/* Subroutines used for code generation for RISC-V.
Copyright (C) 2011-2024 Free Software Foundation, Inc.
Contributed by Andrew Waterman (andrew@sifive.com).
Based on MIPS target for GNU compiler.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#define IN_TARGET_CODE 1
#define INCLUDE_MEMORY
#define INCLUDE_STRING
#define INCLUDE_VECTOR
#define INCLUDE_ALGORITHM
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "backend.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "recog.h"
#include "output.h"
#include "alias.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "varasm.h"
#include "stor-layout.h"
#include "calls.h"
#include "function.h"
#include "explow.h"
#include "ifcvt.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "reload.h"
#include "tm_p.h"
#include "basic-block.h"
#include "expr.h"
#include "optabs.h"
#include "bitmap.h"
#include "df.h"
#include "function-abi.h"
#include "diagnostic.h"
#include "builtins.h"
#include "predict.h"
#include "tree-pass.h"
#include "opts.h"
#include "tm-constrs.h"
#include "rtl-iter.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfgloop.h"
#include "cfgrtl.h"
#include "shrink-wrap.h"
#include "sel-sched.h"
#include "sched-int.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "gimple-expr.h"
#include "tree-vectorizer.h"
#include "gcse.h"
#include "tree-dfa.h"
#include "target-globals.h"
#include "riscv-v.h"
#include "cgraph.h"
#include "langhooks.h"
#include "gimplify.h"
/* This file should be included last. */
#include "target-def.h"
#include "riscv-vector-costs.h"
#include "riscv-subset.h"
/* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
#define UNSPEC_ADDRESS_P(X) \
(GET_CODE (X) == UNSPEC \
&& XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
&& XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
/* Extract the symbol or label from UNSPEC wrapper X. */
#define UNSPEC_ADDRESS(X) \
XVECEXP (X, 0, 0)
/* Extract the symbol type from UNSPEC wrapper X. */
#define UNSPEC_ADDRESS_TYPE(X) \
((enum riscv_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
/* Extract the backup dynamic frm rtl. */
#define DYNAMIC_FRM_RTL(c) ((c)->machine->mode_sw_info.dynamic_frm)
/* True the mode switching has static frm, or false. */
#define STATIC_FRM_P(c) ((c)->machine->mode_sw_info.static_frm_p)
/* True if we can use the instructions in the XTheadInt extension
to handle interrupts, or false. */
#define TH_INT_INTERRUPT(c) \
(TARGET_XTHEADINT \
/* The XTheadInt extension only supports rv32. */ \
&& !TARGET_64BIT \
&& (c)->machine->interrupt_handler_p \
/* The XTheadInt instructions can only be executed in M-mode. */ \
&& (c)->machine->interrupt_mode == MACHINE_MODE)
/* Information about a function's frame layout. */
struct GTY(()) riscv_frame_info {
/* The size of the frame in bytes. */
poly_int64 total_size;
/* Bit X is set if the function saves or restores GPR X. */
unsigned int mask;
/* Likewise FPR X. */
unsigned int fmask;
/* Likewise for vector registers. */
unsigned int vmask;
/* How much the GPR save/restore routines adjust sp (or 0 if unused). */
unsigned save_libcall_adjustment;
/* the minimum number of bytes, in multiples of 16-byte address increments,
required to cover the registers in a multi push & pop. */
unsigned multi_push_adj_base;
/* the number of additional 16-byte address increments allocated for the stack
frame in a multi push & pop. */
unsigned multi_push_adj_addi;
/* Offsets of fixed-point and floating-point save areas from frame bottom */
poly_int64 gp_sp_offset;
poly_int64 fp_sp_offset;
/* Top and bottom offsets of vector save areas from frame bottom. */
poly_int64 v_sp_offset_top;
poly_int64 v_sp_offset_bottom;
/* Offset of virtual frame pointer from stack pointer/frame bottom */
poly_int64 frame_pointer_offset;
/* Offset of hard frame pointer from stack pointer/frame bottom */
poly_int64 hard_frame_pointer_offset;
/* The offset of arg_pointer_rtx from the bottom of the frame. */
poly_int64 arg_pointer_offset;
/* Reset this struct, clean all field to zero. */
void reset(void);
};
enum riscv_privilege_levels {
UNKNOWN_MODE, USER_MODE, SUPERVISOR_MODE, MACHINE_MODE
};
struct GTY(()) mode_switching_info {
/* The RTL variable which stores the dynamic FRM value. We always use this
RTX to restore dynamic FRM rounding mode in mode switching. */
rtx dynamic_frm;
/* The boolean variables indicates there is at least one static rounding
mode instruction in the function or not. */
bool static_frm_p;
mode_switching_info ()
{
dynamic_frm = NULL_RTX;
static_frm_p = false;
}
};
struct GTY(()) machine_function {
/* The number of extra stack bytes taken up by register varargs.
This area is allocated by the callee at the very top of the frame. */
int varargs_size;
/* True if current function is a naked function. */
bool naked_p;
/* True if current function is an interrupt function. */
bool interrupt_handler_p;
/* For an interrupt handler, indicates the privilege level. */
enum riscv_privilege_levels interrupt_mode;
/* True if attributes on current function have been checked. */
bool attributes_checked_p;
/* True if RA must be saved because of a far jump. */
bool far_jump_used;
/* The current frame information, calculated by riscv_compute_frame_info. */
struct riscv_frame_info frame;
/* The components already handled by separate shrink-wrapping, which should
not be considered by the prologue and epilogue. */
bool reg_is_wrapped_separately[FIRST_PSEUDO_REGISTER];
/* The mode switching information for the FRM rounding modes. */
struct mode_switching_info mode_sw_info;
};
/* Information about a single argument. */
struct riscv_arg_info {
/* True if the argument is at least partially passed on the stack. */
bool stack_p;
/* The number of integer registers allocated to this argument. */
unsigned int num_gprs;
/* The offset of the first register used, provided num_gprs is nonzero.
If passed entirely on the stack, the value is MAX_ARGS_IN_REGISTERS. */
unsigned int gpr_offset;
/* The number of floating-point registers allocated to this argument. */
unsigned int num_fprs;
/* The offset of the first register used, provided num_fprs is nonzero. */
unsigned int fpr_offset;
/* The number of vector registers allocated to this argument. */
unsigned int num_vrs;
/* The offset of the first register used, provided num_vrs is nonzero. */
unsigned int vr_offset;
/* The number of mask registers allocated to this argument. */
unsigned int num_mrs;
/* The offset of the first register used, provided num_mrs is nonzero. */
unsigned int mr_offset;
};
/* One stage in a constant building sequence. These sequences have
the form:
A = VALUE[0]
A = A CODE[1] VALUE[1]
A = A CODE[2] VALUE[2]
...
where A is an accumulator, each CODE[i] is a binary rtl operation
and each VALUE[i] is a constant integer. CODE[0] is undefined. */
struct riscv_integer_op {
bool use_uw;
bool save_temporary;
enum rtx_code code;
unsigned HOST_WIDE_INT value;
};
/* The largest number of operations needed to load an integer constant.
