/* Subroutines used for code generation for RISC-V. Copyright (C) 2011-2023 Free Software Foundation, Inc. Contributed by Andrew Waterman (andrew@sifive.com). Based on MIPS target for GNU compiler. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #define IN_TARGET_CODE 1 #define INCLUDE_STRING #include "config.h" #include "system.h" #include "coretypes.h" #include "target.h" #include "backend.h" #include "tm.h" #include "rtl.h" #include "regs.h" #include "insn-config.h" #include "insn-attr.h" #include "recog.h" #include "output.h" #include "alias.h" #include "tree.h" #include "stringpool.h" #include "attribs.h" #include "varasm.h" #include "stor-layout.h" #include "calls.h" #include "function.h" #include "explow.h" #include "memmodel.h" #include "emit-rtl.h" #include "reload.h" #include "tm_p.h" #include "basic-block.h" #include "expr.h" #include "optabs.h" #include "bitmap.h" #include "df.h" #include "function-abi.h" #include "diagnostic.h" #include "builtins.h" #include "predict.h" #include "tree-pass.h" #include "opts.h" #include "tm-constrs.h" #include "rtl-iter.h" #include "gimple.h" #include "cfghooks.h" #include "cfgloop.h" #include "cfgrtl.h" #include "shrink-wrap.h" #include "sel-sched.h" #include "sched-int.h" #include "fold-const.h" #include "gimple-iterator.h" #include "gimple-expr.h" #include "tree-vectorizer.h" #include "gcse.h" #include "tree-dfa.h" /* This file should be included last. */ #include "target-def.h" #include "riscv-vector-costs.h" /* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */ #define UNSPEC_ADDRESS_P(X) \ (GET_CODE (X) == UNSPEC \ && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \ && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES) /* Extract the symbol or label from UNSPEC wrapper X. */ #define UNSPEC_ADDRESS(X) \ XVECEXP (X, 0, 0) /* Extract the symbol type from UNSPEC wrapper X. */ #define UNSPEC_ADDRESS_TYPE(X) \ ((enum riscv_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST)) /* True if bit BIT is set in VALUE. */ #define BITSET_P(VALUE, BIT) (((VALUE) & (1ULL << (BIT))) != 0) /* Extract the backup dynamic frm rtl. */ #define DYNAMIC_FRM_RTL(c) ((c)->machine->mode_sw_info.dynamic_frm) /* True the mode switching has static frm, or false. */ #define STATIC_FRM_P(c) ((c)->machine->mode_sw_info.static_frm_p) /* Information about a function's frame layout. */ struct GTY(()) riscv_frame_info { /* The size of the frame in bytes. */ poly_int64 total_size; /* Bit X is set if the function saves or restores GPR X. */ unsigned int mask; /* Likewise FPR X. */ unsigned int fmask; /* Likewise for vector registers. */ unsigned int vmask; /* How much the GPR save/restore routines adjust sp (or 0 if unused). */ unsigned save_libcall_adjustment; /* the minimum number of bytes, in multiples of 16-byte address increments, required to cover the registers in a multi push & pop. */ unsigned multi_push_adj_base; /* the number of additional 16-byte address increments allocated for the stack frame in a multi push & pop. */ unsigned multi_push_adj_addi; /* Offsets of fixed-point and floating-point save areas from frame bottom */ poly_int64 gp_sp_offset; poly_int64 fp_sp_offset; /* Top and bottom offsets of vector save areas from frame bottom. */ poly_int64 v_sp_offset_top; poly_int64 v_sp_offset_bottom; /* Offset of virtual frame pointer from stack pointer/frame bottom */ poly_int64 frame_pointer_offset; /* Offset of hard frame pointer from stack pointer/frame bottom */ poly_int64 hard_frame_pointer_offset; /* The offset of arg_pointer_rtx from the bottom of the frame. */ poly_int64 arg_pointer_offset; /* Reset this struct, clean all field to zero. */ void reset(void); }; enum riscv_privilege_levels { UNKNOWN_MODE, USER_MODE, SUPERVISOR_MODE, MACHINE_MODE }; struct GTY(()) mode_switching_info { /* The RTL variable which stores the dynamic FRM value. We always use this RTX to restore dynamic FRM rounding mode in mode switching. */ rtx dynamic_frm; /* The boolean variables indicates there is at least one static rounding mode instruction in the function or not. */ bool static_frm_p; mode_switching_info () { dynamic_frm = NULL_RTX; static_frm_p = false; } }; struct GTY(()) machine_function { /* The number of extra stack bytes taken up by register varargs. This area is allocated by the callee at the very top of the frame. */ int varargs_size; /* True if current function is a naked function. */ bool naked_p; /* True if current function is an interrupt function. */ bool interrupt_handler_p; /* For an interrupt handler, indicates the privilege level. */ enum riscv_privilege_levels interrupt_mode; /* True if attributes on current function have been checked. */ bool attributes_checked_p; /* True if RA must be saved because of a far jump. */ bool far_jump_used; /* The current frame information, calculated by riscv_compute_frame_info. */ struct riscv_frame_info frame; /* The components already handled by separate shrink-wrapping, which should not be considered by the prologue and epilogue. */ bool reg_is_wrapped_separately[FIRST_PSEUDO_REGISTER]; /* The mode swithching information for the FRM rounding modes. */ struct mode_switching_info mode_sw_info; }; /* Information about a single argument. */ struct riscv_arg_info { /* True if the argument is at least partially passed on the stack. */ bool stack_p; /* The number of integer registers allocated to this argument. */ unsigned int num_gprs; /* The offset of the first register used, provided num_gprs is nonzero. If passed entirely on the stack, the value is MAX_ARGS_IN_REGISTERS. */ unsigned int gpr_offset; /* The number of floating-point registers allocated to this argument. */ unsigned int num_fprs; /* The offset of the first register used, provided num_fprs is nonzero. */ unsigned int fpr_offset; /* The number of vector registers allocated to this argument. */ unsigned int num_vrs; /* The offset of the first register used, provided num_vrs is nonzero. */ unsigned int vr_offset; /* The number of mask registers allocated to this argument. */ unsigned int num_mrs; /* The offset of the first register used, provided num_mrs is nonzero. */ unsigned int mr_offset; }; /* One stage in a constant building sequence. These sequences have the form: A = VALUE[0] A = A CODE[1] VALUE[1] A = A CODE[2] VALUE[2] ... where A is an accumulator, each CODE[i] is a binary rtl operation and each VALUE[i] is a constant integer. CODE[0] is undefined. */ struct riscv_integer_op { enum rtx_code code; unsigned HOST_WIDE_INT value; }; /* The largest number of operations needed to load an integer constant. The worst case is LUI, ADDI, SLLI, ADDI, SLLI, ADDI, SLLI, ADDI. */ #define RISCV_MAX_INTEGER_OPS 8 /* Costs of various operations on the different architectures. */ struct riscv_tune_param { unsigned short fp_add[2]; unsigned short fp_mul[2]; unsigned short fp_div[2]; unsigned short int_mul[2]; unsigned short int_div[2]; unsigned short issue_rate; unsigned short branch_cost; unsigned short memory_cost; unsigned short fmv_cost; bool slow_unaligned_access; bool use_divmod_expansion; }; /* Information about one micro-arch we know about. */ struct riscv_tune_info { /* This micro-arch canonical name. */ const char *name; /* Which automaton to use for tuning. */ enum riscv_microarchitecture_type microarchitecture; /* Tuning parameters for this micro-arch. */ const struct riscv_tune_param *tune_param; }; /* Global variables for machine-dependent things. */ /* Whether unaligned accesses execute very slowly. */ bool riscv_slow_unaligned_access_p; /* Whether user explicitly passed -mstrict-align. */ bool riscv_user_wants_strict_align; /* Stack alignment to assume/maintain. */ unsigned riscv_stack_boundary; /* If non-zero, this is an offset to be added to SP to redefine the CFA when restoring the FP register from the stack. Only valid when generating the epilogue. */ static poly_int64 epilogue_cfa_sp_offset; /* Which tuning parameters to use. */ static const struct riscv_tune_param *tune_param; /* Which automaton to use for tuning. */ enum riscv_microarchitecture_type riscv_microarchitecture; /* The number of chunks in a single vector register. */ poly_uint16 riscv_vector_chunks; /* The number of bytes in a vector chunk. */ unsigned riscv_bytes_per_vector_chunk; /* Index R is the smallest register class that contains register R. */ const enum reg_class riscv_regno_to_class[FIRST_PSEUDO_REGISTER] = { GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, SIBCALL_REGS, SIBCALL_REGS, JALR_REGS, JALR_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FRAME_REGS, FRAME_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, NO_REGS, VM_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, VD_REGS, }; /* Costs to use when optimizing for rocket. */ static const struct riscv_tune_param rocket_tune_info = { {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */ {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */ {COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */ {COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */ {COSTS_N_INSNS (33), COSTS_N_INSNS (65)}, /* int_div */ 1, /* issue_rate */ 3, /* branch_cost */ 5, /* memory_cost */ 8, /* fmv_cost */ true, /* slow_unaligned_access */ false, /* use_divmod_expansion */ }; /* Costs to use when optimizing for Sifive 7 Series. */ static const struct riscv_tune_param sifive_7_tune_info = { {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */ {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */ {COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */ {COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */ {COSTS_N_INSNS (33), COSTS_N_INSNS (65)}, /* int_div */ 2, /* issue_rate */ 4, /* branch_cost */ 3, /* memory_cost */ 8, /* fmv_cost */ true, /* slow_unaligned_access */ false, /* use_divmod_expansion */ }; /* Costs to use when optimizing for T-HEAD c906. */ static const struct riscv_tune_param thead_c906_tune_info = { {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */ {COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */ {COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */ {COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */ {COSTS_N_INSNS (18), COSTS_N_INSNS (34)}, /* int_div */ 1, /* issue_rate */ 3, /* branch_cost */ 5, /* memory_cost */ 8, /* fmv_cost */ false, /* slow_unaligned_access */ false /* use_divmod_expansion */ }; /* Costs to use when optimizing for a generic ooo profile. */ static const struct riscv_tune_param generic_ooo_tune_info = { {COSTS_N_INSNS (2), COSTS_N_INSNS (2)}, /* fp_add */ {COSTS_N_INSNS (5), COSTS_N_INSNS (6)}, /* fp_mul */ {COSTS_N_INSNS (7), COSTS_N_INSNS (8)}, /* fp_div */ {COSTS_N_INSNS (2), COSTS_N_INSNS (2)}, /* int_mul */ {COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */ 1, /* issue_rate */ 3, /* branch_cost */ 4, /* memory_cost */ 4, /* fmv_cost */ false, /* slow_unaligned_access */ false, /* use_divmod_expansion */ }; /* Costs to use when optimizing for size. */ static const struct riscv_tune_param optimize_size_tune_info = { {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_add */ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_mul */ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_div */ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_mul */ {COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_div */ 1, /* issue_rate */ 1, /* branch_cost */ 2, /* memory_cost */ 8, /* fmv_cost */ false, /* slow_unaligned_access */ false, /* use_divmod_expansion */ }; static bool riscv_avoid_shrink_wrapping_separate (); static tree riscv_handle_fndecl_attribute (tree *, tree, tree, int, bool *); static tree riscv_handle_type_attribute (tree *, tree, tree, int, bool *); static void riscv_legitimize_poly_move (machine_mode, rtx, rtx, rtx); /* Defining target-specific uses of __attribute__. */ static const struct attribute_spec riscv_attribute_table[] = { /* Syntax: { name, min_len, max_len, decl_required, type_required, function_type_required, affects_type_identity, handler, exclude } */ /* The attribute telling no prologue/epilogue. */ { "naked", 0, 0, true, false, false, false, riscv_handle_fndecl_attribute, NULL }, /* This attribute generates prologue/epilogue for interrupt handlers. */ { "interrupt", 0, 1, false, true, true, false, riscv_handle_type_attribute, NULL }, /* The following two are used for the built-in properties of the Vector type and are not used externally */ {"RVV sizeless type", 4, 4, false, true, false, true, NULL, NULL}, {"RVV type", 0, 0, false, true, false, true, NULL, NULL}, /* The last attribute spec is set to be NULL. */ { NULL, 0, 0, false, false, false, false, NULL, NULL } }; /* Order for the CLOBBERs/USEs of gpr_save. */ static const unsigned gpr_save_reg_order[] = { INVALID_REGNUM, T0_REGNUM, T1_REGNUM, RETURN_ADDR_REGNUM, S0_REGNUM, S1_REGNUM, S2_REGNUM, S3_REGNUM, S4_REGNUM, S5_REGNUM, S6_REGNUM, S7_REGNUM, S8_REGNUM, S9_REGNUM, S10_REGNUM, S11_REGNUM }; /* A table describing all the processors GCC knows about. */ static const struct riscv_tune_info riscv_tune_info_table[] = { #define RISCV_TUNE(TUNE_NAME, PIPELINE_MODEL, TUNE_INFO) \ { TUNE_NAME, PIPELINE_MODEL, & TUNE_INFO}, #include "riscv-cores.def" }; /* Global variable to distinguish whether we should save and restore s0/fp for function. */ static bool riscv_save_frame_pointer; typedef enum { PUSH_IDX = 0, POP_IDX, POPRET_IDX, POPRETZ_IDX, ZCMP_OP_NUM } riscv_zcmp_op_t; typedef insn_code (*code_for_push_pop_t) (machine_mode); void riscv_frame_info::reset(void) { total_size = 0; mask = 0; fmask = 0; vmask = 0; save_libcall_adjustment = 0; gp_sp_offset = 0; fp_sp_offset = 0; v_sp_offset_top = 0; v_sp_offset_bottom = 0; frame_pointer_offset = 0; hard_frame_pointer_offset = 0; arg_pointer_offset = 0; } /* Implement TARGET_MIN_ARITHMETIC_PRECISION. */ static unsigned int riscv_min_arithmetic_precision (void) { return 32; } /* Return the riscv_tune_info entry for the given name string. */ static const struct riscv_tune_info * riscv_parse_tune (const char *tune_string) { const riscv_cpu_info *cpu = riscv_find_cpu (tune_string); if (cpu) tune_string = cpu->tune; for (unsigned i = 0; i < ARRAY_SIZE (riscv_tune_info_table); i++) if (strcmp (riscv_tune_info_table[i].name, tune_string) == 0) return riscv_tune_info_table + i; error ("unknown cpu %qs for %<-mtune%>", tune_string); return riscv_tune_info_table; } /* Helper function for riscv_build_integer; arguments are as for riscv_build_integer. */ static int riscv_build_integer_1 (struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS], HOST_WIDE_INT value, machine_mode mode) { HOST_WIDE_INT low_part = CONST_LOW_PART (value); int cost = RISCV_MAX_INTEGER_OPS + 1, alt_cost; struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS]; if (SMALL_OPERAND (value) || LUI_OPERAND (value)) { /* Simply ADDI or LUI. */ codes[0].code = UNKNOWN; codes[0].value = value; return 1; } if (TARGET_ZBS && SINGLE_BIT_MASK_OPERAND (value)) { /* Simply BSETI. */ codes[0].code = UNKNOWN; codes[0].value = value; /* RISC-V sign-extends all 32bit values that live in a 32bit register. To avoid paradoxes, we thus need to use the sign-extended (negative) representation (-1 << 31) for the value, if we want to build (1 << 31) in SImode. This will then expand to an LUI instruction. */ if (TARGET_64BIT && mode == SImode && value == (HOST_WIDE_INT_1U << 31)) codes[0].value = (HOST_WIDE_INT_M1U << 31); return 1; } /* End with ADDI. When constructing HImode constants, do not generate any intermediate value that is not itself a valid HImode constant. The XORI case below will handle those remaining HImode constants. */ if (low_part != 0 && (mode != HImode || value - low_part <= ((1 << (GET_MODE_BITSIZE (HImode) - 1)) - 1))) { HOST_WIDE_INT upper_part = value - low_part; if (mode != VOIDmode) upper_part = trunc_int_for_mode (value - low_part, mode); alt_cost = 1 + riscv_build_integer_1 (alt_codes, upper_part, mode); if (alt_cost < cost) { alt_codes[alt_cost-1].code = PLUS; alt_codes[alt_cost-1].value = low_part; memcpy (codes, alt_codes, sizeof (alt_codes)); cost = alt_cost; } } /* End with XORI. */ if (cost > 2 && (low_part < 0 || mode == HImode)) { alt_cost = 1 + riscv_build_integer_1 (alt_codes, value ^ low_part, mode); if (alt_cost < cost) { alt_codes[alt_cost-1].code = XOR; alt_codes[alt_cost-1].value = low_part; memcpy (codes, alt_codes, sizeof (alt_codes)); cost = alt_cost; } } /* Eliminate trailing zeros and end with SLLI. */ if (cost > 2 && (value & 1) == 0) { int shift = ctz_hwi (value); unsigned HOST_WIDE_INT x = value; x = sext_hwi (x >> shift, HOST_BITS_PER_WIDE_INT - shift); /* Don't eliminate the lower 12 bits if LUI might apply. */ if (shift > IMM_BITS && !SMALL_OPERAND (x) && LUI_OPERAND (x << IMM_BITS)) shift -= IMM_BITS, x <<= IMM_BITS; alt_cost = 1 + riscv_build_integer_1 (alt_codes, x, mode); if (alt_cost < cost) { alt_codes[alt_cost-1].code = ASHIFT; alt_codes[alt_cost-1].value = shift; memcpy (codes, alt_codes, sizeof (alt_codes)); cost = alt_cost; } } if (cost > 2 && TARGET_64BIT && (TARGET_ZBB || TARGET_XTHEADBB)) { int leading_ones = clz_hwi (~value); int trailing_ones = ctz_hwi (~value); /* If all bits are one except a few that are zero, and the zero bits are within a range of 11 bits, then we can synthesize a constant by loading a small negative constant and rotating. */ if (leading_ones < 64 && ((64 - leading_ones - trailing_ones) < 12)) { codes[0].code = UNKNOWN; /* The sign-bit might be zero, so just rotate to be safe. */ codes[0].value = (((unsigned HOST_WIDE_INT) value >> trailing_ones) | (value << (64 - trailing_ones))); codes[1].code = ROTATERT; codes[1].value = 64 - trailing_ones; cost = 2; } /* Handle the case where the 11 bit range of zero bits wraps around. */ else { int upper_trailing_ones = ctz_hwi (~value >> 32); int lower_leading_ones = clz_hwi (~value << 32); if (upper_trailing_ones < 32 && lower_leading_ones < 32 && ((64 - upper_trailing_ones - lower_leading_ones) < 12)) { codes[0].code = UNKNOWN; /* The sign-bit might be zero, so just rotate to be safe. */ codes[0].value = ((value << (32 - upper_trailing_ones)) | ((unsigned HOST_WIDE_INT) value >> (32 + upper_trailing_ones))); codes[1].code = ROTATERT; codes[1].value = 32 - upper_trailing_ones; cost = 2; } } } gcc_assert (cost <= RISCV_MAX_INTEGER_OPS); return cost; } /* Fill CODES with a sequence of rtl operations to load VALUE. Return the number of operations needed. */ static int riscv_build_integer (struct riscv_integer_op *codes, HOST_WIDE_INT value, machine_mode mode) { int cost = riscv_build_integer_1 (codes, value, mode); /* Eliminate leading zeros and end with SRLI. */ if (value > 0 && cost > 2) { struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS]; int alt_cost, shift = clz_hwi (value); HOST_WIDE_INT shifted_val; /* Try filling trailing bits with 1s. */ shifted_val = (value << shift) | ((((HOST_WIDE_INT) 1) << shift) - 1); alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode); if (alt_cost < cost) { alt_codes[alt_cost-1].code = LSHIFTRT; alt_codes[alt_cost-1].value = shift; memcpy (codes, alt_codes, sizeof (alt_codes)); cost = alt_cost; } /* Try filling trailing bits with 0s. */ shifted_val = value << shift; alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode); if (alt_cost < cost) { alt_codes[alt_cost-1].code = LSHIFTRT; alt_codes[alt_cost-1].value = shift; memcpy (codes, alt_codes, sizeof (alt_codes)); cost = alt_cost; } } if (!TARGET_64BIT && (value > INT32_MAX || value < INT32_MIN)) { unsigned HOST_WIDE_INT loval = sext_hwi (value, 32); unsigned HOST_WIDE_INT hival = sext_hwi ((value - loval) >> 32, 32); struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS]; struct riscv_integer_op hicode[RISCV_MAX_INTEGER_OPS]; int hi_cost, lo_cost; hi_cost = riscv_build_integer_1 (hicode, hival, mode); if (hi_cost < cost) { lo_cost = riscv_build_integer_1 (alt_codes, loval, mode); if (lo_cost + hi_cost < cost) { memcpy (codes, alt_codes, lo_cost * sizeof (struct riscv_integer_op)); memcpy (codes + lo_cost, hicode, hi_cost * sizeof (struct riscv_integer_op)); cost = lo_cost + hi_cost; } } } return cost; } /* Return the cost of constructing VAL in the event that a scratch register is available. */ static int riscv_split_integer_cost (HOST_WIDE_INT val) { int cost; unsigned HOST_WIDE_INT loval = sext_hwi (val, 32); unsigned HOST_WIDE_INT hival = sext_hwi ((val - loval) >> 32, 32); struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS]; cost = 2 + riscv_build_integer (codes, loval, VOIDmode); if (loval != hival) cost += riscv_build_integer (codes, hival, VOIDmode); return cost; } /* Return the cost of constructing the integer constant VAL. */ static int riscv_integer_cost (HOST_WIDE_INT val) { struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS]; return MIN (riscv_build_integer (codes, val, VOIDmode), riscv_split_integer_cost (val)); } /* Try to split a 64b integer into 32b parts, then reassemble. */ static rtx riscv_split_integer (HOST_WIDE_INT val, machine_mode mode) { unsigned HOST_WIDE_INT loval = sext_hwi (val, 32); unsigned HOST_WIDE_INT hival = sext_hwi ((val - loval) >> 32, 32); rtx hi = gen_reg_rtx (mode), lo = gen_reg_rtx (mode); riscv_move_integer (lo, lo, loval, mode); if (loval == hival) hi = gen_rtx_ASHIFT (mode, lo, GEN_INT (32)); else { riscv_move_integer (hi, hi, hival, mode); hi = gen_rtx_ASHIFT (mode, hi, GEN_INT (32)); } hi = force_reg (mode, hi); return gen_rtx_PLUS (mode, hi, lo); } /* Return true if X is a thread-local symbol. */ static bool riscv_tls_symbol_p (const_rtx x) { return SYMBOL_REF_P (x) && SYMBOL_REF_TLS_MODEL (x) != 0; } /* Return true if symbol X binds locally. */ static bool riscv_symbol_binds_local_p (const_rtx x) { if (SYMBOL_REF_P (x)) return (SYMBOL_REF_DECL (x) ? targetm.binds_local_p (SYMBOL_REF_DECL (x)) : SYMBOL_REF_LOCAL_P (x)); else return false; } /* Return the method that should be used to access SYMBOL_REF or LABEL_REF X. */ static enum riscv_symbol_type riscv_classify_symbol (const_rtx x) { if (riscv_tls_symbol_p (x)) return SYMBOL_TLS; if (GET_CODE (x) == SYMBOL_REF && flag_pic && !riscv_symbol_binds_local_p (x)) return SYMBOL_GOT_DISP; return riscv_cmodel == CM_MEDLOW ? SYMBOL_ABSOLUTE : SYMBOL_PCREL; } /* Classify the base of symbolic expression X. */ enum riscv_symbol_type riscv_classify_symbolic_expression (rtx x) { rtx offset; split_const (x, &x, &offset); if (UNSPEC_ADDRESS_P (x)) return UNSPEC_ADDRESS_TYPE (x); return riscv_classify_symbol (x); } /* Return true if X is a symbolic constant. If it is, store the type of the symbol in *SYMBOL_TYPE. */ bool riscv_symbolic_constant_p (rtx x, enum riscv_symbol_type *symbol_type) { rtx offset; split_const (x, &x, &offset); if (UNSPEC_ADDRESS_P (x)) { *symbol_type = UNSPEC_ADDRESS_TYPE (x); x = UNSPEC_ADDRESS (x); } else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) *symbol_type = riscv_classify_symbol (x); else return false; if (offset == const0_rtx) return true; /* Nonzero offsets are only valid for references that don't use the GOT. */ switch (*symbol_type) { case SYMBOL_ABSOLUTE: case SYMBOL_PCREL: case SYMBOL_TLS_LE: /* GAS rejects offsets outside the range [-2^31, 2^31-1]. */ return sext_hwi (INTVAL (offset), 32) == INTVAL (offset); default: return false; } } /* Returns the number of instructions necessary to reference a symbol. */ static int riscv_symbol_insns (enum riscv_symbol_type type) { switch (type) { case SYMBOL_TLS: return 0; /* Depends on the TLS model. */ case SYMBOL_ABSOLUTE: return 2; /* LUI + the reference. */ case SYMBOL_PCREL: return 2; /* AUIPC + the reference. */ case SYMBOL_TLS_LE: return 3; /* LUI + ADD TP + the reference. */ case SYMBOL_GOT_DISP: return 3; /* AUIPC + LD GOT + the reference. */ default: gcc_unreachable (); } } /* Immediate values loaded by the FLI.S instruction in Chapter 25 of the latest RISC-V ISA Manual draft. For details, please see: https://github.com/riscv/riscv-isa-manual/releases/tag/isa-449cd0c */ static unsigned HOST_WIDE_INT fli_value_hf[32] = { 0xbcp8, 0x4p8, 0x1p8, 0x2p8, 0x1cp8, 0x20p8, 0x2cp8, 0x30p8, 0x34p8, 0x35p8, 0x36p8, 0x37p8, 0x38p8, 0x39p8, 0x3ap8, 0x3bp8, 0x3cp8, 0x3dp8, 0x3ep8, 0x3fp8, 0x40p8, 0x41p8, 0x42p8, 0x44p8, 0x48p8, 0x4cp8, 0x58p8, 0x5cp8, 0x78p8, /* Only used for filling, ensuring that 29 and 30 of HF are the same. */ 0x78p8, 0x7cp8, 0x7ep8 }; static unsigned HOST_WIDE_INT fli_value_sf[32] = { 0xbf8p20, 0x008p20, 0x378p20, 0x380p20, 0x3b8p20, 0x3c0p20, 0x3d8p20, 0x3e0p20, 0x3e8p20, 0x3eap20, 0x3ecp20, 0x3eep20, 0x3f0p20, 0x3f2p20, 0x3f4p20, 0x3f6p20, 0x3f8p20, 0x3fap20, 0x3fcp20, 0x3fep20, 0x400p20, 0x402p20, 0x404p20, 0x408p20, 0x410p20, 0x418p20, 0x430p20, 0x438p20, 0x470p20, 0x478p20, 0x7f8p20, 0x7fcp20 }; static unsigned HOST_WIDE_INT fli_value_df[32] = { 0xbff0p48, 0x10p48, 0x3ef0p48, 0x3f00p48, 0x3f70p48, 0x3f80p48, 0x3fb0p48, 0x3fc0p48, 0x3fd0p48, 0x3fd4p48, 0x3fd8p48, 0x3fdcp48, 0x3fe0p48, 0x3fe4p48, 0x3fe8p48, 0x3fecp48, 0x3ff0p48, 0x3ff4p48, 0x3ff8p48, 0x3ffcp48, 0x4000p48, 0x4004p48, 0x4008p48, 0x4010p48, 0x4020p48, 0x4030p48, 0x4060p48, 0x4070p48, 0x40e0p48, 0x40f0p48, 0x7ff0p48, 0x7ff8p48 }; /* Display floating-point values at the assembly level, which is consistent with the zfa extension of llvm: https://reviews.llvm.org/D145645. */ const char *fli_value_print[32] = { "-1.0", "min", "1.52587890625e-05", "3.0517578125e-05", "0.00390625", "0.0078125", "0.0625", "0.125", "0.25", "0.3125", "0.375", "0.4375", "0.5", "0.625", "0.75", "0.875", "1.0", "1.25", "1.5", "1.75", "2.0", "2.5", "3.0", "4.0", "8.0", "16.0", "128.0", "256.0", "32768.0", "65536.0", "inf", "nan" }; /* Return index of the FLI instruction table if rtx X is an immediate constant that can be moved using a single FLI instruction in zfa extension. Return -1 if not found. */ int riscv_float_const_rtx_index_for_fli (rtx x) { unsigned HOST_WIDE_INT *fli_value_array; machine_mode mode = GET_MODE (x); if (!TARGET_ZFA || !CONST_DOUBLE_P(x) || mode == VOIDmode || (mode == HFmode && !(TARGET_ZFH || TARGET_ZVFH)) || (mode == SFmode && !TARGET_HARD_FLOAT) || (mode == DFmode && !TARGET_DOUBLE_FLOAT)) return -1; if (!SCALAR_FLOAT_MODE_P (mode) || GET_MODE_BITSIZE (mode).to_constant () > HOST_BITS_PER_WIDE_INT /* Only support up to DF mode. */ || GET_MODE_BITSIZE (mode).to_constant () > GET_MODE_BITSIZE (DFmode)) return -1; unsigned HOST_WIDE_INT ival = 0; long res[2]; real_to_target (res, CONST_DOUBLE_REAL_VALUE (x), REAL_MODE_FORMAT (mode)); if (mode == DFmode) { int order = BYTES_BIG_ENDIAN ? 1 : 0; ival = zext_hwi (res[order], 32); ival |= (zext_hwi (res[1 - order], 32) << 32); /* When the lower 32 bits are not all 0, it is impossible to be in the table. */ if (ival & (unsigned HOST_WIDE_INT)0xffffffff) return -1; } else ival = zext_hwi (res[0], 32); switch (mode) { case E_HFmode: fli_value_array = fli_value_hf; break; case E_SFmode: fli_value_array = fli_value_sf; break; case E_DFmode: fli_value_array = fli_value_df; break; default: return -1; } if (fli_value_array[0] == ival) return 0; if (fli_value_array[1] == ival) return 1; /* Perform a binary search to find target index. */ unsigned l, r, m; l = 2; r = 31; while (l <= r) { m = (l + r) / 2; if (fli_value_array[m] == ival) return m; else if (fli_value_array[m] < ival) l = m+1; else r = m-1; } return -1; } /* Implement TARGET_LEGITIMATE_CONSTANT_P. */ static bool riscv_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x) { return riscv_const_insns (x) > 0; } /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */ static bool riscv_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x) { enum riscv_symbol_type type; rtx base, offset; /* There's no way to calculate VL-based values using relocations. */ subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, x, ALL) if (GET_CODE (*iter) == CONST_POLY_INT) return true; /* There is no assembler syntax for expressing an address-sized high part. */ if (GET_CODE (x) == HIGH) return true; if (satisfies_constraint_zfli (x)) return true; split_const (x, &base, &offset); if (riscv_symbolic_constant_p (base, &type)) { /* As an optimization, don't spill symbolic constants that are as cheap to rematerialize as to access in the constant pool. */ if (SMALL_OPERAND (INTVAL (offset)) && riscv_symbol_insns (type) > 0) return true; /* As an optimization, avoid needlessly generate dynamic relocations. */ if (flag_pic) return true; } /* TLS symbols must be computed by riscv_legitimize_move. */ if (tls_referenced_p (x)) return true; return false; } /* Return true if register REGNO is a valid base register for mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ int riscv_regno_mode_ok_for_base_p (int regno, machine_mode mode ATTRIBUTE_UNUSED, bool strict_p) { if (!HARD_REGISTER_NUM_P (regno)) { if (!strict_p) return true; regno = reg_renumber[regno]; } /* These fake registers will be eliminated to either the stack or hard frame pointer, both of which are usually valid base registers. Reload deals with the cases where the eliminated form isn't valid. */ if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM) return true; return GP_REG_P (regno); } /* Get valid index register class. The RISC-V base instructions don't support index registers, but extensions might support that. */ enum reg_class riscv_index_reg_class () { return NO_REGS; } /* Return true if register REGNO is a valid index register. The RISC-V base instructions don't support index registers, but extensions might support that. */ int riscv_regno_ok_for_index_p (int) { return 0; } /* Return true if X is a valid base register for mode MODE. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool riscv_valid_base_register_p (rtx x, machine_mode mode, bool strict_p) { if (!strict_p && GET_CODE (x) == SUBREG) x = SUBREG_REG (x); return (REG_P (x) && riscv_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p)); } /* Return true if, for every base register BASE_REG, (plus BASE_REG X) can address a value of mode MODE. */ static bool riscv_valid_offset_p (rtx x, machine_mode mode) { /* Check that X is a signed 12-bit number. */ if (!const_arith_operand (x, Pmode)) return false; /* We may need to split multiword moves, so make sure that every word is accessible. */ if (GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD && !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode).to_constant () - UNITS_PER_WORD)) return false; return true; } /* Should a symbol of type SYMBOL_TYPE should be split in two? */ bool riscv_split_symbol_type (enum riscv_symbol_type symbol_type) { if (symbol_type == SYMBOL_TLS_LE) return true; if (!TARGET_EXPLICIT_RELOCS) return false; return symbol_type == SYMBOL_ABSOLUTE || symbol_type == SYMBOL_PCREL; } /* Return true if a LO_SUM can address a value of mode MODE when the LO_SUM symbol has type SYM_TYPE. X is the LO_SUM second operand, which is used when the mode is BLKmode. */ static bool riscv_valid_lo_sum_p (enum riscv_symbol_type sym_type, machine_mode mode, rtx x) { int align, size; /* Check that symbols of type SYMBOL_TYPE can be used to access values of mode MODE. */ if (riscv_symbol_insns (sym_type) == 0) return false; /* Check that there is a known low-part relocation. */ if (!riscv_split_symbol_type (sym_type)) return false; /* We can't tell size or alignment when we have BLKmode, so try extracing a decl from the symbol if possible. */ if (mode == BLKmode) { rtx offset; /* Extract the symbol from the LO_SUM operand, if any. */ split_const (x, &x, &offset); /* Might be a CODE_LABEL. We can compute align but not size for that, so don't bother trying to handle it. */ if (!SYMBOL_REF_P (x)) return false; /* Use worst case assumptions if we don't have a SYMBOL_REF_DECL. */ align = (SYMBOL_REF_DECL (x) ? DECL_ALIGN (SYMBOL_REF_DECL (x)) : 1); size = (SYMBOL_REF_DECL (x) && DECL_SIZE (SYMBOL_REF_DECL (x)) ? tree_to_uhwi (DECL_SIZE (SYMBOL_REF_DECL (x))) : 2*BITS_PER_WORD); } else { align = GET_MODE_ALIGNMENT (mode); size = GET_MODE_BITSIZE (mode).to_constant (); } /* We may need to split multiword moves, so make sure that each word can be accessed without inducing a carry. */ if (size > BITS_PER_WORD && (!TARGET_STRICT_ALIGN || size > align)) return false; return true; } /* Return true if mode is the RVV enabled mode. For example: 'RVVMF2SI' mode is disabled, wheras 'RVVM1SI' mode is enabled if MIN_VLEN == 32. */ bool riscv_v_ext_vector_mode_p (machine_mode mode) { #define ENTRY(MODE, REQUIREMENT, ...) \ case MODE##mode: \ return REQUIREMENT; switch (mode) { #include "riscv-vector-switch.def" default: return false; } return false; } /* Return true if mode is the RVV enabled tuple mode. */ bool riscv_v_ext_tuple_mode_p (machine_mode mode) { #define TUPLE_ENTRY(MODE, REQUIREMENT, ...) \ case MODE##mode: \ return REQUIREMENT; switch (mode) { #include "riscv-vector-switch.def" default: return false; } return false; } /* Return true if mode is the RVV enabled vls mode. */ bool riscv_v_ext_vls_mode_p (machine_mode mode) { #define VLS_ENTRY(MODE, REQUIREMENT) \ case MODE##mode: \ return REQUIREMENT; switch (mode) { #include "riscv-vector-switch.def" default: return false; } return false; } /* Return true if it is either RVV vector mode or RVV tuple mode. */ static bool riscv_v_ext_mode_p (machine_mode mode) { return riscv_v_ext_vector_mode_p (mode) || riscv_v_ext_tuple_mode_p (mode) || riscv_v_ext_vls_mode_p (mode); } /* Call from ADJUST_NUNITS in riscv-modes.def. Return the correct NUNITS size for corresponding machine_mode. */ poly_int64 riscv_v_adjust_nunits (machine_mode mode, int scale) { gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL); if (riscv_v_ext_mode_p (mode)) { if (TARGET_MIN_VLEN == 32) scale = scale / 2; return riscv_vector_chunks * scale; } return scale; } /* Call from ADJUST_NUNITS in riscv-modes.def. Return the correct NUNITS size for corresponding machine_mode. */ poly_int64 riscv_v_adjust_nunits (machine_mode mode, bool fractional_p, int lmul, int nf) { if (riscv_v_ext_mode_p (mode)) { scalar_mode smode = GET_MODE_INNER (mode); int size = GET_MODE_SIZE (smode); int nunits_per_chunk = riscv_bytes_per_vector_chunk / size; if (fractional_p) return nunits_per_chunk / lmul * riscv_vector_chunks * nf; else return nunits_per_chunk * lmul * riscv_vector_chunks * nf; } /* Set the disabled RVV modes size as 1 by default. */ return 1; } /* Call from ADJUST_BYTESIZE in riscv-modes.def. Return the correct BYTE size for corresponding machine_mode. */ poly_int64 riscv_v_adjust_bytesize (machine_mode mode, int scale) { if (riscv_v_ext_vector_mode_p (mode)) { poly_int64 nunits = GET_MODE_NUNITS (mode); poly_int64 mode_size = GET_MODE_SIZE (mode); if (maybe_eq (mode_size, (uint16_t) -1)) mode_size = riscv_vector_chunks * scale; if (nunits.coeffs[0] > 8) return exact_div (nunits, 8); else if (nunits.is_constant ()) return 1; else return poly_int64 (1, 1); } return scale; } /* Call from ADJUST_PRECISION in riscv-modes.def. Return the correct PRECISION size for corresponding machine_mode. */ poly_int64 riscv_v_adjust_precision (machine_mode mode, int scale) { return riscv_v_adjust_nunits (mode, scale); } /* Return true if X is a valid address for machine mode MODE. If it is, fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in effect. */ static bool riscv_classify_address (struct riscv_address_info *info, rtx x, machine_mode mode, bool strict_p) { switch (GET_CODE (x)) { case REG: case SUBREG: info->type = ADDRESS_REG; info->reg = x; info->offset = const0_rtx; return riscv_valid_base_register_p (info->reg, mode, strict_p); case PLUS: /* RVV load/store disallow any offset. */ if (riscv_v_ext_mode_p (mode)) return false; info->type = ADDRESS_REG; info->reg = XEXP (x, 0); info->offset = XEXP (x, 1); return (riscv_valid_base_register_p (info->reg, mode, strict_p) && riscv_valid_offset_p (info->offset, mode)); case LO_SUM: /* RVV load/store disallow LO_SUM. */ if (riscv_v_ext_mode_p (mode)) return false; info->type = ADDRESS_LO_SUM; info->reg = XEXP (x, 0); info->offset = XEXP (x, 1); /* We have to trust the creator of the LO_SUM to do something vaguely sane. Target-independent code that creates a LO_SUM should also create and verify the matching HIGH. Target-independent code that adds an offset to a LO_SUM must prove that the offset will not induce a carry. Failure to do either of these things would be a bug, and we are not required to check for it here. The RISC-V backend itself should only create LO_SUMs for valid symbolic constants, with the high part being either a HIGH or a copy of _gp. */ info->symbol_type = riscv_classify_symbolic_expression (info->offset); return (riscv_valid_base_register_p (info->reg, mode, strict_p) && riscv_valid_lo_sum_p (info->symbol_type, mode, info->offset)); case CONST_INT: /* We only allow the const0_rtx for the RVV load/store. For example: +----------------------------------------------------------+ | li a5,0 | | vsetvli zero,a1,e32,m1,ta,ma | | vle32.v v24,0(a5) <- propagate the const 0 to a5 here. | | vs1r.v v24,0(a0) | +----------------------------------------------------------+ It can be folded to: +----------------------------------------------------------+ | vsetvli zero,a1,e32,m1,ta,ma | | vle32.v v24,0(zero) | | vs1r.v v24,0(a0) | +----------------------------------------------------------+ This behavior will benefit the underlying RVV auto vectorization. */ if (riscv_v_ext_mode_p (mode)) return x == const0_rtx; /* Small-integer addresses don't occur very often, but they are legitimate if x0 is a valid base register. */ info->type = ADDRESS_CONST_INT; return SMALL_OPERAND (INTVAL (x)); default: return false; } } /* Implement TARGET_LEGITIMATE_ADDRESS_P. */ static bool riscv_legitimate_address_p (machine_mode mode, rtx x, bool strict_p, code_helper = ERROR_MARK) { struct riscv_address_info addr; return riscv_classify_address (&addr, x, mode, strict_p); } /* Return true if hard reg REGNO can be used in compressed instructions. */ static bool riscv_compressed_reg_p (int regno) { /* x8-x15/f8-f15 are compressible registers. */ return ((TARGET_RVC || TARGET_ZCA) && (IN_RANGE (regno, GP_REG_FIRST + 8, GP_REG_FIRST + 15) || IN_RANGE (regno, FP_REG_FIRST + 8, FP_REG_FIRST + 15))); } /* Return true if x is an unsigned 5-bit immediate scaled by 4. */ static bool riscv_compressed_lw_offset_p (rtx x) { return (CONST_INT_P (x) && (INTVAL (x) & 3) == 0 && IN_RANGE (INTVAL (x), 0, CSW_MAX_OFFSET)); } /* Return true if load/store from/to address x can be compressed. */ static bool riscv_compressed_lw_address_p (rtx x) { struct riscv_address_info addr; bool result = riscv_classify_address (&addr, x, GET_MODE (x), reload_completed); /* Return false if address is not compressed_reg + small_offset. */ if (!result || addr.type != ADDRESS_REG /* Before reload, assume all registers are OK. */ || (reload_completed && !riscv_compressed_reg_p (REGNO (addr.reg)) && addr.reg != stack_pointer_rtx) || !riscv_compressed_lw_offset_p (addr.offset)) return false; return result; } /* Return the number of instructions needed to load or store a value of mode MODE at address X. Return 0 if X isn't valid for MODE. Assume that multiword moves may need to be split into word moves if MIGHT_SPLIT_P, otherwise assume that a single load or store is enough. */ int riscv_address_insns (rtx x, machine_mode mode, bool might_split_p) { struct riscv_address_info addr = {}; int n = 1; if (!riscv_classify_address (&addr, x, mode, false)) { /* This could be a pattern from the pic.md file. In which case we want this address to always have a cost of 3 to make it as expensive as the most expensive symbol. This prevents constant propagation from preferring symbols over register plus offset. */ return 3; } /* BLKmode is used for single unaligned loads and stores and should not count as a multiword mode. */ if (!riscv_v_ext_vector_mode_p (mode) && mode != BLKmode && might_split_p) n += (GET_MODE_SIZE (mode).to_constant () + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (addr.type == ADDRESS_LO_SUM) n += riscv_symbol_insns (addr.symbol_type) - 1; return n; } /* Return the number of instructions needed to load constant X. Return 0 if X isn't a valid constant. */ int riscv_const_insns (rtx x) { enum riscv_symbol_type symbol_type; rtx offset; switch (GET_CODE (x)) { case HIGH: if (!riscv_symbolic_constant_p (XEXP (x, 0), &symbol_type) || !riscv_split_symbol_type (symbol_type)) return 0; /* This is simply an LUI. */ return 1; case CONST_INT: { int cost = riscv_integer_cost (INTVAL (x)); /* Force complicated constants to memory. */ return cost < 4 ? cost : 0; } case CONST_DOUBLE: /* See if we can use FMV directly. */ if (satisfies_constraint_zfli (x)) return 1; /* We can use x0 to load floating-point zero. */ return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0; case CONST_VECTOR: { /* TODO: This is not accurate, we will need to adapt the COST of CONST_VECTOR in the future for the following cases: - 1. const duplicate vector with element value in range of [-16, 15]. - 2. const duplicate vector with element value out range of [-16, 15]. - 3. const series vector. ...etc. */ if (riscv_v_ext_mode_p (GET_MODE (x))) { /* const series vector. */ rtx base, step; if (const_vec_series_p (x, &base, &step)) { /* This is not accurate, we will need to adapt the COST * accurately according to BASE && STEP. */ return 1; } rtx elt; if (const_vec_duplicate_p (x, &elt)) { /* Constants from -16 to 15 can be loaded with vmv.v.i. The Wc0, Wc1 constraints are already covered by the vi constraint so we do not need to check them here separately. */ if (satisfies_constraint_vi (x)) return 1; /* Any int/FP constants can always be broadcast from a scalar register. Loading of a floating-point constant incurs a literal-pool access. Allow this in order to increase vectorization possibilities. */ int n = riscv_const_insns (elt); if (CONST_DOUBLE_P (elt)) return 1 + 4; /* vfmv.v.f + memory access. */ else { /* We need as many insns as it takes to load the constant into a GPR and one vmv.v.x. */ if (n != 0) return 1 + n; else return 1 + 4; /*vmv.v.x + memory access. */ } } } /* TODO: We may support more const vector in the future. */ return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0; } case CONST: /* See if we can refer to X directly. */ if (riscv_symbolic_constant_p (x, &symbol_type)) return riscv_symbol_insns (symbol_type); /* Otherwise try splitting the constant into a base and offset. */ split_const (x, &x, &offset); if (offset != 0) { int n = riscv_const_insns (x); if (n != 0) return n + riscv_integer_cost (INTVAL (offset)); } return 0; case SYMBOL_REF: case LABEL_REF: return riscv_symbol_insns (riscv_classify_symbol (x)); /* TODO: In RVV, we get CONST_POLY_INT by using csrr VLENB instruction and several scalar shift or mult instructions, it is so far unknown. We set it to 4 temporarily. */ case CONST_POLY_INT: return 4; default: return 0; } } /* X is a doubleword constant that can be handled by splitting it into two words and loading each word separately. Return the number of instructions required to do this. */ int riscv_split_const_insns (rtx x) { unsigned int low, high; low = riscv_const_insns (riscv_subword (x, false)); high = riscv_const_insns (riscv_subword (x, true)); gcc_assert (low > 0 && high > 0); return low + high; } /* Return the number of instructions needed to implement INSN, given that it loads from or stores to MEM. */ int riscv_load_store_insns (rtx mem, rtx_insn *insn) { machine_mode mode; bool might_split_p; rtx set; gcc_assert (MEM_P (mem)); mode = GET_MODE (mem); /* Try to prove that INSN does not need to be split. */ might_split_p = true; if (GET_MODE_BITSIZE (mode).to_constant () <= 32) might_split_p = false; else if (GET_MODE_BITSIZE (mode).to_constant () == 64) { set = single_set (insn); if (set && !riscv_split_64bit_move_p (SET_DEST (set), SET_SRC (set))) might_split_p = false; } return riscv_address_insns (XEXP (mem, 0), mode, might_split_p); } /* Emit a move from SRC to DEST. Assume that the move expanders can handle all moves if !can_create_pseudo_p (). The distinction is important because, unlike emit_move_insn, the move expanders know how to force Pmode objects into the constant pool even when the constant pool address is not itself legitimate. */ rtx riscv_emit_move (rtx dest, rtx src) { return (can_create_pseudo_p () ? emit_move_insn (dest, src) : emit_move_insn_1 (dest, src)); } /* Emit an instruction of the form (set TARGET SRC). */ static rtx riscv_emit_set (rtx target, rtx src) { emit_insn (gen_rtx_SET (target, src)); return target; } /* Emit an instruction of the form (set DEST (CODE X Y)). */ rtx riscv_emit_binary (enum rtx_code code, rtx dest, rtx x, rtx y) { return riscv_emit_set (dest, gen_rtx_fmt_ee (code, GET_MODE (dest), x, y)); } /* Compute (CODE X Y) and store the result in a new register of mode MODE. Return that new register. */ static rtx riscv_force_binary (machine_mode mode, enum rtx_code code, rtx x, rtx y) { return riscv_emit_binary (code, gen_reg_rtx (mode), x, y); } static rtx riscv_swap_instruction (rtx inst) { gcc_assert (GET_MODE (inst) == SImode); if (BYTES_BIG_ENDIAN) inst = expand_unop (SImode, bswap_optab, inst, gen_reg_rtx (SImode), 1); return inst; } /* Copy VALUE to a register and return that register. If new pseudos are allowed, copy it into a new register, otherwise use DEST. */ static rtx riscv_force_temporary (rtx dest, rtx value) { if (can_create_pseudo_p ()) return force_reg (Pmode, value); else { riscv_emit_move (dest, value); return dest; } } /* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE, then add CONST_INT OFFSET to the result. */ static rtx riscv_unspec_address_offset (rtx base, rtx offset, enum riscv_symbol_type symbol_type) { base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base), UNSPEC_ADDRESS_FIRST + symbol_type); if (offset != const0_rtx) base = gen_rtx_PLUS (Pmode, base, offset); return gen_rtx_CONST (Pmode, base); } /* Return an UNSPEC address with underlying address ADDRESS and symbol type SYMBOL_TYPE. */ rtx riscv_unspec_address (rtx address, enum riscv_symbol_type symbol_type) { rtx base, offset; split_const (address, &base, &offset); return riscv_unspec_address_offset (base, offset, symbol_type); } /* If OP is an UNSPEC address, return the address to which it refers, otherwise return OP itself. */ static rtx riscv_strip_unspec_address (rtx op) { rtx base, offset; split_const (op, &base, &offset); if (UNSPEC_ADDRESS_P (base)) op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset)); return op; } /* If riscv_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the high part to BASE and return the result. Just return BASE otherwise. TEMP is as for riscv_force_temporary. The returned expression can be used as the first operand to a LO_SUM. */ static rtx riscv_unspec_offset_high (rtx temp, rtx addr, enum riscv_symbol_type symbol_type) { addr = gen_rtx_HIGH (Pmode, riscv_unspec_address (addr, symbol_type)); return riscv_force_temporary (temp, addr); } /* Load an entry from the GOT for a TLS GD access. */ static rtx riscv_got_load_tls_gd (rtx dest, rtx sym) { if (Pmode == DImode) return gen_got_load_tls_gddi (dest, sym); else return gen_got_load_tls_gdsi (dest, sym); } /* Load an entry from the GOT for a TLS IE access. */ static rtx riscv_got_load_tls_ie (rtx dest, rtx sym) { if (Pmode == DImode) return gen_got_load_tls_iedi (dest, sym); else return gen_got_load_tls_iesi (dest, sym); } /* Add in the thread pointer for a TLS LE access. */ static rtx riscv_tls_add_tp_le (rtx dest, rtx base, rtx sym) { rtx tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM); if (Pmode == DImode) return gen_tls_add_tp_ledi (dest, base, tp, sym); else return gen_tls_add_tp_lesi (dest, base, tp, sym); } /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise it appears in a MEM of that mode. Return true if ADDR is a legitimate constant in that context and can be split into high and low parts. If so, and if LOW_OUT is nonnull, emit the high part and store the low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise. TEMP is as for riscv_force_temporary and is used to load the high part into a register. When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be a legitimize SET_SRC for an .md pattern, otherwise the low part is guaranteed to be a legitimate address for mode MODE. */ bool riscv_split_symbol (rtx temp, rtx addr, machine_mode mode, rtx *low_out) { enum riscv_symbol_type symbol_type; if ((GET_CODE (addr) == HIGH && mode == MAX_MACHINE_MODE) || !riscv_symbolic_constant_p (addr, &symbol_type) || riscv_symbol_insns (symbol_type) == 0 || !riscv_split_symbol_type (symbol_type)) return false; if (low_out) switch (symbol_type) { case SYMBOL_ABSOLUTE: { rtx high = gen_rtx_HIGH (Pmode, copy_rtx (addr)); high = riscv_force_temporary (temp, high); *low_out = gen_rtx_LO_SUM (Pmode, high, addr); } break; case SYMBOL_PCREL: { static unsigned seqno; char buf[32]; rtx label; ssize_t bytes = snprintf (buf, sizeof (buf), ".LA%u", seqno); gcc_assert ((size_t) bytes < sizeof (buf)); label = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); SYMBOL_REF_FLAGS (label) |= SYMBOL_FLAG_LOCAL; /* ??? Ugly hack to make weak symbols work. May need to change the RTL for the auipc and/or low patterns to get a better fix for this. */ if (! nonzero_address_p (addr)) SYMBOL_REF_WEAK (label) = 1; if (temp == NULL) temp = gen_reg_rtx (Pmode); if (Pmode == DImode) emit_insn (gen_auipcdi (temp, copy_rtx (addr), GEN_INT (seqno))); else emit_insn (gen_auipcsi (temp, copy_rtx (addr), GEN_INT (seqno))); *low_out = gen_rtx_LO_SUM (Pmode, temp, label); seqno++; } break; default: gcc_unreachable (); } return true; } /* Return a legitimate address for REG + OFFSET. TEMP is as for riscv_force_temporary; it is only needed when OFFSET is not a SMALL_OPERAND. */ static rtx riscv_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset) { if (!SMALL_OPERAND (offset)) { rtx high; /* Leave OFFSET as a 16-bit offset and put the excess in HIGH. The addition inside the macro CONST_HIGH_PART may cause an overflow, so we need to force a sign-extension check. */ high = gen_int_mode (CONST_HIGH_PART (offset), Pmode); offset = CONST_LOW_PART (offset); high = riscv_force_temporary (temp, high); reg = riscv_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg)); } return plus_constant (Pmode, reg, offset); } /* The __tls_get_attr symbol. */ static GTY(()) rtx riscv_tls_symbol; /* Return an instruction sequence that calls __tls_get_addr. SYM is the TLS symbol we are referencing and TYPE is the symbol type to use (either global dynamic or local dynamic). RESULT is an RTX for the return value location. */ static rtx_insn * riscv_call_tls_get_addr (rtx sym, rtx result) { rtx a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST), func; rtx_insn *insn; if (!riscv_tls_symbol) riscv_tls_symbol = init_one_libfunc ("__tls_get_addr"); func = gen_rtx_MEM (FUNCTION_MODE, riscv_tls_symbol); start_sequence (); emit_insn (riscv_got_load_tls_gd (a0, sym)); insn = emit_call_insn (gen_call_value (result, func, const0_rtx, gen_int_mode (RISCV_CC_BASE, SImode))); RTL_CONST_CALL_P (insn) = 1; use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0); insn = get_insns (); end_sequence (); return insn; } /* Generate the code to access LOC, a thread-local SYMBOL_REF, and return its address. The return value will be both a valid address and a valid SET_SRC (either a REG or a LO_SUM). */ static rtx riscv_legitimize_tls_address (rtx loc) { rtx dest, tp, tmp; enum tls_model model = SYMBOL_REF_TLS_MODEL (loc); #if 0 /* TLS copy relocs are now deprecated and should not be used. */ /* Since we support TLS copy relocs, non-PIC TLS accesses may all use LE. */ if (!flag_pic) model = TLS_MODEL_LOCAL_EXEC; #endif switch (model) { case TLS_MODEL_LOCAL_DYNAMIC: /* Rely on section anchors for the optimization that LDM TLS provides. The anchor's address is loaded with GD TLS. */ case TLS_MODEL_GLOBAL_DYNAMIC: tmp = gen_rtx_REG (Pmode, GP_RETURN); dest = gen_reg_rtx (Pmode); emit_libcall_block (riscv_call_tls_get_addr (loc, tmp), dest, tmp, loc); break; case TLS_MODEL_INITIAL_EXEC: /* la.tls.ie; tp-relative add */ tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM); tmp = gen_reg_rtx (Pmode); emit_insn (riscv_got_load_tls_ie (tmp, loc)); dest = gen_reg_rtx (Pmode); emit_insn (gen_add3_insn (dest, tmp, tp)); break; case TLS_MODEL_LOCAL_EXEC: tmp = riscv_unspec_offset_high (NULL, loc, SYMBOL_TLS_LE); dest = gen_reg_rtx (Pmode); emit_insn (riscv_tls_add_tp_le (dest, tmp, loc)); dest = gen_rtx_LO_SUM (Pmode, dest, riscv_unspec_address (loc, SYMBOL_TLS_LE)); break; default: gcc_unreachable (); } return dest; } /* If X is not a valid address for mode MODE, force it into a register. */ static rtx riscv_force_address (rtx x, machine_mode mode) { if (!riscv_legitimate_address_p (mode, x, false)) x = force_reg (Pmode, x); return x; } /* Modify base + offset so that offset fits within a compressed load/store insn and the excess is added to base. */ static rtx riscv_shorten_lw_offset (rtx base, HOST_WIDE_INT offset) { rtx addr, high; /* Leave OFFSET as an unsigned 5-bit offset scaled by 4 and put the excess into HIGH. */ high = GEN_INT (offset & ~CSW_MAX_OFFSET); offset &= CSW_MAX_OFFSET; if (!SMALL_OPERAND (INTVAL (high))) high = force_reg (Pmode, high); base = force_reg (Pmode, gen_rtx_PLUS (Pmode, high, base)); addr = plus_constant (Pmode, base, offset); return addr; } /* Helper for riscv_legitimize_address. Given X, return true if it is a left shift by 1, 2 or 3 positions or a multiply by 2, 4 or 8. This respectively represent canonical shift-add rtxs or scaled memory addresses. */ static bool mem_shadd_or_shadd_rtx_p (rtx x) { return ((GET_CODE (x) == ASHIFT || GET_CODE (x) == MULT) && CONST_INT_P (XEXP (x, 1)) && ((GET_CODE (x) == ASHIFT && IN_RANGE (INTVAL (XEXP (x, 1)), 1, 3)) || (GET_CODE (x) == MULT && IN_RANGE (exact_log2 (INTVAL (XEXP (x, 1))), 1, 3)))); } /* This function is used to implement LEGITIMIZE_ADDRESS. If X can be legitimized in a way that the generic machinery might not expect, return a new address, otherwise return NULL. MODE is the mode of the memory being accessed. */ static rtx riscv_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, machine_mode mode) { rtx addr; if (riscv_tls_symbol_p (x)) return riscv_legitimize_tls_address (x); /* See if the address can split into a high part and a LO_SUM. */ if (riscv_split_symbol (NULL, x, mode, &addr)) return riscv_force_address (addr, mode); /* Handle BASE + OFFSET. */ if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0) { rtx base = XEXP (x, 0); HOST_WIDE_INT offset = INTVAL (XEXP (x, 1)); /* Handle (plus (plus (mult (a) (mem_shadd_constant)) (fp)) (C)) case. */ if (GET_CODE (base) == PLUS && mem_shadd_or_shadd_rtx_p (XEXP (base, 0)) && SMALL_OPERAND (offset)) { rtx index = XEXP (base, 0); rtx fp = XEXP (base, 1); if (REG_P (fp) && REGNO (fp) == VIRTUAL_STACK_VARS_REGNUM) { /* If we were given a MULT, we must fix the constant as we're going to create the ASHIFT form. */ int shift_val = INTVAL (XEXP (index, 1)); if (GET_CODE (index) == MULT) shift_val = exact_log2 (shift_val); rtx reg1 = gen_reg_rtx (Pmode); rtx reg2 = gen_reg_rtx (Pmode); rtx reg3 = gen_reg_rtx (Pmode); riscv_emit_binary (PLUS, reg1, fp, GEN_INT (offset)); riscv_emit_binary (ASHIFT, reg2, XEXP (index, 0), GEN_INT (shift_val)); riscv_emit_binary (PLUS, reg3, reg2, reg1); return reg3; } } if (!riscv_valid_base_register_p (base, mode, false)) base = copy_to_mode_reg (Pmode, base); if (optimize_function_for_size_p (cfun) && (strcmp (current_pass->name, "shorten_memrefs") == 0) && mode == SImode) /* Convert BASE + LARGE_OFFSET into NEW_BASE + SMALL_OFFSET to allow possible compressed load/store. */ addr = riscv_shorten_lw_offset (base, offset); else addr = riscv_add_offset (NULL, base, offset); return riscv_force_address (addr, mode); } return x; } /* Load VALUE into DEST. TEMP is as for riscv_force_temporary. ORIG_MODE is the original src mode before promotion. */ void riscv_move_integer (rtx temp, rtx dest, HOST_WIDE_INT value, machine_mode orig_mode) { struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS]; machine_mode mode; int i, num_ops; rtx x; mode = GET_MODE (dest); /* We use the original mode for the riscv_build_integer call, because HImode values are given special treatment. */ num_ops = riscv_build_integer (codes, value, orig_mode); if (can_create_pseudo_p () && num_ops > 2 /* not a simple constant */ && num_ops >= riscv_split_integer_cost (value)) x = riscv_split_integer (value, mode); else { codes[0].value = trunc_int_for_mode (codes[0].value, mode); /* Apply each binary operation to X. */ x = GEN_INT (codes[0].value); for (i = 1; i < num_ops; i++) { if (!can_create_pseudo_p ()) x = riscv_emit_set (temp, x); else x = force_reg (mode, x); codes[i].value = trunc_int_for_mode (codes[i].value, mode); x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value)); } } riscv_emit_set (dest, x); } /* Subroutine of riscv_legitimize_move. Move constant SRC into register DEST given that SRC satisfies immediate_operand but doesn't satisfy move_operand. */ static void riscv_legitimize_const_move (machine_mode mode, rtx dest, rtx src) { rtx base, offset; /* Split moves of big integers into smaller pieces. */ if (splittable_const_int_operand (src, mode)) { riscv_move_integer (dest, dest, INTVAL (src), mode); return; } if (satisfies_constraint_zfli (src)) { riscv_emit_set (dest, src); return; } /* Split moves of symbolic constants into high/low pairs. */ if (riscv_split_symbol (dest, src, MAX_MACHINE_MODE, &src)) { riscv_emit_set (dest, src); return; } /* Generate the appropriate access sequences for TLS symbols. */ if (riscv_tls_symbol_p (src)) { riscv_emit_move (dest, riscv_legitimize_tls_address (src)); return; } /* If we have (const (plus symbol offset)), and that expression cannot be forced into memory, load the symbol first and add in the offset. Also prefer to do this even if the constant _can_ be forced into memory, as it usually produces better code. */ split_const (src, &base, &offset); if (offset != const0_rtx && (targetm.cannot_force_const_mem (mode, src) || can_create_pseudo_p ())) { base = riscv_force_temporary (dest, base); riscv_emit_move (dest, riscv_add_offset (NULL, base, INTVAL (offset))); return; } /* Handle below format. (const:DI (plus:DI (symbol_ref:DI ("ic") [flags 0x2] ) <- op_0 (const_poly_int:DI [16, 16]) // <- op_1 )) */ if (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == PLUS && CONST_POLY_INT_P (XEXP (XEXP (src, 0), 1))) { rtx dest_tmp = gen_reg_rtx (mode); rtx tmp = gen_reg_rtx (mode); riscv_emit_move (dest, XEXP (XEXP (src, 0), 0)); riscv_legitimize_poly_move (mode, dest_tmp, tmp, XEXP (XEXP (src, 0), 1)); emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, dest, dest_tmp))); return; } src = force_const_mem (mode, src); /* When using explicit relocs, constant pool references are sometimes not legitimate addresses. */ riscv_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0)); riscv_emit_move (dest, src); } /* Report when we try to do something that requires vector when vector is disabled. This is an error of last resort and isn't very high-quality. It usually involves attempts to measure the vector length in some way. */ static void riscv_report_v_required (void) { static bool reported_p = false; /* Avoid reporting a slew of messages for a single oversight. */ if (reported_p) return; error ("this operation requires the RVV ISA extension"); inform (input_location, "you can enable RVV using the command-line" " option %<-march%>, or by using the %" " attribute or pragma"); reported_p = true; } /* Helper function to operation for rtx_code CODE. */ static void riscv_expand_op (enum rtx_code code, machine_mode mode, rtx op0, rtx op1, rtx op2) { if (can_create_pseudo_p ()) { rtx result; if (GET_RTX_CLASS (code) == RTX_UNARY) result = expand_simple_unop (mode, code, op1, NULL_RTX, false); else result = expand_simple_binop (mode, code, op1, op2, NULL_RTX, false, OPTAB_DIRECT); riscv_emit_move (op0, result); } else { rtx pat; /* The following implementation is for prologue and epilogue. Because prologue and epilogue can not use pseudo register. We can't using expand_simple_binop or expand_simple_unop. */ if (GET_RTX_CLASS (code) == RTX_UNARY) pat = gen_rtx_fmt_e (code, mode, op1); else pat = gen_rtx_fmt_ee (code, mode, op1, op2); emit_insn (gen_rtx_SET (op0, pat)); } } /* Expand mult operation with constant integer, multiplicand also used as a * temporary register. */ static void riscv_expand_mult_with_const_int (machine_mode mode, rtx dest, rtx multiplicand, int multiplier) { if (multiplier == 0) { riscv_emit_move (dest, GEN_INT (0)); return; } bool neg_p = multiplier < 0; int multiplier_abs = abs (multiplier); if (multiplier_abs == 1) { if (neg_p) riscv_expand_op (NEG, mode, dest, multiplicand, NULL_RTX); else riscv_emit_move (dest, multiplicand); } else { if (pow2p_hwi (multiplier_abs)) { /* multiplicand = [BYTES_PER_RISCV_VECTOR]. 1. const_poly_int:P [BYTES_PER_RISCV_VECTOR * 8]. Sequence: csrr a5, vlenb slli a5, a5, 3 2. const_poly_int:P [-BYTES_PER_RISCV_VECTOR * 8]. Sequence: csrr a5, vlenb slli a5, a5, 3 neg a5, a5 */ riscv_expand_op (ASHIFT, mode, dest, multiplicand, gen_int_mode (exact_log2 (multiplier_abs), QImode)); if (neg_p) riscv_expand_op (NEG, mode, dest, dest, NULL_RTX); } else if (pow2p_hwi (multiplier_abs + 1)) { /* multiplicand = [BYTES_PER_RISCV_VECTOR]. 1. const_poly_int:P [BYTES_PER_RISCV_VECTOR * 7]. Sequence: csrr a5, vlenb slli a4, a5, 3 sub a5, a4, a5 2. const_poly_int:P [-BYTES_PER_RISCV_VECTOR * 7]. Sequence: csrr a5, vlenb slli a4, a5, 3 sub a5, a4, a5 + neg a5, a5 => sub a5, a5, a4 */ riscv_expand_op (ASHIFT, mode, dest, multiplicand, gen_int_mode (exact_log2 (multiplier_abs + 1), QImode)); if (neg_p) riscv_expand_op (MINUS, mode, dest, multiplicand, dest); else riscv_expand_op (MINUS, mode, dest, dest, multiplicand); } else if (pow2p_hwi (multiplier - 1)) { /* multiplicand = [BYTES_PER_RISCV_VECTOR]. 1. const_poly_int:P [BYTES_PER_RISCV_VECTOR * 9]. Sequence: csrr a5, vlenb slli a4, a5, 3 add a5, a4, a5 2. const_poly_int:P [-BYTES_PER_RISCV_VECTOR * 9]. Sequence: csrr a5, vlenb slli a4, a5, 3 add a5, a4, a5 neg a5, a5 */ riscv_expand_op (ASHIFT, mode, dest, multiplicand, gen_int_mode (exact_log2 (multiplier_abs - 1), QImode)); riscv_expand_op (PLUS, mode, dest, dest, multiplicand); if (neg_p) riscv_expand_op (NEG, mode, dest, dest, NULL_RTX); } else { /* We use multiplication for remaining cases. */ gcc_assert ( TARGET_MUL && "M-extension must be enabled to calculate the poly_int " "size/offset."); riscv_emit_move (dest, gen_int_mode (multiplier, mode)); riscv_expand_op (MULT, mode, dest, dest, multiplicand); } } } /* Analyze src and emit const_poly_int mov sequence. */ static void riscv_legitimize_poly_move (machine_mode mode, rtx dest, rtx tmp, rtx src) { poly_int64 value = rtx_to_poly_int64 (src); int offset = value.coeffs[0]; int factor = value.coeffs[1]; int vlenb = BYTES_PER_RISCV_VECTOR.coeffs[1]; int div_factor = 0; /* Calculate (const_poly_int:MODE [m, n]) using scalar instructions. For any (const_poly_int:MODE [m, n]), the calculation formula is as follows. constant = m - n. When minimum VLEN = 32, poly of VLENB = (4, 4). base = vlenb(4, 4) or vlenb/2(2, 2) or vlenb/4(1, 1). When minimum VLEN > 32, poly of VLENB = (8, 8). base = vlenb(8, 8) or vlenb/2(4, 4) or vlenb/4(2, 2) or vlenb/8(1, 1). magn = (n, n) / base. (m, n) = base * magn + constant. This calculation doesn't need div operation. */ if (known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (Pmode))) emit_move_insn (tmp, gen_int_mode (BYTES_PER_RISCV_VECTOR, mode)); else { emit_move_insn (gen_highpart (Pmode, tmp), CONST0_RTX (Pmode)); emit_move_insn (gen_lowpart (Pmode, tmp), gen_int_mode (BYTES_PER_RISCV_VECTOR, Pmode)); } if (BYTES_PER_RISCV_VECTOR.is_constant ()) { gcc_assert (value.is_constant ()); riscv_emit_move (dest, GEN_INT (value.to_constant ())); return; } else { int max_power = exact_log2 (MAX_POLY_VARIANT); for (int i = 0; i <= max_power; i++) { int possible_div_factor = 1 << i; if (factor % (vlenb / possible_div_factor) == 0) { div_factor = possible_div_factor; break; } } gcc_assert (div_factor != 0); } if (div_factor != 1) riscv_expand_op (LSHIFTRT, mode, tmp, tmp, gen_int_mode (exact_log2 (div_factor), QImode)); riscv_expand_mult_with_const_int (mode, dest, tmp, factor / (vlenb / div_factor)); HOST_WIDE_INT constant = offset - factor; if (constant == 0) return; else if (SMALL_OPERAND (constant)) riscv_expand_op (PLUS, mode, dest, dest, gen_int_mode (constant, mode)); else { /* Handle the constant value is not a 12-bit value. */ rtx high; /* Leave OFFSET as a 16-bit offset and put the excess in HIGH. The addition inside the macro CONST_HIGH_PART may cause an overflow, so we need to force a sign-extension check. */ high = gen_int_mode (CONST_HIGH_PART (constant), mode); constant = CONST_LOW_PART (constant); riscv_emit_move (tmp, high); riscv_expand_op (PLUS, mode, dest, tmp, dest); riscv_expand_op (PLUS, mode, dest, dest, gen_int_mode (constant, mode)); } } /* Adjust scalable frame of vector for prologue && epilogue. */ static void riscv_v_adjust_scalable_frame (rtx target, poly_int64 offset, bool epilogue) { rtx tmp = RISCV_PROLOGUE_TEMP (Pmode); rtx adjust_size = RISCV_PROLOGUE_TEMP2 (Pmode); rtx insn, dwarf, adjust_frame_rtx; riscv_legitimize_poly_move (Pmode, adjust_size, tmp, gen_int_mode (offset, Pmode)); if (epilogue) insn = gen_add3_insn (target, target, adjust_size); else insn = gen_sub3_insn (target, target, adjust_size); insn = emit_insn (insn); RTX_FRAME_RELATED_P (insn) = 1; adjust_frame_rtx = gen_rtx_SET (target, plus_constant (Pmode, target, epilogue ? offset : -offset)); dwarf = alloc_reg_note (REG_FRAME_RELATED_EXPR, copy_rtx (adjust_frame_rtx), NULL_RTX); REG_NOTES (insn) = dwarf; } /* If (set DEST SRC) is not a valid move instruction, emit an equivalent sequence that is valid. */ bool riscv_legitimize_move (machine_mode mode, rtx dest, rtx src) { if (CONST_POLY_INT_P (src)) { /* Handle: (insn 183 182 184 6 (set (mem:QI (plus:DI (reg/f:DI 156) (const_int 96 [0x60])) [0 S1 A8]) (const_poly_int:QI [8, 8])) "../../../../riscv-gcc/libgcc/unwind-dw2.c":1579:3 -1 (nil)) */ if (MEM_P (dest)) { emit_move_insn (dest, force_reg (mode, src)); return true; } poly_int64 value = rtx_to_poly_int64 (src); if (!value.is_constant () && !TARGET_VECTOR) { riscv_report_v_required (); return false; } if (satisfies_constraint_vp (src) && GET_MODE (src) == Pmode) return false; if (GET_MODE_SIZE (mode).to_constant () < GET_MODE_SIZE (Pmode)) { /* In RV32 system, handle (const_poly_int:QI [m, n]) (const_poly_int:HI [m, n]). In RV64 system, handle (const_poly_int:QI [m, n]) (const_poly_int:HI [m, n]) (const_poly_int:SI [m, n]). */ rtx tmp = gen_reg_rtx (Pmode); riscv_legitimize_poly_move (Pmode, gen_lowpart (Pmode, dest), tmp, src); } else { /* In RV32 system, handle (const_poly_int:SI [m, n]) (const_poly_int:DI [m, n]). In RV64 system, handle (const_poly_int:DI [m, n]). FIXME: Maybe we could gen SImode in RV32 and then sign-extend to DImode, the offset should not exceed 4GiB in general. */ rtx tmp = gen_reg_rtx (mode); riscv_legitimize_poly_move (mode, dest, tmp, src); } return true; } /* Expand (set (reg:DI target) (subreg:DI (reg:V8QI reg) 0)) Expand this data movement instead of simply forbid it since we can improve the code generation for this following scenario by RVV auto-vectorization: (set (reg:V8QI 149) (vec_duplicate:V8QI (reg:QI)) (set (reg:DI target) (subreg:DI (reg:V8QI reg) 0)) Since RVV mode and scalar mode are in different REG_CLASS, we need to explicitly move data from V_REGS to GR_REGS by scalar move. */ if (SUBREG_P (src) && riscv_v_ext_mode_p (GET_MODE (SUBREG_REG (src)))) { machine_mode vmode = GET_MODE (SUBREG_REG (src)); unsigned int mode_size = GET_MODE_SIZE (mode).to_constant (); unsigned int vmode_size = GET_MODE_SIZE (vmode).to_constant (); /* We should be able to handle both partial and paradoxical subreg. */ unsigned int nunits = vmode_size > mode_size ? vmode_size / mode_size : 1; scalar_mode smode = as_a (mode); unsigned int index = SUBREG_BYTE (src).to_constant () / mode_size; unsigned int num = smode == DImode && !TARGET_VECTOR_ELEN_64 ? 