/* Subroutines used for code generation on Renesas RX processors.
Copyright (C) 2008-2021 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* To Do:
* Re-enable memory-to-memory copies and fix up reload. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "regs.h"
#include "emit-rtl.h"
#include "diagnostic-core.h"
#include "varasm.h"
#include "stor-layout.h"
#include "calls.h"
#include "output.h"
#include "flags.h"
#include "explow.h"
#include "expr.h"
#include "toplev.h"
#include "langhooks.h"
#include "opts.h"
#include "builtins.h"
/* This file should be included last. */
#include "target-def.h"
static unsigned int rx_gp_base_regnum_val = INVALID_REGNUM;
static unsigned int rx_pid_base_regnum_val = INVALID_REGNUM;
static unsigned int rx_num_interrupt_regs;
static unsigned int
rx_gp_base_regnum (void)
{
if (rx_gp_base_regnum_val == INVALID_REGNUM)
gcc_unreachable ();
return rx_gp_base_regnum_val;
}
static unsigned int
rx_pid_base_regnum (void)
{
if (rx_pid_base_regnum_val == INVALID_REGNUM)
gcc_unreachable ();
return rx_pid_base_regnum_val;
}
/* Find a SYMBOL_REF in a "standard" MEM address and return its decl. */
static tree
rx_decl_for_addr (rtx op)
{
if (GET_CODE (op) == MEM)
op = XEXP (op, 0);
if (GET_CODE (op) == CONST)
op = XEXP (op, 0);
while (GET_CODE (op) == PLUS)
op = XEXP (op, 0);
if (GET_CODE (op) == SYMBOL_REF)
return SYMBOL_REF_DECL (op);
return NULL_TREE;
}
static void rx_print_operand (FILE *, rtx, int);
#define CC_FLAG_S (1 << 0)
#define CC_FLAG_Z (1 << 1)
#define CC_FLAG_O (1 << 2)
#define CC_FLAG_C (1 << 3)
#define CC_FLAG_FP (1 << 4) /* Fake, to differentiate CC_Fmode. */
static unsigned int flags_from_mode (machine_mode mode);
static unsigned int flags_from_code (enum rtx_code code);
/* Return true if OP is a reference to an object in a PID data area. */
enum pid_type
{
PID_NOT_PID = 0, /* The object is not in the PID data area. */
PID_ENCODED, /* The object is in the PID data area. */
PID_UNENCODED /* The object will be placed in the PID data area, but it has not been placed there yet. */
};
static enum pid_type
rx_pid_data_operand (rtx op)
{
tree op_decl;
if (!TARGET_PID)
return PID_NOT_PID;
if (GET_CODE (op) == PLUS
&& GET_CODE (XEXP (op, 0)) == REG
&& GET_CODE (XEXP (op, 1)) == CONST
&& GET_CODE (XEXP (XEXP (op, 1), 0)) == UNSPEC)
return PID_ENCODED;
op_decl = rx_decl_for_addr (op);
if (op_decl)
{
if (TREE_READONLY (op_decl))
return PID_UNENCODED;
}
else
{
/* Sigh, some special cases. */
if (GET_CODE (op) == SYMBOL_REF
|| GET_CODE (op) == LABEL_REF)
return PID_UNENCODED;
}
return PID_NOT_PID;
}
static rtx
rx_legitimize_address (rtx x,
rtx oldx ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED)
{
if (rx_pid_data_operand (x) == PID_UNENCODED)
{
rtx rv = gen_pid_addr (gen_rtx_REG (SImode, rx_pid_base_regnum ()), x);
return rv;
}
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 0)) == PLUS
&& REG_P (XEXP (XEXP (x, 0), 0))
&& REG_P (XEXP (x, 1)))
return force_reg (SImode, x);
return x;
}
/* Return true if OP is a reference to an object in a small data area. */
static bool
rx_small_data_operand (rtx op)
{
if (rx_small_data_limit == 0)
return false;
if (GET_CODE (op) == SYMBOL_REF)
return SYMBOL_REF_SMALL_P (op);
return false;
}
static bool
rx_is_legitimate_address (machine_mode mode, rtx x,
bool strict ATTRIBUTE_UNUSED)
{
if (RTX_OK_FOR_BASE (x, strict))
/* Register Indirect. */
return true;
if ((GET_MODE_SIZE (mode) == 4
|| GET_MODE_SIZE (mode) == 2
|| GET_MODE_SIZE (mode) == 1)
&& (GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC))
/* Pre-decrement Register Indirect or
Post-increment Register Indirect. */
return RTX_OK_FOR_BASE (XEXP (x, 0), strict);
switch (rx_pid_data_operand (x))
{
case PID_UNENCODED:
return false;
case PID_ENCODED:
return true;
default:
break;
}
if (GET_CODE (x) == PLUS)
{
rtx arg1 = XEXP (x, 0);
rtx arg2 = XEXP (x, 1);
rtx index = NULL_RTX;
if (REG_P (arg1) && RTX_OK_FOR_BASE (arg1, strict))
index = arg2;
else if (REG_P (arg2) && RTX_OK_FOR_BASE (arg2, strict))
index = arg1;
else
return false;
switch (GET_CODE (index))
{
case CONST_INT:
{
/* Register Relative: REG + INT.
Only positive, mode-aligned, mode-sized
displacements are allowed. */
HOST_WIDE_INT val = INTVAL (index);
int factor;
if (val < 0)
return false;
switch (GET_MODE_SIZE (mode))
{
default:
case 4: factor = 4; break;
case 2: factor = 2; break;
case 1: factor = 1; break;
}
if (val > (65535 * factor))
return false;
return (val % factor) == 0;
}
case REG:
/* Unscaled Indexed Register Indirect: REG + REG
Size has to be "QI", REG has to be valid. */
return GET_MODE_SIZE (mode) == 1 && RTX_OK_FOR_BASE (index, strict);
case MULT:
{
/* Scaled Indexed Register Indirect: REG + (REG * FACTOR)
Factor has to equal the mode size, REG has to be valid. */
rtx factor;
factor = XEXP (index, 1);
index = XEXP (index, 0);
return REG_P (index)
&& RTX_OK_FOR_BASE (index, strict)
&& CONST_INT_P (factor)
&& GET_MODE_SIZE (mode) == INTVAL (factor);
}
default:
return false;
}
}
/* Small data area accesses turn into register relative offsets. */
return rx_small_data_operand (x);
}
/* Returns TRUE for simple memory addresses, ie ones
that do not involve register indirect addressing
or pre/post increment/decrement. */
bool
rx_is_restricted_memory_address (rtx mem, machine_mode mode)
{
if (! rx_is_legitimate_address
(mode, mem, reload_in_progress || reload_completed))
return false;
switch (GET_CODE (mem))
{
case REG:
/* Simple memory addresses are OK. */
return true;
case SUBREG:
return RX_REG_P (SUBREG_REG (mem));
case PRE_DEC:
case POST_INC:
return false;
case PLUS:
{
rtx base, index;
/* Only allow REG+INT addressing. */
base = XEXP (mem, 0);
index = XEXP (mem, 1);
if (! RX_REG_P (base) || ! CONST_INT_P (index))
return false;
return IN_RANGE (INTVAL (index), 0, (0x10000 * GET_MODE_SIZE (mode)) - 1);
}
case SYMBOL_REF:
/* Can happen when small data is being supported.
Assume that it will be resolved into GP+INT. */
return true;
default:
gcc_unreachable ();
}
}
/* Implement TARGET_MODE_DEPENDENT_ADDRESS_P. */
static bool
rx_mode_dependent_address_p (const_rtx addr, addr_space_t as ATTRIBUTE_UNUSED)
{
if (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
switch (GET_CODE (addr))
{
/* --REG and REG++ only work in SImode. */
case PRE_DEC:
case POST_INC:
return true;
case MINUS:
case PLUS:
if (! REG_P (XEXP (addr, 0)))
return true;
addr = XEXP (addr, 1);
switch (GET_CODE (addr))
{
case REG:
/* REG+REG only works in SImode. */
return true;
case CONST_INT:
/* REG+INT is only mode independent if INT is a
multiple of 4, positive and will fit into 16-bits. */
if (((INTVAL (addr) & 3) == 0)
&& IN_RANGE (INTVAL (addr), 4, 0xfffc))
return false;
return true;
case SYMBOL_REF:
case LABEL_REF:
return true;
case MULT:
/* REG+REG*SCALE is always mode dependent. */
return true;
default:
/* Not recognized, so treat as mode dependent. */
return true;
}
case CONST_INT:
case SYMBOL_REF:
case LABEL_REF:
case REG:
/* These are all mode independent. */
return false;
default:
/* Everything else is unrecognized,
so treat as mode dependent. */
return true;
}
}
/* A C compound statement to output to stdio stream FILE the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. */
static void
rx_print_operand_address (FILE * file, machine_mode /*mode*/, rtx addr)
{
switch (GET_CODE (addr))
{
case REG:
fprintf (file, "[");
rx_print_operand (file, addr, 0);
fprintf (file, "]");
break;
case PRE_DEC:
fprintf (file, "[-");
rx_print_operand (file, XEXP (addr, 0), 0);
fprintf (file, "]");
break;
case POST_INC:
fprintf (file, "[");
rx_print_operand (file, XEXP (addr, 0), 0);
fprintf (file, "+]");
break;
case PLUS:
{
rtx arg1 = XEXP (addr, 0);
rtx arg2 = XEXP (addr, 1);
rtx base, index;
if (REG_P (arg1) && RTX_OK_FOR_BASE (arg1, true))
base = arg1, index = arg2;
else if (REG_P (arg2) && RTX_OK_FOR_BASE (arg2, true))
base = arg2, index = arg1;
else
{
rx_print_operand (file, arg1, 0);
fprintf (file, " + ");
rx_print_operand (file, arg2, 0);
break;
}
if (REG_P (index) || GET_CODE (index) == MULT)
{
fprintf (file, "[");
rx_print_operand (file, index, 'A');
fprintf (file, ",");
}
else /* GET_CODE (index) == CONST_INT */
{
rx_print_operand (file, index, 'A');
fprintf (file, "[");
}
rx_print_operand (file, base, 0);
fprintf (file, "]");
break;
}
case CONST:
if (GET_CODE (XEXP (addr, 0)) == UNSPEC)
{
addr = XEXP (addr, 0);
gcc_assert (XINT (addr, 1) == UNSPEC_CONST);
addr = XVECEXP (addr, 0, 0);
gcc_assert (CONST_INT_P (addr));
fprintf (file, "#");
output_addr_const (file, addr);
break;
}
fprintf (file, "#");
output_addr_const (file, XEXP (addr, 0));
break;
case UNSPEC:
addr = XVECEXP (addr, 0, 0);
/* Fall through. */
case LABEL_REF:
case SYMBOL_REF:
fprintf (file, "#");
/* Fall through. */
default:
output_addr_const (file, addr);
break;
}
}
static void
rx_print_integer (FILE * file, HOST_WIDE_INT val)
{
if (val < 64)
fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
else
fprintf (file,
TARGET_AS100_SYNTAX
? "0%" HOST_WIDE_INT_PRINT "xH" : HOST_WIDE_INT_PRINT_HEX,
val);
}
static bool
rx_assemble_integer (rtx x, unsigned int size, int is_aligned)
{
const char * op = integer_asm_op (size, is_aligned);
if (! CONST_INT_P (x))
return default_assemble_integer (x, size, is_aligned);
if (op == NULL)
return false;
fputs (op, asm_out_file);
rx_print_integer (asm_out_file, INTVAL (x));
fputc ('\n', asm_out_file);
return true;
}
/* Handles the insertion of a single operand into the assembler output.
The % directives supported are:
%A Print an operand without a leading # character.
%B Print an integer comparison name.
%C Print a control register name.
%F Print a condition code flag name.
%G Register used for small-data-area addressing
%H Print high part of a DImode register, integer or address.
%L Print low part of a DImode register, integer or address.
%N Print the negation of the immediate value.
%P Register used for PID addressing
%Q If the operand is a MEM, then correctly generate
register indirect or register relative addressing.