The worst case is LUI, ADDI, SLLI, ADDI, SLLI, ADDI, SLLI, ADDI. */
#define RISCV_MAX_INTEGER_OPS 8
enum riscv_fusion_pairs
{
RISCV_FUSE_NOTHING = 0,
RISCV_FUSE_ZEXTW = (1 << 0),
RISCV_FUSE_ZEXTH = (1 << 1),
RISCV_FUSE_ZEXTWS = (1 << 2),
RISCV_FUSE_LDINDEXED = (1 << 3),
RISCV_FUSE_LUI_ADDI = (1 << 4),
RISCV_FUSE_AUIPC_ADDI = (1 << 5),
RISCV_FUSE_LUI_LD = (1 << 6),
RISCV_FUSE_AUIPC_LD = (1 << 7),
RISCV_FUSE_LDPREINCREMENT = (1 << 8),
RISCV_FUSE_ALIGNED_STD = (1 << 9),
};
/* Costs of various operations on the different architectures. */
struct riscv_tune_param
{
unsigned short fp_add[2];
unsigned short fp_mul[2];
unsigned short fp_div[2];
unsigned short int_mul[2];
unsigned short int_div[2];
unsigned short issue_rate;
unsigned short branch_cost;
unsigned short memory_cost;
unsigned short fmv_cost;
bool slow_unaligned_access;
bool vector_unaligned_access;
bool use_divmod_expansion;
bool overlap_op_by_pieces;
unsigned int fusible_ops;
const struct cpu_vector_cost *vec_costs;
const char *function_align;
const char *jump_align;
const char *loop_align;
};
/* Global variables for machine-dependent things. */
/* Whether unaligned accesses execute very slowly. */
bool riscv_slow_unaligned_access_p;
/* Whether misaligned vector accesses are supported (i.e. do not
throw an exception). */
bool riscv_vector_unaligned_access_p;
/* Whether user explicitly passed -mstrict-align. */
bool riscv_user_wants_strict_align;
/* Stack alignment to assume/maintain. */
unsigned riscv_stack_boundary;
/* Whether in riscv_output_mi_thunk. */
static bool riscv_in_thunk_func = false;
/* If non-zero, this is an offset to be added to SP to redefine the CFA
when restoring the FP register from the stack. Only valid when generating
the epilogue. */
static poly_int64 epilogue_cfa_sp_offset;
/* Which tuning parameters to use. */
static const struct riscv_tune_param *tune_param;
/* Which automaton to use for tuning. */
enum riscv_microarchitecture_type riscv_microarchitecture;
/* The number of chunks in a single vector register. */
poly_uint16 riscv_vector_chunks;
/* The number of bytes in a vector chunk. */
unsigned riscv_bytes_per_vector_chunk;
/* Index R is the smallest register class that contains register R. */
const enum reg_class riscv_regno_to_class[FIRST_PSEUDO_REGISTER] = {
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, SIBCALL_REGS, SIBCALL_REGS,
JALR_REGS, JALR_REGS, SIBCALL_REGS, SIBCALL_REGS,
SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS,
SIBCALL_REGS, SIBCALL_REGS, JALR_REGS, JALR_REGS,
JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS,
JALR_REGS, JALR_REGS, JALR_REGS, JALR_REGS,
SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS, SIBCALL_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FRAME_REGS, FRAME_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
VM_REGS, VD_REGS, VD_REGS, VD_REGS,
VD_REGS, VD_REGS, VD_REGS, VD_REGS,
VD_REGS, VD_REGS, VD_REGS, VD_REGS,
VD_REGS, VD_REGS, VD_REGS, VD_REGS,
VD_REGS, VD_REGS, VD_REGS, VD_REGS,
VD_REGS, VD_REGS, VD_REGS, VD_REGS,
VD_REGS, VD_REGS, VD_REGS, VD_REGS,
VD_REGS, VD_REGS, VD_REGS, VD_REGS,
};
/* RVV costs for VLS vector operations. */
static const common_vector_cost rvv_vls_vector_cost = {
1, /* int_stmt_cost */
1, /* fp_stmt_cost */
1, /* gather_load_cost */
1, /* scatter_store_cost */
1, /* segment_permute (2) */
1, /* segment_permute (3) */
1, /* segment_permute (4) */
1, /* segment_permute (5) */
1, /* segment_permute (6) */
1, /* segment_permute (7) */
1, /* segment_permute (8) */
1, /* vec_to_scalar_cost */
1, /* scalar_to_vec_cost */
1, /* permute_cost */
1, /* align_load_cost */
1, /* align_store_cost */
2, /* unalign_load_cost */
2, /* unalign_store_cost */
};
/* RVV costs for VLA vector operations. */
static const scalable_vector_cost rvv_vla_vector_cost = {
{
1, /* int_stmt_cost */
1, /* fp_stmt_cost */
1, /* gather_load_cost */
1, /* scatter_store_cost */
1, /* segment_permute (2) */
1, /* segment_permute (3) */
1, /* segment_permute (4) */
1, /* segment_permute (5) */
1, /* segment_permute (6) */
1, /* segment_permute (7) */
1, /* segment_permute (8) */
1, /* vec_to_scalar_cost */
1, /* scalar_to_vec_cost */
1, /* permute_cost */
1, /* align_load_cost */
1, /* align_store_cost */
2, /* unalign_load_cost */
2, /* unalign_store_cost */
},
};
/* RVV register move cost. */
static const regmove_vector_cost rvv_regmove_vector_cost = {
2, /* GR2VR */
2, /* FR2VR */
2, /* VR2GR */
2, /* VR2FR */
};
/* Generic costs for vector insn classes. It is supposed to be the vector cost
models used by default if no other cost model was specified. */
static const struct cpu_vector_cost generic_vector_cost = {
1, /* scalar_int_stmt_cost */
1, /* scalar_fp_stmt_cost */
1, /* scalar_load_cost */
1, /* scalar_store_cost */
3, /* cond_taken_branch_cost */
1, /* cond_not_taken_branch_cost */
&rvv_vls_vector_cost, /* vls */
&rvv_vla_vector_cost, /* vla */
&rvv_regmove_vector_cost, /* regmove */
};
/* Costs to use when optimizing for rocket. */
static const struct riscv_tune_param rocket_tune_info = {
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */
{COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */
{COSTS_N_INSNS (33), COSTS_N_INSNS (65)}, /* int_div */
1, /* issue_rate */
3, /* branch_cost */
5, /* memory_cost */
8, /* fmv_cost */
true, /* slow_unaligned_access */
false, /* vector_unaligned_access */
false, /* use_divmod_expansion */
false, /* overlap_op_by_pieces */
RISCV_FUSE_NOTHING, /* fusible_ops */
NULL, /* vector cost */
NULL, /* function_align */
NULL, /* jump_align */
NULL, /* loop_align */
};
/* Costs to use when optimizing for Sifive 7 Series. */
static const struct riscv_tune_param sifive_7_tune_info = {
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */
{COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */
{COSTS_N_INSNS (33), COSTS_N_INSNS (65)}, /* int_div */
2, /* issue_rate */
4, /* branch_cost */
3, /* memory_cost */
8, /* fmv_cost */
true, /* slow_unaligned_access */
false, /* vector_unaligned_access */
false, /* use_divmod_expansion */
false, /* overlap_op_by_pieces */
RISCV_FUSE_NOTHING, /* fusible_ops */
NULL, /* vector cost */
NULL, /* function_align */
NULL, /* jump_align */
NULL, /* loop_align */
};
/* Costs to use when optimizing for Sifive p400 Series. */
static const struct riscv_tune_param sifive_p400_tune_info = {
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* fp_add */
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* fp_mul */
{COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */
{COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */
3, /* issue_rate */
4, /* branch_cost */
3, /* memory_cost */
4, /* fmv_cost */
true, /* slow_unaligned_access */
false, /* vector_unaligned_access */
false, /* use_divmod_expansion */
false, /* overlap_op_by_pieces */
RISCV_FUSE_LUI_ADDI | RISCV_FUSE_AUIPC_ADDI, /* fusible_ops */
&generic_vector_cost, /* vector cost */
NULL, /* function_align */
NULL, /* jump_align */
NULL, /* loop_align */
};
/* Costs to use when optimizing for Sifive p600 Series. */
static const struct riscv_tune_param sifive_p600_tune_info = {
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* fp_add */
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* fp_mul */
{COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */
{COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */
4, /* issue_rate */
4, /* branch_cost */
3, /* memory_cost */
4, /* fmv_cost */
true, /* slow_unaligned_access */
false, /* vector_unaligned_access */
false, /* use_divmod_expansion */
false, /* overlap_op_by_pieces */
RISCV_FUSE_LUI_ADDI | RISCV_FUSE_AUIPC_ADDI, /* fusible_ops */
&generic_vector_cost, /* vector cost */
NULL, /* function_align */
NULL, /* jump_align */
NULL, /* loop_align */
};
/* Costs to use when optimizing for T-HEAD c906. */
static const struct riscv_tune_param thead_c906_tune_info = {
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */
{COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */
{COSTS_N_INSNS (18), COSTS_N_INSNS (34)}, /* int_div */
1, /* issue_rate */
3, /* branch_cost */
5, /* memory_cost */
8, /* fmv_cost */
false, /* slow_unaligned_access */
false, /* vector_unaligned_access */
false, /* use_divmod_expansion */
false, /* overlap_op_by_pieces */
RISCV_FUSE_NOTHING, /* fusible_ops */
NULL, /* vector cost */
NULL, /* function_align */
NULL, /* jump_align */
NULL, /* loop_align */
};
/* Costs to use when optimizing for xiangshan nanhu. */
static const struct riscv_tune_param xiangshan_nanhu_tune_info = {
{COSTS_N_INSNS (3), COSTS_N_INSNS (3)}, /* fp_add */
{COSTS_N_INSNS (3), COSTS_N_INSNS (3)}, /* fp_mul */
{COSTS_N_INSNS (10), COSTS_N_INSNS (20)}, /* fp_div */
{COSTS_N_INSNS (3), COSTS_N_INSNS (3)}, /* int_mul */
{COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */
6, /* issue_rate */
3, /* branch_cost */
3, /* memory_cost */
3, /* fmv_cost */
true, /* slow_unaligned_access */
false, /* vector_unaligned_access */
false, /* use_divmod_expansion */
false, /* overlap_op_by_pieces */
RISCV_FUSE_ZEXTW | RISCV_FUSE_ZEXTH, /* fusible_ops */
NULL, /* vector cost */
NULL, /* function_align */
NULL, /* jump_align */
NULL, /* loop_align */
};
/* Costs to use when optimizing for a generic ooo profile. */
static const struct riscv_tune_param generic_ooo_tune_info = {
{COSTS_N_INSNS (2), COSTS_N_INSNS (2)}, /* fp_add */
{COSTS_N_INSNS (5), COSTS_N_INSNS (6)}, /* fp_mul */
{COSTS_N_INSNS (7), COSTS_N_INSNS (8)}, /* fp_div */
{COSTS_N_INSNS (2), COSTS_N_INSNS (2)}, /* int_mul */
{COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */
1, /* issue_rate */
3, /* branch_cost */
4, /* memory_cost */
4, /* fmv_cost */
false, /* slow_unaligned_access */
true, /* vector_unaligned_access */
false, /* use_divmod_expansion */
true, /* overlap_op_by_pieces */
RISCV_FUSE_NOTHING, /* fusible_ops */
&generic_vector_cost, /* vector cost */
NULL, /* function_align */
NULL, /* jump_align */
NULL, /* loop_align */
};
/* Costs to use when optimizing for size. */
static const struct riscv_tune_param optimize_size_tune_info = {
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_add */
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_mul */
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_div */
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_mul */
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_div */
1, /* issue_rate */
1, /* branch_cost */
2, /* memory_cost */
8, /* fmv_cost */