2 : 1; if (num == 2) { /* If we want to extract 64bit value but ELEN < 64, we use RVV vector mode with EEW = 32 to extract the highpart and lowpart. */ smode = SImode; nunits = nunits * 2; } vmode = riscv_vector::get_vector_mode (smode, nunits).require (); enum insn_code icode = convert_optab_handler (vec_extract_optab, vmode, smode); gcc_assert (icode != CODE_FOR_nothing); rtx v = gen_lowpart (vmode, SUBREG_REG (src)); for (unsigned int i = 0; i < num; i++) { class expand_operand ops[3]; rtx result; if (num == 1) result = dest; else if (i == 0) result = gen_lowpart (smode, dest); else result = gen_reg_rtx (smode); create_output_operand (&ops[0], result, smode); ops[0].target = 1; create_input_operand (&ops[1], v, vmode); create_integer_operand (&ops[2], index + i); expand_insn (icode, 3, ops); if (ops[0].value != result) emit_move_insn (result, ops[0].value); if (i == 1) { rtx tmp = expand_binop (Pmode, ashl_optab, gen_lowpart (Pmode, result), gen_int_mode (32, Pmode), NULL_RTX, 0, OPTAB_DIRECT); rtx tmp2 = expand_binop (Pmode, ior_optab, tmp, dest, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (dest, tmp2); } } return true; } /* Expand (set (reg:QI target) (mem:QI (address))) to (set (reg:DI temp) (zero_extend:DI (mem:QI (address)))) (set (reg:QI target) (subreg:QI (reg:DI temp) 0)) with auto-sign/zero extend. */ if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode).to_constant () < UNITS_PER_WORD && can_create_pseudo_p () && MEM_P (src)) { rtx temp_reg; int zero_extend_p; temp_reg = gen_reg_rtx (word_mode); zero_extend_p = (LOAD_EXTEND_OP (mode) == ZERO_EXTEND); emit_insn (gen_extend_insn (temp_reg, src, word_mode, mode, zero_extend_p)); riscv_emit_move (dest, gen_lowpart (mode, temp_reg)); return true; } if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode)) { rtx reg; if (GET_CODE (src) == CONST_INT) { /* Apply the equivalent of PROMOTE_MODE here for constants to improve cse. */ machine_mode promoted_mode = mode; if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode).to_constant () < UNITS_PER_WORD) promoted_mode = word_mode; if (splittable_const_int_operand (src, mode)) { reg = gen_reg_rtx (promoted_mode); riscv_move_integer (reg, reg, INTVAL (src), mode); } else reg = force_reg (promoted_mode, src); if (promoted_mode != mode) reg = gen_lowpart (mode, reg); } else reg = force_reg (mode, src); riscv_emit_move (dest, reg); return true; } /* We need to deal with constants that would be legitimate immediate_operands but aren't legitimate move_operands. */ if (CONSTANT_P (src) && !move_operand (src, mode)) { riscv_legitimize_const_move (mode, dest, src); set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src)); return true; } /* RISC-V GCC may generate non-legitimate address due to we provide some pattern for optimize access PIC local symbol and it's make GCC generate unrecognizable instruction during optmizing. */ if (MEM_P (dest) && !riscv_legitimate_address_p (mode, XEXP (dest, 0), reload_completed)) { XEXP (dest, 0) = riscv_force_address (XEXP (dest, 0), mode); } if (MEM_P (src) && !riscv_legitimate_address_p (mode, XEXP (src, 0), reload_completed)) { XEXP (src, 0) = riscv_force_address (XEXP (src, 0), mode); } return false; } /* Return true if there is an instruction that implements CODE and accepts X as an immediate operand. */ static int riscv_immediate_operand_p (int code, HOST_WIDE_INT x) { switch (code) { case ASHIFT: case ASHIFTRT: case LSHIFTRT: /* All shift counts are truncated to a valid constant. */ return true; case AND: case IOR: case XOR: case PLUS: case LT: case LTU: /* These instructions take 12-bit signed immediates. */ return SMALL_OPERAND (x); case LE: /* We add 1 to the immediate and use SLT. */ return SMALL_OPERAND (x + 1); case LEU: /* Likewise SLTU, but reject the always-true case. */ return SMALL_OPERAND (x + 1) && x + 1 != 0; case GE: case GEU: /* We can emulate an immediate of 1 by using GT/GTU against x0. */ return x == 1; default: /* By default assume that x0 can be used for 0. */ return x == 0; } } /* Return the cost of binary operation X, given that the instruction sequence for a word-sized or smaller operation takes SIGNLE_INSNS instructions and that the sequence of a double-word operation takes DOUBLE_INSNS instructions. */ static int riscv_binary_cost (rtx x, int single_insns, int double_insns) { if (!riscv_v_ext_mode_p (GET_MODE (x)) && GET_MODE_SIZE (GET_MODE (x)).to_constant () == UNITS_PER_WORD * 2) return COSTS_N_INSNS (double_insns); return COSTS_N_INSNS (single_insns); } /* Return the cost of sign- or zero-extending OP. */ static int riscv_extend_cost (rtx op, bool unsigned_p) { if (MEM_P (op)) return 0; if (unsigned_p && GET_MODE (op) == QImode) /* We can use ANDI. */ return COSTS_N_INSNS (1); /* ZBA provide zext.w. */ if (TARGET_ZBA && TARGET_64BIT && unsigned_p && GET_MODE (op) == SImode) return COSTS_N_INSNS (1); /* ZBB provide zext.h, sext.b and sext.h. */ if (TARGET_ZBB) { if (!unsigned_p && GET_MODE (op) == QImode) return COSTS_N_INSNS (1); if (GET_MODE (op) == HImode) return COSTS_N_INSNS (1); } if (!unsigned_p && GET_MODE (op) == SImode) /* We can use SEXT.W. */ return COSTS_N_INSNS (1); /* We need to use a shift left and a shift right. */ return COSTS_N_INSNS (2); } /* Implement TARGET_RTX_COSTS. */ #define SINGLE_SHIFT_COST 1 static bool riscv_rtx_costs (rtx x, machine_mode mode, int outer_code, int opno ATTRIBUTE_UNUSED, int *total, bool speed) { /* TODO: We set RVV instruction cost as 1 by default. Cost Model need to be well analyzed and supported in the future. */ if (riscv_v_ext_mode_p (mode)) { *total = COSTS_N_INSNS (1); return true; } bool float_mode_p = FLOAT_MODE_P (mode); int cost; switch (GET_CODE (x)) { case SET: /* If we are called for an INSN that's a simple set of a register, then cost based on the SET_SRC alone. */ if (outer_code == INSN && REG_P (SET_DEST (x))) { riscv_rtx_costs (SET_SRC (x), mode, outer_code, opno, total, speed); return true; } /* Otherwise return FALSE indicating we should recurse into both the SET_DEST and SET_SRC combining the cost of both. */ return false; case CONST_INT: /* trivial constants checked using OUTER_CODE in case they are encodable in insn itself w/o need for additional insn(s). */ if (riscv_immediate_operand_p (outer_code, INTVAL (x))) { *total = 0; return true; } /* Fall through. */ case SYMBOL_REF: case LABEL_REF: case CONST_DOUBLE: /* With TARGET_SUPPORTS_WIDE_INT const int can't be in CONST_DOUBLE rtl object. Weird recheck due to switch-case fall through above. */ if (GET_CODE (x) == CONST_DOUBLE) gcc_assert (GET_MODE (x) != VOIDmode); /* Fall through. */ case CONST: /* Non trivial CONST_INT Fall through: check if need multiple insns. */ if ((cost = riscv_const_insns (x)) > 0) { /* 1. Hoist will GCSE constants only if TOTAL returned is non-zero. 2. For constants loaded more than once, the approach so far has been to duplicate the operation than to CSE the constant. 3. TODO: make cost more accurate specially if riscv_const_insns returns > 1. */ if (outer_code == SET || GET_MODE (x) == VOIDmode) *total = COSTS_N_INSNS (1); } else /* The instruction will be fetched from the constant pool. */ *total = COSTS_N_INSNS (riscv_symbol_insns (SYMBOL_ABSOLUTE)); return true; case MEM: /* If the address is legitimate, return the number of instructions it needs. */ if ((cost = riscv_address_insns (XEXP (x, 0), mode, true)) > 0) { /* When optimizing for size, make uncompressible 32-bit addresses more expensive so that compressible 32-bit addresses are preferred. */ if ((TARGET_RVC || TARGET_ZCA) && !speed && riscv_mshorten_memrefs && mode == SImode && !riscv_compressed_lw_address_p (XEXP (x, 0))) cost++; *total = COSTS_N_INSNS (cost + tune_param->memory_cost); return true; } /* Otherwise use the default handling. */ return false; case IF_THEN_ELSE: if ((TARGET_SFB_ALU || TARGET_XTHEADCONDMOV) && reg_or_0_operand (XEXP (x, 1), mode) && sfb_alu_operand (XEXP (x, 2), mode) && comparison_operator (XEXP (x, 0), VOIDmode)) { /* For predicated conditional-move operations we assume the cost of a single instruction even though there are actually two. */ *total = COSTS_N_INSNS (1); return true; } else if (TARGET_ZICOND_LIKE && outer_code == SET && ((GET_CODE (XEXP (x, 1)) == REG && XEXP (x, 2) == CONST0_RTX (GET_MODE (XEXP (x, 1)))) || (GET_CODE (XEXP (x, 2)) == REG && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 2)))) || (GET_CODE (XEXP (x, 1)) == REG && rtx_equal_p (XEXP (x, 1), XEXP (XEXP (x, 0), 0))) || (GET_CODE (XEXP (x, 1)) == REG && rtx_equal_p (XEXP (x, 2), XEXP (XEXP (x, 0), 0))))) { *total = COSTS_N_INSNS (1); return true; } else if (LABEL_REF_P (XEXP (x, 1)) && XEXP (x, 2) == pc_rtx) { if (equality_operator (XEXP (x, 0), mode) && GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTRACT) { *total = COSTS_N_INSNS (SINGLE_SHIFT_COST + 1); return true; } if (order_operator (XEXP (x, 0), mode)) { *total = COSTS_N_INSNS (1); return true; } } return false; case NOT: *total = COSTS_N_INSNS (GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD ? 2 : 1); return false; case AND: /* slli.uw pattern for zba. */ if (TARGET_ZBA && TARGET_64BIT && mode == DImode && GET_CODE (XEXP (x, 0)) == ASHIFT) { rtx and_rhs = XEXP (x, 1); rtx ashift_lhs = XEXP (XEXP (x, 0), 0); rtx ashift_rhs = XEXP (XEXP (x, 0), 1); if (REG_P (ashift_lhs) && CONST_INT_P (ashift_rhs) && CONST_INT_P (and_rhs) && ((INTVAL (and_rhs) >> INTVAL (ashift_rhs)) == 0xffffffff)) *total = COSTS_N_INSNS (1); return true; } /* bclri pattern for zbs. */ if (TARGET_ZBS && not_single_bit_mask_operand (XEXP (x, 1), VOIDmode)) { *total = COSTS_N_INSNS (1); return true; } /* bclr pattern for zbs. */ if (TARGET_ZBS && REG_P (XEXP (x, 1)) && GET_CODE (XEXP (x, 0)) == ROTATE && CONST_INT_P (XEXP ((XEXP (x, 0)), 0)) && INTVAL (XEXP ((XEXP (x, 0)), 0)) == -2) { *total = COSTS_N_INSNS (1); return true; } gcc_fallthrough (); case IOR: case XOR: /* orn, andn and xorn pattern for zbb. */ if (TARGET_ZBB && GET_CODE (XEXP (x, 0)) == NOT) { *total = riscv_binary_cost (x, 1, 2); return true; } /* bset[i] and binv[i] pattern for zbs. */ if ((GET_CODE (x) == IOR || GET_CODE (x) == XOR) && TARGET_ZBS && ((GET_CODE (XEXP (x, 0)) == ASHIFT && CONST_INT_P (XEXP (XEXP (x, 0), 0))) || single_bit_mask_operand (XEXP (x, 1), VOIDmode))) { *total = COSTS_N_INSNS (1); return true; } /* Double-word operations use two single-word operations. */ *total = riscv_binary_cost (x, 1, 2); return false; case ZERO_EXTRACT: /* This is an SImode shift. */ if (outer_code == SET && CONST_INT_P (XEXP (x, 1)) && CONST_INT_P (XEXP (x, 2)) && (INTVAL (XEXP (x, 2)) > 0) && (INTVAL (XEXP (x, 1)) + INTVAL (XEXP (x, 2)) == 32)) { *total = COSTS_N_INSNS (SINGLE_SHIFT_COST); return true; } /* bit extraction pattern (zbs:bext, xtheadbs:tst). */ if ((TARGET_ZBS || TARGET_XTHEADBS) && outer_code == SET && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 1) { *total = COSTS_N_INSNS (SINGLE_SHIFT_COST); return true; } gcc_fallthrough (); case SIGN_EXTRACT: if (TARGET_XTHEADBB && outer_code == SET && CONST_INT_P (XEXP (x, 1)) && CONST_INT_P (XEXP (x, 2))) { *total = COSTS_N_INSNS (SINGLE_SHIFT_COST); return true; } return false; case ASHIFT: /* bset pattern for zbs. */ if (TARGET_ZBS && CONST_INT_P (XEXP (x, 0)) && INTVAL (XEXP (x, 0)) == 1) { *total = COSTS_N_INSNS (1); return true; } gcc_fallthrough (); case ASHIFTRT: case LSHIFTRT: *total = riscv_binary_cost (x, SINGLE_SHIFT_COST, CONSTANT_P (XEXP (x, 1)) ? 4 : 9); return false; case ABS: *total = COSTS_N_INSNS (float_mode_p ? 1 : 3); return false; case LO_SUM: *total = set_src_cost (XEXP (x, 0), mode, speed); return true; case LT: /* This is an SImode shift. */ if (outer_code == SET && GET_MODE (x) == DImode && GET_MODE (XEXP (x, 0)) == SImode) { *total = COSTS_N_INSNS (SINGLE_SHIFT_COST); return true; } /* Fall through. */ case LTU: case LE: case LEU: case GT: case GTU: case GE: case GEU: case EQ: case NE: /* Branch comparisons have VOIDmode, so use the first operand's mode instead. */ mode = GET_MODE (XEXP (x, 0)); if (float_mode_p) *total = tune_param->fp_add[mode == DFmode]; else *total = riscv_binary_cost (x, 1, 3); return false; case UNORDERED: case ORDERED: /* (FEQ(A, A) & FEQ(B, B)) compared against 0. */ mode = GET_MODE (XEXP (x, 0)); *total = tune_param->fp_add[mode == DFmode] + COSTS_N_INSNS (2); return false; case UNEQ: /* (FEQ(A, A) & FEQ(B, B)) compared against FEQ(A, B). */ mode = GET_MODE (XEXP (x, 0)); *total = tune_param->fp_add[mode == DFmode] + COSTS_N_INSNS (3); return false; case LTGT: /* (FLT(A, A) || FGT(B, B)). */ mode = GET_MODE (XEXP (x, 0)); *total = tune_param->fp_add[mode == DFmode] + COSTS_N_INSNS (2); return false; case UNGE: case UNGT: case UNLE: case UNLT: /* FLT or FLE, but guarded by an FFLAGS read and write. */ mode = GET_MODE (XEXP (x, 0)); *total = tune_param->fp_add[mode == DFmode] + COSTS_N_INSNS (4); return false; case MINUS: if (float_mode_p) *total = tune_param->fp_add[mode == DFmode]; else *total = riscv_binary_cost (x, 1, 4); return false; case PLUS: /* add.uw pattern for zba. */ if (TARGET_ZBA && (TARGET_64BIT && (mode == DImode)) && GET_CODE (XEXP (x, 0)) == ZERO_EXTEND && REG_P (XEXP (XEXP (x, 0), 0)) && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode) { *total = COSTS_N_INSNS (1); return true; } /* shNadd pattern for zba. */ if (TARGET_ZBA && ((!TARGET_64BIT && (mode == SImode)) || (TARGET_64BIT && (mode == DImode))) && (GET_CODE (XEXP (x, 0)) == ASHIFT) && REG_P (XEXP (XEXP (x, 0), 0)) && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && IN_RANGE (INTVAL (XEXP (XEXP (x, 0), 1)), 1, 3)) { *total = COSTS_N_INSNS (1); return true; } /* Before strength-reduction, the shNadd can be expressed as the addition of a multiplication with a power-of-two. If this case is not handled, the strength-reduction in expmed.c will calculate an inflated cost. */ if (TARGET_ZBA && mode == word_mode && GET_CODE (XEXP (x, 0)) == MULT && REG_P (XEXP (XEXP (x, 0), 0)) && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && pow2p_hwi (INTVAL (XEXP (XEXP (x, 0), 1))) && IN_RANGE (exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1))), 1, 3)) { *total = COSTS_N_INSNS (1); return true; } /* shNadd.uw pattern for zba. [(set (match_operand:DI 0 "register_operand" "=r") (plus:DI (and:DI (ashift:DI (match_operand:DI 1 "register_operand" "r") (match_operand:QI 2 "immediate_operand" "I")) (match_operand 3 "immediate_operand" "")) (match_operand:DI 4 "register_operand" "r")))] "TARGET_64BIT && TARGET_ZBA && (INTVAL (operands[2]) >= 1) && (INTVAL (operands[2]) <= 3) && (INTVAL (operands[3]) >> INTVAL (operands[2])) == 0xffffffff" */ if (TARGET_ZBA && (TARGET_64BIT && (mode == DImode)) && (GET_CODE (XEXP (x, 0)) == AND) && (REG_P (XEXP (x, 1)))) { do { rtx and_lhs = XEXP (XEXP (x, 0), 0); rtx and_rhs = XEXP (XEXP (x, 0), 1); if (GET_CODE (and_lhs) != ASHIFT) break; if (!CONST_INT_P (and_rhs)) break; rtx ashift_rhs = XEXP (and_lhs, 1); if (!CONST_INT_P (ashift_rhs) || !IN_RANGE (INTVAL (ashift_rhs), 1, 3)) break; if (CONST_INT_P (and_rhs) && ((INTVAL (and_rhs) >> INTVAL (ashift_rhs)) == 0xffffffff)) { *total = COSTS_N_INSNS (1); return true; } } while (false); } if (float_mode_p) *total = tune_param->fp_add[mode == DFmode]; else *total = riscv_binary_cost (x, 1, 4); return false; case NEG: { rtx op = XEXP (x, 0); if (GET_CODE (op) == FMA && !HONOR_SIGNED_ZEROS (mode)) { *total = (tune_param->fp_mul[mode == DFmode] + set_src_cost (XEXP (op, 0), mode, speed) + set_src_cost (XEXP (op, 1), mode, speed) + set_src_cost (XEXP (op, 2), mode, speed)); return true; } } if (float_mode_p) *total = tune_param->fp_add[mode == DFmode]; else *total = COSTS_N_INSNS (GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD ? 4 : 1); return false; case MULT: if (float_mode_p) *total = tune_param->fp_mul[mode == DFmode]; else if (!TARGET_MUL) /* Estimate the cost of a library call. */ *total = COSTS_N_INSNS (speed ? 32 : 6); else if (GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD) *total = 3 * tune_param->int_mul[0] + COSTS_N_INSNS (2); else if (!speed) *total = COSTS_N_INSNS (1); else *total = tune_param->int_mul[mode == DImode]; return false; case DIV: case SQRT: case MOD: if (float_mode_p) { *total = tune_param->fp_div[mode == DFmode]; return false; } /* Fall through. */ case UDIV: case UMOD: if (!TARGET_DIV) /* Estimate the cost of a library call. */ *total = COSTS_N_INSNS (speed ? 32 : 6); else if (speed) *total = tune_param->int_div[mode == DImode]; else *total = COSTS_N_INSNS (1); return false; case ZERO_EXTEND: /* This is an SImode shift. */ if (GET_CODE (XEXP (x, 0)) == LSHIFTRT) { *total = COSTS_N_INSNS (SINGLE_SHIFT_COST); return true; } /* Fall through. */ case SIGN_EXTEND: *total = riscv_extend_cost (XEXP (x, 0), GET_CODE (x) == ZERO_EXTEND); return false; case BSWAP: if (TARGET_ZBB) { /* RISC-V only defines rev8 for XLEN, so we will need an extra shift-right instruction for smaller modes. */ *total = COSTS_N_INSNS (mode == word_mode ? 1 : 2); return true; } return false; case FLOAT: case UNSIGNED_FLOAT: case FIX: case FLOAT_EXTEND: case FLOAT_TRUNCATE: *total = tune_param->fp_add[mode == DFmode]; return false; case FMA: *total = (tune_param->fp_mul[mode == DFmode] + set_src_cost (XEXP (x, 0), mode, speed) + set_src_cost (XEXP (x, 1), mode, speed) + set_src_cost (XEXP (x, 2), mode, speed)); return true; case UNSPEC: if (XINT (x, 1) == UNSPEC_AUIPC) { /* Make AUIPC cheap to avoid spilling its result to the stack. */ *total = 1; return true; } return false; default: return false; } } /* Implement TARGET_ADDRESS_COST. */ static int riscv_address_cost (rtx addr, machine_mode mode, addr_space_t as ATTRIBUTE_UNUSED, bool speed ATTRIBUTE_UNUSED) { /* When optimizing for size, make uncompressible 32-bit addresses more * expensive so that compressible 32-bit addresses are preferred. */ if ((TARGET_RVC || TARGET_ZCA) && !speed && riscv_mshorten_memrefs && mode == SImode && !riscv_compressed_lw_address_p (addr)) return riscv_address_insns (addr, mode, false) + 1; return riscv_address_insns (addr, mode, false); } /* Return one word of double-word value OP. HIGH_P is true to select the high part or false to select the low part. */ rtx riscv_subword (rtx op, bool high_p) { unsigned int byte = (high_p != BYTES_BIG_ENDIAN) ? UNITS_PER_WORD : 0; machine_mode mode = GET_MODE (op); if (mode == VOIDmode) mode = TARGET_64BIT ? TImode : DImode; if (MEM_P (op)) return adjust_address (op, word_mode, byte); if (REG_P (op)) gcc_assert (!FP_REG_RTX_P (op)); return simplify_gen_subreg (word_mode, op, mode, byte); } /* Return true if a 64-bit move from SRC to DEST should be split into two. */ bool riscv_split_64bit_move_p (rtx dest, rtx src) { if (TARGET_64BIT) return false; /* There is no need to split if the FLI instruction in the `Zfa` extension can be used. */ if (satisfies_constraint_zfli (src)) return false; /* Allow FPR <-> FPR and FPR <-> MEM moves, and permit the special case of zeroing an FPR with FCVT.D.W. */ if (TARGET_DOUBLE_FLOAT && ((FP_REG_RTX_P (src) && FP_REG_RTX_P (dest)) || (FP_REG_RTX_P (dest) && MEM_P (src)) || (FP_REG_RTX_P (src) && MEM_P (dest)) || (FP_REG_RTX_P (dest) && src == CONST0_RTX (GET_MODE (src))))) return false; return true; } /* Split a doubleword move from SRC to DEST. On 32-bit targets, this function handles 64-bit moves for which riscv_split_64bit_move_p holds. For 64-bit targets, this function handles 128-bit moves. */ void riscv_split_doubleword_move (rtx dest, rtx src) { /* ZFA or XTheadFmv has instructions for accessing the upper bits of a double. */ if (!TARGET_64BIT && (TARGET_ZFA || TARGET_XTHEADFMV)) { if (FP_REG_RTX_P (dest)) { rtx low_src = riscv_subword (src, false); rtx high_src = riscv_subword (src, true); if (TARGET_ZFA) emit_insn (gen_movdfsisi3_rv32 (dest, high_src, low_src)); else emit_insn (gen_th_fmv_hw_w_x (dest, high_src, low_src)); return; } if (FP_REG_RTX_P (src)) { rtx low_dest = riscv_subword (dest, false); rtx high_dest = riscv_subword (dest, true); if (TARGET_ZFA) { emit_insn (gen_movsidf2_low_rv32 (low_dest, src)); emit_insn (gen_movsidf2_high_rv32 (high_dest, src)); return; } else { emit_insn (gen_th_fmv_x_w (low_dest, src)); emit_insn (gen_th_fmv_x_hw (high_dest, src)); } return; } } /* The operation can be split into two normal moves. Decide in which order to do them. */ rtx low_dest = riscv_subword (dest, false); if (REG_P (low_dest) && reg_overlap_mentioned_p (low_dest, src)) { riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true)); riscv_emit_move (low_dest, riscv_subword (src, false)); } else { riscv_emit_move (low_dest, riscv_subword (src, false)); riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true)); } } /* Return the appropriate instructions to move SRC into DEST. Assume that SRC is operand 1 and DEST is operand 0. */ const char * riscv_output_move (rtx dest, rtx src) { enum rtx_code dest_code, src_code; machine_mode mode; bool dbl_p; unsigned width; dest_code = GET_CODE (dest); src_code = GET_CODE (src); mode = GET_MODE (dest); dbl_p = (GET_MODE_SIZE (mode).to_constant () == 8); width = GET_MODE_SIZE (mode).to_constant (); if (dbl_p && riscv_split_64bit_move_p (dest, src)) return "#"; if (dest_code == REG && GP_REG_P (REGNO (dest))) { if (src_code == REG && FP_REG_P (REGNO (src))) switch (width) { case 2: if (TARGET_ZFHMIN) return "fmv.x.h\t%0,%1"; /* Using fmv.x.s + sign-extend to emulate fmv.x.h. */ return "fmv.x.s\t%0,%1;slli\t%0,%0,16;srai\t%0,%0,16"; case 4: return "fmv.x.s\t%0,%1"; case 8: return "fmv.x.d\t%0,%1"; } if (src_code == MEM) switch (width) { case 1: return "lbu\t%0,%1"; case 2: return "lhu\t%0,%1"; case 4: return "lw\t%0,%1"; case 8: return "ld\t%0,%1"; } if (src_code == CONST_INT) { if (SMALL_OPERAND (INTVAL (src)) || LUI_OPERAND (INTVAL (src))) return "li\t%0,%1"; if (TARGET_ZBS && SINGLE_BIT_MASK_OPERAND (INTVAL (src))) return "bseti\t%0,zero,%S1"; /* Should never reach here. */ abort (); } if (src_code == HIGH) return "lui\t%0,%h1"; if (symbolic_operand (src, VOIDmode)) switch (riscv_classify_symbolic_expression (src)) { case SYMBOL_GOT_DISP: return "la\t%0,%1"; case SYMBOL_ABSOLUTE: return "lla\t%0,%1"; case SYMBOL_PCREL: return "lla\t%0,%1"; default: gcc_unreachable (); } } if ((src_code == REG && GP_REG_P (REGNO (src))) || (src == CONST0_RTX (mode))) { if (dest_code == REG) { if (GP_REG_P (REGNO (dest))) return "mv\t%0,%z1"; if (FP_REG_P (REGNO (dest))) switch (width) { case 2: if (TARGET_ZFHMIN) return "fmv.h.x\t%0,%z1"; /* High 16 bits should be all-1, otherwise HW will treated as a n-bit canonical NaN, but isn't matter for softfloat. */ return "fmv.s.x\t%0,%1"; case 4: return "fmv.s.x\t%0,%z1"; case 8: if (TARGET_64BIT) return "fmv.d.x\t%0,%z1"; /* in RV32, we can emulate fmv.d.x %0, x0 using fcvt.d.w */ gcc_assert (src == CONST0_RTX (mode)); return "fcvt.d.w\t%0,x0"; } } if (dest_code == MEM) switch (width) { case 1: return "sb\t%z1,%0"; case 2: return "sh\t%z1,%0"; case 4: return "sw\t%z1,%0"; case 8: return "sd\t%z1,%0"; } } if (src_code == REG && FP_REG_P (REGNO (src))) { if (dest_code == REG && FP_REG_P (REGNO (dest))) switch (width) { case 2: if (TARGET_ZFH) return "fmv.h\t%0,%1"; return "fmv.s\t%0,%1"; case 4: return "fmv.s\t%0,%1"; case 8: return "fmv.d\t%0,%1"; } if (dest_code == MEM) switch (width) { case 2: return "fsh\t%1,%0"; case 4: return "fsw\t%1,%0"; case 8: return "fsd\t%1,%0"; } } if (dest_code == REG && FP_REG_P (REGNO (dest))) { if (src_code == MEM) switch (width) { case 2: return "flh\t%0,%1"; case 4: return "flw\t%0,%1"; case 8: return "fld\t%0,%1"; } if (src_code == CONST_DOUBLE && satisfies_constraint_zfli (src)) switch (width) { case 2: return "fli.h\t%0,%1"; case 4: return "fli.s\t%0,%1"; case 8: return "fli.d\t%0,%1"; } } if (dest_code == REG && GP_REG_P (REGNO (dest)) && src_code == CONST_POLY_INT) { /* We only want a single full vector register VLEN read after reload. */ gcc_assert (known_eq (rtx_to_poly_int64 (src), BYTES_PER_RISCV_VECTOR)); return "csrr\t%0,vlenb"; } gcc_unreachable (); } const char * riscv_output_return () { if (cfun->machine->naked_p) return ""; return "ret"; } /* Return true if CMP1 is a suitable second operand for integer ordering test CODE. See also the *sCC patterns in riscv.md. */ static bool riscv_int_order_operand_ok_p (enum rtx_code code, rtx cmp1) { switch (code) { case GT: case GTU: return reg_or_0_operand (cmp1, VOIDmode); case GE: case GEU: return cmp1 == const1_rtx; case LT: case LTU: return arith_operand (cmp1, VOIDmode); case LE: return sle_operand (cmp1, VOIDmode); case LEU: return sleu_operand (cmp1, VOIDmode); default: gcc_unreachable (); } } /* Return true if *CMP1 (of mode MODE) is a valid second operand for integer ordering test *CODE, or if an equivalent combination can be formed by adjusting *CODE and *CMP1. When returning true, update *CODE and *CMP1 with the chosen code and operand, otherwise leave them alone. */ static bool riscv_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1, machine_mode mode) { HOST_WIDE_INT plus_one; if (riscv_int_order_operand_ok_p (*code, *cmp1)) return true; if (CONST_INT_P (*cmp1)) switch (*code) { case LE: plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode); if (INTVAL (*cmp1) < plus_one) { *code = LT; *cmp1 = force_reg (mode, GEN_INT (plus_one)); return true; } break; case LEU: plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode); if (plus_one != 0) { *code = LTU; *cmp1 = force_reg (mode, GEN_INT (plus_one)); return true; } break; default: break; } return false; } /* Compare CMP0 and CMP1 using ordering test CODE and store the result in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR is nonnull, it's OK to set TARGET to the inverse of the result and flip *INVERT_PTR instead. */ static void riscv_emit_int_order_test (enum rtx_code code, bool *invert_ptr, rtx target, rtx cmp0, rtx cmp1) { machine_mode mode; /* First see if there is a RISCV instruction that can do this operation. If not, try doing the same for the inverse operation. If that also fails, force CMP1 into a register and try again. */ mode = GET_MODE (cmp0); if (riscv_canonicalize_int_order_test (&code, &cmp1, mode)) riscv_emit_binary (code, target, cmp0, cmp1); else { enum rtx_code inv_code = reverse_condition (code); if (!riscv_canonicalize_int_order_test (&inv_code, &cmp1, mode)) { cmp1 = force_reg (mode, cmp1); riscv_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1); } else if (invert_ptr == 0) { rtx inv_target = riscv_force_binary (word_mode, inv_code, cmp0, cmp1); riscv_emit_binary (EQ, target, inv_target, const0_rtx); } else { *invert_ptr = !*invert_ptr; riscv_emit_binary (inv_code, target, cmp0, cmp1); } } } /* Return a register that is zero iff CMP0 and CMP1 are equal. The register will have the same mode as CMP0. */ static rtx riscv_zero_if_equal (rtx cmp0, rtx cmp1) { if (cmp1 == const0_rtx) return cmp0; return expand_binop (GET_MODE (cmp0), sub_optab, cmp0, cmp1, 0, 0, OPTAB_DIRECT); } /* Sign- or zero-extend OP0 and OP1 for integer comparisons. */ static void riscv_extend_comparands (rtx_code code, rtx *op0, rtx *op1) { /* Comparisons consider all XLEN bits, so extend sub-XLEN values. */ if (GET_MODE_SIZE (word_mode) > GET_MODE_SIZE (GET_MODE (*op0)).to_constant ()) { /* It is more profitable to zero-extend QImode values. But not if the first operand has already been sign-extended, and the second one is is a constant or has already been sign-extended also. */ if (unsigned_condition (code) == code && (GET_MODE (*op0) == QImode && ! (GET_CODE (*op0) == SUBREG && SUBREG_PROMOTED_VAR_P (*op0) && SUBREG_PROMOTED_SIGNED_P (*op0) && (CONST_INT_P (*op1) || (GET_CODE (*op1) == SUBREG && SUBREG_PROMOTED_VAR_P (*op1) && SUBREG_PROMOTED_SIGNED_P (*op1)))))) { *op0 = gen_rtx_ZERO_EXTEND (word_mode, *op0); if (CONST_INT_P (*op1)) *op1 = GEN_INT ((uint8_t) INTVAL (*op1)); else *op1 = gen_rtx_ZERO_EXTEND (word_mode, *op1); } else { *op0 = gen_rtx_SIGN_EXTEND (word_mode, *op0); if (*op1 != const0_rtx) *op1 = gen_rtx_SIGN_EXTEND (word_mode, *op1); } } } /* Convert a comparison into something that can be used in a branch or conditional move. On entry, *OP0 and *OP1 are the values being compared and *CODE is the code used to compare them. Update *CODE, *OP0 and *OP1 so that they describe the final comparison. If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are emitted. */ static void riscv_emit_int_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p = false) { if (need_eq_ne_p) { rtx cmp_op0 = *op0; rtx cmp_op1 = *op1; if (*code == EQ || *code == NE) { *op0 = riscv_zero_if_equal (cmp_op0, cmp_op1); *op1 = const0_rtx; return; } } if (splittable_const_int_operand (*op1, VOIDmode)) { HOST_WIDE_INT rhs = INTVAL (*op1); if (*code == EQ || *code == NE) { /* Convert e.g. OP0 == 2048 into OP0 - 2048 == 0. */ if (SMALL_OPERAND (-rhs)) { *op0 = riscv_force_binary (GET_MODE (*op0), PLUS, *op0, GEN_INT (-rhs)); *op1 = const0_rtx; } } else { static const enum rtx_code mag_comparisons[][2] = { {LEU, LTU}, {GTU, GEU}, {LE, LT}, {GT, GE} }; /* Convert e.g. (OP0 <= 0xFFF) into (OP0 < 0x1000). */ for (size_t i = 0; i < ARRAY_SIZE (mag_comparisons); i++) { HOST_WIDE_INT new_rhs; bool increment = *code == mag_comparisons[i][0]; bool decrement = *code == mag_comparisons[i][1]; if (!increment && !decrement) continue; new_rhs = rhs + (increment ? 