/* Subroutines for insn-output.c for Tensilica's Xtensa architecture. Copyright 2001,2002 Free Software Foundation, Inc. Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "basic-block.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "insn-attr.h" #include "insn-codes.h" #include "recog.h" #include "output.h" #include "tree.h" #include "expr.h" #include "flags.h" #include "reload.h" #include "tm_p.h" #include "function.h" #include "toplev.h" #include "optabs.h" #include "output.h" #include "libfuncs.h" #include "ggc.h" #include "target.h" #include "target-def.h" #include "langhooks.h" /* Enumeration for all of the relational tests, so that we can build arrays indexed by the test type, and not worry about the order of EQ, NE, etc. */ enum internal_test { ITEST_EQ, ITEST_NE, ITEST_GT, ITEST_GE, ITEST_LT, ITEST_LE, ITEST_GTU, ITEST_GEU, ITEST_LTU, ITEST_LEU, ITEST_MAX }; /* Cached operands, and operator to compare for use in set/branch on condition codes. */ rtx branch_cmp[2]; /* what type of branch to use */ enum cmp_type branch_type; /* Array giving truth value on whether or not a given hard register can support a given mode. */ char xtensa_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER]; /* Current frame size calculated by compute_frame_size. */ unsigned xtensa_current_frame_size; /* Tables of ld/st opcode names for block moves */ const char *xtensa_ld_opcodes[(int) MAX_MACHINE_MODE]; const char *xtensa_st_opcodes[(int) MAX_MACHINE_MODE]; #define LARGEST_MOVE_RATIO 15 /* Define the structure for the machine field in struct function. */ struct machine_function GTY(()) { int accesses_prev_frame; bool incoming_a7_copied; }; /* Vector, indexed by hard register number, which contains 1 for a register that is allowable in a candidate for leaf function treatment. */ const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; /* Map hard register number to register class */ const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER] = { RL_REGS, SP_REG, RL_REGS, RL_REGS, RL_REGS, RL_REGS, RL_REGS, GR_REGS, RL_REGS, RL_REGS, RL_REGS, RL_REGS, RL_REGS, RL_REGS, RL_REGS, RL_REGS, AR_REGS, AR_REGS, BR_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, ACC_REG, }; /* Map register constraint character to register class. */ enum reg_class xtensa_char_to_class[256] = { NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, }; static int b4const_or_zero PARAMS ((int)); static enum internal_test map_test_to_internal_test PARAMS ((enum rtx_code)); static rtx gen_int_relational PARAMS ((enum rtx_code, rtx, rtx, int *)); static rtx gen_float_relational PARAMS ((enum rtx_code, rtx, rtx)); static rtx gen_conditional_move PARAMS ((rtx)); static rtx fixup_subreg_mem PARAMS ((rtx x)); static enum machine_mode xtensa_find_mode_for_size PARAMS ((unsigned)); static struct machine_function * xtensa_init_machine_status PARAMS ((void)); static void printx PARAMS ((FILE *, signed int)); static unsigned int xtensa_multibss_section_type_flags PARAMS ((tree, const char *, int)); static void xtensa_select_rtx_section PARAMS ((enum machine_mode, rtx, unsigned HOST_WIDE_INT)); static void xtensa_encode_section_info PARAMS ((tree, int)); static rtx frame_size_const; static int current_function_arg_words; static const int reg_nonleaf_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER; /* This macro generates the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array 'regs_ever_live' to determine which registers to save; 'regs_ever_live[I]' is nonzero if register number I is ever used in the function. This macro is responsible for knowing which registers should not be saved even if used. */ #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE xtensa_function_prologue /* This macro generates the assembly code for function exit, on machines that need it. If FUNCTION_EPILOGUE is not defined then individual return instructions are generated for each return statement. Args are same as for FUNCTION_PROLOGUE. */ #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE xtensa_function_epilogue /* These hooks specify assembly directives for creating certain kinds of integer object. */ #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" #undef TARGET_ASM_SELECT_RTX_SECTION #define TARGET_ASM_SELECT_RTX_SECTION xtensa_select_rtx_section #undef TARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO xtensa_encode_section_info struct gcc_target targetm = TARGET_INITIALIZER; /* * Functions to test Xtensa immediate operand validity. */ int xtensa_b4constu (v) int v; { switch (v) { case 32768: case 65536: case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 10: case 12: case 16: case 32: case 64: case 128: case 256: return 1; } return 0; } int xtensa_simm8x256 (v) int v; { return (v & 255) == 0 && (v >= -32768 && v <= 32512); } int xtensa_ai4const (v) int v; { return (v == -1 || (v >= 1 && v <= 15)); } int xtensa_simm7 (v) int v; { return v >= -32 && v <= 95; } int xtensa_b4const (v) int v; { switch (v) { case -1: case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 10: case 12: case 16: case 32: case 64: case 128: case 256: return 1; } return 0; } int xtensa_simm8 (v) int v; { return v >= -128 && v <= 127; } int xtensa_tp7 (v) int v; { return (v >= 7 && v <= 22); } int xtensa_lsi4x4 (v) int v; { return (v & 3) == 0 && (v >= 0 && v <= 60); } int xtensa_simm12b (v) int v; { return v >= -2048 && v <= 2047; } int xtensa_uimm8 (v) int v; { return v >= 0 && v <= 255; } int xtensa_uimm8x2 (v) int v; { return (v & 1) == 0 && (v >= 0 && v <= 510); } int xtensa_uimm8x4 (v) int v; { return (v & 3) == 0 && (v >= 0 && v <= 1020); } /* This is just like the standard true_regnum() function except that it works even when reg_renumber is not initialized. */ int xt_true_regnum (x) rtx x; { if (GET_CODE (x) == REG) { if (reg_renumber && REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0) return reg_renumber[REGNO (x)]; return REGNO (x); } if (GET_CODE (x) == SUBREG) { int base = xt_true_regnum (SUBREG_REG (x)); if (base >= 0 && base < FIRST_PSEUDO_REGISTER) return base + subreg_regno_offset (REGNO (SUBREG_REG (x)), GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x), GET_MODE (x)); } return -1; } int add_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return (xtensa_simm8 (INTVAL (op)) || xtensa_simm8x256 (INTVAL (op))); return register_operand (op, mode); } int arith_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return xtensa_simm8 (INTVAL (op)); return register_operand (op, mode); } int nonimmed_operand (op, mode) rtx op; enum machine_mode mode; { /* We cannot use the standard nonimmediate_operand() predicate because it includes constant pool memory operands. */ if (memory_operand (op, mode)) return !constantpool_address_p (XEXP (op, 0)); return register_operand (op, mode); } int mem_operand (op, mode) rtx op; enum machine_mode mode; { /* We cannot use the standard memory_operand() predicate because it includes constant pool memory operands. */ if (memory_operand (op, mode)) return !constantpool_address_p (XEXP (op, 0)); return FALSE; } int xtensa_valid_move (mode, operands) enum machine_mode mode; rtx *operands; { /* Either the destination or source must be a register, and the MAC16 accumulator doesn't count. */ if (register_operand (operands[0], mode)) { int dst_regnum = xt_true_regnum (operands[0]); /* The stack pointer can only be assigned with a MOVSP opcode. */ if (dst_regnum == STACK_POINTER_REGNUM) return (mode == SImode && register_operand (operands[1], mode) && !ACC_REG_P (xt_true_regnum (operands[1]))); if (!ACC_REG_P (dst_regnum)) return true; } if (register_operand (operands[1], mode)) { int src_regnum = xt_true_regnum (operands[1]); if (!ACC_REG_P (src_regnum)) return true; } return FALSE; } int mask_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return xtensa_mask_immediate (INTVAL (op)); return register_operand (op, mode); } int extui_fldsz_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT) && xtensa_mask_immediate ((1 << INTVAL (op)) - 1)); } int sext_operand (op, mode) rtx op; enum machine_mode mode; { if (TARGET_SEXT) return nonimmed_operand (op, mode); return mem_operand (op, mode); } int sext_fldsz_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT) && xtensa_tp7 (INTVAL (op) - 1)); } int lsbitnum_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == CONST_INT) { return (BITS_BIG_ENDIAN ? (INTVAL (op) == BITS_PER_WORD-1) : (INTVAL (op) == 0)); } return FALSE; } static int b4const_or_zero (v) int v; { if (v == 0) return TRUE; return xtensa_b4const (v); } int branch_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return b4const_or_zero (INTVAL (op)); return register_operand (op, mode); } int ubranch_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == CONST_INT) return xtensa_b4constu (INTVAL (op)); return register_operand (op, mode); } int call_insn_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if ((GET_CODE (op) == REG) && (op != arg_pointer_rtx) && ((REGNO (op) < FRAME_POINTER_REGNUM) || (REGNO (op) > LAST_VIRTUAL_REGISTER))) return TRUE; if (CONSTANT_ADDRESS_P (op)) { /* Direct calls only allowed to static functions with PIC. */ return (!flag_pic || (GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_FLAG (op))); } return FALSE; } int move_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return TRUE; /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and result in 0/1. */ if (GET_CODE (op) == CONSTANT_P_RTX) return TRUE; if (GET_CODE (op) == CONST_INT) return xtensa_simm12b (INTVAL (op)); if (GET_CODE (op) == MEM) return memory_address_p (mode, XEXP (op, 0)); return FALSE; } int smalloffset_mem_p (op) rtx op; { if (GET_CODE (op) == MEM) { rtx addr = XEXP (op, 0); if (GET_CODE (addr) == REG) return REG_OK_FOR_BASE_P (addr); if (GET_CODE (addr) == PLUS) { rtx offset = XEXP (addr, 0); if (GET_CODE (offset) != CONST_INT) offset = XEXP (addr, 1); if (GET_CODE (offset) != CONST_INT) return FALSE; return xtensa_lsi4x4 (INTVAL (offset)); } } return FALSE; } int smalloffset_double_mem_p (op) rtx op; { if (!smalloffset_mem_p (op)) return FALSE; return smalloffset_mem_p (adjust_address (op, GET_MODE (op), 4)); } int constantpool_address_p (addr) rtx addr; { rtx sym = addr; if (GET_CODE (addr) == CONST) { rtx offset; /* only handle (PLUS (SYM, OFFSET)) form */ addr = XEXP (addr, 0); if (GET_CODE (addr) != PLUS) return FALSE; /* make sure the address is word aligned */ offset = XEXP (addr, 1); if ((GET_CODE (offset) != CONST_INT) || ((INTVAL (offset) & 3) != 0)) return FALSE; sym = XEXP (addr, 0); } if ((GET_CODE (sym) == SYMBOL_REF) && CONSTANT_POOL_ADDRESS_P (sym)) return TRUE; return FALSE; } int constantpool_mem_p (op) rtx op; { if (GET_CODE (op) == MEM) return constantpool_address_p (XEXP (op, 0)); return FALSE; } int non_const_move_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) == MEM) return memory_address_p (mode, XEXP (op, 0)); return FALSE; } /* Accept the floating point constant 1 in the appropriate mode. */ int const_float_1_operand (op, mode) rtx op; enum machine_mode mode; { REAL_VALUE_TYPE d; static REAL_VALUE_TYPE onedf; static REAL_VALUE_TYPE onesf; static int one_initialized; if ((GET_CODE (op) != CONST_DOUBLE) || (mode != GET_MODE (op)) || (mode != DFmode && mode != SFmode)) return FALSE; REAL_VALUE_FROM_CONST_DOUBLE (d, op); if (! one_initialized) { onedf = REAL_VALUE_ATOF ("1.0", DFmode); onesf = REAL_VALUE_ATOF ("1.0", SFmode); one_initialized = TRUE; } if (mode == DFmode) return REAL_VALUES_EQUAL (d, onedf); else return REAL_VALUES_EQUAL (d, onesf); } int fpmem_offset_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == CONST_INT) return xtensa_mem_offset (INTVAL (op), SFmode); return 0; } void xtensa_extend_reg (dst, src) rtx dst; rtx src; { rtx temp = gen_reg_rtx (SImode); rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src))); /* generate paradoxical subregs as needed so that the modes match */ src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0); dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0); emit_insn (gen_ashlsi3 (temp, src, shift)); emit_insn (gen_ashrsi3 (dst, temp, shift)); } void xtensa_load_constant (dst, src) rtx dst; rtx src; { enum machine_mode mode = GET_MODE (dst); src = force_const_mem (SImode, src); /* PC-relative loads are always SImode so we have to add a SUBREG if that is not the desired mode */ if (mode != SImode) { if (register_operand (dst, mode)) dst = simplify_gen_subreg (SImode, dst, mode, 0); else { src = force_reg (SImode, src); src = gen_lowpart_SUBREG (mode, src); } } emit_move_insn (dst, src); } int branch_operator (x, mode) rtx x; enum machine_mode mode; { if (GET_MODE (x) != mode) return FALSE; switch (GET_CODE (x)) { case EQ: case NE: case LT: case GE: return TRUE; default: break; } return FALSE; } int ubranch_operator (x, mode) rtx x; enum machine_mode mode; { if (GET_MODE (x) != mode) return FALSE; switch (GET_CODE (x)) { case LTU: case GEU: return TRUE; default: break; } return FALSE; } int boolean_operator (x, mode) rtx x; enum machine_mode mode; { if (GET_MODE (x) != mode) return FALSE; switch (GET_CODE (x)) { case EQ: case NE: return TRUE; default: break; } return FALSE; } int xtensa_mask_immediate (v) int v; { #define MAX_MASK_SIZE 16 int mask_size; for (mask_size = 1; mask_size <= MAX_MASK_SIZE; mask_size++) { if ((v & 1) == 0) return FALSE; v = v >> 1; if (v == 0) return TRUE; } return FALSE; } int xtensa_mem_offset (v, mode) unsigned v; enum machine_mode mode; { switch (mode) { case BLKmode: /* Handle the worst case for block moves. See xtensa_expand_block_move where we emit an optimized block move operation if the block can be moved in < "move_ratio" pieces. The worst case is when the block is aligned but has a size of (3 mod 4) (does this happen?) so that the last piece requires a byte load/store. */ return (xtensa_uimm8 (v) && xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO)); case QImode: return xtensa_uimm8 (v); case HImode: return xtensa_uimm8x2 (v); case DFmode: return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4)); default: break; } return xtensa_uimm8x4 (v); } /* Make normal rtx_code into something we can index from an array */ static enum internal_test map_test_to_internal_test (test_code) enum rtx_code test_code; { enum internal_test test = ITEST_MAX; switch (test_code) { default: break; case EQ: test = ITEST_EQ; break; case NE: test = ITEST_NE; break; case GT: test = ITEST_GT; break; case GE: test = ITEST_GE; break; case LT: test = ITEST_LT; break; case LE: test = ITEST_LE; break; case GTU: test = ITEST_GTU; break; case GEU: test = ITEST_GEU; break; case LTU: test = ITEST_LTU; break; case LEU: test = ITEST_LEU; break; } return test; } /* Generate the code to compare two integer values. The return value is the comparison expression. */ static rtx gen_int_relational (test_code, cmp0, cmp1, p_invert) enum rtx_code test_code; /* relational test (EQ, etc) */ rtx cmp0; /* first operand to compare */ rtx cmp1; /* second operand to compare */ int *p_invert; /* whether branch needs to reverse its test */ { struct cmp_info { enum rtx_code test_code; /* test code to use in insn */ int (*const_range_p) PARAMS ((int)); /* predicate function to check range */ int const_add; /* constant to add (convert LE -> LT) */ int reverse_regs; /* reverse registers in test */ int invert_const; /* != 0 if invert value if cmp1 is constant */ int invert_reg; /* != 0 if invert value if cmp1 is register */ int unsignedp; /* != 0 for unsigned comparisons. */ }; static struct cmp_info info[ (int)ITEST_MAX ] = { { EQ, b4const_or_zero, 0, 0, 0, 0, 0 }, /* EQ */ { NE, b4const_or_zero, 0, 0, 0, 0, 0 }, /* NE */ { LT, b4const_or_zero, 1, 1, 1, 0, 0 }, /* GT */ { GE, b4const_or_zero, 0, 0, 0, 0, 0 }, /* GE */ { LT, b4const_or_zero, 0, 0, 0, 0, 0 }, /* LT */ { GE, b4const_or_zero, 1, 1, 1, 0, 0 }, /* LE */ { LTU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* GTU */ { GEU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* GEU */ { LTU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* LTU */ { GEU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* LEU */ }; enum internal_test test; enum machine_mode mode; struct cmp_info *p_info; test = map_test_to_internal_test (test_code); if (test == ITEST_MAX) abort (); p_info = &info[ (int)test ]; mode = GET_MODE (cmp0); if (mode == VOIDmode) mode = GET_MODE (cmp1); /* Make sure we can handle any constants given to us. */ if (GET_CODE (cmp1) == CONST_INT) { HOST_WIDE_INT value = INTVAL (cmp1); unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value; /* if the immediate overflows or does not fit in the immediate field, spill it to a register */ if ((p_info->unsignedp ? (uvalue + p_info->const_add > uvalue) : (value + p_info->const_add > value)) != (p_info->const_add > 0)) { cmp1 = force_reg (mode, cmp1); } else if (!(p_info->const_range_p) (value + p_info->const_add)) { cmp1 = force_reg (mode, cmp1); } } else if ((GET_CODE (cmp1) != REG) && (GET_CODE (cmp1) != SUBREG)) { cmp1 = force_reg (mode, cmp1); } /* See if we need to invert the result. */ *p_invert = ((GET_CODE (cmp1) == CONST_INT) ? p_info->invert_const : p_info->invert_reg); /* Comparison to constants, may involve adding 1 to change a LT into LE. Comparison between two registers, may involve switching operands. */ if (GET_CODE (cmp1) == CONST_INT) { if (p_info->const_add != 0) cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add); } else if (p_info->reverse_regs) { rtx temp = cmp0; cmp0 = cmp1; cmp1 = temp; } return gen_rtx (p_info->test_code, VOIDmode, cmp0, cmp1); } /* Generate the code to compare two float values. The return value is the comparison expression. */ static rtx gen_float_relational (test_code, cmp0, cmp1) enum rtx_code test_code; /* relational test (EQ, etc) */ rtx cmp0; /* first operand to compare */ rtx cmp1; /* second operand to compare */ { rtx (*gen_fn) PARAMS ((rtx, rtx, rtx)); rtx brtmp; int reverse_regs, invert; switch (test_code) { case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break; case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break; case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break; case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break; case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break; case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break; default: fatal_insn ("bad test", gen_rtx (test_code, VOIDmode, cmp0, cmp1)); reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */ } if (reverse_regs) { rtx temp = cmp0; cmp0 = cmp1; cmp1 = temp; } brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM); emit_insn (gen_fn (brtmp, cmp0, cmp1)); return gen_rtx (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx); } void xtensa_expand_conditional_branch (operands, test_code) rtx *operands; enum rtx_code test_code; { enum cmp_type type = branch_type; rtx cmp0 = branch_cmp[0]; rtx cmp1 = branch_cmp[1]; rtx cmp; int invert; rtx label1, label2; switch (type) { case CMP_DF: default: fatal_insn ("bad test", gen_rtx (test_code, VOIDmode, cmp0, cmp1)); case CMP_SI: invert = FALSE; cmp = gen_int_relational (test_code, cmp0, cmp1, &invert); break; case CMP_SF: if (!TARGET_HARD_FLOAT) fatal_insn ("bad test", gen_rtx (test_code, VOIDmode, cmp0, cmp1)); invert = FALSE; cmp = gen_float_relational (test_code, cmp0, cmp1); break; } /* Generate the branch. */ label1 = gen_rtx_LABEL_REF (VOIDmode, operands[0]); label2 = pc_rtx; if (invert) { label2 = label1; label1 = pc_rtx; } emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, cmp, label1, label2))); } static rtx gen_conditional_move (cmp) rtx cmp; { enum rtx_code code = GET_CODE (cmp); rtx op0 = branch_cmp[0]; rtx op1 = branch_cmp[1]; if (branch_type == CMP_SI) { /* Jump optimization calls get_condition() which canonicalizes comparisons like (GE x ) to (GT x ). Transform those comparisons back to GE, since that is the comparison supported in Xtensa. We shouldn't have to transform comparisons, because neither xtensa_expand_conditional_branch() nor get_condition() will produce them. */ if ((code == GT) && (op1 == constm1_rtx)) { code = GE; op1 = const0_rtx; } cmp = gen_rtx (code, VOIDmode, cc0_rtx, const0_rtx); if (boolean_operator (cmp, VOIDmode)) { /* swap the operands to make const0 second */ if (op0 == const0_rtx) { op0 = op1; op1 = const0_rtx; } /* if not comparing against zero, emit a comparison (subtract) */ if (op1 != const0_rtx) { op0 = expand_binop (SImode, sub_optab, op0, op1, 0, 0, OPTAB_LIB_WIDEN); op1 = const0_rtx; } } else if (branch_operator (cmp, VOIDmode)) { /* swap the operands to make const0 second */ if (op0 == const0_rtx) { op0 = op1; op1 = const0_rtx; switch (code) { case LT: code = GE; break; case GE: code = LT; break; default: abort (); } } if (op1 != const0_rtx) return 0; } else return 0; return gen_rtx (code, VOIDmode, op0, op1); } if (TARGET_HARD_FLOAT && (branch_type == CMP_SF)) return gen_float_relational (code, op0, op1); return 0; } int xtensa_expand_conditional_move (operands, isflt) rtx *operands; int isflt; { rtx cmp; rtx (*gen_fn) PARAMS ((rtx, rtx, rtx, rtx, rtx)); if (!(cmp = gen_conditional_move (operands[1]))) return 0; if (isflt) gen_fn = (branch_type == CMP_SI ? gen_movsfcc_internal0 : gen_movsfcc_internal1); else gen_fn = (branch_type == CMP_SI ? gen_movsicc_internal0 : gen_movsicc_internal1); emit_insn (gen_fn (operands[0], XEXP (cmp, 0), operands[2], operands[3], cmp)); return 1; } int xtensa_expand_scc (operands) rtx *operands; { rtx dest = operands[0]; rtx cmp = operands[1]; rtx one_tmp, zero_tmp; rtx (*gen_fn) PARAMS ((rtx, rtx, rtx, rtx, rtx)); if (!(cmp = gen_conditional_move (cmp))) return 0; one_tmp = gen_reg_rtx (SImode); zero_tmp = gen_reg_rtx (SImode); emit_insn (gen_movsi (one_tmp, const_true_rtx)); emit_insn (gen_movsi (zero_tmp, const0_rtx)); gen_fn = (branch_type == CMP_SI ? gen_movsicc_internal0 : gen_movsicc_internal1); emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp)); return 1; } /* Emit insns to move operands[1] into operands[0]. Return 1 if we have written out everything that needs to be done to do the move. Otherwise, return 0 and the caller will emit the move normally. */ int xtensa_emit_move_sequence (operands, mode) rtx *operands; enum machine_mode mode; { if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONSTANT_P_RTX && (GET_CODE (operands[1]) != CONST_INT || !xtensa_simm12b (INTVAL (operands[1])))) { xtensa_load_constant (operands[0], operands[1]); return 1; } if (!