false, /* slow_unaligned_access */
false, /* vector_unaligned_access */
false, /* use_divmod_expansion */
false, /* overlap_op_by_pieces */
RISCV_FUSE_NOTHING, /* fusible_ops */
NULL, /* vector cost */
NULL, /* function_align */
NULL, /* jump_align */
NULL, /* loop_align */
};
static bool riscv_avoid_shrink_wrapping_separate ();
static tree riscv_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
static tree riscv_handle_type_attribute (tree *, tree, tree, int, bool *);
static tree riscv_handle_rvv_vector_bits_attribute (tree *, tree, tree, int,
bool *);
/* Defining target-specific uses of __attribute__. */
static const attribute_spec riscv_gnu_attributes[] =
{
/* Syntax: { name, min_len, max_len, decl_required, type_required,
function_type_required, affects_type_identity, handler,
exclude } */
/* The attribute telling no prologue/epilogue. */
{"naked", 0, 0, true, false, false, false, riscv_handle_fndecl_attribute,
NULL},
/* This attribute generates prologue/epilogue for interrupt handlers. */
{"interrupt", 0, 1, false, true, true, false, riscv_handle_type_attribute,
NULL},
/* The following two are used for the built-in properties of the Vector type
and are not used externally */
{"RVV sizeless type", 4, 4, false, true, false, true, NULL, NULL},
{"RVV type", 0, 0, false, true, false, true, NULL, NULL},
/* This attribute is used to declare a function, forcing it to use the
standard vector calling convention variant. Syntax:
__attribute__((riscv_vector_cc)). */
{"riscv_vector_cc", 0, 0, false, true, true, true, NULL, NULL},
/* This attribute is used to declare a new type, to appoint the exactly
bits size of the type. For example:
typedef vint8m1_t f_vint8m1_t __attribute__((riscv_rvv_vector_bits(256)));
The new created type f_vint8m1_t will be exactly 256 bits. It can be
be used in globals, structs, unions, and arrays instead of sizeless
types. */
{"riscv_rvv_vector_bits", 1, 1, false, true, false, true,
riscv_handle_rvv_vector_bits_attribute, NULL},
/* This attribute is used to declare a function, forcing it to use the
standard vector calling convention variant. Syntax:
__attribute__((norelax)). */
{"norelax", 0, 0, true, false, false, false, NULL, NULL},
};
static const scoped_attribute_specs riscv_gnu_attribute_table =
{
"gnu", {riscv_gnu_attributes}
};
static const attribute_spec riscv_attributes[] =
{
/* This attribute is used to declare a function, forcing it to use the
standard vector calling convention variant. Syntax:
[[riscv::vector_cc]]. */
{"vector_cc", 0, 0, false, true, true, true, NULL, NULL},
/* This attribute is used to declare a new type, to appoint the exactly
bits size of the type. For example:
typedef vint8m1_t f_vint8m1_t __attribute__((riscv_rvv_vector_bits(256)));
The new created type f_vint8m1_t will be exactly 256 bits. It can be
be used in globals, structs, unions, and arrays instead of sizeless
types. */
{"rvv_vector_bits", 1, 1, false, true, false, true,
riscv_handle_rvv_vector_bits_attribute, NULL},
};
static const scoped_attribute_specs riscv_nongnu_attribute_table =
{
"riscv", {riscv_attributes}
};
static const scoped_attribute_specs *const riscv_attribute_table[] =
{
&riscv_gnu_attribute_table,
&riscv_nongnu_attribute_table
};
/* Order for the CLOBBERs/USEs of gpr_save. */
static const unsigned gpr_save_reg_order[] = {
INVALID_REGNUM, T0_REGNUM, T1_REGNUM, RETURN_ADDR_REGNUM,
S0_REGNUM, S1_REGNUM, S2_REGNUM, S3_REGNUM, S4_REGNUM,
S5_REGNUM, S6_REGNUM, S7_REGNUM, S8_REGNUM, S9_REGNUM,
S10_REGNUM, S11_REGNUM
};
/* A table describing all the processors GCC knows about. */
static const struct riscv_tune_info riscv_tune_info_table[] = {
#define RISCV_TUNE(TUNE_NAME, PIPELINE_MODEL, TUNE_INFO) \
{ TUNE_NAME, PIPELINE_MODEL, & TUNE_INFO},
#include "riscv-cores.def"
};
/* Global variable to distinguish whether we should save and restore s0/fp for
function. */
static bool riscv_save_frame_pointer;
typedef enum
{
PUSH_IDX = 0,
POP_IDX,
POPRET_IDX,
POPRETZ_IDX,
ZCMP_OP_NUM
} riscv_zcmp_op_t;
typedef insn_code (*code_for_push_pop_t) (machine_mode);
void riscv_frame_info::reset(void)
{
total_size = 0;
mask = 0;
fmask = 0;
vmask = 0;
save_libcall_adjustment = 0;
gp_sp_offset = 0;
fp_sp_offset = 0;
v_sp_offset_top = 0;
v_sp_offset_bottom = 0;
frame_pointer_offset = 0;
hard_frame_pointer_offset = 0;
arg_pointer_offset = 0;
}
/* Implement TARGET_MIN_ARITHMETIC_PRECISION. */
static unsigned int
riscv_min_arithmetic_precision (void)
{
return 32;
}
/* Get the arch string from an options object. */
template
static const char *
get_arch_str (const T *opts)
{
return opts->x_riscv_arch_string;
}
template
static const char *
get_tune_str (const T *opts)
{
const char *tune_string = RISCV_TUNE_STRING_DEFAULT;
if (opts->x_riscv_tune_string)
tune_string = opts->x_riscv_tune_string;
else if (opts->x_riscv_cpu_string)
tune_string = opts->x_riscv_cpu_string;
return tune_string;
}
/* Return the riscv_tune_info entry for the given name string, return nullptr
if NULL_P is true, otherwise return an placeholder and report error. */
const struct riscv_tune_info *
riscv_parse_tune (const char *tune_string, bool null_p)
{
const riscv_cpu_info *cpu = riscv_find_cpu (tune_string);
if (cpu)
tune_string = cpu->tune;
for (unsigned i = 0; i < ARRAY_SIZE (riscv_tune_info_table); i++)
if (strcmp (riscv_tune_info_table[i].name, tune_string) == 0)
return riscv_tune_info_table + i;
if (null_p)
return nullptr;
error ("unknown cpu %qs for %<-mtune%>", tune_string);
return riscv_tune_info_table;
}
/* Helper function for riscv_build_integer; arguments are as for
riscv_build_integer. */
static int
riscv_build_integer_1 (struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS],
HOST_WIDE_INT value, machine_mode mode)
{
HOST_WIDE_INT low_part = CONST_LOW_PART (value);
int cost = RISCV_MAX_INTEGER_OPS + 1, alt_cost;
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
int upper_trailing_ones = ctz_hwi (~value >> 32);
int lower_leading_ones = clz_hwi (~value << 32);
if (SMALL_OPERAND (value) || LUI_OPERAND (value))
{
/* Simply ADDI or LUI. */
codes[0].code = UNKNOWN;
codes[0].value = value;
codes[0].use_uw = false;
codes[0].save_temporary = false;
return 1;
}
if (TARGET_ZBS && SINGLE_BIT_MASK_OPERAND (value))
{
/* Simply BSETI. */
codes[0].code = UNKNOWN;
codes[0].value = value;
codes[0].use_uw = false;
codes[0].save_temporary = false;
/* RISC-V sign-extends all 32bit values that live in a 32bit
register. To avoid paradoxes, we thus need to use the
sign-extended (negative) representation (-1 << 31) for the
value, if we want to build (1 << 31) in SImode. This will
then expand to an LUI instruction. */
if (TARGET_64BIT && mode == SImode && value == (HOST_WIDE_INT_1U << 31))
codes[0].value = (HOST_WIDE_INT_M1U << 31);
return 1;
}
/* End with ADDI. When constructing HImode constants, do not generate any
intermediate value that is not itself a valid HImode constant. The
XORI case below will handle those remaining HImode constants. */
if (low_part != 0
&& (mode != HImode
|| value - low_part <= ((1 << (GET_MODE_BITSIZE (HImode) - 1)) - 1)))
{
HOST_WIDE_INT upper_part = value - low_part;
if (mode != VOIDmode)
upper_part = trunc_int_for_mode (value - low_part, mode);
alt_cost = 1 + riscv_build_integer_1 (alt_codes, upper_part, mode);
if (alt_cost < cost)
{
alt_codes[alt_cost-1].code = PLUS;
alt_codes[alt_cost-1].value = low_part;
alt_codes[alt_cost-1].use_uw = false;
alt_codes[alt_cost-1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
/* End with XORI. */
if (cost > 2 && (low_part < 0 || mode == HImode))
{
alt_cost = 1 + riscv_build_integer_1 (alt_codes, value ^ low_part, mode);
if (alt_cost < cost)
{
alt_codes[alt_cost-1].code = XOR;
alt_codes[alt_cost-1].value = low_part;
alt_codes[alt_cost-1].use_uw = false;
alt_codes[alt_cost-1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
/* Eliminate trailing zeros and end with SLLI. */
if (cost > 2 && (value & 1) == 0)
{
int shift = ctz_hwi (value);
unsigned HOST_WIDE_INT x = value;
bool use_uw = false;
x = sext_hwi (x >> shift, HOST_BITS_PER_WIDE_INT - shift);
/* Don't eliminate the lower 12 bits if LUI might apply. */
if (shift > IMM_BITS
&& !SMALL_OPERAND (x)
&& (LUI_OPERAND (x << IMM_BITS)
|| (TARGET_64BIT
&& TARGET_ZBA
&& LUI_OPERAND ((x << IMM_BITS)
& ~HOST_WIDE_INT_C (0x80000000)))))
shift -= IMM_BITS, x <<= IMM_BITS;
/* If X has bits 32..63 clear and bit 31 set, then go ahead and mark
it as desiring a "uw" operation for the shift. That way we can have
LUI+ADDI to generate the constant, then shift it into position
clearing out the undesirable bits. */
if (!LUI_OPERAND (x)
&& TARGET_64BIT
&& TARGET_ZBA
&& clz_hwi (x) == 32)
{
x = sext_hwi (x, 32);
use_uw = true;
}
alt_cost = 1 + riscv_build_integer_1 (alt_codes, x, mode);
if (alt_cost < cost)
{
alt_codes[alt_cost-1].code = ASHIFT;
alt_codes[alt_cost-1].value = shift;
alt_codes[alt_cost-1].use_uw = use_uw;
alt_codes[alt_cost-1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
if (cost > 2 && TARGET_64BIT && (TARGET_ZBB || TARGET_XTHEADBB))
{
int leading_ones = clz_hwi (~value);
int trailing_ones = ctz_hwi (~value);
/* If all bits are one except a few that are zero, and the zero bits
are within a range of 11 bits, then we can synthesize a constant
by loading a small negative constant and rotating. */
if (leading_ones < 64
&& ((64 - leading_ones - trailing_ones) < 12))
{
codes[0].code = UNKNOWN;
/* The sign-bit might be zero, so just rotate to be safe. */
codes[0].value = (((unsigned HOST_WIDE_INT) value >> trailing_ones)
| (value << (64 - trailing_ones)));
codes[0].use_uw = false;
codes[0].save_temporary = false;
codes[1].code = ROTATERT;
codes[1].value = 64 - trailing_ones;
codes[1].use_uw = false;
codes[1].save_temporary = false;
cost = 2;
}
/* Handle the case where the 11 bit range of zero bits wraps around. */
else if (upper_trailing_ones < 32 && lower_leading_ones < 32
&& ((64 - upper_trailing_ones - lower_leading_ones) < 12))
{
codes[0].code = UNKNOWN;
/* The sign-bit might be zero, so just rotate to be safe. */
codes[0].value = ((value << (32 - upper_trailing_ones))
| ((unsigned HOST_WIDE_INT) value
>> (32 + upper_trailing_ones)));
codes[0].use_uw = false;
codes[0].save_temporary = false;
codes[1].code = ROTATERT;
codes[1].value = 32 - upper_trailing_ones;
codes[1].use_uw = false;
codes[1].save_temporary = false;
cost = 2;
}
/* If LUI/ADDI are going to set bits 32..63 and we need a small
number of them cleared, we might be able to use bclri profitably.
