;; GCC machine description for SH synchronization instructions.
;; Copyright (C) 2011-2017 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; .
;;
;;
;; Atomic integer operations for the Renesas / SuperH SH CPUs.
;;
;; On SH CPUs atomic integer operations can be done either in 'software' or
;; in 'hardware' in various styles. True hardware support was introduced
;; with the SH4A. Some SH2A dual-core models (e.g. SH7205) also come with
;; 'semaphore' hardware registers, but these are currently unsupported.
;; All SH CPUs support the 'tas.b' instruction, which can be optionally used
;; to implement the 'atomic_test_and_set' builtin.
;; The following atomic options and models are supported.
;;
;; tas.b atomic_test_and_set (-mtas)
;;
;; Depending on the particular hardware configuration, usage of the 'tas.b'
;; instruction might be undesired or even unsafe. Thus, it has to be
;; enabled by the user explicitly. If it is not enabled, the
;; 'atomic_test_and_set' builtin is implemented either with hardware or with
;; software atomics, depending on which is enabled. It is also possible to
;; enable the 'tas.b' instruction only, without enabling support for the
;; other atomic operations.
;;
;;
;; Hardware Atomics (-matomic-model=hard-llcs; SH4A only)
;;
;; Hardware atomics implement all atomic operations using the 'movli.l' and
;; 'movco.l' instructions that are availble on SH4A. On multi-core hardware
;; configurations hardware atomics is the only safe mode.
;; However, it can also be safely used on single-core configurations.
;; Since these instructions operate on SImode memory only, QImode and HImode
;; have to be emulated with SImode and subreg masking, which results in
;; larger code.
;;
;;
;; gUSA Software Atomics (-matomic-model=soft-gusa; SH3*, SH4* only)
;;
;; On single-core systems there can only be one execution context running
;; at a given point in time. This allows the usage of rewindable atomic
;; sequences, which effectively emulate locked-load / conditional-store
;; operations. This requires complementary support in the interrupt /
;; exception handling code (e.g. kernel) and does not work safely on multi-
;; core configurations.
;;
;; When an execution context is interrupted while it is an atomic
;; sequence, the interrupted context's PC is rewound to the beginning of
;; the atomic sequence by the interrupt / exception handling code, before
;; transferring control to another execution context. This is done by
;; something like...
;;
;; if (interrupted_context_in_atomic_sequence
;; && interrupted_pc < atomic_exitpoint)
;; interrupted_pc = atomic_entrypoint;
;;
;; This method is also known as gUSA ("g" User Space Atomicity) and the
;; Linux kernel for SH3/SH4 implements support for such software atomic
;; sequences. It can also be implemented in freestanding environments.
;;
;; For this the following atomic sequence ABI is used.
;;
;; r15 >= 0: Execution context is not in an atomic sequence.
;;
;; r15 < 0: Execution context is in an atomic sequence and r15
;; holds the negative byte length of the atomic sequence.
;; In this case the following applies:
;;
;; r0: PC of the first instruction after the atomic
;; write-back instruction (exit point).
;; The entry point PC of the atomic sequence can be
;; determined by doing r0 + r15.
;;
;; r1: Saved r15 stack pointer before entering the
;; atomic sequence.
;;
;; An example atomic add sequence would look like:
;;
;; mova .Lend,r0 ! .Lend must be 4-byte aligned.
;; mov r15,r1
;; .align 2 ! Insert aligning nop if needed.
;; mov #(.Lstart - .Lend),r15 ! Enter atomic sequence
;;.Lstart:
;; mov.l @r4,r2 ! read value
;; add r2,r5 ! modify value
;; mov.l r5,@r4 ! write-back
;;.Lend:
;; mov r1,r15 ! Exit atomic sequence
;; ! r2 holds the previous value.
;; ! r5 holds the new value.
;;
;; Notice that due to the restrictions of the mova instruction, the .Lend
;; label must always be 4-byte aligned. Aligning the .Lend label would
;; potentially insert a nop after the write-back instruction which could
;; make the sequence to be rewound, although it has already passed the
;; write-back instruction. This would make it execute twice.
;; For correct operation the atomic sequences must not be rewound after
;; they have passed the write-back instruction.
;;
;; This is model works only on SH3* and SH4* because the stack pointer (r15)
;; is set to an invalid pointer temporarily. SH1* and SH2* CPUs will try
;; to push SR and PC registers on the stack when an interrupt / exception
;; occurs, and thus require the stack pointer (r15) always to be valid.
;;
;;
;; TCB Software Atomics (-matomic-model=soft-tcb)
;;
;; This model is a variation of the gUSA model. The concept of rewindable
;; atomic sequences is the same, but it does not use the stack pointer (r15)
;; for signaling the 'is in atomic sequence' condition. Instead, a variable
;; in the thread control block (TCB) is set to hold the exit point of the
;; atomic sequence. This assumes that the GBR is used as a thread pointer
;; register. The offset of the variable in the TCB to be used must be
;; specified with an additional option 'gbr-offset', such as:
;; -matomic-model=soft-tcb,gbr-offset=4
;;
;; For this model the following atomic sequence ABI is used.
;;
;; @(#x,gbr) == 0: Execution context is not in an atomic sequence.
;;
;; @(#x,gbr) != 0: Execution context is in an atomic sequence. In this
;; case the following applies:
;;
;; @(#x,gbr): PC of the first instruction after the atomic
;; write-back instruction (exit point).
;;
;; r1: Negative byte length of the atomic sequence.
;; The entry point PC of the sequence can be
;; determined by doing @(#x,gbr) + r1
;;
;; Note: #x is the user specified gbr-offset.
;;
;;
;; Interrupt-Flipping Software Atomics (-matomic-model=soft-imask)
;;
;; This model achieves atomicity by temporarily disabling interrupts for
;; the duration of the atomic sequence. This works only when the program
;; runs in privileged mode but does not require any support from the
;; interrupt / exception handling code. There is no particular ABI.
;; To disable interrupts the SR.IMASK bits are set to '1111'.
;; This method is not as efficient as the other software atomic models,
;; since loading and storing SR (in order to flip interrupts on / off)
;; requires using multi-cycle instructions. Moreover, it can potentially
;; increase the interrupt latency which might be important for hard-realtime
;; applications.
;;
;;
;; Compatibility Notes
;;
;; On single-core SH4A CPUs software atomic aware interrupt / exception code
;; is actually compatible with user code that utilizes hardware atomics.
;; Since SImode hardware atomic sequences are more compact on SH4A they are
;; always used, regardless of the selected atomic model. This atomic model
;; mixing can be disabled by setting the 'strict' flag, like:
;; -matomic-model=soft-gusa,strict
;;
;; The software atomic models are generally compatible with each other,
;; but the interrupt / exception handling code has to support both gUSA and
;; TCB models.
;;
;; The current atomic support is limited to QImode, HImode and SImode
;; atomic operations. DImode operations could also be implemented but
;; would require some ABI modifications to support multiple-instruction
;; write-back. This is because SH1/SH2/SH3/SH4 does not have a DImode
;; store instruction. DImode stores must be split into two SImode stores.
(define_c_enum "unspec" [
UNSPEC_ATOMIC
])
(define_c_enum "unspecv" [
UNSPECV_CMPXCHG_1
UNSPECV_CMPXCHG_2
UNSPECV_CMPXCHG_3
])
(define_mode_attr i124extend_insn [(QI "exts.b") (HI "exts.w") (SI "mov")])
(define_code_iterator FETCHOP [plus minus ior xor and])
(define_code_attr fetchop_name
[(plus "add") (minus "sub") (ior "or") (xor "xor") (and "and")])
;;------------------------------------------------------------------------------
;; comapre and swap
;; Only the hard_llcs SImode patterns can use an I08 for the comparison
;; or for the new swapped in value.