1 : -1); new_rhs = trunc_int_for_mode (new_rhs, GET_MODE (*op0)); if (riscv_integer_cost (new_rhs) < riscv_integer_cost (rhs) && (rhs < 0) == (new_rhs < 0)) { *op1 = GEN_INT (new_rhs); *code = mag_comparisons[i][increment]; } break; } } } riscv_extend_comparands (*code, op0, op1); *op0 = force_reg (word_mode, *op0); if (*op1 != const0_rtx) *op1 = force_reg (word_mode, *op1); } /* Like riscv_emit_int_compare, but for floating-point comparisons. */ static void riscv_emit_float_compare (enum rtx_code *code, rtx *op0, rtx *op1) { rtx tmp0, tmp1, cmp_op0 = *op0, cmp_op1 = *op1; enum rtx_code fp_code = *code; *code = NE; switch (fp_code) { case UNORDERED: *code = EQ; /* Fall through. */ case ORDERED: /* a == a && b == b */ tmp0 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op0); tmp1 = riscv_force_binary (word_mode, EQ, cmp_op1, cmp_op1); *op0 = riscv_force_binary (word_mode, AND, tmp0, tmp1); *op1 = const0_rtx; break; case UNEQ: /* ordered(a, b) > (a == b) */ *code = EQ; tmp0 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op0); tmp1 = riscv_force_binary (word_mode, EQ, cmp_op1, cmp_op1); *op0 = riscv_force_binary (word_mode, AND, tmp0, tmp1); *op1 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op1); break; #define UNORDERED_COMPARISON(CODE, CMP) \ case CODE: \ *code = EQ; \ *op0 = gen_reg_rtx (word_mode); \ if (GET_MODE (cmp_op0) == SFmode && TARGET_64BIT) \ emit_insn (gen_f##CMP##_quietsfdi4 (*op0, cmp_op0, cmp_op1)); \ else if (GET_MODE (cmp_op0) == SFmode) \ emit_insn (gen_f##CMP##_quietsfsi4 (*op0, cmp_op0, cmp_op1)); \ else if (GET_MODE (cmp_op0) == DFmode && TARGET_64BIT) \ emit_insn (gen_f##CMP##_quietdfdi4 (*op0, cmp_op0, cmp_op1)); \ else if (GET_MODE (cmp_op0) == DFmode) \ emit_insn (gen_f##CMP##_quietdfsi4 (*op0, cmp_op0, cmp_op1)); \ else if (GET_MODE (cmp_op0) == HFmode && TARGET_64BIT) \ emit_insn (gen_f##CMP##_quiethfdi4 (*op0, cmp_op0, cmp_op1)); \ else if (GET_MODE (cmp_op0) == HFmode) \ emit_insn (gen_f##CMP##_quiethfsi4 (*op0, cmp_op0, cmp_op1)); \ else \ gcc_unreachable (); \ *op1 = const0_rtx; \ break; case UNLT: std::swap (cmp_op0, cmp_op1); gcc_fallthrough (); UNORDERED_COMPARISON(UNGT, le) case UNLE: std::swap (cmp_op0, cmp_op1); gcc_fallthrough (); UNORDERED_COMPARISON(UNGE, lt) #undef UNORDERED_COMPARISON case NE: fp_code = EQ; *code = EQ; /* Fall through. */ case EQ: case LE: case LT: case GE: case GT: /* We have instructions for these cases. */ *op0 = riscv_force_binary (word_mode, fp_code, cmp_op0, cmp_op1); *op1 = const0_rtx; break; case LTGT: /* (a < b) | (a > b) */ tmp0 = riscv_force_binary (word_mode, LT, cmp_op0, cmp_op1); tmp1 = riscv_force_binary (word_mode, GT, cmp_op0, cmp_op1); *op0 = riscv_force_binary (word_mode, IOR, tmp0, tmp1); *op1 = const0_rtx; break; default: gcc_unreachable (); } } /* CODE-compare OP0 and OP1. Store the result in TARGET. */ void riscv_expand_int_scc (rtx target, enum rtx_code code, rtx op0, rtx op1, bool *invert_ptr) { riscv_extend_comparands (code, &op0, &op1); op0 = force_reg (word_mode, op0); if (code == EQ || code == NE) { rtx zie = riscv_zero_if_equal (op0, op1); riscv_emit_binary (code, target, zie, const0_rtx); } else riscv_emit_int_order_test (code, invert_ptr, target, op0, op1); } /* Like riscv_expand_int_scc, but for floating-point comparisons. */ void riscv_expand_float_scc (rtx target, enum rtx_code code, rtx op0, rtx op1) { riscv_emit_float_compare (&code, &op0, &op1); rtx cmp = riscv_force_binary (word_mode, code, op0, op1); riscv_emit_set (target, lowpart_subreg (SImode, cmp, word_mode)); } /* Jump to LABEL if (CODE OP0 OP1) holds. */ void riscv_expand_conditional_branch (rtx label, rtx_code code, rtx op0, rtx op1) { if (FLOAT_MODE_P (GET_MODE (op1))) riscv_emit_float_compare (&code, &op0, &op1); else riscv_emit_int_compare (&code, &op0, &op1); rtx condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1); emit_jump_insn (gen_condjump (condition, label)); } /* Emit a cond move: If OP holds, move CONS to DEST; else move ALT to DEST. Return 0 if expansion failed. */ bool riscv_expand_conditional_move (rtx dest, rtx op, rtx cons, rtx alt) { machine_mode mode = GET_MODE (dest); rtx_code code = GET_CODE (op); rtx op0 = XEXP (op, 0); rtx op1 = XEXP (op, 1); bool need_eq_ne_p = false; if (TARGET_XTHEADCONDMOV && GET_MODE_CLASS (mode) == MODE_INT && reg_or_0_operand (cons, mode) && reg_or_0_operand (alt, mode) && (GET_MODE (op) == mode || GET_MODE (op) == E_VOIDmode) && GET_MODE (op0) == mode && GET_MODE (op1) == mode && (code == EQ || code == NE)) need_eq_ne_p = true; if (need_eq_ne_p || (TARGET_SFB_ALU && GET_MODE (op0) == word_mode)) { riscv_emit_int_compare (&code, &op0, &op1, need_eq_ne_p); rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); /* The expander is a bit loose in its specification of the true arm of the conditional move. That allows us to support more cases for extensions which are more general than SFB. But does mean we need to force CONS into a register at this point. */ cons = force_reg (GET_MODE (dest), cons); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, cons, alt))); return true; } else if (TARGET_ZICOND_LIKE && GET_MODE_CLASS (mode) == MODE_INT) { /* The comparison must be comparing WORD_MODE objects. We must enforce that so that we don't strip away a sign_extension thinking it is unnecessary. We might consider using riscv_extend_operands if they are not already properly extended. */ if ((GET_MODE (op0) != word_mode && GET_MODE (op0) != VOIDmode) || (GET_MODE (op1) != word_mode && GET_MODE (op1) != VOIDmode)) return false; /* Canonicalize the comparison. It must be an equality comparison against 0. If it isn't, then emit an SCC instruction so that we can then use an equality comparison against zero. */ if (!equality_operator (op, VOIDmode) || op1 != CONST0_RTX (mode)) { enum rtx_code new_code = NE; bool *invert_ptr = 0; bool invert = false; if (code == LE || code == GE) invert_ptr = &invert; /* Emit an scc like instruction into a temporary so that we can use an EQ/NE comparison. */ rtx tmp = gen_reg_rtx (word_mode); /* We can support both FP and integer conditional moves. */ if (INTEGRAL_MODE_P (GET_MODE (XEXP (op, 0)))) riscv_expand_int_scc (tmp, code, op0, op1, invert_ptr); else if (FLOAT_MODE_P (GET_MODE (XEXP (op, 0))) && fp_scc_comparison (op, GET_MODE (op))) riscv_expand_float_scc (tmp, code, op0, op1); else return false; /* If riscv_expand_int_scc inverts the condition, then it will flip the value of INVERT. We need to know where so that we can adjust it for our needs. */ if (invert) new_code = EQ; op = gen_rtx_fmt_ee (new_code, mode, tmp, const0_rtx); /* We've generated a new comparison. Update the local variables. */ code = GET_CODE (op); op0 = XEXP (op, 0); op1 = XEXP (op, 1); } /* 0, reg or 0, imm */ if (cons == CONST0_RTX (mode) && (REG_P (alt) || (CONST_INT_P (alt) && alt != CONST0_RTX (mode)))) { riscv_emit_int_compare (&code, &op0, &op1, true); rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); alt = force_reg (mode, alt); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond, cons, alt))); return true; } /* imm, imm */ else if (CONST_INT_P (cons) && cons != CONST0_RTX (mode) && CONST_INT_P (alt) && alt != CONST0_RTX (mode)) { riscv_emit_int_compare (&code, &op0, &op1, true); rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); HOST_WIDE_INT t = INTVAL (alt) - INTVAL (cons); alt = force_reg (mode, gen_int_mode (t, mode)); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond, CONST0_RTX (mode), alt))); /* CONS might not fit into a signed 12 bit immediate suitable for an addi instruction. If that's the case, force it into a register. */ if (!SMALL_OPERAND (INTVAL (cons))) cons = force_reg (mode, cons); riscv_emit_binary (PLUS, dest, dest, cons); return true; } /* imm, reg */ else if (CONST_INT_P (cons) && cons != CONST0_RTX (mode) && REG_P (alt)) { /* Optimize for register value of 0. */ if (code == NE && rtx_equal_p (op0, alt) && op1 == CONST0_RTX (mode)) { rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); cons = force_reg (mode, cons); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond, cons, alt))); return true; } riscv_emit_int_compare (&code, &op0, &op1, true); rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); rtx temp1 = gen_reg_rtx (mode); rtx temp2 = gen_int_mode (-1 * INTVAL (cons), mode); /* TEMP2 and/or CONS might not fit into a signed 12 bit immediate suitable for an addi instruction. If that's the case, force it into a register. */ if (!SMALL_OPERAND (INTVAL (temp2))) temp2 = force_reg (mode, temp2); if (!SMALL_OPERAND (INTVAL (cons))) cons = force_reg (mode, cons); riscv_emit_binary (PLUS, temp1, alt, temp2); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond, CONST0_RTX (mode), temp1))); riscv_emit_binary (PLUS, dest, dest, cons); return true; } /* reg, 0 or imm, 0 */ else if ((REG_P (cons) || (CONST_INT_P (cons) && cons != CONST0_RTX (mode))) && alt == CONST0_RTX (mode)) { riscv_emit_int_compare (&code, &op0, &op1, true); rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); cons = force_reg (mode, cons); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond, cons, alt))); return true; } /* reg, imm */ else if (REG_P (cons) && CONST_INT_P (alt) && alt != CONST0_RTX (mode)) { /* Optimize for register value of 0. */ if (code == EQ && rtx_equal_p (op0, cons) && op1 == CONST0_RTX (mode)) { rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); alt = force_reg (mode, alt); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond, cons, alt))); return true; } riscv_emit_int_compare (&code, &op0, &op1, true); rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); rtx temp1 = gen_reg_rtx (mode); rtx temp2 = gen_int_mode (-1 * INTVAL (alt), mode); /* TEMP2 and/or ALT might not fit into a signed 12 bit immediate suitable for an addi instruction. If that's the case, force it into a register. */ if (!SMALL_OPERAND (INTVAL (temp2))) temp2 = force_reg (mode, temp2); if (!SMALL_OPERAND (INTVAL (alt))) alt = force_reg (mode, alt); riscv_emit_binary (PLUS, temp1, cons, temp2); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond, temp1, CONST0_RTX (mode)))); riscv_emit_binary (PLUS, dest, dest, alt); return true; } /* reg, reg */ else if (REG_P (cons) && REG_P (alt)) { if ((code == EQ && rtx_equal_p (cons, op0)) || (code == NE && rtx_equal_p (alt, op0))) { rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); if (!rtx_equal_p (cons, op0)) std::swap (alt, cons); alt = force_reg (mode, alt); emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond, cons, alt))); return true; } rtx reg1 = gen_reg_rtx (mode); rtx reg2 = gen_reg_rtx (mode); riscv_emit_int_compare (&code, &op0, &op1, true); rtx cond1 = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1); rtx cond2 = gen_rtx_fmt_ee (code == NE ? EQ : NE, GET_MODE (op0), op0, op1); emit_insn (gen_rtx_SET (reg2, gen_rtx_IF_THEN_ELSE (mode, cond2, CONST0_RTX (mode), cons))); emit_insn (gen_rtx_SET (reg1, gen_rtx_IF_THEN_ELSE (mode, cond1, CONST0_RTX (mode), alt))); riscv_emit_binary (IOR, dest, reg1, reg2); return true; } } return false; } /* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at least PARM_BOUNDARY bits of alignment, but will be given anything up to PREFERRED_STACK_BOUNDARY bits if the type requires it. */ static unsigned int riscv_function_arg_boundary (machine_mode mode, const_tree type) { unsigned int alignment; /* Use natural alignment if the type is not aggregate data. */ if (type && !AGGREGATE_TYPE_P (type)) alignment = TYPE_ALIGN (TYPE_MAIN_VARIANT (type)); else alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode); return MIN (PREFERRED_STACK_BOUNDARY, MAX (PARM_BOUNDARY, alignment)); } /* If MODE represents an argument that can be passed or returned in floating-point registers, return the number of registers, else 0. */ static unsigned riscv_pass_mode_in_fpr_p (machine_mode mode) { if (GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FP_ARG) { if (GET_MODE_CLASS (mode) == MODE_FLOAT) return 1; if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) return 2; } return 0; } typedef struct { const_tree type; HOST_WIDE_INT offset; } riscv_aggregate_field; /* Identify subfields of aggregates that are candidates for passing in floating-point registers. */ static int riscv_flatten_aggregate_field (const_tree type, riscv_aggregate_field fields[2], int n, HOST_WIDE_INT offset, bool ignore_zero_width_bit_field_p) { switch (TREE_CODE (type)) { case RECORD_TYPE: /* Can't handle incomplete types nor sizes that are not fixed. */ if (!COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST || !tree_fits_uhwi_p (TYPE_SIZE (type))) return -1; for (tree f = TYPE_FIELDS (type); f; f = DECL_CHAIN (f)) if (TREE_CODE (f) == FIELD_DECL) { if (!TYPE_P (TREE_TYPE (f))) return -1; /* The C++ front end strips zero-length bit-fields from structs. So we need to ignore them in the C front end to make C code compatible with C++ code. */ if (ignore_zero_width_bit_field_p && DECL_BIT_FIELD (f) && (DECL_SIZE (f) == NULL_TREE || integer_zerop (DECL_SIZE (f)))) ; else { HOST_WIDE_INT pos = offset + int_byte_position (f); n = riscv_flatten_aggregate_field (TREE_TYPE (f), fields, n, pos, ignore_zero_width_bit_field_p); } if (n < 0) return -1; } return n; case ARRAY_TYPE: { HOST_WIDE_INT n_elts; riscv_aggregate_field subfields[2]; tree index = TYPE_DOMAIN (type); tree elt_size = TYPE_SIZE_UNIT (TREE_TYPE (type)); int n_subfields = riscv_flatten_aggregate_field (TREE_TYPE (type), subfields, 0, offset, ignore_zero_width_bit_field_p); /* Can't handle incomplete types nor sizes that are not fixed. */ if (n_subfields <= 0 || !COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST || !index || !TYPE_MAX_VALUE (index) || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index)) || !TYPE_MIN_VALUE (index) || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index)) || !tree_fits_uhwi_p (elt_size)) return -1; n_elts = 1 + tree_to_uhwi (TYPE_MAX_VALUE (index)) - tree_to_uhwi (TYPE_MIN_VALUE (index)); gcc_assert (n_elts >= 0); for (HOST_WIDE_INT i = 0; i < n_elts; i++) for (int j = 0; j < n_subfields; j++) { if (n >= 2) return -1; fields[n] = subfields[j]; fields[n++].offset += i * tree_to_uhwi (elt_size); } return n; } case COMPLEX_TYPE: { /* Complex type need consume 2 field, so n must be 0. */ if (n != 0) return -1; HOST_WIDE_INT elt_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type))).to_constant (); if (elt_size <= UNITS_PER_FP_ARG) { fields[0].type = TREE_TYPE (type); fields[0].offset = offset; fields[1].type = TREE_TYPE (type); fields[1].offset = offset + elt_size; return 2; } return -1; } default: if (n < 2 && ((SCALAR_FLOAT_TYPE_P (type) && GET_MODE_SIZE (TYPE_MODE (type)).to_constant () <= UNITS_PER_FP_ARG) || (INTEGRAL_TYPE_P (type) && GET_MODE_SIZE (TYPE_MODE (type)).to_constant () <= UNITS_PER_WORD))) { fields[n].type = type; fields[n].offset = offset; return n + 1; } else return -1; } } /* Identify candidate aggregates for passing in floating-point registers. Candidates have at most two fields after flattening. */ static int riscv_flatten_aggregate_argument (const_tree type, riscv_aggregate_field fields[2], bool ignore_zero_width_bit_field_p) { if (!type || TREE_CODE (type) != RECORD_TYPE) return -1; return riscv_flatten_aggregate_field (type, fields, 0, 0, ignore_zero_width_bit_field_p); } /* See whether TYPE is a record whose fields should be returned in one or two floating-point registers. If so, populate FIELDS accordingly. */ static unsigned riscv_pass_aggregate_in_fpr_pair_p (const_tree type, riscv_aggregate_field fields[2]) { static int warned = 0; /* This is the old ABI, which differs for C++ and C. */ int n_old = riscv_flatten_aggregate_argument (type, fields, false); for (int i = 0; i < n_old; i++) if (!SCALAR_FLOAT_TYPE_P (fields[i].type)) { n_old = -1; break; } /* This is the new ABI, which is the same for C++ and C. */ int n_new = riscv_flatten_aggregate_argument (type, fields, true); for (int i = 0; i < n_new; i++) if (!SCALAR_FLOAT_TYPE_P (fields[i].type)) { n_new = -1; break; } if ((n_old != n_new) && (warned == 0)) { warning (OPT_Wpsabi, "ABI for flattened struct with zero-length " "bit-fields changed in GCC 10"); warned = 1; } return n_new > 0 ? n_new : 0; } /* See whether TYPE is a record whose fields should be returned in one or floating-point register and one integer register. If so, populate FIELDS accordingly. */ static bool riscv_pass_aggregate_in_fpr_and_gpr_p (const_tree type, riscv_aggregate_field fields[2]) { static int warned = 0; /* This is the old ABI, which differs for C++ and C. */ unsigned num_int_old = 0, num_float_old = 0; int n_old = riscv_flatten_aggregate_argument (type, fields, false); for (int i = 0; i < n_old; i++) { num_float_old += SCALAR_FLOAT_TYPE_P (fields[i].type); num_int_old += INTEGRAL_TYPE_P (fields[i].type); } /* This is the new ABI, which is the same for C++ and C. */ unsigned num_int_new = 0, num_float_new = 0; int n_new = riscv_flatten_aggregate_argument (type, fields, true); for (int i = 0; i < n_new; i++) { num_float_new += SCALAR_FLOAT_TYPE_P (fields[i].type); num_int_new += INTEGRAL_TYPE_P (fields[i].type); } if (((num_int_old == 1 && num_float_old == 1 && (num_int_old != num_int_new || num_float_old != num_float_new)) || (num_int_new == 1 && num_float_new == 1 && (num_int_old != num_int_new || num_float_old != num_float_new))) && (warned == 0)) { warning (OPT_Wpsabi, "ABI for flattened struct with zero-length " "bit-fields changed in GCC 10"); warned = 1; } return num_int_new == 1 && num_float_new == 1; } /* Return the representation of an argument passed or returned in an FPR when the value has mode VALUE_MODE and the type has TYPE_MODE. The two modes may be different for structures like: struct __attribute__((packed)) foo { float f; } where the SFmode value "f" is passed in REGNO but the struct itself has mode BLKmode. */ static rtx riscv_pass_fpr_single (machine_mode type_mode, unsigned regno, machine_mode value_mode, HOST_WIDE_INT offset) { rtx x = gen_rtx_REG (value_mode, regno); if (type_mode != value_mode) { x = gen_rtx_EXPR_LIST (VOIDmode, x, GEN_INT (offset)); x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x)); } return x; } /* Pass or return a composite value in the FPR pair REGNO and REGNO + 1. MODE is the mode of the composite. MODE1 and OFFSET1 are the mode and byte offset for the first value, likewise MODE2 and OFFSET2 for the second value. */ static rtx riscv_pass_fpr_pair (machine_mode mode, unsigned regno1, machine_mode mode1, HOST_WIDE_INT offset1, unsigned regno2, machine_mode mode2, HOST_WIDE_INT offset2) { return gen_rtx_PARALLEL (mode, gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode1, regno1), GEN_INT (offset1)), gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode2, regno2), GEN_INT (offset2)))); } /* Return true if a vector type is included in the type TYPE. */ static bool riscv_arg_has_vector (const_tree type) { if (riscv_v_ext_mode_p (TYPE_MODE (type))) return true; if (!COMPLETE_TYPE_P (type)) return false; switch (TREE_CODE (type)) { case RECORD_TYPE: /* If it is a record, it is further determined whether its fields have vector type. */ for (tree f = TYPE_FIELDS (type); f; f = DECL_CHAIN (f)) if (TREE_CODE (f) == FIELD_DECL) { tree field_type = TREE_TYPE (f); if (!TYPE_P (field_type)) break; if (riscv_arg_has_vector (field_type)) return true; } break; case ARRAY_TYPE: return riscv_arg_has_vector (TREE_TYPE (type)); default: break; } return false; } /* Pass the type to check whether it's a vector type or contains vector type. Only check the value type and no checking for vector pointer type. */ static void riscv_pass_in_vector_p (const_tree type) { static int warned = 0; if (type && riscv_vector::lookup_vector_type_attribute (type) && !warned) { warning (OPT_Wpsabi, "ABI for the vector type is currently in experimental stage and " "may changes in the upcoming version of GCC."); warned = 1; } } /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void riscv_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype ATTRIBUTE_UNUSED, rtx libname ATTRIBUTE_UNUSED, tree fndecl, int caller ATTRIBUTE_UNUSED) { memset (cum, 0, sizeof (*cum)); if (fntype) cum->variant_cc = (riscv_cc) fntype_abi (fntype).id (); else cum->variant_cc = RISCV_CC_BASE; if (fndecl) { const tree_function_decl &fn = FUNCTION_DECL_CHECK (fndecl)->function_decl; if (fn.built_in_class == NOT_BUILT_IN) cum->rvv_psabi_warning = 1; } } /* Return true if TYPE is a vector type that can be passed in vector registers. */ static bool riscv_vector_type_p (const_tree type) { /* Currently, only builtin scalabler vector type is allowed, in the future, more vector types may be allowed, such as GNU vector type, etc. */ return riscv_vector::builtin_type_p (type); } static unsigned int riscv_hard_regno_nregs (unsigned int regno, machine_mode mode); /* Subroutine of riscv_get_arg_info. */ static rtx riscv_get_vector_arg (struct riscv_arg_info *info, const CUMULATIVE_ARGS *cum, machine_mode mode, bool return_p) { gcc_assert (riscv_v_ext_mode_p (mode)); info->mr_offset = cum->num_mrs; if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL) { /* For scalable mask return value. */ if (return_p) return gen_rtx_REG (mode, V_REG_FIRST); /* For the first scalable mask argument. */ if (info->mr_offset < MAX_ARGS_IN_MASK_REGISTERS) { info->num_mrs = 1; return gen_rtx_REG (mode, V_REG_FIRST); } else { /* Rest scalable mask arguments are treated as scalable data arguments. */ } } /* The number and alignment of vector registers need for this scalable vector argument. When the mode size is less than a full vector, we use 1 vector register to pass. Just call TARGET_HARD_REGNO_NREGS for the number information. */ int nregs = riscv_hard_regno_nregs (V_ARG_FIRST, mode); int LMUL = riscv_v_ext_tuple_mode_p (mode) ? nregs / riscv_vector::get_nf (mode) : nregs; int arg_reg_start = V_ARG_FIRST - V_REG_FIRST; int arg_reg_end = V_ARG_LAST - V_REG_FIRST; int aligned_reg_start = ROUND_UP (arg_reg_start, LMUL); /* For scalable data and scalable tuple return value. */ if (return_p) return gen_rtx_REG (mode, aligned_reg_start + V_REG_FIRST); /* Iterate through the USED_VRS array to find vector register groups that have not been allocated and the first register is aligned with LMUL. */ for (int i = aligned_reg_start; i + nregs - 1 <= arg_reg_end; i += LMUL) { /* The index in USED_VRS array. */ int idx = i - arg_reg_start; /* Find the first register unused. */ if (!cum->used_vrs[idx]) { bool find_set = true; /* Ensure there are NREGS continuous unused registers. */ for (int j = 1; j < nregs; j++) if (cum->used_vrs[idx + j]) { find_set = false; /* Update I to the last aligned register which cannot be used and the next iteration will add LMUL step to I. */ i += (j / LMUL) * LMUL; break; } if (find_set) { info->num_vrs = nregs; info->vr_offset = idx; return gen_rtx_REG (mode, i + V_REG_FIRST); } } } return NULL_RTX; } /* Fill INFO with information about a single argument, and return an RTL pattern to pass or return the argument. Return NULL_RTX if argument cannot pass or return in registers, then the argument may be passed by reference or through the stack or . CUM is the cumulative state for earlier arguments. MODE is the mode of this argument and TYPE is its type (if known). NAMED is true if this is a named (fixed) argument rather than a variable one. RETURN_P is true if returning the argument, or false if passing the argument. */ static rtx riscv_get_arg_info (struct riscv_arg_info *info, const CUMULATIVE_ARGS *cum, machine_mode mode, const_tree type, bool named, bool return_p) { unsigned num_bytes, num_words; unsigned fpr_base = return_p ? FP_RETURN : FP_ARG_FIRST; unsigned gpr_base = return_p ? GP_RETURN : GP_ARG_FIRST; unsigned alignment = riscv_function_arg_boundary (mode, type); memset (info, 0, sizeof (*info)); info->gpr_offset = cum->num_gprs; info->fpr_offset = cum->num_fprs; if (cum->rvv_psabi_warning) { /* Only check existing of vector type. */ riscv_pass_in_vector_p (type); } /* When disable vector_abi or scalable vector argument is anonymous, this argument is passed by reference. */ if (riscv_v_ext_mode_p (mode) && (!riscv_vector_abi || !named)) return NULL_RTX; if (named) { riscv_aggregate_field fields[2]; unsigned fregno = fpr_base + info->fpr_offset; unsigned gregno = gpr_base + info->gpr_offset; /* Pass one- or two-element floating-point aggregates in FPRs. */ if ((info->num_fprs = riscv_pass_aggregate_in_fpr_pair_p (type, fields)) && info->fpr_offset + info->num_fprs <= MAX_ARGS_IN_REGISTERS) switch (info->num_fprs) { case 1: return riscv_pass_fpr_single (mode, fregno, TYPE_MODE (fields[0].type), fields[0].offset); case 2: return riscv_pass_fpr_pair (mode, fregno, TYPE_MODE (fields[0].type), fields[0].offset, fregno + 1, TYPE_MODE (fields[1].type), fields[1].offset); default: gcc_unreachable (); } /* Pass real and complex floating-point numbers in FPRs. */ if ((info->num_fprs = riscv_pass_mode_in_fpr_p (mode)) && info->fpr_offset + info->num_fprs <= MAX_ARGS_IN_REGISTERS) switch (GET_MODE_CLASS (mode)) { case MODE_FLOAT: return gen_rtx_REG (mode, fregno); case MODE_COMPLEX_FLOAT: return riscv_pass_fpr_pair (mode, fregno, GET_MODE_INNER (mode), 0, fregno + 1, GET_MODE_INNER (mode), GET_MODE_UNIT_SIZE (mode)); default: gcc_unreachable (); } /* Pass structs with one float and one integer in an FPR and a GPR. */ if (riscv_pass_aggregate_in_fpr_and_gpr_p (type, fields) && info->gpr_offset < MAX_ARGS_IN_REGISTERS && info->fpr_offset < MAX_ARGS_IN_REGISTERS) { info->num_gprs = 1; info->num_fprs = 1; if (!SCALAR_FLOAT_TYPE_P (fields[0].type)) std::swap (fregno, gregno); return riscv_pass_fpr_pair (mode, fregno, TYPE_MODE (fields[0].type), fields[0].offset, gregno, TYPE_MODE (fields[1].type), fields[1].offset); } /* For scalable vector argument. */ if (riscv_vector_type_p (type) && riscv_v_ext_mode_p (mode)) return riscv_get_vector_arg (info, cum, mode, return_p); } /* Work out the size of the argument. */ num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode).to_constant (); num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* Doubleword-aligned varargs start on an even register boundary. */ if (!named && num_bytes != 0 && alignment > BITS_PER_WORD) info->gpr_offset += info->gpr_offset & 1; /* Partition the argument between registers and stack. */ info->num_fprs = 0; info->num_gprs = MIN (num_words, MAX_ARGS_IN_REGISTERS - info->gpr_offset); info->stack_p = (num_words - info->num_gprs) != 0; if (info->num_gprs || return_p) return gen_rtx_REG (mode, gpr_base + info->gpr_offset); return NULL_RTX; } /* Implement TARGET_FUNCTION_ARG. */ static rtx riscv_function_arg (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); struct riscv_arg_info info; if (arg.end_marker_p ()) /* Return the calling convention that used by the current function. */ return gen_int_mode (cum->variant_cc, SImode); return riscv_get_arg_info (&info, cum, arg.mode, arg.type, arg.named, false); } /* Implement TARGET_FUNCTION_ARG_ADVANCE. */ static void riscv_function_arg_advance (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); struct riscv_arg_info info; riscv_get_arg_info (&info, cum, arg.mode, arg.type, arg.named, false); /* Set the corresponding register in USED_VRS to used status. */ for (unsigned int i = 0; i < info.num_vrs; i++) { gcc_assert (!cum->used_vrs[info.vr_offset + i]); cum->used_vrs[info.vr_offset + i] = true; } if ((info.num_vrs > 0 || info.num_mrs > 0) && cum->variant_cc != RISCV_CC_V) { error ("RVV type %qT cannot be passed to an unprototyped function", arg.type); /* Avoid repeating the message */ cum->variant_cc = RISCV_CC_V; } /* Advance the register count. This has the effect of setting num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned argument required us to skip the final GPR and pass the whole argument on the stack. */ cum->num_fprs = info.fpr_offset + info.num_fprs; cum->num_gprs = info.gpr_offset + info.num_gprs; cum->num_mrs = info.mr_offset + info.num_mrs; } /* Implement TARGET_ARG_PARTIAL_BYTES. */ static int riscv_arg_partial_bytes (cumulative_args_t cum, const function_arg_info &generic_arg) { struct riscv_arg_info arg; riscv_get_arg_info (&arg, get_cumulative_args (cum), generic_arg.mode, generic_arg.type, generic_arg.named, false); return arg.stack_p ? arg.num_gprs * UNITS_PER_WORD : 0; } /* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls, VALTYPE is the return type and MODE is VOIDmode. For libcalls, VALTYPE is null and MODE is the mode of the return value. */ rtx riscv_function_value (const_tree type, const_tree func, machine_mode mode) { struct riscv_arg_info info; CUMULATIVE_ARGS args; if (type) { int unsigned_p = TYPE_UNSIGNED (type); mode = TYPE_MODE (type); /* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes, return values, promote the mode here too. */ mode = promote_function_mode (type, mode, &unsigned_p, func, 1); } memset (&args, 0, sizeof args); const_tree arg_type = type; if (func && DECL_RESULT (func)) { const tree_function_decl &fn = FUNCTION_DECL_CHECK (func)->function_decl; if (fn.built_in_class == NOT_BUILT_IN) args.rvv_psabi_warning = 1; arg_type = TREE_TYPE (DECL_RESULT (func)); } return riscv_get_arg_info (&info, &args, mode, arg_type, true, true); } /* Implement TARGET_PASS_BY_REFERENCE. */ static bool riscv_pass_by_reference (cumulative_args_t cum_v, const function_arg_info &arg) { HOST_WIDE_INT size = arg.type_size_in_bytes ().to_constant ();; struct riscv_arg_info info; CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); /* ??? std_gimplify_va_arg_expr passes NULL for cum. Fortunately, we never pass variadic arguments in floating-point and vector registers, so we can avoid the call to riscv_get_arg_info in this case. */ if (cum != NULL) { /* Don't pass by reference if we can use a floating-point register. */ riscv_get_arg_info (&info, cum, arg.mode, arg.type, arg.named, false); if (info.num_fprs) return false; /* Don't pass by reference if we can use vector register groups. */ if (info.num_vrs > 0 || info.num_mrs > 0) return false; } /* When vector abi disabled(without --param=riscv-vector-abi option) or scalable vector argument is anonymous or cannot be passed through vector registers, this argument is passed by reference. */ if (riscv_v_ext_mode_p (arg.mode)) return true; /* Pass by reference if the data do not fit in two integer registers. */ return !IN_RANGE (size, 0, 2 * UNITS_PER_WORD); } /* Implement TARGET_RETURN_IN_MEMORY. */ static bool riscv_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS args; cumulative_args_t cum = pack_cumulative_args (&args); /* The rules for returning in memory are the same as for passing the first named argument by reference. */ memset (&args, 0, sizeof args); function_arg_info arg (const_cast (type), /*named=*/true); return riscv_pass_by_reference (cum, arg); } /* Implement TARGET_SETUP_INCOMING_VARARGS. */ static void riscv_setup_incoming_varargs (cumulative_args_t cum, const function_arg_info &arg, int *pretend_size ATTRIBUTE_UNUSED, int no_rtl) { CUMULATIVE_ARGS local_cum; int gp_saved; /* The caller has advanced CUM up to, but not beyond, the last named argument. Advance a local copy of CUM past the last "real" named argument, to find out how many registers are left over. */ local_cum = *get_cumulative_args (cum); if (!TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (current_function_decl))) riscv_function_arg_advance (pack_cumulative_args (&local_cum), arg); /* Found out how many registers we need to save. */ gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs; if (!no_rtl && gp_saved > 0) { rtx ptr = plus_constant (Pmode, virtual_incoming_args_rtx, REG_PARM_STACK_SPACE (cfun->decl) - gp_saved * UNITS_PER_WORD); rtx mem = gen_frame_mem (BLKmode, ptr); set_mem_alias_set (mem, get_varargs_alias_set ()); move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST, mem, gp_saved); } if (REG_PARM_STACK_SPACE (cfun->decl) == 0) cfun->machine->varargs_size = gp_saved * UNITS_PER_WORD; } /* Return the descriptor of the Standard Vector Calling Convention Variant. */ static const predefined_function_abi & riscv_v_abi () { predefined_function_abi &v_abi = function_abis[RISCV_CC_V]; if (!v_abi.initialized_p ()) { HARD_REG_SET full_reg_clobbers = default_function_abi.full_reg_clobbers (); /* Callee-saved vector registers: v1-v7, v24-v31. */ for (int regno = V_REG_FIRST + 1; regno <= V_REG_FIRST + 7; regno += 1) CLEAR_HARD_REG_BIT (full_reg_clobbers, regno); for (int regno = V_REG_FIRST + 24; regno <= V_REG_FIRST + 31; regno += 1) CLEAR_HARD_REG_BIT (full_reg_clobbers, regno); v_abi.initialize (RISCV_CC_V, full_reg_clobbers); } return v_abi; } /* Return true if a function with type FNTYPE returns its value in RISC-V V registers. */ static bool riscv_return_value_is_vector_type_p (const_tree fntype) { tree return_type = TREE_TYPE (fntype); return riscv_vector_type_p (return_type); } /* Return true if a function with type FNTYPE takes arguments in RISC-V V registers. */ static bool riscv_arguments_is_vector_type_p (const_tree fntype) { for (tree chain = TYPE_ARG_TYPES (fntype); chain && chain != void_list_node; chain = TREE_CHAIN (chain)) { tree arg_type = TREE_VALUE (chain); if (riscv_vector_type_p (arg_type)) return true; } return false; } /* Implement TARGET_FNTYPE_ABI. */ static const predefined_function_abi & riscv_fntype_abi (const_tree fntype) { /* Implementing an experimental vector calling convention, the proposal can be viewed at the bellow link: https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/389 You can enable this feature via the `--param=riscv-vector-abi` compiler option. */ if (riscv_vector_abi && (riscv_return_value_is_vector_type_p (fntype) || riscv_arguments_is_vector_type_p (fntype))) return riscv_v_abi (); return default_function_abi; } /* Return riscv calling convention of call_insn. */ riscv_cc get_riscv_cc (const rtx use) { gcc_assert (GET_CODE (use) == USE); rtx unspec = XEXP (use, 0); gcc_assert (GET_CODE (unspec) == UNSPEC && XINT (unspec, 1) == UNSPEC_CALLEE_CC); riscv_cc cc = (riscv_cc) INTVAL (XVECEXP (unspec, 0, 0)); gcc_assert (cc < RISCV_CC_UNKNOWN); return cc; } /* Implement TARGET_INSN_CALLEE_ABI. */ const predefined_function_abi & riscv_insn_callee_abi (const rtx_insn *insn) { rtx pat = PATTERN (insn); gcc_assert (GET_CODE (pat) == PARALLEL); riscv_cc cc = get_riscv_cc (XVECEXP (pat, 0, 1)); return function_abis[cc]; } /* Handle an attribute requiring a FUNCTION_DECL; arguments as in struct attribute_spec.handler. */ static tree riscv_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_DECL) { warning (OPT_Wattributes, "%qE attribute only applies to functions", name); *no_add_attrs = true; } return NULL_TREE; } /* Verify type based attributes. NODE is the what the attribute is being applied to. NAME is the attribute name. ARGS are the attribute args. FLAGS gives info about the context. NO_ADD_ATTRS should be set to true if the attribute should be ignored. */ static tree riscv_handle_type_attribute (tree *node ATTRIBUTE_UNUSED, tree name, tree args, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { /* Check for an argument. */ if (is_attribute_p ("interrupt", name)) { if (args) { tree cst = TREE_VALUE (args); const char *string; if (TREE_CODE (cst) != STRING_CST) { warning (OPT_Wattributes, "%qE attribute requires a string argument", name); *no_add_attrs = true; return NULL_TREE; } string = TREE_STRING_POINTER (cst); if (strcmp (string, "user") && strcmp (string, "supervisor") && strcmp (string, "machine")) { warning (OPT_Wattributes, "argument to %qE attribute is not %<\"user\"%>, %<\"supervisor\"%>, " "or %<\"machine\"%>", name); *no_add_attrs = true; } } } return NULL_TREE; } /* Return true if function TYPE is an interrupt function. */ static bool riscv_interrupt_type_p (tree type) { return lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type)) != NULL; } /* Return true if FUNC is a naked function. */ static bool riscv_naked_function_p (tree func) { tree func_decl = func; if (func == NULL_TREE) func_decl = current_function_decl; return NULL_TREE != lookup_attribute ("naked", DECL_ATTRIBUTES (func_decl)); } /* Implement TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS. */ static bool riscv_allocate_stack_slots_for_args () { /* Naked functions should not allocate stack slots for arguments. */ return !riscv_naked_function_p (current_function_decl); } /* Implement TARGET_WARN_FUNC_RETURN. */ static bool riscv_warn_func_return (tree decl) { /* Naked functions are implemented entirely in assembly, including the return sequence, so suppress warnings about this. */ return !riscv_naked_function_p (decl); } /* Implement TARGET_EXPAND_BUILTIN_VA_START. */ static void riscv_va_start (tree valist, rtx nextarg) { nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size); std_expand_builtin_va_start (valist, nextarg); } /* Make ADDR suitable for use as a call or sibcall target. */ rtx riscv_legitimize_call_address (rtx addr) { if (!call_insn_operand (addr, VOIDmode)) { rtx reg = RISCV_CALL_ADDRESS_TEMP (Pmode); riscv_emit_move (reg, addr); return reg; } return addr; } /* Print symbolic operand OP, which is part of a HIGH or LO_SUM in context CONTEXT. HI_RELOC indicates a high-part reloc. */ static void riscv_print_operand_reloc (FILE *file, rtx op, bool hi_reloc) { const char *reloc; switch (riscv_classify_symbolic_expression (op)) { case SYMBOL_ABSOLUTE: reloc = hi_reloc ? "%hi" : "%lo"; break; case SYMBOL_PCREL: reloc = hi_reloc ? "%pcrel_hi" : "%pcrel_lo"; break; case SYMBOL_TLS_LE: reloc = hi_reloc ? "%tprel_hi" : "%tprel_lo"; break; default: output_operand_lossage ("invalid use of '%%%c'", hi_reloc ? 