Note we may allow clearing of bit 31 using bclri. There's a class
of constants with that bit clear where this helps. */
else if (TARGET_64BIT
&& TARGET_ZBS
&& (32 - popcount_hwi (value & HOST_WIDE_INT_C (0xffffffff80000000))) + 1 < cost)
{
/* Turn on all those upper bits and synthesize the result. */
HOST_WIDE_INT nval = value | HOST_WIDE_INT_C (0xffffffff80000000);
alt_cost = riscv_build_integer_1 (alt_codes, nval, mode);
/* Now iterate over the bits we want to clear until the cost is
too high or we're done. */
nval = value ^ HOST_WIDE_INT_C (-1);
nval &= HOST_WIDE_INT_C (~0x7fffffff);
while (nval && alt_cost < cost)
{
HOST_WIDE_INT bit = ctz_hwi (nval);
alt_codes[alt_cost].code = AND;
alt_codes[alt_cost].value = ~(1UL << bit);
alt_codes[alt_cost].use_uw = false;
alt_codes[alt_cost].save_temporary = false;
alt_cost++;
nval &= ~(1UL << bit);
}
if (nval == 0 && alt_cost <= cost)
{
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
}
if (cost > 2 && TARGET_64BIT && TARGET_ZBA)
{
if ((value % 9) == 0
&& (alt_cost
= riscv_build_integer_1 (alt_codes, value / 9, mode) + 1) < cost)
{
alt_codes[alt_cost - 1].code = FMA;
alt_codes[alt_cost - 1].value = 9;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
if ((value % 5) == 0
&& (alt_cost
= riscv_build_integer_1 (alt_codes, value / 5, mode) + 1) < cost)
{
alt_codes[alt_cost - 1].code = FMA;
alt_codes[alt_cost - 1].value = 5;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
if ((value % 3) == 0
&& (alt_cost
= riscv_build_integer_1 (alt_codes, value / 3, mode) + 1) < cost)
{
alt_codes[alt_cost - 1].code = FMA;
alt_codes[alt_cost - 1].value = 3;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
/* We might be able to generate a constant close to our target
then a final ADDI to get the desired constant. */
if (cost > 2
&& (value & 0xfff) != 0
&& (value & 0x1800) == 0x1000)
{
HOST_WIDE_INT adjustment = -(0x800 - (value & 0xfff));
alt_cost = 1 + riscv_build_integer_1 (alt_codes,
value - adjustment, mode);
if (alt_cost < cost)
{
alt_codes[alt_cost - 1].code = PLUS;
alt_codes[alt_cost - 1].value = adjustment;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
/* Final cases, particularly focused on bseti. */
if (cost > 2 && TARGET_ZBS)
{
int i = 0;
/* First handle any bits set by LUI. Be careful of the
SImode sign bit!. */
if (value & 0x7ffff000)
{
alt_codes[i].code = (i == 0 ? UNKNOWN : IOR);
alt_codes[i].value = value & 0x7ffff000;
alt_codes[i].use_uw = false;
alt_codes[i].save_temporary = false;
value &= ~0x7ffff000;
i++;
}
/* Next, any bits we can handle with addi. */
if (value & 0x7ff)
{
alt_codes[i].code = (i == 0 ? UNKNOWN : PLUS);
alt_codes[i].value = value & 0x7ff;
alt_codes[i].use_uw = false;
alt_codes[i].save_temporary = false;
value &= ~0x7ff;
i++;
}
/* And any residuals with bseti. */
while (i < cost && value)
{
HOST_WIDE_INT bit = ctz_hwi (value);
alt_codes[i].code = (i == 0 ? UNKNOWN : IOR);
alt_codes[i].value = 1UL << bit;
alt_codes[i].use_uw = false;
alt_codes[i].save_temporary = false;
value &= ~(1ULL << bit);
i++;
}
/* If LUI+ADDI+BSETI resulted in a more efficient
sequence, then use it. */
if (value == 0 && i < cost)
{
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = i;
}
}
gcc_assert (cost <= RISCV_MAX_INTEGER_OPS);
return cost;
}
/* Fill CODES with a sequence of rtl operations to load VALUE.
Return the number of operations needed.
ALLOW_NEW_PSEUDOS indicates if or caller wants to allow new pseudo
registers or not. This is needed for cases where the integer synthesis and
costing code are used in insn conditions, we can't have costing allow
recognition at some points and reject at others. */
static int
riscv_build_integer (struct riscv_integer_op *codes, HOST_WIDE_INT value,
machine_mode mode, bool allow_new_pseudos)
{
int cost = riscv_build_integer_1 (codes, value, mode);
/* Eliminate leading zeros and end with SRLI. */
if (value > 0 && cost > 2)
{
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
int alt_cost, shift = clz_hwi (value);
HOST_WIDE_INT shifted_val;
/* Try filling trailing bits with 1s. */
shifted_val = (value << shift) | ((((HOST_WIDE_INT) 1) << shift) - 1);
alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode);
if (alt_cost < cost)
{
alt_codes[alt_cost-1].code = LSHIFTRT;
alt_codes[alt_cost-1].value = shift;
alt_codes[alt_cost-1].use_uw = false;
alt_codes[alt_cost-1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
/* Try filling trailing bits with 0s. */
shifted_val = value << shift;
alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode);
if (alt_cost < cost)
{
alt_codes[alt_cost-1].code = LSHIFTRT;
alt_codes[alt_cost-1].value = shift;
alt_codes[alt_cost-1].use_uw = false;
alt_codes[alt_cost-1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
/* See if we can generate the inverted constant, then use
not to get the desired constant.