(define_predicate "atomic_arith_operand_0"
(and (match_code "subreg,reg,const_int")
(ior (match_operand 0 "arith_reg_operand")
(and (match_test "satisfies_constraint_I08 (op)")
(match_test "mode == SImode")
(ior (match_test "TARGET_ATOMIC_HARD_LLCS")
(match_test "TARGET_ATOMIC_ANY && TARGET_SH4A
&& !TARGET_ATOMIC_STRICT"))))))
;; Displacement addressing can be used for all SImode atomic patterns, except
;; llcs.
(define_predicate "atomic_mem_operand_0"
(and (match_code "mem")
(ior (match_operand 0 "simple_mem_operand")
(and (match_test "mode == SImode")
(and (match_test "!TARGET_ATOMIC_HARD_LLCS")
(match_test "!TARGET_SH4A || TARGET_ATOMIC_STRICT"))
(match_operand 0 "short_displacement_mem_operand")))))
(define_expand "atomic_compare_and_swap"
[(match_operand:SI 0 "arith_reg_dest") ;; bool success output
(match_operand:QIHISI 1 "arith_reg_dest") ;; oldval output
(match_operand:QIHISI 2 "atomic_mem_operand_0") ;; memory
(match_operand:QIHISI 3 "atomic_arith_operand_0") ;; expected input
(match_operand:QIHISI 4 "atomic_arith_operand_0") ;; newval input
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; success model
(match_operand:SI 7 "const_int_operand")] ;; failure model
"TARGET_ATOMIC_ANY"
{
rtx mem = operands[2];
rtx old_val = gen_lowpart (SImode, operands[1]);
rtx exp_val = operands[3];
rtx new_val = operands[4];
rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT))
atomic_insn = gen_atomic_compare_and_swap_hard (old_val, mem,
exp_val, new_val);
else if (TARGET_ATOMIC_SOFT_GUSA)
atomic_insn = gen_atomic_compare_and_swap_soft_gusa (old_val, mem,
exp_val, new_val);
else if (TARGET_ATOMIC_SOFT_TCB)
atomic_insn = gen_atomic_compare_and_swap_soft_tcb (old_val, mem,
exp_val, new_val, TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX);
else if (TARGET_ATOMIC_SOFT_IMASK)
atomic_insn = gen_atomic_compare_and_swap_soft_imask (old_val, mem,
exp_val, new_val);
else
FAIL;
emit_insn (atomic_insn);
if (mode == QImode)
emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[1]),
operands[1]));
else if (mode == HImode)
emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[1]),
operands[1]));
emit_insn (gen_movsi (operands[0], gen_rtx_REG (SImode, T_REG)));
DONE;
})
(define_insn_and_split "atomic_compare_and_swapsi_hard"
[(set (match_operand:SI 0 "arith_reg_dest" "=&r")
(unspec_volatile:SI
[(match_operand:SI 1 "atomic_mem_operand_0" "=Sra")
(match_operand:SI 2 "arith_operand" "rI08")
(match_operand:SI 3 "arith_operand" "rI08")]
UNSPECV_CMPXCHG_1))
(set (match_dup 1)
(unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_2))
(set (reg:SI T_REG)
(unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)"
{
return "\r0: movli.l %1,r0" "\n"
" cmp/eq %2,r0" "\n"
" bf{.|/}s 0f" "\n"
" mov r0,%0" "\n"
" mov %3,r0" "\n"
" movco.l r0,%1" "\n"
" bf 0b" "\n"
"0:";
}
"&& can_create_pseudo_p () && !satisfies_constraint_I08 (operands[2])"
[(const_int 0)]
{
/* FIXME: Sometimes the 'expected value' operand is not propagated as
immediate value. See PR 64974. */
set_of_reg op2 = sh_find_set_of_reg (operands[2], curr_insn,
prev_nonnote_insn_bb);
if (op2.set_src != NULL && satisfies_constraint_I08 (op2.set_src))
{
rtx* r = &XVECEXP (XEXP (XVECEXP (PATTERN (curr_insn), 0, 0), 1), 0, 1);
validate_change (curr_insn, r, op2.set_src, false);
DONE;
}
else
FAIL;
}
[(set_attr "length" "14")])
;; The QIHImode llcs patterns modify the address register of the memory
;; operand. In order to express that, we have to open code the memory
;; operand. Initially the insn is expanded like every other atomic insn
;; using the memory operand. In split1 the insn is converted and the
;; memory operand's address register is exposed.
(define_insn_and_split "atomic_compare_and_swap_hard"
[(set (match_operand:SI 0 "arith_reg_dest")
(unspec_volatile:SI
[(match_operand:QIHI 1 "atomic_mem_operand_0")
(match_operand:QIHI 2 "arith_reg_operand")
(match_operand:QIHI 3 "arith_reg_operand")]
UNSPECV_CMPXCHG_1))
(set (match_dup 1)
(unspec_volatile:QIHI [(const_int 0)] UNSPECV_CMPXCHG_2))
(set (reg:SI T_REG)
(unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()"
"#"
"&& 1"
[(const_int 0)]
{
rtx i = gen_atomic_compare_and_swap_hard_1 (
operands[0], XEXP (operands[1], 0), operands[2], operands[3]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0) = operands[1];
XEXP (XVECEXP (i, 0, 1), 0) = operands[1];
emit_insn (i);
})
(define_insn "atomic_compare_and_swap_hard_1"
[(set (match_operand:SI 0 "arith_reg_dest" "=&r")
(unspec_volatile:SI
[(mem:QIHI (match_operand:SI 1 "arith_reg_operand" "r"))
(match_operand:QIHI 2 "arith_reg_operand" "r")
(match_operand:QIHI 3 "arith_reg_operand" "r")]
UNSPECV_CMPXCHG_1))
(set (mem:QIHI (match_dup 1))
(unspec_volatile:QIHI [(const_int 0)] UNSPECV_CMPXCHG_2))
(set (reg:SI T_REG)
(unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 4 "=&r"))
(clobber (match_scratch:SI 5 "=&r"))
(clobber (match_scratch:SI 6 "=1"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%5" "\n"
" %2,%4" "\n"
" and %1,%5" "\n"
" xor %5,%1" "\n"
" add r15,%1" "\n"
" add #-4,%1" "\n"
"0: movli.l @%5,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%1,%0" "\n"
" mov. %3,@%1" "\n"
" cmp/eq %4,%0" "\n"
" bf{.|/}s 0f" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%5" "\n"
" bf 0b" "\n"
"0:";
}
[(set_attr "length" "30")])
(define_insn "atomic_compare_and_swap_soft_gusa"
[(set (match_operand:SI 0 "arith_reg_dest" "=&u")
(unspec_volatile:SI
[(match_operand:QIHISI 1 "atomic_mem_operand_0" "=AraAdd")
(match_operand:QIHISI 2 "arith_reg_operand" "u")
(match_operand:QIHISI 3 "arith_reg_operand" "u")]
UNSPECV_CMPXCHG_1))
(set (match_dup 1)
(unspec_volatile:QIHISI [(const_int 0)] UNSPECV_CMPXCHG_2))
(set (reg:SI T_REG)
(unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3))
(clobber (match_scratch:SI 4 "=&u"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_GUSA"
{
return "\r mova 1f,r0" "\n"
" %2,%4" "\n"
" .align 2" "\n"
" mov r15,r1" "\n"
" mov #(0f-1f),r15" "\n"
"0: mov. %1,%0" "\n"
" cmp/eq %0,%4" "\n"
" bf 1f" "\n"
" mov. %3,%1" "\n"
"1: mov r1,r15";
}
[(set_attr "length" "20")])
(define_insn "atomic_compare_and_swap_soft_tcb"
[(set (match_operand:SI 0 "arith_reg_dest" "=&r")
(unspec_volatile:SI
[(match_operand:QIHISI 1 "atomic_mem_operand_0" "=SraSdd")
(match_operand:QIHISI 2 "arith_reg_operand" "r")
(match_operand:QIHISI 3 "arith_reg_operand" "r")]
UNSPECV_CMPXCHG_1))
(set (match_dup 1)
(unspec_volatile:QIHISI [(const_int 0)] UNSPECV_CMPXCHG_2))
(set (reg:SI T_REG)
(unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3))
(use (match_operand:SI 4 "gbr_displacement"))
