/* Processing rules for constraints. Copyright (C) 2013-2015 Free Software Foundation, Inc. Contributed by Andrew Sutton (andrew.n.sutton@gmail.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "hash-set.h" #include "machmode.h" #include "vec.h" #include "double-int.h" #include "input.h" #include "alias.h" #include "symtab.h" #include "wide-int.h" #include "inchash.h" #include "tree.h" #include "stringpool.h" #include "attribs.h" #include "intl.h" #include "flags.h" #include "cp-tree.h" #include "c-family/c-common.h" #include "c-family/c-objc.h" #include "cp-objcp-common.h" #include "tree-inline.h" #include "decl.h" #include "toplev.h" #include "type-utils.h" /*--------------------------------------------------------------------------- Operations on constraints ---------------------------------------------------------------------------*/ /* Returns true if C is a constraint tree code. Note that ERROR_MARK is a valid constraint. */ static inline bool constraint_p (tree_code c) { return (PRED_CONSTR <= c && c <= DISJ_CONSTR) || c == ERROR_MARK; } /* Returns true if T is a constraint. Note that error_mark_node is a valid constraint. */ bool constraint_p (tree t) { return constraint_p (TREE_CODE (t)); } /* Make a predicate constraint from the given expression. */ tree make_predicate_constraint (tree expr) { return build_nt (PRED_CONSTR, expr); } /* Returns the conjunction of two constraints A and B. Note that conjoining a non-null constraint with NULL_TREE is an identity operation. That is, for non-null A, conjoin_constraints(a, NULL_TREE) == a and conjoin_constraints (NULL_TREE, a) == a If both A and B are NULL_TREE, the result is also NULL_TREE. */ tree conjoin_constraints (tree a, tree b) { gcc_assert (a ? constraint_p (a) : true); gcc_assert (b ? constraint_p (b) : true); if (a) return b ? build_nt (CONJ_CONSTR, a, b) : a; else if (b) return b; else return NULL_TREE; } /* Transform the vector of expressions in the T into a conjunction of requirements. T must be a TREE_VEC. */ tree conjoin_constraints (tree t) { gcc_assert (TREE_CODE (t) == TREE_VEC); tree r = NULL_TREE; for (int i = 0; i < TREE_VEC_LENGTH (t); ++i) r = conjoin_constraints (r, TREE_VEC_ELT (t, i)); return r; } /* Returns true if T is a call expression to a function concept. */ bool function_concept_check_p (tree t) { gcc_assert (TREE_CODE (t) == CALL_EXPR); tree fn = CALL_EXPR_FN (t); if (TREE_CODE (fn) == TEMPLATE_ID_EXPR && TREE_CODE (TREE_OPERAND (fn, 0)) == OVERLOAD) { tree f1 = get_first_fn (fn); if (TREE_CODE (f1) == TEMPLATE_DECL && DECL_DECLARED_CONCEPT_P (DECL_TEMPLATE_RESULT (f1))) return true; } return false; } /*--------------------------------------------------------------------------- Resolution of qualified concept names ---------------------------------------------------------------------------*/ /* This facility is used to resolve constraint checks from requirement expressions. A constraint check is a call to a function template declared with the keyword 'concept'. The result of resolution is a pair (a TREE_LIST) whose value is the matched declaration, and whose purpose contains the coerced template arguments that can be substituted into the call. */ // Given an overload set OVL, try to find a unique definition that can be // instantiated by the template arguments ARGS. // // This function is not called for arbitrary call expressions. In particular, // the call expression must be written with explicit template arguments // and no function arguments. For example: // // f() // // If a single match is found, this returns a TREE_LIST whose VALUE // is the constraint function (not the template), and its PURPOSE is // the complete set of arguments substituted into the parameter list. static tree resolve_constraint_check (tree ovl, tree args) { tree cands = NULL_TREE; for (tree p = ovl; p != NULL_TREE; p = OVL_NEXT (p)) { // Get the next template overload. tree tmpl = OVL_CURRENT (p); if (TREE_CODE (tmpl) != TEMPLATE_DECL) continue; // Don't try to deduce checks for non-concepts. We often // end up trying to resolve constraints in functional casts // as part of a postfix-expression. We can save time and // headaches by not instantiating those declarations. // // NOTE: This masks a potential error, caused by instantiating // non-deduced contexts using placeholder arguments. tree fn = DECL_TEMPLATE_RESULT (tmpl); if (DECL_ARGUMENTS (fn)) continue; if (!DECL_DECLARED_CONCEPT_P (fn)) continue; // Remember the candidate if we can deduce a substitution. ++processing_template_decl; tree parms = TREE_VALUE (DECL_TEMPLATE_PARMS (tmpl)); if (tree subst = coerce_template_parms (parms, args, tmpl)) if (subst != error_mark_node) cands = tree_cons (subst, fn, cands); --processing_template_decl; } // If we didn't find a unique candidate, then this is // not a constraint check. if (!cands || TREE_CHAIN (cands)) return NULL_TREE; return cands; } // Determine if the the call expression CALL is a constraint check, and // return the concept declaration and arguments being checked. If CALL // does not denote a constraint check, return NULL. tree resolve_constraint_check (tree call) { gcc_assert (TREE_CODE (call) == CALL_EXPR); // A constraint check must be only a template-id expression. If // it's a call to a base-link, its function(s) should be a // template-id expression. If this is not a template-id, then it // cannot be a concept-check. tree target = CALL_EXPR_FN (call); if (BASELINK_P (target)) target = BASELINK_FUNCTIONS (target); if (TREE_CODE (target) != TEMPLATE_ID_EXPR) return NULL_TREE; // Get the overload set and template arguments and try to // resolve the target. tree ovl = TREE_OPERAND (target, 0); /* This is a function call of a variable concept... ill-formed. */ if (TREE_CODE (ovl) == TEMPLATE_DECL) { error_at (location_of (call), "function call of variable concept %qE", call); return error_mark_node; } tree args = TREE_OPERAND (target, 1); return resolve_constraint_check (ovl, args); } /* Returns a pair containing the checked variable concept and its associated prototype parameter. The result is a TREE_LIST whose TREE_VALUE is the variable concept and whose TREE_PURPOSE is the prototype parameter. */ tree resolve_variable_concept_check (tree id) { tree tmpl = TREE_OPERAND (id, 0); tree args = TREE_OPERAND (id, 1); if (!variable_concept_p (tmpl)) return NULL_TREE; /* Make sure that we have the right parameters before assuming that it works. Note that failing to deduce will result in diagnostics. */ tree parms = INNERMOST_TEMPLATE_PARMS (DECL_TEMPLATE_PARMS (tmpl)); tree result = coerce_template_parms (parms, args, tmpl); if (result != error_mark_node) { tree decl = DECL_TEMPLATE_RESULT (tmpl); return build_tree_list (result, decl); } else return NULL_TREE; } /* Given a call expression or template-id expression to a concept EXPR possibly including a wildcard, deduce the concept being checked and the prototype parameter. Returns true if the constraint and prototype can be deduced and false otherwise. Note that the CHECK and PROTO arguments are set to NULL_TREE if this returns false. */ bool deduce_constrained_parameter (tree expr, tree& check, tree& proto) { tree info = NULL_TREE; if (TREE_CODE (expr) == TEMPLATE_ID_EXPR) info = resolve_variable_concept_check (expr); else if (TREE_CODE (expr) == CALL_EXPR) info = resolve_constraint_check (expr); else gcc_unreachable (); if (info && info != error_mark_node) { check = TREE_VALUE (info); tree arg = TREE_VEC_ELT (TREE_PURPOSE (info), 0); if (ARGUMENT_PACK_P (arg)) arg = TREE_VEC_ELT (ARGUMENT_PACK_ARGS (arg), 0); proto = TREE_TYPE (arg); return true; } check = proto = NULL_TREE; return false; } // Given a call expression or template-id expression to a concept, EXPR, // deduce the concept being checked and return the template arguments. // Returns NULL_TREE if deduction fails. static tree deduce_concept_introduction (tree expr) { tree info = NULL_TREE; if (TREE_CODE (expr) == TEMPLATE_ID_EXPR) info = resolve_variable_concept_check (expr); else if (TREE_CODE (expr) == CALL_EXPR) info = resolve_constraint_check (expr); else gcc_unreachable (); if (info && info != error_mark_node) return TREE_PURPOSE (info); return NULL_TREE; } namespace { /*--------------------------------------------------------------------------- Lifting of concept definitions ---------------------------------------------------------------------------*/ /* Part of constraint normalization. Whenever we find a reference to a variable concept or a call to a function concept, we lift or inline that concept's definition into the constraint. This ensures that constraints are always checked in the immediate instantiation context. */ tree lift_expression (tree); /* If the tree T has operands, then lift any concepts out of them. */ tree lift_operands (tree t) { if (int n = tree_operand_length (t)) { t = copy_node (t); for (int i = 0; i < n; ++i) TREE_OPERAND (t, i) = lift_expression (TREE_OPERAND (t, i)); } return t; } /* Recursively lift all operands of the function call. Also, check that the call target is not accidentally a variable concept since that's ill-formed. */ tree lift_function_call (tree t) { gcc_assert (TREE_CODE (t) == CALL_EXPR); gcc_assert (!VAR_P (CALL_EXPR_FN (t))); return lift_operands (t); } /* Inline a function (concept) definition by substituting ARGS into its body. */ tree lift_function_definition (tree fn, tree args) { /* Extract the body of the function minus the return expression. */ tree body = DECL_SAVED_TREE (fn); if (!body) return error_mark_node; if (TREE_CODE (body) == BIND_EXPR) body = BIND_EXPR_BODY (body); if (TREE_CODE (body) != RETURN_EXPR) return error_mark_node; body = TREE_OPERAND (body, 0); /* Substitute template arguments to produce our inline expression. */ tree result = tsubst_expr (body, args, tf_none, NULL_TREE, false); if (result == error_mark_node) return error_mark_node; return lift_expression (result); } /* Inline a reference to a function concept. */ tree lift_call_expression (tree t) { /* Try to resolve this function call as a concept. If not, then it can be returned as-is. */ tree check = resolve_constraint_check (t); if (!check) return lift_function_call (t); if (check == error_mark_node) return error_mark_node; tree fn = TREE_VALUE (check); tree args = TREE_PURPOSE (check); return lift_function_definition (fn, args); } tree lift_variable_initializer (tree var, tree args) { /* Extract the body from the variable initializer. */ tree init = DECL_INITIAL (var); if (!init) return error_mark_node; /* Substitute the arguments to form our new inline expression. */ tree result = tsubst_expr (init, args, tf_none, NULL_TREE, false); if (result == error_mark_node) return error_mark_node; return lift_expression (result); } /* Determine if a template-id is a variable concept and inline. */ tree lift_template_id (tree t) { if (tree info = resolve_variable_concept_check (t)) { tree decl = TREE_VALUE (info); tree args = TREE_PURPOSE (info); return lift_variable_initializer (decl, args); } /* Check that we didn't refer to a function concept like a variable. TODO: Add a note on how to fix this. */ tree tmpl = TREE_OPERAND (t, 0); if (TREE_CODE (tmpl) == OVERLOAD) { tree fn = OVL_FUNCTION (tmpl); if (TREE_CODE (fn) == TEMPLATE_DECL && DECL_DECLARED_CONCEPT_P (DECL_TEMPLATE_RESULT (fn))) { error_at (location_of (t), "invalid reference to function concept %qD", fn); return error_mark_node; } } return t; } /* Lift any constraints appearing in a nested requirement of a requires-expression. */ tree lift_requires_expression (tree t) { tree parms = TREE_OPERAND (t, 0); tree reqs = TREE_OPERAND (t, 1); tree result = NULL_TREE; for (; reqs != NULL_TREE; reqs = TREE_CHAIN (reqs)) { tree req = TREE_VALUE (reqs); if (TREE_CODE (req) == NESTED_REQ) { tree expr = lift_expression (TREE_OPERAND (req, 0)); req = finish_nested_requirement (expr); } result = tree_cons (NULL_TREE, req, result); } return finish_requires_expr (parms, result); } /* Inline references to specializations of concepts. */ tree lift_expression (tree t) { if (t == NULL_TREE) return NULL_TREE; if (t == error_mark_node) return error_mark_node; /* Concepts can be referred to by call or variable. All other nodes are preserved. */ switch (TREE_CODE (t)) { case CALL_EXPR: return lift_call_expression (t); case TEMPLATE_ID_EXPR: return lift_template_id (t); case REQUIRES_EXPR: return lift_requires_expression (t); case EXPR_PACK_EXPANSION: /* Use copy_node rather than make_pack_expansion so that PACK_EXPANSION_PARAMETER_PACKS stays the same. */ t = copy_node (t); SET_PACK_EXPANSION_PATTERN (t, lift_expression (PACK_EXPANSION_PATTERN (t))); return t; case TREE_LIST: { t = copy_node (t); TREE_VALUE (t) = lift_expression (TREE_VALUE (t)); TREE_CHAIN (t) = lift_expression (TREE_CHAIN (t)); return t; } default: return lift_operands (t); } } /*--------------------------------------------------------------------------- Transformation of expressions into constraints ---------------------------------------------------------------------------*/ /* Part of constraint normalization. The following functions rewrite expressions as constraints. */ tree transform_expression (tree); /* Check that the logical-or or logical-and expression does not result in a call to a user-defined user-defined operator (temp.constr.op). Returns true if the logical operator is admissible and false otherwise. */ bool check_logical_expr (tree t) { /* We can't do much for type dependent expressions. */ if (type_dependent_expression_p (t)) return true; /* Resolve the logical operator. Note that template processing is disabled so we get the actual call or target expression back. not_processing_template_sentinel sentinel. TODO: This check is actually subsumed by the requirement that constraint operands have type bool. I'm not sure we need it unless we allow conversions. */ tree arg1 = TREE_OPERAND (t, 0); tree arg2 = TREE_OPERAND (t, 1); tree ovl = NULL_TREE; tree expr = build_x_binary_op (EXPR_LOC_OR_LOC (arg2, input_location), TREE_CODE (t), arg1, TREE_CODE (arg1), arg2, TREE_CODE (arg2), &ovl, tf_none); if (TREE_CODE (expr) != TREE_CODE (t)) { error ("user-defined operator %qs in constraint %q+E", operator_name_info[TREE_CODE (t)].name, t); return false; } return true; } /* Transform a logical-or or logical-and expression into either a conjunction or disjunction. */ tree xform_logical (tree t, tree_code c) { if (!check_logical_expr (t)) return error_mark_node; tree t0 = transform_expression (TREE_OPERAND (t, 0)); tree t1 = transform_expression (TREE_OPERAND (t, 1)); return build_nt (c, t0, t1); } /* A simple requirement T introduces an expression constraint for its expression. */ inline tree xform_simple_requirement (tree t) { return build_nt (EXPR_CONSTR, TREE_OPERAND (t, 0)); } /* A type requirement T introduce a type constraint for its type. */ inline tree xform_type_requirement (tree t) { return build_nt (TYPE_CONSTR, TREE_OPERAND (t, 0)); } /* A compound requirement T introduces a conjunction of constraints depending on its form. The conjunction always includes an expression constraint for the expression of the requirement. If a trailing return type was specified, the conjunction includes either an implicit conversion constraint or an argument deduction constraint. If the noexcept specifier is present, the conjunction includes an exception constraint. */ tree xform_compound_requirement (tree t) { tree expr = TREE_OPERAND (t, 0); tree constr = build_nt (EXPR_CONSTR, TREE_OPERAND (t, 0)); /* If a type is given, append an implicit conversion or argument deduction constraint. */ if (tree type = TREE_OPERAND (t, 1)) { tree type_constr; /* TODO: We should be extracting a list of auto nodes from type_uses_auto, not a single node */ if (tree placeholder = type_uses_auto (type)) type_constr = build_nt (DEDUCT_CONSTR, expr, type, placeholder); else type_constr = build_nt (ICONV_CONSTR, expr, type); constr = conjoin_constraints (constr, type_constr); } /* If noexcept is present, append an exception constraint. */ if (COMPOUND_REQ_NOEXCEPT_P (t)) { tree except = build_nt (EXCEPT_CONSTR, expr); constr = conjoin_constraints (constr, except); } return constr; } /* A nested requirement T introduces a conjunction of constraints corresponding to its constraint-expression. If the result of transforming T is error_mark_node, the resulting constraint is a predicate constraint whose operand is also error_mark_node. This preserves the constraint structure, but will guarantee that the constraint is never satisfied. */ inline tree xform_nested_requirement (tree t) { return transform_expression (TREE_OPERAND (t, 0)); } /* Transform a requirement T into one or more constraints. */ tree xform_requirement (tree t) { switch (TREE_CODE (t)) { case SIMPLE_REQ: return xform_simple_requirement (t); case TYPE_REQ: return xform_type_requirement (t); case COMPOUND_REQ: return xform_compound_requirement (t); case NESTED_REQ: return xform_nested_requirement (t); default: gcc_unreachable (); } return error_mark_node; } /* Transform a sequence of requirements into a conjunction of constraints. */ tree xform_requirements (tree t) { tree result = NULL_TREE; for (; t; t = TREE_CHAIN (t)) { tree constr = xform_requirement (TREE_VALUE (t)); result = conjoin_constraints (result, constr); } return result; } /* Transform a requires-expression into a parameterized constraint. */ tree xform_requires_expr (tree t) { tree operand = xform_requirements (TREE_OPERAND (t, 1)); if (tree parms = TREE_OPERAND (t, 0)) return build_nt (PARM_CONSTR, parms, operand); else return operand; } /* Transform an expression into an atomic predicate constraint. After substitution, the expression of a predicate constraint shall have type bool (temp.constr.pred). For non-type-dependent expressions, we can