;;- Machine description for SPARC chip for GNU C compiler ;; Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc. ;; Contributed by Michael Tiemann (tiemann@cygnus.com) ;; This file is part of GNU CC. ;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. ;;- See file "rtl.def" for documentation on define_insn, match_*, et. al. ;; Insn type. Used to default other attribute values. ;; type "unary" insns have one input operand (1) and one output operand (0) ;; type "binary" insns have two input operands (1,2) and one output (0) ;; type "compare" insns have one or two input operands (0,1) and no output ;; type "call_no_delay_slot" is a call followed by an unimp instruction. (define_attr "type" "move,unary,binary,compare,load,store,uncond_branch,branch,call,call_no_delay_slot,address,fpload,fpstore,fp,fpcmp,fpmul,fpdiv,fpsqrt,multi,misc" (const_string "binary")) ;; Set true if insn uses call-clobbered intermediate register. (define_attr "use_clobbered" "false,true" (if_then_else (and (eq_attr "type" "address") (match_operand 0 "clobbered_register" "")) (const_string "true") (const_string "false"))) ;; Length (in # of insns). (define_attr "length" "" (cond [(eq_attr "type" "load,fpload") (if_then_else (match_operand 1 "symbolic_memory_operand" "") (const_int 2) (const_int 1)) (eq_attr "type" "store,fpstore") (if_then_else (match_operand 0 "symbolic_memory_operand" "") (const_int 2) (const_int 1)) (eq_attr "type" "address") (const_int 2) (eq_attr "type" "binary") (if_then_else (ior (match_operand 2 "arith_operand" "") (match_operand 2 "arith_double_operand" "")) (const_int 1) (const_int 3)) (eq_attr "type" "multi") (const_int 2) (eq_attr "type" "move,unary") (if_then_else (ior (match_operand 1 "arith_operand" "") (match_operand 1 "arith_double_operand" "")) (const_int 1) (const_int 2))] (const_int 1))) (define_asm_attributes [(set_attr "length" "1") (set_attr "type" "multi")]) ;; Attributes for instruction and branch scheduling (define_attr "in_call_delay" "false,true" (cond [(eq_attr "type" "uncond_branch,branch,call,call_no_delay_slot,multi") (const_string "false") (eq_attr "type" "load,fpload,store,fpstore") (if_then_else (eq_attr "length" "1") (const_string "true") (const_string "false")) (eq_attr "type" "address") (if_then_else (eq_attr "use_clobbered" "false") (const_string "true") (const_string "false"))] (if_then_else (eq_attr "length" "1") (const_string "true") (const_string "false")))) (define_delay (eq_attr "type" "call") [(eq_attr "in_call_delay" "true") (nil) (nil)]) ;; ??? Should implement the notion of predelay slots for floating point ;; branches. This would allow us to remove the nop always inserted before ;; a floating point branch. ;; ??? It is OK for fill_simple_delay_slots to put load/store instructions ;; in a delay slot, but it is not OK for fill_eager_delay_slots to do so. ;; This is because doing so will add several pipeline stalls to the path ;; that the load/store did not come from. Unfortunately, there is no way ;; to prevent fill_eager_delay_slots from using load/store without completely ;; disabling them. For the SPEC benchmark set, this is a serious lose, ;; because it prevents us from moving back the final store of inner loops. (define_attr "in_branch_delay" "false,true" (if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,call_no_delay_slot,multi") (eq_attr "length" "1")) (const_string "true") (const_string "false"))) (define_attr "in_uncond_branch_delay" "false,true" (if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,call_no_delay_slot,multi") (eq_attr "length" "1")) (const_string "true") (const_string "false"))) (define_attr "in_annul_branch_delay" "false,true" (if_then_else (and (eq_attr "type" "!uncond_branch,branch,call,call_no_delay_slot,multi") (eq_attr "length" "1")) (const_string "true") (const_string "false"))) (define_delay (eq_attr "type" "branch") [(eq_attr "in_branch_delay" "true") (nil) (eq_attr "in_annul_branch_delay" "true")]) (define_delay (eq_attr "type" "uncond_branch") [(eq_attr "in_uncond_branch_delay" "true") (nil) (nil)]) ;; Function units of the SPARC ;; (define_function_unit {name} {num-units} {n-users} {test} ;; {ready-delay} {issue-delay} [{conflict-list}]) ;; The integer ALU. ;; (Noted only for documentation; units that take one cycle do not need to ;; be specified.) ;; On the sparclite, integer multiply takes 1, 3, or 5 cycles depending on ;; the inputs. ;; (define_function_unit "alu" 1 0 ;; (eq_attr "type" "unary,binary,move,address") 1 0) ;; Memory with load-delay of 1 (i.e., 2 cycle load). (define_function_unit "memory" 1 1 (eq_attr "type" "load,fpload") 2 0) ;; SPARC has two floating-point units: the FP ALU, ;; and the FP MUL/DIV/SQRT unit. ;; Instruction timings on the CY7C602 are as follows ;; FABSs 4 ;; FADDs/d 5/5 ;; FCMPs/d 4/4 ;; FDIVs/d 23/37 ;; FMOVs 4 ;; FMULs/d 5/7 ;; FNEGs 4 ;; FSQRTs/d 34/63 ;; FSUBs/d 5/5 ;; FdTOi/s 5/5 ;; FsTOi/d 5/5 ;; FiTOs/d 9/5 ;; The CY7C602 can only support 2 fp isnsn simultaneously. ;; More insns cause the chip to stall. (define_function_unit "fp_alu" 1 1 (eq_attr "type" "fp") 5 0) (define_function_unit "fp_mds" 1 1 (eq_attr "type" "fpmul") 7 0) (define_function_unit "fp_mds" 1 1 (eq_attr "type" "fpdiv") 37 0) (define_function_unit "fp_mds" 1 1 (eq_attr "type" "fpsqrt") 63 0) ;; Compare instructions. ;; This controls RTL generation and register allocation. ;; We generate RTL for comparisons and branches by having the cmpxx ;; patterns store away the operands. Then, the scc and bcc patterns ;; emit RTL for both the compare and the branch. ;; ;; We do this because we want to generate different code for an sne and ;; seq insn. In those cases, if the second operand of the compare is not ;; const0_rtx, we want to compute the xor of the two operands and test ;; it against zero. ;; ;; We start with the DEFINE_EXPANDs, then then DEFINE_INSNs to match ;; the patterns. Finally, we have the DEFINE_SPLITs for some of the scc ;; insns that actually require more than one machine instruction. ;; Put cmpsi first among compare insns so it matches two CONST_INT operands. (define_expand "cmpsi" [(set (reg:CC 0) (compare:CC (match_operand:SI 0 "register_operand" "") (match_operand:SI 1 "arith_operand" "")))] "" " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }") (define_expand "cmpsf" [(set (reg:CCFP 0) (compare:CCFP (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "register_operand" "")))] "TARGET_FPU" " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }") (define_expand "cmpdf" [(set (reg:CCFP 0) (compare:CCFP (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "register_operand" "")))] "TARGET_FPU" " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }") (define_expand "cmptf" [(set (reg:CCFP 0) (compare:CCFP (match_operand:TF 0 "register_operand" "") (match_operand:TF 1 "register_operand" "")))] "TARGET_FPU" " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }") ;; Next come the scc insns. For seq, sne, sgeu, and sltu, we can do this ;; without jumps using the addx/subx instructions. For the rest, we do ;; branches. Seq_special and sne_special clobber the CC reg, because they ;; generate addcc/subcc instructions. (define_expand "seq_special" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "register_operand" ""))) (parallel [(set (match_operand:SI 0 "register_operand" "") (eq:SI (match_dup 3) (const_int 0))) (clobber (reg:CC 0))])] "" "{ operands[3] = gen_reg_rtx (SImode); }") (define_expand "sne_special" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "register_operand" ""))) (parallel [(set (match_operand:SI 0 "register_operand" "") (ne:SI (match_dup 3) (const_int 0))) (clobber (reg:CC 0))])] "" "{ operands[3] = gen_reg_rtx (SImode); }") (define_expand "seq" [(set (match_operand:SI 0 "register_operand" "") (eq:SI (match_dup 1) (const_int 0)))] "" " { if (GET_MODE (sparc_compare_op0) == SImode) { emit_insn (gen_seq_special (operands[0], sparc_compare_op0, sparc_compare_op1)); DONE; } else operands[1] = gen_compare_reg (EQ, sparc_compare_op0, sparc_compare_op1); }") (define_expand "sne" [(set (match_operand:SI 0 "register_operand" "") (ne:SI (match_dup 1) (const_int 0)))] "" " { if (GET_MODE (sparc_compare_op0) == SImode) { emit_insn (gen_sne_special (operands[0], sparc_compare_op0, sparc_compare_op1)); DONE; } else operands[1] = gen_compare_reg (NE, sparc_compare_op0, sparc_compare_op1); }") (define_expand "sgt" [(set (match_operand:SI 0 "register_operand" "") (gt:SI (match_dup 1) (const_int 0)))] "" " { operands[1] = gen_compare_reg (GT, sparc_compare_op0, sparc_compare_op1); }") (define_expand "slt" [(set (match_operand:SI 0 "register_operand" "") (lt:SI (match_dup 1) (const_int 0)))] "" " { operands[1] = gen_compare_reg (LT, sparc_compare_op0, sparc_compare_op1); }") (define_expand "sge" [(set (match_operand:SI 0 "register_operand" "") (ge:SI (match_dup 1) (const_int 0)))] "" " { operands[1] = gen_compare_reg (GE, sparc_compare_op0, sparc_compare_op1); }") (define_expand "sle" [(set (match_operand:SI 0 "register_operand" "") (le:SI (match_dup 1) (const_int 0)))] "" " { operands[1] = gen_compare_reg (LE, sparc_compare_op0, sparc_compare_op1); }") (define_expand "sgtu" [(set (match_operand:SI 0 "register_operand" "") (gtu:SI (match_dup 1) (const_int 0)))] "" " { rtx tem; /* We can do ltu easily, so if both operands are registers, swap them and do a LTU. */ if ((GET_CODE (sparc_compare_op0) == REG || GET_CODE (sparc_compare_op0) == SUBREG) && (GET_CODE (sparc_compare_op1) == REG || GET_CODE (sparc_compare_op1) == SUBREG)) { tem = sparc_compare_op0; sparc_compare_op0 = sparc_compare_op1; sparc_compare_op1 = tem; emit_insn (gen_sltu (operands[0])); DONE; } operands[1] = gen_compare_reg (LEU, sparc_compare_op0, sparc_compare_op1); }") (define_expand "sltu" [(set (match_operand:SI 0 "register_operand" "") (ltu:SI (match_dup 1) (const_int 0)))] "" " { operands[1] = gen_compare_reg (LTU, sparc_compare_op0, sparc_compare_op1); }") (define_expand "sgeu" [(set (match_operand:SI 0 "register_operand" "") (geu:SI (match_dup 1) (const_int 0)))] "" " { operands[1] = gen_compare_reg (GEU, sparc_compare_op0, sparc_compare_op1); }") (define_expand "sleu" [(set (match_operand:SI 0 "register_operand" "") (leu:SI (match_dup 1) (const_int 0)))] "" " { rtx tem; /* We can do geu easily, so if both operands are registers, swap them and do a GEU. */ if ((GET_CODE (sparc_compare_op0) == REG || GET_CODE (sparc_compare_op0) == SUBREG) && (GET_CODE (sparc_compare_op1) == REG || GET_CODE (sparc_compare_op1) == SUBREG)) { tem = sparc_compare_op0; sparc_compare_op0 = sparc_compare_op1; sparc_compare_op1 = tem; emit_insn (gen_sgeu (operands[0])); DONE; } operands[1] = gen_compare_reg (LEU, sparc_compare_op0, sparc_compare_op1); }") ;; Now the DEFINE_INSNs for the compare and scc cases. First the compares. (define_insn "" [(set (reg:CC 0) (compare:CC (match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "arith_operand" "rI")))] "" "cmp %r0,%1" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CCFPE 0) (compare:CCFPE (match_operand:DF 0 "register_operand" "f") (match_operand:DF 1 "register_operand" "f")))] "TARGET_FPU" "fcmped %0,%1" [(set_attr "type" "fpcmp")]) (define_insn "" [(set (reg:CCFPE 0) (compare:CCFPE (match_operand:SF 0 "register_operand" "f") (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fcmpes %0,%1" [(set_attr "type" "fpcmp")]) (define_insn "" [(set (reg:CCFPE 0) (compare:CCFPE (match_operand:TF 0 "register_operand" "f") (match_operand:TF 1 "register_operand" "f")))] "TARGET_FPU" "fcmpeq %0,%1" [(set_attr "type" "fpcmp")]) (define_insn "" [(set (reg:CCFP 0) (compare:CCFP (match_operand:DF 0 "register_operand" "f") (match_operand:DF 1 "register_operand" "f")))] "TARGET_FPU" "fcmpd %0,%1" [(set_attr "type" "fpcmp")]) (define_insn "" [(set (reg:CCFP 0) (compare:CCFP (match_operand:SF 0 "register_operand" "f") (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fcmps %0,%1" [(set_attr "type" "fpcmp")]) (define_insn "" [(set (reg:CCFP 0) (compare:CCFP (match_operand:TF 0 "register_operand" "f") (match_operand:TF 1 "register_operand" "f")))] "TARGET_FPU" "fcmpq %0,%1" [(set_attr "type" "fpcmp")]) ;; The SEQ and SNE patterns are special because they can be done ;; without any branching and do not involve a COMPARE. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (ne:SI (match_operand:SI 1 "register_operand" "r") (const_int 0))) (clobber (reg:CC 0))] "" "subcc %%g0,%1,%%g0\;addx %%g0,0,%0" [(set_attr "type" "unary") (set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (ne:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)))) (clobber (reg:CC 0))] "" "subcc %%g0,%1,%%g0\;subx %%g0,0,%0" [(set_attr "type" "unary") (set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (eq:SI (match_operand:SI 1 "register_operand" "r") (const_int 0))) (clobber (reg:CC 0))] "" "subcc %%g0,%1,%%g0\;subx %%g0,-1,%0" [(set_attr "type" "unary") (set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (eq:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)))) (clobber (reg:CC 0))] "" "subcc %%g0,%1,%%g0\;addx %%g0,-1,%0" [(set_attr "type" "unary") (set_attr "length" "2")]) ;; We can also do (x + (i == 0)) and related, so put them in. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (ne:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)) (match_operand:SI 2 "register_operand" "r"))) (clobber (reg:CC 0))] "" "subcc %%g0,%1,%%g0\;addx %2,0,%0" [(set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 2 "register_operand" "r") (ne:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)))) (clobber (reg:CC 0))] "" "subcc %%g0,%1,%%g0\;subx %2,0,%0" [(set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (eq:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)) (match_operand:SI 2 "register_operand" "r"))) (clobber (reg:CC 0))] "" "subcc %%g0,%1,%%g0\;subx %2,-1,%0" [(set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 2 "register_operand" "r") (eq:SI (match_operand:SI 1 "register_operand" "r") (const_int 0)))) (clobber (reg:CC 0))] "" "subcc %%g0,%1,%%g0\;addx %2,-1,%0" [(set_attr "length" "2")]) ;; We can also do GEU and LTU directly, but these operate after a ;; compare. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (ltu:SI (reg:CC 0) (const_int 0)))] "" "addx %%g0,0,%0" [(set_attr "type" "misc")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (ltu:SI (reg:CC 0) (const_int 0))))] "" "subx %%g0,0,%0" [(set_attr "type" "misc")]) ;; ??? Combine should canonicalize these next two to the same pattern. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (neg:SI (ltu:SI (reg:CC 0) (const_int 0))) (match_operand:SI 1 "arith_operand" "rI")))] "" "subx %%g0,%1,%0" [(set_attr "type" "unary")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (plus:SI (ltu:SI (reg:CC 0) (const_int 0)) (match_operand:SI 1 "arith_operand" "rI"))))] "" "subx %%g0,%1,%0" [(set_attr "type" "unary")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (geu:SI (reg:CC 0) (const_int 0)))] "" "subx %%g0,-1,%0" [(set_attr "type" "misc")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (neg:SI (geu:SI (reg:CC 0) (const_int 0))))] "" "addx %%g0,-1,%0" [(set_attr "type" "misc")]) ;; We can also do (x + ((unsigned) i >= 0)) and related, so put them in. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (ltu:SI (reg:CC 0) (const_int 0)) (match_operand:SI 1 "arith_operand" "rI")))] "" "addx %%g0,%1,%0" [(set_attr "type" "unary")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (ltu:SI (reg:CC 0) (const_int 0)) (plus:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI"))))] "" "addx %1,%2,%0") (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 1 "register_operand" "r") (ltu:SI (reg:CC 0) (const_int 0))))] "" "subx %1,0,%0" [(set_attr "type" "unary")]) ;; ??? Combine should canonicalize these next two to the same pattern. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (minus:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")) (ltu:SI (reg:CC 0) (const_int 0))))] "" "subx %1,%2,%0") (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 1 "register_operand" "r") (plus:SI (ltu:SI (reg:CC 0) (const_int 0)) (match_operand:SI 2 "arith_operand" "rI"))))] "" "subx %1,%2,%0") (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (geu:SI (reg:CC 0) (const_int 0)) (match_operand:SI 1 "register_operand" "r")))] "" "subx %1,-1,%0" [(set_attr "type" "unary")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 1 "register_operand" "r") (geu:SI (reg:CC 0) (const_int 0))))] "" "addx %1,-1,%0" [(set_attr "type" "unary")]) ;; Now we have the generic scc insns. These will be done using a jump. ;; We have to exclude the cases above, since we will not want combine to ;; turn something that does not require a jump into something that does. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (match_operator:SI 1 "noov_compare_op" [(reg 0) (const_int 0)]))] "" "* return output_scc_insn (operands, insn); " [(set_attr "type" "multi") (set_attr "length" "3")]) ;; These control RTL generation for conditional jump insns (define_expand "beq" [(set (pc) (if_then_else (eq (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (EQ, sparc_compare_op0, sparc_compare_op1); }") (define_expand "bne" [(set (pc) (if_then_else (ne (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (NE, sparc_compare_op0, sparc_compare_op1); }") (define_expand "bgt" [(set (pc) (if_then_else (gt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (GT, sparc_compare_op0, sparc_compare_op1); }") (define_expand "bgtu" [(set (pc) (if_then_else (gtu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (GTU, sparc_compare_op0, sparc_compare_op1); }") (define_expand "blt" [(set (pc) (if_then_else (lt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (LT, sparc_compare_op0, sparc_compare_op1); }") (define_expand "bltu" [(set (pc) (if_then_else (ltu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (LTU, sparc_compare_op0, sparc_compare_op1); }") (define_expand "bge" [(set (pc) (if_then_else (ge (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (GE, sparc_compare_op0, sparc_compare_op1); }") (define_expand "bgeu" [(set (pc) (if_then_else (geu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (GEU, sparc_compare_op0, sparc_compare_op1); }") (define_expand "ble" [(set (pc) (if_then_else (le (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (LE, sparc_compare_op0, sparc_compare_op1); }") (define_expand "bleu" [(set (pc) (if_then_else (leu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_compare_reg (LEU, sparc_compare_op0, sparc_compare_op1); }") ;; Now match both normal and inverted jump. (define_insn "" [(set (pc) (if_then_else (match_operator 0 "noov_compare_op" [(reg 0) (const_int 0)]) (label_ref (match_operand 1 "" "")) (pc)))] "" "* { return output_cbranch (operands[0], 1, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence); }" [(set_attr "type" "branch")]) (define_insn "" [(set (pc) (if_then_else (match_operator 0 "noov_compare_op" [(reg 0) (const_int 0)]) (pc) (label_ref (match_operand 1 "" ""))))] "" "* { return output_cbranch (operands[0], 1, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence); }" [(set_attr "type" "branch")]) ;; Move instructions (define_expand "movqi" [(set (match_operand:QI 0 "general_operand" "") (match_operand:QI 1 "general_operand" ""))] "" " { if (emit_move_sequence (operands, QImode)) DONE; }") (define_insn "" [(set (match_operand:QI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,Q") (match_operand:QI 1 "move_operand" "rI,K,Q,rJ"))] "register_operand (operands[0], QImode) || register_operand (operands[1], QImode) || operands[1] == const0_rtx" "@ mov %1,%0 sethi %%hi(%a1),%0 ldub %1,%0 stb %r1,%0" [(set_attr "type" "move,move,load,store") (set_attr "length" "*,1,*,1")]) (define_insn "" [(set (match_operand:QI 0 "register_operand" "=r") (subreg:QI (lo_sum:SI (match_operand:QI 1 "register_operand" "r") (match_operand 2 "immediate_operand" "in")) 0))] "" "or %1,%%lo(%a2),%0" [(set_attr "length" "1")]) (define_insn "" [(set (mem:QI (match_operand:SI 0 "symbolic_operand" "")) (match_operand:QI 1 "reg_or_0_operand" "rJ")) (clobber (match_scratch:SI 2 "=&r"))] "" "sethi %%hi(%a0),%2\;stb %r1,[%2+%%lo(%a0)]" [(set_attr "type" "store") (set_attr "length" "2")]) (define_expand "movhi" [(set (match_operand:HI 0 "general_operand" "") (match_operand:HI 1 "general_operand" ""))] "" " { if (emit_move_sequence (operands, HImode)) DONE; }") (define_insn "" [(set (match_operand:HI 0 "reg_or_nonsymb_mem_operand" "=r,r,r,Q") (match_operand:HI 1 "move_operand" "rI,K,Q,rJ"))] "register_operand (operands[0], HImode) || register_operand (operands[1], HImode) || operands[1] == const0_rtx" "@ mov %1,%0 sethi %%hi(%a1),%0 lduh %1,%0 sth %r1,%0" [(set_attr "type" "move,move,load,store") (set_attr "length" "*,1,*,1")]) (define_insn "" [(set (match_operand:HI 0 "register_operand" "=r") (lo_sum:HI (match_operand:HI 1 "register_operand" "r") (match_operand 2 "immediate_operand" "in")))] "" "or %1,%%lo(%a2),%0" [(set_attr "length" "1")]) (define_insn "" [(set (mem:HI (match_operand:SI 0 "symbolic_operand" "")) (match_operand:HI 1 "reg_or_0_operand" "rJ")) (clobber (match_scratch:SI 2 "=&r"))] "" "sethi %%hi(%a0),%2\;sth %r1,[%2+%%lo(%a0)]" [(set_attr "type" "store") (set_attr "length" "2")]) (define_expand "movsi" [(set (match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "general_operand" ""))] "" " { if (emit_move_sequence (operands, SImode)) DONE; }") ;; We must support both 'r' and 'f' registers here, because combine may ;; convert SFmode hard registers to SImode hard registers when simplifying ;; subreg sets. ;; We cannot combine the similar 'r' and 'f' constraints, because it causes ;; problems with register allocation. Reload might try to put an integer ;; in an fp register, or an fp number is an integer register. (define_insn "" [(set (match_operand:SI 0 "reg_or_nonsymb_mem_operand" "=r,f,r,r,f,Q,Q") (match_operand:SI 1 "move_operand" "rI,!f,K,Q,!Q,rJ,!f"))] "register_operand (operands[0], SImode) || register_operand (operands[1], SImode) || operands[1] == const0_rtx" "@ mov %1,%0 fmovs %1,%0 sethi %%hi(%a1),%0 ld %1,%0 ld %1,%0 st %r1,%0 st %r1,%0" [(set_attr "type" "move,fp,move,load,load,store,store") (set_attr "length" "*,*,1,*,*,*,*")]) ;; Special pic pattern, for loading the address of a label into a register. ;; It clobbers o7 because the call puts the return address (i.e. pc value) ;; there. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (match_operand:SI 1 "move_pic_label" "i")) (set (reg:SI 15) (pc))] "" "\\n1:\;call 2f\;sethi %%hi(%l1-1b),%0\\n2:\\tor %0,%%lo(%l1-1b),%0\;add %0,%%o7,%0" [(set_attr "type" "multi") (set_attr "length" "4")]) (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (high:DI (match_operand 1 "" "")))] "check_pic (1)" "* { rtx op0 = operands[0]; rtx op1 = operands[1]; if (GET_CODE (op1) == CONST_INT) { operands[0] = operand_subword (op0, 1, 0, DImode); output_asm_insn (\"sethi %%hi(%a1),%0\", operands); operands[0] = operand_subword (op0, 0, 0, DImode); if (INTVAL (op1) < 0) return \"mov -1,%0\"; else return \"mov 0,%0\"; } else if (GET_CODE (op1) == CONST_DOUBLE) { operands[0] = operand_subword (op0, 1, 0, DImode); operands[1] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (op1)); output_asm_insn (\"sethi %%hi(%a1),%0\", operands); operands[0] = operand_subword (op0, 0, 0, DImode); operands[1] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_HIGH (op1)); return singlemove_string (operands); } else abort (); return \"\"; }" [(set_attr "type" "move") (set_attr "length" "2")]) ;; For PIC, symbol_refs are put inside unspec so that the optimizer won't ;; confuse them with real addresses. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (unspec:SI [(match_operand 1 "" "")] 0)))] "check_pic (1)" "sethi %%hi(%a1),%0" [(set_attr "type" "move") (set_attr "length" "1")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (match_operand 1 "" "")))] "check_pic (1)" "sethi %%hi(%a1),%0" [(set_attr "type" "move") (set_attr "length" "1")]) (define_insn "" [(set (match_operand:HI 0 "register_operand" "=r") (high:HI (match_operand 1 "" "")))] "check_pic (1)" "sethi %%hi(%a1),%0" [(set_attr "type" "move") (set_attr "length" "1")]) ;; For PIC, symbol_refs are put inside unspec so that the optimizer won't ;; confuse them with real addresses. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (unspec:SI [(match_operand:SI 2 "immediate_operand" "in")] 0)))] "" "or %1,%%lo(%a2),%0" ;; Need to set length for this arith insn because operand2 ;; is not an "arith_operand". [(set_attr "length" "1")]) ;; ??? Can the next two be moved above the PIC stuff? (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "immediate_operand" "in")))] "" "or %1,%%lo(%a2),%0" ;; Need to set length for this arith insn because operand2 ;; is not an "arith_operand". [(set_attr "length" "1")]) (define_insn "" [(set (mem:SI (match_operand:SI 0 "symbolic_operand" "")) (match_operand:SI 1 "reg_or_0_operand" "rJ")) (clobber (match_scratch:SI 2 "=&r"))] "" "sethi %%hi(%a0),%2\;st %r1,[%2+%%lo(%a0)]" [(set_attr "type" "store") (set_attr "length" "2")]) (define_expand "movdi" [(set (match_operand:DI 0 "reg_or_nonsymb_mem_operand" "") (match_operand:DI 1 "general_operand" ""))] "" " { if (emit_move_sequence (operands, DImode)) DONE; }") (define_insn "" [(set (match_operand:DI 0 "reg_or_nonsymb_mem_operand" "=r,Q,r,r,?f,?f,?Q") (match_operand:DI 1 "general_operand" "r,r,Q,i,f,Q,f"))] "register_operand (operands[0], DImode) || register_operand (operands[1], DImode) || operands[1] == const0_rtx" "* { if (FP_REG_P (operands[0]) || FP_REG_P (operands[1])) return output_fp_move_double (operands); return output_move_double (operands); }" [(set_attr "type" "move,store,load,multi,fp,fpload,fpstore") (set_attr "length" "2,3,3,3,2,3,3")]) (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (lo_sum:DI (match_operand:DI 1 "register_operand" "0") (match_operand:DI 2 "immediate_operand" "in")))] "" "* { /* Don't output a 64 bit constant, since we can't trust the assembler to handle it correctly. */ if (GET_CODE (operands[2]) == CONST_DOUBLE) operands[2] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[2])); return \"or %R1,%%lo(%a2),%R0\"; }" ;; Need to set length for this arith insn because operand2 ;; is not an "arith_operand". [(set_attr "length" "1")]) ;; ??? There's no symbolic (set (mem:DI ...) ...). ;; Block move insns. ;; ??? We get better code without it. See output_block_move in sparc.c. ;; The definition of this insn does not really explain what it does, ;; but it should suffice ;; that anything generated as this insn will be recognized as one ;; and that it will not successfully combine with anything. ;(define_expand "movstrsi" ; [(parallel [(set (mem:BLK (match_operand:BLK 0 "general_operand" "")) ; (mem:BLK (match_operand:BLK 1 "general_operand" ""))) ; (use (match_operand:SI 2 "nonmemory_operand" "")) ; (use (match_operand:SI 3 "immediate_operand" "")) ; (clobber (match_dup 0)) ; (clobber (match_dup 1)) ; (clobber (match_scratch:SI 4 "")) ; (clobber (reg:SI 0)) ; (clobber (reg:SI 1))])] ; "" ; " ;{ ; /* If the size isn't known, don't emit inline code. output_block_move ; would output code that's much slower than the library function. ; Also don't output code for large blocks. */ ; if (GET_CODE (operands[2]) != CONST_INT ; || GET_CODE (operands[3]) != CONST_INT ; || INTVAL (operands[2]) / INTVAL (operands[3]) > 16) ; FAIL; ; ; operands[0] = copy_to_mode_reg (Pmode, XEXP (operands[0], 0)); ; operands[1] = copy_to_mode_reg (Pmode, XEXP (operands[1], 0)); ; operands[2] = force_not_mem (operands[2]); ;}") ;(define_insn "" ; [(set (mem:BLK (match_operand:SI 0 "register_operand" "+r")) ; (mem:BLK (match_operand:SI 1 "register_operand" "+r"))) ; (use (match_operand:SI 2 "nonmemory_operand" "rn")) ; (use (match_operand:SI 3 "immediate_operand" "i")) ; (clobber (match_dup 0)) ; (clobber (match_dup 1)) ; (clobber (match_scratch:SI 4 "=&r")) ; (clobber (reg:SI 0)) ; (clobber (reg:SI 1))] ; "" ; "* return output_block_move (operands);" ; [(set_attr "type" "multi") ; (set_attr "length" "6")]) ;; Floating point move insns ;; This pattern forces (set (reg:SF ...) (const_double ...)) ;; to be reloaded by putting the constant into memory. ;; It must come before the more general movsf pattern. (define_insn "" [(set (match_operand:SF 0 "general_operand" "=?r,f,m") (match_operand:SF 1 "" "?E,m,G"))] "TARGET_FPU && GET_CODE (operands[1]) == CONST_DOUBLE" "* { switch (which_alternative) { case 0: return singlemove_string (operands); case 1: return \"ld %1,%0\"; case 2: return \"st %%g0,%0\"; } }" [(set_attr "type" "load,fpload,store") (set_attr "length" "2,1,1")]) (define_expand "movsf" [(set (match_operand:SF 0 "general_operand" "") (match_operand:SF 1 "general_operand" ""))] "" " { if (emit_move_sequence (operands, SFmode)) DONE; }") (define_insn "" [(set (match_operand:SF 0 "reg_or_nonsymb_mem_operand" "=f,r,f,r,Q,Q") (match_operand:SF 1 "reg_or_nonsymb_mem_operand" "f,r,Q,Q,f,r"))] "TARGET_FPU && (register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode))" "@ fmovs %1,%0 mov %1,%0 ld %1,%0 ld %1,%0 st %r1,%0 st %r1,%0" [(set_attr "type" "fp,move,fpload,load,fpstore,store")]) ;; Exactly the same as above, except that all `f' cases are deleted. ;; This is necessary to prevent reload from ever trying to use a `f' reg ;; when -mno-fpu. (define_insn "" [(set (match_operand:SF 0 "reg_or_nonsymb_mem_operand" "=r,r,Q") (match_operand:SF 1 "reg_or_nonsymb_mem_operand" "r,Q,r"))] "! TARGET_FPU && (register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode))" "@ mov %1,%0 ld %1,%0 st %r1,%0" [(set_attr "type" "move,load,store")]) (define_insn "" [(set (mem:SF (match_operand:SI 0 "symbolic_operand" "i")) (match_operand:SF 1 "reg_or_0_operand" "rfG")) (clobber (match_scratch:SI 2 "=&r"))] "" "sethi %%hi(%a0),%2\;st %r1,[%2+%%lo(%a0)]" [(set_attr "type" "store") (set_attr "length" "2")]) ;; This pattern forces (set (reg:DF ...) (const_double ...)) ;; to be reloaded by putting the constant into memory. ;; It must come before the more general movdf pattern. (define_insn "" [(set (match_operand:DF 0 "general_operand" "=?r,f,o") (match_operand:DF 1 "" "?E,m,G"))] "TARGET_FPU && GET_CODE (operands[1]) == CONST_DOUBLE" "* { switch (which_alternative) { case 0: return output_move_double (operands); case 1: return output_fp_move_double (operands); case 2: operands[1] = adj_offsettable_operand (operands[0], 4); return \"st %%g0,%0\;st %%g0,%1\"; } }" [(set_attr "type" "load,fpload,store") (set_attr "length" "3,3,3")]) (define_expand "movdf" [(set (match_operand:DF 0 "general_operand" "") (match_operand:DF 1 "general_operand" ""))] "" " { if (emit_move_sequence (operands, DFmode)) DONE; }") (define_insn "" [(set (match_operand:DF 0 "reg_or_nonsymb_mem_operand" "=T,U,f,r,Q,Q,f,r") (match_operand:DF 1 "reg_or_nonsymb_mem_operand" "U,T,f,r,f,r,Q,Q"))] "TARGET_FPU && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "* { if (FP_REG_P (operands[0]) || FP_REG_P (operands[1])) return output_fp_move_double (operands); return output_move_double (operands); }" [(set_attr "type" "fpstore,fpload,fp,move,fpstore,store,fpload,load") (set_attr "length" "1,1,2,2,3,3,3,3")]) ;; Exactly the same as above, except that all `f' cases are deleted. ;; This is necessary to prevent reload from ever trying to use a `f' reg ;; when -mno-fpu. (define_insn "" [(set (match_operand:DF 0 "reg_or_nonsymb_mem_operand" "=T,U,r,Q,&r") (match_operand:DF 1 "reg_or_nonsymb_mem_operand" "U,T,r,r,Q"))] "! TARGET_FPU && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "* return output_move_double (operands);" [(set_attr "type" "store,load,move,store,load") (set_attr "length" "1,1,2,3,3")]) (define_split [(set (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "register_operand" ""))] "reload_completed" [(set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5))] " { operands[2] = operand_subword (operands[0], 0, 0, DFmode); operands[3] = operand_subword (operands[1], 0, 0, DFmode); operands[4] = operand_subword (operands[0], 1, 0, DFmode); operands[5] = operand_subword (operands[1], 1, 0, DFmode); }") (define_insn "" [(set (mem:DF (match_operand:SI 0 "symbolic_operand" "i,i")) (match_operand:DF 1 "reg_or_0_operand" "rf,G")) (clobber (match_scratch:SI 2 "=&r,&r"))] "" "* { output_asm_insn (\"sethi %%hi(%a0),%2\", operands); if (which_alternative == 0) return \"std %1,[%2+%%lo(%a0)]\"; else return \"st %%g0,[%2+%%lo(%a0)]\;st %%g0,[%2+%%lo(%a0+4)]\"; }" [(set_attr "type" "store") (set_attr "length" "3")]) ;; This pattern forces (set (reg:TF ...) (const_double ...)) ;; to be reloaded by putting the constant into memory. ;; It must come before the more general movtf pattern. (define_insn "" [(set (match_operand:TF 0 "general_operand" "=?r,f,o") (match_operand:TF 1 "" "?E,m,G"))] "TARGET_FPU && GET_CODE (operands[1]) == CONST_DOUBLE" "* { switch (which_alternative) { case 0: return output_move_quad (operands); case 1: return output_fp_move_quad (operands); case 2: operands[1] = adj_offsettable_operand (operands[0], 4); operands[2] = adj_offsettable_operand (operands[0], 8); operands[3] = adj_offsettable_operand (operands[0], 12); return \"st %%g0,%0\;st %%g0,%1\;st %%g0,%2\;st %%g0,%3\"; } }" [(set_attr "type" "load,fpload,store") (set_attr "length" "5,5,5")]) (define_expand "movtf" [(set (match_operand:TF 0 "general_operand" "") (match_operand:TF 1 "general_operand" ""))] "" " { if (emit_move_sequence (operands, TFmode)) DONE; }") (define_insn "" [(set (match_operand:TF 0 "reg_or_nonsymb_mem_operand" "=f,r,Q,Q,f,&r") (match_operand:TF 1 "reg_or_nonsymb_mem_operand" "f,r,f,r,Q,Q"))] "TARGET_FPU && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode))" "* { if (FP_REG_P (operands[0]) || FP_REG_P (operands[1])) return output_fp_move_quad (operands); return output_move_quad (operands); }" [(set_attr "type" "fp,move,fpstore,store,fpload,load") (set_attr "length" "4,4,5,5,5,5")]) ;; Exactly the same as above, except that all `f' cases are deleted. ;; This is necessary to prevent reload from ever trying to use a `f' reg ;; when -mno-fpu. (define_insn "" [(set (match_operand:TF 0 "reg_or_nonsymb_mem_operand" "=r,Q,&r") (match_operand:TF 1 "reg_or_nonsymb_mem_operand" "r,r,Q"))] "! TARGET_FPU && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode))" "* { if (FP_REG_P (operands[0]) || FP_REG_P (operands[1])) return output_fp_move_quad (operands); return output_move_quad (operands); }" [(set_attr "type" "move,store,load") (set_attr "length" "4,5,5")]) (define_insn "" [(set (mem:TF (match_operand:SI 0 "symbolic_operand" "i,i")) (match_operand:TF 1 "reg_or_0_operand" "rf,G")) (clobber (match_scratch:SI 2 "=&r,&r"))] "" "* { output_asm_insn (\"sethi %%hi(%a0),%2\", operands); if (which_alternative == 0) return \"std %1,[%2+%%lo(%a0)]\;std %S1,[%2+%%lo(%a0+8)]\"; else return \"st %%g0,[%2+%%lo(%a0)]\;st %%g0,[%2+%%lo(%a0+4)]\; st %%g0,[%2+%%lo(%a0+8)]\;st %%g0,[%2+%%lo(%a0+12)]\"; }" [(set_attr "type" "store") (set_attr "length" "5")]) ;;- zero extension instructions ;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the ldu[hb] insns. (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "") (zero_extend:SI (match_operand:HI 1 "register_operand" "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_16 = gen_rtx (CONST_INT, VOIDmode, 16); int op1_subword = 0; if (GET_CODE (operand1) == SUBREG) { op1_subword = SUBREG_WORD (operand1); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1, op1_subword), shift_16)); emit_insn (gen_lshrsi3 (operand0, temp, shift_16)); DONE; }") (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))] "" "lduh %1,%0" [(set_attr "type" "load")]) (define_expand "zero_extendqihi2" [(set (match_operand:HI 0 "register_operand" "") (zero_extend:HI (match_operand:QI 1 "register_operand" "")))] "" "") (define_insn "" [(set (match_operand:HI 0 "register_operand" "=r,r") (zero_extend:HI (match_operand:QI 1 "sparc_operand" "r,Q")))] "GET_CODE (operands[1]) != CONST_INT" "@ and %1,0xff,%0 ldub %1,%0" [(set_attr "type" "unary,load") (set_attr "length" "1")]) (define_expand "zero_extendqisi2" [(set (match_operand:SI 0 "register_operand" "") (zero_extend:SI (match_operand:QI 1 "register_operand" "")))] "" "") (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r,r") (zero_extend:SI (match_operand:QI 1 "sparc_operand" "r,Q")))] "GET_CODE (operands[1]) != CONST_INT" "@ and %1,0xff,%0 ldub %1,%0" [(set_attr "type" "unary,load") (set_attr "length" "1")]) (define_insn "" [(set (reg:CC 0) (compare:CC (zero_extend:SI (match_operand:QI 0 "register_operand" "r")) (const_int 0)))] "" "andcc %0,0xff,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC 0) (compare:CC (zero_extend:SI (match_operand:QI 1 "register_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (zero_extend:SI (match_dup 1)))] "" "andcc %1,0xff,%0" [(set_attr "type" "unary")]) ;; Similarly, handle SI->QI mode truncation followed by a compare. (define_insn "" [(set (reg:CC 0) (compare:CC (subreg:QI (match_operand:SI 0 "register_operand" "r") 0) (const_int 0)))] "" "andcc %0,0xff,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC 0) (compare:CC (subreg:QI (match_operand:SI 1 "register_operand" "r") 0) (const_int 0))) (set (match_operand:QI 0 "register_operand" "=r") (match_dup 1))] "" "andcc %1,0xff,%0" [(set_attr "type" "unary")]) ;;- sign extension instructions ;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the lds[hb] insns. (define_expand "extendhisi2" [(set (match_operand:SI 0 "register_operand" "") (sign_extend:SI (match_operand:HI 1 "register_operand" "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_16 = gen_rtx (CONST_INT, VOIDmode, 16); int op1_subword = 0; if (GET_CODE (operand1) == SUBREG) { op1_subword = SUBREG_WORD (operand1); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1, op1_subword), shift_16)); emit_insn (gen_ashrsi3 (operand0, temp, shift_16)); DONE; }") (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (sign_extend:SI (match_operand:HI 1 "memory_operand" "m")))] "" "ldsh %1,%0" [(set_attr "type" "load")]) (define_expand "extendqihi2" [(set (match_operand:HI 0 "register_operand" "") (sign_extend:HI (match_operand:QI 1 "register_operand" "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_24 = gen_rtx (CONST_INT, VOIDmode, 24); int op1_subword = 0; int op0_subword = 0; if (GET_CODE (operand1) == SUBREG) { op1_subword = SUBREG_WORD (operand1); operand1 = XEXP (operand1, 0); } if (GET_CODE (operand0) == SUBREG) { op0_subword = SUBREG_WORD (operand0); operand0 = XEXP (operand0, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1, op1_subword), shift_24)); if (GET_MODE (operand0) != SImode) operand0 = gen_rtx (SUBREG, SImode, operand0, op0_subword); emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); DONE; }") (define_insn "" [(set (match_operand:HI 0 "register_operand" "=r") (sign_extend:HI (match_operand:QI 1 "memory_operand" "m")))] "" "ldsb %1,%0" [(set_attr "type" "load")]) (define_expand "extendqisi2" [(set (match_operand:SI 0 "register_operand" "") (sign_extend:SI (match_operand:QI 1 "register_operand" "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_24 = gen_rtx (CONST_INT, VOIDmode, 24); int op1_subword = 0; if (GET_CODE (operand1) == SUBREG) { op1_subword = SUBREG_WORD (operand1); operand1 = XEXP (operand1, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1, op1_subword), shift_24)); emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); DONE; }") (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (sign_extend:SI (match_operand:QI 1 "memory_operand" "m")))] "" "ldsb %1,%0" [(set_attr "type" "load")]) ;; Special pattern for optimizing bit-field compares. This is needed ;; because combine uses this as a canonical form. (define_insn "" [(set (reg:CC 0) (compare:CC (zero_extract:SI (match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "small_int" "n") (match_operand:SI 2 "small_int" "n")) (const_int 0)))] "INTVAL (operands[2]) > 19" "* { int len = INTVAL (operands[1]); int pos = 32 - INTVAL (operands[2]) - len; unsigned mask = ((1 << len) - 1) << pos; operands[1] = gen_rtx (CONST_INT, VOIDmode, mask); return \"andcc %0,%1,%%g0\"; }") ;; Conversions between float, double and long double. (define_insn "extendsfdf2" [(set (match_operand:DF 0 "register_operand" "=f") (float_extend:DF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fstod %1,%0" [(set_attr "type" "fp")]) (define_insn "extendsftf2" [(set (match_operand:TF 0 "register_operand" "=f") (float_extend:TF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fstoq %1,%0" [(set_attr "type" "fp")]) (define_insn "extenddftf2" [(set (match_operand:TF 0 "register_operand" "=f") (float_extend:TF (match_operand:DF 1 "register_operand" "f")))] "TARGET_FPU" "fdtoq %1,%0" [(set_attr "type" "fp")]) (define_insn "truncdfsf2" [(set (match_operand:SF 0 "register_operand" "=f") (float_truncate:SF (match_operand:DF 1 "register_operand" "f")))] "TARGET_FPU" "fdtos %1,%0" [(set_attr "type" "fp")]) (define_insn "trunctfsf2" [(set (match_operand:SF 0 "register_operand" "=f") (float_truncate:SF (match_operand:TF 1 "register_operand" "f")))] "TARGET_FPU" "fqtos %1,%0" [(set_attr "type" "fp")]) (define_insn "trunctfdf2" [(set (match_operand:DF 0 "register_operand" "=f") (float_truncate:DF (match_operand:TF 1 "register_operand" "f")))] "TARGET_FPU" "fqtod %1,%0" [(set_attr "type" "fp")]) ;; Conversion between fixed point and floating point. (define_insn "floatsisf2" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:SI 1 "register_operand" "f")))] "TARGET_FPU" "fitos %1,%0" [(set_attr "type" "fp")]) (define_insn "floatsidf2" [(set (match_operand:DF 0 "register_operand" "=f") (float:DF (match_operand:SI 1 "register_operand" "f")))] "TARGET_FPU" "fitod %1,%0" [(set_attr "type" "fp")]) (define_insn "floatsitf2" [(set (match_operand:TF 0 "register_operand" "=f") (float:TF (match_operand:SI 1 "register_operand" "f")))] "TARGET_FPU" "fitoq %1,%0" [(set_attr "type" "fp")]) ;; Convert a float to an actual integer. ;; Truncation is performed as part of the conversion. (define_insn "fix_truncsfsi2" [(set (match_operand:SI 0 "register_operand" "=f") (fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] "TARGET_FPU" "fstoi %1,%0" [(set_attr "type" "fp")]) (define_insn "fix_truncdfsi2" [(set (match_operand:SI 0 "register_operand" "=f") (fix:SI (fix:DF (match_operand:DF 1 "register_operand" "f"))))] "TARGET_FPU" "fdtoi %1,%0" [(set_attr "type" "fp")]) (define_insn "fix_trunctfsi2" [(set (match_operand:SI 0 "register_operand" "=f") (fix:SI (fix:TF (match_operand:TF 1 "register_operand" "f"))))] "TARGET_FPU" "fqtoi %1,%0" [(set_attr "type" "fp")]) ;;- arithmetic instructions (define_insn "adddi3" [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (match_operand:DI 1 "arith_double_operand" "%r") (match_operand:DI 2 "arith_double_operand" "rHI"))) (clobber (reg:SI 0))] "" "* { rtx op2 = operands[2]; /* If constant is positive, upper bits zeroed, otherwise unchanged. Give the assembler a chance to pick the move instruction. */ if (GET_CODE (op2) == CONST_INT) { int sign = INTVAL (op2); if (sign < 0) return \"addcc %R1,%2,%R0\;addx %1,-1,%0\"; return \"addcc %R1,%2,%R0\;addx %1,0,%0\"; } else if (GET_CODE (op2) == CONST_DOUBLE) { int sign = CONST_DOUBLE_HIGH (op2); operands[2] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[1])); if (sign < 0) return \"addcc %R1,%2,%R0\;addx %1,-1,%0\"; return \"addcc %R1,%2,%R0\;addx %1,0,%0\"; } return \"addcc %R1,%R2,%R0\;addx %1,%2,%0\"; }" [(set_attr "length" "2")]) (define_insn "addsi3" [(set (match_operand:SI 0 "register_operand" "=r") (plus:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")))] "" "add %1,%2,%0") (define_insn "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (plus:SI (match_operand:SI 0 "arith_operand" "%r") (match_operand:SI 1 "arith_operand" "rI")) (const_int 0)))] "" "addcc %0,%1,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (plus:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (plus:SI (match_dup 1) (match_dup 2)))] "" "addcc %1,%2,%0") (define_insn "subdi3" [(set (match_operand:DI 0 "register_operand" "=r") (minus:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "arith_double_operand" "rHI"))) (clobber (reg:SI 0))] "" "* { rtx op2 = operands[2]; /* If constant is positive, upper bits zeroed, otherwise unchanged. Give the assembler a chance to pick the move instruction. */ if (GET_CODE (op2) == CONST_INT) { int sign = INTVAL (op2); if (sign < 0) return \"subcc %R1,%2,%R0\;subx %1,-1,%0\"; return \"subcc %R1,%2,%R0\;subx %1,0,%0\"; } else if (GET_CODE (op2) == CONST_DOUBLE) { int sign = CONST_DOUBLE_HIGH (op2); operands[2] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[1])); if (sign < 0) return \"subcc %R1,%2,%R0\;subx %1,-1,%0\"; return \"subcc %R1,%2,%R0\;subx %1,0,%0\"; } return \"subcc %R1,%R2,%R0\;subx %1,%2,%0\"; }" [(set_attr "length" "2")]) (define_insn "subsi3" [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "" "sub %1,%2,%0") (define_insn "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (minus:SI (match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "arith_operand" "rI")) (const_int 0)))] "" "subcc %0,%1,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (minus:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_dup 1) (match_dup 2)))] "" "subcc %1,%2,%0") (define_insn "mulsi3" [(set (match_operand:SI 0 "register_operand" "=r") (mult:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_V8 || TARGET_SPARCLITE" "smul %1,%2,%0") ;; It is not known whether this will match. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (mult:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI"))) (set (reg:CC_NOOV 0) (compare:CC_NOOV (mult:SI (match_dup 1) (match_dup 2)) (const_int 0)))] "TARGET_V8 || TARGET_SPARCLITE" "smulcc %1,%2,%0") (define_expand "mulsidi3" [(set (match_operand:DI 0 "register_operand" "") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "")) (sign_extend:DI (match_operand:SI 2 "arith_operand" ""))))] "TARGET_V8 || TARGET_SPARCLITE" " { if (CONSTANT_P (operands[2])) { emit_insn (gen_const_mulsidi3 (operands[0], operands[1], operands[2])); DONE; } }") (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] "TARGET_V8 || TARGET_SPARCLITE" "smul %1,%2,%R0\;rd %%y,%0" [(set_attr "length" "2")]) ;; Extra pattern, because sign_extend of a constant isn't legal. (define_insn "const_mulsidi3" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:SI 2 "small_int" "I")))] "TARGET_V8 || TARGET_SPARCLITE" "smul %1,%2,%R0\;rd %%y,%0" [(set_attr "length" "2")]) (define_expand "umulsidi3" [(set (match_operand:DI 0 "register_operand" "") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "")) (zero_extend:DI (match_operand:SI 2 "arith_operand" ""))))] "TARGET_V8 || TARGET_SPARCLITE" " { if (CONSTANT_P (operands[2])) { emit_insn (gen_const_umulsidi3 (operands[0], operands[1], operands[2])); DONE; } }") (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] "TARGET_V8 || TARGET_SPARCLITE" "umul %1,%2,%R0\;rd %%y,%0" [(set_attr "length" "2")]) ;; Extra pattern, because sign_extend of a constant isn't legal. (define_insn "const_umulsidi3" [(set (match_operand:DI 0 "register_operand" "=r") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) (match_operand:SI 2 "small_int" "I")))] "TARGET_V8 || TARGET_SPARCLITE" "umul %1,%2,%R0\;rd %%y,%0" [(set_attr "length" "2")]) ;; The architecture specifies that there must be 3 instructions between ;; a y register write and a use of it for correct results. (define_insn "divsi3" [(set (match_operand:SI 0 "register_operand" "=r") (div:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI"))) (clobber (match_scratch:SI 3 "=&r"))] "TARGET_V8" "sra %1,31,%3\;wr %%g0,%3,%%y\;nop\;nop\;nop\;sdiv %1,%2,%0" [(set_attr "length" "6")]) ;; It is not known whether this will match. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (div:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI"))) (set (reg:CC 0) (compare:CC (div:SI (match_dup 1) (match_dup 2)) (const_int 0))) (clobber (match_scratch:SI 3 "=&r"))] "TARGET_V8" "sra %1,31,%3\;wr %%g0,%3,%%y\;nop\;nop\;nop\;sdivcc %1,%2,%0" [(set_attr "length" "6")]) (define_insn "udivsi3" [(set (match_operand:SI 0 "register_operand" "=r") (udiv:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI")))] "TARGET_V8" "wr %%g0,%%g0,%%y\;nop\;nop\;nop\;udiv %1,%2,%0" [(set_attr "length" "5")]) ;; It is not known whether this will match. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (udiv:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "arith_operand" "rI"))) (set (reg:CC 0) (compare:CC (udiv:SI (match_dup 1) (match_dup 2)) (const_int 0)))] "TARGET_V8" "wr %%g0,%%g0,%%y\;nop\;nop\;nop\;udivcc %1,%2,%0" [(set_attr "length" "5")]) ;;- Boolean instructions ;; We define DImode `and` so with DImode `not` we can get ;; DImode `andn`. Other combinations are possible. (define_expand "anddi3" [(set (match_operand:DI 0 "register_operand" "") (and:DI (match_operand:DI 1 "arith_double_operand" "") (match_operand:DI 2 "arith_double_operand" "")))] "" "") (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (and:DI (match_operand:DI 1 "arith_double_operand" "%r") (match_operand:DI 2 "arith_double_operand" "rHI")))] "" "* { rtx op2 = operands[2]; /* If constant is positive, upper bits zeroed, otherwise unchanged. Give the assembler a chance to pick the move instruction. */ if (GET_CODE (op2) == CONST_INT) { int sign = INTVAL (op2); if (sign < 0) return \"mov %1,%0\;and %R1,%2,%R0\"; return \"mov 0,%0\;and %R1,%2,%R0\"; } else if (GET_CODE (op2) == CONST_DOUBLE) { int sign = CONST_DOUBLE_HIGH (op2); operands[2] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[1])); if (sign < 0) return \"mov %1,%0\;and %R1,%2,%R0\"; return \"mov 0,%0\;and %R1,%2,%R0\"; } return \"and %1,%2,%0\;and %R1,%R2,%R0\"; }" [(set_attr "length" "2")]) (define_insn "andsi3" [(set (match_operand:SI 0 "register_operand" "=r") (and:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")))] "" "and %1,%2,%0") (define_split [(set (match_operand:SI 0 "register_operand" "") (and:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "GET_CODE (operands[2]) == CONST_INT && !SMALL_INT (operands[2]) && (INTVAL (operands[2]) & 0x3ff) == 0x3ff" [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (and:SI (not:SI (match_dup 3)) (match_dup 1)))] " { operands[4] = gen_rtx (CONST_INT, VOIDmode, ~INTVAL (operands[2])); }") (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (and:DI (not:DI (match_operand:DI 1 "register_operand" "r")) (match_operand:DI 2 "register_operand" "r")))] "" "andn %2,%1,%0\;andn %R2,%R1,%R0" [(set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (and:SI (not:SI (match_operand:SI 1 "register_operand" "r")) (match_operand:SI 2 "register_operand" "r")))] "" "andn %2,%1,%0") (define_expand "iordi3" [(set (match_operand:DI 0 "register_operand" "") (ior:DI (match_operand:DI 1 "arith_double_operand" "") (match_operand:DI 2 "arith_double_operand" "")))] "" "") (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (ior:DI (match_operand:DI 1 "arith_double_operand" "%r") (match_operand:DI 2 "arith_double_operand" "rHI")))] "" "* { rtx op2 = operands[2]; /* If constant is positive, upper bits zeroed, otherwise unchanged. Give the assembler a chance to pick the move instruction. */ if (GET_CODE (op2) == CONST_INT) { int sign = INTVAL (op2); if (sign < 0) return \"mov -1,%0\;or %R1,%2,%R0\"; return \"mov %1,%0\;or %R1,%2,%R0\"; } else if (GET_CODE (op2) == CONST_DOUBLE) { int sign = CONST_DOUBLE_HIGH (op2); operands[2] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[1])); if (sign < 0) return \"mov -1,%0\;or %R1,%2,%R0\"; return \"mov %1,%0\;or %R1,%2,%R0\"; } return \"or %1,%2,%0\;or %R1,%R2,%R0\"; }" [(set_attr "length" "2")]) (define_insn "iorsi3" [(set (match_operand:SI 0 "register_operand" "=r") (ior:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")))] "" "or %1,%2,%0") (define_split [(set (match_operand:SI 0 "register_operand" "") (ior:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "GET_CODE (operands[2]) == CONST_INT && !SMALL_INT (operands[2]) && (INTVAL (operands[2]) & 0x3ff) == 0x3ff" [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (ior:SI (not:SI (match_dup 3)) (match_dup 1)))] " { operands[4] = gen_rtx (CONST_INT, VOIDmode, ~INTVAL (operands[2])); }") (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (ior:DI (not:DI (match_operand:DI 1 "register_operand" "r")) (match_operand:DI 2 "register_operand" "r")))] "" "orn %2,%1,%0\;orn %R2,%R1,%R0" [(set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (ior:SI (not:SI (match_operand:SI 1 "register_operand" "r")) (match_operand:SI 2 "register_operand" "r")))] "" "orn %2,%1,%0") (define_expand "xordi3" [(set (match_operand:DI 0 "register_operand" "") (xor:DI (match_operand:DI 1 "arith_double_operand" "") (match_operand:DI 2 "arith_double_operand" "")))] "" "") (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (xor:DI (match_operand:DI 1 "arith_double_operand" "%r") (match_operand:DI 2 "arith_double_operand" "rHI")))] "" "* { rtx op2 = operands[2]; /* If constant is positive, upper bits zeroed, otherwise unchanged. Give the assembler a chance to pick the move instruction. */ if (GET_CODE (op2) == CONST_INT) { int sign = INTVAL (op2); if (sign < 0) return \"xor %1,-1,%0\;xor %R1,%2,%R0\"; return \"mov %1,%0\;xor %R1,%2,%R0\"; } else if (GET_CODE (op2) == CONST_DOUBLE) { int sign = CONST_DOUBLE_HIGH (op2); operands[2] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[1])); if (sign < 0) return \"xor %1,-1,%0\;xor %R1,%2,%R0\"; return \"mov %1,%0\;xor %R1,%2,%R0\"; } return \"xor %1,%2,%0\;xor %R1,%R2,%R0\"; }" [(set_attr "length" "2")]) (define_insn "xorsi3" [(set (match_operand:SI 0 "register_operand" "=r") (xor:SI (match_operand:SI 1 "arith_operand" "%rJ") (match_operand:SI 2 "arith_operand" "rI")))] "" "xor %r1,%2,%0") (define_split [(set (match_operand:SI 0 "register_operand" "") (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "GET_CODE (operands[2]) == CONST_INT && !SMALL_INT (operands[2]) && (INTVAL (operands[2]) & 0x3ff) == 0x3ff" [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (not:SI (xor:SI (match_dup 3) (match_dup 1))))] " { operands[4] = gen_rtx (CONST_INT, VOIDmode, ~INTVAL (operands[2])); }") (define_split [(set (match_operand:SI 0 "register_operand" "") (not:SI (xor:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "" "")))) (clobber (match_operand:SI 3 "register_operand" ""))] "GET_CODE (operands[2]) == CONST_INT && !SMALL_INT (operands[2]) && (INTVAL (operands[2]) & 0x3ff) == 0x3ff" [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (xor:SI (match_dup 3) (match_dup 1)))] " { operands[4] = gen_rtx (CONST_INT, VOIDmode, ~INTVAL (operands[2])); }") ;; xnor patterns. Note that (a ^ ~b) == (~a ^ b) == ~(a ^ b). ;; Combine now canonicalizes to the rightmost expression. (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (not:DI (xor:DI (match_operand:DI 1 "register_operand" "r") (match_operand:DI 2 "register_operand" "r"))))] "" "xnor %1,%2,%0\;xnor %R1,%R2,%R0" [(set_attr "length" "2")]) (define_insn "" [(set (match_operand:SI 0 "register_operand" "=r") (not:SI (xor:SI (match_operand:SI 1 "reg_or_0_operand" "rJ") (match_operand:SI 2 "arith_operand" "rI"))))] "" "xnor %r1,%2,%0") ;; These correspond to the above in the case where we also (or only) ;; want to set the condition code. (define_insn "" [(set (reg:CC 0) (compare:CC (match_operator:SI 2 "cc_arithop" [(match_operand:SI 0 "arith_operand" "%r") (match_operand:SI 1 "arith_operand" "rI")]) (const_int 0)))] "" "%A2cc %0,%1,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC 0) (compare:CC (match_operator:SI 3 "cc_arithop" [(match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI")]) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (match_dup 3))] "" "%A3cc %1,%2,%0") (define_insn "" [(set (reg:CC 0) (compare:CC (not:SI (xor:SI (match_operand:SI 0 "reg_or_0_operand" "%rJ") (match_operand:SI 1 "arith_operand" "rI"))) (const_int 0)))] "" "xnorcc %r0,%1,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC 0) (compare:CC (not:SI (xor:SI (match_operand:SI 1 "reg_or_0_operand" "%rJ") (match_operand:SI 2 "arith_operand" "rI"))) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (not:SI (xor:SI (match_dup 1) (match_dup 2))))] "" "xnorcc %r1,%2,%0") (define_insn "" [(set (reg:CC 0) (compare:CC (match_operator:SI 2 "cc_arithopn" [(not:SI (match_operand:SI 0 "arith_operand" "rI")) (match_operand:SI 1 "reg_or_0_operand" "rJ")]) (const_int 0)))] "" "%B2cc %r1,%0,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC 0) (compare:CC (match_operator:SI 3 "cc_arithopn" [(not:SI (match_operand:SI 1 "arith_operand" "rI")) (match_operand:SI 2 "reg_or_0_operand" "rJ")]) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (match_dup 3))] "" "%B3cc %r2,%1,%0") ;; We cannot use the "neg" pseudo insn because the Sun assembler ;; does not know how to make it