'h' : 'R'); return; } fprintf (file, "%s(", reloc); output_addr_const (file, riscv_strip_unspec_address (op)); fputc (')', file); } /* Return the memory model that encapuslates both given models. */ enum memmodel riscv_union_memmodels (enum memmodel model1, enum memmodel model2) { model1 = memmodel_base (model1); model2 = memmodel_base (model2); enum memmodel weaker = model1 <= model2 ? model1: model2; enum memmodel stronger = model1 > model2 ? model1: model2; switch (stronger) { case MEMMODEL_SEQ_CST: case MEMMODEL_ACQ_REL: return stronger; case MEMMODEL_RELEASE: if (weaker == MEMMODEL_ACQUIRE || weaker == MEMMODEL_CONSUME) return MEMMODEL_ACQ_REL; else return stronger; case MEMMODEL_ACQUIRE: case MEMMODEL_CONSUME: case MEMMODEL_RELAXED: return stronger; default: gcc_unreachable (); } } /* Return true if the .AQ suffix should be added to an AMO to implement the acquire portion of memory model MODEL. */ static bool riscv_memmodel_needs_amo_acquire (enum memmodel model) { /* ZTSO amo mappings require no annotations. */ if (TARGET_ZTSO) return false; switch (model) { case MEMMODEL_ACQ_REL: case MEMMODEL_SEQ_CST: case MEMMODEL_ACQUIRE: case MEMMODEL_CONSUME: return true; case MEMMODEL_RELEASE: case MEMMODEL_RELAXED: return false; default: gcc_unreachable (); } } /* Return true if the .RL suffix should be added to an AMO to implement the release portion of memory model MODEL. */ static bool riscv_memmodel_needs_amo_release (enum memmodel model) { /* ZTSO amo mappings require no annotations. */ if (TARGET_ZTSO) return false; switch (model) { case MEMMODEL_ACQ_REL: case MEMMODEL_SEQ_CST: case MEMMODEL_RELEASE: return true; case MEMMODEL_ACQUIRE: case MEMMODEL_CONSUME: case MEMMODEL_RELAXED: return false; default: gcc_unreachable (); } } /* Get REGNO alignment of vector mode. The alignment = LMUL when the LMUL >= 1. Otherwise, alignment = 1. */ int riscv_get_v_regno_alignment (machine_mode mode) { /* 3.3.2. LMUL = 2,4,8, register numbers should be multiple of 2,4,8. but for mask vector register, register numbers can be any number. */ int lmul = 1; machine_mode rvv_mode = mode; if (riscv_v_ext_vls_mode_p (rvv_mode)) { int size = GET_MODE_BITSIZE (rvv_mode).to_constant (); if (size < TARGET_MIN_VLEN) return 1; else return size / TARGET_MIN_VLEN; } if (riscv_v_ext_tuple_mode_p (rvv_mode)) rvv_mode = riscv_vector::get_subpart_mode (rvv_mode); poly_int64 size = GET_MODE_SIZE (rvv_mode); if (known_gt (size, UNITS_PER_V_REG)) lmul = exact_div (size, UNITS_PER_V_REG).to_constant (); return lmul; } /* Implement TARGET_PRINT_OPERAND. The RISCV-specific operand codes are: 'h' Print the high-part relocation associated with OP, after stripping any outermost HIGH. 'R' Print the low-part relocation associated with OP. 'C' Print the integer branch condition for comparison OP. 'N' Print the inverse of the integer branch condition for comparison OP. 'A' Print the atomic operation suffix for memory model OP. 'I' Print the LR suffix for memory model OP. 'J' Print the SC suffix for memory model OP. 'z' Print x0 if OP is zero, otherwise print OP normally. 'i' Print i if the operand is not a register. 'S' Print shift-index of single-bit mask OP. 'T' Print shift-index of inverted single-bit mask OP. '~' Print w if TARGET_64BIT is true; otherwise not print anything. Note please keep this list and the list in riscv.md in sync. */ static void riscv_print_operand (FILE *file, rtx op, int letter) { /* `~` does not take an operand so op will be null Check for before accessing op. */ if (letter == '~') { if (TARGET_64BIT) fputc('w', file); return; } machine_mode mode = GET_MODE (op); enum rtx_code code = GET_CODE (op); switch (letter) { case 'o': { /* Print 'OP' variant for RVV instructions. 1. If the operand is VECTOR REG, we print 'v'(vnsrl.wv). 2. If the operand is CONST_INT/CONST_VECTOR, we print 'i'(vnsrl.wi). 3. If the operand is SCALAR REG, we print 'x'(vnsrl.wx). */ if (riscv_v_ext_mode_p (mode)) { if (REG_P (op)) asm_fprintf (file, "v"); else if (CONST_VECTOR_P (op)) asm_fprintf (file, "i"); else output_operand_lossage ("invalid vector operand"); } else { if (CONST_INT_P (op)) asm_fprintf (file, "i"); else asm_fprintf (file, "x"); } break; } case 'v': { rtx elt; if (REG_P (op)) asm_fprintf (file, "%s", reg_names[REGNO (op)]); else { if (!const_vec_duplicate_p (op, &elt)) output_operand_lossage ("invalid vector constant"); else if (satisfies_constraint_Wc0 (op)) asm_fprintf (file, "0"); else if (satisfies_constraint_vi (op) || satisfies_constraint_vj (op) || satisfies_constraint_vk (op)) asm_fprintf (file, "%wd", INTVAL (elt)); else output_operand_lossage ("invalid vector constant"); } break; } case 'V': { rtx elt; if (!const_vec_duplicate_p (op, &elt)) output_operand_lossage ("invalid vector constant"); else if (satisfies_constraint_vj (op)) asm_fprintf (file, "%wd", -INTVAL (elt)); else output_operand_lossage ("invalid vector constant"); break; } case 'm': { if (riscv_v_ext_mode_p (mode)) { /* Calculate lmul according to mode and print the value. */ int lmul = riscv_get_v_regno_alignment (mode); asm_fprintf (file, "%d", lmul); } else if (code == CONST_INT) { /* If it is a const_int value, it denotes the VLMUL field enum. */ unsigned int vlmul = UINTVAL (op); switch (vlmul) { case riscv_vector::LMUL_1: asm_fprintf (file, "%s", "m1"); break; case riscv_vector::LMUL_2: asm_fprintf (file, "%s", "m2"); break; case riscv_vector::LMUL_4: asm_fprintf (file, "%s", "m4"); break; case riscv_vector::LMUL_8: asm_fprintf (file, "%s", "m8"); break; case riscv_vector::LMUL_F8: asm_fprintf (file, "%s", "mf8"); break; case riscv_vector::LMUL_F4: asm_fprintf (file, "%s", "mf4"); break; case riscv_vector::LMUL_F2: asm_fprintf (file, "%s", "mf2"); break; default: gcc_unreachable (); } } else output_operand_lossage ("invalid vector constant"); break; } case 'p': { if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL) { /* Print for RVV mask operand. If op is reg, print ",v0.t". Otherwise, don't print anything. */ if (code == REG) fprintf (file, ",%s.t", reg_names[REGNO (op)]); } else if (code == CONST_INT) { /* Tail && Mask policy. */ asm_fprintf (file, "%s", IS_AGNOSTIC (UINTVAL (op)) ? "a" : "u"); } else output_operand_lossage ("invalid vector constant"); break; } case 'h': if (code == HIGH) op = XEXP (op, 0); riscv_print_operand_reloc (file, op, true); break; case 'R': riscv_print_operand_reloc (file, op, false); break; case 'C': /* The RTL names match the instruction names. */ fputs (GET_RTX_NAME (code), file); break; case 'N': /* The RTL names match the instruction names. */ fputs (GET_RTX_NAME (reverse_condition (code)), file); break; case 'A': { const enum memmodel model = memmodel_base (INTVAL (op)); if (riscv_memmodel_needs_amo_acquire (model) && riscv_memmodel_needs_amo_release (model)) fputs (".aqrl", file); else if (riscv_memmodel_needs_amo_acquire (model)) fputs (".aq", file); else if (riscv_memmodel_needs_amo_release (model)) fputs (".rl", file); break; } case 'I': { const enum memmodel model = memmodel_base (INTVAL (op)); if (TARGET_ZTSO && model != MEMMODEL_SEQ_CST) /* LR ops only have an annotation for SEQ_CST in the Ztso mapping. */ break; else if (model == MEMMODEL_SEQ_CST) fputs (".aqrl", file); else if (riscv_memmodel_needs_amo_acquire (model)) fputs (".aq", file); break; } case 'J': { const enum memmodel model = memmodel_base (INTVAL (op)); if (TARGET_ZTSO && model == MEMMODEL_SEQ_CST) /* SC ops only have an annotation for SEQ_CST in the Ztso mapping. */ fputs (".rl", file); else if (TARGET_ZTSO) break; else if (riscv_memmodel_needs_amo_release (model)) fputs (".rl", file); break; } case 'i': if (code != REG) fputs ("i", file); break; case 'B': fputs (GET_RTX_NAME (code), file); break; case 'S': { rtx newop = GEN_INT (ctz_hwi (INTVAL (op))); output_addr_const (file, newop); break; } case 'T': { rtx newop = GEN_INT (ctz_hwi (~INTVAL (op))); output_addr_const (file, newop); break; } case 'X': { int ival = INTVAL (op) + 1; rtx newop = GEN_INT (ctz_hwi (ival) + 1); output_addr_const (file, newop); break; } default: switch (code) { case REG: if (letter && letter != 'z') output_operand_lossage ("invalid use of '%%%c'", letter); fprintf (file, "%s", reg_names[REGNO (op)]); break; case MEM: if (letter && letter != 'z') output_operand_lossage ("invalid use of '%%%c'", letter); else output_address (mode, XEXP (op, 0)); break; case CONST_DOUBLE: { if (letter == 'z' && op == CONST0_RTX (GET_MODE (op))) { fputs (reg_names[GP_REG_FIRST], file); break; } int fli_index = riscv_float_const_rtx_index_for_fli (op); if (fli_index == -1 || fli_index > 31) { output_operand_lossage ("invalid use of '%%%c'", letter); break; } asm_fprintf (file, "%s", fli_value_print[fli_index]); break; } default: if (letter == 'z' && op == CONST0_RTX (GET_MODE (op))) fputs (reg_names[GP_REG_FIRST], file); else if (letter && letter != 'z') output_operand_lossage ("invalid use of '%%%c'", letter); else output_addr_const (file, riscv_strip_unspec_address (op)); break; } } } /* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P */ static bool riscv_print_operand_punct_valid_p (unsigned char code) { return (code == '~'); } /* Implement TARGET_PRINT_OPERAND_ADDRESS. */ static void riscv_print_operand_address (FILE *file, machine_mode mode ATTRIBUTE_UNUSED, rtx x) { struct riscv_address_info addr; if (riscv_classify_address (&addr, x, word_mode, true)) switch (addr.type) { case ADDRESS_REG: output_addr_const (file, riscv_strip_unspec_address (addr.offset)); fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]); return; case ADDRESS_LO_SUM: riscv_print_operand_reloc (file, addr.offset, false); fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]); return; case ADDRESS_CONST_INT: output_addr_const (file, x); fprintf (file, "(%s)", reg_names[GP_REG_FIRST]); return; case ADDRESS_SYMBOLIC: output_addr_const (file, riscv_strip_unspec_address (x)); return; } gcc_unreachable (); } static bool riscv_size_ok_for_small_data_p (int size) { return g_switch_value && IN_RANGE (size, 1, g_switch_value); } /* Return true if EXP should be placed in the small data section. */ static bool riscv_in_small_data_p (const_tree x) { if (TREE_CODE (x) == STRING_CST || TREE_CODE (x) == FUNCTION_DECL) return false; if (VAR_P (x) && DECL_SECTION_NAME (x)) { const char *sec = DECL_SECTION_NAME (x); return strcmp (sec, ".sdata") == 0 || strcmp (sec, ".sbss") == 0; } return riscv_size_ok_for_small_data_p (int_size_in_bytes (TREE_TYPE (x))); } /* Switch to the appropriate section for output of DECL. */ static section * riscv_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align) { switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_SRODATA: return get_named_section (decl, ".srodata", reloc); default: return default_elf_select_section (decl, reloc, align); } } /* Switch to the appropriate section for output of DECL. */ static void riscv_unique_section (tree decl, int reloc) { const char *prefix = NULL; bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_SRODATA: prefix = one_only ? ".sr" : ".srodata"; break; default: break; } if (prefix) { const char *name, *linkonce; char *string; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); /* If we're using one_only, then there needs to be a .gnu.linkonce prefix to the section name. */ linkonce = one_only ? ".gnu.linkonce" : ""; string = ACONCAT ((linkonce, prefix, ".", name, NULL)); set_decl_section_name (decl, string); return; } default_unique_section (decl, reloc); } /* Return a section for X, handling small data. */ static section * riscv_elf_select_rtx_section (machine_mode mode, rtx x, unsigned HOST_WIDE_INT align) { section *s = default_elf_select_rtx_section (mode, x, align); if (riscv_size_ok_for_small_data_p (GET_MODE_SIZE (mode).to_constant ())) { if (startswith (s->named.name, ".rodata.cst")) { /* Rename .rodata.cst* to .srodata.cst*. */ char *name = (char *) alloca (strlen (s->named.name) + 2); sprintf (name, ".s%s", s->named.name + 1); return get_section (name, s->named.common.flags, NULL); } if (s == data_section) return sdata_section; } return s; } /* Make the last instruction frame-related and note that it performs the operation described by FRAME_PATTERN. */ static void riscv_set_frame_expr (rtx frame_pattern) { rtx insn; insn = get_last_insn (); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR, frame_pattern, REG_NOTES (insn)); } /* Return a frame-related rtx that stores REG at MEM. REG must be a single register. */ static rtx riscv_frame_set (rtx mem, rtx reg) { rtx set = gen_rtx_SET (mem, reg); RTX_FRAME_RELATED_P (set) = 1; return set; } /* Returns true if the current function might contain a far jump. */ static bool riscv_far_jump_used_p () { size_t func_size = 0; if (cfun->machine->far_jump_used) return true; /* We can't change far_jump_used during or after reload, as there is no chance to change stack frame layout. So we must rely on the conservative heuristic below having done the right thing. */ if (reload_in_progress || reload_completed) return false; /* Estimate the function length. */ for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn)) func_size += get_attr_length (insn); /* Conservatively determine whether some jump might exceed 1 MiB displacement. */ if (func_size * 2 >= 0x100000) cfun->machine->far_jump_used = true; return cfun->machine->far_jump_used; } /* Return true, if the current function must save the incoming return address. */ static bool riscv_save_return_addr_reg_p (void) { /* The $ra register is call-clobbered: if this is not a leaf function, save it. */ if (!crtl->is_leaf) return true; /* We need to save the incoming return address if __builtin_eh_return is being used to set a different return address. */ if (crtl->calls_eh_return) return true; /* Far jumps/branches use $ra as a temporary to set up the target jump location (clobbering the incoming return address). */ if (riscv_far_jump_used_p ()) return true; /* Need not to use ra for leaf when frame pointer is turned off by option whatever the omit-leaf-frame's value. */ if (frame_pointer_needed && crtl->is_leaf && !TARGET_OMIT_LEAF_FRAME_POINTER) return true; return false; } /* Return true if the current function must save register REGNO. */ static bool riscv_save_reg_p (unsigned int regno) { bool call_saved = !global_regs[regno] && !call_used_or_fixed_reg_p (regno); bool might_clobber = crtl->saves_all_registers || df_regs_ever_live_p (regno); if (call_saved && might_clobber) return true; /* Save callee-saved V registers. */ if (V_REG_P (regno) && !crtl->abi->clobbers_full_reg_p (regno) && might_clobber) return true; if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) return true; if (regno == RETURN_ADDR_REGNUM && riscv_save_return_addr_reg_p ()) return true; /* If this is an interrupt handler, then must save extra registers. */ if (cfun->machine->interrupt_handler_p) { /* zero register is always zero. */ if (regno == GP_REG_FIRST) return false; /* The function will return the stack pointer to its original value. */ if (regno == STACK_POINTER_REGNUM) return false; /* By convention, we assume that gp and tp are safe. */ if (regno == GP_REGNUM || regno == THREAD_POINTER_REGNUM) return false; /* We must save every register used in this function. If this is not a leaf function, then we must save all temporary registers. */ if (df_regs_ever_live_p (regno) || (!crtl->is_leaf && call_used_or_fixed_reg_p (regno))) return true; } return false; } /* Return TRUE if Zcmp push and pop insns should be avoided. FALSE otherwise. Only use multi push & pop if all GPRs masked can be covered, and stack access is SP based, and GPRs are at top of the stack frame, and no conflicts in stack allocation with other features */ static bool riscv_avoid_multi_push (const struct riscv_frame_info *frame) { if (!TARGET_ZCMP || crtl->calls_eh_return || frame_pointer_needed || cfun->machine->interrupt_handler_p || cfun->machine->varargs_size != 0 || crtl->args.pretend_args_size != 0 || (use_shrink_wrapping_separate () && !riscv_avoid_shrink_wrapping_separate ()) || (frame->mask & ~MULTI_PUSH_GPR_MASK)) return true; return false; } /* Determine whether to use multi push insn. */ static bool riscv_use_multi_push (const struct riscv_frame_info *frame) { if (riscv_avoid_multi_push (frame)) return false; return (frame->multi_push_adj_base != 0); } /* Return TRUE if a libcall to save/restore GPRs should be avoided. FALSE otherwise. */ static bool riscv_avoid_save_libcall (void) { if (!TARGET_SAVE_RESTORE || crtl->calls_eh_return || frame_pointer_needed || cfun->machine->interrupt_handler_p || cfun->machine->varargs_size != 0 || crtl->args.pretend_args_size != 0) return true; return false; } /* Determine whether to call GPR save/restore routines. */ static bool riscv_use_save_libcall (const struct riscv_frame_info *frame) { if (riscv_avoid_save_libcall ()) return false; return frame->save_libcall_adjustment != 0; } /* Determine which GPR save/restore routine to call. */ static unsigned riscv_save_libcall_count (unsigned mask) { for (unsigned n = GP_REG_LAST; n > GP_REG_FIRST; n--) if (BITSET_P (mask, n)) return CALLEE_SAVED_REG_NUMBER (n) + 1; abort (); } /* calculate number of s regs in multi push and pop. Note that {s0-s10} is not valid in Zcmp, use {s0-s11} instead. */ static unsigned riscv_multi_push_sregs_count (unsigned mask) { unsigned num = riscv_save_libcall_count (mask); return (num == ZCMP_INVALID_S0S10_SREGS_COUNTS) ? ZCMP_S0S11_SREGS_COUNTS : num; } /* calculate number of regs(ra, s0-sx) in multi push and pop. */ static unsigned riscv_multi_push_regs_count (unsigned mask) { /* 1 is for ra */ return riscv_multi_push_sregs_count (mask) + 1; } /* Handle 16 bytes align for poly_int. */ static poly_int64 riscv_16bytes_align (poly_int64 value) { return aligned_upper_bound (value, 16); } static HOST_WIDE_INT riscv_16bytes_align (HOST_WIDE_INT value) { return ROUND_UP (value, 16); } /* Handle stack align for poly_int. */ static poly_int64 riscv_stack_align (poly_int64 value) { return aligned_upper_bound (value, PREFERRED_STACK_BOUNDARY / 8); } static HOST_WIDE_INT riscv_stack_align (HOST_WIDE_INT value) { return RISCV_STACK_ALIGN (value); } /* Populate the current function's riscv_frame_info structure. RISC-V stack frames grown downward. High addresses are at the top. +-------------------------------+ | | | incoming stack arguments | | | +-------------------------------+ <-- incoming stack pointer | | | callee-allocated save area | | for arguments that are | | split between registers and | | the stack | | | +-------------------------------+ <-- arg_pointer_rtx | | | callee-allocated save area | | for register varargs | | | +-------------------------------+ <-- hard_frame_pointer_rtx; | | stack_pointer_rtx + gp_sp_offset | GPR save area | + UNITS_PER_WORD | | +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset | | + UNITS_PER_FP_REG | FPR save area | | | +-------------------------------+ <-- stack_pointer_rtx | | + v_sp_offset_top | Vector Registers save area | | | | ----------------------------- | <-- stack_pointer_rtx | padding | + v_sp_offset_bottom +-------------------------------+ <-- frame_pointer_rtx (virtual) | | | local variables | | | P +-------------------------------+ | | | outgoing stack arguments | | | +-------------------------------+ <-- stack_pointer_rtx Dynamic stack allocations such as alloca insert data at point P. They decrease stack_pointer_rtx but leave frame_pointer_rtx and hard_frame_pointer_rtx unchanged. */ static HOST_WIDE_INT riscv_first_stack_step (struct riscv_frame_info *frame, poly_int64 remaining_size); static void riscv_compute_frame_info (void) { struct riscv_frame_info *frame; poly_int64 offset; bool interrupt_save_prologue_temp = false; unsigned int regno, i, num_x_saved = 0, num_f_saved = 0, x_save_size = 0; unsigned int num_v_saved = 0; frame = &cfun->machine->frame; /* In an interrupt function, there are two cases in which t0 needs to be used: 1, If we have a large frame, then we need to save/restore t0. We check for this before clearing the frame struct. 2, Need to save and restore some CSRs in the frame. */ if (cfun->machine->interrupt_handler_p) { HOST_WIDE_INT step1 = riscv_first_stack_step (frame, frame->total_size); if (! POLY_SMALL_OPERAND_P ((frame->total_size - step1)) || (TARGET_HARD_FLOAT || TARGET_ZFINX)) interrupt_save_prologue_temp = true; } frame->reset(); if (!cfun->machine->naked_p) { /* Find out which GPRs we need to save. */ for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (riscv_save_reg_p (regno) || (interrupt_save_prologue_temp && (regno == RISCV_PROLOGUE_TEMP_REGNUM))) frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++; /* If this function calls eh_return, we must also save and restore the EH data registers. */ if (crtl->calls_eh_return) for (i = 0; (regno = EH_RETURN_DATA_REGNO (i)) != INVALID_REGNUM; i++) frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++; /* Find out which FPRs we need to save. This loop must iterate over the same space as its companion in riscv_for_each_saved_reg. */ if (TARGET_HARD_FLOAT) for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) if (riscv_save_reg_p (regno)) frame->fmask |= 1 << (regno - FP_REG_FIRST), num_f_saved++; /* Find out which V registers we need to save. */ if (TARGET_VECTOR) for (regno = V_REG_FIRST; regno <= V_REG_LAST; regno++) if (riscv_save_reg_p (regno)) { frame->vmask |= 1 << (regno - V_REG_FIRST); num_v_saved++; } } if (frame->mask) { x_save_size = riscv_stack_align (num_x_saved * UNITS_PER_WORD); /* 1 is for ra */ unsigned num_save_restore = 1 + riscv_save_libcall_count (frame->mask); /* Only use save/restore routines if they don't alter the stack size. */ if (riscv_stack_align (num_save_restore * UNITS_PER_WORD) == x_save_size && !riscv_avoid_save_libcall ()) { /* Libcall saves/restores 3 registers at once, so we need to allocate 12 bytes for callee-saved register. */ if (TARGET_RVE) x_save_size = 3 * UNITS_PER_WORD; frame->save_libcall_adjustment = x_save_size; } if (!riscv_avoid_multi_push (frame)) { /* num(ra, s0-sx) */ unsigned num_multi_push = riscv_multi_push_regs_count (frame->mask); x_save_size = riscv_stack_align (num_multi_push * UNITS_PER_WORD); frame->multi_push_adj_base = riscv_16bytes_align (x_save_size); } } /* In an interrupt function, we need extra space for the initial saves of CSRs. */ if (cfun->machine->interrupt_handler_p && ((TARGET_HARD_FLOAT && frame->fmask) || (TARGET_ZFINX /* Except for RISCV_PROLOGUE_TEMP_REGNUM. */ && (frame->mask & ~(1 << RISCV_PROLOGUE_TEMP_REGNUM))))) /* Save and restore FCSR. */ /* TODO: When P or V extensions support interrupts, some of their CSRs may also need to be saved and restored. */ x_save_size += riscv_stack_align (1 * UNITS_PER_WORD); /* At the bottom of the frame are any outgoing stack arguments. */ offset = riscv_stack_align (crtl->outgoing_args_size); /* Next are local stack variables. */ offset += riscv_stack_align (get_frame_size ()); /* The virtual frame pointer points above the local variables. */ frame->frame_pointer_offset = offset; /* Next are the callee-saved VRs. */ if (frame->vmask) offset += riscv_stack_align (num_v_saved * UNITS_PER_V_REG); frame->v_sp_offset_top = offset; frame->v_sp_offset_bottom = frame->v_sp_offset_top - num_v_saved * UNITS_PER_V_REG; /* Next are the callee-saved FPRs. */ if (frame->fmask) offset += riscv_stack_align (num_f_saved * UNITS_PER_FP_REG); frame->fp_sp_offset = offset - UNITS_PER_FP_REG; /* Next are the callee-saved GPRs. */ if (frame->mask) { offset += x_save_size; /* align to 16 bytes and add paddings to GPR part to honor both stack alignment and zcmp pus/pop size alignment. */ if (riscv_use_multi_push (frame) && known_lt (offset, frame->multi_push_adj_base + ZCMP_SP_INC_STEP * ZCMP_MAX_SPIMM)) offset = riscv_16bytes_align (offset); } frame->gp_sp_offset = offset - UNITS_PER_WORD; /* The hard frame pointer points above the callee-saved GPRs. */ frame->hard_frame_pointer_offset = offset; /* Above the hard frame pointer is the callee-allocated varags save area. */ offset += riscv_stack_align (cfun->machine->varargs_size); /* Next is the callee-allocated area for pretend stack arguments. */ offset += riscv_stack_align (crtl->args.pretend_args_size); /* Arg pointer must be below pretend args, but must be above alignment padding. */ frame->arg_pointer_offset = offset - crtl->args.pretend_args_size; frame->total_size = offset; /* Next points the incoming stack pointer and any incoming arguments. */ } /* Make sure that we're not trying to eliminate to the wrong hard frame pointer. */ static bool riscv_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to) { return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM); } /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer or argument pointer. TO is either the stack pointer or hard frame pointer. */ poly_int64 riscv_initial_elimination_offset (int from, int to) { poly_int64 src, dest; riscv_compute_frame_info (); if (to == HARD_FRAME_POINTER_REGNUM) dest = cfun->machine->frame.hard_frame_pointer_offset; else if (to == STACK_POINTER_REGNUM) dest = 0; /* The stack pointer is the base of all offsets, hence 0. */ else gcc_unreachable (); if (from == FRAME_POINTER_REGNUM) src = cfun->machine->frame.frame_pointer_offset; else if (from == ARG_POINTER_REGNUM) src = cfun->machine->frame.arg_pointer_offset; else gcc_unreachable (); return src - dest; } /* Implement RETURN_ADDR_RTX. We do not support moving back to a previous frame. */ rtx riscv_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) { if (count != 0) return const0_rtx; return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); } /* Emit code to change the current function's return address to ADDRESS. SCRATCH is available as a scratch register, if needed. ADDRESS and SCRATCH are both word-mode GPRs. */ void riscv_set_return_address (rtx address, rtx scratch) { rtx slot_address; gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM)); slot_address = riscv_add_offset (scratch, stack_pointer_rtx, cfun->machine->frame.gp_sp_offset.to_constant()); riscv_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address); } /* Save register REG to MEM. Make the instruction frame-related. */ static void riscv_save_reg (rtx reg, rtx mem) { riscv_emit_move (mem, reg); riscv_set_frame_expr (riscv_frame_set (mem, reg)); } /* Restore register REG from MEM. */ static void riscv_restore_reg (rtx reg, rtx mem) { rtx insn = riscv_emit_move (reg, mem); rtx dwarf = NULL_RTX; dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf); if (known_gt (epilogue_cfa_sp_offset, 0) && REGNO (reg) == HARD_FRAME_POINTER_REGNUM) { rtx cfa_adjust_rtx = gen_rtx_PLUS (Pmode, stack_pointer_rtx, gen_int_mode (epilogue_cfa_sp_offset, Pmode)); dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf); } REG_NOTES (insn) = dwarf; RTX_FRAME_RELATED_P (insn) = 1; } /* A function to save or store a register. The first argument is the register and the second is the stack slot. */ typedef void (*riscv_save_restore_fn) (rtx, rtx); /* Use FN to save or restore register REGNO. MODE is the register's mode and OFFSET is the offset of its save slot from the current stack pointer. */ static void riscv_save_restore_reg (machine_mode mode, int regno, HOST_WIDE_INT offset, riscv_save_restore_fn fn) { rtx mem; mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset)); fn (gen_rtx_REG (mode, regno), mem); } /* Return the next register up from REGNO up to LIMIT for the callee to save or restore. OFFSET will be adjusted accordingly. If INC is set, then REGNO will be incremented first. Returns INVALID_REGNUM if there is no such next register. */ static unsigned int riscv_next_saved_reg (unsigned int regno, unsigned int limit, HOST_WIDE_INT *offset, bool inc = true) { if (inc) regno++; while (regno <= limit) { if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST)) { *offset = *offset - UNITS_PER_WORD; return regno; } regno++; } return INVALID_REGNUM; } /* Return TRUE if provided REGNO is eh return data register. */ static bool riscv_is_eh_return_data_register (unsigned int regno) { unsigned int i, regnum; if (!crtl->calls_eh_return) return false; for (i = 0; (regnum = EH_RETURN_DATA_REGNO (i)) != INVALID_REGNUM; i++) if (regno == regnum) { return true; } return false; } /* Call FN for each register that is saved by the current function. SP_OFFSET is the offset of the current stack pointer from the start of the frame. */ static void riscv_for_each_saved_reg (poly_int64 sp_offset, riscv_save_restore_fn fn, bool epilogue, bool maybe_eh_return) { HOST_WIDE_INT offset, first_fp_offset; unsigned int regno, num_masked_fp = 0; unsigned int start = GP_REG_FIRST; unsigned int limit = GP_REG_LAST; /* Save the link register and s-registers. */ offset = (cfun->machine->frame.gp_sp_offset - sp_offset).to_constant () + UNITS_PER_WORD; for (regno = riscv_next_saved_reg (start, limit, &offset, false); regno != INVALID_REGNUM; regno = riscv_next_saved_reg (regno, limit, &offset)) { if (cfun->machine->reg_is_wrapped_separately[regno]) continue; /* If this is a normal return in a function that calls the eh_return builtin, then do not restore the eh return data registers as that would clobber the return value. But we do still need to save them in the prologue, and restore them for an exception return, so we need special handling here. */ if (epilogue && !maybe_eh_return && riscv_is_eh_return_data_register (regno)) continue; if (TARGET_XTHEADMEMPAIR) { /* Get the next reg/offset pair. */ HOST_WIDE_INT offset2 = offset; unsigned int regno2 = riscv_next_saved_reg (regno, limit, &offset2); /* Validate everything before emitting a mempair instruction. */ if (regno2 != INVALID_REGNUM && !cfun->machine->reg_is_wrapped_separately[regno2] && !