check that now. */ tree xform_atomic (tree t) { if (TREE_TYPE (t) && !type_dependent_expression_p (t)) { tree type = cv_unqualified (TREE_TYPE (t)); if (!same_type_p (type, boolean_type_node)) { error ("predicate constraint %q+E does not have type %", t); return error_mark_node; } } return build_nt (PRED_CONSTR, t); } /* Push down the pack expansion EXP into the leaves of the constraint PAT. */ tree push_down_pack_expansion (tree exp, tree pat) { switch (TREE_CODE (pat)) { case CONJ_CONSTR: case DISJ_CONSTR: { pat = copy_node (pat); TREE_OPERAND (pat, 0) = push_down_pack_expansion (exp, TREE_OPERAND (pat, 0)); TREE_OPERAND (pat, 1) = push_down_pack_expansion (exp, TREE_OPERAND (pat, 1)); return pat; } default: { exp = copy_node (exp); SET_PACK_EXPANSION_PATTERN (exp, pat); return exp; } } } /* Transform a pack expansion into a constraint. First we transform the pattern of the pack expansion, then we push the pack expansion down into the leaves of the constraint so that partial ordering will work. */ tree xform_pack_expansion (tree t) { tree pat = transform_expression (PACK_EXPANSION_PATTERN (t)); return push_down_pack_expansion (t, pat); } /* Transform an expression into a constraint. */ tree xform_expr (tree t) { switch (TREE_CODE (t)) { case TRUTH_ANDIF_EXPR: return xform_logical (t, CONJ_CONSTR); case TRUTH_ORIF_EXPR: return xform_logical (t, DISJ_CONSTR); case REQUIRES_EXPR: return xform_requires_expr (t); case BIND_EXPR: return transform_expression (BIND_EXPR_BODY (t)); case EXPR_PACK_EXPANSION: return xform_pack_expansion (t); default: /* All other constraints are atomic. */ return xform_atomic (t); } } /* Transform a statement into an expression. */ tree xform_stmt (tree t) { switch (TREE_CODE (t)) { case RETURN_EXPR: return transform_expression (TREE_OPERAND (t, 0)); default: gcc_unreachable (); } return error_mark_node; } /* Reduction rules for the declaration T. */ tree xform_decl (tree t) { switch (TREE_CODE (t)) { case VAR_DECL: return xform_atomic (t); default: gcc_unreachable (); } return error_mark_node; } /* Transform a lifted expression into a constraint. This either returns a constraint, or it returns error_mark_node when a constraint cannot be formed. */ tree transform_expression (tree t) { if (!t) return NULL_TREE; if (t == error_mark_node) return error_mark_node; switch (TREE_CODE_CLASS (TREE_CODE (t))) { case tcc_unary: case tcc_binary: case tcc_expression: case tcc_vl_exp: return xform_expr (t); case tcc_statement: return xform_stmt (t); case tcc_declaration: return xform_decl (t); case tcc_exceptional: case tcc_constant: case tcc_reference: case tcc_comparison: /* These are all atomic predicate constraints. */ return xform_atomic (t); default: /* Unhandled node kind. */ gcc_unreachable (); } return error_mark_node; } /*--------------------------------------------------------------------------- Constraint normalization ---------------------------------------------------------------------------*/ tree normalize_constraint (tree); /* The normal form of the disjunction T0 /\ T1 is the conjunction of the normal form of T0 and the normal form of T1. */ inline tree normalize_conjunction (tree t) { tree t0 = normalize_constraint (TREE_OPERAND (t, 0)); tree t1 = normalize_constraint (TREE_OPERAND (t, 1)); return build_nt (CONJ_CONSTR, t0, t1); } /* The normal form of the disjunction T0 \/ T1 is the disjunction of the normal form of T0 and the normal form of T1. */ inline tree normalize_disjunction (tree t) { tree t0 = normalize_constraint (TREE_OPERAND (t, 0)); tree t1 = normalize_constraint (TREE_OPERAND (t, 1)); return build_nt (DISJ_CONSTR, t0, t1); } /* A predicate constraint is normalized in two stages. First all references specializations of concepts are replaced by their substituted definitions. Then, the resulting expression is transformed into a constraint by transforming && expressions into conjunctions and || into disjunctions. */ tree normalize_predicate_constraint (tree t) { ++processing_template_decl; tree expr = PRED_CONSTR_EXPR (t); tree lifted = lift_expression (expr); tree constr = transform_expression (lifted); --processing_template_decl; return constr; } /* The normal form of a parameterized constraint is the normal form of its operand. */ tree normalize_parameterized_constraint (tree t) { tree parms = PARM_CONSTR_PARMS (t); tree operand = normalize_constraint (PARM_CONSTR_OPERAND (t)); return build_nt (PARM_CONSTR, parms, operand); } /* Normalize the constraint T by reducing it so that it is comprised of only conjunctions and disjunctions of atomic constraints. */ tree normalize_constraint (tree t) { if (!t) return NULL_TREE; if (t == error_mark_node) return t; switch (TREE_CODE (t)) { case CONJ_CONSTR: return normalize_conjunction (t); case DISJ_CONSTR: return normalize_disjunction (t); case PRED_CONSTR: return normalize_predicate_constraint (t); case PARM_CONSTR: return normalize_parameterized_constraint (t); case EXPR_CONSTR: case TYPE_CONSTR: case ICONV_CONSTR: case DEDUCT_CONSTR: case EXCEPT_CONSTR: /* These constraints are defined to be atomic. */ return t; default: /* CONSTR was not a constraint. */ gcc_unreachable(); } return error_mark_node; } } /* namespace */ // -------------------------------------------------------------------------- // // Constraint Semantic Processing // // The following functions are called by the parser and substitution rules // to create and evaluate constraint-related nodes. // The constraints associated with the current template parameters. tree current_template_constraints (void) { if (!current_template_parms) return NULL_TREE; tree tmpl_constr = TEMPLATE_PARM_CONSTRAINTS (current_template_parms); return build_constraints (tmpl_constr, NULL_TREE); } // If the recently parsed TYPE declares or defines a template or template // specialization, get its corresponding constraints from the current // template parameters and bind them to TYPE's declaration. tree associate_classtype_constraints (tree type) { if (!type || type == error_mark_node || TREE_CODE (type) != RECORD_TYPE) return type; // An explicit class template specialization has no template // parameters. if (!current_template_parms) return type; if (CLASSTYPE_IS_TEMPLATE (type) || CLASSTYPE_TEMPLATE_SPECIALIZATION (type)) { tree decl = TYPE_STUB_DECL (type); tree ci = current_template_constraints (); // An implicitly instantiated member template declaration already // has associated constraints. If it is defined outside of its // class, then we need match these constraints against those of // original declaration. if (tree orig_ci = get_constraints (decl)) { if (!equivalent_constraints (ci, orig_ci)) { // FIXME: Improve diagnostics. error ("%qT does not match any declaration", type); return error_mark_node; } return type; } set_constraints (decl, ci); } return type; } namespace { // Create an empty constraint info block. inline tree_constraint_info* build_constraint_info () { return (tree_constraint_info *)make_node (CONSTRAINT_INFO); } } // namespace /* Build a constraint-info object that contains the associated constraints of a declaration. This also includes the declaration's template requirements (TREQS) and any trailing requirements for a function declarator (DREQS). Note that both TREQS and DREQS must be constraints. If the declaration has neither template nor declaration requirements this returns NULL_TREE, indicating an unconstrained declaration. */ tree build_constraints (tree tmpl_reqs, tree decl_reqs) { gcc_assert (tmpl_reqs ? constraint_p (tmpl_reqs) : true); gcc_assert (decl_reqs ? constraint_p (decl_reqs) : true); if (!tmpl_reqs && !decl_reqs) return NULL_TREE; tree_constraint_info* ci = build_constraint_info (); ci->template_reqs = tmpl_reqs; ci->declarator_reqs = decl_reqs; ci->associated_constr = conjoin_constraints (tmpl_reqs, decl_reqs); ++processing_template_decl; ci->normalized_constr = normalize_constraint (ci->associated_constr); --processing_template_decl; ci->assumptions = decompose_assumptions (ci->normalized_constr); return (tree)ci; } namespace { /* Returns true if any of the arguments in the template argument list is a wildcard or wildcard pack. */ bool contains_wildcard_p (tree args) { for (int i = 0; i < TREE_VEC_LENGTH (args); ++i) { tree arg = TREE_VEC_ELT (args, i); if (TREE_CODE (arg) == WILDCARD_DECL) return true; } return false; } /* Build a new call expression, but don't actually generate a new function call. We just want the tree, not the semantics. */ inline tree build_call_check (tree id) { ++processing_template_decl; vec *fargs = make_tree_vector(); tree call = finish_call_expr (id, &fargs, false, false, tf_none); release_tree_vector (fargs); --processing_template_decl; return call; } /* Build an expression that will check a variable concept. If any argument contains a wildcard, don't try to finish the variable template because we can't substitute into a non-existent