(reload_in_progress | reload_completed)) { if (!xtensa_valid_move (mode, operands)) operands[1] = force_reg (mode, operands[1]); if (xtensa_copy_incoming_a7 (operands, mode)) return 1; } /* During reload we don't want to emit (subreg:X (mem:Y)) since that instruction won't be recognized after reload. So we remove the subreg and adjust mem accordingly. */ if (reload_in_progress) { operands[0] = fixup_subreg_mem (operands[0]); operands[1] = fixup_subreg_mem (operands[1]); } return 0; } static rtx fixup_subreg_mem (x) rtx x; { if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER) { rtx temp = gen_rtx_SUBREG (GET_MODE (x), reg_equiv_mem [REGNO (SUBREG_REG (x))], SUBREG_BYTE (x)); x = alter_subreg (&temp); } return x; } /* Check if this move is copying an incoming argument in a7. If so, emit the move, followed by the special "set_frame_ptr" unspec_volatile insn, at the very beginning of the function. This is necessary because the register allocator will ignore conflicts with a7 and may assign some other pseudo to a7. If that pseudo was assigned prior to this move, it would clobber the incoming argument in a7. By copying the argument out of a7 as the very first thing, and then immediately following that with an unspec_volatile to keep the scheduler away, we should avoid any problems. */ bool xtensa_copy_incoming_a7 (operands, mode) rtx *operands; enum machine_mode mode; { if (a7_overlap_mentioned_p (operands[1]) && !cfun->machine->incoming_a7_copied) { rtx mov; switch (mode) { case DFmode: mov = gen_movdf_internal (operands[0], operands[1]); break; case SFmode: mov = gen_movsf_internal (operands[0], operands[1]); break; case DImode: mov = gen_movdi_internal (operands[0], operands[1]); break; case SImode: mov = gen_movsi_internal (operands[0], operands[1]); break; case HImode: mov = gen_movhi_internal (operands[0], operands[1]); break; case QImode: mov = gen_movqi_internal (operands[0], operands[1]); break; default: abort (); } /* Insert the instructions before any other argument copies. (The set_frame_ptr insn comes _after_ the move, so push it out first.) */ push_topmost_sequence (); emit_insn_after (gen_set_frame_ptr (), get_insns ()); emit_insn_after (mov, get_insns ()); pop_topmost_sequence (); /* Ideally the incoming argument in a7 would only be copied once, since propagating a7 into the body of a function will almost certainly lead to errors. However, there is at least one harmless case (in GCSE) where the original copy from a7 is changed to copy into a new pseudo. Thus, we use a flag to only do this special treatment for the first copy of a7. */ cfun->machine->incoming_a7_copied = true; return 1; } return 0; } /* Try to expand a block move operation to an RTL block move instruction. If not optimizing or if the block size is not a constant or if the block is small, the expansion fails and GCC falls back to calling memcpy(). operands[0] is the destination operands[1] is the source operands[2] is the length operands[3] is the alignment */ int xtensa_expand_block_move (operands) rtx *operands; { rtx dest = operands[0]; rtx src = operands[1]; int bytes = INTVAL (operands[2]); int align = XINT (operands[3], 0); int num_pieces, move_ratio; /* If this is not a fixed size move, just call memcpy */ if (!optimize || (GET_CODE (operands[2]) != CONST_INT)) return 0; /* Anything to move? */ if (bytes <= 0) return 1; if (align > MOVE_MAX) align = MOVE_MAX; /* decide whether to expand inline based on the optimization level */ move_ratio = 4; if (optimize > 2) move_ratio = LARGEST_MOVE_RATIO; num_pieces = (bytes / align) + (bytes % align); /* close enough anyway */ if (num_pieces >= move_ratio) return 0; /* make sure the memory addresses are valid */ operands[0] = validize_mem (dest); operands[1] = validize_mem (src); emit_insn (gen_movstrsi_internal (operands[0], operands[1], operands[2], operands[3])); return 1; } /* Emit a sequence of instructions to implement a block move, trying to hide load delay slots as much as possible. Load N values into temporary registers, store those N values, and repeat until the complete block has been moved. N=delay_slots+1 */ struct meminsnbuf { char template[30]; rtx operands[2]; }; void xtensa_emit_block_move (operands, tmpregs, delay_slots) rtx *operands; rtx *tmpregs; int delay_slots; { rtx dest = operands[0]; rtx src = operands[1]; int bytes = INTVAL (operands[2]); int align = XINT (operands[3], 0); rtx from_addr = XEXP (src, 0); rtx to_addr = XEXP (dest, 0); int from_struct = MEM_IN_STRUCT_P (src); int to_struct = MEM_IN_STRUCT_P (dest); int offset = 0; int chunk_size, item_size; struct meminsnbuf *ldinsns, *stinsns; const char *ldname, *stname; enum machine_mode mode; if (align > MOVE_MAX) align = MOVE_MAX; item_size = align; chunk_size = delay_slots + 1; ldinsns = (struct meminsnbuf *) alloca (chunk_size * sizeof (struct meminsnbuf)); stinsns = (struct meminsnbuf *) alloca (chunk_size * sizeof (struct meminsnbuf)); mode = xtensa_find_mode_for_size (item_size); item_size = GET_MODE_SIZE (mode); ldname = xtensa_ld_opcodes[(int) mode]; stname = xtensa_st_opcodes[(int) mode]; while (bytes > 0) { int n; for (n = 0; n < chunk_size; n++) { rtx addr, mem; if (bytes == 0) { chunk_size = n; break; } if (bytes < item_size) { /* find a smaller item_size which we can load & store */ item_size = bytes; mode = xtensa_find_mode_for_size (item_size); item_size = GET_MODE_SIZE (mode); ldname = xtensa_ld_opcodes[(int) mode]; stname = xtensa_st_opcodes[(int) mode]; } /* record the load instruction opcode and operands */ addr = plus_constant (from_addr, offset); mem = gen_rtx_MEM (mode, addr); if (! memory_address_p (mode, addr)) abort (); MEM_IN_STRUCT_P (mem) = from_struct; ldinsns[n].operands[0] = tmpregs[n]; ldinsns[n].operands[1] = mem; sprintf (ldinsns[n].template, "%s\t%%0, %%1", ldname); /* record the store instruction opcode and operands */ addr = plus_constant (to_addr, offset); mem = gen_rtx_MEM (mode, addr); if (! memory_address_p (mode, addr)) abort (); MEM_IN_STRUCT_P (mem) = to_struct; stinsns[n].operands[0] = tmpregs[n]; stinsns[n].operands[1] = mem; sprintf (stinsns[n].template, "%s\t%%0, %%1", stname); offset += item_size; bytes -= item_size; } /* now output the loads followed by the stores */ for (n = 0; n < chunk_size; n++) output_asm_insn (ldinsns[n].template, ldinsns[n].operands); for (n = 0; n < chunk_size; n++) output_asm_insn (stinsns[n].template, stinsns[n].operands); } } static enum machine_mode xtensa_find_mode_for_size (item_size) unsigned item_size; { enum machine_mode mode, tmode; while (1) { mode = VOIDmode; /* find mode closest to but not bigger than item_size */ for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) <= item_size) mode = tmode; if (mode == VOIDmode) abort (); item_size = GET_MODE_SIZE (mode); if (xtensa_ld_opcodes[(int) mode] && xtensa_st_opcodes[(int) mode]) break; /* cannot load & store this mode; try something smaller */ item_size -= 1; } return mode; } void xtensa_expand_nonlocal_goto (operands) rtx *operands; { rtx goto_handler = operands[1]; rtx containing_fp = operands[3]; /* generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code is too big to generate in-line */ if (GET_CODE (containing_fp) != REG) containing_fp = force_reg (Pmode, containing_fp); goto_handler = replace_rtx (copy_rtx (goto_handler), virtual_stack_vars_rtx, containing_fp); emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"), 0, VOIDmode, 2, containing_fp, Pmode, goto_handler, Pmode); } static struct machine_function * xtensa_init_machine_status () { return ggc_alloc_cleared (sizeof (struct machine_function)); } void xtensa_setup_frame_addresses () { /* Set flag to cause FRAME_POINTER_REQUIRED to be set. */ cfun->machine->accesses_prev_frame = 1; emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"), 0, VOIDmode, 0); } /* Emit the assembly for the end of a zero-cost loop. Normally we just emit a comment showing where the end of the loop is. However, if there is a label or a branch at the end of the loop then we need to place a nop there. If the loop ends with a label we need the nop so that branches targetting that label will target the nop (and thus remain in the loop), instead of targetting the instruction after the loop (and thus exiting the loop). If the loop ends with a branch, we need the nop in case the branch is targetting a location inside the loop. When the branch executes it will cause the loop count to be decremented even if it is taken (because it is the last instruction in the loop), so we need to nop after the branch to prevent the loop count from being decremented when the branch is taken. */ void xtensa_emit_loop_end (insn, operands) rtx insn; rtx *operands; { char done = 0; for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn)) { switch (GET_CODE (insn)) { case NOTE: case BARRIER: break; case CODE_LABEL: output_asm_insn ("nop.n", operands); done = 1; break; default: { rtx body = PATTERN (insn); if (GET_CODE (body) == JUMP_INSN) { output_asm_insn ("nop.n", operands); done = 1; } else if ((GET_CODE (body) != USE) && (GET_CODE (body) != CLOBBER)) done = 1; } break; } } output_asm_insn ("# loop end for %0", operands); } char * xtensa_emit_call (callop, operands) int callop; rtx *operands; { static char result[64]; rtx tgt = operands[callop]; if (GET_CODE (tgt) == CONST_INT) sprintf (result, "call8\t0x%lx", INTVAL (tgt)); else if (register_operand (tgt, VOIDmode)) sprintf (result, "callx8\t%%%d", callop); else sprintf (result, "call8\t%%%d", callop); return result; } /* Return the stabs register number to use for 'regno'. */ int xtensa_dbx_register_number (regno) int regno; { int first = -1; if (GP_REG_P (regno)) { regno -= GP_REG_FIRST; first = 0; } else if (BR_REG_P (regno)) { regno -= BR_REG_FIRST; first = 16; } else if (FP_REG_P (regno)) { regno -= FP_REG_FIRST; /* The current numbering convention is that TIE registers are numbered in libcc order beginning with 256. We can't guarantee that the FP registers will come first, so the following is just a guess. It seems like we should make a special case for FP registers and give them fixed numbers < 256. */ first = 256; } else if (ACC_REG_P (regno)) { first = 0; regno = -1; } /* When optimizing, we sometimes get asked about pseudo-registers that don't represent hard registers. Return 0 for these. */ if (first == -1) return 0; return first + regno; } /* Argument support functions. */ /* Initialize CUMULATIVE_ARGS for a function. */ void init_cumulative_args (cum, fntype, libname) CUMULATIVE_ARGS *cum; /* argument info to initialize */ tree fntype ATTRIBUTE_UNUSED; /* tree ptr for function decl */ rtx libname ATTRIBUTE_UNUSED; /* SYMBOL_REF of library name or 0 */ { cum->arg_words = 0; } /* Advance the argument to the next argument position. */ void function_arg_advance (cum, mode, type) CUMULATIVE_ARGS *cum; /* current arg information */ enum machine_mode mode; /* current arg mode */ tree type; /* type of the argument or 0 if lib support */ { int words, max; int *arg_words; arg_words = &cum->arg_words; max = MAX_ARGS_IN_REGISTERS; words = (((mode != BLKmode) ? (int) GET_MODE_SIZE (mode) : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if ((*arg_words + words > max) && (*arg_words < max)) *arg_words = max; *arg_words += words; } /* Return an RTL expression containing the register for the given mode, or 0 if the argument is to be passed on the stack. */ rtx function_arg (cum, mode, type, incoming_p) CUMULATIVE_ARGS *cum; /* current arg information */ enum machine_mode mode; /* current arg mode */ tree type; /* type of the argument or 0 if lib support */ int incoming_p; /* computing the incoming registers? */ { int regbase, words, max; int *arg_words; int regno; enum machine_mode result_mode; arg_words = &cum->arg_words; regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST); max = MAX_ARGS_IN_REGISTERS; words = (((mode != BLKmode) ? (int) GET_MODE_SIZE (mode) : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (type && (TYPE_ALIGN (type) > BITS_PER_WORD)) *arg_words += (*arg_words & 1); if (*arg_words + words > max) return (rtx)0; regno = regbase + *arg_words; result_mode = (mode == BLKmode ? TYPE_MODE (type) : mode); /* We need to make sure that references to a7 are represented with rtx that is not equal to hard_frame_pointer_rtx. For BLKmode and modes bigger than 2 words (because we only have patterns for modes of 2 words or smaller), we can't control the expansion unless we explicitly list the individual registers in a PARALLEL. */ if ((mode == BLKmode || words > 2) && regno < A7_REG && regno + words > A7_REG) { rtx result; int n; result = gen_rtx_PARALLEL (result_mode, rtvec_alloc (words)); for (n = 0; n < words; n++) { XVECEXP (result, 0, n) = gen_rtx_EXPR_LIST (VOIDmode, gen_raw_REG (SImode, regno + n), GEN_INT (n * UNITS_PER_WORD)); } return result; } return gen_raw_REG (result_mode, regno); } void override_options () { int regno; enum machine_mode mode; if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT) error ("boolean registers required for the floating-point option"); /* set up the tables of ld/st opcode names for block moves */ xtensa_ld_opcodes[(int) SImode] = "l32i"; xtensa_ld_opcodes[(int) HImode] = "l16ui"; xtensa_ld_opcodes[(int) QImode] = "l8ui"; xtensa_st_opcodes[(int) SImode] = "s32i"; xtensa_st_opcodes[(int) HImode] = "s16i"; xtensa_st_opcodes[(int) QImode] = "s8i"; xtensa_char_to_class['q'] = SP_REG; xtensa_char_to_class['a'] = GR_REGS; xtensa_char_to_class['b'] = ((TARGET_BOOLEANS) ? BR_REGS : NO_REGS); xtensa_char_to_class['f'] = ((TARGET_HARD_FLOAT) ? FP_REGS : NO_REGS); xtensa_char_to_class['A'] = ((TARGET_MAC16) ? ACC_REG : NO_REGS); xtensa_char_to_class['B'] = ((TARGET_SEXT) ? GR_REGS : NO_REGS); xtensa_char_to_class['C'] = ((TARGET_MUL16) ? GR_REGS: NO_REGS); xtensa_char_to_class['D'] = ((TARGET_DENSITY) ? GR_REGS: NO_REGS); xtensa_char_to_class['d'] = ((TARGET_DENSITY) ? AR_REGS: NO_REGS); /* Set up array giving whether a given register can hold a given mode. */ for (mode = VOIDmode; mode != MAX_MACHINE_MODE; mode = (enum machine_mode) ((int) mode + 1)) { int size = GET_MODE_SIZE (mode); enum mode_class class = GET_MODE_CLASS (mode); for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) { int temp; if (ACC_REG_P (regno)) temp = (TARGET_MAC16 && (class == MODE_INT) && (size <= UNITS_PER_WORD)); else if (GP_REG_P (regno)) temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD)); else if (FP_REG_P (regno)) temp = (TARGET_HARD_FLOAT && (mode == SFmode)); else if (BR_REG_P (regno)) temp = (TARGET_BOOLEANS && (mode == CCmode)); else temp = FALSE; xtensa_hard_regno_mode_ok[(int) mode][regno] = temp; } } init_machine_status = xtensa_init_machine_status; /* Check PIC settings. There's no need for -fPIC on Xtensa and some targets need to always use PIC. */ if (flag_pic > 1 || (XTENSA_ALWAYS_PIC)) flag_pic = 1; } /* A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand X. X is an RTL expression. CODE is a value that can be used to specify one of several ways of printing the operand. It is used when identical operands must be printed differently depending on the context. CODE comes from the '%' specification that was used to request printing of the operand. If the specification was just '%DIGIT' then CODE is 0; if the specification was '%LTR DIGIT' then CODE is the ASCII code for LTR. If X is a register, this macro should print the register's name. The names can be found in an array 'reg_names' whose type is 'char *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'. When the machine description has a specification '%PUNCT' (a '%' followed by a punctuation character), this macro is called with a null pointer for X and the punctuation character for CODE. 