%R Like %Q but for zero-extending loads. */
static void
rx_print_operand (FILE * file, rtx op, int letter)
{
bool unsigned_load = false;
bool print_hash = true;
if (letter == 'A'
&& ((GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == UNSPEC)
|| GET_CODE (op) == UNSPEC))
{
print_hash = false;
letter = 0;
}
switch (letter)
{
case 'A':
/* Print an operand without a leading #. */
if (MEM_P (op))
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case LABEL_REF:
case SYMBOL_REF:
output_addr_const (file, op);
break;
case CONST_INT:
fprintf (file, "%ld", (long) INTVAL (op));
break;
default:
rx_print_operand (file, op, 0);
break;
}
break;
case 'B':
{
enum rtx_code code = GET_CODE (op);
machine_mode mode = GET_MODE (XEXP (op, 0));
const char *ret;
if (mode == CC_Fmode)
{
/* C flag is undefined, and O flag carries unordered. None of the
branch combinations that include O use it helpfully. */
switch (code)
{
case ORDERED:
ret = "no";
break;
case UNORDERED:
ret = "o";
break;
case LT:
ret = "n";
break;
case GE:
ret = "pz";
break;
case EQ:
ret = "eq";
break;
case NE:
ret = "ne";
break;
default:
gcc_unreachable ();
}
}
else
{
unsigned int flags = flags_from_mode (mode);
switch (code)
{
case LT:
ret = (flags & CC_FLAG_O ? "lt" : "n");
break;
case GE:
ret = (flags & CC_FLAG_O ? "ge" : "pz");
break;
case GT:
ret = "gt";
break;
case LE:
ret = "le";
break;
case GEU:
ret = "geu";
break;
case LTU:
ret = "ltu";
break;
case GTU:
ret = "gtu";
break;
case LEU:
ret = "leu";
break;
case EQ:
ret = "eq";
break;
case NE:
ret = "ne";
break;
default:
gcc_unreachable ();
}
gcc_checking_assert ((flags_from_code (code) & ~flags) == 0);
}
fputs (ret, file);
break;
}
case 'C':
gcc_assert (CONST_INT_P (op));
switch (INTVAL (op))
{
case CTRLREG_PSW: fprintf (file, "psw"); break;
case CTRLREG_PC: fprintf (file, "pc"); break;
case CTRLREG_USP: fprintf (file, "usp"); break;
case CTRLREG_FPSW: fprintf (file, "fpsw"); break;
case CTRLREG_BPSW: fprintf (file, "bpsw"); break;
case CTRLREG_BPC: fprintf (file, "bpc"); break;
case CTRLREG_ISP: fprintf (file, "isp"); break;
case CTRLREG_FINTV: fprintf (file, "fintv"); break;
case CTRLREG_INTB: fprintf (file, "intb"); break;
default:
warning (0, "unrecognized control register number: %d"
" - using %", (int) INTVAL (op));
fprintf (file, "psw");
break;
}
break;
case 'F':
gcc_assert (CONST_INT_P (op));
switch (INTVAL (op))
{
case 0: case 'c': case 'C': fprintf (file, "C"); break;
case 1: case 'z': case 'Z': fprintf (file, "Z"); break;
case 2: case 's': case 'S': fprintf (file, "S"); break;
case 3: case 'o': case 'O': fprintf (file, "O"); break;
case 8: case 'i': case 'I': fprintf (file, "I"); break;
case 9: case 'u': case 'U': fprintf (file, "U"); break;
default:
gcc_unreachable ();
}
break;
case 'G':
fprintf (file, "%s", reg_names [rx_gp_base_regnum ()]);
break;
case 'H':
switch (GET_CODE (op))
{
case REG:
fprintf (file, "%s", reg_names [REGNO (op) + (WORDS_BIG_ENDIAN ? 0 : 1)]);
break;
case CONST_INT:
{
HOST_WIDE_INT v = INTVAL (op);
fprintf (file, "#");
/* Trickery to avoid problems with shifting 32 bits at a time. */
v = v >> 16;
v = v >> 16;
rx_print_integer (file, v);
break;
}
case CONST_DOUBLE:
fprintf (file, "#");
rx_print_integer (file, CONST_DOUBLE_HIGH (op));
break;
case MEM:
if (! WORDS_BIG_ENDIAN)
op = adjust_address (op, SImode, 4);
output_address (GET_MODE (op), XEXP (op, 0));
break;
default:
gcc_unreachable ();
}
break;
case 'L':
switch (GET_CODE (op))
{
case REG:
fprintf (file, "%s", reg_names [REGNO (op) + (WORDS_BIG_ENDIAN ? 1 : 0)]);
break;
case CONST_INT:
fprintf (file, "#");
rx_print_integer (file, INTVAL (op) & 0xffffffff);
break;
case CONST_DOUBLE:
fprintf (file, "#");
rx_print_integer (file, CONST_DOUBLE_LOW (op));
break;
case MEM:
if (WORDS_BIG_ENDIAN)
op = adjust_address (op, SImode, 4);
output_address (GET_MODE (op), XEXP (op, 0));
break;
default:
gcc_unreachable ();
}
break;
case 'N':
gcc_assert (CONST_INT_P (op));
fprintf (file, "#");
rx_print_integer (file, - INTVAL (op));
break;
case 'P':
fprintf (file, "%s", reg_names [rx_pid_base_regnum ()]);
break;
case 'R':
gcc_assert (GET_MODE_SIZE (GET_MODE (op)) <= 4);
unsigned_load = true;
/* Fall through. */
case 'Q':
if (MEM_P (op))
{
HOST_WIDE_INT offset;
rtx mem = op;
op = XEXP (op, 0);
if (REG_P (op))
offset = 0;
else if (GET_CODE (op) == PLUS)
{
rtx displacement;
if (REG_P (XEXP (op, 0)))
{
displacement = XEXP (op, 1);
op = XEXP (op, 0);
}
else
{
displacement = XEXP (op, 0);
op = XEXP (op, 1);
gcc_assert (REG_P (op));
}
gcc_assert (CONST_INT_P (displacement));
offset = INTVAL (displacement);
gcc_assert (offset >= 0);
fprintf (file, "%ld", offset);
}
else
gcc_unreachable ();
fprintf (file, "[");
rx_print_operand (file, op, 0);
fprintf (file, "].");
switch (GET_MODE_SIZE (GET_MODE (mem)))
{
case 1:
gcc_assert (offset <= 65535 * 1);
fprintf (file, unsigned_load ? "UB" : "B");
break;
case 2:
gcc_assert (offset % 2 == 0);
gcc_assert (offset <= 65535 * 2);
fprintf (file, unsigned_load ? "UW" : "W");
break;
case 4:
gcc_assert (offset % 4 == 0);
gcc_assert (offset <= 65535 * 4);
fprintf (file, "L");
break;
default:
gcc_unreachable ();
}
break;
}
/* Fall through. */
default:
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == UNSPEC)
op = XEXP (op, 0);
else if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == UNSPEC
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
{
if (print_hash)
fprintf (file, "#");
fprintf (file, "(");
rx_print_operand (file, XEXP (XEXP (op, 0), 0), 'A');
fprintf (file, " + ");
output_addr_const (file, XEXP (XEXP (op, 0), 1));
fprintf (file, ")");
return;
}
switch (GET_CODE (op))
{
case MULT:
/* Should be the scaled part of an
indexed register indirect address. */
{
rtx base = XEXP (op, 0);
rtx index = XEXP (op, 1);
/* Check for a swaped index register and scaling factor.
Not sure if this can happen, but be prepared to handle it. */
if (CONST_INT_P (base) && REG_P (index))
{
rtx tmp = base;
base = index;
index = tmp;
}
gcc_assert (REG_P (base));
gcc_assert (REGNO (base) < FIRST_PSEUDO_REGISTER);
gcc_assert (CONST_INT_P (index));
/* Do not try to verify the value of the scalar as it is based
on the mode of the MEM not the mode of the MULT. (Which
will always be SImode). */
fprintf (file, "%s", reg_names [REGNO (base)]);
break;
}
case MEM:
output_address (GET_MODE (op), XEXP (op, 0));
break;
case PLUS:
output_address (VOIDmode, op);
break;
case REG:
gcc_assert (REGNO (op) < FIRST_PSEUDO_REGISTER);
fprintf (file, "%s", reg_names [REGNO (op)]);
break;
case SUBREG:
gcc_assert (subreg_regno (op) < FIRST_PSEUDO_REGISTER);
fprintf (file, "%s", reg_names [subreg_regno (op)]);
break;
/* This will only be single precision.... */
case CONST_DOUBLE:
{
unsigned long val;
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), val);
if (print_hash)
fprintf (file, "#");
fprintf (file, TARGET_AS100_SYNTAX ? "0%lxH" : "0x%lx", val);
break;
}
case CONST_INT:
if (print_hash)
fprintf (file, "#");
rx_print_integer (file, INTVAL (op));
break;
case UNSPEC:
switch (XINT (op, 1))
{
case UNSPEC_PID_ADDR:
{
rtx sym, add;
if (print_hash)
fprintf (file, "#");
sym = XVECEXP (op, 0, 0);
add = NULL_RTX;
fprintf (file, "(");
if (GET_CODE (sym) == PLUS)
{
add = XEXP (sym, 1);
sym = XEXP (sym, 0);
}
output_addr_const (file, sym);
if (add != NULL_RTX)
{
fprintf (file, "+");
output_addr_const (file, add);
}
fprintf (file, "-__pid_base");
fprintf (file, ")");
return;
}
}
/* Fall through */
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CODE_LABEL:
rx_print_operand_address (file, VOIDmode, op);
break;
default:
gcc_unreachable ();
}
break;
}
}
/* Maybe convert an operand into its PID format. */
rtx
rx_maybe_pidify_operand (rtx op, int copy_to_reg)
{
if (rx_pid_data_operand (op) == PID_UNENCODED)
{
if (GET_CODE (op) == MEM)
{
rtx a = gen_pid_addr (gen_rtx_REG (SImode, rx_pid_base_regnum ()), XEXP (op, 0));
op = replace_equiv_address (op, a);
}
else
{
op = gen_pid_addr (gen_rtx_REG (SImode, rx_pid_base_regnum ()), op);
}
if (copy_to_reg)
op = copy_to_mode_reg (GET_MODE (op), op);
}
return op;
}
/* Returns an assembler template for a move instruction. */
char *
rx_gen_move_template (rtx * operands, bool is_movu)
{
static char out_template [64];
const char * extension = TARGET_AS100_SYNTAX ? ".L" : "";
const char * src_template;
const char * dst_template;
rtx dest = operands[0];
rtx src = operands[1];
/* Decide which extension, if any, should be given to the move instruction. */
switch (CONST_INT_P (src) ? GET_MODE (dest) : GET_MODE (src))
{
case E_QImode:
/* The .B extension is not valid when
loading an immediate into a register. */
if (! REG_P (dest) || ! CONST_INT_P (src))
extension = ".B";
break;
case E_HImode:
if (! REG_P (dest) || ! CONST_INT_P (src))
/* The .W extension is not valid when
loading an immediate into a register. */
extension = ".W";
break;
case E_DFmode:
case E_DImode:
case E_SFmode:
case E_SImode:
extension = ".L";
break;
case E_VOIDmode:
/* This mode is used by constants. */
break;
default:
debug_rtx (src);
gcc_unreachable ();
}
if (MEM_P (src) && rx_pid_data_operand (XEXP (src, 0)) == PID_UNENCODED)
{
gcc_assert (GET_MODE (src) != DImode);
gcc_assert (GET_MODE (src) != DFmode);
src_template = "(%A1 - __pid_base)[%P1]";
}
else if (MEM_P (src) && rx_small_data_operand (XEXP (src, 0)))
{
gcc_assert (GET_MODE (src) != DImode);
gcc_assert (GET_MODE (src) != DFmode);
src_template = "%%gp(%A1)[%G1]";
}
else
src_template = "%1";
if (MEM_P (dest) && rx_small_data_operand (XEXP (dest, 0)))
{
gcc_assert (GET_MODE (dest) != DImode);
gcc_assert (GET_MODE (dest) != DFmode);
dst_template = "%%gp(%A0)[%G0]";
}
else
dst_template = "%0";
if (GET_MODE (dest) == DImode || GET_MODE (dest) == DFmode)
{
gcc_assert (! is_movu);
if (REG_P (src) && REG_P (dest) && (REGNO (dest) == REGNO (src) + 1))
sprintf (out_template, "mov.L\t%%H1, %%H0 ! mov.L\t%%1, %%0");
else
sprintf (out_template, "mov.L\t%%1, %%0 ! mov.L\t%%H1, %%H0");
}
else
sprintf (out_template, "%s%s\t%s, %s", is_movu ? "movu" : "mov",
extension, src_template, dst_template);
return out_template;
}
/* Return VALUE rounded up to the next ALIGNMENT boundary. */
static inline unsigned int
rx_round_up (unsigned int value, unsigned int alignment)
{
alignment -= 1;
return (value + alignment) & (~ alignment);
}
/* Return the number of bytes in the argument registers
occupied by an argument of type TYPE and mode MODE. */
static unsigned int
rx_function_arg_size (machine_mode mode, const_tree type)
{
unsigned int num_bytes;
num_bytes = (mode == BLKmode)
? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
return rx_round_up (num_bytes, UNITS_PER_WORD);
}
#define NUM_ARG_REGS 4
#define MAX_NUM_ARG_BYTES (NUM_ARG_REGS * UNITS_PER_WORD)
/* Return an RTL expression describing the register holding function
argument ARG or NULL_RTX if the parameter should be passed on the
stack. CUM describes the previous parameters to the function. */
static rtx
rx_function_arg (cumulative_args_t cum, const function_arg_info &arg)
{
unsigned int next_reg;
unsigned int bytes_so_far = *get_cumulative_args (cum);
unsigned int size;
unsigned int rounded_size;
size = arg.promoted_size_in_bytes ();
/* If the size is not known it cannot be passed in registers. */
if (size < 1)
return NULL_RTX;
rounded_size = rx_round_up (size, UNITS_PER_WORD);
/* Don't pass this arg via registers if there
are insufficient registers to hold all of it. */
if (rounded_size + bytes_so_far > MAX_NUM_ARG_BYTES)