(clobber (match_scratch:SI 5 "=&r"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" .align 2" "\n"
" %2,%5" "\n"
" mov #(0f-1f),r1" "\n"
" mov.l r0,@(%O4,gbr)" "\n"
"0: mov. %1,%0" "\n"
" mov #0,r0" "\n"
" cmp/eq %0,%5" "\n"
" bf 1f" "\n"
" mov. %3,%1" "\n"
"1: mov.l r0,@(%O4,gbr)";
}
[(set_attr "length" "22")])
(define_insn "atomic_compare_and_swap_soft_imask"
[(set (match_operand:SI 0 "arith_reg_dest" "=&z")
(unspec_volatile:SI
[(match_operand:QIHISI 1 "atomic_mem_operand_0" "=SraSdd")
(match_operand:QIHISI 2 "arith_reg_operand" "r")
(match_operand:QIHISI 3 "arith_reg_operand" "r")]
UNSPECV_CMPXCHG_1))
(set (match_dup 1)
(unspec_volatile:QIHISI [(const_int 0)] UNSPECV_CMPXCHG_2))
(set (reg:SI T_REG)
(unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3))
(clobber (match_scratch:SI 4 "=&r"))
(clobber (match_scratch:SI 5 "=&r"))]
"TARGET_ATOMIC_SOFT_IMASK"
{
/* The comparison result is supposed to be in T_REG.
Notice that restoring SR will overwrite the T_REG. We handle this by
rotating the T_REG into the saved SR before restoring SR. On SH2A we
can do one insn shorter by using the bst insn. */
if (!TARGET_SH2A)
return "\r stc sr,%0" "\n"
" %2,%4" "\n"
" mov %0,%5" "\n"
" or #0xF0,%0" "\n"
" shlr %5" "\n"
" ldc %0,sr" "\n"
" mov. %1,%0" "\n"
" cmp/eq %4,%0" "\n"
" bf 1f" "\n"
" mov. %3,%1" "\n"
"1: rotcl %5" "\n"
" ldc %5,sr";
else
return "\r stc sr,%0" "\n"
" %2,%4" "\n"
" mov %0,%5" "\n"
" or #0xF0,%0" "\n"
" ldc %0,sr" "\n"
" mov. %1,%0" "\n"
" cmp/eq %4,%0" "\n"
" bst #0,%5" "\n"
" bf 1f" "\n"
" mov. %3,%1" "\n"
"1: ldc %5,sr";
}
[(set (attr "length") (if_then_else (match_test "!TARGET_SH2A")
(const_string "24")
(const_string "22")))])
;;------------------------------------------------------------------------------
;; read - write - return old value
(define_expand "atomic_exchange"
[(match_operand:QIHISI 0 "arith_reg_dest") ;; oldval output
(match_operand:QIHISI 1 "atomic_mem_operand_0") ;; memory
(match_operand:QIHISI 2 "atomic_arith_operand_0") ;; newval input
(match_operand:SI 3 "const_int_operand")] ;; memory model
"TARGET_ATOMIC_ANY"
{
rtx mem = operands[1];
rtx val = operands[2];
rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT))
atomic_insn = gen_atomic_exchange_hard (operands[0], mem, val);
else if (TARGET_ATOMIC_SOFT_GUSA)
atomic_insn = gen_atomic_exchange_soft_gusa (operands[0], mem, val);
else if (TARGET_ATOMIC_SOFT_TCB)
atomic_insn = gen_atomic_exchange_soft_tcb (operands[0], mem, val,
TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX);
else if (TARGET_ATOMIC_SOFT_IMASK)
atomic_insn = gen_atomic_exchange_soft_imask (operands[0], mem, val);
else
FAIL;
emit_insn (atomic_insn);
if (mode == QImode)
emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
operands[0]));
else if (mode == HImode)
emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]),
operands[0]));
DONE;
})
(define_insn "atomic_exchangesi_hard"
[(set (match_operand:SI 0 "arith_reg_dest" "=&r")
(match_operand:SI 1 "atomic_mem_operand_0" "=Sra"))
(set (match_dup 1)
(unspec:SI
[(match_operand:SI 2 "arith_operand" "rI08")] UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)"
{
return "\r0: movli.l %1,r0" "\n"
" mov r0,%0" "\n"
" mov %2,r0" "\n"
" movco.l r0,%1" "\n"
" bf 0b";
}
[(set_attr "length" "10")])
;; The QIHImode llcs patterns modify the address register of the memory
;; operand. In order to express that, we have to open code the memory
;; operand. Initially the insn is expanded like every other atomic insn
;; using the memory operand. In split1 the insn is converted and the
;; memory operand's address register is exposed.
(define_insn_and_split "atomic_exchange_hard"
[(set (match_operand:QIHI 0 "arith_reg_dest")
(match_operand:QIHI 1 "atomic_mem_operand_0"))
(set (match_dup 1)
(unspec:QIHI
[(match_operand:QIHI 2 "arith_reg_operand")] UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()"
"#"
"&& 1"
[(const_int 0)]
{
rtx i = gen_atomic_exchange_hard_1 (operands[0], XEXP (operands[1], 0),
operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
XEXP (XVECEXP (i, 0, 0), 1) = operands[1];
XEXP (XVECEXP (i, 0, 1), 0) = operands[1];
emit_insn (i);
})
(define_insn "atomic_exchange_hard_1"
[(set (match_operand:QIHI 0 "arith_reg_dest" "=&r")
(mem:QIHI (match_operand:SI 1 "arith_reg_operand" "r")))
(set (mem:QIHI (match_dup 1))
(unspec:QIHI
[(match_operand:QIHI 2 "arith_reg_operand" "r")] UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 3 "=&r"))
(clobber (match_scratch:SI 4 "=1"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%3" "\n"
" and %1,%3" "\n"
" xor %3,%1" "\n"
" add r15,%1" "\n"
" add #-4,%1" "\n"
"0: movli.l @%3,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%1,%0" "\n"
" mov. %2,@%1" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%3" "\n"
" bf 0b";
}
[(set_attr "length" "24")])
(define_insn "atomic_exchange_soft_gusa"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&u")
(match_operand:QIHISI 1 "atomic_mem_operand_0" "=AraAdd"))
(set (match_dup 1)
(unspec:QIHISI
[(match_operand:QIHISI 2 "arith_reg_operand" "u")] UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_GUSA"
{
return "\r mova 1f,r0" "\n"
" .align 2" "\n"
" mov r15,r1" "\n"
" mov #(0f-1f),r15" "\n"
"0: mov. %1,%0" "\n"
" mov. %2,%1" "\n"
"1: mov r1,r15";
}
[(set_attr "length" "14")])
(define_insn "atomic_exchange_soft_tcb"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(match_operand:QIHISI 1 "atomic_mem_operand_0" "=SraSdd"))
(set (match_dup 1)
(unspec:QIHISI
[(match_operand:QIHISI 2 "arith_reg_operand" "r")] UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))
(use (match_operand:SI 3 "gbr_displacement"))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" mov #(0f-1f),r1" "\n"
" .align 2" "\n"
" mov.l r0,@(%O3,gbr)" "\n"
"0: mov. %1,%0" "\n"
" mov #0,r0" "\n"
" mov. %2,%1" "\n"
"1: mov.l r0,@(%O3,gbr)";
}
[(set_attr "length" "16")])
(define_insn "atomic_exchange_soft_imask"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&z")
(match_operand:QIHISI 1 "atomic_mem_operand_0" "=SraSdd"))
(set (match_dup 1)
(unspec:QIHISI
[(match_operand:QIHISI 2 "arith_reg_operand" "r")] UNSPEC_ATOMIC))
(clobber (match_scratch:SI 3 "=&r"))]
"TARGET_ATOMIC_SOFT_IMASK"
{
return "\r stc sr,%0" "\n"
" mov %0,%3" "\n"
" or #0xF0,%0" "\n"
" ldc %0,sr" "\n"
" mov. %1,%0" "\n"
" mov. %2,%1" "\n"
" ldc %3,sr";
}
[(set_attr "length" "14")])
;;------------------------------------------------------------------------------
;; read - add|sub|or|and|xor|nand - write - return old value
;; atomic_arith_operand_1 can be used by any atomic type for a plus op,
;; since there's no r0 restriction.