'a', 'c', 'l', and 'n' are reserved. The Xtensa specific codes are: 'd' CONST_INT, print as signed decimal 'x' CONST_INT, print as signed hexadecimal 'K' CONST_INT, print number of bits in mask for EXTUI 'R' CONST_INT, print (X & 0x1f) 'L' CONST_INT, print ((32 - X) & 0x1f) 'D' REG, print second register of double-word register operand 'N' MEM, print address of next word following a memory operand 'v' MEM, if memory reference is volatile, output a MEMW before it */ static void printx (file, val) FILE *file; signed int val; { /* print a hexadecimal value in a nice way */ if ((val > -0xa) && (val < 0xa)) fprintf (file, "%d", val); else if (val < 0) fprintf (file, "-0x%x", -val); else fprintf (file, "0x%x", val); } void print_operand (file, op, letter) FILE *file; /* file to write to */ rtx op; /* operand to print */ int letter; /* % or 0 */ { enum rtx_code code; if (! op) error ("PRINT_OPERAND null pointer"); code = GET_CODE (op); switch (code) { case REG: case SUBREG: { int regnum = xt_true_regnum (op); if (letter == 'D') regnum++; fprintf (file, "%s", reg_names[regnum]); break; } case MEM: /* For a volatile memory reference, emit a MEMW before the load or store. */ if (letter == 'v') { if (MEM_VOLATILE_P (op) && TARGET_SERIALIZE_VOLATILE) fprintf (file, "memw\n\t"); break; } else if (letter == 'N') { enum machine_mode mode; switch (GET_MODE (op)) { case DFmode: mode = SFmode; break; case DImode: mode = SImode; break; default: abort (); } op = adjust_address (op, mode, 4); } output_address (XEXP (op, 0)); break; case CONST_INT: switch (letter) { case 'K': { int num_bits = 0; unsigned val = INTVAL (op); while (val & 1) { num_bits += 1; val = val >> 1; } if ((val != 0) || (num_bits == 0) || (num_bits > 16)) fatal_insn ("invalid mask", op); fprintf (file, "%d", num_bits); break; } case 'L': fprintf (file, "%ld", (32 - INTVAL (op)) & 0x1f); break; case 'R': fprintf (file, "%ld", INTVAL (op) & 0x1f); break; case 'x': printx (file, INTVAL (op)); break; case 'd': default: fprintf (file, "%ld", INTVAL (op)); break; } break; default: output_addr_const (file, op); } } /* A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand that is a memory reference whose address is ADDR. ADDR is an RTL expression. */ void print_operand_address (file, addr) FILE *file; rtx addr; { if (!addr) error ("PRINT_OPERAND_ADDRESS, null pointer"); switch (GET_CODE (addr)) { default: fatal_insn ("invalid address", addr); break; case REG: fprintf (file, "%s, 0", reg_names [REGNO (addr)]); break; case PLUS: { rtx reg = (rtx)0; rtx offset = (rtx)0; rtx arg0 = XEXP (addr, 0); rtx arg1 = XEXP (addr, 1); if (GET_CODE (arg0) == REG) { reg = arg0; offset = arg1; } else if (GET_CODE (arg1) == REG) { reg = arg1; offset = arg0; } else fatal_insn ("no register in address", addr); if (CONSTANT_P (offset)) { fprintf (file, "%s, ", reg_names [REGNO (reg)]); output_addr_const (file, offset); } else fatal_insn ("address offset not a constant", addr); } break; case LABEL_REF: case SYMBOL_REF: case CONST_INT: case CONST: output_addr_const (file, addr); break; } } /* Emit either a label, .comm, or .lcomm directive. */ void xtensa_declare_object (file, name, init_string, final_string, size) FILE *file; char *name; char *init_string; char *final_string; int size; { fputs (init_string, file); /* "", "\t.comm\t", or "\t.lcomm\t" */ assemble_name (file, name); fprintf (file, final_string, size); /* ":\n", ",%u\n", ",%u\n" */ } void xtensa_output_literal (file, x, mode, labelno) FILE *file; rtx x; enum machine_mode mode; int labelno; { long value_long[2]; REAL_VALUE_TYPE r; int size; fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno); switch (GET_MODE_CLASS (mode)) { case MODE_FLOAT: if (GET_CODE (x) != CONST_DOUBLE) abort (); REAL_VALUE_FROM_CONST_DOUBLE (r, x); switch (mode) { case SFmode: REAL_VALUE_TO_TARGET_SINGLE (r, value_long[0]); fprintf (file, "0x%08lx\n", value_long[0]); break; case DFmode: REAL_VALUE_TO_TARGET_DOUBLE (r, value_long); fprintf (file, "0x%08lx, 0x%08lx\n", value_long[0], value_long[1]); break; default: abort (); } break; case MODE_INT: case MODE_PARTIAL_INT: size = GET_MODE_SIZE (mode); if (size == 4) { output_addr_const (file, x); fputs ("\n", file); } else if (size == 8) { output_addr_const (file, operand_subword (x, 0, 0, DImode)); fputs (", ", file); output_addr_const (file, operand_subword (x, 1, 0, DImode)); fputs ("\n", file); } else abort (); break; default: abort (); } } /* Return the bytes needed to compute the frame pointer from the current stack pointer. */ #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) #define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1)) long compute_frame_size (size) int size; /* # of var. bytes allocated */ { /* add space for the incoming static chain value */ if (current_function_needs_context) size += (1 * UNITS_PER_WORD); xtensa_current_frame_size = XTENSA_STACK_ALIGN (size + current_function_outgoing_args_size + (WINDOW_SIZE * UNITS_PER_WORD)); return xtensa_current_frame_size; } int xtensa_frame_pointer_required () { /* The code to expand builtin_frame_addr and builtin_return_addr currently uses the hard_frame_pointer instead of frame_pointer. This seems wrong but maybe it's necessary for other architectures. This function is derived from the i386 code. */ if (cfun->machine->accesses_prev_frame) return 1; return 0; } void xtensa_reorg (first) rtx first; { rtx insn, set_frame_ptr_insn = 0; unsigned long tsize = compute_frame_size (get_frame_size ()); if (tsize < (1 << (12+3))) frame_size_const = 0; else { frame_size_const = force_const_mem (SImode, GEN_INT (tsize - 16));; /* make sure the constant is used so it doesn't get eliminated from the constant pool */ emit_insn_before (gen_rtx_USE (SImode, frame_size_const), first); } if (!frame_pointer_needed) return; /* Search all instructions, looking for the insn that sets up the frame pointer. This search will fail if the function does not have an incoming argument in $a7, but in that case, we can just set up the frame pointer at the very beginning of the function. */ for (insn = first; insn; insn = NEXT_INSN (insn)) { rtx pat; if (!INSN_P (insn)) continue; pat = PATTERN (insn); if (GET_CODE (pat) == UNSPEC_VOLATILE && (XINT (pat, 1) == UNSPECV_SET_FP)) { set_frame_ptr_insn = insn; break; } } if (set_frame_ptr_insn) { /* for all instructions prior to set_frame_ptr_insn, replace hard_frame_pointer references with stack_pointer */ for (insn = first; insn != set_frame_ptr_insn; insn = NEXT_INSN (insn)) { if (INSN_P (insn)) PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)), hard_frame_pointer_rtx, stack_pointer_rtx); } } else { /* emit the frame pointer move immediately after the NOTE that starts the function */ emit_insn_after (gen_movsi (hard_frame_pointer_rtx, stack_pointer_rtx), first); } } /* Set up the stack and frame (if desired) for the function. */ void xtensa_function_prologue (file, size) FILE *file; HOST_WIDE_INT size ATTRIBUTE_UNUSED; { unsigned long tsize = compute_frame_size (get_frame_size ()); if (frame_pointer_needed) fprintf (file, "\t.frame\ta7, %ld\n", tsize); else fprintf (file, "\t.frame\tsp, %ld\n", tsize); if (tsize < (1 << (12+3))) { fprintf (file, "\tentry\tsp, %ld\n", tsize); } else { fprintf (file, "\tentry\tsp, 16\n"); /* use a8 as a temporary since a0-a7 may be live */ fprintf (file, "\tl32r\ta8, "); print_operand (file, frame_size_const, 0); fprintf (file, "\n\tsub\ta8, sp, a8\n"); fprintf (file, "\tmovsp\tsp, a8\n"); } } /* Do any necessary cleanup after a function to restore stack, frame, and regs. */ void xtensa_function_epilogue (file, size) FILE *file; HOST_WIDE_INT size ATTRIBUTE_UNUSED; { rtx insn = get_last_insn (); /* If the last insn was a BARRIER, we don't have to write anything. */ if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn == 0 || GET_CODE (insn) != BARRIER) fprintf (file, TARGET_DENSITY ? "\tretw.n\n" : "\tretw\n"); xtensa_current_frame_size = 0; } rtx xtensa_return_addr (count, frame) int count; rtx frame; { rtx result, retaddr; if (count == -1) retaddr = gen_rtx_REG (Pmode, 0); else { rtx addr = plus_constant (frame, -4 * UNITS_PER_WORD); addr = memory_address (Pmode, addr); retaddr = gen_reg_rtx (Pmode); emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr)); } /* The 2 most-significant bits of the return address on Xtensa hold the register window size. To get the real return address, these bits must be replaced with the high bits from the current PC. */ result = gen_reg_rtx (Pmode); emit_insn (gen_fix_return_addr (result, retaddr)); return result; } /* Create the va_list data type. This structure is set up by __builtin_saveregs. The __va_reg field points to a stack-allocated region holding the contents of the incoming argument registers. The __va_ndx field is an index initialized to the position of the first unnamed (variable) argument. This same index is also used to address the arguments passed in memory. Thus, the __va_stk field is initialized to point to the position of the first argument in memory offset to account for the arguments passed in registers. E.G., if there are 6 argument registers, and each register is 4 bytes, then __va_stk is set to $sp - (6 * 4); then __va_reg[N*4] references argument word N for 0 <= N < 6, and __va_stk[N*4] references argument word N for N >= 6. */ tree xtensa_build_va_list () { tree f_stk, f_reg, f_ndx, record, type_decl; record = (*lang_hooks.types.make_type) (RECORD_TYPE); type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record); f_stk = build_decl (FIELD_DECL, get_identifier ("__va_stk"), ptr_type_node); f_reg = build_decl (FIELD_DECL, get_identifier ("__va_reg"), ptr_type_node); f_ndx = build_decl (FIELD_DECL, get_identifier ("__va_ndx"), integer_type_node); DECL_FIELD_CONTEXT (f_stk) = record; DECL_FIELD_CONTEXT (f_reg) = record; DECL_FIELD_CONTEXT (f_ndx) = record; TREE_CHAIN (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_stk; TREE_CHAIN (f_stk) = f_reg; TREE_CHAIN (f_reg) = f_ndx; layout_type (record); return record; } /* Save the incoming argument registers on the stack. Returns the address of the saved registers. */ rtx xtensa_builtin_saveregs () { rtx gp_regs, dest; int arg_words = current_function_arg_words; int gp_left = MAX_ARGS_IN_REGISTERS - arg_words; int i; if (gp_left == 0) return const0_rtx; /* allocate the general-purpose register space */ gp_regs = assign_stack_local (BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1); set_mem_alias_set (gp_regs, get_varargs_alias_set ()); /* Now store the incoming registers. */ dest = change_address (gp_regs, SImode, plus_constant (XEXP (gp_regs, 0), arg_words * UNITS_PER_WORD)); /* Note: Don't use move_block_from_reg() here because the incoming argument in a7 cannot be represented by hard_frame_pointer_rtx. Instead, call gen_raw_REG() directly so that we get a distinct instance of (REG:SI 7). */ for (i = 0; i < gp_left; i++) { emit_move_insn (operand_subword (dest, i, 1, BLKmode), gen_raw_REG (SImode, GP_ARG_FIRST + arg_words + i)); } return XEXP (gp_regs, 0); } /* Implement `va_start' for varargs and stdarg. We look at the current function to fill in an initial va_list. */ void xtensa_va_start (valist, nextarg) tree valist; rtx nextarg ATTRIBUTE_UNUSED; { tree f_stk, stk; tree f_reg, reg; tree f_ndx, ndx; tree t, u; int arg_words; arg_words = current_function_args_info.arg_words; f_stk = TYPE_FIELDS (va_list_type_node); f_reg = TREE_CHAIN (f_stk); f_ndx = TREE_CHAIN (f_reg); stk = build (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk); reg = build (COMPONENT_REF, TREE_TYPE (f_reg), valist, f_reg); ndx = build (COMPONENT_REF, TREE_TYPE (f_ndx), valist, f_ndx); /* Call __builtin_saveregs; save the result in __va_reg */ current_function_arg_words = arg_words; u = make_tree (ptr_type_node, expand_builtin_saveregs ()); t = build (MODIFY_EXPR, ptr_type_node, reg, u); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Set the __va_stk member to $arg_ptr - (size of __va_reg area) */ u = make_tree (ptr_type_node, virtual_incoming_args_rtx); u = fold (build (PLUS_EXPR, ptr_type_node, u, build_int_2 (-MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1))); t = build (MODIFY_EXPR, ptr_type_node, stk, u); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Set the __va_ndx member. */ u = build_int_2 (arg_words * UNITS_PER_WORD, 0); t = build (MODIFY_EXPR, integer_type_node, ndx, u); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Implement `va_arg'. */ rtx xtensa_va_arg (valist, type) tree valist, type; { tree f_stk, stk; tree f_reg, reg; tree f_ndx, ndx; tree tmp, addr_tree, type_size; rtx array, orig_ndx, r, addr, size, va_size; rtx lab_false, lab_over, lab_false2; f_stk = TYPE_FIELDS (va_list_type_node); f_reg = TREE_CHAIN (f_stk); f_ndx = TREE_CHAIN (f_reg); stk = build (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk); reg = build (COMPONENT_REF, TREE_TYPE (f_reg), valist, f_reg); ndx = build (COMPONENT_REF, TREE_TYPE (f_ndx), valist, f_ndx); type_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type)); va_size = gen_reg_rtx (SImode); tmp = fold (build (MULT_EXPR, sizetype, fold (build (TRUNC_DIV_EXPR, sizetype, fold (build (PLUS_EXPR, sizetype, type_size, size_int (UNITS_PER_WORD - 1))), size_int (UNITS_PER_WORD))), size_int (UNITS_PER_WORD))); r = expand_expr (tmp, va_size, SImode, EXPAND_NORMAL); if (r != va_size) emit_move_insn (va_size, r); /* First align __va_ndx to a double word boundary if necessary for this arg: if (__alignof__ (TYPE) > 4) (AP).__va_ndx = (((AP).__va_ndx + 7) & -8) */ if (TYPE_ALIGN (type) > BITS_PER_WORD) { tmp = build (PLUS_EXPR, integer_type_node, ndx, build_int_2 ((2 * UNITS_PER_WORD) - 1, 0)); tmp = build (BIT_AND_EXPR, integer_type_node, tmp, build_int_2 (-2 * UNITS_PER_WORD, -1)); tmp = build (MODIFY_EXPR, integer_type_node, ndx, tmp); TREE_SIDE_EFFECTS (tmp) = 1; expand_expr (tmp, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Increment __va_ndx to point past the argument: orig_ndx = (AP).