work for constants. (define_insn "negdi2" [(set (match_operand:DI 0 "register_operand" "=r") (neg:DI (match_operand:DI 1 "register_operand" "r"))) (clobber (reg:SI 0))] "" "subcc %%g0,%R1,%R0\;subx %%g0,%1,%0" [(set_attr "type" "unary") (set_attr "length" "2")]) (define_insn "negsi2" [(set (match_operand:SI 0 "general_operand" "=r") (neg:SI (match_operand:SI 1 "arith_operand" "rI")))] "" "sub %%g0,%1,%0" [(set_attr "type" "unary")]) (define_insn "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_operand:SI 0 "arith_operand" "rI")) (const_int 0)))] "" "subcc %%g0,%0,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_operand:SI 1 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (neg:SI (match_dup 1)))] "" "subcc %%g0,%1,%0" [(set_attr "type" "unary")]) ;; We cannot use the "not" pseudo insn because the Sun assembler ;; does not know how to make it work for constants. (define_expand "one_cmpldi2" [(set (match_operand:DI 0 "register_operand" "=r") (not:DI (match_operand:DI 1 "arith_double_operand" "rHI")))] "" "") (define_insn "" [(set (match_operand:DI 0 "register_operand" "=r") (not:DI (match_operand:DI 1 "arith_double_operand" "rHI")))] "" "* { rtx op1 = operands[1]; if (GET_CODE (op1) == CONST_INT) { int sign = INTVAL (op1); if (sign < 0) return \"xnor %%g0,%1,%R0\;xnor %%g0,-1,%0\"; return \"xnor %%g0,%1,%R0\;xnor %%g0,0,%0\"; } else if (GET_CODE (op1) == CONST_DOUBLE) { int sign = CONST_DOUBLE_HIGH (op1); operands[1] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[1])); if (sign < 0) return \"xnor %%g0,%1,%R0\;xnor %%g0,-1,%0\"; return \"xnor %%g0,%1,%R0\;xnor %%g0,0,%0\"; } return \"xnor %%g0,%1,%0\;xnor %%g0,%R1,%R0\"; }" [(set_attr "type" "unary") (set_attr "length" "2")]) (define_insn "one_cmplsi2" [(set (match_operand:SI 0 "register_operand" "=r") (not:SI (match_operand:SI 1 "arith_operand" "rI")))] "" "xnor %%g0,%1,%0" [(set_attr "type" "unary")]) (define_insn "" [(set (reg:CC 0) (compare:CC (not:SI (match_operand:SI 0 "arith_operand" "rI")) (const_int 0)))] "" "xnorcc %%g0,%0,%%g0" [(set_attr "type" "compare")]) (define_insn "" [(set (reg:CC 0) (compare:CC (not:SI (match_operand:SI 1 "arith_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "register_operand" "=r") (not:SI (match_dup 1)))] "" "xnorcc %%g0,%1,%0" [(set_attr "type" "unary")]) ;; Floating point arithmetic instructions. (define_insn "addtf3" [(set (match_operand:TF 0 "register_operand" "=f") (plus:TF (match_operand:TF 1 "register_operand" "f") (match_operand:TF 2 "register_operand" "f")))] "TARGET_FPU" "faddq %1,%2,%0" [(set_attr "type" "fp")]) (define_insn "adddf3" [(set (match_operand:DF 0 "register_operand" "=f") (plus:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_FPU" "faddd %1,%2,%0" [(set_attr "type" "fp")]) (define_insn "addsf3" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" "fadds %1,%2,%0" [(set_attr "type" "fp")]) (define_insn "subtf3" [(set (match_operand:TF 0 "register_operand" "=f") (minus:TF (match_operand:TF 1 "register_operand" "f") (match_operand:TF 2 "register_operand" "f")))] "TARGET_FPU" "fsubq %1,%2,%0" [(set_attr "type" "fp")]) (define_insn "subdf3" [(set (match_operand:DF 0 "register_operand" "=f") (minus:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_FPU" "fsubd %1,%2,%0" [(set_attr "type" "fp")]) (define_insn "subsf3" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" "fsubs %1,%2,%0" [(set_attr "type" "fp")]) (define_insn "multf3" [(set (match_operand:TF 0 "register_operand" "=f") (mult:TF (match_operand:TF 1 "register_operand" "f") (match_operand:TF 2 "register_operand" "f")))] "TARGET_FPU" "fmulq %1,%2,%0" [(set_attr "type" "fpmul")]) (define_insn "muldf3" [(set (match_operand:DF 0 "register_operand" "=f") (mult:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_FPU" "fmuld %1,%2,%0" [(set_attr "type" "fpmul")]) (define_insn "mulsf3" [(set (match_operand:SF 0 "register_operand" "=f") (mult:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" "fmuls %1,%2,%0" [(set_attr "type" "fpmul")]) (define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (mult:DF (float_extend:DF (match_operand:SF 1 "register_operand" "f")) (float_extend:DF (match_operand:SF 2 "register_operand" "f"))))] "TARGET_V8 && TARGET_FPU" "fsmuld %1,%2,%0" [(set_attr "type" "fpmul")]) (define_insn "" [(set (match_operand:TF 0 "register_operand" "=f") (mult:TF (float_extend:TF (match_operand:DF 1 "register_operand" "f")) (float_extend:TF (match_operand:DF 2 "register_operand" "f"))))] "TARGET_V8 && TARGET_FPU" "fdmulq %1,%2,%0" [(set_attr "type" "fpmul")]) (define_insn "divtf3" [(set (match_operand:TF 0 "register_operand" "=f") (div:TF (match_operand:TF 1 "register_operand" "f") (match_operand:TF 2 "register_operand" "f")))] "TARGET_FPU" "fdivq %1,%2,%0" [(set_attr "type" "fpdiv")]) (define_insn "divdf3" [(set (match_operand:DF 0 "register_operand" "=f") (div:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_FPU" "fdivd %1,%2,%0" [(set_attr "type" "fpdiv")]) (define_insn "divsf3" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_FPU" "fdivs %1,%2,%0" [(set_attr "type" "fpdiv")]) (define_insn "negtf2" [(set (match_operand:TF 0 "register_operand" "=f,f") (neg:TF (match_operand:TF 1 "register_operand" "0,f")))] "TARGET_FPU" "@ fnegs %0,%0 fnegs %1,%0\;fmovs %R1,%R0\;fmovs %S1,%S0\;fmovs %T1,%T0" [(set_attr "type" "fp") (set_attr "length" "1,4")]) (define_insn "negdf2" [(set (match_operand:DF 0 "register_operand" "=f,f") (neg:DF (match_operand:DF 1 "register_operand" "0,f")))] "TARGET_FPU" "@ fnegs %0,%0 fnegs %1,%0\;fmovs %R1,%R0" [(set_attr "type" "fp") (set_attr "length" "1,2")]) (define_insn "negsf2" [(set (match_operand:SF 0 "register_operand" "=f") (neg:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fnegs %1,%0" [(set_attr "type" "fp")]) (define_insn "abstf2" [(set (match_operand:TF 0 "register_operand" "=f,f") (abs:TF (match_operand:TF 1 "register_operand" "0,f")))] "TARGET_FPU" "@ fabss %0,%0 fabss %1,%0\;fmovs %R1,%R0\;fmovs %S1,%S0\;fmovs %T1,%T0" [(set_attr "type" "fp") (set_attr "length" "1,4")]) (define_insn "absdf2" [(set (match_operand:DF 0 "register_operand" "=f,f") (abs:DF (match_operand:DF 1 "register_operand" "0,f")))] "TARGET_FPU" "@ fabss %0,%0 fabss %1,%0\;fmovs %R1,%R0" [(set_attr "type" "fp") (set_attr "length" "1,2")]) (define_insn "abssf2" [(set (match_operand:SF 0 "register_operand" "=f") (abs:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fabss %1,%0" [(set_attr "type" "fp")]) (define_insn "sqrttf2" [(set (match_operand:TF 0 "register_operand" "=f") (sqrt:TF (match_operand:TF 1 "register_operand" "f")))] "TARGET_FPU" "fsqrtq %1,%0" [(set_attr "type" "fpsqrt")]) (define_insn "sqrtdf2" [(set (match_operand:DF 0 "register_operand" "=f") (sqrt:DF (match_operand:DF 1 "register_operand" "f")))] "TARGET_FPU" "fsqrtd %1,%0" [(set_attr "type" "fpsqrt")]) (define_insn "sqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (sqrt:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_FPU" "fsqrts %1,%0" [(set_attr "type" "fpsqrt")]) ;;- arithmetic shift instructions (define_insn "ashlsi3" [(set (match_operand:SI 0 "register_operand" "=r") (ashift:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "shift_operand" "rI")))] "" "sll %1,%2,%0") (define_insn "ashrsi3" [(set (match_operand:SI 0 "register_operand" "=r") (ashiftrt:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "shift_operand" "rI")))] "" "sra %1,%2,%0") (define_insn "lshrsi3" [(set (match_operand:SI 0 "register_operand" "=r") (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "shift_operand" "rI")))] "" "srl %1,%2,%0") ;; Unconditional and other jump instructions ;; On the Sparc, by setting the annul bit on an unconditional branch, the ;; following insn is never executed. This saves us a nop. Dbx does not ;; handle such branches though, so we only use them when optimizing. (define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "b%* %l0%(" [(set_attr "type" "uncond_branch")]) (define_expand "tablejump" [(parallel [(set (pc) (match_operand:SI 0 "register_operand" "r")) (use (label_ref (match_operand 1 "" "")))])] "" " { /* We need to use the PC value in %o7 that was set up when the address of the label was loaded into a register, so we need different RTL. */ if (flag_pic) { emit_insn (gen_pic_tablejump (operands[0], operands[1])); DONE; } }") (define_insn "pic_tablejump" [(set (pc) (match_operand:SI 0 "register_operand" "r")) (use (label_ref (match_operand 1 "" ""))) (use (reg:SI 15))] "" "jmp %%o7+%0%#" [(set_attr "type" "uncond_branch")]) (define_insn "" [(set (pc) (match_operand:SI 0 "address_operand" "p")) (use (label_ref (match_operand 1 "" "")))] "" "jmp %a0%#" [(set_attr "type" "uncond_branch")]) (define_insn "" [(set (pc) (label_ref (match_operand 0 "" ""))) (set (reg:SI 15) (label_ref (match_dup 0)))] "" "call %l0%#" [(set_attr "type" "uncond_branch")]) ;; This pattern recognizes the "instruction" that appears in ;; a function call that wants a structure value, ;; to inform the called function if compiled with Sun CC. ;(define_insn "" ; [(match_operand:SI 0 "immediate_operand" "")] ; "GET_CODE (operands[0]) == CONST_INT && INTVAL (operands[0]) > 0" ; "unimp %0" ; [(set_attr "type" "marker")]) ;;- jump to subroutine (define_expand "call" ;; Note that this expression is not used for generating RTL. ;; All the RTL is generated explicitly below. [(call (match_operand:SI 0 "call_operand" "") (match_operand 3 "" "i"))] ;; operands[2] is next_arg_register ;; operands[3] is struct_value_size_rtx. "" " { rtx fn_rtx, nregs_rtx; if (GET_CODE (XEXP (operands[0], 0)) == LABEL_REF) { /* This is really a PIC sequence. We want to represent it as a funny jump so it's delay slots can be filled. ??? But if this really *is* a CALL, will not it clobber the call-clobbered registers? We lose this if it is a JUMP_INSN. Why cannot we have delay slots filled if it were a CALL? */ if (INTVAL (operands[3]) > 0) emit_jump_insn (gen_rtx (PARALLEL, VOIDmode, gen_rtvec (3, gen_rtx (SET, VOIDmode, pc_rtx, XEXP (operands[0], 0)), operands[3], gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 15))))); else emit_jump_insn (gen_rtx (PARALLEL, VOIDmode, gen_rtvec (2, gen_rtx (SET, VOIDmode, pc_rtx, XEXP (operands[0], 0)), gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 15))))); goto finish_call; } fn_rtx = operands[0]; /* Count the number of parameter registers being used by this call. if that argument is NULL, it means we are using them all, which means 6 on the sparc. */ #if 0 if (operands[2]) nregs_rtx = gen_rtx (CONST_INT, VOIDmode, REGNO (operands[2]) - 8); else nregs_rtx = gen_rtx (CONST_INT, VOIDmode, 6); #else nregs_rtx = const0_rtx; #endif if (INTVAL (operands[3]) > 0) emit_call_insn (gen_rtx (PARALLEL, VOIDmode, gen_rtvec (3, gen_rtx (CALL, VOIDmode, fn_rtx, nregs_rtx), operands[3], gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 15))))); else emit_call_insn (gen_rtx (PARALLEL, VOIDmode, gen_rtvec (2, gen_rtx (CALL, VOIDmode, fn_rtx, nregs_rtx), gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 15))))); finish_call: #if 0 /* If this call wants a structure value, emit an unimp insn to let the called function know about this. */ if (INTVAL (operands[3]) > 0) { rtx insn = emit_insn (operands[3]); SCHED_GROUP_P (insn) = 1; } #endif DONE; }") ;; We can't use the same pattern for these two insns, because then registers ;; in the address may not be properly