(define_predicate "atomic_arith_operand_1"
(and (match_code "subreg,reg,const_int")
(ior (match_operand 0 "arith_reg_operand")
(match_test "satisfies_constraint_I08 (op)"))))
;; atomic_logic_operand_1 can be used by the hard_llcs, tcb and soft_imask
;; patterns only due to its r0 restriction.
(define_predicate "atomic_logical_operand_1"
(and (match_code "subreg,reg,const_int")
(ior (match_operand 0 "arith_reg_operand")
(and (match_test "satisfies_constraint_K08 (op)")
(ior (match_test "TARGET_ATOMIC_HARD_LLCS")
(match_test "TARGET_ATOMIC_SOFT_IMASK")
(match_test "TARGET_ATOMIC_SOFT_TCB")
(match_test "TARGET_ATOMIC_ANY && TARGET_SH4A
&& mode == SImode
&& !TARGET_ATOMIC_STRICT"))))))
(define_code_attr fetchop_predicate_1
[(plus "atomic_arith_operand_1") (minus "arith_reg_operand")
(ior "atomic_logical_operand_1") (xor "atomic_logical_operand_1")
(and "atomic_logical_operand_1")])
(define_code_attr fetchop_constraint_1_llcs
[(plus "rI08") (minus "r") (ior "rK08") (xor "rK08") (and "rK08")])
(define_code_attr fetchop_constraint_1_gusa
[(plus "uI08") (minus "u") (ior "u") (xor "u") (and "u")])
(define_code_attr fetchop_constraint_1_tcb
[(plus "rI08") (minus "r") (ior "rK08") (xor "rK08") (and "rK08")])
(define_code_attr fetchop_constraint_1_imask
[(plus "rI08") (minus "r") (ior "rK08") (xor "rK08") (and "rK08")])
;; Displacement addressing mode (incl. GBR relative) can be used by tcb and
;; imask atomic patterns in any mode, since all the patterns use R0 as the
;; register operand for memory loads/stores. gusa and llcs patterns can only
;; use displacement addressing for SImode.
(define_predicate "atomic_mem_operand_1"
(and (match_code "mem")
(ior (match_operand 0 "simple_mem_operand")
(and (match_test "mode == SImode")
(match_test "TARGET_ATOMIC_SOFT_GUSA
&& (!TARGET_SH4A || TARGET_ATOMIC_STRICT)")
(match_operand 0 "short_displacement_mem_operand"))
(and (ior (match_test "(TARGET_ATOMIC_SOFT_TCB
|| TARGET_ATOMIC_SOFT_IMASK)
&& (!TARGET_SH4A || TARGET_ATOMIC_STRICT)")
(match_test "(TARGET_ATOMIC_SOFT_TCB
|| TARGET_ATOMIC_SOFT_IMASK)
&& TARGET_SH4A && !TARGET_ATOMIC_STRICT
&& mode != SImode"))
(ior (match_operand 0 "short_displacement_mem_operand")
(match_operand 0 "gbr_address_mem"))))))
(define_expand "atomic_fetch_"
[(set (match_operand:QIHISI 0 "arith_reg_dest")
(match_operand:QIHISI 1 "atomic_mem_operand_1"))
(set (match_dup 1)
(unspec:QIHISI
[(FETCHOP:QIHISI (match_dup 1)
(match_operand:QIHISI 2 ""))]
UNSPEC_ATOMIC))
(match_operand:SI 3 "const_int_operand")]
"TARGET_ATOMIC_ANY"
{
rtx mem = operands[1];
rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT))
atomic_insn = gen_atomic_fetch__hard (operands[0], mem,
operands[2]);
else if (TARGET_ATOMIC_SOFT_GUSA)
atomic_insn = gen_atomic_fetch__soft_gusa (operands[0],
mem, operands[2]);
else if (TARGET_ATOMIC_SOFT_TCB)
atomic_insn = gen_atomic_fetch__soft_tcb (operands[0],
mem, operands[2], TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX);
else if (TARGET_ATOMIC_SOFT_IMASK)
atomic_insn = gen_atomic_fetch__soft_imask (operands[0],
mem, operands[2]);
else
FAIL;
emit_insn (atomic_insn);
if (mode == QImode)
emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
operands[0]));
else if (mode == HImode)
emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]),
operands[0]));
DONE;
})
(define_insn_and_split "atomic_fetch_si_hard"
[(set (match_operand:SI 0 "arith_reg_dest" "=&r")
(match_operand:SI 1 "atomic_mem_operand_1" "=Sra"))
(set (match_dup 1)
(unspec:SI
[(FETCHOP:SI (match_dup 1)
(match_operand:SI 2 ""
""))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)"
{
return "\r0: movli.l %1,r0" "\n"
" mov r0,%0" "\n"
" %2,r0" "\n"
" movco.l r0,%1" "\n"
" bf 0b";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic__fetchsi_hard (gen_reg_rtx (SImode),
operands[1], operands[2]));
}
[(set_attr "length" "10")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn_and_split "atomic_fetch_notsi_hard"
[(set (match_operand:SI 0 "arith_reg_dest" "=&r")
(match_operand:SI 1 "atomic_mem_operand_1" "=Sra"))
(set (match_dup 1)
(unspec:SI [(not:SI (match_dup 1))] UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)"
{
return "\r0: movli.l %1,r0" "\n"
" mov r0,%0" "\n"
" not r0,r0" "\n"
" movco.l r0,%1" "\n"
" bf 0b";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_not_fetchsi_hard (gen_reg_rtx (SImode), operands[1]));
}
[(set_attr "length" "10")])
;; The QIHImode llcs patterns modify the address register of the memory
;; operand. In order to express that, we have to open code the memory
;; operand. Initially the insn is expanded like every other atomic insn
;; using the memory operand. In split1 the insn is converted and the
;; memory operand's address register is exposed.