(epilogue && !maybe_eh_return && riscv_is_eh_return_data_register (regno2))) { bool load_p = (fn == riscv_restore_reg); rtx operands[4]; th_mempair_prepare_save_restore_operands (operands, load_p, word_mode, regno, offset, regno2, offset2); /* If the operands fit into a mempair insn, then emit one. */ if (th_mempair_operands_p (operands, load_p, word_mode)) { th_mempair_save_restore_regs (operands, load_p, word_mode); offset = offset2; regno = regno2; continue; } } } /* In an interrupt function, save and restore some necessary CSRs in the stack to avoid changes in CSRs. */ if (regno == RISCV_PROLOGUE_TEMP_REGNUM && cfun->machine->interrupt_handler_p && ((TARGET_HARD_FLOAT && cfun->machine->frame.fmask) || (TARGET_ZFINX && (cfun->machine->frame.mask & ~(1 << RISCV_PROLOGUE_TEMP_REGNUM))))) { unsigned int fcsr_size = GET_MODE_SIZE (SImode); if (!epilogue) { riscv_save_restore_reg (word_mode, regno, offset, fn); offset -= fcsr_size; emit_insn (gen_riscv_frcsr (RISCV_PROLOGUE_TEMP (SImode))); riscv_save_restore_reg (SImode, RISCV_PROLOGUE_TEMP_REGNUM, offset, riscv_save_reg); } else { riscv_save_restore_reg (SImode, RISCV_PROLOGUE_TEMP_REGNUM, offset - fcsr_size, riscv_restore_reg); emit_insn (gen_riscv_fscsr (RISCV_PROLOGUE_TEMP (SImode))); riscv_save_restore_reg (word_mode, regno, offset, fn); offset -= fcsr_size; } continue; } riscv_save_restore_reg (word_mode, regno, offset, fn); } /* This loop must iterate over the same space as its companion in riscv_compute_frame_info. */ first_fp_offset = (cfun->machine->frame.fp_sp_offset - sp_offset).to_constant (); for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST)) { bool handle_reg = !cfun->machine->reg_is_wrapped_separately[regno]; machine_mode mode = TARGET_DOUBLE_FLOAT ? DFmode : SFmode; unsigned int slot = (riscv_use_multi_push (&cfun->machine->frame)) ? CALLEE_SAVED_FREG_NUMBER (regno) : num_masked_fp; offset = first_fp_offset - slot * GET_MODE_SIZE (mode).to_constant (); if (handle_reg) riscv_save_restore_reg (mode, regno, offset, fn); num_masked_fp++; } } /* Call FN for each V register that is saved by the current function. */ static void riscv_for_each_saved_v_reg (poly_int64 &remaining_size, riscv_save_restore_fn fn, bool prologue) { rtx vlen = NULL_RTX; if (cfun->machine->frame.vmask != 0) { if (UNITS_PER_V_REG.is_constant () && SMALL_OPERAND (UNITS_PER_V_REG.to_constant ())) vlen = GEN_INT (UNITS_PER_V_REG.to_constant ()); else { vlen = RISCV_PROLOGUE_TEMP (Pmode); rtx insn = emit_move_insn (vlen, gen_int_mode (UNITS_PER_V_REG, Pmode)); RTX_FRAME_RELATED_P (insn) = 1; } } /* Select the mode where LMUL is 1 and SEW is largest. */ machine_mode m1_mode = TARGET_VECTOR_ELEN_64 ? RVVM1DImode : RVVM1SImode; if (prologue) { /* This loop must iterate over the same space as its companion in riscv_compute_frame_info. */ for (unsigned int regno = V_REG_FIRST; regno <= V_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.vmask, regno - V_REG_FIRST)) { bool handle_reg = !cfun->machine->reg_is_wrapped_separately[regno]; if (handle_reg) { rtx insn = NULL_RTX; if (CONST_INT_P (vlen)) { gcc_assert (SMALL_OPERAND (-INTVAL (vlen))); insn = emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-INTVAL (vlen)))); } else insn = emit_insn ( gen_sub3_insn (stack_pointer_rtx, stack_pointer_rtx, vlen)); gcc_assert (insn != NULL_RTX); RTX_FRAME_RELATED_P (insn) = 1; riscv_save_restore_reg (m1_mode, regno, 0, fn); remaining_size -= UNITS_PER_V_REG; } } } else { /* This loop must iterate over the same space as its companion in riscv_compute_frame_info. */ for (unsigned int regno = V_REG_LAST; regno >= V_REG_FIRST; regno--) if (BITSET_P (cfun->machine->frame.vmask, regno - V_REG_FIRST)) { bool handle_reg = !cfun->machine->reg_is_wrapped_separately[regno]; if (handle_reg) { riscv_save_restore_reg (m1_mode, regno, 0, fn); rtx insn = emit_insn ( gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, vlen)); gcc_assert (insn != NULL_RTX); RTX_FRAME_RELATED_P (insn) = 1; remaining_size -= UNITS_PER_V_REG; } } } } /* For stack frames that can't be allocated with a single ADDI instruction, compute the best value to initially allocate. It must at a minimum allocate enough space to spill the callee-saved registers. If TARGET_RVC, try to pick a value that will allow compression of the register saves without adding extra instructions. */ static HOST_WIDE_INT riscv_first_stack_step (struct riscv_frame_info *frame, poly_int64 remaining_size) { HOST_WIDE_INT remaining_const_size; if (!remaining_size.is_constant ()) remaining_const_size = riscv_stack_align (remaining_size.coeffs[0]) - riscv_stack_align (remaining_size.coeffs[1]); else remaining_const_size = remaining_size.to_constant (); /* First step must be set to the top of vector registers save area if any vector registers need be preversed. */ if (frame->vmask != 0) return (remaining_size - frame->v_sp_offset_top).to_constant (); if (SMALL_OPERAND (remaining_const_size)) return remaining_const_size; poly_int64 callee_saved_first_step = remaining_size - frame->frame_pointer_offset; gcc_assert(callee_saved_first_step.is_constant ()); HOST_WIDE_INT min_first_step = riscv_stack_align (callee_saved_first_step.to_constant ()); HOST_WIDE_INT max_first_step = IMM_REACH / 2 - PREFERRED_STACK_BOUNDARY / 8; HOST_WIDE_INT min_second_step = remaining_const_size - max_first_step; gcc_assert (min_first_step <= max_first_step); /* As an optimization, use the least-significant bits of the total frame size, so that the second adjustment step is just LUI + ADD. */ if (!SMALL_OPERAND (min_second_step) && remaining_const_size % IMM_REACH <= max_first_step && remaining_const_size % IMM_REACH >= min_first_step) return remaining_const_size % IMM_REACH; if (TARGET_RVC || TARGET_ZCA) { /* If we need two subtracts, and one is small enough to allow compressed loads and stores, then put that one first. */ if (IN_RANGE (min_second_step, 0, (TARGET_64BIT ? SDSP_REACH : SWSP_REACH))) return MAX (min_second_step, min_first_step); /* If we need LUI + ADDI + ADD for the second adjustment step, then start with the minimum first step, so that we can get compressed loads and stores. */ else if (!SMALL_OPERAND (min_second_step)) return min_first_step; } return max_first_step; } static rtx riscv_adjust_libcall_cfi_prologue () { rtx dwarf = NULL_RTX; rtx adjust_sp_rtx, reg, mem, insn; int saved_size = cfun->machine->frame.save_libcall_adjustment; int offset; for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST)) { /* The save order is ra, s0, s1, s2 to s11. */ if (regno == RETURN_ADDR_REGNUM) offset = saved_size - UNITS_PER_WORD; else if (regno == S0_REGNUM) offset = saved_size - UNITS_PER_WORD * 2; else if (regno == S1_REGNUM) offset = saved_size - UNITS_PER_WORD * 3; else offset = saved_size - ((regno - S2_REGNUM + 4) * UNITS_PER_WORD); reg = gen_rtx_REG (Pmode, regno); mem = gen_frame_mem (Pmode, plus_constant (Pmode, stack_pointer_rtx, offset)); insn = gen_rtx_SET (mem, reg); dwarf = alloc_reg_note (REG_CFA_OFFSET, insn, dwarf); } /* Debug info for adjust sp. */ adjust_sp_rtx = gen_rtx_SET (stack_pointer_rtx, gen_rtx_PLUS (GET_MODE(stack_pointer_rtx), stack_pointer_rtx, GEN_INT (-saved_size))); dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx, dwarf); return dwarf; } static rtx riscv_adjust_multi_push_cfi_prologue (int saved_size) { rtx dwarf = NULL_RTX; rtx adjust_sp_rtx, reg, mem, insn; unsigned int mask = cfun->machine->frame.mask; int offset; int saved_cnt = 0; if (mask & S10_MASK) mask |= S11_MASK; for (int regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--) if (BITSET_P (mask & MULTI_PUSH_GPR_MASK, regno - GP_REG_FIRST)) { /* The save order is s11-s0, ra from high to low addr. */ offset = saved_size - UNITS_PER_WORD * (++saved_cnt); reg = gen_rtx_REG (Pmode, regno); mem = gen_frame_mem (Pmode, plus_constant (Pmode, stack_pointer_rtx, offset)); insn = gen_rtx_SET (mem, reg); dwarf = alloc_reg_note (REG_CFA_OFFSET, insn, dwarf); } /* Debug info for adjust sp. */ adjust_sp_rtx = gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -saved_size)); dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx, dwarf); return dwarf; } static void riscv_emit_stack_tie (void) { if (Pmode == SImode) emit_insn (gen_stack_tiesi (stack_pointer_rtx, hard_frame_pointer_rtx)); else emit_insn (gen_stack_tiedi (stack_pointer_rtx, hard_frame_pointer_rtx)); } /*zcmp multi push and pop code_for_push_pop function ptr array */ static const code_for_push_pop_t code_for_push_pop[ZCMP_MAX_GRP_SLOTS][ZCMP_OP_NUM] = {{code_for_gpr_multi_push_up_to_ra, code_for_gpr_multi_pop_up_to_ra, code_for_gpr_multi_popret_up_to_ra, code_for_gpr_multi_popretz_up_to_ra}, {code_for_gpr_multi_push_up_to_s0, code_for_gpr_multi_pop_up_to_s0, code_for_gpr_multi_popret_up_to_s0, code_for_gpr_multi_popretz_up_to_s0}, {code_for_gpr_multi_push_up_to_s1, code_for_gpr_multi_pop_up_to_s1, code_for_gpr_multi_popret_up_to_s1, code_for_gpr_multi_popretz_up_to_s1}, {code_for_gpr_multi_push_up_to_s2, code_for_gpr_multi_pop_up_to_s2, code_for_gpr_multi_popret_up_to_s2, code_for_gpr_multi_popretz_up_to_s2}, {code_for_gpr_multi_push_up_to_s3, code_for_gpr_multi_pop_up_to_s3, code_for_gpr_multi_popret_up_to_s3, code_for_gpr_multi_popretz_up_to_s3}, {code_for_gpr_multi_push_up_to_s4, code_for_gpr_multi_pop_up_to_s4, code_for_gpr_multi_popret_up_to_s4, code_for_gpr_multi_popretz_up_to_s4}, {code_for_gpr_multi_push_up_to_s5, code_for_gpr_multi_pop_up_to_s5, code_for_gpr_multi_popret_up_to_s5, code_for_gpr_multi_popretz_up_to_s5}, {code_for_gpr_multi_push_up_to_s6, code_for_gpr_multi_pop_up_to_s6, code_for_gpr_multi_popret_up_to_s6, code_for_gpr_multi_popretz_up_to_s6}, {code_for_gpr_multi_push_up_to_s7, code_for_gpr_multi_pop_up_to_s7, code_for_gpr_multi_popret_up_to_s7, code_for_gpr_multi_popretz_up_to_s7}, {code_for_gpr_multi_push_up_to_s8, code_for_gpr_multi_pop_up_to_s8, code_for_gpr_multi_popret_up_to_s8, code_for_gpr_multi_popretz_up_to_s8}, {code_for_gpr_multi_push_up_to_s9, code_for_gpr_multi_pop_up_to_s9, code_for_gpr_multi_popret_up_to_s9, code_for_gpr_multi_popretz_up_to_s9}, {nullptr, nullptr, nullptr, nullptr}, {code_for_gpr_multi_push_up_to_s11, code_for_gpr_multi_pop_up_to_s11, code_for_gpr_multi_popret_up_to_s11, code_for_gpr_multi_popretz_up_to_s11}}; static rtx riscv_gen_multi_push_pop_insn (riscv_zcmp_op_t op, HOST_WIDE_INT adj_size, unsigned int regs_num) { gcc_assert (op < ZCMP_OP_NUM); gcc_assert (regs_num <= ZCMP_MAX_GRP_SLOTS && regs_num != ZCMP_INVALID_S0S10_SREGS_COUNTS + 1); /* 1 for ra*/ rtx stack_adj = GEN_INT (adj_size); return GEN_FCN (code_for_push_pop[regs_num - 1][op](Pmode)) (stack_adj); } static unsigned get_multi_push_fpr_mask (unsigned max_fprs_push) { unsigned mask_fprs_push = 0, num_f_pushed = 0; for (unsigned regno = FP_REG_FIRST; regno <= FP_REG_LAST && num_f_pushed < max_fprs_push; regno++) if (riscv_save_reg_p (regno)) mask_fprs_push |= 1 << (regno - FP_REG_FIRST), num_f_pushed++; return mask_fprs_push; } /* Expand the "prologue" pattern. */ void riscv_expand_prologue (void) { struct riscv_frame_info *frame = &cfun->machine->frame; poly_int64 remaining_size = frame->total_size; unsigned mask = frame->mask; unsigned fmask = frame->fmask; int spimm, multi_push_additional, stack_adj; rtx insn, dwarf = NULL_RTX; if (flag_stack_usage_info) current_function_static_stack_size = constant_lower_bound (remaining_size); if (cfun->machine->naked_p) return; /* prefer muti-push to save-restore libcall. */ if (riscv_use_multi_push (frame)) { remaining_size -= frame->multi_push_adj_base; /* If there are vector registers that need to be saved, then it can only be reduced to the frame->v_sp_offset_top position at most, since the vector registers will need to be saved one by one by decreasing the SP later. */ poly_int64 remaining_size_above_varea = frame->vmask != 0 ? remaining_size - frame->v_sp_offset_top : remaining_size; if (known_gt (remaining_size_above_varea, 2 * ZCMP_SP_INC_STEP)) spimm = 3; else if (known_gt (remaining_size_above_varea, ZCMP_SP_INC_STEP)) spimm = 2; else if (known_gt (remaining_size_above_varea, 0)) spimm = 1; else spimm = 0; multi_push_additional = spimm * ZCMP_SP_INC_STEP; frame->multi_push_adj_addi = multi_push_additional; remaining_size -= multi_push_additional; /* emit multi push insn & dwarf along with it. */ stack_adj = frame->multi_push_adj_base + multi_push_additional; insn = emit_insn (riscv_gen_multi_push_pop_insn ( PUSH_IDX, -stack_adj, riscv_multi_push_regs_count (frame->mask))); dwarf = riscv_adjust_multi_push_cfi_prologue (stack_adj); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = dwarf; /* Temporarily fib that we need not save GPRs. */ frame->mask = 0; /* push FPRs into the addtional reserved space by cm.push. */ if (fmask) { unsigned mask_fprs_push = get_multi_push_fpr_mask (multi_push_additional / UNITS_PER_WORD); frame->fmask &= mask_fprs_push; riscv_for_each_saved_reg (remaining_size, riscv_save_reg, false, false); frame->fmask = fmask & ~mask_fprs_push; /* mask for the rest FPRs. */ } } /* When optimizing for size, call a subroutine to save the registers. */ else if (riscv_use_save_libcall (frame)) { rtx dwarf = NULL_RTX; dwarf = riscv_adjust_libcall_cfi_prologue (); remaining_size -= frame->save_libcall_adjustment; insn = emit_insn (riscv_gen_gpr_save_insn (frame)); frame->mask = 0; /* Temporarily fib that we need not save GPRs. */ RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = dwarf; } /* Save the GP, FP registers. */ if ((frame->mask | frame->fmask) != 0) { if (known_gt (remaining_size, frame->frame_pointer_offset)) { HOST_WIDE_INT step1 = riscv_first_stack_step (frame, remaining_size); remaining_size -= step1; insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-step1)); RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; } riscv_for_each_saved_reg (remaining_size, riscv_save_reg, false, false); } /* Undo the above fib. */ frame->mask = mask; frame->fmask = fmask; /* Set up the frame pointer, if we're using one. */ if (frame_pointer_needed) { insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx, GEN_INT ((frame->hard_frame_pointer_offset - remaining_size).to_constant ())); RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; riscv_emit_stack_tie (); } /* Save the V registers. */ if (frame->vmask != 0) riscv_for_each_saved_v_reg (remaining_size, riscv_save_reg, true); /* Allocate the rest of the frame. */ if (known_gt (remaining_size, 0)) { /* Two step adjustment: 1.scalable frame. 2.constant frame. */ poly_int64 scalable_frame (0, 0); if (!remaining_size.is_constant ()) { /* First for scalable frame. */ poly_int64 scalable_frame = remaining_size; scalable_frame.coeffs[0] = remaining_size.coeffs[1]; riscv_v_adjust_scalable_frame (stack_pointer_rtx, scalable_frame, false); remaining_size -= scalable_frame; } /* Second step for constant frame. */ HOST_WIDE_INT constant_frame = remaining_size.to_constant (); if (constant_frame == 0) return; if (SMALL_OPERAND (-constant_frame)) { insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-constant_frame)); RTX_FRAME_RELATED_P (emit_insn (insn)) = 1; } else { riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), GEN_INT (-constant_frame)); emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, RISCV_PROLOGUE_TEMP (Pmode))); /* Describe the effect of the previous instructions. */ insn = plus_constant (Pmode, stack_pointer_rtx, -constant_frame); insn = gen_rtx_SET (stack_pointer_rtx, insn); riscv_set_frame_expr (insn); } } } static rtx riscv_adjust_multi_pop_cfi_epilogue (int saved_size) { rtx dwarf = NULL_RTX; rtx adjust_sp_rtx, reg; unsigned int mask = cfun->machine->frame.mask; if (mask & S10_MASK) mask |= S11_MASK; /* Debug info for adjust sp. */ adjust_sp_rtx = gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, saved_size)); dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx, dwarf); for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (BITSET_P (mask, regno - GP_REG_FIRST)) { reg = gen_rtx_REG (Pmode, regno); dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf); } return dwarf; } static rtx riscv_adjust_libcall_cfi_epilogue () { rtx dwarf = NULL_RTX; rtx adjust_sp_rtx, reg; int saved_size = cfun->machine->frame.save_libcall_adjustment; /* Debug info for adjust sp. */ adjust_sp_rtx = gen_rtx_SET (stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (saved_size))); dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx, dwarf); for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST)) { reg = gen_rtx_REG (Pmode, regno); dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf); } return dwarf; } /* return true if popretz pattern can be matched. set (reg 10 a0) (const_int 0) use (reg 10 a0) NOTE_INSN_EPILOGUE_BEG */ static rtx_insn * riscv_zcmp_can_use_popretz (void) { rtx_insn *insn = NULL, *use = NULL, *clear = NULL; /* sequence stack for NOTE_INSN_EPILOGUE_BEG*/ struct sequence_stack *outer_seq = get_current_sequence ()->next; if (!outer_seq) return NULL; insn = outer_seq->first; if (!insn || !NOTE_P (insn) || NOTE_KIND (insn) != NOTE_INSN_EPILOGUE_BEG) return NULL; /* sequence stack for the insn before NOTE_INSN_EPILOGUE_BEG*/ outer_seq = outer_seq->next; if (outer_seq) insn = outer_seq->last; /* skip notes */ while (insn && NOTE_P (insn)) { insn = PREV_INSN (insn); } use = insn; /* match use (reg 10 a0) */ if (use == NULL || !INSN_P (use) || GET_CODE (PATTERN (use)) != USE || !REG_P (XEXP (PATTERN (use), 0)) || REGNO (XEXP (PATTERN (use), 0)) != A0_REGNUM) return NULL; /* match set (reg 10 a0) (const_int 0 [0]) */ clear = PREV_INSN (use); if (clear != NULL && INSN_P (clear) && GET_CODE (PATTERN (clear)) == SET && REG_P (SET_DEST (PATTERN (clear))) && REGNO (SET_DEST (PATTERN (clear))) == A0_REGNUM && SET_SRC (PATTERN (clear)) == const0_rtx) return clear; return NULL; } static void riscv_gen_multi_pop_insn (bool use_multi_pop_normal, unsigned mask, unsigned multipop_size) { rtx insn; unsigned regs_count = riscv_multi_push_regs_count (mask); if (!use_multi_pop_normal) insn = emit_insn ( riscv_gen_multi_push_pop_insn (POP_IDX, multipop_size, regs_count)); else if (rtx_insn *clear_a0_insn = riscv_zcmp_can_use_popretz ()) { delete_insn (NEXT_INSN (clear_a0_insn)); delete_insn (clear_a0_insn); insn = emit_jump_insn ( riscv_gen_multi_push_pop_insn (POPRETZ_IDX, multipop_size, regs_count)); } else insn = emit_jump_insn ( riscv_gen_multi_push_pop_insn (POPRET_IDX, multipop_size, regs_count)); rtx dwarf = riscv_adjust_multi_pop_cfi_epilogue (multipop_size); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = dwarf; } /* Expand an "epilogue", "sibcall_epilogue", or "eh_return_internal" pattern; style says which. */ void riscv_expand_epilogue (int style) { /* Split the frame into 3 steps. STEP1 is the amount of stack we should deallocate before restoring the registers. STEP2 is the amount we should deallocate afterwards including the callee saved regs. STEP3 is the amount deallocated by save-restore libcall. Start off by assuming that no registers need to be restored. */ struct riscv_frame_info *frame = &cfun->machine->frame; unsigned mask = frame->mask; unsigned fmask = frame->fmask; unsigned mask_fprs_push = 0; poly_int64 step2 = 0; bool use_multi_pop_normal = ((style == NORMAL_RETURN) && riscv_use_multi_push (frame)); bool use_multi_pop_sibcall = ((style == SIBCALL_RETURN) && riscv_use_multi_push (frame)); bool use_multi_pop = use_multi_pop_normal || use_multi_pop_sibcall; bool use_restore_libcall = !use_multi_pop && ((style == NORMAL_RETURN) && riscv_use_save_libcall (frame)); unsigned libcall_size = use_restore_libcall && !use_multi_pop ? frame->save_libcall_adjustment : 0; unsigned multipop_size = use_multi_pop ? frame->multi_push_adj_base + frame->multi_push_adj_addi : 0; rtx ra = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); rtx insn; /* We need to add memory barrier to prevent read from deallocated stack. */ bool need_barrier_p = known_ne (get_frame_size () + cfun->machine->frame.arg_pointer_offset, 0); if (cfun->machine->naked_p) { gcc_assert (style == NORMAL_RETURN); emit_jump_insn (gen_return ()); return; } if ((style == NORMAL_RETURN) && riscv_can_use_return_insn ()) { emit_jump_insn (gen_return ()); return; } /* Reset the epilogue cfa info before starting to emit the epilogue. */ epilogue_cfa_sp_offset = 0; /* Move past any dynamic stack allocations. */ if (cfun->calls_alloca) { /* Emit a barrier to prevent loads from a deallocated stack. */ riscv_emit_stack_tie (); need_barrier_p = false; poly_int64 adjust_offset = -frame->hard_frame_pointer_offset; rtx adjust = NULL_RTX; if (!adjust_offset.is_constant ()) { rtx tmp1 = RISCV_PROLOGUE_TEMP (Pmode); rtx tmp2 = RISCV_PROLOGUE_TEMP2 (Pmode); riscv_legitimize_poly_move (Pmode, tmp1, tmp2, gen_int_mode (adjust_offset, Pmode)); adjust = tmp1; } else { if (!SMALL_OPERAND (adjust_offset.to_constant ())) { riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), GEN_INT (adjust_offset.to_constant ())); adjust = RISCV_PROLOGUE_TEMP (Pmode); } else adjust = GEN_INT (adjust_offset.to_constant ()); } insn = emit_insn ( gen_add3_insn (stack_pointer_rtx, hard_frame_pointer_rtx, adjust)); rtx dwarf = NULL_RTX; rtx cfa_adjust_value = gen_rtx_PLUS ( Pmode, hard_frame_pointer_rtx, gen_int_mode (-frame->hard_frame_pointer_offset, Pmode)); rtx cfa_adjust_rtx = gen_rtx_SET (stack_pointer_rtx, cfa_adjust_value); dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, cfa_adjust_rtx, dwarf); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = dwarf; } if (use_restore_libcall || use_multi_pop) frame->mask = 0; /* Temporarily fib that we need not restore GPRs. */ /* If we need to restore registers, deallocate as much stack as possible in the second step without going out of range. */ if (use_multi_pop) { if (frame->fmask && known_gt (frame->total_size - multipop_size, frame->frame_pointer_offset)) step2 = riscv_first_stack_step (frame, frame->total_size - multipop_size); } else if ((frame->mask | frame->fmask) != 0) step2 = riscv_first_stack_step (frame, frame->total_size - libcall_size); if (use_restore_libcall || use_multi_pop) frame->mask = mask; /* Undo the above fib. */ poly_int64 step1; /* STEP1 must be set to the bottom of vector registers save area if any vector registers need be preversed. */ if (frame->vmask != 0) { step1 = frame->v_sp_offset_bottom; step2 = frame->total_size - step1 - libcall_size - multipop_size; } else step1 = frame->total_size - step2 - libcall_size - multipop_size; /* Set TARGET to BASE + STEP1. */ if (known_gt (step1, 0)) { /* Emit a barrier to prevent loads from a deallocated stack. */ riscv_emit_stack_tie (); need_barrier_p = false; /* Restore the scalable frame which is assigned in prologue. */ if (!step1.is_constant ()) { poly_int64 scalable_frame = step1; scalable_frame.coeffs[0] = step1.coeffs[1]; riscv_v_adjust_scalable_frame (stack_pointer_rtx, scalable_frame, true); step1 -= scalable_frame; } /* Get an rtx for STEP1 that we can add to BASE. Skip if adjust equal to zero. */ if (step1.to_constant () != 0) { rtx adjust = GEN_INT (step1.to_constant ()); if (!SMALL_OPERAND (step1.to_constant ())) { riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), adjust); adjust = RISCV_PROLOGUE_TEMP (Pmode); } insn = emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, adjust)); rtx dwarf = NULL_RTX; rtx cfa_adjust_rtx = gen_rtx_PLUS (Pmode, stack_pointer_rtx, gen_int_mode (step2 + libcall_size + multipop_size, Pmode)); dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = dwarf; } } else if (frame_pointer_needed) { /* Tell riscv_restore_reg to emit dwarf to redefine CFA when restoring old value of FP. */ epilogue_cfa_sp_offset = step2; } if (use_multi_pop) { frame->mask = 0; /* Temporarily fib that we need not restore GPRs. */ if (fmask) { mask_fprs_push = get_multi_push_fpr_mask (frame->multi_push_adj_addi / UNITS_PER_WORD); frame->fmask &= ~mask_fprs_push; /* FPRs not saved by cm.push */ } } else if (use_restore_libcall) frame->mask = 0; /* Temporarily fib that we need not restore GPRs. */ /* Restore the registers. */ riscv_for_each_saved_v_reg (step2, riscv_restore_reg, false); riscv_for_each_saved_reg (frame->total_size - step2 - libcall_size - multipop_size, riscv_restore_reg, true, style == EXCEPTION_RETURN); if (use_restore_libcall) frame->mask = mask; /* Undo the above fib. */ if (need_barrier_p) riscv_emit_stack_tie (); /* Deallocate the final bit of the frame. */ if (step2.to_constant () > 0) { insn = emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (step2.to_constant ()))); rtx dwarf = NULL_RTX; rtx cfa_adjust_rtx = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (libcall_size + multipop_size)); dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = dwarf; } if (use_multi_pop) { /* restore FPRs pushed by cm.push. */ frame->fmask = fmask & mask_fprs_push; if (frame->fmask) riscv_for_each_saved_reg (frame->total_size - libcall_size - multipop_size, riscv_restore_reg, true, style == EXCEPTION_RETURN); /* Undo the above fib. */ frame->mask = mask; frame->fmask = fmask; riscv_gen_multi_pop_insn (use_multi_pop_normal, frame->mask, multipop_size); if (use_multi_pop_normal) return; } else if (use_restore_libcall) { rtx dwarf = riscv_adjust_libcall_cfi_epilogue (); insn = emit_insn (gen_gpr_restore (GEN_INT (riscv_save_libcall_count (mask)))); RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = dwarf; emit_jump_insn (gen_gpr_restore_return (ra)); return; } /* Add in the __builtin_eh_return stack adjustment. */ if ((style == EXCEPTION_RETURN) && crtl->calls_eh_return) emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, EH_RETURN_STACKADJ_RTX)); /* Return from interrupt. */ if (cfun->machine->interrupt_handler_p) { enum riscv_privilege_levels mode = cfun->machine->interrupt_mode; gcc_assert (mode != UNKNOWN_MODE); if (mode == MACHINE_MODE) emit_jump_insn (gen_riscv_mret ()); else if (mode == SUPERVISOR_MODE) emit_jump_insn (gen_riscv_sret ()); else emit_jump_insn (gen_riscv_uret ()); } else if (style != SIBCALL_RETURN) emit_jump_insn (gen_simple_return_internal (ra)); } /* Implement EPILOGUE_USES. */ bool riscv_epilogue_uses (unsigned int regno) { if (regno == RETURN_ADDR_REGNUM) return true; if (epilogue_completed && cfun->machine->interrupt_handler_p) { /* An interrupt function restores temp regs, so we must indicate that they are live at function end. */ if (df_regs_ever_live_p (regno) || (!crtl->is_leaf && call_used_or_fixed_reg_p (regno))) return true; } return false; } static bool riscv_avoid_shrink_wrapping_separate () { if (riscv_use_save_libcall (&cfun->machine->frame) || cfun->machine->interrupt_handler_p || !cfun->machine->frame.gp_sp_offset.is_constant ()) return true; return false; } /* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS. */ static sbitmap riscv_get_separate_components (void) { HOST_WIDE_INT offset; sbitmap components = sbitmap_alloc (FIRST_PSEUDO_REGISTER); bitmap_clear (components); if (riscv_avoid_shrink_wrapping_separate ()) return components; offset = cfun->machine->frame.gp_sp_offset.to_constant (); for (unsigned int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST)) { /* We can only wrap registers that have small operand offsets. For large offsets a pseudo register might be needed which cannot be created during the shrink wrapping pass. */ if (SMALL_OPERAND (offset)) bitmap_set_bit (components, regno); offset -= UNITS_PER_WORD; } offset = cfun->machine->frame.fp_sp_offset.to_constant (); for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST)) { machine_mode mode = TARGET_DOUBLE_FLOAT ? DFmode : SFmode; /* We can only wrap registers that have small operand offsets. For large offsets a pseudo register might be needed which cannot be created during the shrink wrapping pass. */ if (SMALL_OPERAND (offset)) bitmap_set_bit (components, regno); offset -= GET_MODE_SIZE (mode).to_constant (); } /* Don't mess with the hard frame pointer. */ if (frame_pointer_needed) bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM); bitmap_clear_bit (components, RETURN_ADDR_REGNUM); return components; } /* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB. */ static sbitmap riscv_components_for_bb (basic_block bb) { bitmap in = DF_LIVE_IN (bb); bitmap gen = &DF_LIVE_BB_INFO (bb)->gen; bitmap kill = &DF_LIVE_BB_INFO (bb)->kill; sbitmap components = sbitmap_alloc (FIRST_PSEUDO_REGISTER); bitmap_clear (components); function_abi_aggregator callee_abis; rtx_insn *insn; FOR_BB_INSNS (bb, insn) if (CALL_P (insn)) callee_abis.note_callee_abi (insn_callee_abi (insn)); HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi); /* GPRs are used in a bb if they are in the IN, GEN, or KILL sets. */ for (unsigned int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (!fixed_regs[regno] && !crtl->abi->clobbers_full_reg_p (regno) && (TEST_HARD_REG_BIT (extra_caller_saves, regno) || bitmap_bit_p (in, regno) || bitmap_bit_p (gen, regno) || bitmap_bit_p (kill, regno))) bitmap_set_bit (components, regno); for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) if (!fixed_regs[regno] && !crtl->abi->clobbers_full_reg_p (regno) && (TEST_HARD_REG_BIT (extra_caller_saves, regno) || bitmap_bit_p (in, regno) || bitmap_bit_p (gen, regno) || bitmap_bit_p (kill, regno))) bitmap_set_bit (components, regno); return components; } /* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS. */ static void riscv_disqualify_components (sbitmap, edge, sbitmap, bool) { /* Nothing to do for riscv. */ } static void riscv_process_components (sbitmap components, bool prologue_p) { HOST_WIDE_INT offset; riscv_save_restore_fn fn = prologue_p? riscv_save_reg : riscv_restore_reg; offset = cfun->machine->frame.gp_sp_offset.to_constant (); for (unsigned int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST)) { if (bitmap_bit_p (components, regno)) riscv_save_restore_reg (word_mode, regno, offset, fn); offset -= UNITS_PER_WORD; } offset = cfun->machine->frame.fp_sp_offset.to_constant (); for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST)) { machine_mode mode = TARGET_DOUBLE_FLOAT ? DFmode : SFmode; if (bitmap_bit_p (components, regno)) riscv_save_restore_reg (mode, regno, offset, fn); offset -= GET_MODE_SIZE (mode).to_constant (); } } /* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS. */ static void riscv_emit_prologue_components (sbitmap components) { riscv_process_components (components, true); } /* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS. */ static void riscv_emit_epilogue_components (sbitmap components) { riscv_process_components (components, false); } static void riscv_set_handled_components (sbitmap components) { for (unsigned int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) if (bitmap_bit_p (components, regno)) cfun->machine->reg_is_wrapped_separately[regno] = true; for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) if (bitmap_bit_p (components, regno)) cfun->machine->reg_is_wrapped_separately[regno] = true; } /* Return nonzero if this function is known to have a null epilogue. This allows the optimizer to omit jumps to jumps if no stack was created. */ bool riscv_can_use_return_insn (void) { return (reload_completed && known_eq (cfun->machine->frame.total_size, 0) && ! cfun->machine->interrupt_handler_p); } /* Given that there exists at least one variable that is set (produced) by OUT_INSN and read (consumed) by IN_INSN, return true iff IN_INSN represents one or more memory store operations and none of the variables set by OUT_INSN is used by IN_INSN as the address of a store operation. If either IN_INSN or OUT_INSN does not represent a "single" RTL SET expression (as loosely defined by the implementation of the single_set function) or a PARALLEL with only SETs, CLOBBERs, and USEs inside, this function returns false. Borrowed from rs6000, riscv_store_data_bypass_p checks for certain conditions that result in assertion failures in the generic store_data_bypass_p function and returns FALSE in such cases. This is required to make -msave-restore work with the sifive-7 pipeline description. */ bool riscv_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn) { rtx out_set, in_set; rtx out_pat, in_pat; rtx out_exp, in_exp; int i, j; in_set = single_set (in_insn); if (in_set) { if (MEM_P (SET_DEST (in_set))) { out_set = single_set (out_insn); if (!out_set) { out_pat = PATTERN (out_insn); if (GET_CODE (out_pat) == PARALLEL) { for (i = 0; i < XVECLEN (out_pat, 0); i++) { out_exp = XVECEXP (out_pat, 0, i); if ((GET_CODE (out_exp) == CLOBBER) || (GET_CODE (out_exp) == USE)) continue; else if (GET_CODE (out_exp) != SET) return false; } } } } } else { in_pat = PATTERN (in_insn); if (GET_CODE (in_pat) != PARALLEL) return false; for (i = 0; i < XVECLEN (in_pat, 0); i++) { in_exp = XVECEXP (in_pat, 0, i); if ((GET_CODE (in_exp) == CLOBBER) || (GET_CODE (in_exp) == USE)) continue; else if (GET_CODE (in_exp) != SET) return false; if (MEM_P (SET_DEST (in_exp))) { out_set = single_set (out_insn); if (!out_set) { out_pat = PATTERN (out_insn); if (GET_CODE (out_pat) != PARALLEL) return false; for (j = 0; j < XVECLEN (out_pat, 0); j++) { out_exp = XVECEXP (out_pat, 0, j); if ((GET_CODE (out_exp) == CLOBBER) || (GET_CODE (out_exp) == USE)) continue; else if (GET_CODE (out_exp) != SET) return false; } } } } } return store_data_bypass_p (out_insn, in_insn); } /* Implement TARGET_SECONDARY_MEMORY_NEEDED. When floating-point registers are wider than integer ones, moves between them must go through memory. */ static bool riscv_secondary_memory_needed (machine_mode mode, reg_class_t class1, reg_class_t class2) { return (!riscv_v_ext_mode_p (mode) && GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD && (class1 == FP_REGS) != (class2 == FP_REGS) && !TARGET_XTHEADFMV && !TARGET_ZFA); } /* Implement TARGET_REGISTER_MOVE_COST. */ static int riscv_register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to) { if ((from == FP_REGS && to == GR_REGS) || (from == GR_REGS && to == FP_REGS)) return tune_param->fmv_cost; return riscv_secondary_memory_needed (mode, from, to) ? 