return NULL_RTX;
/* Unnamed arguments and the last named argument in a
variadic function are always passed on the stack. */
if (!arg.named)
return NULL_RTX;
/* Structures must occupy an exact number of registers,
otherwise they are passed on the stack. */
if ((arg.type == NULL || AGGREGATE_TYPE_P (arg.type))
&& (size % UNITS_PER_WORD) != 0)
return NULL_RTX;
next_reg = (bytes_so_far / UNITS_PER_WORD) + 1;
return gen_rtx_REG (arg.mode, next_reg);
}
static void
rx_function_arg_advance (cumulative_args_t cum,
const function_arg_info &arg)
{
*get_cumulative_args (cum) += rx_function_arg_size (arg.mode, arg.type);
}
static unsigned int
rx_function_arg_boundary (machine_mode mode ATTRIBUTE_UNUSED,
const_tree type ATTRIBUTE_UNUSED)
{
/* Older versions of the RX backend aligned all on-stack arguments
to 32-bits. The RX C ABI however says that they should be
aligned to their natural alignment. (See section 5.2.2 of the ABI). */
if (TARGET_GCC_ABI)
return STACK_BOUNDARY;
if (type)
{
if (DECL_P (type))
return DECL_ALIGN (type);
return TYPE_ALIGN (type);
}
return PARM_BOUNDARY;
}
/* Return an RTL describing where a function return value of type RET_TYPE
is held. */
static rtx
rx_function_value (const_tree ret_type,
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
machine_mode mode = TYPE_MODE (ret_type);
/* RX ABI specifies that small integer types are
promoted to int when returned by a function. */
if (GET_MODE_SIZE (mode) > 0
&& GET_MODE_SIZE (mode) < 4
&& ! COMPLEX_MODE_P (mode)
&& ! VECTOR_TYPE_P (ret_type)
&& ! VECTOR_MODE_P (mode)
)
return gen_rtx_REG (SImode, FUNC_RETURN_REGNUM);
return gen_rtx_REG (mode, FUNC_RETURN_REGNUM);
}
/* TARGET_PROMOTE_FUNCTION_MODE must behave in the same way with
regard to function returns as does TARGET_FUNCTION_VALUE. */
static machine_mode
rx_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
machine_mode mode,
int * punsignedp ATTRIBUTE_UNUSED,
const_tree funtype ATTRIBUTE_UNUSED,
int for_return)
{
if (for_return != 1
|| GET_MODE_SIZE (mode) >= 4
|| COMPLEX_MODE_P (mode)
|| VECTOR_MODE_P (mode)
|| VECTOR_TYPE_P (type)
|| GET_MODE_SIZE (mode) < 1)
return mode;
return SImode;
}
static bool
rx_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
HOST_WIDE_INT size;
if (TYPE_MODE (type) != BLKmode
&& ! AGGREGATE_TYPE_P (type))
return false;
size = int_size_in_bytes (type);
/* Large structs and those whose size is not an
exact multiple of 4 are returned in memory. */
return size < 1
|| size > 16
|| (size % UNITS_PER_WORD) != 0;
}
static rtx
rx_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, STRUCT_VAL_REGNUM);
}
static bool
rx_return_in_msb (const_tree valtype)
{
return TARGET_BIG_ENDIAN_DATA
&& (AGGREGATE_TYPE_P (valtype) || TREE_CODE (valtype) == COMPLEX_TYPE);
}
/* Returns true if the provided function has the specified attribute. */
static inline bool
has_func_attr (const_tree decl, const char * func_attr)
{
if (decl == NULL_TREE)
decl = current_function_decl;
return lookup_attribute (func_attr, DECL_ATTRIBUTES (decl)) != NULL_TREE;
}
/* Returns true if the provided function has the "fast_interrupt" attribute. */
bool
is_fast_interrupt_func (const_tree decl)
{
return has_func_attr (decl, "fast_interrupt");
}
/* Returns true if the provided function has the "interrupt" attribute. */
bool
is_interrupt_func (const_tree decl)
{
return has_func_attr (decl, "interrupt");
}
/* Returns true if the provided function has the "naked" attribute. */
static inline bool
is_naked_func (const_tree decl)
{
return has_func_attr (decl, "naked");
}
static bool use_fixed_regs = false;
static void
rx_conditional_register_usage (void)
{
static bool using_fixed_regs = false;
if (TARGET_PID)
{
rx_pid_base_regnum_val = GP_BASE_REGNUM - rx_num_interrupt_regs;
fixed_regs[rx_pid_base_regnum_val] = call_used_regs [rx_pid_base_regnum_val] = 1;
}
if (rx_small_data_limit > 0)
{
if (TARGET_PID)
rx_gp_base_regnum_val = rx_pid_base_regnum_val - 1;
else
rx_gp_base_regnum_val = GP_BASE_REGNUM - rx_num_interrupt_regs;
fixed_regs[rx_gp_base_regnum_val] = call_used_regs [rx_gp_base_regnum_val] = 1;
}
if (use_fixed_regs != using_fixed_regs)
{
static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
if (use_fixed_regs)
{
unsigned int r;
memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
/* This is for fast interrupt handlers. Any register in
the range r10 to r13 (inclusive) that is currently
marked as fixed is now a viable, call-used register. */
for (r = 10; r <= 13; r++)
if (fixed_regs[r])
{
fixed_regs[r] = 0;
call_used_regs[r] = 1;
}
/* Mark r7 as fixed. This is just a hack to avoid
altering the reg_alloc_order array so that the newly
freed r10-r13 registers are the preferred registers. */
fixed_regs[7] = call_used_regs[7] = 1;
}
else
{
/* Restore the normal register masks. */
memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
}
using_fixed_regs = use_fixed_regs;
}
}
struct decl_chain
{
tree fndecl;
struct decl_chain * next;
};
/* Stack of decls for which we have issued warnings. */
static struct decl_chain * warned_decls = NULL;
static void
add_warned_decl (tree fndecl)
{
struct decl_chain * warned = (struct decl_chain *) xmalloc (sizeof * warned);
warned->fndecl = fndecl;
warned->next = warned_decls;
warned_decls = warned;
}
/* Returns TRUE if FNDECL is on our list of warned about decls. */
static bool
already_warned (tree fndecl)
{
struct decl_chain * warned;
for (warned = warned_decls;
warned != NULL;
warned = warned->next)
if (warned->fndecl == fndecl)
return true;
return false;
}
/* Perform any actions necessary before starting to compile FNDECL.
For the RX we use this to make sure that we have the correct
set of register masks selected. If FNDECL is NULL then we are
compiling top level things. */
static void
rx_set_current_function (tree fndecl)
{
/* Remember the last target of rx_set_current_function. */
static tree rx_previous_fndecl;
bool prev_was_fast_interrupt;
bool current_is_fast_interrupt;
/* Only change the context if the function changes. This hook is called
several times in the course of compiling a function, and we don't want
to slow things down too much or call target_reinit when it isn't safe. */
if (fndecl == rx_previous_fndecl)
return;
prev_was_fast_interrupt
= rx_previous_fndecl
? is_fast_interrupt_func (rx_previous_fndecl) : false;
current_is_fast_interrupt
= fndecl ? is_fast_interrupt_func (fndecl) : false;
if (prev_was_fast_interrupt != current_is_fast_interrupt)
{
use_fixed_regs = current_is_fast_interrupt;
target_reinit ();
}
if (current_is_fast_interrupt && rx_warn_multiple_fast_interrupts)
{
/* We do not warn about the first fast interrupt routine that
we see. Instead we just push it onto the stack. */
if (warned_decls == NULL)
add_warned_decl (fndecl);
/* Otherwise if this fast interrupt is one for which we have
not already issued a warning, generate one and then push
it onto the stack as well. */
else if (! already_warned (fndecl))
{
warning (0, "multiple fast interrupt routines seen: %qE and %qE",
fndecl, warned_decls->fndecl);
add_warned_decl (fndecl);
}
}
rx_previous_fndecl = fndecl;
}
/* Typical stack layout should looks like this after the function's prologue:
| |
-- ^
| | \ |
| | arguments saved | Increasing
| | on the stack | addresses
PARENT arg pointer -> | | /
-------------------------- ---- -------------------
CHILD |ret | return address
--
| | \
| | call saved
| | registers
| | /
--
| | \
| | local
| | variables
frame pointer -> | | /
--
| | \
| | outgoing | Decreasing
| | arguments | addresses
current stack pointer -> | | / |
-------------------------- ---- ------------------ V
| | */
static unsigned int
bit_count (unsigned int x)
{
const unsigned int m1 = 0x55555555;
const unsigned int m2 = 0x33333333;
const unsigned int m4 = 0x0f0f0f0f;
x -= (x >> 1) & m1;
x = (x & m2) + ((x >> 2) & m2);
x = (x + (x >> 4)) & m4;
x += x >> 8;
return (x + (x >> 16)) & 0x3f;
}
#if defined(TARGET_SAVE_ACC_REGISTER)
#define MUST_SAVE_ACC_REGISTER \
(TARGET_SAVE_ACC_REGISTER \
&& (is_interrupt_func (NULL_TREE) \
|| is_fast_interrupt_func (NULL_TREE)))
#else
#define MUST_SAVE_ACC_REGISTER 0
#endif
/* Returns either the lowest numbered and highest numbered registers that
occupy the call-saved area of the stack frame, if the registers are
stored as a contiguous block, or else a bitmask of the individual
registers if they are stored piecemeal.
Also computes the size of the frame and the size of the outgoing
arguments block (in bytes). */
static void
rx_get_stack_layout (unsigned int * lowest,
unsigned int * highest,
unsigned int * register_mask,
unsigned int * frame_size,
unsigned int * stack_size)
{
unsigned int reg;
unsigned int low;
unsigned int high;
unsigned int fixed_reg = 0;
unsigned int save_mask;
unsigned int pushed_mask;
unsigned int unneeded_pushes;
if (is_naked_func (NULL_TREE))
{
/* Naked functions do not create their own stack frame.
Instead the programmer must do that for us. */
* lowest = 0;
* highest = 0;
* register_mask = 0;
* frame_size = 0;
* stack_size = 0;
return;
}
for (save_mask = high = low = 0, reg = 1; reg < CC_REGNUM; reg++)
{
if ((df_regs_ever_live_p (reg)
/* Always save all call clobbered registers inside non-leaf
interrupt handlers, even if they are not live - they may
be used in (non-interrupt aware) routines called from this one. */
|| (call_used_or_fixed_reg_p (reg)
&& is_interrupt_func (NULL_TREE)
&& ! crtl->is_leaf))
&& (! call_used_or_fixed_reg_p (reg)
/* Even call clobbered registered must
be pushed inside interrupt handlers. */
|| is_interrupt_func (NULL_TREE)
/* Likewise for fast interrupt handlers, except registers r10 -
r13. These are normally call-saved, but may have been set
to call-used by rx_conditional_register_usage. If so then
they can be used in the fast interrupt handler without
saving them on the stack. */
|| (is_fast_interrupt_func (NULL_TREE)
&& ! IN_RANGE (reg, 10, 13))))
{
if (low == 0)
low = reg;
high = reg;
save_mask |= 1 << reg;
}
/* Remember if we see a fixed register
after having found the low register. */
if (low != 0 && fixed_reg == 0 && fixed_regs [reg])
fixed_reg = reg;
}
/* If we have to save the accumulator register, make sure
that at least two registers are pushed into the frame. */
if (MUST_SAVE_ACC_REGISTER
&& bit_count (save_mask) < 2)
{
save_mask |= (1 << 13) | (1 << 14);
if (low == 0)
low = 13;
if (high == 0 || low == high)
high = low + 1;
}
/* Decide if it would be faster fill in the call-saved area of the stack
frame using multiple PUSH instructions instead of a single PUSHM
instruction.
SAVE_MASK is a bitmask of the registers that must be stored in the
call-save area. PUSHED_MASK is a bitmask of the registers that would
be pushed into the area if we used a PUSHM instruction. UNNEEDED_PUSHES
is a bitmask of those registers in pushed_mask that are not in
save_mask.
We use a simple heuristic that says that it is better to use
multiple PUSH instructions if the number of unnecessary pushes is
greater than the number of necessary pushes.
We also use multiple PUSH instructions if there are any fixed registers
between LOW and HIGH. The only way that this can happen is if the user
has specified --fixed- on the command line and in such
circumstances we do not want to touch the fixed registers at all.
Note also that the code in the prologue/epilogue handlers will
automatically merge multiple PUSHes of adjacent registers into a single
PUSHM.