This can't be in riscv_build_integer_1 as it'll mutually
recurse with another case in there. And it has to recurse
into riscv_build_integer so we get the trailing 0s case
above. */
if (cost > 2 && value < 0)
{
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
int alt_cost;
HOST_WIDE_INT nval = ~value;
alt_cost = 1 + riscv_build_integer (alt_codes, nval,
mode, allow_new_pseudos);
if (alt_cost < cost)
{
alt_codes[alt_cost - 1].code = XOR;
alt_codes[alt_cost - 1].value = -1;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
if (!TARGET_64BIT
&& (value > INT32_MAX || value < INT32_MIN))
{
unsigned HOST_WIDE_INT loval = sext_hwi (value, 32);
unsigned HOST_WIDE_INT hival = sext_hwi ((value - loval) >> 32, 32);
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
struct riscv_integer_op hicode[RISCV_MAX_INTEGER_OPS];
int hi_cost, lo_cost;
hi_cost = riscv_build_integer_1 (hicode, hival, mode);
if (hi_cost < cost)
{
lo_cost = riscv_build_integer_1 (alt_codes, loval, mode);
if (lo_cost + hi_cost < cost)
{
memcpy (codes, alt_codes,
lo_cost * sizeof (struct riscv_integer_op));
memcpy (codes + lo_cost, hicode,
hi_cost * sizeof (struct riscv_integer_op));
cost = lo_cost + hi_cost;
}
}
}
/* With pack we can generate a 64 bit constant with the same high
and low 32 bits trivially. */
if (cost > 3 && TARGET_64BIT && TARGET_ZBKB)
{
unsigned HOST_WIDE_INT loval = value & 0xffffffff;
unsigned HOST_WIDE_INT hival = (value & ~loval) >> 32;
if (hival == loval)
{
cost = 1 + riscv_build_integer_1 (codes, sext_hwi (loval, 32), mode);
codes[cost - 1].code = CONCAT;
codes[cost - 1].value = 0;
codes[cost - 1].use_uw = false;
codes[cost - 1].save_temporary = false;
}
/* An arbitrary 64 bit constant can be synthesized in 5 instructions
using zbkb. We may do better than that if the upper or lower half
can be synthesized with a single LUI, ADDI or BSET. Regardless the
basic steps are the same. */
if (cost > 3 && can_create_pseudo_p () && allow_new_pseudos)
{
struct riscv_integer_op hi_codes[RISCV_MAX_INTEGER_OPS];
struct riscv_integer_op lo_codes[RISCV_MAX_INTEGER_OPS];
int hi_cost, lo_cost;
/* Synthesize and get cost for each half. */
lo_cost
= riscv_build_integer_1 (lo_codes, sext_hwi (loval, 32), mode);
hi_cost
= riscv_build_integer_1 (hi_codes, sext_hwi (hival, 32), mode);
/* If profitable, finish synthesis using zbkb. */
if (cost > hi_cost + lo_cost + 1)
{
/* We need the low half independent of the high half. So
mark it has creating a temporary we'll use later. */
memcpy (codes, lo_codes,
lo_cost * sizeof (struct riscv_integer_op));
codes[lo_cost - 1].save_temporary = true;
/* Now the high half synthesis. */
memcpy (codes + lo_cost, hi_codes,
hi_cost * sizeof (struct riscv_integer_op));
/* Adjust the cost. */
cost = hi_cost + lo_cost + 1;
/* And finally (ab)use VEC_MERGE to indicate we want to
put merge the two parts together. */
codes[cost - 1].code = VEC_MERGE;
codes[cost - 1].value = 0;
codes[cost - 1].use_uw = false;
codes[cost - 1].save_temporary = false;
}
}
}
else if (cost > 4 && TARGET_64BIT && can_create_pseudo_p ()
&& allow_new_pseudos)
{
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
int alt_cost;
unsigned HOST_WIDE_INT loval = value & 0xffffffff;
unsigned HOST_WIDE_INT hival = (value & ~loval) >> 32;
bool bit31 = (loval & 0x80000000) != 0;
int trailing_shift = ctz_hwi (loval) - ctz_hwi (hival);
int leading_shift = clz_hwi (loval) - clz_hwi (hival);
int shiftval = 0;
/* Adjust the shift into the high half accordingly. */
if ((trailing_shift > 0 && hival == (loval >> trailing_shift)))
shiftval = 32 - trailing_shift;
else if ((leading_shift > 0 && hival == (loval << leading_shift)))
shiftval = 32 + leading_shift;
if (shiftval && !bit31)
alt_cost = 2 + riscv_build_integer_1 (alt_codes, sext_hwi (loval, 32),
mode);
/* For constants where the upper half is a shift of the lower half we
can do a shift followed by an or. */
if (shiftval && !bit31 && alt_cost < cost)
{
/* We need to save the first constant we build. */
alt_codes[alt_cost - 3].save_temporary = true;
/* Now we want to shift the previously generated constant into the
high half. */
alt_codes[alt_cost - 2].code = ASHIFT;
alt_codes[alt_cost - 2].value = shiftval;
alt_codes[alt_cost - 2].use_uw = false;
alt_codes[alt_cost - 2].save_temporary = false;
/* And the final step, IOR the two halves together. Since this uses
the saved temporary, use CONCAT similar to what we do for Zbkb. */
alt_codes[alt_cost - 1].code = CONCAT;
alt_codes[alt_cost - 1].value = 0;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
if (cost > 4 && !bit31 && TARGET_ZBA)
{
int value = 0;
/* Check for a shNadd. */
if (hival == loval * 3)
value = 3;
else if (hival == loval * 5)
value = 5;
else if (hival == loval * 9)
value = 9;
if (value)
alt_cost = 2 + riscv_build_integer_1 (alt_codes,
sext_hwi (loval, 32), mode);
/* For constants where the upper half is a shNadd of the lower half
we can do a similar transformation. */
if (value && alt_cost < cost)
{
alt_codes[alt_cost - 3].save_temporary = true;
alt_codes[alt_cost - 2].code = FMA;
alt_codes[alt_cost - 2].value = value;
alt_codes[alt_cost - 2].use_uw = false;
alt_codes[alt_cost - 2].save_temporary = false;
alt_codes[alt_cost - 1].code = CONCAT;
alt_codes[alt_cost - 1].value = 0;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
if (cost > 4 && !bit31)
{
int value = hival - loval;
/* For constants were the halves differ by less than 2048 we can
generate the upper half by using an addi on the lower half then
using a shift 32 followed by an or. */
if (IN_RANGE (value, -2048, 2047))
{
alt_cost = 3 + riscv_build_integer_1 (alt_codes,
sext_hwi (loval, 32), mode);
if (alt_cost < cost)
{
alt_codes[alt_cost - 4].save_temporary = true;
alt_codes[alt_cost - 3].code = PLUS;
alt_codes[alt_cost - 3].value = value;
alt_codes[alt_cost - 3].use_uw = false;
alt_codes[alt_cost - 3].save_temporary = false;
alt_codes[alt_cost - 2].code = ASHIFT;
alt_codes[alt_cost - 2].value = 32;
alt_codes[alt_cost - 2].use_uw = false;
alt_codes[alt_cost - 2].save_temporary = false;
alt_codes[alt_cost - 1].code = CONCAT;
alt_codes[alt_cost - 1].value = 0;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
}
if (cost > 5 && !bit31)
{
/* For constants where the upper half is the lower half inverted we can flip
it with an xor and do a shift 32 followed by an or. */
if (hival == (~loval & 0xffffffff))
{
alt_cost = 3 + riscv_build_integer_1 (alt_codes,
sext_hwi (loval, 32), mode);
if (alt_cost < cost)
{
alt_codes[alt_cost - 4].save_temporary = true;
alt_codes[alt_cost - 3].code = XOR;
alt_codes[alt_cost - 3].value = -1;
alt_codes[alt_cost - 3].use_uw = false;
alt_codes[alt_cost - 3].save_temporary = false;
alt_codes[alt_cost - 2].code = ASHIFT;
alt_codes[alt_cost - 2].value = 32;
alt_codes[alt_cost - 2].use_uw = false;
alt_codes[alt_cost - 2].save_temporary = false;
alt_codes[alt_cost - 1].code = CONCAT;
alt_codes[alt_cost - 1].value = 0;
alt_codes[alt_cost - 1].use_uw = false;
alt_codes[alt_cost - 1].save_temporary = false;
memcpy (codes, alt_codes, sizeof (alt_codes));
cost = alt_cost;
}
}
}
}
return cost;
}
/* Return the cost of constructing VAL in the event that a scratch
register is available. */
static int
riscv_split_integer_cost (HOST_WIDE_INT val)
{
int cost;
unsigned HOST_WIDE_INT loval = val & 0xffffffff;
unsigned HOST_WIDE_INT hival = (val & ~loval) >> 32;
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
/* This routine isn't used by pattern conditions, so whether or
not to allow new pseudos can be a function of where we are in the
RTL pipeline. */
bool allow_new_pseudos = can_create_pseudo_p ();
cost = 2 + riscv_build_integer (codes, loval, VOIDmode, allow_new_pseudos);
if (loval != hival)
cost += riscv_build_integer (codes, hival, VOIDmode, allow_new_pseudos);
else if ((loval & 0x80000000) != 0)
cost = 3 + riscv_build_integer (codes, ~loval & 0xffffffff,
VOIDmode, allow_new_pseudos);
return cost;
}
/* Return the cost of constructing the integer constant VAL. ALLOW_NEW_PSEUDOS
potentially restricts if riscv_build_integer is allowed to create new
pseudo registers. It must be false for calls directly or indirectly from
conditions in patterns. */
static int
riscv_integer_cost (HOST_WIDE_INT val, bool allow_new_pseudos)
{
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
return MIN (riscv_build_integer (codes, val, VOIDmode, allow_new_pseudos),
riscv_split_integer_cost (val));
}