__va_ndx; (AP).__va_ndx += __va_size (TYPE); */ orig_ndx = gen_reg_rtx (SImode); r = expand_expr (ndx, orig_ndx, SImode, EXPAND_NORMAL); if (r != orig_ndx) emit_move_insn (orig_ndx, r); tmp = build (PLUS_EXPR, integer_type_node, ndx, make_tree (intSI_type_node, va_size)); tmp = build (MODIFY_EXPR, integer_type_node, ndx, tmp); TREE_SIDE_EFFECTS (tmp) = 1; expand_expr (tmp, const0_rtx, VOIDmode, EXPAND_NORMAL); /* Check if the argument is in registers: if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4 && !MUST_PASS_IN_STACK (type)) __array = (AP).__va_reg; */ array = gen_reg_rtx (Pmode); lab_over = NULL_RTX; if (!MUST_PASS_IN_STACK (VOIDmode, type)) { lab_false = gen_label_rtx (); lab_over = gen_label_rtx (); emit_cmp_and_jump_insns (expand_expr (ndx, NULL_RTX, SImode, EXPAND_NORMAL), GEN_INT (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD), GT, const1_rtx, SImode, 0, lab_false); r = expand_expr (reg, array, Pmode, EXPAND_NORMAL); if (r != array) emit_move_insn (array, r); emit_jump_insn (gen_jump (lab_over)); emit_barrier (); emit_label (lab_false); } /* ...otherwise, the argument is on the stack (never split between registers and the stack -- change __va_ndx if necessary): else { if (orig_ndx < __MAX_ARGS_IN_REGISTERS * 4) (AP).__va_ndx = __MAX_ARGS_IN_REGISTERS * 4 + __va_size (TYPE); __array = (AP).__va_stk; } */ lab_false2 = gen_label_rtx (); emit_cmp_and_jump_insns (orig_ndx, GEN_INT (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD), GE, const1_rtx, SImode, 0, lab_false2); tmp = build (PLUS_EXPR, sizetype, make_tree (intSI_type_node, va_size), build_int_2 (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, 0)); tmp = build (MODIFY_EXPR, integer_type_node, ndx, tmp); TREE_SIDE_EFFECTS (tmp) = 1; expand_expr (tmp, const0_rtx, VOIDmode, EXPAND_NORMAL); emit_label (lab_false2); r = expand_expr (stk, array, Pmode, EXPAND_NORMAL); if (r != array) emit_move_insn (array, r); if (lab_over != NULL_RTX) emit_label (lab_over); /* Given the base array pointer (__array) and index to the subsequent argument (__va_ndx), find the address: __array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4 ? sizeof (TYPE) : __va_size (TYPE)) The results are endian-dependent because values smaller than one word are aligned differently. */ size = gen_reg_rtx (SImode); emit_move_insn (size, va_size); if (BYTES_BIG_ENDIAN) { rtx lab_use_va_size = gen_label_rtx (); emit_cmp_and_jump_insns (expand_expr (type_size, NULL_RTX, SImode, EXPAND_NORMAL), GEN_INT (PARM_BOUNDARY / BITS_PER_UNIT), GE, const1_rtx, SImode, 0, lab_use_va_size); r = expand_expr (type_size, size, SImode, EXPAND_NORMAL); if (r != size) emit_move_insn (size, r); emit_label (lab_use_va_size); } addr_tree = build (PLUS_EXPR, ptr_type_node, make_tree (ptr_type_node, array), ndx); addr_tree = build (MINUS_EXPR, ptr_type_node, addr_tree, make_tree (intSI_type_node, size)); addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL); addr = copy_to_reg (addr); return addr; } enum reg_class xtensa_preferred_reload_class (x, class, isoutput) rtx x; enum reg_class class; int isoutput; { if (!isoutput && CONSTANT_P (x) && GET_CODE (x) == CONST_DOUBLE) return NO_REGS; /* Don't use the stack pointer or hard frame pointer for reloads! The hard frame pointer would normally be OK except that it may briefly hold an incoming argument in the prologue, and reload won't know that it is live because the hard frame pointer is treated specially. */ if (class == AR_REGS || class == GR_REGS) return RL_REGS; return class; } enum reg_class xtensa_secondary_reload_class (class, mode, x, isoutput) enum reg_class class; enum machine_mode mode ATTRIBUTE_UNUSED; rtx x; int isoutput; { int regno; if (GET_CODE (x) == SIGN_EXTEND) x = XEXP (x, 0); regno = xt_true_regnum (x); if (!isoutput) { if (class == FP_REGS && constantpool_mem_p (x)) return RL_REGS; } if (ACC_REG_P (regno)) return ((class == GR_REGS || class == RL_REGS) ? NO_REGS : RL_REGS); if (class == ACC_REG) return (GP_REG_P (regno) ? NO_REGS : RL_REGS); return NO_REGS; } void order_regs_for_local_alloc () { if (!leaf_function_p ()) { memcpy (reg_alloc_order, reg_nonleaf_alloc_order, FIRST_PSEUDO_REGISTER * sizeof (int)); } else { int i, num_arg_regs; int nxt = 0; /* use the AR registers in increasing order (skipping a0 and a1) but save the incoming argument registers for a last resort */ num_arg_regs = current_function_args_info.arg_words; if (num_arg_regs > MAX_ARGS_IN_REGISTERS) num_arg_regs = MAX_ARGS_IN_REGISTERS; for (i = GP_ARG_FIRST; i < 16 - num_arg_regs; i++) reg_alloc_order[nxt++] = i + num_arg_regs; for (i = 0; i < num_arg_regs; i++) reg_alloc_order[nxt++] = GP_ARG_FIRST + i; /* list the FP registers in order for now */ for (i = 0; i < 16; i++) reg_alloc_order[nxt++] = FP_REG_FIRST + i; /* GCC requires that we list *all* the registers.... */ reg_alloc_order[nxt++] = 0; /* a0 = return address */ reg_alloc_order[nxt++] = 1; /* a1 = stack pointer */ reg_alloc_order[nxt++] = 16; /* pseudo frame pointer */ reg_alloc_order[nxt++] = 17; /* pseudo arg pointer */ /* list the coprocessor registers in order */ for (i = 0; i < BR_REG_NUM; i++) reg_alloc_order[nxt++] = BR_REG_FIRST + i; reg_alloc_order[nxt++] = ACC_REG_FIRST; /* MAC16 accumulator */ } } /* A customized version of reg_overlap_mentioned_p that only looks for references to a7 (as opposed to hard_frame_pointer_rtx). */ int a7_overlap_mentioned_p (x) rtx x; { int i, j; unsigned int x_regno; const char *fmt; if (GET_CODE (x) == REG) { x_regno = REGNO (x); return (x != hard_frame_pointer_rtx && x_regno < A7_REG + 1 && x_regno + HARD_REGNO_NREGS (A7_REG, GET_MODE (x)) > A7_REG); } if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER) { x_regno = subreg_regno (x); return (SUBREG_REG (x) != hard_frame_pointer_rtx && x_regno < A7_REG + 1 && x_regno + HARD_REGNO_NREGS (A7_REG, GET_MODE (x)) > A7_REG); } /* X does not match, so try its subexpressions. */ fmt = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (a7_overlap_mentioned_p (XEXP (x, i))) return 1; } else if (fmt[i] == 'E') { for (j = XVECLEN (x, i) - 1; j >=0; j--) if (a7_overlap_mentioned_p (XVECEXP (x, i, j))) return 1; } } return 0; } /* Some Xtensa targets support multiple bss sections. If the section name ends with ".bss", add SECTION_BSS to the flags. */ static unsigned int xtensa_multibss_section_type_flags (decl, name, reloc) tree decl; const char *name; int reloc; { unsigned int flags = default_section_type_flags (decl, name, reloc); const char *suffix; suffix = strrchr (name, '.'); if (suffix && strcmp (suffix, ".bss") == 0) { if (!decl || (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl) == NULL_TREE)) flags |= SECTION_BSS; /* @nobits */ else warning ("only uninitialized variables can be placed in a " ".bss section"); } return flags; } /* The literal pool stays with the function. */ static void xtensa_select_rtx_section (mode, x, align) enum machine_mode mode ATTRIBUTE_UNUSED; rtx x ATTRIBUTE_UNUSED; unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED; { function_section (current_function_decl); } /* If we are referencing a function that is static, make the SYMBOL_REF special so that we can generate direct calls to it even with -fpic. */ static void xtensa_encode_section_info (decl, first) tree decl; int first ATTRIBUTE_UNUSED; { if (TREE_CODE (decl) == FUNCTION_DECL && ! TREE_PUBLIC (decl)) SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1; } #include "gt-xtensa.h"