FIXME: Is it worth improving this heuristic ? */
pushed_mask = (HOST_WIDE_INT_M1U << low) & ~(HOST_WIDE_INT_M1U << (high + 1));
unneeded_pushes = (pushed_mask & (~ save_mask)) & pushed_mask;
if ((fixed_reg && fixed_reg <= high)
|| (optimize_function_for_speed_p (cfun)
&& bit_count (save_mask) < bit_count (unneeded_pushes)))
{
/* Use multiple pushes. */
* lowest = 0;
* highest = 0;
* register_mask = save_mask;
}
else
{
/* Use one push multiple instruction. */
* lowest = low;
* highest = high;
* register_mask = 0;
}
* frame_size = rx_round_up
(get_frame_size (), STACK_BOUNDARY / BITS_PER_UNIT);
if (crtl->args.size > 0)
* frame_size += rx_round_up
(crtl->args.size, STACK_BOUNDARY / BITS_PER_UNIT);
* stack_size = rx_round_up
(crtl->outgoing_args_size, STACK_BOUNDARY / BITS_PER_UNIT);
}
/* Generate a PUSHM instruction that matches the given operands. */
void
rx_emit_stack_pushm (rtx * operands)
{
HOST_WIDE_INT last_reg;
rtx first_push;
gcc_assert (CONST_INT_P (operands[0]));
last_reg = (INTVAL (operands[0]) / UNITS_PER_WORD) - 1;
gcc_assert (GET_CODE (operands[1]) == PARALLEL);
first_push = XVECEXP (operands[1], 0, 1);
gcc_assert (SET_P (first_push));
first_push = SET_SRC (first_push);
gcc_assert (REG_P (first_push));
asm_fprintf (asm_out_file, "\tpushm\t%s-%s\n",
reg_names [REGNO (first_push) - last_reg],
reg_names [REGNO (first_push)]);
}
/* Generate a PARALLEL that will pass the rx_store_multiple_vector predicate. */
static rtx
gen_rx_store_vector (unsigned int low, unsigned int high)
{
unsigned int i;
unsigned int count = (high - low) + 2;
rtx vector;
vector = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
XVECEXP (vector, 0, 0) =
gen_rtx_SET (stack_pointer_rtx,
gen_rtx_MINUS (SImode, stack_pointer_rtx,
GEN_INT ((count - 1) * UNITS_PER_WORD)));
for (i = 0; i < count - 1; i++)
XVECEXP (vector, 0, i + 1) =
gen_rtx_SET (gen_rtx_MEM (SImode,
gen_rtx_MINUS (SImode, stack_pointer_rtx,
GEN_INT ((i + 1) * UNITS_PER_WORD))),
gen_rtx_REG (SImode, high - i));
return vector;
}
/* Mark INSN as being frame related. If it is a PARALLEL
then mark each element as being frame related as well. */
static void
mark_frame_related (rtx insn)
{
RTX_FRAME_RELATED_P (insn) = 1;
insn = PATTERN (insn);
if (GET_CODE (insn) == PARALLEL)
{
unsigned int i;
for (i = 0; i < (unsigned) XVECLEN (insn, 0); i++)
RTX_FRAME_RELATED_P (XVECEXP (insn, 0, i)) = 1;
}
}
/* Create CFI notes for register pops. */
static void
add_pop_cfi_notes (rtx_insn *insn, unsigned int high, unsigned int low)
{
rtx t = plus_constant (Pmode, stack_pointer_rtx,
(high - low + 1) * UNITS_PER_WORD);
t = gen_rtx_SET (stack_pointer_rtx, t);
add_reg_note (insn, REG_CFA_ADJUST_CFA, t);
RTX_FRAME_RELATED_P (insn) = 1;
for (unsigned int i = low; i <= high; i++)
add_reg_note (insn, REG_CFA_RESTORE, gen_rtx_REG (word_mode, i));
}
static bool
ok_for_max_constant (HOST_WIDE_INT val)
{
if (rx_max_constant_size == 0 || rx_max_constant_size == 4)
/* If there is no constraint on the size of constants
used as operands, then any value is legitimate. */
return true;
/* rx_max_constant_size specifies the maximum number
of bytes that can be used to hold a signed value. */
return IN_RANGE (val, (HOST_WIDE_INT_M1U << (rx_max_constant_size * 8)),
( 1 << (rx_max_constant_size * 8)));
}
/* Generate an ADD of SRC plus VAL into DEST.
Handles the case where VAL is too big for max_constant_value.
Sets FRAME_RELATED_P on the insn if IS_FRAME_RELATED is true. */
static void
gen_safe_add (rtx dest, rtx src, rtx val, bool is_frame_related)
{
rtx insn;
if (val == NULL_RTX || INTVAL (val) == 0)
{
gcc_assert (dest != src);
insn = emit_move_insn (dest, src);
}
else if (ok_for_max_constant (INTVAL (val)))
insn = emit_insn (gen_addsi3 (dest, src, val));
else
{
/* Wrap VAL in an UNSPEC so that rx_is_legitimate_constant
will not reject it. */
val = gen_rtx_CONST (SImode, gen_rtx_UNSPEC (SImode, gen_rtvec (1, val), UNSPEC_CONST));
insn = emit_insn (gen_addsi3 (dest, src, val));
if (is_frame_related)
/* We have to provide our own frame related note here
as the dwarf2out code cannot be expected to grok
our unspec. */
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_rtx_SET (dest, gen_rtx_PLUS (SImode, src, val)));
return;
}
if (is_frame_related)
RTX_FRAME_RELATED_P (insn) = 1;
}
static void
push_regs (unsigned int high, unsigned int low)
{
rtx insn;
if (low == high)
insn = emit_insn (gen_stack_push (gen_rtx_REG (SImode, low)));
else
insn = emit_insn (gen_stack_pushm (GEN_INT (((high - low) + 1) * UNITS_PER_WORD),
gen_rx_store_vector (low, high)));
mark_frame_related (insn);
}
void
rx_expand_prologue (void)
{
unsigned int stack_size;
unsigned int frame_size;
unsigned int mask;
unsigned int low;
unsigned int high;
unsigned int reg;
/* Naked functions use their own, programmer provided prologues. */
if (is_naked_func (NULL_TREE))
return;
rx_get_stack_layout (& low, & high, & mask, & frame_size, & stack_size);
if (flag_stack_usage_info)
current_function_static_stack_size = frame_size + stack_size;
/* If we use any of the callee-saved registers, save them now. */
if (mask)
{
/* Push registers in reverse order. */
for (reg = CC_REGNUM; reg --;)
if (mask & (1 << reg))
{
low = high = reg;
/* Look for a span of registers.
Note - we do not have to worry about -Os and whether
it is better to use a single, longer PUSHM as
rx_get_stack_layout has already done that for us. */
while (reg-- > 0)
if ((mask & (1 << reg)) == 0)
break;
else
--low;
push_regs (high, low);
if (reg == (unsigned) -1)
break;
}
}
else if (low)
push_regs (high, low);
if (MUST_SAVE_ACC_REGISTER)
{
unsigned int acc_high, acc_low;
/* Interrupt handlers have to preserve the accumulator
register if so requested by the user. Use the first
two pushed registers as intermediaries. */
if (mask)
{
acc_low = acc_high = 0;
for (reg = 1; reg < CC_REGNUM; reg ++)
if (mask & (1 << reg))
{
if (acc_low == 0)
acc_low = reg;
else
{
acc_high = reg;
break;
}
}
/* We have assumed that there are at least two registers pushed... */
gcc_assert (acc_high != 0);
/* Note - the bottom 16 bits of the accumulator are inaccessible.
We just assume that they are zero. */
emit_insn (gen_mvfacmi (gen_rtx_REG (SImode, acc_low)));
emit_insn (gen_mvfachi (gen_rtx_REG (SImode, acc_high)));
emit_insn (gen_stack_push (gen_rtx_REG (SImode, acc_low)));
emit_insn (gen_stack_push (gen_rtx_REG (SImode, acc_high)));
}
else
{
acc_low = low;
acc_high = low + 1;
/* We have assumed that there are at least two registers pushed... */
gcc_assert (acc_high <= high);
emit_insn (gen_mvfacmi (gen_rtx_REG (SImode, acc_low)));
emit_insn (gen_mvfachi (gen_rtx_REG (SImode, acc_high)));
emit_insn (gen_stack_pushm (GEN_INT (2 * UNITS_PER_WORD),
gen_rx_store_vector (acc_low, acc_high)));
}
}
/* If needed, set up the frame pointer. */
if (frame_pointer_needed)
gen_safe_add (frame_pointer_rtx, stack_pointer_rtx,
GEN_INT (- (HOST_WIDE_INT) frame_size), true);
/* Allocate space for the outgoing args.
If the stack frame has not already been set up then handle this as well. */
if (stack_size)
{
if (frame_size)
{
if (frame_pointer_needed)
gen_safe_add (stack_pointer_rtx, frame_pointer_rtx,
GEN_INT (- (HOST_WIDE_INT) stack_size), true);
else
gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (- (HOST_WIDE_INT) (frame_size + stack_size)),
true);
}
else
gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (- (HOST_WIDE_INT) stack_size), true);
}
else if (frame_size)
{
if (! frame_pointer_needed)
gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (- (HOST_WIDE_INT) frame_size), true);
else
gen_safe_add (stack_pointer_rtx, frame_pointer_rtx, NULL_RTX,
false /* False because the epilogue will use the FP not the SP. */);
}
}
static void
add_vector_labels (FILE *file, const char *aname)
{
tree vec_attr;
tree val_attr;
const char *vname = "vect";
const char *s;
int vnum;
/* This node is for the vector/interrupt tag itself */
vec_attr = lookup_attribute (aname, DECL_ATTRIBUTES (current_function_decl));
if (!vec_attr)
return;
/* Now point it at the first argument */
vec_attr = TREE_VALUE (vec_attr);
/* Iterate through the arguments. */
while (vec_attr)
{
val_attr = TREE_VALUE (vec_attr);
switch (TREE_CODE (val_attr))
{
case STRING_CST:
s = TREE_STRING_POINTER (val_attr);
goto string_id_common;
case IDENTIFIER_NODE:
s = IDENTIFIER_POINTER (val_attr);
string_id_common:
if (strcmp (s, "$default") == 0)
{
fprintf (file, "\t.global\t$tableentry$default$%s\n", vname);
fprintf (file, "$tableentry$default$%s:\n", vname);
}
else
vname = s;
break;
case INTEGER_CST:
vnum = TREE_INT_CST_LOW (val_attr);
fprintf (file, "\t.global\t$tableentry$%d$%s\n", vnum, vname);
fprintf (file, "$tableentry$%d$%s:\n", vnum, vname);
break;
default:
;
}
vec_attr = TREE_CHAIN (vec_attr);
}
}
static void
rx_output_function_prologue (FILE * file)
{
add_vector_labels (file, "interrupt");
add_vector_labels (file, "vector");
if (is_fast_interrupt_func (NULL_TREE))
asm_fprintf (file, "\t; Note: Fast Interrupt Handler\n");
if (is_interrupt_func (NULL_TREE))
asm_fprintf (file, "\t; Note: Interrupt Handler\n");
if (is_naked_func (NULL_TREE))
asm_fprintf (file, "\t; Note: Naked Function\n");
if (cfun->static_chain_decl != NULL)
asm_fprintf (file, "\t; Note: Nested function declared "
"inside another function.\n");
if (crtl->calls_eh_return)
asm_fprintf (file, "\t; Note: Calls __builtin_eh_return.\n");
}
/* Generate a POPM or RTSD instruction that matches the given operands. */
void
rx_emit_stack_popm (rtx * operands, bool is_popm)
{
HOST_WIDE_INT stack_adjust;
HOST_WIDE_INT last_reg;
rtx first_push;
gcc_assert (CONST_INT_P (operands[0]));
stack_adjust = INTVAL (operands[0]);
gcc_assert (GET_CODE (operands[1]) == PARALLEL);
last_reg = XVECLEN (operands[1], 0) - (is_popm ? 2 : 3);
first_push = XVECEXP (operands[1], 0, 1);
gcc_assert (SET_P (first_push));
first_push = SET_DEST (first_push);
gcc_assert (REG_P (first_push));
if (is_popm)
asm_fprintf (asm_out_file, "\tpopm\t%s-%s\n",
reg_names [REGNO (first_push)],
reg_names [REGNO (first_push) + last_reg]);
else
asm_fprintf (asm_out_file, "\trtsd\t#%d, %s-%s\n",
(int) stack_adjust,
reg_names [REGNO (first_push)],
reg_names [REGNO (first_push) + last_reg]);
}
/* Generate a PARALLEL which will satisfy the rx_rtsd_vector predicate. */
static rtx
gen_rx_rtsd_vector (unsigned int adjust, unsigned int low, unsigned int high)
{
unsigned int i;
unsigned int bias = 3;
unsigned int count = (high - low) + bias;
rtx vector;
vector = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
XVECEXP (vector, 0, 0) =
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, adjust));
for (i = 0; i < count - 2; i++)
XVECEXP (vector, 0, i + 1) =
gen_rtx_SET (gen_rtx_REG (SImode, low + i),
gen_rtx_MEM (SImode,
i == 0 ? stack_pointer_rtx
: plus_constant (Pmode, stack_pointer_rtx,
i * UNITS_PER_WORD)));
XVECEXP (vector, 0, count - 1) = ret_rtx;
return vector;
}
/* Generate a PARALLEL which will satisfy the rx_load_multiple_vector predicate. */
static rtx
gen_rx_popm_vector (unsigned int low, unsigned int high)
{
unsigned int i;
unsigned int count = (high - low) + 2;
rtx vector;
vector = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
XVECEXP (vector, 0, 0) =
gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx,
(count - 1) * UNITS_PER_WORD));
for (i = 0; i < count - 1; i++)
XVECEXP (vector, 0, i + 1) =
gen_rtx_SET (gen_rtx_REG (SImode, low + i),
gen_rtx_MEM (SImode,
i == 0 ? stack_pointer_rtx
: plus_constant (Pmode, stack_pointer_rtx,
i * UNITS_PER_WORD)));
return vector;
}
/* Returns true if a simple return insn can be used. */
bool
rx_can_use_simple_return (void)
{
unsigned int low;
unsigned int high;
unsigned int frame_size;
unsigned int stack_size;
unsigned int register_mask;
if (is_naked_func (NULL_TREE)
|| is_fast_interrupt_func (NULL_TREE)
|| is_interrupt_func (NULL_TREE))
return false;
rx_get_stack_layout (& low, & high, & register_mask,
& frame_size, & stack_size);
return (register_mask == 0
&& (frame_size + stack_size) == 0
&& low == 0);
}
static void
pop_regs (unsigned int high, unsigned int low)
{
rtx_insn *insn;
if (high == low)
insn = emit_insn (gen_stack_pop (gen_rtx_REG (SImode, low)));
else
insn = emit_insn (gen_stack_popm (GEN_INT (((high - low) + 1)
* UNITS_PER_WORD),
gen_rx_popm_vector (low, high)));
add_pop_cfi_notes (insn, high, low);
}
void
rx_expand_epilogue (bool is_sibcall)
{
unsigned int low;
unsigned int high;
unsigned int frame_size;
unsigned int stack_size;
unsigned int register_mask;
unsigned int regs_size;
unsigned int reg;
unsigned HOST_WIDE_INT total_size;
/* FIXME: We do not support indirect sibcalls at the moment becaause we
cannot guarantee that the register holding the function address is a
call-used register. If it is a call-saved register then the stack
pop instructions generated in the epilogue will corrupt the address
before it is used.