reloaded. (define_insn "" [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) (match_operand 1 "" "")) (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "" "* { return \"call %a0,%1%#\"; }" [(set_attr "type" "call")]) (define_insn "" [(call (mem:SI (match_operand:SI 0 "immediate_operand" "i")) (match_operand 1 "" "")) (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "" "* { return \"call %a0,%1%#\"; }" [(set_attr "type" "call")]) ;; This is a call that wants a structure value. (define_insn "" [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) (match_operand 1 "" "")) (match_operand 2 "immediate_operand" "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0" "* { return \"call %a0,%1\;nop\;unimp %2\"; }" [(set_attr "type" "call_no_delay_slot")]) ;; This is a call that wants a structure value. (define_insn "" [(call (mem:SI (match_operand:SI 0 "immediate_operand" "i")) (match_operand 1 "" "")) (match_operand 2 "immediate_operand" "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. "GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0" "* { return \"call %a0,%1\;nop\;unimp %2\"; }" [(set_attr "type" "call_no_delay_slot")]) (define_expand "call_value" [(set (match_operand 0 "register_operand" "=rf") (call (match_operand:SI 1 "" "") (match_operand 4 "" "")))] ;; operand 3 is next_arg_register "" " { rtx fn_rtx, nregs_rtx; rtvec vec; fn_rtx = operands[1]; #if 0 if (operands[3]) nregs_rtx = gen_rtx (CONST_INT, VOIDmode, REGNO (operands[3]) - 8); else nregs_rtx = gen_rtx (CONST_INT, VOIDmode, 6); #else nregs_rtx = const0_rtx; #endif vec = gen_rtvec (2, gen_rtx (SET, VOIDmode, operands[0], gen_rtx (CALL, VOIDmode, fn_rtx, nregs_rtx)), gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, 15))); emit_call_insn (gen_rtx (PARALLEL, VOIDmode, vec)); DONE; }") (define_insn "" [(set (match_operand 0 "" "=rf") (call (mem:SI (match_operand:SI 1 "address_operand" "p")) (match_operand 2 "" ""))) (clobber (reg:SI 15))] ;;- Do not use operand 2 for most machines. "" "* { return \"call %a1,%2%#\"; }" [(set_attr "type" "call")]) (define_insn "" [(set (match_operand 0 "" "=rf") (call (mem:SI (match_operand:SI 1 "immediate_operand" "i")) (match_operand 2 "" ""))) (clobber (reg:SI 15))] ;;- Do not use operand 2 for most machines. "" "* { return \"call %a1,%2%#\"; }" [(set_attr "type" "call")]) (define_expand "untyped_call" [(parallel [(call (match_operand:SI 0 "call_operand" "") (const_int 0)) (match_operand:BLK 1 "memory_operand" "") (match_operand 2 "" "") (clobber (reg:SI 15))])] "" " { operands[1] = change_address (operands[1], DImode, XEXP (operands[1], 0)); }") ;; Make a call followed by two nops in case the function being called ;; returns a structure value and expects to skip an unimp instruction. (define_insn "" [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) (const_int 0)) (match_operand:DI 1 "memory_operand" "o") (match_operand 2 "" "") (clobber (reg:SI 15))] "" "* { operands[2] = adj_offsettable_operand (operands[1], 8); return \"call %a0,0\;nop\;nop\;std %%o0,%1\;st %%f0,%2\"; }" [(set_attr "type" "multi")]) ;; Make a call followed by two nops in case the function being called ;; returns a structure value and expects to skip an unimp instruction. (define_insn "" [(call (mem:SI (match_operand:SI 0 "immediate_operand" "i")) (const_int 0)) (match_operand:DI 1 "memory_operand" "o") (match_operand 2 "" "") (clobber (reg:SI 15))] "" "* { operands[2] = adj_offsettable_operand (operands[1], 8); return \"call %a0,0\;nop\;nop\;std %%o0,%1\;st %%f0,%2\"; }" [(set_attr "type" "multi")]) ;; Prepare to return any type including a structure value. (define_expand "untyped_return" [(match_operand:BLK 0 "memory_operand" "") (match_operand 1 "" "")] "" " { rtx valreg1 = gen_rtx (REG, DImode, 24); rtx valreg2 = gen_rtx (REG, DFmode, 32); rtx result = operands[0]; rtx rtnreg = gen_rtx (REG, SImode, (leaf_function ? 15 : 31)); rtx value = gen_reg_rtx (SImode); /* Fetch the instruction where we will return to and see if it's an unimp instruction (the most significant 10 bits will be zero). If so, update the return address to skip the unimp instruction. */ emit_move_insn (value, gen_rtx (MEM, SImode, plus_constant (rtnreg, 8))); emit_insn (gen_lshrsi3 (value, value, GEN_INT (22))); emit_insn (gen_update_return (rtnreg, value)); /* Reload the function value registers. */ emit_move_insn (valreg1, change_address (result, DImode, XEXP (result, 0))); emit_move_insn (valreg2, change_address (result, DFmode, plus_constant (XEXP (result, 0), 8))); /* Put USE insns before the return. */ emit_insn (gen_rtx (USE, VOIDmode, valreg1)); emit_insn (gen_rtx (USE, VOIDmode, valreg2)); /* Construct the return. */ expand_null_return (); DONE; }") ;; This is a bit of a hack. We're incrementing a fixed register (%i7), ;; and parts of the compiler don't want to believe that the add is needed. (define_insn "update_return" [(unspec:SI [(match_operand:SI 0 "register_operand" "r") (match_operand:SI 1 "register_operand" "r")] 0)] "" "cmp %1,0\;be,a .+8\;add %0,4,%0" [(set_attr "type" "multi")]) (define_insn "return" [(return)] "! TARGET_EPILOGUE" "* return output_return (operands);" [(set_attr "type" "multi")]) (define_insn "nop" [(const_int 0)] "" "nop") (define_insn "indirect_jump" [(set (pc) (match_operand:SI 0 "address_operand" "p"))] "" "jmp %a0%#" [(set_attr "type" "uncond_branch")]) (define_expand "nonlocal_goto" [(match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "general_operand" "") (match_operand:SI 2 "general_operand" "") (match_operand:SI 3 "" "")] "" " { /* Trap instruction to flush all the registers window. */ emit_insn (gen_flush_register_windows ()); /* Load the fp value for the containing fn into %fp. This is needed because operands[2] refers to %fp. Virtual register instantiation fails if the virtual %fp isn't set from a register. Thus we must copy operands[0] into a register if it isn't already one. */ if (GET_CODE (operands[0]) != REG) operands[0] = force_reg (SImode, operands[0]); emit_move_insn (virtual_stack_vars_rtx, operands[0]); /* Find the containing function's current nonlocal goto handler, which will do any cleanups and then jump to the label. */ emit_move_insn (gen_rtx (REG, SImode, 8), operands[1]); /* Restore %fp from stack pointer value for containing function. The restore insn that follows will move this to %sp, and reload the appropriate value into %fp. */ emit_move_insn (frame_pointer_rtx, operands[2]); /* Put in the static chain register the nonlocal label address. */ emit_move_insn (static_chain_rtx, operands[3]); /* USE of frame_pointer_rtx added for consistency; not clear if really needed. */ emit_insn (gen_rtx (USE, VOIDmode, frame_pointer_rtx)); emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx)); emit_insn (gen_rtx (USE, VOIDmode, static_chain_rtx)); emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, SImode, 8))); /* Return, restoring reg window and jumping to goto handler. */ emit_insn (gen_goto_handler_and_restore ()); DONE; }") ;; Special trap insn to flush register windows. (define_insn "flush_register_windows" [(unspec_volatile [(const_int 0)] 0)] "" "ta 3" [(set_attr "type" "misc")]) (define_insn "goto_handler_and_restore" [(unspec_volatile [(const_int 0)] 1)] "" "jmp %%o0+0\;restore" [(set_attr "type" "misc") (set_attr "length" "2")]) ;; find first set. ;; The scan instruction searches from the most significant bit while ffs ;; searches from the least significant bit. The bit index and treatment of ;; zero also differ. It takes at least 7 instructions to get the proper ;; result. Here is an obvious 8 instruction seequence. (define_insn "ffssi2" [(set (match_operand:SI 0 "register_operand" "=&r") (ffs:SI (match_operand:SI 1 "register_operand" "r"))) (clobber (match_scratch:SI 2 "=&r"))] "TARGET_SPARCLITE" "sub %%g0,%1,%0\;and %0,%1,%0\;scan %0,0,%0\;mov 32,%2\;sub %2,%0,%0\;sra %0,31,%2\;and %2,31,%2\;add %2,%0,%0" [(set_attr "type" "multi") (set_attr "length" "8")]) ;; Split up troublesome insns for better scheduling. */ ;; The following patterns are straightforward. They can be applied ;; either before or after register allocation. (define_split [(set (match_operator 0 "memop" [(match_operand:SI 1 "symbolic_operand" "")]) (match_operand 2 "reg_or_0_operand" "")) (clobber (match_operand:SI 3 "register_operand" ""))] "! flag_pic" [(set (match_dup 3) (high:SI (match_dup 1))) (set (match_op_dup 0 [(lo_sum:SI (match_dup 3) (match_dup 1))]) (match_dup 2))] "") (define_split [(set (match_operator 0 "memop" [(match_operand:SI 1 "immediate_operand" "")]) (match_operand 2 "general_operand" "")) (clobber (match_operand:SI 3 "register_operand" ""))] "flag_pic" [(set (match_op_dup 0 [(match_dup 1)]) (match_dup 2))] " { operands[1] = legitimize_pic_address (operands[1], GET_MODE (operands[0]), operands[3]); }") (define_split [(set (match_operand 0 "register_operand" "") (match_operator 1 "memop" [(match_operand:SI 2 "immediate_operand" "")]))] "flag_pic" [(set (match_dup 0) (match_op_dup 1 [(match_dup 2)]))] " { operands[2] = legitimize_pic_address (operands[2], GET_MODE (operands[1]), operands[0]); }") ;; Sign- and Zero-extend operations can have symbolic memory operands. (define_split [(set (match_operand 0 "register_operand" "") (match_operator 1 "extend_op" [(match_operator 2 "memop" [(match_operand:SI 3 "immediate_operand" "")])]))] "flag_pic" [(set (match_dup 0) (match_op_dup 1 [(match_op_dup 2 [(match_dup 3)])]))] " { operands[3] = legitimize_pic_address (operands[3], GET_MODE (operands[2]), operands[0]); }") (define_split [(set (match_operand:SI 0 "register_operand" "") (match_operand:SI 1 "immediate_operand" ""))] "! flag_pic && (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST || GET_CODE (operands[1]) == LABEL_REF)" [(set (match_dup 0) (high:SI (match_dup 1))) (set (match_dup 0) (lo_sum:SI (match_dup 0) (match_dup 1)))] "") ;; LABEL_REFs are not modified by `legitimize_pic_address` ;; so do not recurse infinitely in the PIC case. (define_split [(set (match_operand:SI 0 "register_operand" "") (match_operand:SI 1 "immediate_operand" ""))] "flag_pic && (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST)" [(set (match_dup 0) (match_dup 1))] " { operands[1] = legitimize_pic_address (operands[1], Pmode, operands[0]); }") ;; These split sne/seq insns. The forms of the resulting insns are ;; somewhat bogus, but they avoid extra patterns and show data dependency. ;; Nothing will look at these in detail after splitting has occurred. (define_split [(set (match_operand:SI 0 "register_operand" "") (ne:SI (match_operand:SI 1 "register_operand" "") (const_int 0))) (clobber (reg:CC 0))] "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (ltu:SI (reg:CC 0) (const_int 0)))] "") (define_split [(set (match_operand:SI 0 "register_operand" "") (neg:SI (ne:SI (match_operand:SI 1 "register_operand" "") (const_int 0)))) (clobber (reg:CC 0))] "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (neg:SI (ltu:SI (reg:CC 0) (const_int 0))))] "") (define_split [(set (match_operand:SI 0 "register_operand" "") (eq:SI (match_operand:SI 1 "register_operand" "") (const_int 0))) (clobber (reg:CC 0))] "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (geu:SI (reg:CC 0) (const_int 0)))] "") (define_split [(set (match_operand:SI 0 "register_operand" "") (neg:SI (eq:SI (match_operand:SI 1 "register_operand" "") (const_int 0)))) (clobber (reg:CC 