/* Try to split a 64b integer into 32b parts, then reassemble. */
static rtx
riscv_split_integer (HOST_WIDE_INT val, machine_mode mode)
{
unsigned HOST_WIDE_INT loval = val & 0xffffffff;
unsigned HOST_WIDE_INT hival = (val & ~loval) >> 32;
rtx hi = gen_reg_rtx (mode), lo = gen_reg_rtx (mode);
rtx x = gen_reg_rtx (mode);
bool eq_neg = (loval == hival) && ((loval & 0x80000000) != 0);
if (eq_neg)
riscv_move_integer (lo, lo, ~loval & 0xffffffff, mode);
else
riscv_move_integer (lo, lo, loval, mode);
if (loval == hival)
hi = gen_rtx_ASHIFT (mode, lo, GEN_INT (32));
else
{
riscv_move_integer (hi, hi, hival, mode);
hi = gen_rtx_ASHIFT (mode, hi, GEN_INT (32));
}
hi = force_reg (mode, hi);
x = gen_rtx_PLUS (mode, hi, lo);
if (eq_neg)
{
x = force_reg (mode, x);
x = gen_rtx_XOR (mode, x, GEN_INT (-1));
}
return x;
}
/* Return true if X is a thread-local symbol. */
static bool
riscv_tls_symbol_p (const_rtx x)
{
return SYMBOL_REF_P (x) && SYMBOL_REF_TLS_MODEL (x) != 0;
}
/* Return true if symbol X binds locally. */
static bool
riscv_symbol_binds_local_p (const_rtx x)
{
if (SYMBOL_REF_P (x))
return (SYMBOL_REF_DECL (x)
? targetm.binds_local_p (SYMBOL_REF_DECL (x))
: SYMBOL_REF_LOCAL_P (x));
else
return false;
}
/* Return the method that should be used to access SYMBOL_REF or
LABEL_REF X. */
static enum riscv_symbol_type
riscv_classify_symbol (const_rtx x)
{
if (riscv_tls_symbol_p (x))
return SYMBOL_TLS;
if (GET_CODE (x) == SYMBOL_REF && flag_pic && !riscv_symbol_binds_local_p (x))
return SYMBOL_GOT_DISP;
switch (riscv_cmodel)
{
case CM_MEDLOW:
return SYMBOL_ABSOLUTE;
case CM_LARGE:
if (SYMBOL_REF_P (x))
return CONSTANT_POOL_ADDRESS_P (x) ? SYMBOL_PCREL : SYMBOL_FORCE_TO_MEM;
return SYMBOL_PCREL;
default:
return SYMBOL_PCREL;
}
}
/* Classify the base of symbolic expression X. */
enum riscv_symbol_type
riscv_classify_symbolic_expression (rtx x)
{
rtx offset;
split_const (x, &x, &offset);
if (UNSPEC_ADDRESS_P (x))
return UNSPEC_ADDRESS_TYPE (x);
return riscv_classify_symbol (x);
}
/* Return true if X is a symbolic constant. If it is, store the type of
the symbol in *SYMBOL_TYPE. */
bool
riscv_symbolic_constant_p (rtx x, enum riscv_symbol_type *symbol_type)
{
rtx offset;
split_const (x, &x, &offset);
if (UNSPEC_ADDRESS_P (x))
{
*symbol_type = UNSPEC_ADDRESS_TYPE (x);
x = UNSPEC_ADDRESS (x);
}
else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
*symbol_type = riscv_classify_symbol (x);
else
return false;
if (offset == const0_rtx)
return true;
/* Nonzero offsets are only valid for references that don't use the GOT. */
switch (*symbol_type)
{
case SYMBOL_ABSOLUTE:
case SYMBOL_PCREL:
case SYMBOL_TLS_LE:
/* GAS rejects offsets outside the range [-2^31, 2^31-1]. */
return sext_hwi (INTVAL (offset), 32) == INTVAL (offset);
default:
return false;
}
}
/* Returns the number of instructions necessary to reference a symbol. */
static int riscv_symbol_insns (enum riscv_symbol_type type)
{
switch (type)
{
case SYMBOL_TLS: return 0; /* Depends on the TLS model. */
case SYMBOL_ABSOLUTE: return 2; /* LUI + the reference. */
case SYMBOL_PCREL: return 2; /* AUIPC + the reference. */
case SYMBOL_TLS_LE: return 3; /* LUI + ADD TP + the reference. */
case SYMBOL_TLSDESC: return 6; /* 4-instruction call + ADD TP + the reference. */
case SYMBOL_GOT_DISP: return 3; /* AUIPC + LD GOT + the reference. */
case SYMBOL_FORCE_TO_MEM: return 3; /* AUIPC + LD + the reference. */
default: gcc_unreachable ();
}
}
/* Immediate values loaded by the FLI.S instruction in Chapter 25 of the latest RISC-V ISA
Manual draft. For details, please see:
https://github.com/riscv/riscv-isa-manual/releases/tag/isa-449cd0c */
static unsigned HOST_WIDE_INT fli_value_hf[32] =
{
0xbcp8, 0x4p8, 0x1p8, 0x2p8, 0x1cp8, 0x20p8, 0x2cp8, 0x30p8,
0x34p8, 0x35p8, 0x36p8, 0x37p8, 0x38p8, 0x39p8, 0x3ap8, 0x3bp8,
0x3cp8, 0x3dp8, 0x3ep8, 0x3fp8, 0x40p8, 0x41p8, 0x42p8, 0x44p8,
0x48p8, 0x4cp8, 0x58p8, 0x5cp8, 0x78p8,
/* Only used for filling, ensuring that 29 and 30 of HF are the same. */
0x78p8,
0x7cp8, 0x7ep8
};
static unsigned HOST_WIDE_INT fli_value_sf[32] =
{
0xbf8p20, 0x008p20, 0x378p20, 0x380p20, 0x3b8p20, 0x3c0p20, 0x3d8p20, 0x3e0p20,
0x3e8p20, 0x3eap20, 0x3ecp20, 0x3eep20, 0x3f0p20, 0x3f2p20, 0x3f4p20, 0x3f6p20,
0x3f8p20, 0x3fap20, 0x3fcp20, 0x3fep20, 0x400p20, 0x402p20, 0x404p20, 0x408p20,
0x410p20, 0x418p20, 0x430p20, 0x438p20, 0x470p20, 0x478p20, 0x7f8p20, 0x7fcp20
};
static unsigned HOST_WIDE_INT fli_value_df[32] =
{
0xbff0p48, 0x10p48, 0x3ef0p48, 0x3f00p48,
0x3f70p48, 0x3f80p48, 0x3fb0p48, 0x3fc0p48,
0x3fd0p48, 0x3fd4p48, 0x3fd8p48, 0x3fdcp48,
0x3fe0p48, 0x3fe4p48, 0x3fe8p48, 0x3fecp48,
0x3ff0p48, 0x3ff4p48, 0x3ff8p48, 0x3ffcp48,
0x4000p48, 0x4004p48, 0x4008p48, 0x4010p48,
0x4020p48, 0x4030p48, 0x4060p48, 0x4070p48,
0x40e0p48, 0x40f0p48, 0x7ff0p48, 0x7ff8p48
};
/* Display floating-point values at the assembly level, which is consistent
with the zfa extension of llvm:
https://reviews.llvm.org/D145645. */
const char *fli_value_print[32] =
{
"-1.0", "min", "1.52587890625e-05", "3.0517578125e-05", "0.00390625", "0.0078125", "0.0625", "0.125",
"0.25", "0.3125", "0.375", "0.4375", "0.5", "0.625", "0.75", "0.875",
"1.0", "1.25", "1.5", "1.75", "2.0", "2.5", "3.0", "4.0",
"8.0", "16.0", "128.0", "256.0", "32768.0", "65536.0", "inf", "nan"
};
/* Return index of the FLI instruction table if rtx X is an immediate constant that can
be moved using a single FLI instruction in zfa extension. Return -1 if not found. */
int
riscv_float_const_rtx_index_for_fli (rtx x)
{
unsigned HOST_WIDE_INT *fli_value_array;
machine_mode mode = GET_MODE (x);
if (!TARGET_ZFA
|| !CONST_DOUBLE_P(x)
|| mode == VOIDmode
|| (mode == HFmode && !(TARGET_ZFH || TARGET_ZVFH))
|| (mode == SFmode && !TARGET_HARD_FLOAT)
|| (mode == DFmode && !TARGET_DOUBLE_FLOAT))
return -1;
if (!SCALAR_FLOAT_MODE_P (mode)
|| GET_MODE_BITSIZE (mode).to_constant () > HOST_BITS_PER_WIDE_INT
/* Only support up to DF mode. */
|| GET_MODE_BITSIZE (mode).to_constant () > GET_MODE_BITSIZE (DFmode))
return -1;
unsigned HOST_WIDE_INT ival = 0;
long res[2];
real_to_target (res,
CONST_DOUBLE_REAL_VALUE (x),
REAL_MODE_FORMAT (mode));
if (mode == DFmode)
{
int order = BYTES_BIG_ENDIAN ? 1 : 0;
ival = zext_hwi (res[order], 32);
ival |= (zext_hwi (res[1 - order], 32) << 32);
/* When the lower 32 bits are not all 0, it is impossible to be in the table. */
if (ival & (unsigned HOST_WIDE_INT)0xffffffff)
return -1;
}
else
ival = zext_hwi (res[0], 32);
switch (mode)
{
case E_HFmode:
fli_value_array = fli_value_hf;
break;
case E_SFmode:
fli_value_array = fli_value_sf;
break;
case E_DFmode:
fli_value_array = fli_value_df;
break;
default:
return -1;
}
if (fli_value_array[0] == ival)
return 0;
if (fli_value_array[1] == ival)
return 1;
/* Perform a binary search to find target index. */
unsigned l, r, m;
l = 2;
r = 31;
while (l <= r)
{
m = (l + r) / 2;
if (fli_value_array[m] == ival)
return m;
else if (fli_value_array[m] < ival)
l = m+1;
else
r = m-1;
}
return -1;
}
/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
static bool
riscv_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
/* With the post-reload usage, it seems best to just pass in FALSE
rather than pass ALLOW_NEW_PSEUDOS through the call chain. */
return riscv_const_insns (x, false) > 0;
}
/* Implement TARGET_CANNOT_FORCE_CONST_MEM.
Return true if X cannot (or should not) be spilled to the
constant pool. */
static bool
riscv_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
enum riscv_symbol_type type;
rtx base, offset;
/* There's no way to calculate VL-based values using relocations. */
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
if (GET_CODE (*iter) == CONST_POLY_INT)
return true;
/* There is no assembler syntax for expressing an address-sized
high part. */
if (GET_CODE (x) == HIGH)
return true;
if (satisfies_constraint_zfli (x))
return true;
split_const (x, &base, &offset);
if (riscv_symbolic_constant_p (base, &type))
{
if (type == SYMBOL_FORCE_TO_MEM)
return false;
/* As an optimization, don't spill symbolic constants that are as
cheap to rematerialize as to access in the constant pool. */
if (SMALL_OPERAND (INTVAL (offset)) && riscv_symbol_insns (type) > 0)
return true;
/* As an optimization, avoid needlessly generate dynamic relocations. */
if (flag_pic)
return true;
}
/* TLS symbols must be computed by riscv_legitimize_move. */
if (tls_referenced_p (x))
return true;
return false;
}
/* Return true if register REGNO is a valid base register for mode MODE.