Creating a new call-used-only register class works but then the
reload pass gets stuck because it cannot always find a call-used
register for spilling sibcalls.
The other possible solution is for this pass to scan forward for the
sibcall instruction (if it has been generated) and work out if it
is an indirect sibcall using a call-saved register. If it is then
the address can copied into a call-used register in this epilogue
code and the sibcall instruction modified to use that register. */
if (is_naked_func (NULL_TREE))
{
gcc_assert (! is_sibcall);
/* Naked functions use their own, programmer provided epilogues.
But, in order to keep gcc happy we have to generate some kind of
epilogue RTL. */
emit_jump_insn (gen_naked_return ());
return;
}
rx_get_stack_layout (& low, & high, & register_mask,
& frame_size, & stack_size);
total_size = frame_size + stack_size;
regs_size = ((high - low) + 1) * UNITS_PER_WORD;
/* See if we are unable to use the special stack frame deconstruct and
return instructions. In most cases we can use them, but the exceptions
are:
- Sibling calling functions deconstruct the frame but do not return to
their caller. Instead they branch to their sibling and allow their
return instruction to return to this function's parent.
- Fast and normal interrupt handling functions have to use special
return instructions.
- Functions where we have pushed a fragmented set of registers into the
call-save area must have the same set of registers popped. */
if (is_sibcall
|| is_fast_interrupt_func (NULL_TREE)
|| is_interrupt_func (NULL_TREE)
|| register_mask)
{
/* Cannot use the special instructions - deconstruct by hand. */
if (total_size)
gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (total_size), false);
if (MUST_SAVE_ACC_REGISTER)
{
unsigned int acc_low, acc_high;
/* Reverse the saving of the accumulator register onto the stack.
Note we must adjust the saved "low" accumulator value as it
is really the middle 32-bits of the accumulator. */
if (register_mask)
{
acc_low = acc_high = 0;
for (reg = 1; reg < CC_REGNUM; reg ++)
if (register_mask & (1 << reg))
{
if (acc_low == 0)
acc_low = reg;
else
{
acc_high = reg;
break;
}
}
emit_insn (gen_stack_pop (gen_rtx_REG (SImode, acc_high)));
emit_insn (gen_stack_pop (gen_rtx_REG (SImode, acc_low)));
}
else
{
acc_low = low;
acc_high = low + 1;
emit_insn (gen_stack_popm (GEN_INT (2 * UNITS_PER_WORD),
gen_rx_popm_vector (acc_low, acc_high)));
}
emit_insn (gen_ashlsi3 (gen_rtx_REG (SImode, acc_low),
gen_rtx_REG (SImode, acc_low),
GEN_INT (16)));
emit_insn (gen_mvtaclo (gen_rtx_REG (SImode, acc_low)));
emit_insn (gen_mvtachi (gen_rtx_REG (SImode, acc_high)));
}
if (register_mask)
{
for (reg = 0; reg < CC_REGNUM; reg ++)
if (register_mask & (1 << reg))
{
low = high = reg;
while (register_mask & (1 << high))
high ++;
pop_regs (high - 1, low);
reg = high;
}
}
else if (low)
pop_regs (high, low);
if (is_fast_interrupt_func (NULL_TREE))
{
gcc_assert (! is_sibcall);
emit_jump_insn (gen_fast_interrupt_return ());
}
else if (is_interrupt_func (NULL_TREE))
{
gcc_assert (! is_sibcall);
emit_jump_insn (gen_exception_return ());
}
else if (! is_sibcall)
emit_jump_insn (gen_simple_return ());
return;
}
/* If we allocated space on the stack, free it now. */
if (total_size)
{
unsigned HOST_WIDE_INT rtsd_size;
/* See if we can use the RTSD instruction. */
rtsd_size = total_size + regs_size;
if (rtsd_size < 1024 && (rtsd_size % 4) == 0)
{
if (low)
emit_jump_insn (gen_pop_and_return
(GEN_INT (rtsd_size),
gen_rx_rtsd_vector (rtsd_size, low, high)));
else
emit_jump_insn (gen_deallocate_and_return (GEN_INT (total_size)));
return;
}
gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (total_size), false);
}
if (low)
emit_jump_insn (gen_pop_and_return (GEN_INT (regs_size),
gen_rx_rtsd_vector (regs_size,
low, high)));
else
emit_jump_insn (gen_simple_return ());
}
/* Compute the offset (in words) between FROM (arg pointer
or frame pointer) and TO (frame pointer or stack pointer).
See ASCII art comment at the start of rx_expand_prologue
for more information. */
int
rx_initial_elimination_offset (int from, int to)
{
unsigned int low;
unsigned int high;
unsigned int frame_size;
unsigned int stack_size;
unsigned int mask;
rx_get_stack_layout (& low, & high, & mask, & frame_size, & stack_size);
if (from == ARG_POINTER_REGNUM)
{
/* Extend the computed size of the stack frame to
include the registers pushed in the prologue. */
if (low)
frame_size += ((high - low) + 1) * UNITS_PER_WORD;
else
frame_size += bit_count (mask) * UNITS_PER_WORD;
/* Remember to include the return address. */
frame_size += 1 * UNITS_PER_WORD;
if (to == FRAME_POINTER_REGNUM)
return frame_size;
gcc_assert (to == STACK_POINTER_REGNUM);
return frame_size + stack_size;
}
gcc_assert (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM);
return stack_size;
}
/* Decide if a variable should go into one of the small data sections. */
static bool
rx_in_small_data (const_tree decl)
{
int size;
const char * section;
if (rx_small_data_limit == 0)
return false;
if (TREE_CODE (decl) != VAR_DECL)
return false;
/* We do not put read-only variables into a small data area because
they would be placed with the other read-only sections, far away
from the read-write data sections, and we only have one small
data area pointer.
Similarly commons are placed in the .bss section which might be
far away (and out of alignment with respect to) the .data section. */
if (TREE_READONLY (decl) || DECL_COMMON (decl))
return false;
section = DECL_SECTION_NAME (decl);
if (section)
return (strcmp (section, "D_2") == 0) || (strcmp (section, "B_2") == 0);
size = int_size_in_bytes (TREE_TYPE (decl));
return (size > 0) && (size <= rx_small_data_limit);
}
/* Return a section for X.
The only special thing we do here is to honor small data. */
static section *
rx_select_rtx_section (machine_mode mode,
rtx x,
unsigned HOST_WIDE_INT align)
{
if (rx_small_data_limit > 0
&& GET_MODE_SIZE (mode) <= rx_small_data_limit
&& align <= (unsigned HOST_WIDE_INT) rx_small_data_limit * BITS_PER_UNIT)
return sdata_section;
return default_elf_select_rtx_section (mode, x, align);
}
static section *
rx_select_section (tree decl,
int reloc,
unsigned HOST_WIDE_INT align)
{
if (rx_small_data_limit > 0)
{
switch (categorize_decl_for_section (decl, reloc))
{
case SECCAT_SDATA: return sdata_section;
case SECCAT_SBSS: return sbss_section;
case SECCAT_SRODATA:
/* Fall through. We do not put small, read only
data into the C_2 section because we are not
using the C_2 section. We do not use the C_2
section because it is located with the other
read-only data sections, far away from the read-write
data sections and we only have one small data
pointer (r13). */
default:
break;
}
}
/* If we are supporting the Renesas assembler
we cannot use mergeable sections. */
if (TARGET_AS100_SYNTAX)
switch (categorize_decl_for_section (decl, reloc))
{
case SECCAT_RODATA_MERGE_CONST:
case SECCAT_RODATA_MERGE_STR_INIT:
case SECCAT_RODATA_MERGE_STR:
return readonly_data_section;
default:
break;
}
return default_elf_select_section (decl, reloc, align);
}
enum rx_builtin
{
RX_BUILTIN_BRK,
RX_BUILTIN_CLRPSW,
RX_BUILTIN_INT,
RX_BUILTIN_MACHI,
RX_BUILTIN_MACLO,
RX_BUILTIN_MULHI,
RX_BUILTIN_MULLO,
RX_BUILTIN_MVFACHI,
RX_BUILTIN_MVFACMI,
RX_BUILTIN_MVFC,
RX_BUILTIN_MVTACHI,
RX_BUILTIN_MVTACLO,
RX_BUILTIN_MVTC,
RX_BUILTIN_MVTIPL,
RX_BUILTIN_RACW,
RX_BUILTIN_REVW,
RX_BUILTIN_RMPA,
RX_BUILTIN_ROUND,
RX_BUILTIN_SETPSW,
RX_BUILTIN_WAIT,
RX_BUILTIN_max
};
static GTY(()) tree rx_builtins[(int) RX_BUILTIN_max];
static void
rx_init_builtins (void)
{
#define ADD_RX_BUILTIN0(UC_NAME, LC_NAME, RET_TYPE) \
rx_builtins[RX_BUILTIN_##UC_NAME] = \
add_builtin_function ("__builtin_rx_" LC_NAME, \
build_function_type_list (RET_TYPE##_type_node, \
NULL_TREE), \
RX_BUILTIN_##UC_NAME, \
BUILT_IN_MD, NULL, NULL_TREE)
#define ADD_RX_BUILTIN1(UC_NAME, LC_NAME, RET_TYPE, ARG_TYPE) \
rx_builtins[RX_BUILTIN_##UC_NAME] = \
add_builtin_function ("__builtin_rx_" LC_NAME, \
build_function_type_list (RET_TYPE##_type_node, \
ARG_TYPE##_type_node, \
NULL_TREE), \
RX_BUILTIN_##UC_NAME, \
BUILT_IN_MD, NULL, NULL_TREE)
#define ADD_RX_BUILTIN2(UC_NAME, LC_NAME, RET_TYPE, ARG_TYPE1, ARG_TYPE2) \
rx_builtins[RX_BUILTIN_##UC_NAME] = \
add_builtin_function ("__builtin_rx_" LC_NAME, \
build_function_type_list (RET_TYPE##_type_node, \
ARG_TYPE1##_type_node,\
ARG_TYPE2##_type_node,\
NULL_TREE), \
RX_BUILTIN_##UC_NAME, \
BUILT_IN_MD, NULL, NULL_TREE)
#define ADD_RX_BUILTIN3(UC_NAME,LC_NAME,RET_TYPE,ARG_TYPE1,ARG_TYPE2,ARG_TYPE3) \
rx_builtins[RX_BUILTIN_##UC_NAME] = \
add_builtin_function ("__builtin_rx_" LC_NAME, \
build_function_type_list (RET_TYPE##_type_node, \
ARG_TYPE1##_type_node,\
ARG_TYPE2##_type_node,\
ARG_TYPE3##_type_node,\
NULL_TREE), \
RX_BUILTIN_##UC_NAME, \
BUILT_IN_MD, NULL, NULL_TREE)
ADD_RX_BUILTIN0 (BRK, "brk", void);
ADD_RX_BUILTIN1 (CLRPSW, "clrpsw", void, integer);
ADD_RX_BUILTIN1 (SETPSW, "setpsw", void, integer);
ADD_RX_BUILTIN1 (INT, "int", void, integer);
ADD_RX_BUILTIN2 (MACHI, "machi", void, intSI, intSI);
ADD_RX_BUILTIN2 (MACLO, "maclo", void, intSI, intSI);
ADD_RX_BUILTIN2 (MULHI, "mulhi", void, intSI, intSI);
ADD_RX_BUILTIN2 (MULLO, "mullo", void, intSI, intSI);
ADD_RX_BUILTIN0 (MVFACHI, "mvfachi", intSI);
ADD_RX_BUILTIN0 (MVFACMI, "mvfacmi", intSI);
ADD_RX_BUILTIN1 (MVTACHI, "mvtachi", void, intSI);
ADD_RX_BUILTIN1 (MVTACLO, "mvtaclo", void, intSI);
ADD_RX_BUILTIN0 (RMPA, "rmpa", void);
ADD_RX_BUILTIN1 (MVFC, "mvfc", intSI, integer);
ADD_RX_BUILTIN2 (MVTC, "mvtc", void, integer, integer);
ADD_RX_BUILTIN1 (MVTIPL, "mvtipl", void, integer);
ADD_RX_BUILTIN1 (RACW, "racw", void, integer);
ADD_RX_BUILTIN1 (ROUND, "round", intSI, float);
ADD_RX_BUILTIN1 (REVW, "revw", intSI, intSI);
ADD_RX_BUILTIN0 (WAIT, "wait", void);
}
/* Return the RX builtin for CODE. */
static tree
rx_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{
if (code >= RX_BUILTIN_max)
return error_mark_node;
return rx_builtins[code];
}
static rtx
rx_expand_void_builtin_1_arg (rtx arg, rtx (* gen_func)(rtx), bool reg)
{
if (reg && ! REG_P (arg))
arg = force_reg (SImode, arg);
emit_insn (gen_func (arg));
return NULL_RTX;
}
static rtx
rx_expand_builtin_mvtc (tree exp)
{
rtx arg1 = expand_normal (CALL_EXPR_ARG (exp, 0));
rtx arg2 = expand_normal (CALL_EXPR_ARG (exp, 1));
if (! CONST_INT_P (arg1))
return NULL_RTX;
if (! REG_P (arg2))
arg2 = force_reg (SImode, arg2);
if (INTVAL (arg1) == 1)
{
warning (0, "invalid control register for mvtc : %d - using 'psw'",
(int) INTVAL (arg1));
arg1 = const0_rtx;
}
emit_insn (gen_mvtc (arg1, arg2));
return NULL_RTX;
}
static rtx
rx_expand_builtin_mvfc (tree t_arg, rtx target)