declaration. */ tree build_variable_check (tree id) { gcc_assert (TREE_CODE (id) == TEMPLATE_ID_EXPR); if (contains_wildcard_p (TREE_OPERAND (id, 1))) return id; ++processing_template_decl; tree var = finish_template_variable (id); --processing_template_decl; return var; } /* Construct a sequence of template arguments by prepending ARG to REST. Either ARG or REST may be null. */ tree build_concept_check_arguments (tree arg, tree rest) { gcc_assert (rest ? TREE_CODE (rest) == TREE_VEC : true); tree args; if (arg) { int n = rest ? TREE_VEC_LENGTH (rest) : 0; args = make_tree_vec (n + 1); TREE_VEC_ELT (args, 0) = arg; if (rest) for (int i = 0; i < n; ++i) TREE_VEC_ELT (args, i + 1) = TREE_VEC_ELT (rest, i); int def = rest ? GET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (rest) : 0; SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (args, def + 1); } else { gcc_assert (rest != NULL_TREE); args = rest; } return args; } } // namespace /* Construct an expression that checks the concept given by TARGET. The TARGET must be: - an OVERLOAD referring to one or more function concepts - a BASELINK referring to an overload set of the above, or - a TEMPLTATE_DECL referring to a variable concept. ARG and REST are the explicit template arguments for the eventual concept check. */ tree build_concept_check (tree target, tree arg, tree rest) { tree args = build_concept_check_arguments (arg, rest); if (variable_template_p (target)) return build_variable_check (lookup_template_variable (target, args)); else return build_call_check (lookup_template_function (target, args)); } /* Returns a TYPE_DECL that contains sufficient information to build a template parameter of the same kind as PROTO and constrained by the concept declaration CNC. Note that PROTO is the first template parameter of CNC. If specified, ARGS provides additional arguments to the constraint check. */ tree build_constrained_parameter (tree cnc, tree proto, tree args) { tree name = DECL_NAME (cnc); tree type = TREE_TYPE (proto); tree decl = build_decl (input_location, TYPE_DECL, name, type); CONSTRAINED_PARM_PROTOTYPE (decl) = proto; CONSTRAINED_PARM_CONCEPT (decl) = cnc; CONSTRAINED_PARM_EXTRA_ARGS (decl) = args; return decl; } /* Create a constraint expression for the given DECL that evaluates the requirements specified by CONSTR, a TYPE_DECL that contains all the information necessary to build the requirements (see finish_concept_name for the layout of that TYPE_DECL). Note that the constraints are neither reduced nor decomposed. That is done only after the requires clause has been parsed (or not). */ tree finish_shorthand_constraint (tree decl, tree constr) { /* No requirements means no constraints. */ if (!constr) return NULL_TREE; tree proto = CONSTRAINED_PARM_PROTOTYPE (constr); tree con = CONSTRAINED_PARM_CONCEPT (constr); tree args = CONSTRAINED_PARM_EXTRA_ARGS (constr); /* If the parameter declaration is variadic, but the concept is not then we need to apply the concept to every element in the pack. */ bool is_proto_pack = template_parameter_pack_p (proto); bool is_decl_pack = template_parameter_pack_p (decl); bool apply_to_all_p = is_decl_pack && !is_proto_pack; /* Get the argument and overload used for the requirement and adjust it if we're going to expand later. */ tree arg = template_parm_to_arg (build_tree_list (NULL_TREE, decl)); if (apply_to_all_p) arg = PACK_EXPANSION_PATTERN (TREE_VEC_ELT (ARGUMENT_PACK_ARGS (arg), 0)); /* Build the concept check. If it the constraint needs to be applied to all elements of the parameter pack, then make the constraint an expansion. */ tree check; tree tmpl = DECL_TI_TEMPLATE (con); if (TREE_CODE (con) == VAR_DECL) { check = build_concept_check (tmpl, arg, args); } else { tree ovl = build_overload (tmpl, NULL_TREE); check = build_concept_check (ovl, arg, args); } /* Make the check a pack expansion if needed. FIXME: We should be making a fold expression. */ if (apply_to_all_p) { check = make_pack_expansion (check); TREE_TYPE (check) = boolean_type_node; } return make_predicate_constraint (check); } /* Returns a conjunction of shorthand requirements for the template parameter list PARMS. Note that the requirements are stored in the TYPE of each tree node. */ tree get_shorthand_constraints (tree parms) { tree result = NULL_TREE; parms = INNERMOST_TEMPLATE_PARMS (parms); for (int i = 0; i < TREE_VEC_LENGTH (parms); ++i) { tree parm = TREE_VEC_ELT (parms, i); tree constr = TEMPLATE_PARM_CONSTRAINTS (parm); result = conjoin_constraints (result, constr); } return result; } // Returns and chains a new parameter for PARAMETER_LIST which will conform // to the prototype given by SRC_PARM. The new parameter will have its // identifier and location set according to IDENT and PARM_LOC respectively. static tree process_introduction_parm (tree parameter_list, tree src_parm) { // If we have a pack, we should have a single pack argument which is the // placeholder we want to look at. bool is_parameter_pack = ARGUMENT_PACK_P (src_parm); if (is_parameter_pack) src_parm = TREE_VEC_ELT (ARGUMENT_PACK_ARGS (src_parm), 0); // At this point we should have a wildcard, but we want to // grab the associated decl from it. Also grab the stored // identifier and location that should be chained to it in // a PARM_DECL. gcc_assert (TREE_CODE (src_parm) == WILDCARD_DECL); tree ident = DECL_NAME (src_parm); location_t parm_loc = DECL_SOURCE_LOCATION (src_parm); // If we expect a pack and the deduced template is not a pack, or if the // template is using a pack and we didn't declare a pack, throw an error. if (is_parameter_pack != WILDCARD_PACK_P (src_parm)) { error_at (parm_loc, "cannot match pack for introduced parameter"); tree err_parm = build_tree_list (error_mark_node, error_mark_node); return chainon (parameter_list, err_parm); } src_parm = TREE_TYPE (src_parm); tree parm; bool is_non_type; if (TREE_CODE (src_parm) == TYPE_DECL) { is_non_type = false; parm = finish_template_type_parm (class_type_node, ident); } else if (TREE_CODE (src_parm) == TEMPLATE_DECL) { is_non_type = false; begin_template_parm_list (); current_template_parms = DECL_TEMPLATE_PARMS (src_parm); end_template_parm_list (); parm = finish_template_template_parm (class_type_node, ident); } else { is_non_type = true; // Since we don't have a declarator, so we can copy the source // parameter and change the name and eventually the location. parm = copy_decl (src_parm); DECL_NAME (parm) = ident; } // Wrap in a TREE_LIST for process_template_parm. Introductions do not // retain the defaults from the source template. parm = build_tree_list (NULL_TREE, parm); return process_template_parm (parameter_list, parm_loc, parm, is_non_type, is_parameter_pack); } /* Associates a constraint check to the current template based on the introduction parameters. INTRO_LIST must be a TREE_VEC of WILDCARD_DECLs containing a chained PARM_DECL which contains the identifier as well as the source location. TMPL_DECL is the decl for the concept being used. If we take a concept, C, this will form a check in the form of C filling in any extra arguments needed by the defaults deduced. Returns NULL_TREE if no concept could be matched and error_mark_node if an error occurred when matching. */ tree finish_template_introduction (tree tmpl_decl, tree intro_list) { /* Deduce the concept check. */ tree expr = build_concept_check (tmpl_decl, NULL_TREE, intro_list); if (expr == error_mark_node) return NULL_TREE; tree parms = deduce_concept_introduction (expr); if (!parms) return NULL_TREE; /* Build template parameter scope for introduction. */ tree parm_list = NULL_TREE; begin_template_parm_list (); int nargs = MIN (TREE_VEC_LENGTH (parms), TREE_VEC_LENGTH (intro_list)); for (int n = 0; n < nargs; ++n) parm_list = process_introduction_parm (parm_list, TREE_VEC_ELT (parms, n)); parm_list = end_template_parm_list (parm_list); for (int i = 0; i < TREE_VEC_LENGTH (parm_list); ++i) if (TREE_VALUE (TREE_VEC_ELT (parm_list, i)) == error_mark_node) { end_template_decl (); return error_mark_node; } /* Build a concept check for our constraint. */ tree check_args = make_tree_vec (TREE_VEC_LENGTH (parms)); int n = 0; for (; n < TREE_VEC_LENGTH (parm_list); ++n) { tree parm = TREE_VEC_ELT (parm_list, n); TREE_VEC_ELT (check_args, n) = template_parm_to_arg (parm); } SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (check_args, n); /* If the template expects more parameters we should be able to use the defaults from our deduced concept. */ for (; n < TREE_VEC_LENGTH (parms); ++n) TREE_VEC_ELT (check_args, n) = TREE_VEC_ELT (parms, n); /* Associate the constraint. */ tree check = build_concept_check (tmpl_decl, NULL_TREE, check_args); tree constr = make_predicate_constraint (check); TEMPLATE_PARMS_CONSTRAINTS (current_template_parms) = constr; return parm_list; } /* Make a "constrained auto" type-specifier. This is an auto type with