STRICT_P is true if REG_OK_STRICT is in effect. */
int
riscv_regno_mode_ok_for_base_p (int regno,
machine_mode mode ATTRIBUTE_UNUSED,
bool strict_p)
{
if (!HARD_REGISTER_NUM_P (regno))
{
if (!strict_p)
return true;
regno = reg_renumber[regno];
}
/* These fake registers will be eliminated to either the stack or
hard frame pointer, both of which are usually valid base registers.
Reload deals with the cases where the eliminated form isn't valid. */
if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
return true;
return GP_REG_P (regno);
}
/* Get valid index register class.
The RISC-V base instructions don't support index registers,
but extensions might support that. */
enum reg_class
riscv_index_reg_class ()
{
if (TARGET_XTHEADMEMIDX || TARGET_XTHEADFMEMIDX)
return GR_REGS;
return NO_REGS;
}
/* Return true if register REGNO is a valid index register.
The RISC-V base instructions don't support index registers,
but extensions might support that. */
int
riscv_regno_ok_for_index_p (int regno)
{
if (TARGET_XTHEADMEMIDX || TARGET_XTHEADFMEMIDX)
return riscv_regno_mode_ok_for_base_p (regno, VOIDmode, 1);
return 0;
}
/* Return true if X is a valid base register for mode MODE.
STRICT_P is true if REG_OK_STRICT is in effect. */
bool
riscv_valid_base_register_p (rtx x, machine_mode mode, bool strict_p)
{
if (!strict_p && GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
return (REG_P (x)
&& riscv_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
}
/* Return true if, for every base register BASE_REG, (plus BASE_REG X)
can address a value of mode MODE. */
static bool
riscv_valid_offset_p (rtx x, machine_mode mode)
{
/* Check that X is a signed 12-bit number. */
if (!const_arith_operand (x, Pmode))
return false;
/* We may need to split multiword moves, so make sure that every word
is accessible. */
if (GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD
&& !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode).to_constant () - UNITS_PER_WORD))
return false;
return true;
}
/* Should a symbol of type SYMBOL_TYPE should be split in two? */
bool
riscv_split_symbol_type (enum riscv_symbol_type symbol_type)
{
if (symbol_type == SYMBOL_TLS_LE)
return true;
if (!TARGET_EXPLICIT_RELOCS)
return false;
return symbol_type == SYMBOL_ABSOLUTE || symbol_type == SYMBOL_PCREL;
}
/* Return true if a LO_SUM can address a value of mode MODE when the
LO_SUM symbol has type SYM_TYPE. X is the LO_SUM second operand, which
is used when the mode is BLKmode. */
static bool
riscv_valid_lo_sum_p (enum riscv_symbol_type sym_type, machine_mode mode,
rtx x)
{
int align, size;
/* Check that symbols of type SYMBOL_TYPE can be used to access values
of mode MODE. */
if (riscv_symbol_insns (sym_type) == 0)
return false;
/* Check that there is a known low-part relocation. */
if (!riscv_split_symbol_type (sym_type))
return false;
/* We can't tell size or alignment when we have BLKmode, so try extracting a
decl from the symbol if possible. */
if (mode == BLKmode)
{
rtx offset;
/* Extract the symbol from the LO_SUM operand, if any. */
split_const (x, &x, &offset);
/* Might be a CODE_LABEL. We can compute align but not size for that,
so don't bother trying to handle it. */
if (!SYMBOL_REF_P (x))
return false;
/* Use worst case assumptions if we don't have a SYMBOL_REF_DECL. */
align = (SYMBOL_REF_DECL (x)
? DECL_ALIGN (SYMBOL_REF_DECL (x))
: 1);
size = (SYMBOL_REF_DECL (x)
&& DECL_SIZE (SYMBOL_REF_DECL (x))
&& tree_fits_uhwi_p (DECL_SIZE (SYMBOL_REF_DECL (x)))
? tree_to_uhwi (DECL_SIZE (SYMBOL_REF_DECL (x)))
: 2*BITS_PER_WORD);
}
else
{
align = GET_MODE_ALIGNMENT (mode);
size = GET_MODE_BITSIZE (mode).to_constant ();
}
/* We may need to split multiword moves, so make sure that each word
can be accessed without inducing a carry. */
if (size > BITS_PER_WORD
&& (!TARGET_STRICT_ALIGN || size > align))
return false;
return true;
}
/* Return true if mode is the RVV enabled mode.
For example: 'RVVMF2SI' mode is disabled,
whereas 'RVVM1SI' mode is enabled if MIN_VLEN == 32. */
bool
riscv_v_ext_vector_mode_p (machine_mode mode)
{
#define ENTRY(MODE, REQUIREMENT, ...) \
case MODE##mode: \
return REQUIREMENT;
switch (mode)
{
#include "riscv-vector-switch.def"
default:
return false;
}
return false;
}
/* Return true if mode is the RVV enabled tuple mode. */
bool
riscv_v_ext_tuple_mode_p (machine_mode mode)
{
#define TUPLE_ENTRY(MODE, REQUIREMENT, ...) \
case MODE##mode: \
return REQUIREMENT;
switch (mode)
{
#include "riscv-vector-switch.def"
default:
return false;
}
return false;
}
/* Return true if mode is the RVV enabled vls mode. */
bool
riscv_v_ext_vls_mode_p (machine_mode mode)
{
#define VLS_ENTRY(MODE, REQUIREMENT) \
case MODE##mode: \
return REQUIREMENT;
switch (mode)
{
#include "riscv-vector-switch.def"
default:
return false;
}
return false;
}
/* Return true if it is either of below modes.
1. RVV vector mode.
2. RVV tuple mode.
3. RVV vls mode. */
static bool
riscv_v_ext_mode_p (machine_mode mode)
{
return riscv_v_ext_vector_mode_p (mode) || riscv_v_ext_tuple_mode_p (mode)
|| riscv_v_ext_vls_mode_p (mode);
}
static unsigned
riscv_v_vls_mode_aggregate_gpr_count (unsigned vls_unit_size,
unsigned scalar_unit_size)
{
gcc_assert (vls_unit_size != 0 && scalar_unit_size != 0);
if (vls_unit_size < scalar_unit_size)
return 1;
/* Ensure the vls mode is exact_div by scalar_unit_size. */
gcc_assert ((vls_unit_size % scalar_unit_size) == 0);
return vls_unit_size / scalar_unit_size;
}
static machine_mode
riscv_v_vls_to_gpr_mode (unsigned vls_mode_size)
{
switch (vls_mode_size)
{
case 16:
return TImode;
case 8:
return DImode;
case 4:
return SImode;
case 2:
return HImode;
case 1:
return QImode;
default:
gcc_unreachable ();
}
}
/* Call from ADJUST_NUNITS in riscv-modes.def. Return the correct
NUNITS size for corresponding machine_mode. */
poly_int64
riscv_v_adjust_nunits (machine_mode mode, int scale)
{
gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL);
if (riscv_v_ext_mode_p (mode))
{
if (TARGET_MIN_VLEN == 32)
scale = scale / 2;
return riscv_vector_chunks * scale;
}
return scale;
}
/* Call from ADJUST_NUNITS in riscv-modes.def. Return the correct
NUNITS size for corresponding machine_mode. */
poly_int64
riscv_v_adjust_nunits (machine_mode mode, bool fractional_p, int lmul, int nf)
{
if (riscv_v_ext_mode_p (mode))
{
scalar_mode smode = GET_MODE_INNER (mode);
int size = GET_MODE_SIZE (smode);
int nunits_per_chunk = riscv_bytes_per_vector_chunk / size;
if (fractional_p)
return nunits_per_chunk / lmul * riscv_vector_chunks * nf;
else
return nunits_per_chunk * lmul * riscv_vector_chunks * nf;
}
/* Set the disabled RVV modes size as 1 by default. */
return 1;
}
/* Call from ADJUST_BYTESIZE in riscv-modes.def. Return the correct
BYTE size for corresponding machine_mode. */
poly_int64
riscv_v_adjust_bytesize (machine_mode mode, int scale)
{
if (riscv_v_ext_vector_mode_p (mode))
{
if (TARGET_XTHEADVECTOR)
return BYTES_PER_RISCV_VECTOR;
poly_int64 nunits = GET_MODE_NUNITS (mode);
if (nunits.coeffs[0] > 8)
return exact_div (nunits, 8);
else if (nunits.is_constant ())
return 1;
else
return poly_int64 (1, 1);
}
return scale;
}
/* Call from ADJUST_PRECISION in riscv-modes.def. Return the correct
PRECISION size for corresponding machine_mode. */
poly_int64
riscv_v_adjust_precision (machine_mode mode, int scale)
{
return riscv_v_adjust_nunits (mode, scale);
}
/* Return true if X is a valid address for machine mode MODE. If it is,
fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
effect. */
static bool
riscv_classify_address (struct riscv_address_info *info, rtx x,
machine_mode mode, bool strict_p)
{
if (th_classify_address (info, x, mode, strict_p))
return true;
switch (GET_CODE (x))
{
case REG:
case SUBREG:
info->type = ADDRESS_REG;
info->reg = x;
info->offset = const0_rtx;
return riscv_valid_base_register_p (info->reg, mode, strict_p);
case PLUS:
/* RVV load/store disallow any offset. */
if (riscv_v_ext_mode_p (mode))
return false;
info->type = ADDRESS_REG;
info->reg = XEXP (x, 0);
info->offset = XEXP (x, 1);
return (riscv_valid_base_register_p (info->reg, mode, strict_p)
&& riscv_valid_offset_p (info->offset, mode));
case LO_SUM:
/* RVV load/store disallow LO_SUM. */
if (riscv_v_ext_mode_p (mode))
return false;
info->type = ADDRESS_LO_SUM;
info->reg = XEXP (x, 0);
info->offset = XEXP (x, 1);
/* We have to trust the creator of the LO_SUM to do something vaguely
sane. Target-independent code that creates a LO_SUM should also
create and verify the matching HIGH. Target-independent code that
adds an offset to a LO_SUM must prove that the offset will not
induce a carry. Failure to do either of these things would be
a bug, and we are not required to check for it here. The RISC-V
backend itself should only create LO_SUMs for valid symbolic
constants, with the high part being either a HIGH or a copy
of _gp. */
info->symbol_type
= riscv_classify_symbolic_expression (info->offset);
return (riscv_valid_base_register_p (info->reg, mode, strict_p)
&& riscv_valid_lo_sum_p (info->symbol_type, mode, info->offset));
case CONST_INT:
/* We only allow the const0_rtx for the RVV load/store. For example:
+----------------------------------------------------------+
| li a5,0 |
| vsetvli zero,a1,e32,m1,ta,ma |
| vle32.v v24,0(a5) <- propagate the const 0 to a5 here. |
| vs1r.v v24,0(a0) |
+----------------------------------------------------------+
It can be folded to:
+----------------------------------------------------------+
| vsetvli zero,a1,e32,m1,ta,ma |
| vle32.v v24,0(zero) |
| vs1r.v v24,0(a0) |
+----------------------------------------------------------+
This behavior will benefit the underlying RVV auto vectorization. */
if (riscv_v_ext_mode_p (mode))
return x == const0_rtx;
/* Small-integer addresses don't occur very often, but they
are legitimate if x0 is a valid base register. */
info->type = ADDRESS_CONST_INT;
return SMALL_OPERAND (INTVAL (x));
default:
return false;
}
}
/* Implement TARGET_LEGITIMATE_ADDRESS_P. */
static bool
riscv_legitimate_address_p (machine_mode mode, rtx x, bool strict_p,
code_helper = ERROR_MARK)
{
/* Disallow RVV modes base address.