(define_insn_and_split "atomic_fetch__hard"
[(set (match_operand:QIHI 0 "arith_reg_dest")
(match_operand:QIHI 1 "atomic_mem_operand_1"))
(set (match_dup 1)
(unspec:QIHI
[(FETCHOP:QIHI (match_dup 1)
(match_operand:QIHI 2 ""))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()"
"#"
"&& 1"
[(const_int 0)]
{
if (optimize
&& sh_reg_dead_or_unused_after_insn (curr_insn, REGNO (operands[0])))
emit_insn (gen_atomic__hard (operands[1], operands[2]));
else
{
rtx i = gen_atomic_fetch__hard_1 (
operands[0], XEXP (operands[1], 0), operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
XEXP (XVECEXP (i, 0, 0), 1) = operands[1];
XEXP (XVECEXP (i, 0, 1), 0) = operands[1];
XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 1), 1), 0, 0), 0) = operands[1];
emit_insn (i);
}
})
(define_insn "atomic_fetch__hard_1"
[(set (match_operand:QIHI 0 "arith_reg_dest" "=&r")
(mem:QIHI (match_operand:SI 1 "arith_reg_operand" "r")))
(set (mem:QIHI (match_dup 1))
(unspec:QIHI
[(FETCHOP:QIHI (mem:QIHI (match_dup 1))
(match_operand:QIHI 2 ""
""))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 3 "=&r"))
(clobber (match_scratch:SI 4 "=1"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%3" "\n"
" and %1,%3" "\n"
" xor %3,%1" "\n"
" add r15,%1" "\n"
" add #-4,%1" "\n"
"0: movli.l @%3,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%1,r0" "\n"
" mov r0,%0" "\n"
" %2,r0" "\n"
" mov. r0,@%1" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%3" "\n"
" bf 0b";
}
[(set_attr "length" "28")])
;; The QIHImode llcs patterns modify the address register of the memory
;; operand. In order to express that, we have to open code the memory
;; operand. Initially the insn is expanded like every other atomic insn
;; using the memory operand. In split1 the insn is converted and the
;; memory operand's address register is exposed.
(define_insn_and_split "atomic__hard"
[(set (match_operand:QIHI 0 "atomic_mem_operand_1")
(unspec:QIHI
[(FETCHOP:QIHI (match_dup 0)
(match_operand:QIHI 1 ""))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()"
"#"
"&& 1"
[(const_int 0)]
{
rtx i = gen_atomic__hard_1 (XEXP (operands[0], 0),
operands[1]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
XEXP (XVECEXP (i, 0, 0), 0) = operands[0];
XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0), 0) = operands[0];
emit_insn (i);
})
(define_insn "atomic__hard_1"
[(set (mem:QIHI (match_operand:SI 0 "arith_reg_operand" "r"))
(unspec:QIHI
[(FETCHOP:QIHI (mem:QIHI (match_dup 0))
(match_operand:QIHI 1 ""
""))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 2 "=&r"))
(clobber (match_scratch:SI 3 "=0"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%2" "\n"
" and %0,%2" "\n"
" xor %2,%0" "\n"
" add r15,%0" "\n"
" add #-4,%0" "\n"
"0: movli.l @%2,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%0,r0" "\n"
" %1,r0" "\n"
" mov. r0,@%0" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%2" "\n"
" bf 0b";
}
[(set_attr "length" "26")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn_and_split "atomic_fetch_not_hard"
[(set (match_operand:QIHI 0 "arith_reg_dest" "=&r")
(mem:QIHI (match_operand:SI 1 "arith_reg_operand" "r")))
(set (mem:QIHI (match_dup 1))
(unspec:QIHI [(not:QIHI (mem:QIHI (match_dup 1)))] UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 2 "=&r"))
(clobber (match_scratch:SI 3 "=1"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%2" "\n"
" and %1,%2" "\n"
" xor %2,%1" "\n"
" add r15,%1" "\n"
" add #-4,%1" "\n"
"0: movli.l @%2,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%1,%0" "\n"
" not %0,r0" "\n"
" mov. r0,@%1" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%2" "\n"
" bf 0b";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
rtx i = gen_atomic_not_hard (operands[1]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
rtx m = XEXP (XVECEXP (PATTERN (curr_insn), 0, 0), 1);
XEXP (XVECEXP (i, 0, 0), 0) = m;
XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0), 0) = m;
emit_insn (i);
}
[(set_attr "length" "26")])
(define_insn "atomic_not_hard"
[(set (mem:QIHI (match_operand:SI 0 "arith_reg_operand" "r"))
(unspec:QIHI [(not:QIHI (mem:QIHI (match_dup 0)))] UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 1 "=&r"))
(clobber (match_scratch:SI 2 "=0"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%1" "\n"
" and %0,%1" "\n"
" xor %1,%0" "\n"
" add r15,%0" "\n"
" add #-4,%0" "\n"
"0: movli.l @%1,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%0,r0" "\n"
" not r0,r0" "\n"
" mov. r0,@%0" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%1" "\n"
" bf 0b";
}
[(set_attr "length" "26")])
(define_insn_and_split "atomic_fetch__soft_gusa"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&u")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=AraAdd"))
(set (match_dup 1)
(unspec:QIHISI
[(FETCHOP:QIHISI
(match_dup 1)
(match_operand:QIHISI 2 ""
""))]
UNSPEC_ATOMIC))
(clobber (match_scratch:QIHISI 3 "=&u"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_GUSA"
{
return "\r mova 1f,r0" "\n"
" .align 2" "\n"
" mov r15,r1" "\n"
" mov #(0f-1f),r15" "\n"
"0: mov. %1,%0" "\n"
" mov %0,%3" "\n"
" %2,%3" "\n"
" mov. %3,%1" "\n"
"1: mov r1,r15";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic__fetch_soft_gusa (
gen_reg_rtx (mode), operands[1], operands[2]));
}
[(set_attr "length" "18")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn_and_split "atomic_fetch_not_soft_gusa"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&u")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=AraAdd"))
(set (match_dup 1)
(unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC))
(clobber (match_scratch:QIHISI 2 "=&u"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_GUSA"
{
return "\r mova 1f,r0" "\n"
" mov r15,r1" "\n"
" .align 2" "\n"
" mov #(0f-1f),r15" "\n"
"0: mov. %1,%0" "\n"
" not %0,%2" "\n"
" mov. %2,%1" "\n"
"1: mov r1,r15";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_not_fetch_soft_gusa (gen_reg_rtx (mode),
operands[1]));
}
[(set_attr "length" "16")])
(define_insn_and_split "atomic_fetch__soft_tcb"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd"))
(set (match_dup 1)
(unspec:QIHISI
[(FETCHOP:QIHISI
(match_dup 1)
(match_operand:QIHISI 2 ""
""))]
UNSPEC_ATOMIC))
(use (match_operand:SI 3 "gbr_displacement"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" .align 2" "\n"
" mov #(0f-1f),r1" "\n"
" mov.l r0,@(%O3,gbr)" "\n"
"0: mov. %1,r0" "\n"
" mov r0,%0" "\n"
" %2,r0" "\n"
" mov. r0,%1" "\n"
"1: mov #0,r0" "\n"
" mov.l r0,@(%O3,gbr)";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic__soft_tcb (
operands[1], operands[2], operands[3]));
}
[(set_attr "length" "20")])
(define_insn "atomic__soft_tcb"
[(set (match_operand:QIHISI 0 "atomic_mem_operand_1" "=SraSdd")
