype) = TYPE_MIN_VALUE (underlying_type); TYPE_MAX_VALUE (enumtype) = TYPE_MAX_VALUE (underlying_type); TYPE_SIZE (enumtype) = TYPE_SIZE (underlying_type); TYPE_SIZE_UNIT (enumtype) = TYPE_SIZE_UNIT (underlying_type); TYPE_MODE (enumtype) = TYPE_MODE (underlying_type); TYPE_PRECISION (enumtype) = TYPE_PRECISION (underlying_type); TYPE_ALIGN (enumtype) = TYPE_ALIGN (underlying_type); TYPE_USER_ALIGN (enumtype) = TYPE_USER_ALIGN (underlying_type); TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (underlying_type); ENUM_UNDERLYING_TYPE (enumtype) = underlying_type; } else error ("underlying type %<%T%> of %<%T%> must be an integral type", underlying_type, enumtype); } return enumtype; } /* After processing and defining all the values of an enumeration type, install their decls in the enumeration type and finish it off. ENUMTYPE is the type object and VALUES a list of name-value pairs. */ void finish_enum (tree enumtype) { tree values; tree decl; tree minnode; tree maxnode; tree value; tree t; bool unsignedp; bool use_short_enum; int lowprec; int highprec; int precision; integer_type_kind itk; tree underlying_type = NULL_TREE; bool fixed_underlying_type_p = ENUM_UNDERLYING_TYPE (enumtype) != NULL_TREE; /* We built up the VALUES in reverse order. */ TYPE_VALUES (enumtype) = nreverse (TYPE_VALUES (enumtype)); /* For an enum defined in a template, just set the type of the values; all further processing is postponed until the template is instantiated. We need to set the type so that tsubst of a CONST_DECL works. */ if (processing_template_decl) { for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values)) TREE_TYPE (TREE_VALUE (values)) = enumtype; if (at_function_scope_p ()) add_stmt (build_min (TAG_DEFN, enumtype)); return; } /* Determine the minimum and maximum values of the enumerators. */ if (TYPE_VALUES (enumtype)) { minnode = maxnode = NULL_TREE; for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values)) { decl = TREE_VALUE (values); /* [dcl.enum]: Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration. Prior to the closing brace, the type of each enumerator is the type of its initializing value. */ TREE_TYPE (decl) = enumtype; /* Update the minimum and maximum values, if appropriate. */ value = DECL_INITIAL (decl); if (value == error_mark_node) value = integer_zero_node; /* Figure out what the minimum and maximum values of the enumerators are. */ if (!minnode) minnode = maxnode = value; else if (tree_int_cst_lt (maxnode, value)) maxnode = value; else if (tree_int_cst_lt (value, minnode)) minnode = value; } } else /* [dcl.enum] If the enumerator-list is empty, the underlying type is as if the enumeration had a single enumerator with value 0. */ minnode = maxnode = integer_zero_node; /* Compute the number of bits require to represent all values of the enumeration. We must do this before the type of MINNODE and MAXNODE are transformed, since min_precision relies on the TREE_TYPE of the value it is passed. */ unsignedp = tree_int_cst_sgn (minnode) >= 0; lowprec = min_precision (minnode, unsignedp); highprec = min_precision (maxnode, unsignedp); precision = MAX (lowprec, highprec); if (!fixed_underlying_type_p) { /* Determine the underlying type of the enumeration. [dcl.enum] The underlying type of an enumeration is an integral type that can represent all the enumerator values defined in the enumeration. It is implementation-defined which integral type is used as the underlying type for an enumeration except that the underlying type shall not be larger than int unless the value of an enumerator cannot fit in an int or unsigned int. We use "int" or an "unsigned int" as the underlying type, even if a smaller integral type would work, unless the user has explicitly requested that we use the smallest possible type. The user can request that for all enumerations with a command line flag, or for just one enumeration with an attribute. */ use_short_enum = flag_short_enums || lookup_attribute ("packed", TYPE_ATTRIBUTES (enumtype)); for (itk = (use_short_enum ? itk_char : itk_int); itk != itk_none; itk++) { underlying_type = integer_types[itk]; if (TYPE_PRECISION (underlying_type) >= precision && TYPE_UNSIGNED (underlying_type) == unsignedp) break; } if (itk == itk_none) { /* DR 377 IF no integral type can represent all the enumerator values, the enumeration is ill-formed. */ error ("no integral type can represent all of the enumerator values " "for %qT", enumtype); precision = TYPE_PRECISION (long_long_integer_type_node); underlying_type = integer_types[itk_unsigned_long_long]; } /* [dcl.enum] The value of sizeof() applied to an enumeration type, an object of an enumeration type, or an enumerator, is the value of sizeof() applied to the underlying type. */ TYPE_SIZE (enumtype) = TYPE_SIZE (underlying_type); TYPE_SIZE_UNIT (enumtype) = TYPE_SIZE_UNIT (underlying_type); TYPE_MODE (enumtype) = TYPE_MODE (underlying_type); TYPE_ALIGN (enumtype) = TYPE_ALIGN (underlying_type); TYPE_USER_ALIGN (enumtype) = TYPE_USER_ALIGN (underlying_type); TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (underlying_type); /* Set the underlying type of the enumeration type to the computed enumeration type, restricted to the enumerator values. */ ENUM_UNDERLYING_TYPE (enumtype) = copy_node (underlying_type); set_min_and_max_values_for_integral_type (ENUM_UNDERLYING_TYPE (enumtype), precision, unsignedp); } else underlying_type = ENUM_UNDERLYING_TYPE (enumtype); /* Compute the minimum and maximum values for the type. [dcl.enum] For an enumeration where emin is the smallest enumerator and emax is the largest, the values of the enumeration are the values of the underlying type in the range bmin to bmax, where bmin and bmax are, respectively, the smallest and largest values of the smallest bit- field that can store emin and emax. */ /* The middle-end currently assumes that types with TYPE_PRECISION narrower than their underlying type are suitably zero or sign extended to fill their mode. g++ doesn't make these guarantees. Until the middle-end can represent such paradoxical types, we set the TYPE_PRECISION to the width of the underlying type. */ TYPE_PRECISION (enumtype) = TYPE_PRECISION (underlying_type); set_min_and_max_values_for_integral_type (enumtype, precision, unsignedp); /* Convert each of the enumerators to the type of the underlying type of the enumeration. */ for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values)) { location_t saved_location; decl = TREE_VALUE (values); saved_location = input_location; input_location = DECL_SOURCE_LOCATION (decl); if (fixed_underlying_type_p) /* If the enumeration type has a fixed underlying type, we already checked all of the enumerator values. */ value = DECL_INITIAL (decl); else value = perform_implicit_conversion (underlying_type, DECL_INITIAL (decl), tf_warning_or_error); input_location = saved_location; /* Do not clobber shared ints. */ value = copy_node (value); TREE_TYPE (value) = enumtype; DECL_INITIAL (decl) = value; } /* Fix up all variant types of this enum type. */ for (t = TYPE_MAIN_VARIANT (enumtype); t; t = TYPE_NEXT_VARIANT (t)) { TYPE_VALUES (t) = TYPE_VALUES (enumtype); TYPE_MIN_VALUE (t) = TYPE_MIN_VALUE (enumtype); TYPE_MAX_VALUE (t) = TYPE_MAX_VALUE (enumtype); TYPE_SIZE (t) = TYPE_SIZE (enumtype); TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (enumtype); TYPE_MODE (t) = TYPE_MODE (enumtype); TYPE_PRECISION (t) = TYPE_PRECISION (enumtype); TYPE_ALIGN (t) = TYPE_ALIGN (enumtype); TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (enumtype); TYPE_UNSIGNED (t) = TYPE_UNSIGNED (enumtype); ENUM_UNDERLYING_TYPE (t) = ENUM_UNDERLYING_TYPE (enumtype); } /* Finish up the scope of a scoped enumeration. */ if (SCOPED_ENUM_P (enumtype)) finish_scope (); /* Finish debugging output for this type. */ rest_of_type_compilation (enumtype, namespace_bindings_p ()); } /* Build and install a CONST_DECL for an enumeration constant of the enumeration type ENUMTYPE whose NAME and VALUE (if any) are provided. Assignment of sequential values by default is handled here. */ void build_enumerator (tree name, tree value, tree enumtype) { tree decl; tree context; tree type; /* If the VALUE was erroneous, pretend it wasn't there; that will result in the enum being assigned the next value in sequence. */ if (value == error_mark_node) value = NULL_TREE; /* Remove no-op casts from the value. */ if (value) STRIP_TYPE_NOPS (value); if (! processing_template_decl) { /* Validate and default VALUE. */ if (value != NULL_TREE) { value = integral_constant_value (value); if (TREE_CODE (value) == INTEGER_CST) { value = perform_integral_promotions (value); constant_expression_warning (value); } else { error ("enumerator value for %qD is not an integer constant", name); value = NULL_TREE; } } /* Default based on previous value. */ if (value == NULL_TREE) { if (TYPE_VALUES (enumtype)) { HOST_WIDE_INT hi; unsigned HOST_WIDE_INT lo; tree prev_value; bool overflowed; /* The next value is the previous value plus one. add_double doesn't know the type of the target expression, so we must check with int_fits_type_p as well. */ prev_value = DECL_INITIAL (TREE_VALUE (TYPE_VALUES (enumtype))); if (error_operand_p (prev_value)) value = error_mark_node; else { overflowed = add_double (TREE_INT_CST_LOW (prev_value), TREE_INT_CST_HIGH (prev_value), 1, 0, &lo, &hi); value = build_int_cst_wide (TREE_TYPE (prev_value), lo, hi); overflowed |= !int_fits_type_p (value, TREE_TYPE (prev_value)); if (overflowed) { error ("overflow in enumeration values at %qD", name); value = error_mark_node; } } } else value = integer_zero_node; } /* Remove no-op casts from the value. */ STRIP_TYPE_NOPS (value); /* If the underlying type of the enum is fixed, check whether the enumerator values fits in the underlying type. If it does not fit, the program is ill-formed [C++0x dcl.enum]. */ if (ENUM_UNDERLYING_TYPE (enumtype) && value && TREE_CODE (value) == INTEGER_CST && !int_fits_type_p (value, ENUM_UNDERLYING_TYPE (enumtype))) { error ("enumerator value %E is too large for underlying type %<%T%>", value, ENUM_UNDERLYING_TYPE (enumtype)); /* Silently convert the value so that we can continue. */ value = perform_implicit_conversion (ENUM_UNDERLYING_TYPE (enumtype), value, tf_none); } } /* C++ associates enums with global, function, or class declarations. */ context = current_scope (); /* Build the actual enumeration constant. Note that the enumeration constants have the underlying type of the enum (if it is fixed) or the type of their initializer (if the underlying type of the enum is not fixed): [ C++0x dcl.enum ] If the underlying type is fixed, the type of each enumerator prior to the closing brace is the underlying type; if the initializing value of an enumerator cannot be represented by the underlying type, the program is ill-formed. If the underlying type is not fixed, the type of each enumerator is the type of its initializing value. If the underlying type is not fixed, it will be computed by finish_enum and we will reset the type of this enumerator. Of course, if we're processing a template, there may be no value. */ type = value ? TREE_TYPE (value) : NULL_TREE; if (context && context == current_class_type) /* This enum declaration is local to the class. We need the full lang_decl so that we can record DECL_CLASS_CONTEXT, for example. */ decl = build_lang_decl (CONST_DECL, name, type); else /* It's a global enum, or it's local to a function. (Note local to a function could mean local to a class method. */ decl = build_decl (CONST_DECL, name, type); DECL_CONTEXT (decl) = FROB_CONTEXT (context); TREE_CONSTANT (decl) = 1; TREE_READONLY (decl) = 1; DECL_INITIAL (decl) = value; if (context && context == current_class_type) /* In something like `struct S { enum E { i = 7 }; };' we put `i' on the TYPE_FIELDS list for `S'. (That's so that you can say things like `S::i' later.) */ finish_member_declaration (decl); else pushdecl (decl); /* Add this enumeration constant to the list for this type. */ TYPE_VALUES (enumtype) = tree_cons (name, decl, TYPE_VALUES (enumtype)); } /* Look for an enumerator with the given NAME within the enumeration type ENUMTYPE. This routine is used primarily for qualified name lookup into an enumerator in C++0x, e.g., enum class Color { Red, Green, Blue }; Color color = Color::Red; Returns the value corresponding to the enumerator, or NULL_TREE if no such enumerator was found. */ tree lookup_enumerator (tree enumtype, tree name) { tree e; gcc_assert (enumtype && TREE_CODE (enumtype) == ENUMERAL_TYPE); e = purpose_member (name, TYPE_VALUES (enumtype)); return e? TREE_VALUE (e) : NULL_TREE; } /* We're defining DECL. Make sure that it's type is OK. */ static void check_function_type (tree decl, tree current_function_parms) { tree fntype = TREE_TYPE (decl); tree return_type = complete_type (TREE_TYPE (fntype)); /* In a function definition, arg types must be complete. */ require_complete_types_for_parms (current_function_parms); if (dependent_type_p (return_type)) return; if (!COMPLETE_OR_VOID_TYPE_P (return_type) || (TYPE_FOR_JAVA (return_type) && MAYBE_CLASS_TYPE_P (return_type))) { tree args = TYPE_ARG_TYPES (fntype); if (!COMPLETE_OR_VOID_TYPE_P (return_type)) error ("return type %q#T is incomplete", return_type); else error ("return type has Java class type %q#T", return_type); /* Make it return void instead. */ if (TREE_CODE (fntype) == METHOD_TYPE) fntype = build_method_type_directly (TREE_TYPE (TREE_VALUE (args)), void_type_node, TREE_CHAIN (args)); else fntype = build_function_type (void_type_node, args); TREE_TYPE (decl) = build_exception_variant (fntype, TYPE_RAISES_EXCEPTIONS (TREE_TYPE (decl))); } else abstract_virtuals_error (decl, TREE_TYPE (fntype)); } /* Create the FUNCTION_DECL for a function definition. DECLSPECS and DECLARATOR are the parts of the declaration; they describe the function's name and the type it returns, but twisted together in a fashion that parallels the syntax of C. FLAGS is a bitwise or of SF_PRE_PARSED (indicating that the DECLARATOR is really the DECL for the function we are about to process and that DECLSPECS should be ignored), SF_INCLASS_INLINE indicating that the function is an inline defined in-class. This function creates a binding context for the function body as well as setting up the FUNCTION_DECL in current_function_decl. For C++, we must first check whether that datum makes any sense. For example, "class A local_a(1,2);" means that variable local_a is an aggregate of type A, which should have a constructor applied to it with the argument list [1, 2]. On entry, DECL_INITIAL (decl1) should be NULL_TREE or error_mark_node, or may be a BLOCK if the function has been defined previously in this translation unit. On exit, DECL_INITIAL (decl1) will be error_mark_node if the function has never been defined, or a BLOCK if the function has been defined somewhere. */ void start_preparsed_function (tree decl1, tree attrs, int flags) { tree ctype = NULL_TREE; tree fntype; tree restype; int doing_friend = 0; struct cp_binding_level *bl; tree current_function_parms; struct c_fileinfo *finfo = get_fileinfo (LOCATION_FILE (DECL_SOURCE_LOCATION (decl1))); bool honor_interface; /* Sanity check. */ gcc_assert (TREE_CODE (TREE_VALUE (void_list_node)) == VOID_TYPE); gcc_assert (TREE_CHAIN (void_list_node) == NULL_TREE); fntype = TREE_TYPE (decl1); if (TREE_CODE (fntype) == METHOD_TYPE) ctype = TYPE_METHOD_BASETYPE (fntype); /* ISO C++ 11.4/5. A friend function defined in a class is in the (lexical) scope of the class in which it is defined. */ if (!ctype && DECL_FRIEND_P (decl1)) { ctype = DECL_FRIEND_CONTEXT (decl1); /* CTYPE could be null here if we're dealing with a template; for example, `inline friend float foo()' inside a template will have no CTYPE set. */ if (ctype && TREE_CODE (ctype) != RECORD_TYPE) ctype = NULL_TREE; else doing_friend = 1; } if (DECL_DECLARED_INLINE_P (decl1) && lookup_attribute ("noinline", attrs)) warning (0, "inline function %q+D given attribute noinline", decl1); /* Handle gnu_inline attribute. */ if (GNU_INLINE_P (decl1)) { DECL_EXTERNAL (decl1) = 1; DECL_NOT_REALLY_EXTERN (decl1) = 0; DECL_INTERFACE_KNOWN (decl1) = 1; DECL_DISREGARD_INLINE_LIMITS (decl1) = 1; } if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl1)) /* This is a constructor, we must ensure that any default args introduced by this definition are propagated to the clones now. The clones are used directly in overload resolution. */ adjust_clone_args (decl1); /* Sometimes we don't notice that a function is a static member, and build a METHOD_TYPE for it. Fix that up now. */ if (ctype != NULL_TREE && DECL_STATIC_FUNCTION_P (decl1) && TREE_CODE (TREE_TYPE (decl1)) == METHOD_TYPE) { revert_static_member_fn (decl1); ctype = NULL_TREE; } /* Set up current_class_type, and enter the scope of the class, if appropriate. */ if (ctype) push_nested_class (ctype); else if (DECL_STATIC_FUNCTION_P (decl1)) push_nested_class (DECL_CONTEXT (decl1)); /* Now that we have entered the scope of the class, we must restore the bindings for any template parameters surrounding DECL1, if it is an inline member template. (Order is important; consider the case where a template parameter has the same name as a field of the class.) It is not until after this point that PROCESSING_TEMPLATE_DECL is guaranteed to be set up correctly. */ if (flags & SF_INCLASS_INLINE) maybe_begin_member_template_processing (decl1); /* Effective C++ rule 15. */ if (warn_ecpp && DECL_OVERLOADED_OPERATOR_P (decl1) == NOP_EXPR && TREE_CODE (TREE_TYPE (fntype)) == VOID_TYPE) warning (OPT_Weffc__, "% should return a reference to %<*this%>"); /* Make the init_value nonzero so pushdecl knows this is not tentative. error_mark_node is replaced below (in poplevel) with the BLOCK. */ if (!DECL_INITIAL (decl1)) DECL_INITIAL (decl1) = error_mark_node; /* This function exists in static storage. (This does not mean `static' in the C sense!) */ TREE_STATIC (decl1) = 1; /* We must call push_template_decl after current_class_type is set up. (If we are processing inline definitions after exiting a class scope, current_class_type will be NULL_TREE until set above by push_nested_class.) */ if (processing_template_decl) { /* FIXME: Handle error_mark_node more gracefully. */ tree newdecl1 = push_template_decl (decl1); if (newdecl1 != error_mark_node) decl1 = newdecl1; } /* We are now in the scope of the function being defined. */ current_function_decl = decl1; /* Save the parm names or decls from this function's declarator where store_parm_decls will find them. */ current_function_parms = DECL_ARGUMENTS (decl1); /* Make sure the parameter and return types are reasonable. When you declare a function, these types can be incomplete, but they must be complete when you define the function. */ check_function_type (decl1, current_function_parms); /* Build the return declaration for the function. */ restype = TREE_TYPE (fntype); if (DECL_RESULT (decl1) == NULL_TREE) { tree resdecl; resdecl = build_decl (RESULT_DECL, 0, TYPE_MAIN_VARIANT (restype)); DECL_ARTIFICIAL (resdecl) = 1; DECL_IGNORED_P (resdecl) = 1; DECL_RESULT (decl1) = resdecl; cp_apply_type_quals_to_decl (cp_type_quals (restype), resdecl); } /* Let the user know we're compiling this function. */ announce_function (decl1); /* Record the decl so that the function name is defined. If we already have a decl for this name, and it is a FUNCTION_DECL, use the old decl. */ if (!processing_template_decl && !(flags & SF_PRE_PARSED)) { /* A specialization is not used to guide overload resolution. */ if (!DECL_FUNCTION_MEMBER_P (decl1) && !