constraints that must be associated after deduction. The constraint is formed from the given CONC and its optional sequence of arguments, which are non-null if written as partial-concept-id. */ tree make_constrained_auto (tree con, tree args) { tree type = make_auto(); /* Build the constraint. */ tree tmpl = DECL_TI_TEMPLATE (con); tree expr; if (VAR_P (con)) expr = build_concept_check (tmpl, type, args); else expr = build_concept_check (build_overload (tmpl, NULL_TREE), type, args); tree constr = make_predicate_constraint (expr); PLACEHOLDER_TYPE_CONSTRAINTS (type) = constr; /* Attach the constraint to the type declaration. */ tree decl = TYPE_NAME (type); return decl; } /*--------------------------------------------------------------------------- Constraint substitution ---------------------------------------------------------------------------*/ /* The following functions implement substitution rules for constraints. Substitution without checking constraints happens only in the instantiation of class templates. For example: template struct S { void f(T) requires C2; void g(T) requires T::value; }; S s; // error instantiating S::g(T) When we instantiate S, we substitute into its member declarations, including their constraints. However, those constraints are not checked. Substituting int into C2 yields C2, and substituting into T::value yields a substitution failure, making the program ill-formed. Note that we only ever substitute into the associated constraints of a declaration. That is, substitution is defined only for predicate constraints and conjunctions. */ /* Substitute into the predicate constraints. Returns error_mark_node if the substitution into the expression fails. */ tree tsubst_predicate_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { tree expr = PRED_CONSTR_EXPR (t); ++processing_template_decl; tree result = tsubst_expr (expr, args, complain, in_decl, false); --processing_template_decl; return build_nt (PRED_CONSTR, result); } /* Substitute into the conjunction of constraints. Returns error_mark_node if substitution into either operand fails. */ tree tsubst_conjunction (tree t, tree args, tsubst_flags_t complain, tree in_decl) { tree t0 = TREE_OPERAND (t, 0); tree r0 = tsubst_constraint (t0, args, complain, in_decl); tree t1 = TREE_OPERAND (t, 1); tree r1 = tsubst_constraint (t1, args, complain, in_decl); return build_nt (CONJ_CONSTR, r0, r1); } /* Substitute ARGS into the constraint T. */ tree tsubst_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { if (t == NULL_TREE) return t; if (TREE_CODE (t) == CONJ_CONSTR) return tsubst_conjunction (t, args, complain, in_decl); else if (TREE_CODE (t) == PRED_CONSTR) return tsubst_predicate_constraint (t, args, complain, in_decl); else gcc_unreachable (); return error_mark_node; } namespace { /* A subroutine of tsubst_constraint_variables. Register local specializations for each of parameter in PARMS and its corresponding substituted constraint variable in VARS. Returns VARS. */ tree declare_constraint_vars (tree parms, tree vars) { tree s = vars; for (tree t = parms; t; t = DECL_CHAIN (t)) { if (DECL_PACK_P (t)) { tree pack = extract_fnparm_pack (t, &s); register_local_specialization (pack, t); } else { register_local_specialization (s, t); s = DECL_CHAIN (s); } } return vars; } /* A subroutine of tsubst_parameterized_constraint. Substitute ARGS into the parameter list T, producing a sequence of constraint variables, declared in the current scope. Note that the caller must establish a local specialization stack prior to calling this function since this substitution will declare the substituted parameters. */ tree tsubst_constraint_variables (tree t, tree args, tsubst_flags_t complain, tree in_decl) { /* Clear cp_unevaluated_operand across tsubst so that we get a proper chain of PARM_DECLs. */ int saved_unevaluated_operand = cp_unevaluated_operand; cp_unevaluated_operand = 0; tree vars = tsubst (t, args, complain, in_decl); cp_unevaluated_operand = saved_unevaluated_operand; if (vars == error_mark_node) return error_mark_node; return declare_constraint_vars (t, vars); } /* Substitute ARGS into the simple requirement T. Note that substitution may result in an ill-formed expression without causing the program to be ill-formed. In such cases, the requirement wraps an error_mark_node. */ inline tree tsubst_simple_requirement (tree t, tree args, tsubst_flags_t complain, tree in_decl) { ++processing_template_decl; tree expr = tsubst_expr (TREE_OPERAND (t, 0), args, complain, in_decl, false); --processing_template_decl; return finish_simple_requirement (expr); } /* Substitute ARGS into the type requirement T. Note that substitution may result in an ill-formed type without causing the program to be ill-formed. In such cases, the requirement wraps an error_mark_node. */ inline tree tsubst_type_requirement (tree t, tree args, tsubst_flags_t complain, tree in_decl) { ++processing_template_decl; tree type = tsubst (TREE_OPERAND (t, 0), args, complain, in_decl); --processing_template_decl; return finish_type_requirement (type); } /* Substitute args into the compound requirement T. If substituting into either the expression or the type fails, the corresponding operands in the resulting node will be error_mark_node. This preserves a requirement for the purpose of partial ordering, but it will never be satisfied. */ tree tsubst_compound_requirement (tree t, tree args, tsubst_flags_t complain, tree in_decl) { ++processing_template_decl; tree expr = tsubst_expr (TREE_OPERAND (t, 0), args, complain, in_decl, false); tree type = tsubst (TREE_OPERAND (t, 1), args, complain, in_decl); --processing_template_decl; bool noexcept_p = COMPOUND_REQ_NOEXCEPT_P (t); return finish_compound_requirement (expr, type, noexcept_p); } /* Substitute ARGS into the nested requirement T. */ tree tsubst_nested_requirement (tree t, tree args, tsubst_flags_t complain, tree in_decl) { ++processing_template_decl; tree expr = tsubst_expr (TREE_OPERAND (t, 0), args, complain, in_decl, false); --processing_template_decl; return finish_nested_requirement (expr); } inline tree tsubst_requirement (tree t, tree args, tsubst_flags_t complain, tree in_decl) { switch (TREE_CODE (t)) { case SIMPLE_REQ: return tsubst_simple_requirement (t, args, complain, in_decl); case TYPE_REQ: return tsubst_type_requirement (t, args, complain, in_decl); case COMPOUND_REQ: return tsubst_compound_requirement (t, args, complain, in_decl); case NESTED_REQ: return tsubst_nested_requirement (t, args, complain, in_decl); default: gcc_unreachable (); } return error_mark_node; } /* Substitute ARGS into the list of requirements T. Note that substitution failures here result in ill-formed programs. */ tree tsubst_requirement_body (tree t, tree args, tsubst_flags_t complain, tree in_decl) { tree r = NULL_TREE; while (t) { tree e = tsubst_requirement (TREE_VALUE (t), args, complain, in_decl); if (e == error_mark_node) return error_mark_node; r = tree_cons (NULL_TREE, e, r); t = TREE_CHAIN (t); } return r; } } /* namespace */ /* Substitute ARGS into the requires expression T. Note that this results in the re-declaration of local parameters when substituting through the parameter list. If either substitution fails, the program is ill-formed. */ tree tsubst_requires_expr (tree t, tree args, tsubst_flags_t complain, tree in_decl) { local_specialization_stack stack; tree parms = TREE_OPERAND (t, 0); if (parms) { parms = tsubst_constraint_variables (parms, args, complain, in_decl); if (parms == error_mark_node) return error_mark_node; } tree reqs = TREE_OPERAND (t, 1); reqs = tsubst_requirement_body (reqs, args, complain, in_decl); if (reqs == error_mark_node) return error_mark_node; return finish_requires_expr (parms, reqs); } /* Substitute ARGS into the constraint information CI, producing a new constraint record. */ tree tsubst_constraint_info (tree t, tree args, tsubst_flags_t complain, tree in_decl) { if (!t || t == error_mark_node || !check_constraint_info (t)) return NULL_TREE; tree tmpl_constr = NULL_TREE; if (tree r = CI_TEMPLATE_REQS (t)) tmpl_constr = tsubst_constraint (r, args, complain, in_decl); tree decl_constr = NULL_TREE; if (tree r = CI_DECLARATOR_REQS (t)) decl_constr = tsubst_constraint (r, args, complain, in_decl); return build_constraints (tmpl_constr, decl_constr); } /*--------------------------------------------------------------------------- Constraint satisfaction ---------------------------------------------------------------------------*/ /* The following functions determine if a constraint, when substituting template arguments, is satisfied. For convenience, satisfaction reduces a constraint to either true or false (and nothing else). */ namespace { tree satisfy_constraint_1 (tree, tree, tsubst_flags_t, tree); /* Check the constraint pack expansion. */ tree satisfy_pack_expansion (tree t, tree args, tsubst_flags_t complain, tree