(unspec:QIHISI
[(FETCHOP:QIHISI
(match_dup 0)
(match_operand:QIHISI 1 ""
""))]
UNSPEC_ATOMIC))
(use (match_operand:SI 2 "gbr_displacement"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" mov #(0f-1f),r1" "\n"
" .align 2" "\n"
" mov.l r0,@(%O2,gbr)" "\n"
"0: mov. %0,r0" "\n"
" %1,r0" "\n"
" mov. r0,%0" "\n"
"1: mov #0,r0" "\n"
" mov.l r0,@(%O2,gbr)";
}
[(set_attr "length" "18")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn_and_split "atomic_fetch_not_soft_tcb"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd"))
(set (match_dup 1)
(unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC))
(use (match_operand:SI 2 "gbr_displacement"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" .align 2" "\n"
" mov #(0f-1f),r1" "\n"
" mov.l r0,@(%O2,gbr)" "\n"
"0: mov. %1,r0" "\n"
" mov r0,%0" "\n"
" not r0,r0" "\n"
" mov. r0,%1" "\n"
"1: mov #0,r0" "\n"
" mov.l r0,@(%O2,gbr)";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_not_soft_tcb (operands[1], operands[2]));
}
[(set_attr "length" "20")])
(define_insn "atomic_not_soft_tcb"
[(set (match_operand:QIHISI 0 "atomic_mem_operand_1" "=SraSdd")
(unspec:QIHISI [(not:QIHISI (match_dup 0))] UNSPEC_ATOMIC))
(use (match_operand:SI 1 "gbr_displacement"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" mov #(0f-1f),r1" "\n"
" .align 2" "\n"
" mov.l r0,@(%O1,gbr)" "\n"
"0: mov. %0,r0" "\n"
" not r0,r0" "\n"
" mov. r0,%0" "\n"
"1: mov #0,r0" "\n"
" mov.l r0,@(%O1,gbr)";
}
[(set_attr "length" "18")])
(define_insn_and_split "atomic_fetch__soft_imask"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd"))
(set (match_dup 1)
(unspec:QIHISI
[(FETCHOP:QIHISI
(match_dup 1)
(match_operand:QIHISI 2 ""
""))]
UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:QIHISI 3 "=&r"))]
"TARGET_ATOMIC_SOFT_IMASK"
{
return "\r stc sr,r0" "\n"
" mov r0,%3" "\n"
" or #0xF0,r0" "\n"
" ldc r0,sr" "\n"
" mov. %1,r0" "\n"
" mov r0,%0" "\n"
" %2,r0" "\n"
" mov. r0,%1" "\n"
" ldc %3,sr";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic__fetch_soft_imask (
gen_reg_rtx (mode), operands[1], operands[2]));
}
[(set_attr "length" "18")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn_and_split "atomic_fetch_not_soft_imask"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd"))
(set (match_dup 1)
(unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:QIHISI 2 "=&r"))]
"TARGET_ATOMIC_SOFT_IMASK"
{
return "\r stc sr,r0" "\n"
" mov r0,%2" "\n"
" or #0xF0,r0" "\n"
" ldc r0,sr" "\n"
" mov. %1,r0" "\n"
" mov r0,%0" "\n"
" not r0,r0" "\n"
" mov. r0,%1" "\n"
" ldc %2,sr";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_not_fetch_soft_imask (gen_reg_rtx (mode),
operands[1]));
}
[(set_attr "length" "18")])
(define_expand "atomic_fetch_nand"
[(set (match_operand:QIHISI 0 "arith_reg_dest")
(match_operand:QIHISI 1 "atomic_mem_operand_1"))
(set (match_dup 1)
(unspec:QIHISI
[(not:QIHISI (and:QIHISI (match_dup 1)
(match_operand:QIHISI 2 "atomic_logical_operand_1")))]
UNSPEC_ATOMIC))
(match_operand:SI 3 "const_int_operand")]
"TARGET_ATOMIC_ANY"
{
rtx mem = operands[1];
rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT))
atomic_insn = gen_atomic_fetch_nand_hard (operands[0], mem,
operands[2]);
else if (TARGET_ATOMIC_SOFT_GUSA)
atomic_insn = gen_atomic_fetch_nand_soft_gusa (operands[0], mem,
operands[2]);
else if (TARGET_ATOMIC_SOFT_TCB)
atomic_insn = gen_atomic_fetch_nand_soft_tcb (operands[0], mem,
operands[2], TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX);
else if (TARGET_ATOMIC_SOFT_IMASK)
atomic_insn = gen_atomic_fetch_nand_soft_imask (operands[0], mem,
operands[2]);
else
FAIL;
emit_insn (atomic_insn);
if (mode == QImode)
emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
operands[0]));
else if (mode == HImode)
emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]),
operands[0]));
DONE;
})
(define_insn_and_split "atomic_fetch_nandsi_hard"
[(set (match_operand:SI 0 "arith_reg_dest" "=&r")
(match_operand:SI 1 "atomic_mem_operand_1" "=Sra"))
(set (match_dup 1)
(unspec:SI
[(not:SI (and:SI (match_dup 1)
(match_operand:SI 2 "logical_operand" "rK08")))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)"
{
return "\r0: movli.l %1,r0" "\n"
" mov r0,%0" "\n"
" and %2,r0" "\n"
" not r0,r0" "\n"
" movco.l r0,%1" "\n"
" bf 0b";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_nand_fetchsi_hard (gen_reg_rtx (SImode), operands[1],
operands[2]));
}
[(set_attr "length" "12")])
;; The QIHImode llcs patterns modify the address register of the memory
;; operand. In order to express that, we have to open code the memory
;; operand. Initially the insn is expanded like every other atomic insn
;; using the memory operand. In split1 the insn is converted and the
;; memory operand's address register is exposed.
(define_insn_and_split "atomic_fetch_nand_hard"
[(set (match_operand:QIHI 0 "arith_reg_dest")
(match_operand:QIHI 1 "atomic_mem_operand_1"))
(set (match_dup 1)
(unspec:QIHI
[(not:QIHI (and:QIHI (match_dup 1)
(match_operand:QIHI 2 "logical_operand" "rK08")))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()"
"#"
"&& 1"
[(const_int 0)]
{
if (optimize
&& sh_reg_dead_or_unused_after_insn (curr_insn, REGNO (operands[0])))
emit_insn (gen_atomic_nand_hard (operands[1], operands[2]));
else
{
rtx i = gen_atomic_fetch_nand_hard_1 (
operands[0], XEXP (operands[1], 0), operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
XEXP (XVECEXP (i, 0, 0), 1) = operands[1];
XEXP (XVECEXP (i, 0, 1), 0) = operands[1];
XEXP (XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 1), 1), 0, 0), 0),
0) = operands[1];
emit_insn (i);
}
})
(define_insn "atomic_fetch_nand_hard_1"
[(set (match_operand:QIHI 0 "arith_reg_dest" "=&r")
(mem:QIHI (match_operand:SI 1 "arith_reg_operand" "r")))
(set (mem:QIHI (match_dup 1))
(unspec:QIHI
[(not:QIHI (and:QIHI (mem:QIHI (match_dup 1))
(match_operand:QIHI 2 "logical_operand" "rK08")))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 3 "=&r"))
(clobber (match_scratch:SI 4 "=1"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%3" "\n"
" and %1,%3" "\n"
" xor %3,%1" "\n"
" add r15,%1" "\n"
" add #-4,%1" "\n"
"0: movli.l @%3,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%1,r0" "\n"
" mov r0,%0" "\n"
" and %2,r0" "\n"
" not r0,r0" "\n"
" mov. r0,@%1" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%3" "\n"
" bf 0b";
}
[(set_attr "length" "30")])
;; The QIHImode llcs patterns modify the address register of the memory
;; operand. In order to express that, we have to open code the memory
;; operand. Initially the insn is expanded like every other atomic insn
;; using the memory operand. In split1 the insn is converted and the
;; memory operand's address register is exposed.