8 : 2; } /* Implement TARGET_HARD_REGNO_NREGS. */ static unsigned int riscv_hard_regno_nregs (unsigned int regno, machine_mode mode) { if (riscv_v_ext_vector_mode_p (mode)) { /* Handle fractional LMUL, it only occupy part of vector register but still need one vector register to hold. */ if (maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_V_REG)) return 1; return exact_div (GET_MODE_SIZE (mode), UNITS_PER_V_REG).to_constant (); } /* For tuple modes, the number of register = NF * LMUL. */ if (riscv_v_ext_tuple_mode_p (mode)) { unsigned int nf = riscv_vector::get_nf (mode); machine_mode subpart_mode = riscv_vector::get_subpart_mode (mode); poly_int64 size = GET_MODE_SIZE (subpart_mode); gcc_assert (known_eq (size * nf, GET_MODE_SIZE (mode))); if (maybe_lt (size, UNITS_PER_V_REG)) return nf; else { unsigned int lmul = exact_div (size, UNITS_PER_V_REG).to_constant (); return nf * lmul; } } /* For VLS modes, we allocate registers according to TARGET_MIN_VLEN. */ if (riscv_v_ext_vls_mode_p (mode)) { int size = GET_MODE_BITSIZE (mode).to_constant (); if (size < TARGET_MIN_VLEN) return 1; else return size / TARGET_MIN_VLEN; } /* mode for VL or VTYPE are just a marker, not holding value, so it always consume one register. */ if (VTYPE_REG_P (regno) || VL_REG_P (regno) || VXRM_REG_P (regno) || FRM_REG_P (regno)) return 1; /* Assume every valid non-vector mode fits in one vector register. */ if (V_REG_P (regno)) return 1; if (FP_REG_P (regno)) return (GET_MODE_SIZE (mode).to_constant () + UNITS_PER_FP_REG - 1) / UNITS_PER_FP_REG; /* All other registers are word-sized. */ return (GET_MODE_SIZE (mode).to_constant () + UNITS_PER_WORD - 1) / UNITS_PER_WORD; } /* Implement TARGET_HARD_REGNO_MODE_OK. */ static bool riscv_hard_regno_mode_ok (unsigned int regno, machine_mode mode) { unsigned int nregs = riscv_hard_regno_nregs (regno, mode); if (GP_REG_P (regno)) { if (riscv_v_ext_mode_p (mode)) return false; if (!GP_REG_P (regno + nregs - 1)) return false; } else if (FP_REG_P (regno)) { if (riscv_v_ext_mode_p (mode)) return false; if (!FP_REG_P (regno + nregs - 1)) return false; if (GET_MODE_CLASS (mode) != MODE_FLOAT && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) return false; /* Only use callee-saved registers if a potential callee is guaranteed to spill the requisite width. */ if (GET_MODE_UNIT_SIZE (mode) > UNITS_PER_FP_REG || (!call_used_or_fixed_reg_p (regno) && GET_MODE_UNIT_SIZE (mode) > UNITS_PER_FP_ARG)) return false; } else if (V_REG_P (regno)) { if (!riscv_v_ext_mode_p (mode)) return false; if (!V_REG_P (regno + nregs - 1)) return false; int regno_alignment = riscv_get_v_regno_alignment (mode); if (regno_alignment != 1) return ((regno % regno_alignment) == 0); } else if (VTYPE_REG_P (regno) || VL_REG_P (regno) || VXRM_REG_P (regno) || FRM_REG_P (regno)) return true; else return false; /* Require same callee-savedness for all registers. */ for (unsigned i = 1; i < nregs; i++) if (call_used_or_fixed_reg_p (regno) != call_used_or_fixed_reg_p (regno + i)) return false; /* Only use even registers in RV32 ZDINX */ if (!TARGET_64BIT && TARGET_ZDINX){ if (GET_MODE_CLASS (mode) == MODE_FLOAT && GET_MODE_UNIT_SIZE (mode) == GET_MODE_SIZE (DFmode)) return !(regno & 1); } return true; } /* Implement TARGET_MODES_TIEABLE_P. Don't allow floating-point modes to be tied, since type punning of single-precision and double-precision is implementation defined. */ static bool riscv_modes_tieable_p (machine_mode mode1, machine_mode mode2) { /* We don't allow different REG_CLASS modes tieable since it will cause ICE in register allocation (RA). E.g. V2SI and DI are not tieable. */ if (riscv_v_ext_mode_p (mode1) != riscv_v_ext_mode_p (mode2)) return false; return (mode1 == mode2 || !(GET_MODE_CLASS (mode1) == MODE_FLOAT && GET_MODE_CLASS (mode2) == MODE_FLOAT)); } /* Implement CLASS_MAX_NREGS. */ static unsigned char riscv_class_max_nregs (reg_class_t rclass, machine_mode mode) { if (reg_class_subset_p (rclass, FP_REGS)) return riscv_hard_regno_nregs (FP_REG_FIRST, mode); if (reg_class_subset_p (rclass, GR_REGS)) return riscv_hard_regno_nregs (GP_REG_FIRST, mode); if (reg_class_subset_p (rclass, V_REGS)) return riscv_hard_regno_nregs (V_REG_FIRST, mode); return 0; } /* Implement TARGET_MEMORY_MOVE_COST. */ static int riscv_memory_move_cost (machine_mode mode, reg_class_t rclass, bool in) { return (tune_param->memory_cost + memory_move_secondary_cost (mode, rclass, in)); } /* Return the number of instructions that can be issued per cycle. */ static int riscv_issue_rate (void) { return tune_param->issue_rate; } /* Implement TARGET_SCHED_VARIABLE_ISSUE. */ static int riscv_sched_variable_issue (FILE *, int, rtx_insn *insn, int more) { if (DEBUG_INSN_P (insn)) return more; rtx_code code = GET_CODE (PATTERN (insn)); if (code == USE || code == CLOBBER) return more; /* GHOST insns are used for blockage and similar cases which effectively end a cycle. */ if (get_attr_type (insn) == TYPE_GHOST) return 0; /* If we ever encounter an insn with an unknown type, trip an assert so we can find and fix this problem. */ gcc_assert (get_attr_type (insn) != TYPE_UNKNOWN); return more - 1; } /* Adjust the cost/latency of instructions for scheduling. For now this is just used to change the latency of vector instructions according to their LMUL. We assume that an insn with LMUL == 8 requires eight times more execution cycles than the same insn with LMUL == 1. As this may cause very high latencies which lead to scheduling artifacts we currently only perform the adjustment when -madjust-lmul-cost is given. */ static int riscv_sched_adjust_cost (rtx_insn *, int, rtx_insn *insn, int cost, unsigned int) { /* Only do adjustments for the generic out-of-order scheduling model. */ if (!TARGET_VECTOR || riscv_microarchitecture != generic_ooo) return cost; if (recog_memoized (insn) < 0) return cost; enum attr_type type = get_attr_type (insn); if (type == TYPE_VFREDO || type == TYPE_VFWREDO) { /* TODO: For ordered reductions scale the base cost relative to the number of units. */ ; } /* Don't do any LMUL-based latency adjustment unless explicitly asked to. */ if (!TARGET_ADJUST_LMUL_COST) return cost; /* vsetvl has a vlmul attribute but its latency does not depend on it. */ if (type == TYPE_VSETVL || type == TYPE_VSETVL_PRE) return cost; enum riscv_vector::vlmul_type lmul = (riscv_vector::vlmul_type)get_attr_vlmul (insn); double factor = 1; switch (lmul) { case riscv_vector::LMUL_2: factor = 2; break; case riscv_vector::LMUL_4: factor = 4; break; case riscv_vector::LMUL_8: factor = 8; break; case riscv_vector::LMUL_F2: factor = 0.5; break; case riscv_vector::LMUL_F4: factor = 0.25; break; case riscv_vector::LMUL_F8: factor = 0.125; break; default: factor = 1; } /* If the latency was nonzero, keep it that way. */ int new_cost = MAX (cost > 0 ? 1 : 0, cost * factor); return new_cost; } /* Auxiliary function to emit RISC-V ELF attribute. */ static void riscv_emit_attribute () { fprintf (asm_out_file, "\t.attribute arch, \"%s\"\n", riscv_arch_str ().c_str ()); fprintf (asm_out_file, "\t.attribute unaligned_access, %d\n", TARGET_STRICT_ALIGN ? 0 : 1); fprintf (asm_out_file, "\t.attribute stack_align, %d\n", riscv_stack_boundary / 8); } /* Output .variant_cc for function symbol which follows vector calling convention. */ static void riscv_asm_output_variant_cc (FILE *stream, const tree decl, const char *name) { if (TREE_CODE (decl) == FUNCTION_DECL) { riscv_cc cc = (riscv_cc) fndecl_abi (decl).id (); if (cc == RISCV_CC_V) { fprintf (stream, "\t.variant_cc\t"); assemble_name (stream, name); fprintf (stream, "\n"); } } } /* Implement ASM_DECLARE_FUNCTION_NAME. */ void riscv_declare_function_name (FILE *stream, const char *name, tree fndecl) { riscv_asm_output_variant_cc (stream, fndecl, name); ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function"); ASM_OUTPUT_LABEL (stream, name); } /* Implement ASM_OUTPUT_DEF_FROM_DECLS. */ void riscv_asm_output_alias (FILE *stream, const tree decl, const tree target) { const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0); const char *value = IDENTIFIER_POINTER (target); riscv_asm_output_variant_cc (stream, decl, name); ASM_OUTPUT_DEF (stream, name, value); } /* Implement ASM_OUTPUT_EXTERNAL. */ void riscv_asm_output_external (FILE *stream, tree decl, const char *name) { default_elf_asm_output_external (stream, decl, name); riscv_asm_output_variant_cc (stream, decl, name); } /* Implement TARGET_ASM_FILE_START. */ static void riscv_file_start (void) { default_file_start (); /* Instruct GAS to generate position-[in]dependent code. */ fprintf (asm_out_file, "\t.option %spic\n", (flag_pic ? "" : "no")); /* If the user specifies "-mno-relax" on the command line then disable linker relaxation in the assembler. */ if (! riscv_mrelax) fprintf (asm_out_file, "\t.option norelax\n"); /* If the user specifies "-mcsr-check" on the command line then enable csr check in the assembler. */ if (riscv_mcsr_check) fprintf (asm_out_file, "\t.option csr-check\n"); if (riscv_emit_attribute_p) riscv_emit_attribute (); } /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text in order to avoid duplicating too much logic from elsewhere. */ static void riscv_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl)); rtx this_rtx, temp1, temp2, fnaddr; rtx_insn *insn; /* Pretend to be a post-reload pass while generating rtl. */ reload_completed = 1; /* Mark the end of the (empty) prologue. */ emit_note (NOTE_INSN_PROLOGUE_END); /* Determine if we can use a sibcall to call FUNCTION directly. */ fnaddr = gen_rtx_MEM (FUNCTION_MODE, XEXP (DECL_RTL (function), 0)); /* We need two temporary registers in some cases. */ temp1 = gen_rtx_REG (Pmode, RISCV_PROLOGUE_TEMP_REGNUM); temp2 = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM); /* Find out which register contains the "this" pointer. */ if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1); else this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST); /* Add DELTA to THIS_RTX. */ if (delta != 0) { rtx offset = GEN_INT (delta); if (!SMALL_OPERAND (delta)) { riscv_emit_move (temp1, offset); offset = temp1; } emit_insn (gen_add3_insn (this_rtx, this_rtx, offset)); } /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */ if (vcall_offset != 0) { rtx addr; /* Set TEMP1 to *THIS_RTX. */ riscv_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx)); /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */ addr = riscv_add_offset (temp2, temp1, vcall_offset); /* Load the offset and add it to THIS_RTX. */ riscv_emit_move (temp1, gen_rtx_MEM (Pmode, addr)); emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1)); } /* Jump to the target function. */ rtx callee_cc = gen_int_mode (fndecl_abi (function).id (), SImode); insn = emit_call_insn (gen_sibcall (fnaddr, const0_rtx, callee_cc)); SIBLING_CALL_P (insn) = 1; /* Run just enough of rest_of_compilation. This sequence was "borrowed" from alpha.cc. */ insn = get_insns (); split_all_insns_noflow (); shorten_branches (insn); assemble_start_function (thunk_fndecl, fnname); final_start_function (insn, file, 1); final (insn, file, 1); final_end_function (); assemble_end_function (thunk_fndecl, fnname); /* Clean up the vars set above. Note that final_end_function resets the global pointer for us. */ reload_completed = 0; } /* Allocate a chunk of memory for per-function machine-dependent data. */ static struct machine_function * riscv_init_machine_status (void) { return ggc_cleared_alloc (); } /* Return the VLEN value associated with -march. TODO: So far we only support length-agnostic value. */ static poly_uint16 riscv_convert_vector_bits (struct gcc_options *opts) { int chunk_num; int min_vlen = TARGET_MIN_VLEN_OPTS (opts); if (min_vlen > 32) { /* When targetting minimum VLEN > 32, we should use 64-bit chunk size. Otherwise we can not include SEW = 64bits. Runtime invariant: The single indeterminate represent the number of 64-bit chunks in a vector beyond minimum length of 64 bits. Thus the number of bytes in a vector is 8 + 8 * x1 which is riscv_vector_chunks * 8 = poly_int (8, 8). */ riscv_bytes_per_vector_chunk = 8; /* Adjust BYTES_PER_RISCV_VECTOR according to TARGET_MIN_VLEN: - TARGET_MIN_VLEN = 64bit: [8,8] - TARGET_MIN_VLEN = 128bit: [16,16] - TARGET_MIN_VLEN = 256bit: [32,32] - TARGET_MIN_VLEN = 512bit: [64,64] - TARGET_MIN_VLEN = 1024bit: [128,128] - TARGET_MIN_VLEN = 2048bit: [256,256] - TARGET_MIN_VLEN = 4096bit: [512,512] FIXME: We currently DON'T support TARGET_MIN_VLEN > 4096bit. */ chunk_num = min_vlen / 64; } else { /* When targetting minimum VLEN = 32, we should use 32-bit chunk size. Runtime invariant: The single indeterminate represent the number of 32-bit chunks in a vector beyond minimum length of 32 bits. Thus the number of bytes in a vector is 4 + 4 * x1 which is riscv_vector_chunks * 4 = poly_int (4, 4). */ riscv_bytes_per_vector_chunk = 4; chunk_num = 1; } /* Set riscv_vector_chunks as poly (1, 1) run-time constant if TARGET_VECTOR is enabled. Set riscv_vector_chunks as 1 compile-time constant if TARGET_VECTOR is disabled. riscv_vector_chunks is used in "riscv-modes.def" to set RVV mode size. The RVV machine modes size are run-time constant if TARGET_VECTOR is enabled. The RVV machine modes size remains default compile-time constant if TARGET_VECTOR is disabled. */ if (TARGET_VECTOR_OPTS_P (opts)) { if (opts->x_riscv_autovec_preference == RVV_FIXED_VLMAX) return (int) min_vlen / (riscv_bytes_per_vector_chunk * 8); else return poly_uint16 (chunk_num, chunk_num); } else return 1; } /* 'Unpack' up the internal tuning structs and update the options in OPTS. The caller must have set up selected_tune and selected_arch as all the other target-specific codegen decisions are derived from them. */ void riscv_override_options_internal (struct gcc_options *opts) { const struct riscv_tune_info *cpu; /* The presence of the M extension implies that division instructions are present, so include them unless explicitly disabled. */ if (TARGET_MUL_OPTS_P (opts) && (target_flags_explicit & MASK_DIV) == 0) opts->x_target_flags |= MASK_DIV; else if (!TARGET_MUL_OPTS_P (opts) && TARGET_DIV_OPTS_P (opts)) error ("%<-mdiv%> requires %<-march%> to subsume the % extension"); /* Likewise floating-point division and square root. */ if ((TARGET_HARD_FLOAT || TARGET_ZFINX) && (target_flags_explicit & MASK_FDIV) == 0) opts->x_target_flags |= MASK_FDIV; /* Handle -mtune, use -mcpu if -mtune is not given, and use default -mtune if both -mtune and -mcpu are not given. */ cpu = riscv_parse_tune (opts->x_riscv_tune_string ? opts->x_riscv_tune_string : (opts->x_riscv_cpu_string ? opts->x_riscv_cpu_string : RISCV_TUNE_STRING_DEFAULT)); riscv_microarchitecture = cpu->microarchitecture; tune_param = opts->x_optimize_size ? &optimize_size_tune_info : cpu->tune_param; /* Use -mtune's setting for slow_unaligned_access, even when optimizing for size. For architectures that trap and emulate unaligned accesses, the performance cost is too great, even for -Os. Similarly, if -m[no-]strict-align is left unspecified, heed -mtune's advice. */ riscv_slow_unaligned_access_p = (cpu->tune_param->slow_unaligned_access || TARGET_STRICT_ALIGN); /* Make a note if user explicity passed -mstrict-align for later builtin macro generation. Can't use target_flags_explicitly since it is set even for -mno-strict-align. */ riscv_user_wants_strict_align = TARGET_STRICT_ALIGN; if ((target_flags_explicit & MASK_STRICT_ALIGN) == 0 && cpu->tune_param->slow_unaligned_access) opts->x_target_flags |= MASK_STRICT_ALIGN; /* If the user hasn't specified a branch cost, use the processor's default. */ if (opts->x_riscv_branch_cost == 0) opts->x_riscv_branch_cost = tune_param->branch_cost; /* FIXME: We don't allow TARGET_MIN_VLEN > 4096 since the datatypes of both GET_MODE_SIZE and GET_MODE_BITSIZE are poly_uint16. We can only allow TARGET_MIN_VLEN * 8 (LMUL) < 65535. */ if (TARGET_MIN_VLEN_OPTS (opts) > 4096) sorry ("Current RISC-V GCC cannot support VLEN greater than 4096bit for " "'V' Extension"); /* Convert -march to a chunks count. */ riscv_vector_chunks = riscv_convert_vector_bits (opts); } /* Implement TARGET_OPTION_OVERRIDE. */ static void riscv_option_override (void) { #ifdef SUBTARGET_OVERRIDE_OPTIONS SUBTARGET_OVERRIDE_OPTIONS; #endif flag_pcc_struct_return = 0; if (flag_pic) g_switch_value = 0; if (flag_pic) riscv_cmodel = CM_PIC; /* We need to save the fp with ra for non-leaf functions with no fp and ra for leaf functions while no-omit-frame-pointer with omit-leaf-frame-pointer. The x_flag_omit_frame_pointer has the first priority to determine whether the frame pointer is needed. If we do not override it, the fp and ra will be stored for leaf functions, which is not our wanted. */ riscv_save_frame_pointer = false; if (TARGET_OMIT_LEAF_FRAME_POINTER_P (global_options.x_target_flags)) { if (!global_options.x_flag_omit_frame_pointer) riscv_save_frame_pointer = true; global_options.x_flag_omit_frame_pointer = 1; } /* We get better code with explicit relocs for CM_MEDLOW, but worse code for the others (for now). Pick the best default. */ if ((target_flags_explicit & MASK_EXPLICIT_RELOCS) == 0) if (riscv_cmodel == CM_MEDLOW) target_flags |= MASK_EXPLICIT_RELOCS; /* Require that the ISA supports the requested floating-point ABI. */ if (UNITS_PER_FP_ARG > (TARGET_HARD_FLOAT ? UNITS_PER_FP_REG : 0)) error ("requested ABI requires %<-march%> to subsume the %qc extension", UNITS_PER_FP_ARG > 8 ? 'Q' : (UNITS_PER_FP_ARG > 4 ? 'D' : 'F')); if (TARGET_RVE && riscv_abi != ABI_ILP32E) error ("rv32e requires ilp32e ABI"); // Zfinx require abi ilp32,ilp32e or lp64. if (TARGET_ZFINX && riscv_abi != ABI_ILP32 && riscv_abi != ABI_LP64 && riscv_abi != ABI_ILP32E) error ("z*inx requires ABI ilp32, ilp32e or lp64"); /* We do not yet support ILP32 on RV64. */ if (BITS_PER_WORD != POINTER_SIZE) error ("ABI requires %<-march=rv%d%>", POINTER_SIZE); /* Validate -mpreferred-stack-boundary= value. */ riscv_stack_boundary = ABI_STACK_BOUNDARY; if (riscv_preferred_stack_boundary_arg) { int min = ctz_hwi (STACK_BOUNDARY / 8); int max = 8; if (!IN_RANGE (riscv_preferred_stack_boundary_arg, min, max)) error ("%<-mpreferred-stack-boundary=%d%> must be between %d and %d", riscv_preferred_stack_boundary_arg, min, max); riscv_stack_boundary = 8 << riscv_preferred_stack_boundary_arg; } if (riscv_emit_attribute_p < 0) #ifdef HAVE_AS_RISCV_ATTRIBUTE riscv_emit_attribute_p = TARGET_RISCV_ATTRIBUTE; #else riscv_emit_attribute_p = 0; if (riscv_emit_attribute_p) error ("%<-mriscv-attribute%> RISC-V ELF attribute requires GNU as 2.32" " [%<-mriscv-attribute%>]"); #endif if (riscv_stack_protector_guard == SSP_GLOBAL && OPTION_SET_P (riscv_stack_protector_guard_offset_str)) { error ("incompatible options %<-mstack-protector-guard=global%> and " "%<-mstack-protector-guard-offset=%s%>", riscv_stack_protector_guard_offset_str); } if (riscv_stack_protector_guard == SSP_TLS && !(OPTION_SET_P (riscv_stack_protector_guard_offset_str) && OPTION_SET_P (riscv_stack_protector_guard_reg_str))) { error ("both %<-mstack-protector-guard-offset%> and " "%<-mstack-protector-guard-reg%> must be used " "with %<-mstack-protector-guard=sysreg%>"); } if (OPTION_SET_P (riscv_stack_protector_guard_reg_str)) { const char *str = riscv_stack_protector_guard_reg_str; int reg = decode_reg_name (str); if (!IN_RANGE (reg, GP_REG_FIRST + 1, GP_REG_LAST)) error ("%qs is not a valid base register in %qs", str, "-mstack-protector-guard-reg="); riscv_stack_protector_guard_reg = reg; } if (OPTION_SET_P (riscv_stack_protector_guard_offset_str)) { char *end; const char *str = riscv_stack_protector_guard_offset_str; errno = 0; long offs = strtol (riscv_stack_protector_guard_offset_str, &end, 0); if (!*str || *end || errno) error ("%qs is not a valid number in %qs", str, "-mstack-protector-guard-offset="); if (!SMALL_OPERAND (offs)) error ("%qs is not a valid offset in %qs", str, "-mstack-protector-guard-offset="); riscv_stack_protector_guard_offset = offs; } SET_OPTION_IF_UNSET (&global_options, &global_options_set, param_sched_pressure_algorithm, SCHED_PRESSURE_MODEL); /* Function to allocate machine-dependent function status. */ init_machine_status = &riscv_init_machine_status; riscv_override_options_internal (&global_options); } /* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */ static void riscv_conditional_register_usage (void) { /* We have only x0~x15 on RV32E. */ if (TARGET_RVE) { for (int r = 16; r <= 31; r++) fixed_regs[r] = 1; } if (riscv_abi == ABI_ILP32E) { for (int r = 16; r <= 31; r++) call_used_regs[r] = 1; } if (!TARGET_HARD_FLOAT) { for (int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) fixed_regs[regno] = call_used_regs[regno] = 1; } /* In the soft-float ABI, there are no callee-saved FP registers. */ if (UNITS_PER_FP_ARG == 0) { for (int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) call_used_regs[regno] = 1; } if (!TARGET_VECTOR) { for (int regno = V_REG_FIRST; regno <= V_REG_LAST; regno++) fixed_regs[regno] = call_used_regs[regno] = 1; fixed_regs[VTYPE_REGNUM] = call_used_regs[VTYPE_REGNUM] = 1; fixed_regs[VL_REGNUM] = call_used_regs[VL_REGNUM] = 1; fixed_regs[VXRM_REGNUM] = call_used_regs[VXRM_REGNUM] = 1; fixed_regs[FRM_REGNUM] = call_used_regs[FRM_REGNUM] = 1; } } /* Return a register priority for hard reg REGNO. */ static int riscv_register_priority (int regno) { /* Favor compressed registers to improve the odds of RVC instruction selection. */ if (riscv_compressed_reg_p (regno)) return 1; return 0; } /* Implement TARGET_TRAMPOLINE_INIT. */ static void riscv_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { rtx addr, end_addr, mem; uint32_t trampoline[4]; unsigned int i; HOST_WIDE_INT static_chain_offset, target_function_offset; /* Work out the offsets of the pointers from the start of the trampoline code. */ gcc_assert (ARRAY_SIZE (trampoline) * 4 == TRAMPOLINE_CODE_SIZE); /* Get pointers to the beginning and end of the code block. */ addr = force_reg (Pmode, XEXP (m_tramp, 0)); end_addr = riscv_force_binary (Pmode, PLUS, addr, GEN_INT (TRAMPOLINE_CODE_SIZE)); if (Pmode == SImode) { chain_value = force_reg (Pmode, chain_value); rtx target_function = force_reg (Pmode, XEXP (DECL_RTL (fndecl), 0)); /* lui t2, hi(chain) lui t0, hi(func) addi t2, t2, lo(chain) jr t0, lo(func) */ unsigned HOST_WIDE_INT lui_hi_chain_code, lui_hi_func_code; unsigned HOST_WIDE_INT lo_chain_code, lo_func_code; rtx uimm_mask = force_reg (SImode, gen_int_mode (-IMM_REACH, SImode)); /* 0xfff. */ rtx imm12_mask = gen_reg_rtx (SImode); emit_insn (gen_one_cmplsi2 (imm12_mask, uimm_mask)); rtx fixup_value = force_reg (SImode, gen_int_mode (IMM_REACH/2, SImode)); /* Gen lui t2, hi(chain). */ rtx hi_chain = riscv_force_binary (SImode, PLUS, chain_value, fixup_value); hi_chain = riscv_force_binary (SImode, AND, hi_chain, uimm_mask); lui_hi_chain_code = OPCODE_LUI | (STATIC_CHAIN_REGNUM << SHIFT_RD); rtx lui_hi_chain = riscv_force_binary (SImode, IOR, hi_chain, gen_int_mode (lui_hi_chain_code, SImode)); mem = adjust_address (m_tramp, SImode, 0); riscv_emit_move (mem, riscv_swap_instruction (lui_hi_chain)); /* Gen lui t0, hi(func). */ rtx hi_func = riscv_force_binary (SImode, PLUS, target_function, fixup_value); hi_func = riscv_force_binary (SImode, AND, hi_func, uimm_mask); lui_hi_func_code = OPCODE_LUI | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RD); rtx lui_hi_func = riscv_force_binary (SImode, IOR, hi_func, gen_int_mode (lui_hi_func_code, SImode)); mem = adjust_address (m_tramp, SImode, 1 * GET_MODE_SIZE (SImode)); riscv_emit_move (mem, riscv_swap_instruction (lui_hi_func)); /* Gen addi t2, t2, lo(chain). */ rtx lo_chain = riscv_force_binary (SImode, AND, chain_value, imm12_mask); lo_chain = riscv_force_binary (SImode, ASHIFT, lo_chain, GEN_INT (20)); lo_chain_code = OPCODE_ADDI | (STATIC_CHAIN_REGNUM << SHIFT_RD) | (STATIC_CHAIN_REGNUM << SHIFT_RS1); rtx addi_lo_chain = riscv_force_binary (SImode, IOR, lo_chain, force_reg (SImode, GEN_INT (lo_chain_code))); mem = adjust_address (m_tramp, SImode, 2 * GET_MODE_SIZE (SImode)); riscv_emit_move (mem, riscv_swap_instruction (addi_lo_chain)); /* Gen jr t0, lo(func). */ rtx lo_func = riscv_force_binary (SImode, AND, target_function, imm12_mask); lo_func = riscv_force_binary (SImode, ASHIFT, lo_func, GEN_INT (20)); lo_func_code = OPCODE_JALR | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RS1); rtx jr_lo_func = riscv_force_binary (SImode, IOR, lo_func, force_reg (SImode, GEN_INT (lo_func_code))); mem = adjust_address (m_tramp, SImode, 3 * GET_MODE_SIZE (SImode)); riscv_emit_move (mem, riscv_swap_instruction (jr_lo_func)); } else { static_chain_offset = TRAMPOLINE_CODE_SIZE; target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode); /* auipc t2, 0 l[wd] t0, target_function_offset(t2) l[wd] t2, static_chain_offset(t2) jr t0 */ trampoline[0] = OPCODE_AUIPC | (STATIC_CHAIN_REGNUM << SHIFT_RD); trampoline[1] = (Pmode == DImode ? OPCODE_LD : OPCODE_LW) | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RD) | (STATIC_CHAIN_REGNUM << SHIFT_RS1) | (target_function_offset << SHIFT_IMM); trampoline[2] = (Pmode == DImode ? OPCODE_LD : OPCODE_LW) | (STATIC_CHAIN_REGNUM << SHIFT_RD) | (STATIC_CHAIN_REGNUM << SHIFT_RS1) | (static_chain_offset << SHIFT_IMM); trampoline[3] = OPCODE_JALR | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RS1); /* Copy the trampoline code. */ for (i = 0; i < ARRAY_SIZE (trampoline); i++) { if (BYTES_BIG_ENDIAN) trampoline[i] = __builtin_bswap32(trampoline[i]); mem = adjust_address (m_tramp, SImode, i * GET_MODE_SIZE (SImode)); riscv_emit_move (mem, gen_int_mode (trampoline[i], SImode)); } /* Set up the static chain pointer field. */ mem = adjust_address (m_tramp, ptr_mode, static_chain_offset); riscv_emit_move (mem, chain_value); /* Set up the target function field. */ mem = adjust_address (m_tramp, ptr_mode, target_function_offset); riscv_emit_move (mem, XEXP (DECL_RTL (fndecl), 0)); } /* Flush the code part of the trampoline. */ emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE))); emit_insn (gen_clear_cache (addr, end_addr)); } /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */ static bool riscv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED, tree exp ATTRIBUTE_UNUSED) { /* Don't use sibcalls when use save-restore routine. */ if (TARGET_SAVE_RESTORE) return false; /* Don't use sibcall for naked functions. */ if (cfun->machine->naked_p) return false; /* Don't use sibcall for interrupt functions. */ if (cfun->machine->interrupt_handler_p) return false; return true; } /* Get the interrupt type, return UNKNOWN_MODE if it's not interrupt function. */ static enum riscv_privilege_levels riscv_get_interrupt_type (tree decl) { gcc_assert (decl != NULL_TREE); if ((TREE_CODE(decl) != FUNCTION_DECL) || (!riscv_interrupt_type_p (TREE_TYPE (decl)))) return UNKNOWN_MODE; tree attr_args = TREE_VALUE (lookup_attribute ("interrupt", TYPE_ATTRIBUTES (TREE_TYPE (decl)))); if (attr_args && TREE_CODE (TREE_VALUE (attr_args)) != VOID_TYPE) { const char *string = TREE_STRING_POINTER (TREE_VALUE (attr_args)); if (!strcmp (string, "user")) return USER_MODE; else if (!strcmp (string, "supervisor")) return SUPERVISOR_MODE; else /* Must be "machine". */ return MACHINE_MODE; } else /* Interrupt attributes are machine mode by default. */ return MACHINE_MODE; } /* Implement `TARGET_SET_CURRENT_FUNCTION'. */ /* Sanity cheching for above function attributes. */ static void riscv_set_current_function (tree decl) { if (decl == NULL_TREE || current_function_decl == NULL_TREE || current_function_decl == error_mark_node || ! cfun->machine || cfun->machine->attributes_checked_p) return; cfun->machine->naked_p = riscv_naked_function_p (decl); cfun->machine->interrupt_handler_p = riscv_interrupt_type_p (TREE_TYPE (decl)); if (cfun->machine->naked_p && cfun->machine->interrupt_handler_p) error ("function attributes %qs and %qs are mutually exclusive", "interrupt", "naked"); if (cfun->machine->interrupt_handler_p) { tree ret = TREE_TYPE (TREE_TYPE (decl)); tree args = TYPE_ARG_TYPES (TREE_TYPE (decl)); if (TREE_CODE (ret) != VOID_TYPE) error ("%qs function cannot return a value", "interrupt"); if (args && TREE_CODE (TREE_VALUE (args)) != VOID_TYPE) error ("%qs function cannot have arguments", "interrupt"); cfun->machine->interrupt_mode = riscv_get_interrupt_type (decl); gcc_assert (cfun->machine->interrupt_mode != UNKNOWN_MODE); } /* Don't print the above diagnostics more than once. */ cfun->machine->attributes_checked_p = 1; } /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */ static tree riscv_merge_decl_attributes (tree olddecl, tree newdecl) { tree combined_attrs; enum riscv_privilege_levels old_interrupt_type = riscv_get_interrupt_type (olddecl); enum riscv_privilege_levels new_interrupt_type = riscv_get_interrupt_type (newdecl); /* Check old and new has same interrupt type. */ if ((old_interrupt_type != UNKNOWN_MODE) && (new_interrupt_type != UNKNOWN_MODE) && (old_interrupt_type != new_interrupt_type)) error ("%qs function cannot have different interrupt type", "interrupt"); /* Create combined attributes. */ combined_attrs = merge_attributes (DECL_ATTRIBUTES (olddecl), DECL_ATTRIBUTES (newdecl)); return combined_attrs; } /* Implement TARGET_CANNOT_COPY_INSN_P. */ static bool riscv_cannot_copy_insn_p (rtx_insn *insn) { return recog_memoized (insn) >= 0 && get_attr_cannot_copy (insn); } /* Implement TARGET_SLOW_UNALIGNED_ACCESS. */ static bool riscv_slow_unaligned_access (machine_mode, unsigned int) { return riscv_slow_unaligned_access_p; } /* Implement TARGET_CAN_CHANGE_MODE_CLASS. */ static bool riscv_can_change_mode_class (machine_mode from, machine_mode to, reg_class_t rclass) { /* We have RVV VLS modes and VLA modes sharing same REG_CLASS. In 'cprop_hardreg' stage, we will try to do hard reg copy propagation between wider mode (FROM) and narrow mode (TO). E.g. We should not allow copy propagation - RVVMF8BI (precision = [16, 16]) -> V32BI (precision = [32, 0]) since we can't order their size which will cause ICE in regcprop. TODO: Even though they are have different size, they always change the whole register. We may enhance such case in regcprop to optimize it in the future. */ if (reg_classes_intersect_p (V_REGS, rclass) && !ordered_p (GET_MODE_PRECISION (from), GET_MODE_PRECISION (to))) return false; return !reg_classes_intersect_p (FP_REGS, rclass); } /* Implement TARGET_CONSTANT_ALIGNMENT. */ static HOST_WIDE_INT riscv_constant_alignment (const_tree exp, HOST_WIDE_INT align) { if ((TREE_CODE (exp) == STRING_CST || TREE_CODE (exp) == CONSTRUCTOR) && (riscv_align_data_type == riscv_align_data_type_xlen)) return MAX (align, BITS_PER_WORD); return align; } /* Implement TARGET_PROMOTE_FUNCTION_MODE. */ /* This function is equivalent to default_promote_function_mode_always_promote except that it returns a promoted mode even if type is NULL_TREE. This is needed by libcalls which have no type (only a mode) such as fixed conversion routines that take a signed or unsigned char/short/int argument and convert it to a fixed type. */ static machine_mode riscv_promote_function_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode, int *punsignedp ATTRIBUTE_UNUSED, const_tree fntype ATTRIBUTE_UNUSED, int for_return ATTRIBUTE_UNUSED) { int unsignedp; if (type != NULL_TREE) return promote_mode (type, mode, punsignedp); unsignedp = *punsignedp; PROMOTE_MODE (as_a (mode), unsignedp, type); *punsignedp = unsignedp; return mode; } /* Implement TARGET_MACHINE_DEPENDENT_REORG. */ static void riscv_reorg (void) { /* Do nothing unless we have -msave-restore */ if (TARGET_SAVE_RESTORE) riscv_remove_unneeded_save_restore_calls (); } /* Return nonzero if register FROM_REGNO can be renamed to register TO_REGNO. */ bool riscv_hard_regno_rename_ok (unsigned from_regno ATTRIBUTE_UNUSED, unsigned to_regno) { /* Interrupt functions can only use registers that have already been saved by the prologue, even if they would normally be call-clobbered. */ return !cfun->machine->interrupt_handler_p || df_regs_ever_live_p (to_regno); } /* Implement TARGET_NEW_ADDRESS_PROFITABLE_P. */ bool riscv_new_address_profitable_p (rtx memref, rtx_insn *insn, rtx new_addr) { /* Prefer old address if it is less expensive. */ addr_space_t as = MEM_ADDR_SPACE (memref); bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)); int old_cost = address_cost (XEXP (memref, 0), GET_MODE (memref), as, speed); int new_cost = address_cost (new_addr, GET_MODE (memref), as, speed); return new_cost <= old_cost; } /* Helper function for generating gpr_save pattern. */ rtx riscv_gen_gpr_save_insn (struct riscv_frame_info *frame) { unsigned count = riscv_save_libcall_count (frame->mask); /* 1 for unspec 2 for clobber t0/t1 and 1 for ra. */ unsigned veclen = 1 + 2 + 1 + count; rtvec vec = rtvec_alloc (veclen); gcc_assert (veclen <= ARRAY_SIZE (gpr_save_reg_order)); RTVEC_ELT (vec, 0) = gen_rtx_UNSPEC_VOLATILE (VOIDmode, gen_rtvec (1, GEN_INT (count)), UNSPECV_GPR_SAVE); for (unsigned i = 1; i < veclen; ++i) { unsigned regno = gpr_save_reg_order[i]; rtx reg = gen_rtx_REG (Pmode, regno); rtx elt; /* t0 and t1 are CLOBBERs, others are USEs. */ if (i < 3) elt = gen_rtx_CLOBBER (Pmode, reg); else elt = gen_rtx_USE (Pmode, reg); RTVEC_ELT (vec, i) = elt; } /* Largest number of caller-save register must set in mask if we are not using __riscv_save_0. */ gcc_assert ((count == 0) || BITSET_P (frame->mask, gpr_save_reg_order[veclen - 1])); return gen_rtx_PARALLEL (VOIDmode, vec); } static HOST_WIDE_INT zcmp_base_adj (int regs_num) { return riscv_16bytes_align ((regs_num) *GET_MODE_SIZE (word_mode)); } static HOST_WIDE_INT zcmp_additional_adj (HOST_WIDE_INT total, int regs_num) { return total - zcmp_base_adj (regs_num); } bool riscv_zcmp_valid_stack_adj_bytes_p (HOST_WIDE_INT total, int regs_num) { HOST_WIDE_INT additioanl_bytes = zcmp_additional_adj (total, regs_num); return additioanl_bytes == 0 || additioanl_bytes == 1 * ZCMP_SP_INC_STEP || additioanl_bytes == 2 * ZCMP_SP_INC_STEP || additioanl_bytes == ZCMP_MAX_SPIMM * ZCMP_SP_INC_STEP; } /* Return true if it's valid gpr_save pattern. */ bool riscv_gpr_save_operation_p (rtx op) { unsigned len = XVECLEN (op, 0); if (len > ARRAY_SIZE (gpr_save_reg_order)) return false; for (unsigned i = 0; i < len; i++) { rtx elt = XVECEXP (op, 0, i); if (i == 0) { /* First element in parallel is unspec. */ if (GET_CODE (elt) != UNSPEC_VOLATILE || GET_CODE (XVECEXP (elt, 0, 0)) != CONST_INT || XINT (elt, 1) != UNSPECV_GPR_SAVE) return false; } else { /* Two CLOBBER and USEs, must check the order. */ unsigned expect_code = i < 3 ? CLOBBER : USE; if (GET_CODE (elt) != expect_code || !REG_P (XEXP (elt, 1)) || (REGNO (XEXP (elt, 1)) != gpr_save_reg_order[i])) return false; } break; } return true; } /* Implement TARGET_ASAN_SHADOW_OFFSET. */ static unsigned HOST_WIDE_INT riscv_asan_shadow_offset (void) { /* We only have libsanitizer support for RV64 at present. This number must match ASAN_SHADOW_OFFSET_CONST in the file libsanitizer/asan/asan_mapping.h. */ return TARGET_64BIT ? HOST_WIDE_INT_UC (0xd55550000) : 0; } /* Implement TARGET_MANGLE_TYPE. */ static const char * riscv_mangle_type (const_tree type) { /* Half-precision float, _Float16 is "DF16_". */ if (SCALAR_FLOAT_TYPE_P (type) && TYPE_PRECISION (type) == 16) return "DF16_"; /* Mangle all vector type for vector extension. */ /* The mangle name follows the rule of RVV LLVM that is "u" + length of (abi_name) + abi_name. */ if (TYPE_NAME (type) != NULL) { const char *res = riscv_vector::mangle_builtin_type (type); if (res) return res; } /* Use the default mangling. */ return NULL; } /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */ static bool riscv_scalar_mode_supported_p (scalar_mode mode) { if (mode == HFmode) return true; else return default_scalar_mode_supported_p (mode); } /* Implement TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P - return TRUE if MODE is HFmode, and punt to the generic implementation otherwise. */ static bool riscv_libgcc_floating_mode_supported_p (scalar_float_mode mode) { if (mode == HFmode) return true; else return default_libgcc_floating_mode_supported_p (mode); } /* Set the value of FLT_EVAL_METHOD. ISO/IEC TS 18661-3 defines two values that we'd like to make use of: 0: evaluate all operations and constants, whose semantic type has at most the range and precision of type float, to the range and precision of float; evaluate all other operations and constants to the range and precision of the semantic type; N, where _FloatN is a supported interchange floating type evaluate all operations and constants, whose semantic type has at most the range and precision of _FloatN type, to the range and precision of the _FloatN type; evaluate all other operations and constants to the range and precision of the semantic type; If we have the zfh/zhinx/zvfh extensions then we support _Float16 in native precision, so we should set this to 16. */ static enum flt_eval_method riscv_excess_precision (enum excess_precision_type type) { switch (type) { case EXCESS_PRECISION_TYPE_FAST: case EXCESS_PRECISION_TYPE_STANDARD: return ((TARGET_ZFH || TARGET_ZHINX || TARGET_ZVFH) ? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16 : FLT_EVAL_METHOD_PROMOTE_TO_FLOAT); case EXCESS_PRECISION_TYPE_IMPLICIT: case EXCESS_PRECISION_TYPE_FLOAT16: return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16; default: gcc_unreachable (); } return FLT_EVAL_METHOD_UNPREDICTABLE; } /* Implement TARGET_FLOATN_MODE. */ static opt_scalar_float_mode riscv_floatn_mode (int n, bool extended) { if (!extended && n == 16) return HFmode; return default_floatn_mode (n, extended); } static void riscv_init_libfuncs (void) { /* Half-precision float operations. The compiler handles all operations with NULL libfuncs by converting to SFmode. */ /* Arithmetic. */ set_optab_libfunc (add_optab, HFmode, NULL); set_optab_libfunc (sdiv_optab, HFmode, NULL); set_optab_libfunc (smul_optab, HFmode, NULL); set_optab_libfunc (neg_optab, HFmode, NULL); set_optab_libfunc (sub_optab, HFmode, NULL); /* Comparisons. */ set_optab_libfunc (eq_optab, HFmode, NULL); set_optab_libfunc (ne_optab, HFmode, NULL); set_optab_libfunc (lt_optab, HFmode, NULL); set_optab_libfunc (le_optab, HFmode, NULL); set_optab_libfunc (ge_optab, HFmode, NULL); set_optab_libfunc (gt_optab, HFmode, NULL); set_optab_libfunc (unord_optab, HFmode, NULL); } #if CHECKING_P void riscv_reinit (void) { riscv_option_override (); init_adjust_machine_modes (); init_derived_machine_modes (); reinit_regs (); init_optabs (); } #endif #if CHECKING_P #undef TARGET_RUN_TARGET_SELFTESTS #define TARGET_RUN_TARGET_SELFTESTS selftest::riscv_run_selftests #endif /* #if CHECKING_P */ /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */ static bool riscv_vector_mode_supported_p (machine_mode mode) { if (TARGET_VECTOR) return riscv_v_ext_mode_p (mode); return false; } /* Implement TARGET_VERIFY_TYPE_CONTEXT. */ static bool riscv_verify_type_context (location_t loc, type_context_kind context, const_tree type, bool silent_p) { return riscv_vector::verify_type_context (loc, context, type, silent_p); } /* Implement TARGET_VECTOR_ALIGNMENT. */ static HOST_WIDE_INT riscv_vector_alignment (const_tree type) { /* ??? Checking the mode isn't ideal, but VECTOR_BOOLEAN_TYPE_P can be set for non-predicate vectors of booleans. Modes are the most direct way we have of identifying real RVV predicate types. */ /* FIXME: RVV didn't mention the alignment of bool, we uses one byte align. */ if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_VECTOR_BOOL) return 8; widest_int min_size = constant_lower_bound (wi::to_poly_widest (TYPE_SIZE (type))); return wi::umin (min_size, 128).to_uhwi (); } /* Implement REGMODE_NATURAL_SIZE. */ poly_uint64 riscv_regmode_natural_size (machine_mode mode) { /* The natural size for RVV data modes is one RVV data vector, and similarly for predicates. We can't independently modify anything smaller than that. */ /* ??? For now, only do this for variable-width RVV registers. Doing it for constant-sized registers breaks lower-subreg.c. */ if (riscv_v_ext_mode_p (mode)) { if (riscv_v_ext_tuple_mode_p (mode)) { poly_uint64 size = GET_MODE_SIZE (riscv_vector::get_subpart_mode (mode)); if (known_lt (size, BYTES_PER_RISCV_VECTOR)) return size; } else if (riscv_v_ext_vector_mode_p (mode)) { /* RVV mask modes always consume a single register. */ if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL) return BYTES_PER_RISCV_VECTOR; } if (!GET_MODE_SIZE (mode).is_constant ()) return BYTES_PER_RISCV_VECTOR; } return UNITS_PER_WORD; } /* Implement the TARGET_DWARF_POLY_INDETERMINATE_VALUE hook. */ static unsigned int riscv_dwarf_poly_indeterminate_value (unsigned int i, unsigned int *factor, int *offset) { /* Polynomial invariant 1 == (VLENB / riscv_bytes_per_vector_chunk) - 1. 1. TARGET_MIN_VLEN == 32, polynomial invariant 1 == (VLENB / 4) - 1. 2. TARGET_MIN_VLEN > 32, polynomial invariant 1 == (VLENB / 8) - 1. */ gcc_assert (i == 1); *factor = riscv_bytes_per_vector_chunk; *offset = 1; return RISCV_DWARF_VLENB; } /* Implement TARGET_ESTIMATED_POLY_VALUE. Look into the tuning structure for an estimate. KIND specifies the type of requested estimate: min, max or likely. For cores with a known RVV width all three estimates are the same. For generic RVV tuning we want to distinguish the maximum estimate from the minimum and likely ones. The likely estimate is the same as the minimum in that case to give a conservative behavior of auto-vectorizing with RVV when it is a win even for 128-bit RVV. When RVV width information is available VAL.coeffs[1] is multiplied by the number of VQ chunks over the initial Advanced SIMD 128 bits. */ static HOST_WIDE_INT riscv_estimated_poly_value (poly_int64 val, poly_value_estimate_kind kind = POLY_VALUE_LIKELY) { unsigned int width_source = BITS_PER_RISCV_VECTOR.is_constant () ? (unsigned int) BITS_PER_RISCV_VECTOR.to_constant () : (unsigned int) RVV_SCALABLE; /* If there is no core-specific information then the minimum and likely values are based on 128-bit vectors and the maximum is based on the architectural maximum of 65536 bits. */ if (width_source == RVV_SCALABLE) switch (kind) { case POLY_VALUE_MIN: case POLY_VALUE_LIKELY: return val.coeffs[0]; case POLY_VALUE_MAX: return val.coeffs[0] + val.coeffs[1] * 15; } /* Allow BITS_PER_RISCV_VECTOR to be a bitmask of different VL, treating the lowest as likely. This could be made more general if future -mtune options need it to be. */ if (kind == POLY_VALUE_MAX) width_source = 1 << floor_log2 (width_source); else width_source = least_bit_hwi (width_source); /* If the core provides width information, use that. */ HOST_WIDE_INT over_128 = width_source - 128; return val.coeffs[0] + val.coeffs[1] * over_128 / 128; } /* Return true if the vector misalignment factor is supported by the target. */ bool riscv_support_vector_misalignment (machine_mode mode, const_tree type ATTRIBUTE_UNUSED, int misalignment, bool is_packed ATTRIBUTE_UNUSED) { /* Depend on movmisalign pattern. */ return default_builtin_support_vector_misalignment (mode, type, misalignment, is_packed); } /* Implement TARGET_VECTORIZE_GET_MASK_MODE. */ static opt_machine_mode riscv_get_mask_mode (machine_mode mode) { if (TARGET_VECTOR && riscv_v_ext_mode_p (mode)) return riscv_vector::get_mask_mode (mode); return default_get_mask_mode (mode); } /* Implement TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE. Assume for now that it isn't worth branching around empty masked ops (including masked stores). */ static bool riscv_empty_mask_is_expensive (unsigned) { return false; } /* Return true if a shift-amount matches the trailing cleared bits on a bitmask. */ bool riscv_shamt_matches_mask_p (int shamt, HOST_WIDE_INT mask) { return shamt == ctz_hwi (mask); } static HARD_REG_SET vector_zero_call_used_regs (HARD_REG_SET need_zeroed_hardregs) { HARD_REG_SET zeroed_hardregs; CLEAR_HARD_REG_SET (zeroed_hardregs); /* Find a register to hold vl. */ unsigned vl_regno = INVALID_REGNUM; /* Skip the first GPR, otherwise the existing vl is kept due to the same between vl and avl. */ for (unsigned regno = GP_REG_FIRST + 1; regno <= GP_REG_LAST; regno++) { if (TEST_HARD_REG_BIT (need_zeroed_hardregs, regno)) { vl_regno = regno; break; } } if (vl_regno > GP_REG_LAST) sorry ("cannot allocate vl register for %qs on this target", "-fzero-call-used-regs"); /* Vector configurations need not be saved and restored here. The -fzero-call-used-regs=* option will zero all vector registers and return. So there's no vector operations between them. */ bool emitted_vlmax_vsetvl = false; rtx vl = gen_rtx_REG (Pmode, vl_regno); /* vl is VLMAX. */ for (unsigned regno = V_REG_FIRST; regno <= V_REG_LAST; ++regno) { if (TEST_HARD_REG_BIT (need_zeroed_hardregs, regno)) { rtx target = regno_reg_rtx[regno]; machine_mode mode = GET_MODE (target); if (!emitted_vlmax_vsetvl) { riscv_vector::emit_hard_vlmax_vsetvl (mode, vl); emitted_vlmax_vsetvl = true; } rtx ops[] = {target, CONST0_RTX (mode)}; riscv_vector::emit_vlmax_insn_lra (code_for_pred_mov (mode), riscv_vector::UNARY_OP, ops, vl); SET_HARD_REG_BIT (zeroed_hardregs, regno); } } return zeroed_hardregs; } /* Generate a sequence of instructions that zero registers specified by NEED_ZEROED_HARDREGS. Return the ZEROED_HARDREGS that are actually zeroed. */ HARD_REG_SET riscv_zero_call_used_regs (HARD_REG_SET need_zeroed_hardregs) { HARD_REG_SET zeroed_hardregs; CLEAR_HARD_REG_SET (zeroed_hardregs); if (TARGET_VECTOR) zeroed_hardregs |= vector_zero_call_used_regs (need_zeroed_hardregs); return zeroed_hardregs | default_zero_call_used_regs (need_zeroed_hardregs & ~zeroed_hardregs); } /* Implement target hook TARGET_ARRAY_MODE. */ static opt_machine_mode riscv_array_mode (machine_mode mode, unsigned HOST_WIDE_INT nelems) { machine_mode vmode; if (TARGET_VECTOR && riscv_vector::get_tuple_mode (mode, nelems).exists (&vmode)) return vmode; return opt_machine_mode (); } /* Given memory reference MEM, expand code to compute the aligned memory address, shift and mask values and store them into *ALIGNED_MEM, *SHIFT, *MASK and *NOT_MASK. */ void riscv_subword_address (rtx mem, rtx *aligned_mem, rtx *shift, rtx *mask, rtx *not_mask) { /* Align the memory address to a word. */ rtx addr = force_reg (Pmode, XEXP (mem, 0)); rtx addr_mask = gen_int_mode (-4, Pmode); rtx aligned_addr = gen_reg_rtx (Pmode); emit_move_insn (aligned_addr, gen_rtx_AND (Pmode, addr, addr_mask)); *aligned_mem = change_address (mem, SImode, aligned_addr); /* Calculate the shift amount. */ emit_move_insn (*shift, gen_rtx_AND (SImode, gen_lowpart (SImode, addr), gen_int_mode (3, SImode))); emit_move_insn (*shift, gen_rtx_ASHIFT (SImode, *shift, gen_int_mode (3, SImode))); /* Calculate the mask. */ int unshifted_mask = GET_MODE_MASK (GET_MODE (mem)); emit_move_insn (*mask, gen_int_mode (unshifted_mask, SImode)); emit_move_insn (*mask, gen_rtx_ASHIFT (SImode, *mask, gen_lowpart (QImode, *shift))); emit_move_insn (*not_mask, gen_rtx_NOT (SImode, *mask)); } /* Leftshift a subword within an SImode register. */ void riscv_lshift_subword (machine_mode mode, rtx value, rtx shift, rtx *shifted_value) { rtx value_reg = gen_reg_rtx (SImode); emit_move_insn (value_reg, simplify_gen_subreg (SImode, value, mode, 0)); emit_move_insn (*shifted_value, gen_rtx_ASHIFT (SImode, value_reg, gen_lowpart (QImode, shift))); } /* Return TRUE if we should use the divmod expander, FALSE otherwise. This allows the behavior to be tuned for specific implementations as well as when optimizing for size. */ bool riscv_use_divmod_expander (void) { return tune_param->use_divmod_expansion; } /* Implement TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */ static machine_mode riscv_preferred_simd_mode (scalar_mode mode) { if (TARGET_VECTOR) return riscv_vector::preferred_simd_mode (mode); return word_mode; } /* Implement target hook TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT. */ static poly_uint64 riscv_vectorize_preferred_vector_alignment (const_tree type) { if (riscv_v_ext_mode_p (TYPE_MODE (type))) return TYPE_ALIGN (TREE_TYPE (type)); return TYPE_ALIGN (type); } /* Return true if it is static FRM rounding mode. */ static bool riscv_static_frm_mode_p (int mode) { switch (mode) { case riscv_vector::FRM_RDN: case riscv_vector::FRM_RUP: case riscv_vector::FRM_RTZ: case riscv_vector::FRM_RMM: case riscv_vector::FRM_RNE: return true; default: return false; } gcc_unreachable (); } /* Implement the floating-point Mode Switching. */ static void riscv_emit_frm_mode_set (int mode, int prev_mode) { rtx backup_reg = DYNAMIC_FRM_RTL (cfun); if (prev_mode == riscv_vector::FRM_DYN_CALL) emit_insn (gen_frrmsi (backup_reg)); /* Backup frm when DYN_CALL. */ if (mode != prev_mode) { rtx frm = gen_int_mode (mode, SImode); if (mode == riscv_vector::FRM_DYN_CALL && prev_mode != riscv_vector::FRM_DYN && STATIC_FRM_P (cfun)) /* No need to emit when prev mode is DYN already. */ emit_insn (gen_fsrmsi_restore_volatile (backup_reg)); else if (mode == riscv_vector::FRM_DYN_EXIT && STATIC_FRM_P (cfun) && prev_mode != riscv_vector::FRM_DYN && prev_mode != riscv_vector::FRM_DYN_CALL) /* No need to emit when prev mode is DYN or DYN_CALL already. */ emit_insn (gen_fsrmsi_restore_volatile (backup_reg)); else if (mode == riscv_vector::FRM_DYN && prev_mode != riscv_vector::FRM_DYN_CALL) /* Restore frm value from backup when switch to DYN mode. */ emit_insn (gen_fsrmsi_restore (backup_reg)); else if (riscv_static_frm_mode_p (mode)) /* Set frm value when switch to static mode. */ emit_insn (gen_fsrmsi_restore (frm)); } } /* Implement Mode switching. */ static void riscv_emit_mode_set (int entity, int mode, int prev_mode, HARD_REG_SET regs_live ATTRIBUTE_UNUSED) { switch (entity) { case RISCV_VXRM: if (mode != VXRM_MODE_NONE && mode != prev_mode) emit_insn (gen_vxrmsi (gen_int_mode (mode, SImode))); break; case RISCV_FRM: riscv_emit_frm_mode_set (mode, prev_mode); break; default: gcc_unreachable (); } } /* Adjust the FRM_NONE insn after a call to FRM_DYN for the underlying emit. */ static int riscv_frm_adjust_mode_after_call (rtx_insn *cur_insn, int mode) { rtx_insn *insn = prev_nonnote_nondebug_insn_bb (cur_insn); if (insn && CALL_P (insn)) return riscv_vector::FRM_DYN; return mode; } /* Insert the backup frm insn to the end of the bb if and only if the call is the last insn of this bb. */ static void riscv_frm_emit_after_bb_end (rtx_insn *cur_insn) { edge eg; edge_iterator eg_iterator; basic_block bb = BLOCK_FOR_INSN (cur_insn); FOR_EACH_EDGE (eg, eg_iterator, bb->succs) { start_sequence (); emit_insn (gen_frrmsi (DYNAMIC_FRM_RTL (cfun))); rtx_insn *backup_insn = get_insns (); end_sequence (); if (eg->flags & EDGE_ABNORMAL) insert_insn_end_basic_block (backup_insn, bb); else insert_insn_on_edge (backup_insn, eg); } commit_edge_insertions (); } /* Return mode that frm must be switched into prior to the execution of insn. */ static int riscv_frm_mode_needed (rtx_insn *cur_insn, int code) { if (!DYNAMIC_FRM_RTL(cfun)) { /* The dynamic frm will be initialized only onece during cfun. */ DYNAMIC_FRM_RTL (cfun) = gen_reg_rtx (SImode); emit_insn_at_entry (gen_frrmsi (DYNAMIC_FRM_RTL (cfun))); } if (CALL_P (cur_insn)) { rtx_insn *insn = next_nonnote_nondebug_insn_bb (cur_insn); if (!insn) riscv_frm_emit_after_bb_end (cur_insn); return riscv_vector::FRM_DYN_CALL; } int mode = code >= 0 ? get_attr_frm_mode (cur_insn) : riscv_vector::FRM_NONE; if (mode == riscv_vector::FRM_NONE) /* After meet a call, we need to backup the frm because it may be updated during the call. Here, for each insn, we will check if the previous insn is a call or not. When previous insn is call, there will be 2 cases for the emit mode set. 1. Current insn is not MODE_NONE, then the mode switch framework will do the mode switch from MODE_CALL to MODE_NONE natively. 2. Current insn is MODE_NONE, we need to adjust the MODE_NONE to the MODE_DYN, and leave the mode switch itself to perform the emit mode set. */ mode = riscv_frm_adjust_mode_after_call (cur_insn, mode); return mode; } /* Return mode that entity must be switched into prior to the execution of insn. */ static int riscv_mode_needed (int entity, rtx_insn *insn) { int code = recog_memoized (insn); switch (entity) { case RISCV_VXRM: return code >= 0 ? get_attr_vxrm_mode (insn) : VXRM_MODE_NONE; case RISCV_FRM: return riscv_frm_mode_needed (insn, code); default: gcc_unreachable (); } } /* Return TRUE that an insn is asm. */ static bool asm_insn_p (rtx_insn *insn) { extract_insn (insn); return recog_data.is_asm; } /* Return TRUE that an insn is unknown for VXRM. */ static bool vxrm_unknown_p (rtx_insn *insn) { /* Return true if there is a definition of VXRM. */ if (reg_set_p (gen_rtx_REG (SImode, VXRM_REGNUM), insn)) return true; /* A CALL function may contain an instruction that modifies the VXRM, return true in this situation. */ if (CALL_P (insn)) return true; /* Return true for all assembly since users may hardcode a assembly like this: asm volatile ("csrwi vxrm, 0"). */ if (asm_insn_p (insn)) return true; return false; } /* Return TRUE that an insn is unknown dynamic for FRM. */ static bool frm_unknown_dynamic_p (rtx_insn *insn) { /* Return true if there is a definition of FRM. */ if (reg_set_p (gen_rtx_REG (SImode, FRM_REGNUM), insn)) return true; return false; } /* Return the mode that an insn results in for VXRM. */ static int riscv_vxrm_mode_after (rtx_insn *insn, int mode) { if (vxrm_unknown_p (insn)) return VXRM_MODE_NONE; if (recog_memoized (insn) < 0) return mode; if (reg_mentioned_p (gen_rtx_REG (SImode, VXRM_REGNUM), PATTERN (insn))) return get_attr_vxrm_mode (insn); else return mode; } /* Return the mode that an insn results in for FRM. */ static int riscv_frm_mode_after (rtx_insn *insn, int mode) { STATIC_FRM_P (cfun) = STATIC_FRM_P (cfun) || riscv_static_frm_mode_p (mode); if (CALL_P (insn)) return mode; if (frm_unknown_dynamic_p (insn)) return riscv_vector::FRM_DYN; if (recog_memoized (insn) < 0) return mode; if (reg_mentioned_p (gen_rtx_REG (SImode, FRM_REGNUM), PATTERN (insn))) return get_attr_frm_mode (insn); else return mode; } /* Return the mode that an insn results in. */ static int riscv_mode_after (int entity, int mode, rtx_insn *insn) { switch (entity) { case RISCV_VXRM: return riscv_vxrm_mode_after (insn, mode); case RISCV_FRM: return riscv_frm_mode_after (insn, mode); default: gcc_unreachable (); } } /* Return a mode that ENTITY is assumed to be switched to at function entry. */ static int riscv_mode_entry (int entity) { switch (entity) { case RISCV_VXRM: return VXRM_MODE_NONE; case RISCV_FRM: { /* According to RVV 1.0 spec, all vector floating-point operations use the dynamic rounding mode in the frm register. Likewise in other similar places. */ return riscv_vector::FRM_DYN; } default: gcc_unreachable (); } } /* Return a mode that ENTITY is assumed to be switched to at function exit. */ static int riscv_mode_exit (int entity) { switch (entity) { case RISCV_VXRM: return VXRM_MODE_NONE; case RISCV_FRM: return riscv_vector::FRM_DYN_EXIT; default: gcc_unreachable (); } } static int riscv_mode_priority (int, int n) { return n; } /* Implement TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES. */ unsigned int riscv_autovectorize_vector_modes (vector_modes *modes, bool all) { if (TARGET_VECTOR) return riscv_vector::autovectorize_vector_modes (modes, all); return default_autovectorize_vector_modes (modes, all); } /* Implement TARGET_VECTORIZE_RELATED_MODE. */ opt_machine_mode riscv_vectorize_related_mode (machine_mode vector_mode, scalar_mode element_mode, poly_uint64 nunits) { if (TARGET_VECTOR) return riscv_vector::vectorize_related_mode (vector_mode, element_mode, nunits); return default_vectorize_related_mode (vector_mode, element_mode, nunits); } /* Implement TARGET_VECTORIZE_VEC_PERM_CONST. */ static bool riscv_vectorize_vec_perm_const (machine_mode vmode, machine_mode op_mode, rtx target, rtx op0, rtx op1, const vec_perm_indices &sel) { if (TARGET_VECTOR && riscv_v_ext_mode_p (vmode)) return riscv_vector::expand_vec_perm_const (vmode, op_mode, target, op0, op1, sel); return false; } static bool riscv_frame_pointer_required (void) { return riscv_save_frame_pointer && !crtl->is_leaf; } /* Implement targetm.vectorize.create_costs. */ static vector_costs * riscv_vectorize_create_costs (vec_info *vinfo, bool costing_for_scalar) { if (TARGET_VECTOR) return new riscv_vector::costs (vinfo, costing_for_scalar); /* Default vector costs. */ return new vector_costs (vinfo, costing_for_scalar); } /* Implement TARGET_PREFERRED_ELSE_VALUE. */ static tree riscv_preferred_else_value (unsigned ifn, tree vectype, unsigned int nops, tree *ops) { if (riscv_v_ext_mode_p (TYPE_MODE (vectype))) return get_or_create_ssa_default_def (cfun, create_tmp_var (vectype)); return default_preferred_else_value (ifn, vectype, nops, ops); } /* Initialize the GCC target structure. */ #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t" #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t" #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE riscv_option_override #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS riscv_legitimize_address #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE riscv_issue_rate #undef TARGET_SCHED_VARIABLE_ISSUE #define TARGET_SCHED_VARIABLE_ISSUE riscv_sched_variable_issue #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST riscv_sched_adjust_cost #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL riscv_function_ok_for_sibcall #undef TARGET_SET_CURRENT_FUNCTION #define TARGET_SET_CURRENT_FUNCTION riscv_set_current_function #undef TARGET_REGISTER_MOVE_COST #define TARGET_REGISTER_MOVE_COST riscv_register_move_cost #undef TARGET_MEMORY_MOVE_COST #define TARGET_MEMORY_MOVE_COST riscv_memory_move_cost #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS riscv_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST riscv_address_cost #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START riscv_file_start #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true #undef TARGET_ASM_FILE_END #define TARGET_ASM_FILE_END file_end_indicate_exec_stack #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START riscv_va_start #undef TARGET_PROMOTE_FUNCTION_MODE #define TARGET_PROMOTE_FUNCTION_MODE riscv_promote_function_mode #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY riscv_return_in_memory #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK riscv_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true #undef TARGET_PRINT_OPERAND #define TARGET_PRINT_OPERAND riscv_print_operand #undef TARGET_PRINT_OPERAND_ADDRESS #define TARGET_PRINT_OPERAND_ADDRESS riscv_print_operand_address #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P #define TARGET_PRINT_OPERAND_PUNCT_VALID_P riscv_print_operand_punct_valid_p #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS riscv_setup_incoming_varargs #undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS #define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS riscv_allocate_stack_slots_for_args #undef TARGET_STRICT_ARGUMENT_NAMING #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE riscv_pass_by_reference #undef TARGET_ARG_PARTIAL_BYTES #define TARGET_ARG_PARTIAL_BYTES riscv_arg_partial_bytes #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG riscv_function_arg #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE riscv_function_arg_advance #undef TARGET_FUNCTION_ARG_BOUNDARY #define TARGET_FUNCTION_ARG_BOUNDARY riscv_function_arg_boundary #undef TARGET_FNTYPE_ABI #define TARGET_FNTYPE_ABI riscv_fntype_abi #undef TARGET_INSN_CALLEE_ABI #define TARGET_INSN_CALLEE_ABI riscv_insn_callee_abi #undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS #define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS \ riscv_get_separate_components #undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB #define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB \ riscv_components_for_bb #undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS #define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS \ riscv_disqualify_components #undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS #define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS \ riscv_emit_prologue_components #undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS #define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS \ riscv_emit_epilogue_components #undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS #define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS \ riscv_set_handled_components /* The generic ELF target does not always have TLS support. */ #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS true #endif #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM riscv_cannot_force_const_mem #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P riscv_legitimate_constant_p #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P #define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P riscv_legitimate_address_p #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE riscv_can_eliminate #undef TARGET_CONDITIONAL_REGISTER_USAGE #define TARGET_CONDITIONAL_REGISTER_USAGE riscv_conditional_register_usage #undef TARGET_CLASS_MAX_NREGS #define TARGET_CLASS_MAX_NREGS riscv_class_max_nregs #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT riscv_trampoline_init #undef TARGET_IN_SMALL_DATA_P #define TARGET_IN_SMALL_DATA_P riscv_in_small_data_p #undef TARGET_HAVE_SRODATA_SECTION #define TARGET_HAVE_SRODATA_SECTION true #undef TARGET_ASM_SELECT_SECTION #define TARGET_ASM_SELECT_SECTION riscv_select_section #undef TARGET_ASM_UNIQUE_SECTION #define TARGET_ASM_UNIQUE_SECTION riscv_unique_section #undef TARGET_ASM_SELECT_RTX_SECTION #define TARGET_ASM_SELECT_RTX_SECTION riscv_elf_select_rtx_section #undef TARGET_MIN_ANCHOR_OFFSET #define TARGET_MIN_ANCHOR_OFFSET (-IMM_REACH/2) #undef TARGET_MAX_ANCHOR_OFFSET #define TARGET_MAX_ANCHOR_OFFSET (IMM_REACH/2-1) #undef TARGET_REGISTER_PRIORITY #define TARGET_REGISTER_PRIORITY riscv_register_priority #undef TARGET_CANNOT_COPY_INSN_P #define TARGET_CANNOT_COPY_INSN_P riscv_cannot_copy_insn_p #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV riscv_atomic_assign_expand_fenv #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS riscv_init_builtins #undef TARGET_BUILTIN_DECL #define TARGET_BUILTIN_DECL riscv_builtin_decl #undef TARGET_GIMPLE_FOLD_BUILTIN #define TARGET_GIMPLE_FOLD_BUILTIN riscv_gimple_fold_builtin #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN riscv_expand_builtin #undef TARGET_HARD_REGNO_NREGS #define TARGET_HARD_REGNO_NREGS riscv_hard_regno_nregs #undef TARGET_HARD_REGNO_MODE_OK #define TARGET_HARD_REGNO_MODE_OK riscv_hard_regno_mode_ok #undef TARGET_MODES_TIEABLE_P #define TARGET_MODES_TIEABLE_P riscv_modes_tieable_p #undef TARGET_SLOW_UNALIGNED_ACCESS #define TARGET_SLOW_UNALIGNED_ACCESS riscv_slow_unaligned_access #undef TARGET_SECONDARY_MEMORY_NEEDED #define TARGET_SECONDARY_MEMORY_NEEDED riscv_secondary_memory_needed #undef TARGET_CAN_CHANGE_MODE_CLASS #define TARGET_CAN_CHANGE_MODE_CLASS riscv_can_change_mode_class #undef TARGET_CONSTANT_ALIGNMENT #define TARGET_CONSTANT_ALIGNMENT riscv_constant_alignment #undef TARGET_MERGE_DECL_ATTRIBUTES #define TARGET_MERGE_DECL_ATTRIBUTES riscv_merge_decl_attributes #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE riscv_attribute_table #undef TARGET_WARN_FUNC_RETURN #define TARGET_WARN_FUNC_RETURN riscv_warn_func_return /* The low bit is ignored by jump instructions so is safe to use. */ #undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS #define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1 #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG riscv_reorg #undef TARGET_NEW_ADDRESS_PROFITABLE_P #define TARGET_NEW_ADDRESS_PROFITABLE_P riscv_new_address_profitable_p #undef TARGET_MANGLE_TYPE #define TARGET_MANGLE_TYPE riscv_mangle_type #undef TARGET_SCALAR_MODE_SUPPORTED_P #define TARGET_SCALAR_MODE_SUPPORTED_P riscv_scalar_mode_supported_p #undef TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P #define TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P \ riscv_libgcc_floating_mode_supported_p #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS riscv_init_libfuncs #undef TARGET_C_EXCESS_PRECISION #define TARGET_C_EXCESS_PRECISION riscv_excess_precision #undef TARGET_FLOATN_MODE #define TARGET_FLOATN_MODE riscv_floatn_mode #undef TARGET_ASAN_SHADOW_OFFSET #define TARGET_ASAN_SHADOW_OFFSET riscv_asan_shadow_offset #ifdef TARGET_BIG_ENDIAN_DEFAULT #undef TARGET_DEFAULT_TARGET_FLAGS #define TARGET_DEFAULT_TARGET_FLAGS (MASK_BIG_ENDIAN) #endif #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P riscv_vector_mode_supported_p #undef TARGET_VERIFY_TYPE_CONTEXT #define TARGET_VERIFY_TYPE_CONTEXT riscv_verify_type_context #undef TARGET_ESTIMATED_POLY_VALUE #define TARGET_ESTIMATED_POLY_VALUE riscv_estimated_poly_value #undef TARGET_VECTORIZE_GET_MASK_MODE #define TARGET_VECTORIZE_GET_MASK_MODE riscv_get_mask_mode #undef TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE #define TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE riscv_empty_mask_is_expensive #undef TARGET_VECTOR_ALIGNMENT #define TARGET_VECTOR_ALIGNMENT riscv_vector_alignment #undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT #define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT riscv_support_vector_misalignment #undef TARGET_DWARF_POLY_INDETERMINATE_VALUE #define TARGET_DWARF_POLY_INDETERMINATE_VALUE riscv_dwarf_poly_indeterminate_value #undef TARGET_ZERO_CALL_USED_REGS #define TARGET_ZERO_CALL_USED_REGS riscv_zero_call_used_regs #undef TARGET_ARRAY_MODE #define TARGET_ARRAY_MODE riscv_array_mode #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE riscv_preferred_simd_mode #undef TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT #define TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT \ riscv_vectorize_preferred_vector_alignment /* Mode switching hooks. */ #undef TARGET_MODE_EMIT #define TARGET_MODE_EMIT riscv_emit_mode_set #undef TARGET_MODE_NEEDED #define TARGET_MODE_NEEDED riscv_mode_needed #undef TARGET_MODE_AFTER #define TARGET_MODE_AFTER riscv_mode_after #undef TARGET_MODE_ENTRY #define TARGET_MODE_ENTRY riscv_mode_entry #undef TARGET_MODE_EXIT #define TARGET_MODE_EXIT riscv_mode_exit #undef TARGET_MODE_PRIORITY #define TARGET_MODE_PRIORITY riscv_mode_priority #undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES #define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES \ riscv_autovectorize_vector_modes #undef TARGET_VECTORIZE_RELATED_MODE #define TARGET_VECTORIZE_RELATED_MODE riscv_vectorize_related_mode #undef TARGET_VECTORIZE_VEC_PERM_CONST #define TARGET_VECTORIZE_VEC_PERM_CONST riscv_vectorize_vec_perm_const #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED riscv_frame_pointer_required #undef TARGET_VECTORIZE_CREATE_COSTS #define TARGET_VECTORIZE_CREATE_COSTS riscv_vectorize_create_costs #undef TARGET_PREFERRED_ELSE_VALUE #define TARGET_PREFERRED_ELSE_VALUE riscv_preferred_else_value struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-riscv.h"