{
rtx arg = expand_normal (t_arg);
if (! CONST_INT_P (arg))
return NULL_RTX;
if (target == NULL_RTX)
return NULL_RTX;
if (! REG_P (target))
target = force_reg (SImode, target);
emit_insn (gen_mvfc (target, arg));
return target;
}
static rtx
rx_expand_builtin_mvtipl (rtx arg)
{
/* The RX610 does not support the MVTIPL instruction. */
if (rx_cpu_type == RX610)
return NULL_RTX;
if (! CONST_INT_P (arg) || ! IN_RANGE (INTVAL (arg), 0, (1 << 4) - 1))
return NULL_RTX;
emit_insn (gen_mvtipl (arg));
return NULL_RTX;
}
static rtx
rx_expand_builtin_mac (tree exp, rtx (* gen_func)(rtx, rtx))
{
rtx arg1 = expand_normal (CALL_EXPR_ARG (exp, 0));
rtx arg2 = expand_normal (CALL_EXPR_ARG (exp, 1));
if (! REG_P (arg1))
arg1 = force_reg (SImode, arg1);
if (! REG_P (arg2))
arg2 = force_reg (SImode, arg2);
emit_insn (gen_func (arg1, arg2));
return NULL_RTX;
}
static rtx
rx_expand_int_builtin_1_arg (rtx arg,
rtx target,
rtx (* gen_func)(rtx, rtx),
bool mem_ok)
{
if (! REG_P (arg))
if (!mem_ok || ! MEM_P (arg))
arg = force_reg (SImode, arg);
if (target == NULL_RTX || ! REG_P (target))
target = gen_reg_rtx (SImode);
emit_insn (gen_func (target, arg));
return target;
}
static rtx
rx_expand_int_builtin_0_arg (rtx target, rtx (* gen_func)(rtx))
{
if (target == NULL_RTX || ! REG_P (target))
target = gen_reg_rtx (SImode);
emit_insn (gen_func (target));
return target;
}
static rtx
rx_expand_builtin_round (rtx arg, rtx target)
{
if ((! REG_P (arg) && ! MEM_P (arg))
|| GET_MODE (arg) != SFmode)
arg = force_reg (SFmode, arg);
if (target == NULL_RTX || ! REG_P (target))
target = gen_reg_rtx (SImode);
emit_insn (gen_lrintsf2 (target, arg));
return target;
}
static int
valid_psw_flag (rtx op, const char *which)
{
static int mvtc_inform_done = 0;
if (GET_CODE (op) == CONST_INT)
switch (INTVAL (op))
{
case 0: case 'c': case 'C':
case 1: case 'z': case 'Z':
case 2: case 's': case 'S':
case 3: case 'o': case 'O':
case 8: case 'i': case 'I':
case 9: case 'u': case 'U':
return 1;
}
error ("%<__builtin_rx_%s%> takes %, %, %, %, %, "
"or %", which);
if (!mvtc_inform_done)
error ("use %<__builtin_rx_mvtc%> (0, ... ) to write arbitrary values to PSW");
mvtc_inform_done = 1;
return 0;
}
static rtx
rx_expand_builtin (tree exp,
rtx target,
rtx subtarget ATTRIBUTE_UNUSED,
machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
tree arg = call_expr_nargs (exp) >= 1 ? CALL_EXPR_ARG (exp, 0) : NULL_TREE;
rtx op = arg ? expand_normal (arg) : NULL_RTX;
unsigned int fcode = DECL_MD_FUNCTION_CODE (fndecl);
switch (fcode)
{
case RX_BUILTIN_BRK: emit_insn (gen_brk ()); return NULL_RTX;
case RX_BUILTIN_CLRPSW:
if (!valid_psw_flag (op, "clrpsw"))
return NULL_RTX;
return rx_expand_void_builtin_1_arg (op, gen_clrpsw, false);
case RX_BUILTIN_SETPSW:
if (!valid_psw_flag (op, "setpsw"))
return NULL_RTX;
return rx_expand_void_builtin_1_arg (op, gen_setpsw, false);
case RX_BUILTIN_INT: return rx_expand_void_builtin_1_arg
(op, gen_int, false);
case RX_BUILTIN_MACHI: return rx_expand_builtin_mac (exp, gen_machi);
case RX_BUILTIN_MACLO: return rx_expand_builtin_mac (exp, gen_maclo);
case RX_BUILTIN_MULHI: return rx_expand_builtin_mac (exp, gen_mulhi);
case RX_BUILTIN_MULLO: return rx_expand_builtin_mac (exp, gen_mullo);
case RX_BUILTIN_MVFACHI: return rx_expand_int_builtin_0_arg
(target, gen_mvfachi);
case RX_BUILTIN_MVFACMI: return rx_expand_int_builtin_0_arg
(target, gen_mvfacmi);
case RX_BUILTIN_MVTACHI: return rx_expand_void_builtin_1_arg
(op, gen_mvtachi, true);
case RX_BUILTIN_MVTACLO: return rx_expand_void_builtin_1_arg
(op, gen_mvtaclo, true);
case RX_BUILTIN_RMPA:
if (rx_allow_string_insns)
emit_insn (gen_rmpa ());
else
error ("%<-mno-allow-string-insns%> forbids the generation "
"of the RMPA instruction");
return NULL_RTX;
case RX_BUILTIN_MVFC: return rx_expand_builtin_mvfc (arg, target);
case RX_BUILTIN_MVTC: return rx_expand_builtin_mvtc (exp);
case RX_BUILTIN_MVTIPL: return rx_expand_builtin_mvtipl (op);
case RX_BUILTIN_RACW: return rx_expand_void_builtin_1_arg
(op, gen_racw, false);
case RX_BUILTIN_ROUND: return rx_expand_builtin_round (op, target);
case RX_BUILTIN_REVW: return rx_expand_int_builtin_1_arg
(op, target, gen_revw, false);
case RX_BUILTIN_WAIT: emit_insn (gen_wait ()); return NULL_RTX;
default:
internal_error ("bad builtin code");
break;
}
return NULL_RTX;
}
/* Place an element into a constructor or destructor section.
Like default_ctor_section_asm_out_constructor in varasm.c
except that it uses .init_array (or .fini_array) and it
handles constructor priorities. */
static void
rx_elf_asm_cdtor (rtx symbol, int priority, bool is_ctor)
{
section * s;
if (priority != DEFAULT_INIT_PRIORITY)
{
char buf[18];
sprintf (buf, "%s.%.5u",
is_ctor ? ".init_array" : ".fini_array",
priority);
s = get_section (buf, SECTION_WRITE, NULL_TREE);
}
else if (is_ctor)
s = ctors_section;
else
s = dtors_section;
switch_to_section (s);
assemble_align (POINTER_SIZE);
assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}
static void
rx_elf_asm_constructor (rtx symbol, int priority)
{
rx_elf_asm_cdtor (symbol, priority, /* is_ctor= */true);
}
static void
rx_elf_asm_destructor (rtx symbol, int priority)
{
rx_elf_asm_cdtor (symbol, priority, /* is_ctor= */false);
}
/* Check "fast_interrupt", "interrupt" and "naked" attributes. */
static tree
rx_handle_func_attribute (tree * node,
tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool * no_add_attrs)
{
gcc_assert (DECL_P (* node));
if (TREE_CODE (* node) != FUNCTION_DECL)
{
warning (OPT_Wattributes, "%qE attribute only applies to functions",
name);
* no_add_attrs = true;
}
/* FIXME: We ought to check for conflicting attributes. */
/* FIXME: We ought to check that the interrupt and exception
handler attributes have been applied to void functions. */
return NULL_TREE;
}
/* Check "vector" attribute. */
static tree
rx_handle_vector_attribute (tree * node,
tree name,
tree args,
int flags ATTRIBUTE_UNUSED,
bool * no_add_attrs)
{
gcc_assert (DECL_P (* node));
gcc_assert (args != NULL_TREE);
if (TREE_CODE (* node) != FUNCTION_DECL)
{
warning (OPT_Wattributes, "%qE attribute only applies to functions",
name);
* no_add_attrs = true;
}
return NULL_TREE;
}
/* Table of RX specific attributes. */
const struct attribute_spec rx_attribute_table[] =
{
/* Name, min_len, max_len, decl_req, type_req, fn_type_req,
affects_type_identity, handler, exclude. */
{ "fast_interrupt", 0, 0, true, false, false, false,
rx_handle_func_attribute, NULL },
{ "interrupt", 0, -1, true, false, false, false,
rx_handle_func_attribute, NULL },
{ "naked", 0, 0, true, false, false, false,
rx_handle_func_attribute, NULL },
{ "vector", 1, -1, true, false, false, false,
rx_handle_vector_attribute, NULL },
{ NULL, 0, 0, false, false, false, false, NULL, NULL }
};
/* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
static void
rx_override_options_after_change (void)
{
static bool first_time = TRUE;
if (first_time)
{
/* If this is the first time through and the user has not disabled
the use of RX FPU hardware then enable -ffinite-math-only,
since the FPU instructions do not support NaNs and infinities. */
if (TARGET_USE_FPU)
flag_finite_math_only = 1;
first_time = FALSE;
}
else
{
/* Alert the user if they are changing the optimization options
to use IEEE compliant floating point arithmetic with RX FPU insns. */
if (TARGET_USE_FPU
&& !flag_finite_math_only)
warning (0, "RX FPU instructions do not support NaNs and infinities");
}
}
static void
rx_option_override (void)
{
unsigned int i;
cl_deferred_option *opt;
vec *v = (vec *) rx_deferred_options;
if (v)
FOR_EACH_VEC_ELT (*v, i, opt)
{
switch (opt->opt_index)
{
case OPT_mint_register_:
switch (opt->value)
{
case 4:
fixed_regs[10] = call_used_regs [10] = 1;
/* Fall through. */
case 3:
fixed_regs[11] = call_used_regs [11] = 1;
/* Fall through. */
case 2:
fixed_regs[12] = call_used_regs [12] = 1;
/* Fall through. */
case 1:
fixed_regs[13] = call_used_regs [13] = 1;
/* Fall through. */
case 0:
rx_num_interrupt_regs = opt->value;
break;
default:
rx_num_interrupt_regs = 0;
/* Error message already given because rx_handle_option
returned false. */
break;
}
break;
default:
gcc_unreachable ();
}
}
/* This target defaults to strict volatile bitfields. */
if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2))
flag_strict_volatile_bitfields = 1;
rx_override_options_after_change ();
/* These values are bytes, not log. */
if (! optimize_size)
{
if (flag_align_jumps && !str_align_jumps)
str_align_jumps = ((rx_cpu_type == RX100
|| rx_cpu_type == RX200) ? "4" : "8");
if (flag_align_loops && !str_align_loops)
str_align_loops = ((rx_cpu_type == RX100
|| rx_cpu_type == RX200) ? "4" : "8");
if (flag_align_labels && !str_align_labels)
str_align_labels = ((rx_cpu_type == RX100
|| rx_cpu_type == RX200) ? "4" : "8");
}
}
static bool
rx_allocate_stack_slots_for_args (void)
{
/* Naked functions should not allocate stack slots for arguments. */
return ! is_naked_func (NULL_TREE);
}
static bool
rx_func_attr_inlinable (const_tree decl)
{
return ! is_fast_interrupt_func (decl)
&& ! is_interrupt_func (decl)
&& ! is_naked_func (decl);
}
static bool
rx_warn_func_return (tree decl)
{
/* Naked functions are implemented entirely in assembly, including the
return sequence, so suppress warnings about this. */
return !is_naked_func (decl);
}
/* Return nonzero if it is ok to make a tail-call to DECL,
a function_decl or NULL if this is an indirect call, using EXP */
static bool
rx_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
if (TARGET_JSR)
return false;
/* Do not allow indirect tailcalls. The
sibcall patterns do not support them. */
if (decl == NULL)
return false;
/* Never tailcall from inside interrupt handlers or naked functions. */
if (is_fast_interrupt_func (NULL_TREE)
|| is_interrupt_func (NULL_TREE)
|| is_naked_func (NULL_TREE))
return false;
return true;
}
static void
rx_file_start (void)
{
if (! TARGET_AS100_SYNTAX)
default_file_start ();
}
static bool
rx_is_ms_bitfield_layout (const_tree record_type ATTRIBUTE_UNUSED)
{
/* The packed attribute overrides the MS behavior. */
return ! TYPE_PACKED (record_type);
}
/* Returns true if X a legitimate constant for an immediate
operand on the RX. X is already known to satisfy CONSTANT_P. */
bool
rx_is_legitimate_constant (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
switch (GET_CODE (x))
{
case CONST:
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS)
{
if (! CONST_INT_P (XEXP (x, 1)))
return false;
/* GCC would not pass us CONST_INT + CONST_INT so we
know that we have {SYMBOL|LABEL} + CONST_INT. */
x = XEXP (x, 0);
gcc_assert (! CONST_INT_P (x));
}
switch (GET_CODE (x))
{
case LABEL_REF:
case SYMBOL_REF:
return true;
case UNSPEC:
return XINT (x, 1) == UNSPEC_CONST || XINT (x, 1) == UNSPEC_PID_ADDR;
default:
/* FIXME: Can this ever happen ? */
gcc_unreachable ();
}
break;
case LABEL_REF:
case SYMBOL_REF:
return true;
case CONST_DOUBLE:
return (rx_max_constant_size == 0 || rx_max_constant_size == 4);
case CONST_VECTOR:
return false;
default:
gcc_assert (CONST_INT_P (x));
break;
}
return ok_for_max_constant (INTVAL (x));
}
static int
rx_address_cost (rtx addr, machine_mode mode ATTRIBUTE_UNUSED,
addr_space_t as ATTRIBUTE_UNUSED, bool speed)
{
rtx a, b;
if (GET_CODE (addr) != PLUS)
return COSTS_N_INSNS (1);
a = XEXP (addr, 0);
b = XEXP (addr, 1);
if (REG_P (a) && REG_P (b))
/* Try to discourage REG+REG addressing as it keeps two registers live. */
return COSTS_N_INSNS (4);
if (speed)
/* [REG+OFF] is just as fast as [REG]. */
return COSTS_N_INSNS (1);
if (CONST_INT_P (b)
&& ((INTVAL (b) > 128) || INTVAL (b) < -127))
/* Try to discourage REG + when optimizing for size. */
return COSTS_N_INSNS (2);
return COSTS_N_INSNS (1);
}
static bool
rx_rtx_costs (rtx x, machine_mode mode, int outer_code ATTRIBUTE_UNUSED,
int opno ATTRIBUTE_UNUSED, int* total, bool speed)
{
if (x == const0_rtx)
{
*total = 0;
return true;
}
switch (GET_CODE (x))
{
case MULT:
if (mode == DImode)
{
*total = COSTS_N_INSNS (2);
return true;
}
/* fall through */
case PLUS:
case MINUS:
case AND:
case COMPARE:
case IOR:
case XOR:
*total = COSTS_N_INSNS (1);
return true;
case DIV:
if (speed)
/* This is the worst case for a division. Pessimize divisions when
not optimizing for size and allow reciprocal optimizations which
produce bigger code. */
*total = COSTS_N_INSNS (20);
else
*total = COSTS_N_INSNS (3);
return true;
case UDIV:
if (speed)
/* This is the worst case for a division. Pessimize divisions when
not optimizing for size and allow reciprocal optimizations which
produce bigger code. */
*total = COSTS_N_INSNS (18);
else
*total = COSTS_N_INSNS (3);
return true;
default:
break;
}
return false;
}
static bool
rx_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
/* We can always eliminate to the frame pointer.
We can eliminate to the stack pointer unless a frame
pointer is needed. */
return to == FRAME_POINTER_REGNUM
|| ( to == STACK_POINTER_REGNUM && ! frame_pointer_needed);
}
static void
rx_trampoline_template (FILE * file)
{
/* Output assembler code for a block containing the constant
part of a trampoline, leaving space for the variable parts.
On the RX, (where r8 is the static chain regnum) the trampoline
looks like:
mov #, r8
mov #, r9
jmp r9
In big-endian-data-mode however instructions are read into the CPU
4 bytes at a time. These bytes are then swapped around before being
passed to the decoder. So...we must partition our trampoline into
4 byte packets and swap these packets around so that the instruction
reader will reverse the process. But, in order to avoid splitting
the 32-bit constants across these packet boundaries, (making inserting
them into the constructed trampoline very difficult) we have to pad the
instruction sequence with NOP insns. ie:
nop
nop
mov.l #<...>, r8
nop
nop
mov.l #<...>, r9
jmp r9
nop
nop */
if (! TARGET_BIG_ENDIAN_DATA)
{
asm_fprintf (file, "\tmov.L\t#0deadbeefH, r%d\n", STATIC_CHAIN_REGNUM);
asm_fprintf (file, "\tmov.L\t#0deadbeefH, r%d\n", TRAMPOLINE_TEMP_REGNUM);
asm_fprintf (file, "\tjmp\tr%d\n", TRAMPOLINE_TEMP_REGNUM);
}
else
{
char r8 = '0' + STATIC_CHAIN_REGNUM;
char r9 = '0' + TRAMPOLINE_TEMP_REGNUM;
if (TARGET_AS100_SYNTAX)
{
asm_fprintf (file, "\t.BYTE 0%c2H, 0fbH, 003H, 003H\n", r8);
asm_fprintf (file, "\t.BYTE 0deH, 0adH, 0beH, 0efH\n");
asm_fprintf (file, "\t.BYTE 0%c2H, 0fbH, 003H, 003H\n", r9);
asm_fprintf (file, "\t.BYTE 0deH, 0adH, 0beH, 0efH\n");
asm_fprintf (file, "\t.BYTE 003H, 003H, 00%cH, 07fH\n", r9);
}
else
{
asm_fprintf (file, "\t.byte 0x%c2, 0xfb, 0x03, 0x03\n", r8);
asm_fprintf (file, "\t.byte 0xde, 0xad, 0xbe, 0xef\n");
asm_fprintf (file, "\t.byte 0x%c2, 0xfb, 0x03, 0x03\n", r9);
asm_fprintf (file, "\t.byte 0xde, 0xad, 0xbe, 0xef\n");
asm_fprintf (file, "\t.byte 0x03, 0x03, 0x0%c, 0x7f\n", r9);
}
}
}
static void
rx_trampoline_init (rtx tramp, tree fndecl, rtx chain)
{
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
emit_block_move (tramp, assemble_trampoline_template (),
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
if (TARGET_BIG_ENDIAN_DATA)
{
emit_move_insn (adjust_address (tramp, SImode, 4), chain);
emit_move_insn (adjust_address (tramp, SImode, 12), fnaddr);
}
else
{
emit_move_insn (adjust_address (tramp, SImode, 2), chain);
emit_move_insn (adjust_address (tramp, SImode, 6 + 2), fnaddr);
}
}
static int
rx_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t regclass ATTRIBUTE_UNUSED,
bool in)
{
return (in ? 2 : 0) + REGISTER_MOVE_COST (mode, regclass, regclass);
}
/* Convert a CC_MODE to the set of flags that it represents. */
static unsigned int
flags_from_mode (machine_mode mode)
{
switch (mode)
{
case E_CC_ZSmode:
return CC_FLAG_S | CC_FLAG_Z;
case E_CC_ZSOmode:
return CC_FLAG_S | CC_FLAG_Z | CC_FLAG_O;
case E_CC_ZSCmode:
return CC_FLAG_S | CC_FLAG_Z | CC_FLAG_C;
case E_CCmode:
return CC_FLAG_S | CC_FLAG_Z | CC_FLAG_O | CC_FLAG_C;
case E_CC_Fmode:
return CC_FLAG_FP;
default:
gcc_unreachable ();
}
}
/* Convert a set of flags to a CC_MODE that can implement it. */
static machine_mode
mode_from_flags (unsigned int f)
{
if (f & CC_FLAG_FP)
return CC_Fmode;
if (f & CC_FLAG_O)
{
if (f & CC_FLAG_C)
return CCmode;
else
return CC_ZSOmode;
}
else if (f & CC_FLAG_C)
return CC_ZSCmode;
else
return CC_ZSmode;
}
/* Convert an RTX_CODE to the set of flags needed to implement it.
This assumes an integer comparison. */
static unsigned int
flags_from_code (enum rtx_code code)
{
switch (code)
{
case LT:
case GE:
return CC_FLAG_S;
case GT:
case LE:
return CC_FLAG_S | CC_FLAG_O | CC_FLAG_Z;
case GEU:
case LTU:
return CC_FLAG_C;
case GTU:
case LEU:
return CC_FLAG_C | CC_FLAG_Z;
case EQ:
case NE:
return CC_FLAG_Z;
default:
gcc_unreachable ();
}
}
/* Return a CC_MODE of which both M1 and M2 are subsets. */
static machine_mode
rx_cc_modes_compatible (machine_mode m1, machine_mode m2)
{
unsigned f;
/* Early out for identical modes. */
if (m1 == m2)
return m1;
/* There's no valid combination for FP vs non-FP. */
f = flags_from_mode (m1) | flags_from_mode (m2);
if (f & CC_FLAG_FP)
return VOIDmode;
/* Otherwise, see what mode can implement all the flags. */
return mode_from_flags (f);
}
/* Return the minimal CC mode needed to implement (CMP_CODE X Y). */
machine_mode
rx_select_cc_mode (enum rtx_code cmp_code, rtx x, rtx y)
{
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
return CC_Fmode;
if (y != const0_rtx)
return CCmode;
return mode_from_flags (flags_from_code (cmp_code));
}
/* Split the conditional branch. Emit (COMPARE C1 C2) into CC_REG with
CC_MODE, and use that in branches based on that compare. */
void
rx_split_cbranch (machine_mode cc_mode, enum rtx_code cmp1,
rtx c1, rtx c2, rtx label)
{
rtx flags, x;
flags = gen_rtx_REG (cc_mode, CC_REG);
x = gen_rtx_COMPARE (cc_mode, c1, c2);
x = gen_rtx_SET (flags, x);
emit_insn (x);
x = gen_rtx_fmt_ee (cmp1, VOIDmode, flags, const0_rtx);
x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, label, pc_rtx);
x = gen_rtx_SET (pc_rtx, x);
emit_jump_insn (x);
}
/* A helper function for matching parallels that set the flags. */
bool
rx_match_ccmode (rtx insn, machine_mode cc_mode)
{
rtx op1, flags;
machine_mode flags_mode;
gcc_checking_assert (XVECLEN (PATTERN (insn), 0) == 2);
op1 = XVECEXP (PATTERN (insn), 0, 0);
gcc_checking_assert (GET_CODE (SET_SRC (op1)) == COMPARE);
flags = SET_DEST (op1);
flags_mode = GET_MODE (flags);
if (GET_MODE (SET_SRC (op1)) != flags_mode)
return false;
if (GET_MODE_CLASS (flags_mode) != MODE_CC)
return false;
/* Ensure that the mode of FLAGS is compatible with CC_MODE. */
if (flags_from_mode (flags_mode) & ~flags_from_mode (cc_mode))
return false;
return true;
}
static int
rx_max_skip_for_label (rtx_insn *lab)
{
int opsize;
rtx_insn *op;
if (optimize_size)
return 0;
if (lab == NULL)
return 0;
op = lab;
do
{
op = next_nonnote_nondebug_insn (op);
}
while (op && (LABEL_P (op)
|| (INSN_P (op) && GET_CODE (PATTERN (op)) == USE)));
if (!op)
return 0;
opsize = get_attr_length (op);
if (opsize >= 0 && opsize < 8)
return MAX (0, opsize - 1);
return 0;
}
static int
rx_align_log_for_label (rtx_insn *lab, int uses_threshold)
{
/* This is a simple heuristic to guess when an alignment would not be useful
because the delay due to the inserted NOPs would be greater than the delay
due to the misaligned branch. If uses_threshold is zero then the alignment
is always useful. */
if (LABEL_P (lab) && LABEL_NUSES (lab) < uses_threshold)
return 0;
if (optimize_size)
return 0;
/* Return zero if max_skip not a positive number. */
int max_skip = rx_max_skip_for_label (lab);
if (max_skip <= 0)
return 0;
/* These values are log, not bytes. */
if (rx_cpu_type == RX100 || rx_cpu_type == RX200)
return 2; /* 4 bytes */
return 3; /* 8 bytes */
}
align_flags
rx_align_for_label (rtx_insn *lab, int uses_threshold)
{
return align_flags (rx_align_log_for_label (lab, uses_threshold),
rx_max_skip_for_label (lab));
}
/* Compute the real length of the extending load-and-op instructions. */
int
rx_adjust_insn_length (rtx_insn *insn, int current_length)
{
rtx extend, mem, offset;
bool zero;
int factor;
if (!INSN_P (insn))
return current_length;
switch (INSN_CODE (insn))
{
default:
return current_length;
case CODE_FOR_plussi3_zero_extendhi:
case CODE_FOR_andsi3_zero_extendhi:
case CODE_FOR_iorsi3_zero_extendhi:
case CODE_FOR_xorsi3_zero_extendhi:
case CODE_FOR_divsi3_zero_extendhi:
case CODE_FOR_udivsi3_zero_extendhi:
case CODE_FOR_minussi3_zero_extendhi:
case CODE_FOR_smaxsi3_zero_extendhi:
case CODE_FOR_sminsi3_zero_extendhi:
case CODE_FOR_multsi3_zero_extendhi:
case CODE_FOR_comparesi3_zero_extendhi:
zero = true;
factor = 2;
break;
case CODE_FOR_plussi3_sign_extendhi:
case CODE_FOR_andsi3_sign_extendhi:
case CODE_FOR_iorsi3_sign_extendhi:
case CODE_FOR_xorsi3_sign_extendhi:
case CODE_FOR_divsi3_sign_extendhi:
case CODE_FOR_udivsi3_sign_extendhi:
case CODE_FOR_minussi3_sign_extendhi:
case CODE_FOR_smaxsi3_sign_extendhi:
case CODE_FOR_sminsi3_sign_extendhi:
case CODE_FOR_multsi3_sign_extendhi:
case CODE_FOR_comparesi3_sign_extendhi:
zero = false;
factor = 2;
break;
case CODE_FOR_plussi3_zero_extendqi:
case CODE_FOR_andsi3_zero_extendqi:
case CODE_FOR_iorsi3_zero_extendqi:
case CODE_FOR_xorsi3_zero_extendqi:
case CODE_FOR_divsi3_zero_extendqi:
case CODE_FOR_udivsi3_zero_extendqi:
case CODE_FOR_minussi3_zero_extendqi:
case CODE_FOR_smaxsi3_zero_extendqi:
case CODE_FOR_sminsi3_zero_extendqi:
case CODE_FOR_multsi3_zero_extendqi:
case CODE_FOR_comparesi3_zero_extendqi:
zero = true;
factor = 1;
break;
case CODE_FOR_plussi3_sign_extendqi:
case CODE_FOR_andsi3_sign_extendqi:
case CODE_FOR_iorsi3_sign_extendqi:
case CODE_FOR_xorsi3_sign_extendqi:
case CODE_FOR_divsi3_sign_extendqi:
case CODE_FOR_udivsi3_sign_extendqi:
case CODE_FOR_minussi3_sign_extendqi:
case CODE_FOR_smaxsi3_sign_extendqi:
case CODE_FOR_sminsi3_sign_extendqi:
case CODE_FOR_multsi3_sign_extendqi:
case CODE_FOR_comparesi3_sign_extendqi:
zero = false;
factor = 1;
break;
}
/* We are expecting: (SET (REG) ( (REG) ( (MEM)))). */
extend = single_set (insn);
gcc_assert (extend != NULL_RTX);
extend = SET_SRC (extend);
if (GET_CODE (XEXP (extend, 0)) == ZERO_EXTEND
|| GET_CODE (XEXP (extend, 0)) == SIGN_EXTEND)
extend = XEXP (extend, 0);
else
extend = XEXP (extend, 1);
gcc_assert ((zero && (GET_CODE (extend) == ZERO_EXTEND))
|| (! zero && (GET_CODE (extend) == SIGN_EXTEND)));
mem = XEXP (extend, 0);
gcc_checking_assert (MEM_P (mem));
if (REG_P (XEXP (mem, 0)))
return (zero && factor == 1) ? 2 : 3;
/* We are expecting: (MEM (PLUS (REG) (CONST_INT))). */
gcc_checking_assert (GET_CODE (XEXP (mem, 0)) == PLUS);
gcc_checking_assert (REG_P (XEXP (XEXP (mem, 0), 0)));
offset = XEXP (XEXP (mem, 0), 1);
gcc_checking_assert (GET_CODE (offset) == CONST_INT);
if (IN_RANGE (INTVAL (offset), 0, 255 * factor))
return (zero && factor == 1) ? 3 : 4;
return (zero && factor == 1) ? 4 : 5;
}
static bool
rx_narrow_volatile_bitfield (void)
{
return true;
}
static bool
rx_ok_to_inline (tree caller, tree callee)
{
/* Do not inline functions with local variables
into a naked CALLER - naked function have no stack frame and
locals need a frame in order to have somewhere to live.
Unfortunately we have no way to determine the presence of
local variables in CALLEE, so we have to be cautious and
assume that there might be some there.
We do allow inlining when CALLEE has the "inline" type
modifier or the "always_inline" or "gnu_inline" attributes. */
return lookup_attribute ("naked", DECL_ATTRIBUTES (caller)) == NULL_TREE
|| DECL_DECLARED_INLINE_P (callee)
|| lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee)) != NULL_TREE
|| lookup_attribute ("gnu_inline", DECL_ATTRIBUTES (callee)) != NULL_TREE;
}
static bool
rx_enable_lra (void)
{
return TARGET_ENABLE_LRA;
}
rx_atomic_sequence::rx_atomic_sequence (const_tree fun_decl)
{
if (is_fast_interrupt_func (fun_decl) || is_interrupt_func (fun_decl))
{
/* If we are inside an interrupt handler, assume that interrupts are
off -- which is the default hardware behavior. In this case, there
is no need to disable the interrupts. */
m_prev_psw_reg = NULL;
}
else
{
m_prev_psw_reg = gen_reg_rtx (SImode);
emit_insn (gen_mvfc (m_prev_psw_reg, GEN_INT (CTRLREG_PSW)));
emit_insn (gen_clrpsw (GEN_INT ('I')));
}
}
rx_atomic_sequence::~rx_atomic_sequence (void)
{
if (m_prev_psw_reg != NULL)
emit_insn (gen_mvtc (GEN_INT (CTRLREG_PSW), m_prev_psw_reg));
}
/* Given an insn and a reg number, tell whether the reg dies or is unused
after the insn. */
bool
rx_reg_dead_or_unused_after_insn (const rtx_insn* i, int regno)
{
return find_regno_note (i, REG_DEAD, regno) != NULL
|| find_regno_note (i, REG_UNUSED, regno) != NULL;
}
/* Copy dead and unused notes from SRC to DST for the specified REGNO. */
void
rx_copy_reg_dead_or_unused_notes (rtx reg, const rtx_insn* src, rtx_insn* dst)
{
int regno = REGNO (SUBREG_P (reg) ? SUBREG_REG (reg) : reg);
if (rtx note = find_regno_note (src, REG_DEAD, regno))
add_shallow_copy_of_reg_note (dst, note);
if (rtx note = find_regno_note (src, REG_UNUSED, regno))
add_shallow_copy_of_reg_note (dst, note);
}
/* Try to fuse the current bit-operation insn with the surrounding memory load
and store. */
bool
rx_fuse_in_memory_bitop (rtx* operands, rtx_insn* curr_insn,
rtx (*gen_insn)(rtx, rtx))
{
rtx op2_reg = SUBREG_P (operands[2]) ? SUBREG_REG (operands[2]) : operands[2];
set_of_reg op2_def = rx_find_set_of_reg (op2_reg, curr_insn,
prev_nonnote_nondebug_insn_bb);
if (op2_def.set_src == NULL_RTX
|| !MEM_P (op2_def.set_src)
|| GET_MODE (op2_def.set_src) != QImode
|| !rx_is_restricted_memory_address (XEXP (op2_def.set_src, 0),
GET_MODE (op2_def.set_src))
|| reg_used_between_p (operands[2], op2_def.insn, curr_insn)
|| !rx_reg_dead_or_unused_after_insn (curr_insn, REGNO (op2_reg))
)
return false;
/* The register operand originates from a memory load and the memory load
could be fused with the bitop insn.
Look for the following memory store with the same memory operand. */
rtx mem = op2_def.set_src;
/* If the memory is an auto-mod address, it can't be fused. */
if (GET_CODE (XEXP (mem, 0)) == POST_INC
|| GET_CODE (XEXP (mem, 0)) == PRE_INC
|| GET_CODE (XEXP (mem, 0)) == POST_DEC
|| GET_CODE (XEXP (mem, 0)) == PRE_DEC)
return false;
rtx_insn* op0_use = rx_find_use_of_reg (operands[0], curr_insn,
next_nonnote_nondebug_insn_bb);
if (op0_use == NULL
|| !(GET_CODE (PATTERN (op0_use)) == SET
&& RX_REG_P (XEXP (PATTERN (op0_use), 1))
&& reg_overlap_mentioned_p (operands[0], XEXP (PATTERN (op0_use), 1))
&& rtx_equal_p (mem, XEXP (PATTERN (op0_use), 0)))
|| !rx_reg_dead_or_unused_after_insn (op0_use, REGNO (operands[0]))
|| reg_set_between_p (operands[2], curr_insn, op0_use))
return false;
/* If the load-modify-store operation is fused it could potentially modify
load/store ordering if there are other memory accesses between the load
and the store for this insn. If there are volatile mems between the load
and store it's better not to change the ordering. If there is a call
between the load and store, it's also not safe to fuse it. */
for (rtx_insn* i = next_nonnote_nondebug_insn_bb (op2_def.insn);
i != NULL && i != op0_use;
i = next_nonnote_nondebug_insn_bb (i))
if (volatile_insn_p (PATTERN (i)) || CALL_P (i))
return false;
emit_insn (gen_insn (mem, gen_lowpart (QImode, operands[1])));
set_insn_deleted (op2_def.insn);
set_insn_deleted (op0_use);
return true;
}
/* Implement TARGET_HARD_REGNO_NREGS. */
static unsigned int
rx_hard_regno_nregs (unsigned int, machine_mode mode)
{
return CLASS_MAX_NREGS (0, mode);
}
/* Implement TARGET_HARD_REGNO_MODE_OK. */
static bool
rx_hard_regno_mode_ok (unsigned int regno, machine_mode)
{
return REGNO_REG_CLASS (regno) == GR_REGS;
}
/* Implement TARGET_MODES_TIEABLE_P. */
static bool
rx_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
return ((GET_MODE_CLASS (mode1) == MODE_FLOAT
|| GET_MODE_CLASS (mode1) == MODE_COMPLEX_FLOAT)
== (GET_MODE_CLASS (mode2) == MODE_FLOAT
|| GET_MODE_CLASS (mode2) == MODE_COMPLEX_FLOAT));
}
#undef TARGET_NARROW_VOLATILE_BITFIELD
#define TARGET_NARROW_VOLATILE_BITFIELD rx_narrow_volatile_bitfield
#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P rx_ok_to_inline
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE rx_function_value
#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB rx_return_in_msb
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P rx_in_small_data
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY rx_return_in_memory
#undef TARGET_HAVE_SRODATA_SECTION
#define TARGET_HAVE_SRODATA_SECTION true
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION rx_select_rtx_section
#undef TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION rx_select_section
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS rx_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL rx_builtin_decl
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN rx_expand_builtin
#undef TARGET_ASM_CONSTRUCTOR
#define TARGET_ASM_CONSTRUCTOR rx_elf_asm_constructor
#undef TARGET_ASM_DESTRUCTOR
#define TARGET_ASM_DESTRUCTOR rx_elf_asm_destructor
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX rx_struct_value_rtx
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE rx_attribute_table
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START rx_file_start
#undef TARGET_MS_BITFIELD_LAYOUT_P
#define TARGET_MS_BITFIELD_LAYOUT_P rx_is_ms_bitfield_layout
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P rx_is_legitimate_address
#undef TARGET_MODE_DEPENDENT_ADDRESS_P
#define TARGET_MODE_DEPENDENT_ADDRESS_P rx_mode_dependent_address_p
#undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
#define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS rx_allocate_stack_slots_for_args
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE rx_output_function_prologue
#undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
#define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P rx_func_attr_inlinable
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL rx_function_ok_for_sibcall
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG rx_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE rx_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY rx_function_arg_boundary
#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION rx_set_current_function
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER rx_assemble_integer
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 32
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST rx_address_cost
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE rx_can_eliminate
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE rx_conditional_register_usage
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE rx_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT rx_trampoline_init
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND rx_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS rx_print_operand_address
#undef TARGET_CC_MODES_COMPATIBLE
#define TARGET_CC_MODES_COMPATIBLE rx_cc_modes_compatible
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST rx_memory_move_cost
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE rx_option_override
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE rx_promote_function_mode
#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE rx_override_options_after_change
#undef TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM CC_REG
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P rx_is_legitimate_constant
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS rx_legitimize_address
#undef TARGET_WARN_FUNC_RETURN
#define TARGET_WARN_FUNC_RETURN rx_warn_func_return
#undef TARGET_LRA_P
#define TARGET_LRA_P rx_enable_lra
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS rx_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK rx_hard_regno_mode_ok
#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P rx_modes_tieable_p
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS rx_rtx_costs
#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-rx.h"