(define_insn_and_split "atomic_nand_hard"
[(set (match_operand:QIHI 0 "atomic_mem_operand_1")
(unspec:QIHI
[(not:QIHI (and:QIHI (match_dup 0)
(match_operand:QIHI 1 "logical_operand")))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()"
"#"
"&& 1"
[(const_int 0)]
{
rtx i = gen_atomic_nand_hard_1 (XEXP (operands[0], 0), operands[1]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
XEXP (XVECEXP (i, 0, 0), 0) = operands[0];
XEXP (XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0), 0), 0) = operands[0];
emit_insn (i);
})
(define_insn "atomic_nand_hard_1"
[(set (mem:QIHI (match_operand:SI 0 "arith_reg_operand" "r"))
(unspec:QIHI
[(not:QIHI (and:QIHI (mem:QIHI (match_dup 0))
(match_operand:QIHI 1 "logical_operand" "rK08")))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 2 "=&r"))
(clobber (match_scratch:SI 3 "=0"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%2" "\n"
" and %0,%2" "\n"
" xor %2,%0" "\n"
" add r15,%0" "\n"
" add #-4,%0" "\n"
"0: movli.l @%2,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%0,r0" "\n"
" and %1,r0" "\n"
" not r0,r0" "\n"
" mov. r0,@%0" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%2" "\n"
" bf 0b";
}
[(set_attr "length" "28")])
(define_insn_and_split "atomic_fetch_nand_soft_gusa"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&u")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=AraAdd"))
(set (match_dup 1)
(unspec:QIHISI
[(not:QIHISI
(and:QIHISI (match_dup 1)
(match_operand:QIHISI 2 "arith_reg_operand" "u")))]
UNSPEC_ATOMIC))
(clobber (match_scratch:QIHISI 3 "=&u"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_GUSA"
{
return "\r mova 1f,r0" "\n"
" mov r15,r1" "\n"
" .align 2" "\n"
" mov #(0f-1f),r15" "\n"
"0: mov. %1,%0" "\n"
" mov %2,%3" "\n"
" and %0,%3" "\n"
" not %3,%3" "\n"
" mov. %3,%1" "\n"
"1: mov r1,r15";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_nand_fetch_soft_gusa (gen_reg_rtx (mode),
operands[1], operands[2]));
}
[(set_attr "length" "20")])
(define_insn_and_split "atomic_fetch_nand_soft_tcb"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd"))
(set (match_dup 1)
(unspec:QIHISI
[(not:QIHISI
(and:QIHISI (match_dup 1)
(match_operand:QIHISI 2 "logical_operand" "rK08")))]
UNSPEC_ATOMIC))
(use (match_operand:SI 3 "gbr_displacement"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" mov #(0f-1f),r1" "\n"
" .align 2" "\n"
" mov.l r0,@(%O3,gbr)" "\n"
"0: mov. %1,r0" "\n"
" mov r0,%0" "\n"
" and %2,r0" "\n"
" not r0,r0" "\n"
" mov. r0,%1" "\n"
"1: mov #0,r0" "\n"
" mov.l r0,@(%O3,gbr)";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_nand_soft_tcb (operands[1], operands[2],
operands[3]));
}
[(set_attr "length" "22")])
(define_insn "atomic_nand_soft_tcb"
[(set (match_operand:QIHISI 0 "atomic_mem_operand_1" "=SraSdd")
(unspec:QIHISI
[(not:QIHISI
(and:QIHISI (match_dup 0)
(match_operand:QIHISI 1 "logical_operand" "rK08")))]
UNSPEC_ATOMIC))
(use (match_operand:SI 2 "gbr_displacement"))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" .align 2" "\n"
" mov #(0f-1f),r1" "\n"
" mov.l r0,@(%O2,gbr)" "\n"
"0: mov. %0,r0" "\n"
" and %1,r0" "\n"
" not r0,r0" "\n"
" mov. r0,%0" "\n"
"1: mov #0,r0" "\n"
" mov.l r0,@(%O2,gbr)";
}
[(set_attr "length" "20")])
(define_insn_and_split "atomic_fetch_nand_soft_imask"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd"))
(set (match_dup 1)
(unspec:QIHISI
[(not:QIHISI
(and:QIHISI (match_dup 1)
(match_operand:QIHISI 2 "logical_operand" "rK08")))]
UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 3 "=&r"))]
"TARGET_ATOMIC_SOFT_IMASK"
{
return "\r stc sr,r0" "\n"
" mov r0,%3" "\n"
" or #0xF0,r0" "\n"
" ldc r0,sr" "\n"
" mov. %1,r0" "\n"
" mov r0,%0" "\n"
" and %2,r0" "\n"
" not r0,r0" "\n"
" mov. r0,%1" "\n"
" ldc %3,sr";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_nand_fetch_soft_imask (gen_reg_rtx (mode),
operands[1], operands[2]));
}
[(set_attr "length" "20")])
;;------------------------------------------------------------------------------
;; read - add|sub|or|and|xor|nand - write - return new value
(define_expand "atomic__fetch"
[(set (match_operand:QIHISI 0 "arith_reg_dest")
(FETCHOP:QIHISI
(match_operand:QIHISI 1 "atomic_mem_operand_1")
(match_operand:QIHISI 2 "")))
(set (match_dup 1)
(unspec:QIHISI
[(FETCHOP:QIHISI (match_dup 1) (match_dup 2))]
UNSPEC_ATOMIC))
(match_operand:SI 3 "const_int_operand" "")]
"TARGET_ATOMIC_ANY"
{
rtx mem = operands[1];
rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT))
atomic_insn = gen_atomic__fetch_hard (operands[0], mem,
operands[2]);
else if (TARGET_ATOMIC_SOFT_GUSA)
atomic_insn = gen_atomic__fetch_soft_gusa (operands[0],
mem, operands[2]);
else if (TARGET_ATOMIC_SOFT_TCB)
atomic_insn = gen_atomic__fetch_soft_tcb (operands[0],
mem, operands[2], TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX);
else if (TARGET_ATOMIC_SOFT_IMASK)
atomic_insn = gen_atomic__fetch_soft_imask (operands[0],
mem, operands[2]);
else
FAIL;
emit_insn (atomic_insn);
if (mode == QImode)
emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
operands[0]));
else if (mode == HImode)
emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]),
operands[0]));
DONE;
})
(define_insn "atomic__fetchsi_hard"
[(set (match_operand:SI 0 "arith_reg_dest" "=&z")
(FETCHOP:SI
(match_operand:SI 1 "atomic_mem_operand_1" "=Sra")
(match_operand:SI 2 ""
"")))
(set (match_dup 1)
(unspec:SI
[(FETCHOP:SI (match_dup 1) (match_dup 2))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))]
"TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)"
{
return "\r0: movli.l %1,%0" "\n"
" %2,%0" "\n"
" movco.l %0,%1" "\n"
" bf 0b";
}
[(set_attr "length" "8")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn "atomic_not_fetchsi_hard"
[(set (match_operand:SI 0 "arith_reg_dest" "=&z")
(not:SI (match_operand:SI 1 "atomic_mem_operand_1" "=Sra")))
(set (match_dup 1)
(unspec:SI [(not:SI (match_dup 1))] UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))]
"TARGET_ATOMIC_HARD_LLCS
|| (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)"
{
return "\r0: movli.l %1,%0" "\n"
" not %0,%0" "\n"
" movco.l %0,%1" "\n"
" bf 0b";
}
[(set_attr "length" "8")])
;; The QIHImode llcs patterns modify the address register of the memory
;; operand. In order to express that, we have to open code the memory
;; operand. Initially the insn is expanded like every other atomic insn
;; using the memory operand. In split1 the insn is converted and the
;; memory operand's address register is exposed.