0))] "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (neg:SI (geu:SI (reg:CC 0) (const_int 0))))] "") (define_split [(set (match_operand:SI 0 "register_operand" "") (plus:SI (ne:SI (match_operand:SI 1 "register_operand" "") (const_int 0)) (match_operand:SI 2 "register_operand" ""))) (clobber (reg:CC 0))] "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (plus:SI (ltu:SI (reg:CC 0) (const_int 0)) (match_dup 2)))] "") (define_split [(set (match_operand:SI 0 "register_operand" "") (minus:SI (match_operand:SI 2 "register_operand" "") (ne:SI (match_operand:SI 1 "register_operand" "") (const_int 0)))) (clobber (reg:CC 0))] "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (minus:SI (match_dup 2) (ltu:SI (reg:CC 0) (const_int 0))))] "") (define_split [(set (match_operand:SI 0 "register_operand" "") (plus:SI (eq:SI (match_operand:SI 1 "register_operand" "") (const_int 0)) (match_operand:SI 2 "register_operand" ""))) (clobber (reg:CC 0))] "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (plus:SI (geu:SI (reg:CC 0) (const_int 0)) (match_dup 2)))] "") (define_split [(set (match_operand:SI 0 "register_operand" "") (minus:SI (match_operand:SI 2 "register_operand" "") (eq:SI (match_operand:SI 1 "register_operand" "") (const_int 0)))) (clobber (reg:CC 0))] "" [(set (reg:CC_NOOV 0) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (minus:SI (match_dup 2) (geu:SI (reg:CC 0) (const_int 0))))] "") ;; Peepholes go at the end. ;; Optimize consecutive loads or stores into ldd and std when possible. ;; The conditions in which we do this are very restricted and are ;; explained in the code for {registers,memory}_ok_for_ldd functions. (define_peephole [(set (match_operand:SI 0 "register_operand" "=rf") (match_operand:SI 1 "memory_operand" "")) (set (match_operand:SI 2 "register_operand" "=rf") (match_operand:SI 3 "memory_operand" ""))] "registers_ok_for_ldd_peep (operands[0], operands[2]) && ! MEM_VOLATILE_P (operands[1]) && ! MEM_VOLATILE_P (operands[3]) && addrs_ok_for_ldd_peep (XEXP (operands[1], 0), XEXP (operands[3], 0))" "ldd %1,%0") (define_peephole [(set (match_operand:SI 0 "memory_operand" "") (match_operand:SI 1 "register_operand" "rf")) (set (match_operand:SI 2 "memory_operand" "") (match_operand:SI 3 "register_operand" "rf"))] "registers_ok_for_ldd_peep (operands[1], operands[3]) && ! MEM_VOLATILE_P (operands[0]) && ! MEM_VOLATILE_P (operands[2]) && addrs_ok_for_ldd_peep (XEXP (operands[0], 0), XEXP (operands[2], 0))" "std %1,%0") (define_peephole [(set (match_operand:SF 0 "register_operand" "=fr") (match_operand:SF 1 "memory_operand" "")) (set (match_operand:SF 2 "register_operand" "=fr") (match_operand:SF 3 "memory_operand" ""))] "registers_ok_for_ldd_peep (operands[0], operands[2]) && ! MEM_VOLATILE_P (operands[1]) && ! MEM_VOLATILE_P (operands[3]) && addrs_ok_for_ldd_peep (XEXP (operands[1], 0), XEXP (operands[3], 0))" "ldd %1,%0") (define_peephole [(set (match_operand:SF 0 "memory_operand" "") (match_operand:SF 1 "register_operand" "fr")) (set (match_operand:SF 2 "memory_operand" "") (match_operand:SF 3 "register_operand" "fr"))] "registers_ok_for_ldd_peep (operands[1], operands[3]) && ! MEM_VOLATILE_P (operands[0]) && ! MEM_VOLATILE_P (operands[2]) && addrs_ok_for_ldd_peep (XEXP (operands[0], 0), XEXP (operands[2], 0))" "std %1,%0") (define_peephole [(set (match_operand:SI 0 "register_operand" "=rf") (match_operand:SI 1 "memory_operand" "")) (set (match_operand:SI 2 "register_operand" "=rf") (match_operand:SI 3 "memory_operand" ""))] "registers_ok_for_ldd_peep (operands[2], operands[0]) && ! MEM_VOLATILE_P (operands[3]) && ! MEM_VOLATILE_P (operands[1]) && addrs_ok_for_ldd_peep (XEXP (operands[3], 0), XEXP (operands[1], 0))" "ldd %3,%2") (define_peephole [(set (match_operand:SI 0 "memory_operand" "") (match_operand:SI 1 "register_operand" "rf")) (set (match_operand:SI 2 "memory_operand" "") (match_operand:SI 3 "register_operand" "rf"))] "registers_ok_for_ldd_peep (operands[3], operands[1]) && ! MEM_VOLATILE_P (operands[2]) && ! MEM_VOLATILE_P (operands[0]) && addrs_ok_for_ldd_peep (XEXP (operands[2], 0), XEXP (operands[0], 0))" "std %3,%2") (define_peephole [(set (match_operand:SF 0 "register_operand" "=fr") (match_operand:SF 1 "memory_operand" "")) (set (match_operand:SF 2 "register_operand" "=fr") (match_operand:SF 3 "memory_operand" ""))] "registers_ok_for_ldd_peep (operands[2], operands[0]) && ! MEM_VOLATILE_P (operands[3]) && ! MEM_VOLATILE_P (operands[1]) && addrs_ok_for_ldd_peep (XEXP (operands[3], 0), XEXP (operands[1], 0))" "ldd %3,%2") (define_peephole [(set (match_operand:SF 0 "memory_operand" "") (match_operand:SF 1 "register_operand" "fr")) (set (match_operand:SF 2 "memory_operand" "") (match_operand:SF 3 "register_operand" "fr"))] "registers_ok_for_ldd_peep (operands[3], operands[1]) && ! MEM_VOLATILE_P (operands[2]) && ! MEM_VOLATILE_P (operands[0]) && addrs_ok_for_ldd_peep (XEXP (operands[2], 0), XEXP (operands[0], 0))" "std %3,%2") ;; Optimize the case of following a reg-reg move with a test ;; of reg just moved. Don't allow floating point regs for operand 0 or 1. ;; This can result from a float to fix conversion. (define_peephole [(set (match_operand:SI 0 "register_operand" "=r") (match_operand:SI 1 "register_operand" "r")) (set (reg:CC 0) (compare:CC (match_operand:SI 2 "register_operand" "r") (const_int 0)))] "(rtx_equal_p (operands[2], operands[0]) || rtx_equal_p (operands[2], operands[1])) && ! FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])" "orcc %1,%%g0,%0") ;; Do {sign,zero}-extended compares somewhat more efficiently. ;; ??? Is this now the Right Way to do this? Or will SCRATCH ;; eventually have some impact here? (define_peephole [(set (match_operand:HI 0 "register_operand" "") (match_operand:HI 1 "memory_operand" "")) (set (match_operand:SI 2 "register_operand" "") (sign_extend:SI (match_dup 0))) (set (reg:CC 0) (compare:CC (match_dup 2) (const_int 0)))] "" "ldsh %1,%0\;orcc %0,%%g0,%2") (define_peephole [(set (match_operand:QI 0 "register_operand" "") (match_operand:QI 1 "memory_operand" "")) (set (match_operand:SI 2 "register_operand" "") (sign_extend:SI (match_dup 0))) (set (reg:CC 0) (compare:CC (match_dup 2) (const_int 0)))] "" "ldsb %1,%0\;orcc %0,%%g0,%2") (define_peephole [(set (match_operand:HI 0 "register_operand" "") (match_operand:HI 1 "memory_operand" "")) (set (match_operand:SI 2 "register_operand" "") (sign_extend:SI (match_dup 0)))] "dead_or_set_p (insn, operands[0])" "* { warning (\"bad peephole\"); if (! MEM_VOLATILE_P (operands[1])) abort (); return \"ldsh %1,%2\"; }") (define_peephole [(set (match_operand:QI 0 "register_operand" "") (match_operand:QI 1 "memory_operand" "")) (set (match_operand:SI 2 "register_operand" "") (sign_extend:SI (match_dup 0)))] "dead_or_set_p (insn, operands[0])" "* { warning (\"bad peephole\"); if (! MEM_VOLATILE_P (operands[1])) abort (); return \"ldsb %1,%2\"; }") ;; Floating-point move peepholes (define_peephole [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_dup 0) (match_operand:SI 1 "immediate_operand" "i"))) (set (match_operand:DF 2 "register_operand" "=fr") (mem:DF (match_dup 0)))] "RTX_UNCHANGING_P (operands[1]) && reg_unused_after (operands[0], insn)" "* { /* Go by way of output_move_double in case the register in operand 2 is not properly aligned for ldd. */ operands[1] = gen_rtx (MEM, DFmode, gen_rtx (LO_SUM, SImode, operands[0], operands[1])); operands[0] = operands[2]; return output_move_double (operands); }") (define_peephole [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_dup 0) (match_operand:SI 1 "immediate_operand" "i"))) (set (match_operand:SF 2 "register_operand" "=fr") (mem:SF (match_dup 0)))] "RTX_UNCHANGING_P (operands[1]) && reg_unused_after (operands[0], insn)" "ld [%0+%%lo(%a1)],%2") ;; Return peepholes. First the "normal" ones ;; ??? There are QImode, HImode, and SImode versions of this pattern. ;; It might be possible to write one more general pattern instead of three. (define_insn "" [(set (match_operand:QI 0 "restore_operand" "") (match_operand:QI 1 "arith_operand" "rI")) (return)] "! TARGET_EPILOGUE" "* { if (current_function_returns_struct) return \"jmp %%i7+12\;restore %%g0,%1,%Y0\"; else return \"ret\;restore %%g0,%1,%Y0\"; }" [(set_attr "type" "multi")]) (define_insn "" [(set (match_operand:HI 0 "restore_operand" "") (match_operand:HI 1 "arith_operand" "rI")) (return)] "! TARGET_EPILOGUE" "* { if (current_function_returns_struct) return \"jmp %%i7+12\;restore %%g0,%1,%Y0\"; else return \"ret\;restore %%g0,%1,%Y0\"; }" [(set_attr "type" "multi")]) (define_insn "" [(set (match_operand:SI 0 "restore_operand" "") (match_operand:SI 1 "arith_operand" "rI")) (return)] "! TARGET_EPILOGUE" "* { if (current_function_returns_struct) return \"jmp %%i7+12\;restore %%g0,%1,%Y0\"; else return \"ret\;restore %%g0,%1,%Y0\"; }" [(set_attr "type" "multi")]) ;; The following pattern is only generated by delayed-branch scheduling, ;; when the insn winds up in the epilogue. This can only happen when ;; ! TARGET_FPU because otherwise fp return values are in %f0. (define_insn "" [(set (match_operand:SF 0 "restore_operand" "r") (match_operand:SF 1 "register_operand" "r")) (return)] "! TARGET_FPU && ! TARGET_EPILOGUE" "* { if (current_function_returns_struct) return \"jmp %%i7+12\;restore %%g0,%1,%Y0\"; else return \"ret\;restore %%g0,%1,%Y0\"; }" [(set_attr "type" "multi")]) (define_insn "" [(set (match_operand:SI 0 "restore_operand" "") (plus:SI (match_operand:SI 1 "arith_operand" "%r") (match_operand:SI 2 "arith_operand" "rI"))) (return)] "! TARGET_EPILOGUE" "* { if (current_function_returns_struct) return \"jmp %%i7+12\;restore %r1,%2,%Y0\"; else return \"ret\;restore %r1,%2,%Y0\"; }" [(set_attr "type" "multi")]) ;; Turned off because it should never match (subtracting a constant ;; is turned into addition) and because it would do the wrong thing ;; when operand 2 is -4096 (--4096 == 4096 is not a valid immediate). ;;(define_insn "" ;; [(set (match_operand:SI 0 "restore_operand" "") ;; (minus:SI (match_operand:SI 1 "register_operand" "r") ;; (match_operand:SI 2 "small_int" "I"))) ;; (return)] ;; "! TARGET_EPILOGUE" ;; "ret\;restore %1,-(%2),%Y0" ;; [(set_attr "type" "multi")]) ;; The following pattern is only generated by delayed-branch scheduling, ;; when the insn winds up in the epilogue. (define_insn "" [(set (reg:SF 32) (match_operand:SF 0 "register_operand" "f")) (return)] "! TARGET_EPILOGUE" "ret\;fmovs %0,%%f0" [(set_attr "type" "multi")]) ;; Now peepholes to go a call followed by a jump. (define_peephole [(parallel [(set (match_operand 0 "" "") (call (mem:SI (match_operand:SI 1 "call_operand_address" "pi")) (match_operand 2 "" ""))) (clobber (reg:SI 15))]) (set (pc) (label_ref (match_operand 3 "" "")))] "short_branch (INSN_UID (insn), INSN_UID (operands[3]))" "* { return \"call %a1,%2\;add %%o7,(%l3-.-4),%%o7\"; }") (define_peephole [(parallel [(call (mem:SI (match_operand:SI 0 "call_operand_address" "pi")) (match_operand 1 "" "")) (clobber (reg:SI 15))]) (set (pc) (label_ref (match_operand 2 "" "")))] "short_branch (INSN_UID (insn), INSN_UID (operands[2]))" "* { return \"call %a0,%1\;add %%o7,(%l2-.-4),%%o7\"; }") (define_peephole [(parallel [(set (match_operand:SI 0 "register_operand" "=r") (minus:SI (match_operand:SI 1 "reg_or_0_operand" "rJ") (reg:SI 0))) (clobber (reg:CC 0))]) (set (reg:CC 0) (compare (match_dup 0) (const_int 0)))] "" "subxcc %r1,0,%0")