(DECL_USE_TEMPLATE (decl1) && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (decl1)))) { tree olddecl = pushdecl (decl1); if (olddecl == error_mark_node) /* If something went wrong when registering the declaration, use DECL1; we have to have a FUNCTION_DECL to use when parsing the body of the function. */ ; else { /* Otherwise, OLDDECL is either a previous declaration of the same function or DECL1 itself. */ if (warn_missing_declarations && olddecl == decl1 && !DECL_MAIN_P (decl1) && TREE_PUBLIC (decl1) && !DECL_DECLARED_INLINE_P (decl1)) { tree context; /* Check whether DECL1 is in an anonymous namespace. */ for (context = DECL_CONTEXT (decl1); context; context = DECL_CONTEXT (context)) { if (TREE_CODE (context) == NAMESPACE_DECL && DECL_NAME (context) == NULL_TREE) break; } if (context == NULL) warning (OPT_Wmissing_declarations, "no previous declaration for %q+D", decl1); } decl1 = olddecl; } } else { /* We need to set the DECL_CONTEXT. */ if (!DECL_CONTEXT (decl1) && DECL_TEMPLATE_INFO (decl1)) DECL_CONTEXT (decl1) = DECL_CONTEXT (DECL_TI_TEMPLATE (decl1)); } fntype = TREE_TYPE (decl1); /* If #pragma weak applies, mark the decl appropriately now. The pragma only applies to global functions. Because determining whether or not the #pragma applies involves computing the mangled name for the declaration, we cannot apply the pragma until after we have merged this declaration with any previous declarations; if the original declaration has a linkage specification, that specification applies to the definition as well, and may affect the mangled name. */ if (!DECL_CONTEXT (decl1)) maybe_apply_pragma_weak (decl1); } /* Reset this in case the call to pushdecl changed it. */ current_function_decl = decl1; gcc_assert (DECL_INITIAL (decl1)); /* This function may already have been parsed, in which case just return; our caller will skip over the body without parsing. */ if (DECL_INITIAL (decl1) != error_mark_node) return; /* Initialize RTL machinery. We cannot do this until CURRENT_FUNCTION_DECL and DECL_RESULT are set up. We do this even when processing a template; this is how we get CFUN set up, and our per-function variables initialized. FIXME factor out the non-RTL stuff. */ bl = current_binding_level; allocate_struct_function (decl1, processing_template_decl); /* Initialize the language data structures. Whenever we start a new function, we destroy temporaries in the usual way. */ cfun->language = GGC_CNEW (struct language_function); current_stmt_tree ()->stmts_are_full_exprs_p = 1; current_binding_level = bl; /* Even though we're inside a function body, we still don't want to call expand_expr to calculate the size of a variable-sized array. We haven't necessarily assigned RTL to all variables yet, so it's not safe to try to expand expressions involving them. */ cfun->dont_save_pending_sizes_p = 1; /* Start the statement-tree, start the tree now. */ DECL_SAVED_TREE (decl1) = push_stmt_list (); /* If we are (erroneously) defining a function that we have already defined before, wipe out what we knew before. */ if (!DECL_PENDING_INLINE_P (decl1)) DECL_SAVED_FUNCTION_DATA (decl1) = NULL; if (ctype && !doing_friend && !DECL_STATIC_FUNCTION_P (decl1)) { /* We know that this was set up by `grokclassfn'. We do not wait until `store_parm_decls', since evil parse errors may never get us to that point. Here we keep the consistency between `current_class_type' and `current_class_ptr'. */ tree t = DECL_ARGUMENTS (decl1); gcc_assert (t != NULL_TREE && TREE_CODE (t) == PARM_DECL); gcc_assert (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE); cp_function_chain->x_current_class_ref = cp_build_indirect_ref (t, NULL, tf_warning_or_error); cp_function_chain->x_current_class_ptr = t; /* Constructors and destructors need to know whether they're "in charge" of initializing virtual base classes. */ t = TREE_CHAIN (t); if (DECL_HAS_IN_CHARGE_PARM_P (decl1)) { current_in_charge_parm = t; t = TREE_CHAIN (t); } if (DECL_HAS_VTT_PARM_P (decl1)) { gcc_assert (DECL_NAME (t) == vtt_parm_identifier); current_vtt_parm = t; } } honor_interface = (!DECL_TEMPLATE_INSTANTIATION (decl1) /* Implicitly-defined methods (like the destructor for a class in which no destructor is explicitly declared) must not be defined until their definition is needed. So, we ignore interface specifications for compiler-generated functions. */ && !DECL_ARTIFICIAL (decl1)); if (DECL_INTERFACE_KNOWN (decl1)) { tree ctx = decl_function_context (decl1); if (DECL_NOT_REALLY_EXTERN (decl1)) DECL_EXTERNAL (decl1) = 0; if (ctx != NULL_TREE && DECL_DECLARED_INLINE_P (ctx) && TREE_PUBLIC (ctx)) /* This is a function in a local class in an extern inline function. */ comdat_linkage (decl1); } /* If this function belongs to an interface, it is public. If it belongs to someone else's interface, it is also external. This only affects inlines and template instantiations. */ else if (!finfo->interface_unknown && honor_interface) { if (DECL_DECLARED_INLINE_P (decl1) || DECL_TEMPLATE_INSTANTIATION (decl1) || processing_template_decl) { DECL_EXTERNAL (decl1) = (finfo->interface_only || (DECL_DECLARED_INLINE_P (decl1) && ! flag_implement_inlines && !DECL_VINDEX (decl1))); /* For WIN32 we also want to put these in linkonce sections. */ maybe_make_one_only (decl1); } else DECL_EXTERNAL (decl1) = 0; DECL_INTERFACE_KNOWN (decl1) = 1; /* If this function is in an interface implemented in this file, make sure that the back end knows to emit this function here. */ if (!DECL_EXTERNAL (decl1)) mark_needed (decl1); } else if (finfo->interface_unknown && finfo->interface_only && honor_interface) { /* If MULTIPLE_SYMBOL_SPACES is defined and we saw a #pragma interface, we will have both finfo->interface_unknown and finfo->interface_only set. In that case, we don't want to use the normal heuristics because someone will supply a #pragma implementation elsewhere, and deducing it here would produce a conflict. */ comdat_linkage (decl1); DECL_EXTERNAL (decl1) = 0; DECL_INTERFACE_KNOWN (decl1) = 1; DECL_DEFER_OUTPUT (decl1) = 1; } else { /* This is a definition, not a reference. So clear DECL_EXTERNAL, unless this is a GNU extern inline. */ if (!GNU_INLINE_P (decl1)) DECL_EXTERNAL (decl1) = 0; if ((DECL_DECLARED_INLINE_P (decl1) || DECL_TEMPLATE_INSTANTIATION (decl1)) && ! DECL_INTERFACE_KNOWN (decl1) /* Don't try to defer nested functions for now. */ && ! decl_function_context (decl1)) DECL_DEFER_OUTPUT (decl1) = 1; else DECL_INTERFACE_KNOWN (decl1) = 1; } /* Determine the ELF visibility attribute for the function. We must not do this before calling "pushdecl", as we must allow "duplicate_decls" to merge any attributes appropriately. We also need to wait until linkage is set. */ if (!DECL_CLONED_FUNCTION_P (decl1)) determine_visibility (decl1); begin_scope (sk_function_parms, decl1); ++function_depth; if (DECL_DESTRUCTOR_P (decl1) || (DECL_CONSTRUCTOR_P (decl1) && targetm.cxx.cdtor_returns_this ())) { cdtor_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); DECL_CONTEXT (cdtor_label) = current_function_decl; } start_fname_decls (); store_parm_decls (current_function_parms); } /* Like start_preparsed_function, except that instead of a FUNCTION_DECL, this function takes