(define_insn_and_split "atomic__fetch_hard"
[(set (match_operand:QIHI 0 "arith_reg_dest" "=&r")
(FETCHOP:QIHI (match_operand:QIHI 1 "atomic_mem_operand_1")
(match_operand:QIHI 2 "")))
(set (match_dup 1) (unspec:QIHI [(FETCHOP:QIHI (match_dup 1) (match_dup 2))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))]
"TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()"
"#"
"&& 1"
[(const_int 0)]
{
if (optimize
&& sh_reg_dead_or_unused_after_insn (curr_insn, REGNO (operands[0])))
emit_insn (gen_atomic__hard (operands[1], operands[2]));
else
{
rtx i = gen_atomic__fetch_hard_1 (
operands[0], XEXP (operands[1], 0), operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
XEXP (XEXP (XVECEXP (i, 0, 0), 1), 0) = operands[1];
XEXP (XVECEXP (i, 0, 1), 0) = operands[1];
XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 1), 1), 0, 0), 0) = operands[1];
emit_insn (i);
}
})
(define_insn "atomic__fetch_hard_1"
[(set (match_operand:QIHI 0 "arith_reg_dest" "=&r")
(FETCHOP:QIHI
(mem:QIHI (match_operand:SI 1 "arith_reg_operand" "r"))
(match_operand:QIHI 2 ""
"")))
(set (mem:QIHI (match_dup 1))
(unspec:QIHI
[(FETCHOP:QIHI (mem:QIHI (match_dup 1)) (match_dup 2))]
UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 3 "=&r"))
(clobber (match_scratch:SI 4 "=1"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%3" "\n"
" and %1,%3" "\n"
" xor %3,%1" "\n"
" add r15,%1" "\n"
" add #-4,%1" "\n"
"0: movli.l @%3,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%1,r0" "\n"
" %2,r0" "\n"
" mov. r0,@%1" "\n"
" mov r0,%0" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%3" "\n"
" bf 0b";
}
[(set_attr "length" "28")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn_and_split "atomic_not_fetch_hard"
[(set (match_operand:QIHI 0 "arith_reg_dest" "=&r")
(not:QIHI (mem:QIHI (match_operand:SI 1 "arith_reg_operand" "r"))))
(set (mem:QIHI (match_dup 1))
(unspec:QIHI [(not:QIHI (mem:QIHI (match_dup 1)))] UNSPEC_ATOMIC))
(set (reg:SI T_REG) (const_int 1))
(clobber (reg:SI R0_REG))
(clobber (match_scratch:SI 2 "=&r"))
(clobber (match_scratch:SI 3 "=1"))]
"TARGET_ATOMIC_HARD_LLCS"
{
return "\r mov #-4,%2" "\n"
" and %1,%2" "\n"
" xor %2,%1" "\n"
" add r15,%1" "\n"
" add #-4,%1" "\n"
"0: movli.l @%2,r0" "\n"
" mov.l r0,@-r15" "\n"
" mov. @%1,r0" "\n"
" not r0,r0" "\n"
" mov. r0,@%1" "\n"
" mov r0,%0" "\n"
" mov.l @r15+,r0" "\n"
" movco.l r0,@%2" "\n"
" bf 0b";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
rtx i = gen_atomic_not_hard (operands[1]);
/* Replace the new mems in the new insn with the old mem to preserve
aliasing info. */
rtx m = XEXP (XEXP (XVECEXP (PATTERN (curr_insn), 0, 0), 1), 0);
XEXP (XVECEXP (i, 0, 0), 0) = m;
XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0), 0) = m;
emit_insn (i);
}
[(set_attr "length" "28")])
(define_insn "atomic__fetch_soft_gusa"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&u")
(FETCHOP:QIHISI
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=AraAdd")
(match_operand:QIHISI 2 ""
"")))
(set (match_dup 1)
(unspec:QIHISI
[(FETCHOP:QIHISI (match_dup 1) (match_dup 2))]
UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_GUSA"
{
return "\r mova 1f,r0" "\n"
" mov r15,r1" "\n"
" .align 2" "\n"
" mov #(0f-1f),r15" "\n"
"0: mov. %1,%0" "\n"
" %2,%0" "\n"
" mov. %0,%1" "\n"
"1: mov r1,r15";
}
[(set_attr "length" "16")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn "atomic_not_fetch_soft_gusa"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&u")
(not:QIHISI (match_operand:QIHISI 1 "atomic_mem_operand_1" "=AraAdd")))
(set (match_dup 1)
(unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))]
"TARGET_ATOMIC_SOFT_GUSA"
{
return "\r mova 1f,r0" "\n"
" mov r15,r1" "\n"
" .align 2" "\n"
" mov #(0f-1f),r15" "\n"
"0: mov. %1,%0" "\n"
" not %0,%0" "\n"
" mov. %0,%1" "\n"
"1: mov r1,r15";
}
[(set_attr "length" "16")])
(define_insn_and_split "atomic__fetch_soft_tcb"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(FETCHOP:QIHISI
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd")
(match_operand:QIHISI 2 ""
"")))
(set (match_dup 1)
(unspec:QIHISI
[(FETCHOP:QIHISI (match_dup 1) (match_dup 2))]
UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))
(use (match_operand:SI 3 "gbr_displacement"))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" mov #(0f-1f),r1" "\n"
" .align 2" "\n"
" mov.l r0,@(%O3,gbr)" "\n"
"0: mov. %1,r0" "\n"
" %2,r0" "\n"
" mov. r0,%1" "\n"
"1: mov r0,%0" "\n"
" mov #0,r0" "\n"
" mov.l r0,@(%O3,gbr)";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic__soft_tcb (
operands[1], operands[2], operands[3]));
}
[(set_attr "length" "20")])
;; Combine pattern for xor (val, -1) / nand (val, -1).
(define_insn_and_split "atomic_not_fetch_soft_tcb"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&r")
(not:QIHISI (match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd")))
(set (match_dup 1)
(unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC))
(clobber (reg:SI R0_REG))
(clobber (reg:SI R1_REG))
(use (match_operand:SI 2 "gbr_displacement"))]
"TARGET_ATOMIC_SOFT_TCB"
{
return "\r mova 1f,r0" "\n"
" mov #(0f-1f),r1" "\n"
" .align 2" "\n"
" mov.l r0,@(%O2,gbr)" "\n"
"0: mov. %1,r0" "\n"
" not r0,r0" "\n"
" mov. r0,%1" "\n"
"1: mov r0,%0" "\n"
" mov #0,r0" "\n"
" mov.l r0,@(%O2,gbr)";
}
"&& can_create_pseudo_p () && optimize
&& sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))"
[(const_int 0)]
{
emit_insn (gen_atomic_not_soft_tcb (operands[1], operands[2]));
}
[(set_attr "length" "20")])
(define_insn "atomic__fetch_soft_imask"
[(set (match_operand:QIHISI 0 "arith_reg_dest" "=&z")
(FETCHOP:QIHISI
(match_operand:QIHISI 1 "atomic_mem_operand_1" "=SraSdd")
(match_operand:QIHISI 2 ""
"