in_decl) { /* Get the vector of satisfaction results. gen_elem_of_pack_expansion_instantiation will check that each element of the expansion is satisfied. */ tree exprs = tsubst_pack_expansion (t, args, complain, in_decl); if (exprs == error_mark_node) return boolean_false_node; int n = TREE_VEC_LENGTH (exprs); for (int i = 0; i < n; ++i) if (TREE_VEC_ELT (exprs, i) != boolean_true_node) return boolean_false_node; return boolean_true_node; } /* A predicate constraint is satisfied if its expression evaluates to true. If substitution into that node fails, the constraint is not satisfied ([temp.constr.pred]). Note that a predicate constraint is a constraint expression of type bool. If neither of those are true, the program is ill-formed; they are not SFINAE'able errors. */ tree satisfy_predicate_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { tree original = TREE_OPERAND (t, 0); /* We should never have a naked pack expansion in a predicate constraint. */ gcc_assert (TREE_CODE (original) != EXPR_PACK_EXPANSION); tree expr = tsubst_expr (original, args, complain, in_decl, false); if (expr == error_mark_node) return boolean_false_node; /* A predicate constraint shall have type bool. In some cases, substitution gives us const-qualified bool, which is also acceptable. */ tree type = cv_unqualified (TREE_TYPE (expr)); if (!same_type_p (type, boolean_type_node)) { error_at (EXPR_LOC_OR_LOC (expr, input_location), "constraint %qE does not have type %qT", expr, boolean_type_node); return boolean_false_node; } tree value = cxx_constant_value (expr); return value; } /* Check an expression constraint. The constraint is satisfied if substitution succeeds ([temp.constr.expr]). Note that the expression is unevaluated. */ tree satisfy_expression_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { cp_unevaluated guard; deferring_access_check_sentinel deferring; tree expr = EXPR_CONSTR_EXPR (t); tree check = tsubst_expr (expr, args, complain, in_decl, false); if (check == error_mark_node) return boolean_false_node; if (!perform_deferred_access_checks (tf_none)) return boolean_false_node; return boolean_true_node; } /* Check a type constraint. The constraint is satisfied if substitution succeeds. */ inline tree satisfy_type_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { deferring_access_check_sentinel deferring; tree type = TYPE_CONSTR_TYPE (t); gcc_assert (TYPE_P (type) || type == error_mark_node); tree check = tsubst (type, args, complain, in_decl); if (error_operand_p (check)) return boolean_false_node; if (!perform_deferred_access_checks (complain)) return boolean_false_node; return boolean_true_node; } /* Check an implicit conversion constraint. */ tree satisfy_implicit_conversion_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { /* Don't tsubst as if we're processing a template. If we try to we can end up generating template-like expressions (e.g., modop-exprs) that aren't properly typed. */ tree expr = tsubst_expr (ICONV_CONSTR_EXPR (t), args, complain, in_decl, false); if (expr == error_mark_node) return boolean_false_node; /* Get the transformed target type. */ tree type = tsubst (ICONV_CONSTR_TYPE (t), args, complain, in_decl); if (type == error_mark_node) return boolean_false_node; /* Attempt the conversion as a direct initialization of the form TYPE = EXPR. */ tree conv = perform_direct_initialization_if_possible (type, expr, false, complain); if (conv == NULL_TREE || conv == error_mark_node) return boolean_false_node; else return boolean_true_node; } /* Check an argument deduction constraint. */ tree satisfy_argument_deduction_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { /* Substitute through the expression. */ tree expr = DEDUCT_CONSTR_EXPR (t); tree init = tsubst_expr (expr, args, complain, in_decl, false); if (expr == error_mark_node) return boolean_false_node; /* Perform auto or decltype(auto) deduction to get the result. */ tree pattern = DEDUCT_CONSTR_PATTERN (t); tree placeholder = DEDUCT_CONSTR_PLACEHOLDER (t); tree constr = PLACEHOLDER_TYPE_CONSTRAINTS (placeholder); PLACEHOLDER_TYPE_CONSTRAINTS (placeholder) = tsubst_constraint (constr, args, complain|tf_partial, in_decl); tree type = do_auto_deduction (pattern, init, placeholder, complain, adc_requirement); PLACEHOLDER_TYPE_CONSTRAINTS (placeholder) = constr; if (type == error_mark_node) return boolean_false_node; return boolean_true_node; } /* Check an exception constraint. An exception constraint for an expression e is satisfied when noexcept(e) is true. */ tree satisfy_exception_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { tree expr = EXCEPT_CONSTR_EXPR (t); tree check = tsubst_expr (expr, args, complain, in_decl, false); if (check == error_mark_node) return boolean_false_node; if (expr_noexcept_p (check, complain)) return boolean_true_node; else return boolean_false_node; } /* Check a parameterized constraint. */ tree satisfy_parameterized_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl) { local_specialization_stack stack; tree parms = PARM_CONSTR_PARMS (t); tree vars = tsubst_constraint_variables (parms, args, complain, in_decl); if (vars == error_mark_node) return boolean_false_node; tree constr = PARM_CONSTR_OPERAND (t); return satisfy_constraint_1 (constr, args, complain, in_decl); } /* Check that the conjunction of constraints is satisfied. Note that if left operand is not satisfied, the right operand is not checked. FIXME: Check that this wouldn't result in a user-defined operator. Note that this error is partially diagnosed in satisfy_predicate_constraint. It would be nice to diagnose the overload, but I don't think it's strictly necessary. */ tree satisfy_conjunction (tree t, tree args, tsubst_flags_t complain, tree in_decl) { tree t0 = satisfy_constraint_1 (TREE_OPERAND (t, 0), args, complain, in_decl); if (t0 == boolean_false_node) return t0; tree t1 = satisfy_constraint_1 (TREE_OPERAND (t, 1), args, complain, in_decl); if (t1 == boolean_false_node) return t1; return boolean_true_node; } /* Check that the disjunction of constraints is satisfied. Note that if the left operand is satisfied, the right operand is not checked. */ tree satisfy_disjunction (tree t, tree args, tsubst_flags_t complain, tree in_decl) { tree t0 = satisfy_constraint_1 (TREE_OPERAND (t, 0), args, complain, in_decl); if (t0 == boolean_true_node) return boolean_true_node; tree t1 = satisfy_constraint_1 (TREE_OPERAND (t, 1), args, complain, in_decl); if (t1 == boolean_true_node) return boolean_true_node; return boolean_false_node; } /* Dispatch to an appropriate satisfaction routine depending on the tree code of T. */ tree satisfy_constraint_1 (tree t, tree args, tsubst_flags_t complain, tree in_decl) { gcc_assert (!processing_template_decl); if (!t) return boolean_false_node; if (t == error_mark_node) return boolean_false_node; switch (TREE_CODE (t)) { case PRED_CONSTR: return satisfy_predicate_constraint (t, args, complain, in_decl); case EXPR_CONSTR: return satisfy_expression_constraint (t, args, complain, in_decl); case TYPE_CONSTR: return satisfy_type_constraint (t, args, complain, in_decl); case ICONV_CONSTR: return satisfy_implicit_conversion_constraint (t, args, complain, in_decl); case DEDUCT_CONSTR: return satisfy_argument_deduction_constraint (t, args, complain, in_decl); case EXCEPT_CONSTR: return satisfy_exception_constraint (t, args, complain, in_decl); case PARM_CONSTR: return satisfy_parameterized_constraint (t, args, complain, in_decl); case CONJ_CONSTR: return satisfy_conjunction (t, args, complain, in_decl); case DISJ_CONSTR: return satisfy_disjunction (t, args, complain, in_decl); case EXPR_PACK_EXPANSION: return satisfy_pack_expansion (t, args, complain, in_decl); default: gcc_unreachable (); } return boolean_false_node; } /* Check that the constraint is satisfied, according to the rules for that constraint. Note that each satisfy_* function returns true or false, depending on whether it is satisfied or not. */ tree satisfy_constraint (tree t, tree args) { /* Turn off template processing. Constraint satisfaction only applies to non-dependent terms, so we want full checking here. */ processing_template_decl_sentinel sentinel (true); /* Avoid early exit in tsubst and tsubst_copy from null args; since earlier substitution was done with processing_template_decl forced on, there will be expressions that still need semantic processing, possibly buried in decltype or a template argument. */ if (args == NULL_TREE) args = make_tree_vec (1); return satisfy_constraint_1 (t, args, tf_none, NULL_TREE); } /* Check the associated constraints in CI against the given ARGS, returning true when the constraints are satisfied and false otherwise. */ tree satisfy_associated_constraints (tree ci, tree args) { /* If there are no constraints then this is trivially satisfied. */ if (!ci) return boolean_true_node; /* If any arguments depend on