DECLSPECS and DECLARATOR. Returns 1 on success. If the DECLARATOR is not suitable for a function (it defines a datum instead), we return 0, which tells yyparse to report a parse error. */ int start_function (cp_decl_specifier_seq *declspecs, const cp_declarator *declarator, tree attrs) { tree decl1; decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, 1, &attrs); /* If the declarator is not suitable for a function definition, cause a syntax error. */ if (decl1 == NULL_TREE || TREE_CODE (decl1) != FUNCTION_DECL) return 0; if (DECL_MAIN_P (decl1)) /* main must return int. grokfndecl should have corrected it (and issued a diagnostic) if the user got it wrong. */ gcc_assert (same_type_p (TREE_TYPE (TREE_TYPE (decl1)), integer_type_node)); start_preparsed_function (decl1, attrs, /*flags=*/SF_DEFAULT); return 1; } /* Returns true iff an EH_SPEC_BLOCK should be created in the body of FN. */ static bool use_eh_spec_block (tree fn) { return (flag_exceptions && flag_enforce_eh_specs && !processing_template_decl && TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn)) /* We insert the EH_SPEC_BLOCK only in the original function; then, it is copied automatically to the clones. */ && !DECL_CLONED_FUNCTION_P (fn) /* Implicitly-generated constructors and destructors have exception specifications. However, those specifications are the union of the possible exceptions specified by the constructors/destructors for bases and members, so no unallowed exception will ever reach this function. By not creating the EH_SPEC_BLOCK we save a little memory, and we avoid spurious warnings about unreachable code. */ && !DECL_ARTIFICIAL (fn)); } /* Store the parameter declarations into the current function declaration. This is called after parsing the parameter declarations, before digesting the body of the function. Also install to binding contour return value identifier, if any. */ static void store_parm_decls (tree current_function_parms) { tree fndecl = current_function_decl; tree parm; /* This is a chain of any other decls that came in among the parm declarations. If a parm is declared with enum {foo, bar} x; then CONST_DECLs for foo and bar are put here. */ tree nonparms = NULL_TREE; if (current_function_parms) { /* This case is when the function was defined with an ANSI prototype. The parms already have decls, so we need not do anything here except record them as in effect and complain if any redundant old-style parm decls were written. */ tree specparms = current_function_parms; tree next; /* Must clear this because it might contain TYPE_DECLs declared at class level. */ current_binding_level->names = NULL; /* If we're doing semantic analysis, then we'll call pushdecl for each of these. We must do them in reverse order so that they end in the correct forward order. */ specparms = nreverse (specparms); for (parm = specparms; parm; parm = next) { next = TREE_CHAIN (parm); if (TREE_CODE (parm) == PARM_DECL) { if (DECL_NAME (parm) == NULL_TREE || TREE_CODE (parm) != VOID_TYPE) pushdecl (parm); else error ("parameter %qD declared void", parm); } else { /* If we find an enum constant or a type tag, put it aside for the moment. */ TREE_CHAIN (parm) = NULL_TREE; nonparms = chainon (nonparms, parm); } } /* Get the decls in their original chain order and record in the function. This is all and only the PARM_DECLs that were pushed into scope by the loop above. */ DECL_ARGUMENTS (fndecl) = getdecls (); } else DECL_ARGUMENTS (fndecl) = NULL_TREE; /* Now store the final chain of decls for the arguments as the decl-chain of the current lexical scope. Put the enumerators in as well, at the front so that DECL_ARGUMENTS is not modified. */ current_binding_level->names = chainon (nonparms, DECL_ARGUMENTS (fndecl)); if (use_eh_spec_block (current_function_decl)) current_eh_spec_block = begin_eh_spec_block (); } /* We have finished doing semantic analysis on DECL, but have not yet generated RTL for its body. Save away our current state, so that when we want to generate RTL later we know what to do. */ static void save_function_data (tree decl) { struct language_function *f; /* Save the language-specific per-function data so that we can get it back when we really expand this function. */ gcc_assert (!DECL_PENDING_INLINE_P (decl)); /* Make a copy. */ f = GGC_NEW (struct language_function); memcpy (f, cp_function_chain, sizeof (struct language_function)); DECL_SAVED_FUNCTION_DATA (decl) = f; /* Clear out the bits we don't need. */ f->base.x_stmt_tree.x_cur_stmt_list = NULL_TREE; f->bindings = NULL; f->x_local_names = NULL; } /* Set the return value of the constructor (if present). */ static void finish_constructor_body (void) { tree val; tree exprstmt; if (targetm.cxx.cdtor_returns_this () && (! TYPE_FOR_JAVA (current_class_type))) { /* Any return from a constructor will end up here. */ add_stmt (build_stmt (LABEL_EXPR, cdtor_label)); val = DECL_ARGUMENTS (current_function_decl); val = build2 (MODIFY_EXPR, TREE_TYPE (val), DECL_RESULT (current_function_decl), val); /* Return the address of the object. */ exprstmt = build_stmt (RETURN_EXPR, val); add_stmt (exprstmt); } } /* Do all the processing for the beginning of a destructor; set up the vtable pointers and cleanups for bases and members. */ static void begin_destructor_body (void) { tree compound_stmt; /* If the CURRENT_CLASS_TYPE is incomplete, we will have already issued an error message. We still want to try to process the body of the function, but initialize_vtbl_ptrs will crash if TYPE_BINFO is NULL. */ if (COMPLETE_TYPE_P (current_class_type)) { compound_stmt = begin_compound_stmt (0); /* Make all virtual function table pointers in non-virtual base classes point to CURRENT_CLASS_TYPE's virtual function tables. */ initialize_vtbl_ptrs (current_class_ptr); finish_compound_stmt (compound_stmt); /* And insert cleanups for our bases and members so that they will be properly destroyed if we throw. */ push_base_cleanups (); } } /* At the end of every destructor we generate code to delete the object if necessary. Do that now. */ static void finish_destructor_body (void) { tree exprstmt; /* Any return from a destructor will end up here; that way all base and member cleanups will be run when the function returns. */ add_stmt (build_stmt (LABEL_EXPR, cdtor_label)); /* In a virtual destructor, we must call delete. */ if (DECL_VIRTUAL_P (current_function_decl)) { tree if_stmt; tree virtual_size = cxx_sizeof (current_class_type); /* [class.dtor] At the point of definition of a virtual destructor (including an implicit definition), non-placement operator delete shall be looked up in the scope of the destructor's class and if found shall be accessible and unambiguous. */ exprstmt = build_op_delete_call(DELETE_EXPR, current_class_ptr, virtual_size, /*global_p=*/false, /*placement=*/NULL_TREE, /*alloc_fn=*/NULL_TREE); if_stmt = begin_if_stmt (); finish_if_stmt_cond (build2 (BIT_AND_EXPR, integer_type_node, current_in_charge_parm, integer_one_node), if_stmt); finish_expr_stmt (exprstmt); finish_then_clause (if_stmt); finish_if_stmt (if_stmt); } if (targetm.cxx.cdtor_returns_this ()) { tree val; val = DECL_ARGUMENTS (current_function_decl); val = build2 (MODIFY_EXPR, TREE_TYPE (val), DECL_RESULT (current_function_decl), val); /* Return the address of the object. */ exprstmt = build_stmt (RETURN_EXPR, val); add_stmt (exprstmt); } } /* Do the necessary processing for the beginning of a function body, which in this case includes member-initializers, but not the catch clauses of a function-try-block. Currently, this means opening a binding level for the member-initializers (in a ctor) and member cleanups (in a dtor). */ tree begin_function_body (void) { tree stmt; if (! FUNCTION_NEEDS_BODY_BLOCK (current_function_decl)) return NULL_TREE; if (processing_template_decl) /* Do nothing now. */; else /* Always keep the BLOCK node associated with the outermost pair of curly braces of a function. These are needed for correct operation of dwarfout.c. */ keep_next_level (true); stmt = begin_compound_stmt (BCS_FN_BODY); if (processing_template_decl) /* Do nothing now. */; else if (DECL_DESTRUCTOR_P (current_function_decl)) begin_destructor_body (); return stmt; } /* Do the processing for the end of a function body. Currently, this means closing out the cleanups for fully-constructed bases and members, and in the case of the destructor, deleting the object if desired. Again, this is only meaningful for [cd]tors, since they are the only functions where there is a significant distinction between the main body and any function catch clauses. Handling, say, main() return semantics here would be wrong, as flowing off the end of a function catch clause for main() would also need to return 0. */ void finish_function_body (tree compstmt) { if (compstmt == NULL_TREE) return; /* Close the block. */ finish_compound_stmt (compstmt); if (processing_template_decl) /* Do nothing now. */; else if (DECL_CONSTRUCTOR_P (current_function_decl)) finish_constructor_body (); else if (DECL_DESTRUCTOR_P (current_function_decl)) finish_destructor_body (); } /* Given a function, returns the BLOCK corresponding to the outermost level of curly braces, skipping the artificial block created for constructor initializers. */ tree outer_curly_brace_block (tree fndecl) { tree block = BLOCK_SUBBLOCKS (DECL_INITIAL (fndecl)); if (FUNCTION_NEEDS_BODY_BLOCK (current_function_decl)) /* Skip the artificial function body block. */ block = BLOCK_SUBBLOCKS (block); return block; } /* Finish up a function declaration and compile that function all the way to assembler language output. The free the storage for the function definition. FLAGS is a bitwise or of the following values: 2 - INCLASS_INLINE We just finished processing the body of an in-class inline function definition. (This processing will have taken place after the class definition is complete.) */ tree finish_function (int flags) { tree fndecl = current_function_decl; tree fntype, ctype = NULL_TREE; int inclass_inline = (flags & 2) != 0; int nested; /* When we get some parse errors, we can end up without a current_function_decl, so cope. */ if (fndecl == NULL_TREE) return error_mark_node; gcc_assert (!defer_mark_used_calls); defer_mark_used_calls = true; if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fndecl) && DECL_VIRTUAL_P (fndecl) && !processing_template_decl) { tree fnclass = DECL_CONTEXT (fndecl); if (fndecl == CLASSTYPE_KEY_METHOD (fnclass)) keyed_classes = tree_cons (NULL_TREE, fnclass, keyed_classes); } nested = function_depth > 1; fntype = TREE_TYPE (fndecl); /* TREE_READONLY (fndecl) = 1; This caused &foo to be of type ptr-to-const-function which then got a warning when stored in a ptr-to-function variable. */ gcc_assert (building_stmt_tree ()); /* The current function is being defined, so its DECL_INITIAL should be set, and unless there's a multiple definition, it should be error_mark_node. */ gcc_assert (DECL_INITIAL (fndecl) == error_mark_node); /* For a cloned function, we've already got all the code we need; there's no need to add any extra bits. */ if (!DECL_CLONED_FUNCTION_P (fndecl)) { if (DECL_MAIN_P (current_function_decl)) { tree stmt; /* Make it so that `main' always returns 0 by default (or 1 for VMS). */ #if VMS_TARGET stmt = finish_return_stmt (integer_one_node); #else stmt = finish_return_stmt (integer_zero_node); #endif /* Hack. We don't want the middle-end to warn that this return is unreachable, so put the statement on the special line 0. */ { location_t linezero = linemap_line_start (line_table, 0, 1); SET_EXPR_LOCATION (stmt, linezero); } } if (use_eh_spec_block (current_function_decl)) finish_eh_spec_block (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (current_function_decl)), current_eh_spec_block); } /* If we're saving up tree structure, tie off the function now. */ DECL_SAVED_TREE (fndecl) = pop_stmt_list (DECL_SAVED_TREE (fndecl)); finish_fname_decls (); /* If this function can't throw any exceptions, remember that. */ if (!processing_template_decl && !cp_function_chain->can_throw && !flag_non_call_exceptions && !DECL_REPLACEABLE_P (fndecl)) TREE_NOTHROW (fndecl) = 1; /* This must come after expand_function_end because cleanups might have declarations (from inline functions) that need to go into this function's blocks. */ /* If the current binding level isn't the outermost binding level for this function, either there is a bug, or we have experienced syntax errors and the statement tree is malformed. */ if (current_binding_level->kind != sk_function_parms) { /* Make sure we have already experienced errors. */ gcc_assert (errorcount); /* Throw away the broken statement tree and extra binding levels. */ DECL_SAVED_TREE (fndecl) = alloc_stmt_list (); while (current_binding_level->kind != sk_function_parms) { if (current_binding_level->kind == sk_class) pop_nested_class (); else poplevel (0, 0, 0); } } poplevel (1, 0, 1); /* Statements should always be full-expressions at the outermost set of curly braces for a function. */ gcc_assert (stmts_are_full_exprs_p ()); /* Set up the named return value optimization, if we can. Candidate variables are selected in check_return_expr. */ if (current_function_return_value) { tree r = current_function_return_value; tree outer; if (r != error_mark_node /* This is only worth doing for fns that return in memory--and simpler, since we don't have to worry about promoted modes. */ && aggregate_value_p (TREE_TYPE (TREE_TYPE (fndecl)), fndecl) /* Only allow this for variables declared in the outer scope of the function so we know that their lifetime always ends with a return; see g++.dg/opt/nrv6.C. We could be more flexible if we were to do this optimization in tree-ssa. */ && (outer = outer_curly_brace_block (fndecl)) && chain_member (r, BLOCK_VARS (outer))) finalize_nrv (&DECL_SAVED_TREE (fndecl), r, DECL_RESULT (fndecl)); current_function_return_value = NULL_TREE; } /* Remember that we were in class scope. */ if (current_class_name) ctype = current_class_type; /* Must mark the RESULT_DECL as being in this function. */ DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl; /* Set the BLOCK_SUPERCONTEXT of the outermost function scope to point to the FUNCTION_DECL node itself. */ BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl; /* Save away current state, if appropriate. */ if (!processing_template_decl) save_function_data (fndecl); /* Complain if there's just no return statement. */ if (warn_return_type && TREE_CODE (TREE_TYPE (fntype)) != VOID_TYPE && !dependent_type_p (TREE_TYPE (fntype)) && !current_function_returns_value && !current_function_returns_null /* Don't complain if we abort or throw. */ && !current_function_returns_abnormally && !DECL_NAME (DECL_RESULT (fndecl)) && !TREE_NO_WARNING (fndecl) /* Structor return values (if any) are set by the compiler. */ && !DECL_CONSTRUCTOR_P (fndecl) && !DECL_DESTRUCTOR_P (fndecl)) { warning (OPT_Wreturn_type, "no return statement in function returning non-void"); TREE_NO_WARNING (fndecl) = 1; } /* Store the end of the function, so that we get good line number info for the epilogue. */ cfun->function_end_locus = input_location; /* Genericize before inlining. */ if (!processing_template_decl) { struct language_function *f = DECL_SAVED_FUNCTION_DATA (fndecl); cp_genericize (fndecl); /* Clear out the bits we don't need. */ f->x_current_class_ptr = NULL; f->x_current_class_ref = NULL; f->x_eh_spec_block = NULL; f->x_in_charge_parm = NULL; f->x_vtt_parm = NULL; f->x_return_value = NULL; f->bindings = NULL; f->extern_decl_map = NULL; /* Handle attribute((warn_unused_result)). Relies on gimple input. */ c_warn_unused_result (gimple_body (fndecl)); } /* Clear out the bits we don't need. */ local_names = NULL; /* We're leaving the context of this function, so zap cfun. It's still in DECL_STRUCT_FUNCTION, and we'll restore it in tree_rest_of_compilation. */ set_cfun (NULL); current_function_decl = NULL; /* If this is an in-class inline definition, we may have to pop the bindings for the template parameters that we added in maybe_begin_member_template_processing when start_function was called. */ if (inclass_inline) maybe_end_member_template_processing (); /* Leave the scope of the class. */ if (ctype) pop_nested_class (); --function_depth; /* Clean up. */ if (! nested) /* Let the error reporting routines know that we're outside a function. For a nested function, this value is used in cxx_pop_function_context and then reset via pop_function_context. */ current_function_decl = NULL_TREE; defer_mark_used_calls = false; if (deferred_mark_used_calls) { unsigned int i; tree decl; for (i = 0; VEC_iterate (tree, deferred_mark_used_calls, i, decl); i++) mark_used (decl); VEC_free (tree, gc, deferred_mark_used_calls); } return fndecl; } /* Create the FUNCTION_DECL for a function definition. DECLSPECS and DECLARATOR are the parts of the declaration; they describe the return type and the name of the function, but twisted together in a fashion that parallels the syntax of C. This function creates a binding context for the function body as well as setting up the FUNCTION_DECL in current_function_decl. Returns a FUNCTION_DECL on success. If the DECLARATOR is not suitable for a function (it defines a datum instead), we return 0, which tells yyparse to report a parse error. May return void_type_node indicating that this method is actually a friend. See grokfield for more details. Came here with a `.pushlevel' . DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING CHANGES TO CODE IN `grokfield'. */ tree start_method (cp_decl_specifier_seq *declspecs, const cp_declarator *declarator, tree attrlist) { tree fndecl = grokdeclarator (declarator, declspecs, MEMFUNCDEF, 0, &attrlist); if (fndecl == error_mark_node) return error_mark_node; if (fndecl == NULL || TREE_CODE (fndecl) != FUNCTION_DECL) { error ("invalid member function declaration"); return error_mark_node; } if (attrlist) cplus_decl_attributes (&fndecl, attrlist, 0); /* Pass friends other than inline friend functions back. */ if (fndecl == void_type_node) return fndecl; if (DECL_IN_AGGR_P (fndecl)) { if (DECL_CONTEXT (fndecl) && TREE_CODE (DECL_CONTEXT (fndecl)) != NAMESPACE_DECL) error ("%qD is already defined in class %qT", fndecl, DECL_CONTEXT (fndecl)); return error_mark_node; } check_template_shadow (fndecl); DECL_DECLARED_INLINE_P (fndecl) = 1; DECL_NO_INLINE_WARNING_P (fndecl) = 1; /* We process method specializations in finish_struct_1. */ if (processing_template_decl && !DECL_TEMPLATE_SPECIALIZATION (fndecl)) { fndecl = push_template_decl (fndecl); if (fndecl == error_mark_node) return fndecl; } if (! DECL_FRIEND_P (fndecl)) { if (TREE_CHAIN (fndecl)) { fndecl = copy_node (fndecl); TREE_CHAIN (fndecl) = NULL_TREE; } } finish_decl (fndecl, NULL_TREE, NULL_TREE); /* Make a place for the parms. */ begin_scope (sk_function_parms, fndecl); DECL_IN_AGGR_P (fndecl) = 1; return fndecl; } /* Go through the motions of finishing a function definition. We don't compile this method until after the whole class has been processed. FINISH_METHOD must return something that looks as though it came from GROKFIELD (since we are defining a method, after all). This is called after parsing the body of the function definition. STMTS is the chain of statements that makes up the function body. DECL is the ..._DECL that `start_method' provided. */ tree finish_method (tree decl) { tree fndecl = decl; tree old_initial; tree link; if (decl == void_type_node) return decl; old_initial = DECL_INITIAL (fndecl); /* Undo the level for the parms (from start_method). This is like poplevel, but it causes nothing to be saved. Saving information here confuses symbol-table output routines. Besides, this information will be correctly output when this method is actually compiled. */ /* Clear out the meanings of the local variables of this level; also record in each decl which block it belongs to. */ for (link = current_binding_level->names; link; link = TREE_CHAIN (link)) { if (DECL_NAME (link) != NULL_TREE) pop_binding (DECL_NAME (link), link); gcc_assert (TREE_CODE (link) != FUNCTION_DECL); DECL_CONTEXT (link) = NULL_TREE; } poplevel (0, 0, 0); DECL_INITIAL (fndecl) = old_initial; /* We used to check if the context of FNDECL was different from current_class_type as another way to get inside here. This didn't work for String.cc in libg++. */ if (DECL_FRIEND_P (fndecl)) { VEC_safe_push (tree, gc, CLASSTYPE_INLINE_FRIENDS (current_class_type), fndecl); decl = void_type_node; } return decl; } /* VAR is a VAR_DECL. If its type is incomplete, remember VAR so that we can lay it out later, when and if its type becomes complete. */ void maybe_register_incomplete_var (tree var) { gcc_assert (TREE_CODE (var) == VAR_DECL); /* Keep track of variables with incomplete types. */ if (!processing_template_decl && TREE_TYPE (var) != error_mark_node && DECL_EXTERNAL (var)) { tree inner_type = TREE_TYPE (var); while (TREE_CODE (inner_type) == ARRAY_TYPE) inner_type = TREE_TYPE (inner_type); inner_type = TYPE_MAIN_VARIANT (inner_type); if ((!COMPLETE_TYPE_P (inner_type) && CLASS_TYPE_P (inner_type)) /* RTTI TD entries are created while defining the type_info. */ || (TYPE_LANG_SPECIFIC (inner_type) && TYPE_BEING_DEFINED (inner_type))) incomplete_vars = tree_cons (inner_type, var, incomplete_vars); } } /* Called when a class type (given by TYPE) is defined. If there are any existing VAR_DECLs whose type has been completed by this declaration, update them now. */ void complete_vars (tree type) { tree *list = &incomplete_vars; gcc_assert (CLASS_TYPE_P (type)); while (*list) { if (same_type_p (type, TREE_PURPOSE (*list))) { tree var = TREE_VALUE (*list); tree type = TREE_TYPE (var); /* Complete the type of the variable. The VAR_DECL itself will be laid out in expand_expr. */ complete_type (type); cp_apply_type_quals_to_decl (cp_type_quals (type), var); /* Remove this entry from the list. */ *list = TREE_CHAIN (*list); } else list = &TREE_CHAIN (*list); } /* Check for pending declarations which may have abstract type. */ complete_type_check_abstract (type); } /* If DECL is of a type which needs a cleanup, build and return an expression to perform that cleanup here. Return NULL_TREE if no cleanup need be done. */ tree cxx_maybe_build_cleanup (tree decl) { tree type; tree attr; tree cleanup; /* Assume no cleanup is required. */ cleanup = NULL_TREE; if (error_operand_p (decl)) return cleanup; /* Handle "__attribute__((cleanup))". We run the cleanup function before the destructor since the destructor is what actually terminates the lifetime of the object. */ attr = lookup_attribute ("cleanup", DECL_ATTRIBUTES (decl)); if (attr) { tree id; tree fn; tree arg; /* Get the name specified by the user for the cleanup function. */ id = TREE_VALUE (TREE_VALUE (attr)); /* Look up the name to find the cleanup function to call. It is important to use lookup_name here because that is what is used in c-common.c:handle_cleanup_attribute when performing initial checks on the attribute. Note that those checks include ensuring that the function found is not an overloaded function, or an object with an overloaded call operator, etc.; we can rely on the fact that the function found is an ordinary FUNCTION_DECL. */ fn = lookup_name (id); arg = build_address (decl); mark_used (decl); cleanup = cp_build_function_call (fn, build_tree_list (NULL_TREE, arg), tf_warning_or_error); } /* Handle ordinary C++ destructors. */ type = TREE_TYPE (decl); if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) { int flags = LOOKUP_NORMAL|LOOKUP_DESTRUCTOR; bool has_vbases = (TREE_CODE (type) == RECORD_TYPE && CLASSTYPE_VBASECLASSES (type)); tree addr; tree call; if (TREE_CODE (type) == ARRAY_TYPE) addr = decl; else addr = build_address (decl); /* Optimize for space over speed here. */ if (!has_vbases || flag_expensive_optimizations) flags |= LOOKUP_NONVIRTUAL; call = build_delete (TREE_TYPE (addr), addr, sfk_complete_destructor, flags, 0); if (cleanup) cleanup = build_compound_expr (cleanup, call); else cleanup = call; } return cleanup; } /* When a stmt has been parsed, this function is called. */ void finish_stmt (void) { } /* DECL was originally constructed as a non-static member function, but turned out to be static. Update it accordingly. */ void revert_static_member_fn (tree decl) { tree tmp; tree function = TREE_TYPE (decl); tree args = TYPE_ARG_TYPES (function); if (cp_type_quals (TREE_TYPE (TREE_VALUE (args))) != TYPE_UNQUALIFIED) error ("static member function %q#D declared with type qualifiers", decl); args = TREE_CHAIN (args); tmp = build_function_type (TREE_TYPE (function), args); tmp = build_qualified_type (tmp, cp_type_quals (function)); tmp = build_exception_variant (tmp, TYPE_RAISES_EXCEPTIONS (function)); TREE_TYPE (decl) = tmp; if (DECL_ARGUMENTS (decl)) DECL_ARGUMENTS (decl) = TREE_CHAIN (DECL_ARGUMENTS (decl)); DECL_STATIC_FUNCTION_P (decl) = 1; } /* Return which tree structure is used by T, or TS_CP_GENERIC if T is one of the language-independent trees. */ enum cp_tree_node_structure_enum cp_tree_node_structure (union lang_tree_node * t) { switch (TREE_CODE (&t->generic)) { case DEFAULT_ARG: return TS_CP_DEFAULT_ARG; case IDENTIFIER_NODE: return TS_CP_IDENTIFIER; case OVERLOAD: return TS_CP_OVERLOAD; case TEMPLATE_PARM_INDEX: return TS_CP_TPI; case PTRMEM_CST: return TS_CP_PTRMEM; case BASELINK: return TS_CP_BASELINK; case STATIC_ASSERT: return TS_CP_STATIC_ASSERT; case ARGUMENT_PACK_SELECT: return TS_CP_ARGUMENT_PACK_SELECT; case TRAIT_EXPR: return TS_CP_TRAIT_EXPR; default: return TS_CP_GENERIC; } } /* Build the void_list_node (void_type_node having been created). */ tree build_void_list_node (void) { tree t = build_tree_list (NULL_TREE, void_type_node); return t; } bool cp_missing_noreturn_ok_p (tree decl) { /* A missing noreturn is ok for the `main' function. */ return DECL_MAIN_P (decl); } /* Return the COMDAT group into which DECL should be placed. */ const char * cxx_comdat_group (tree decl) { tree name; /* Virtual tables, construction virtual tables, and virtual table tables all go in a single COMDAT group, named after the primary virtual table. */ if (TREE_CODE (decl) == VAR_DECL && DECL_VTABLE_OR_VTT_P (decl)) name = DECL_ASSEMBLER_NAME (CLASSTYPE_VTABLES (DECL_CONTEXT (decl))); /* For all other DECLs, the COMDAT group is the mangled name of the declaration itself. */ else { while (DECL_THUNK_P (decl)) { /* If TARGET_USE_LOCAL_THUNK_ALIAS_P, use_thunk puts the thunk into the same section as the target function. In that case we must return target's name. */ tree target = THUNK_TARGET (decl); if (TARGET_USE_LOCAL_THUNK_ALIAS_P (target) && DECL_SECTION_NAME (target) != NULL && DECL_ONE_ONLY (target)) decl = target; else break; } name = DECL_ASSEMBLER_NAME (decl); } return IDENTIFIER_POINTER (name); } #include "gt-cp-decl.h"