template parameters, we can't check constraints. */ if (args && uses_template_parms (args)) return boolean_true_node; /* Invalid requirements cannot be satisfied. */ if (!valid_constraints_p (ci)) return boolean_false_node; return satisfy_constraint (CI_NORMALIZED_CONSTRAINTS (ci), args); } } /* namespace */ /* Evaluate the given constraint, returning boolean_true_node if the constraint is satisfied and boolean_false_node otherwise. */ tree evaluate_constraints (tree constr, tree args) { gcc_assert (constraint_p (constr)); return satisfy_constraint (normalize_constraint (constr), args); } /* Evaluate the function concept FN by substituting its own args into its definition and evaluating that as the result. Returns boolean_true_node if the constraints are satisfied and boolean_false_node otherwise. */ tree evaluate_function_concept (tree fn, tree args) { ++processing_template_decl; /* We lift using DECL_TI_ARGS because we want to delay producing non-dependent expressions until we're doing satisfaction. We can't just go without any substitution because we need to lower the level of 'auto's in type deduction constraints. */ tree constr = transform_expression (lift_function_definition (fn, DECL_TI_ARGS (fn))); --processing_template_decl; return satisfy_constraint (constr, args); } /* Evaluate the variable concept VAR by substituting its own args into its initializer and checking the resulting constraint. Returns boolean_true_node if the constraints are satisfied and boolean_false_node otherwise. */ tree evaluate_variable_concept (tree decl, tree args) { ++processing_template_decl; tree constr = transform_expression (lift_variable_initializer (decl, DECL_TI_ARGS (decl))); --processing_template_decl; return satisfy_constraint (constr, args); } /* Evaluate the given expression as if it were a predicate constraint. Returns boolean_true_node if the constraint is satisfied and boolean_false_node otherwise. */ tree evaluate_constraint_expression (tree expr, tree args) { ++processing_template_decl; tree constr = transform_expression (lift_expression (expr)); --processing_template_decl; return satisfy_constraint (constr, args); } /* Returns true if the DECL's constraints are satisfied. This is used in cases where a declaration is formed but before it is used (e.g., overload resolution). */ bool constraints_satisfied_p (tree decl) { /* Get the constraints to check for satisfaction. This depends on whether we're looking at a template specialization or not. */ tree ci; tree args = NULL_TREE; if (tree ti = DECL_TEMPLATE_INFO (decl)) { ci = get_constraints (TI_TEMPLATE (ti)); args = INNERMOST_TEMPLATE_ARGS (TI_ARGS (ti)); } else { ci = get_constraints (decl); } tree eval = satisfy_associated_constraints (ci, args); return eval == boolean_true_node; } /* Returns true if the constraints are satisfied by ARGS. Here, T can be either a constraint or a constrained declaration. */ bool constraints_satisfied_p (tree t, tree args) { tree eval; if (constraint_p (t)) eval = evaluate_constraints (t, args); else eval = satisfy_associated_constraints (get_constraints (t), args); return eval == boolean_true_node; } namespace { /* Normalize EXPR and determine if the resulting constraint is satisfied by ARGS. Returns true if and only if the constraint is satisfied. This is used extensively by diagnostics to determine causes for failure. */ inline bool constraint_expression_satisfied_p (tree expr, tree args) { return evaluate_constraint_expression (expr, args) == boolean_true_node; } } /* namespace */ /*--------------------------------------------------------------------------- Semantic analysis of requires-expressions ---------------------------------------------------------------------------*/ /* Finish a requires expression for the given PARMS (possibly null) and the non-empty sequence of requirements. */ tree finish_requires_expr (tree parms, tree reqs) { /* Modify the declared parameters by removing their context so they don't refer to the enclosing scope and explicitly indicating that they are constraint variables. */ for (tree parm = parms; parm; parm = DECL_CHAIN (parm)) { DECL_CONTEXT (parm) = NULL_TREE; CONSTRAINT_VAR_P (parm) = true; } /* Build the node. */ tree r = build_min (REQUIRES_EXPR, boolean_type_node, parms, reqs); TREE_SIDE_EFFECTS (r) = false; TREE_CONSTANT (r) = true; return r; } /* Construct a requirement for the validity of EXPR. */ tree finish_simple_requirement (tree expr) { return build_nt (SIMPLE_REQ, expr); } /* Construct a requirement for the validity of TYPE. */ tree finish_type_requirement (tree type) { return build_nt (TYPE_REQ, type); } /* Construct a requirement for the validity of EXPR, along with its properties. if TYPE is non-null, then it specifies either an implicit conversion or argument deduction constraint, depending on whether any placeholders occur in the type name. NOEXCEPT_P is true iff the noexcept keyword was specified. */ tree finish_compound_requirement (tree expr, tree type, bool noexcept_p) { tree req = build_nt (COMPOUND_REQ, expr, type); COMPOUND_REQ_NOEXCEPT_P (req) = noexcept_p; return req; } /* Finish a nested requirement. */ tree finish_nested_requirement (tree expr) { return build_nt (NESTED_REQ, expr); } // Check that FN satisfies the structural requirements of a // function concept definition. tree check_function_concept (tree fn) { // Check that the function is comprised of only a single // return statement. tree body = DECL_SAVED_TREE (fn); if (TREE_CODE (body) == BIND_EXPR) body = BIND_EXPR_BODY (body); // Sometimes a function call results in the creation of clean up // points. Allow these to be preserved in the body of the // constraint, as we might actually need them for some constexpr // evaluations. if (TREE_CODE (body) == CLEANUP_POINT_EXPR) body = TREE_OPERAND (body, 0); /* Check that the definition is written correctly. */ if (TREE_CODE (body) != RETURN_EXPR) { location_t loc = DECL_SOURCE_LOCATION (fn); if (TREE_CODE (body) == STATEMENT_LIST && !STATEMENT_LIST_HEAD (body)) error_at (loc, "definition of concept %qD is empty", fn); else error_at (loc, "definition of concept %qD has multiple statements", fn); } return NULL_TREE; } // Check that a constrained friend declaration function declaration, // FN, is admissible. This is the case only when the declaration depends // on template parameters and does not declare a specialization. void check_constrained_friend (tree fn, tree reqs) { if (fn == error_mark_node) return; gcc_assert (TREE_CODE (fn) == FUNCTION_DECL); // If there are not constraints, this cannot be an error. if (!reqs) return; // Constrained friend functions that don't depend on template // arguments are effectively meaningless. if (!uses_template_parms (TREE_TYPE (fn))) { error_at (location_of (fn), "constrained friend does not depend on template parameters"); return; } } /*--------------------------------------------------------------------------- Equivalence of constraints ---------------------------------------------------------------------------*/ /* Returns true when A and B are equivalent constraints. */ bool equivalent_constraints (tree a, tree b) { gcc_assert (!a || TREE_CODE (a) == CONSTRAINT_INFO); gcc_assert (!b || TREE_CODE (b) == CONSTRAINT_INFO); return cp_tree_equal (a, b); } /* Returns true if the template declarations A and B have equivalent constraints. This is the case when A's constraints subsume B's and when B's also constrain A's. */ bool equivalently_constrained (tree d1, tree d2) { gcc_assert (TREE_CODE (d1) == TREE_CODE (d2)); return equivalent_constraints (get_constraints (d1), get_constraints (d2)); } /*--------------------------------------------------------------------------- Partial ordering of constraints ---------------------------------------------------------------------------*/ /* Returns true when the the constraints in A subsume those in B. */ bool subsumes_constraints (tree a, tree b) { gcc_assert (!a || TREE_CODE (a) == CONSTRAINT_INFO); gcc_assert (!b || TREE_CODE (b) == CONSTRAINT_INFO); return subsumes (a, b); } /* Determines which of the declarations, A or B, is more constrained. That is, which declaration's constraints subsume but are not subsumed by the other's? Returns 1 if A is more constrained than B, -1 if B is more constrained than A, and 0 otherwise. */ int more_constrained (tree d1, tree d2) { tree c1 = get_constraints (d1); tree c2 = get_constraints (d2); int winner = 0; if (subsumes_constraints (c1, c2)) ++winner; if (subsumes_constraints (c2, c1)) --winner; return winner; } /* Returns true if D1 is at least as constrained as D2. That is, the associated constraints of D1 subsume those of D2, or both declarations are unconstrained. */ bool at_least_as_constrained (tree d1, tree d2) { tree c1 = get_constraints (d1); tree c2 = get_constraints (d2); return subsumes_constraints (c1, c2); } /*--------------------------------------------------------------------------- Constraint diagnostics ---------------------------------------------------------------------------*/ /* The diagnosis of constraints performs a combination of normalization and satisfaction testing. We recursively walk through the conjunction (or disjunctions) of associated constraints, testing each sub-expression in turn. We currently restrict diagnostics to just the top-level conjunctions within the associated constraints. A fully recursive walk is possible, but it can generate a lot of errors. */ namespace { void diagnose_expression (location_t, tree, tree); void diagnose_constraint (location_t, tree, tree); /* Diagnose a conjunction of constraints. */ void diagnose_logical_operation (location_t loc, tree t, tree args) { diagnose_expression (loc, TREE_OPERAND (t, 0), args); diagnose_expression (loc, TREE_OPERAND (t, 0), args); } /* Determine if the trait expression T is satisfied by ARGS. Emit a precise diagnostic if it is not. */ void diagnose_trait_expression (location_t loc, tree t, tree args) { if (constraint_expression_satisfied_p (t, args)) return; /* Rebuild the trait expression so we can diagnose the specific failure. */ ++processing_template_decl; tree expr = tsubst_expr (t, args, tf_none, NULL_TREE, false); --processing_template_decl; tree t1 = TRAIT_EXPR_TYPE1 (expr); tree t2 = TRAIT_EXPR_TYPE2 (expr); switch (TRAIT_EXPR_KIND (t)) { case CPTK_HAS_NOTHROW_ASSIGN: inform (loc, " %qT is not nothrow copy assignable", t1); break; case CPTK_HAS_NOTHROW_CONSTRUCTOR: inform (loc, " %qT is not nothrow default constructible", t1); break; case CPTK_HAS_NOTHROW_COPY: inform (loc, " %qT is not nothrow copy constructible", t1); break; case CPTK_HAS_TRIVIAL_ASSIGN: inform (loc, " %qT is not trivially copy assignable", t1); break; case CPTK_HAS_TRIVIAL_CONSTRUCTOR: inform (loc, " %qT is not trivially default constructible", t1); break; case CPTK_HAS_TRIVIAL_COPY: inform (loc, " %qT is not trivially copy constructible", t1); break; case CPTK_HAS_TRIVIAL_DESTRUCTOR: inform (loc, " %qT is not trivially destructible", t1); break; case CPTK_HAS_VIRTUAL_DESTRUCTOR: inform (loc, " %qT does not have a virtual destructor", t1); break; case CPTK_IS_ABSTRACT: inform (loc, " %qT is not an abstract class", t1); break; case CPTK_IS_BASE_OF: inform (loc, " %qT is not a base of %qT", t1, t2); break; case CPTK_IS_CLASS: inform (loc, " %qT is not a class", t1); break; case CPTK_IS_EMPTY: inform (loc, " %qT is not an empty class", t1); break; case CPTK_IS_ENUM: inform (loc, " %qT is not an enum", t1); break; case CPTK_IS_FINAL: inform (loc, " %qT is not a final class", t1); break; case CPTK_IS_LITERAL_TYPE: inform (loc, " %qT is not a literal type", t1); break; case CPTK_IS_POD: inform (loc, " %qT is not a POD type", t1); break; case CPTK_IS_POLYMORPHIC: inform (loc, " %qT is not a polymorphic type", t1); break; case CPTK_IS_SAME_AS: inform (loc, " %qT is not the same as %qT", t1, t2); break; case CPTK_IS_STD_LAYOUT: inform (loc, " %qT is not an standard layout type", t1); break; case CPTK_IS_TRIVIAL: inform (loc, " %qT is not a trivial type", t1); break; case CPTK_IS_UNION: inform (loc, " %qT is not a union", t1); break; default: gcc_unreachable (); } } /* Determine if the call expression T, when normalized as a constraint, is satisfied by ARGS. TODO: If T is refers to a concept, We could recursively analyze its definition to identify the exact failure, but that could emit a *lot* of error messages (defeating the purpose of improved diagnostics). Consider adding a flag to control the depth of diagnostics. */ void diagnose_call_expression (location_t loc, tree t, tree args) { if (constraint_expression_satisfied_p (t, args)) return; /* Rebuild the expression for the purpose of diagnostics. */ ++processing_template_decl; tree expr = tsubst_expr (t, args, tf_none, NULL_TREE, false); --processing_template_decl; /* If the function call is known to be a concept check, then diagnose it differently (i.e., we may recurse). */ if (resolve_constraint_check (t)) inform (loc, " concept %qE was not satisfied", expr); else inform (loc, " %qE evaluated to false", expr); } /* Determine if the template-id T, when normalized as a constraint is satisfied by ARGS. */ void diagnose_template_id (location_t loc, tree t, tree args) { /* Check for invalid template-ids. */ if (!variable_template_p (TREE_OPERAND (t, 0))) { inform (loc, " invalid constraint %qE", t); return; } if (constraint_expression_satisfied_p (t, args)) return; /* Rebuild the expression for the purpose of diagnostics. */ ++processing_template_decl; tree expr = tsubst_expr (t, args, tf_none, NULL_TREE, false); --processing_template_decl; tree var = DECL_TEMPLATE_RESULT (TREE_OPERAND (t, 0)); if (DECL_DECLARED_CONCEPT_P (var)) inform (loc, " concept %qE was not satisfied", expr); else inform (loc, " %qE evaluated to false", expr); } /* Determine if the requires-expression, when normalized as a constraint is satisfied by ARGS. TODO: Build sets of expressions, types, and constraints based on the requirements in T and emit specific diagnostics for those. */ void diagnose_requires_expression (location_t loc, tree t, tree args) { if (constraint_expression_satisfied_p (t, args)) return; inform (loc, "requirements not satisfied"); } void diagnose_pack_expansion (location_t loc, tree t, tree args) { if (constraint_expression_satisfied_p (t, args)) return; /* Make sure that we don't have naked packs that we don't expect. */ if (!same_type_p (TREE_TYPE (t), boolean_type_node)) { inform (loc, "invalid pack expansion in constraint %qE", t); return; } inform (loc, " in the expansion of %qE", t); /* Get the vector of expanded arguments. Note that n must not be 0 since this constraint is not satisfied. */ ++processing_template_decl; tree exprs = tsubst_pack_expansion (t, args, tf_none, NULL_TREE); --processing_template_decl; if (exprs == error_mark_node) { /* TODO: This error message could be better. */ inform (loc, " substitution failure occurred during expansion"); return; } /* Check each expanded constraint separately. */ int n = TREE_VEC_LENGTH (exprs); for (int i = 0; i < n; ++i) { tree expr = TREE_VEC_ELT (exprs, i); if (!constraint_expression_satisfied_p (expr, args)) inform (loc, " %qE was not satisfied", expr); } } /* Diagnose an expression that would be characterized as a predicate constraint. */ void diagnose_other_expression (location_t loc, tree t, tree args) { if (constraint_expression_satisfied_p (t, args)) return; inform (loc, " %qE evaluated to false", t); } void diagnose_expression (location_t loc, tree t, tree args) { switch (TREE_CODE (t)) { case TRUTH_ANDIF_EXPR: diagnose_logical_operation (loc, t, args); break; case TRUTH_ORIF_EXPR: diagnose_logical_operation (loc, t, args); break; case CALL_EXPR: diagnose_call_expression (loc, t, args); break; case TEMPLATE_ID_EXPR: diagnose_template_id (loc, t, args); break; case REQUIRES_EXPR: diagnose_requires_expression (loc, t, args); break; case TRAIT_EXPR: diagnose_trait_expression (loc, t, args); break; case EXPR_PACK_EXPANSION: diagnose_pack_expansion (loc, t, args); break; default: diagnose_other_expression (loc, t, args); break; } } inline void diagnose_predicate_constraint (location_t loc, tree t, tree args) { diagnose_expression (loc, PRED_CONSTR_EXPR (t), args); } inline void diagnose_conjunction (location_t loc, tree t, tree args) { diagnose_constraint (loc, TREE_OPERAND (t, 0), args); diagnose_constraint (loc, TREE_OPERAND (t, 1), args); } /* Diagnose the constraint T for the given ARGS. This is only ever invoked on the associated constraints, so we can only have conjunctions of predicate constraints. */ void diagnose_constraint (location_t loc, tree t, tree args) { switch (TREE_CODE (t)) { case CONJ_CONSTR: diagnose_conjunction (loc, t, args); break; case PRED_CONSTR: diagnose_predicate_constraint (loc, t, args); break; default: gcc_unreachable (); break; } } /* Diagnose the reason(s) why ARGS do not satisfy the constraints of declaration DECL. */ void diagnose_declaration_constraints (location_t loc, tree decl, tree args) { inform (loc, " constraints not satisfied"); /* Constraints are attached to the template. */ if (tree ti = DECL_TEMPLATE_INFO (decl)) { decl = TI_TEMPLATE (ti); if (!args) args = TI_ARGS (ti); } /* Check that the constraints are actually valid. */ tree ci = get_constraints (decl); if (!valid_constraints_p (ci)) { inform (loc, " invalid constraints"); return; } /* Recursively diagnose the associated constraints. */ diagnose_constraint (loc, CI_ASSOCIATED_CONSTRAINTS (ci), args); } } // namespace /* Emit diagnostics detailing the failure ARGS to satisfy the constraints of T. Here, T can be either a constraint or a declaration. */ void diagnose_constraints (location_t loc, tree t, tree args) { if (constraint_p (t)) diagnose_constraint (loc, t, args); else diagnose_declaration_constraints (loc, t, args); }