E.g. (mem:SI (subreg:DI (reg:V1DI 155) 0). */
if (SUBREG_P (x) && riscv_v_ext_mode_p (GET_MODE (SUBREG_REG (x))))
return false;
struct riscv_address_info addr;
return riscv_classify_address (&addr, x, mode, strict_p);
}
/* Return true if hard reg REGNO can be used in compressed instructions. */
static bool
riscv_compressed_reg_p (int regno)
{
/* x8-x15/f8-f15 are compressible registers. */
return ((TARGET_RVC || TARGET_ZCA)
&& (IN_RANGE (regno, GP_REG_FIRST + 8, GP_REG_FIRST + 15)
|| IN_RANGE (regno, FP_REG_FIRST + 8, FP_REG_FIRST + 15)));
}
/* Return true if x is an unsigned 5-bit immediate scaled by 4. */
static bool
riscv_compressed_lw_offset_p (rtx x)
{
return (CONST_INT_P (x)
&& (INTVAL (x) & 3) == 0
&& IN_RANGE (INTVAL (x), 0, CSW_MAX_OFFSET));
}
/* Return true if load/store from/to address x can be compressed. */
static bool
riscv_compressed_lw_address_p (rtx x)
{
struct riscv_address_info addr;
bool result = riscv_classify_address (&addr, x, GET_MODE (x),
reload_completed);
/* Return false if address is not compressed_reg + small_offset. */
if (!result
|| addr.type != ADDRESS_REG
/* Before reload, assume all registers are OK. */
|| (reload_completed
&& !riscv_compressed_reg_p (REGNO (addr.reg))
&& addr.reg != stack_pointer_rtx)
|| !riscv_compressed_lw_offset_p (addr.offset))
return false;
return result;
}
/* Return the number of instructions needed to load or store a value
of mode MODE at address X. Return 0 if X isn't valid for MODE.
Assume that multiword moves may need to be split into word moves
if MIGHT_SPLIT_P, otherwise assume that a single load or store is
enough. */
int
riscv_address_insns (rtx x, machine_mode mode, bool might_split_p)
{
struct riscv_address_info addr = {};
int n = 1;
if (!riscv_classify_address (&addr, x, mode, false))
{
/* This could be a pattern from the pic.md file. In which case we want
this address to always have a cost of 3 to make it as expensive as the
most expensive symbol. This prevents constant propagation from
preferring symbols over register plus offset. */
return 3;
}
/* BLKmode is used for single unaligned loads and stores and should
not count as a multiword mode. */
if (!riscv_v_ext_vector_mode_p (mode) && mode != BLKmode && might_split_p)
n += (GET_MODE_SIZE (mode).to_constant () + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (addr.type == ADDRESS_LO_SUM)
n += riscv_symbol_insns (addr.symbol_type) - 1;
return n;
}
/* Return the number of instructions needed to load constant X.
Return 0 if X isn't a valid constant.
ALLOW_NEW_PSEUDOS controls whether or not we're going to be allowed
to create new pseduos. It must be FALSE for any call directly or
indirectly from a pattern's condition. */
int
riscv_const_insns (rtx x, bool allow_new_pseudos)
{
enum riscv_symbol_type symbol_type;
rtx offset;
switch (GET_CODE (x))
{
case HIGH:
if (!riscv_symbolic_constant_p (XEXP (x, 0), &symbol_type)
|| !riscv_split_symbol_type (symbol_type))
return 0;
/* This is simply an LUI. */
return 1;
case CONST_INT:
{
int cost = riscv_integer_cost (INTVAL (x), allow_new_pseudos);
/* Force complicated constants to memory. */
return cost < 4 ? cost : 0;
}
case CONST_DOUBLE:
/* See if we can use FMV directly. */
if (satisfies_constraint_zfli (x))
return 1;
/* We can use x0 to load floating-point zero. */
return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
case CONST_VECTOR:
{
/* TODO: This is not accurate, we will need to
adapt the COST of CONST_VECTOR in the future
for the following cases:
- 1. const duplicate vector with element value
in range of [-16, 15].
- 2. const duplicate vector with element value
out range of [-16, 15].
- 3. const series vector.
...etc. */
if (riscv_v_ext_mode_p (GET_MODE (x)))
{
rtx elt;
if (const_vec_duplicate_p (x, &elt))
{
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_BOOL)
/* Duplicate values of 0/1 can be emitted using vmv.v.i. */
return 1;
/* We don't allow CONST_VECTOR for DI vector on RV32
system since the ELT constant value can not held
within a single register to disable reload a DI
register vec_duplicate into vmv.v.x. */
scalar_mode smode = GET_MODE_INNER (GET_MODE (x));
if (maybe_gt (GET_MODE_SIZE (smode), UNITS_PER_WORD)
&& !immediate_operand (elt, Pmode))
return 0;
/* Constants in range -16 ~ 15 integer or 0.0 floating-point
can be emitted using vmv.v.i. */
if (valid_vec_immediate_p (x))
return 1;
/* Any int/FP constants can always be broadcast from a
scalar register. Loading of a floating-point
constant incurs a literal-pool access. Allow this in
order to increase vectorization possibilities. */
int n = riscv_const_insns (elt, allow_new_pseudos);
if (CONST_DOUBLE_P (elt))
return 1 + 4; /* vfmv.v.f + memory access. */
else
{
/* We need as many insns as it takes to load the constant
into a GPR and one vmv.v.x. */
if (n != 0)
return 1 + n;
else
return 1 + 4; /*vmv.v.x + memory access. */
}
}
/* const series vector. */
rtx base, step;
if (const_vec_series_p (x, &base, &step))
{
/* This cost is not accurate, we will need to adapt the COST
accurately according to BASE && STEP. */
return 1;
}
if (CONST_VECTOR_STEPPED_P (x))
{
/* Some cases are unhandled so we need construct a builder to
detect/allow those cases to be handled by the fallthrough
handler. */
unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
rvv_builder builder (GET_MODE(x), npatterns, nelts_per_pattern);
for (unsigned int i = 0; i < nelts_per_pattern; i++)
{
for (unsigned int j = 0; j < npatterns; j++)
builder.quick_push (CONST_VECTOR_ELT (x, i * npatterns + j));
}
builder.finalize ();
if (builder.single_step_npatterns_p ())
{
if (builder.npatterns_all_equal_p ())
{
/* TODO: This cost is not accurate. */
return 1;
}
else
{
/* TODO: This cost is not accurate. */
return 1;
}
}
else if (builder.interleaved_stepped_npatterns_p ())
{
/* TODO: This cost is not accurate. */
return 1;
}
/* Fallthrough. */
}
}
/* TODO: We may support more const vector in the future. */
return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
}
case CONST:
/* See if we can refer to X directly. */
if (riscv_symbolic_constant_p (x, &symbol_type))
return riscv_symbol_insns (symbol_type);
/* Otherwise try splitting the constant into a base and offset. */
split_const (x, &x, &offset);
if (offset != 0)
{
int n = riscv_const_insns (x, allow_new_pseudos);
if (n != 0)
return n + riscv_integer_cost (INTVAL (offset), allow_new_pseudos);
}
return 0;
case SYMBOL_REF:
case LABEL_REF:
return riscv_symbol_insns (riscv_classify_symbol (x));
/* TODO: In RVV, we get CONST_POLY_INT by using csrr VLENB
instruction and several scalar shift or mult instructions,
it is so far unknown. We set it to 4 temporarily. */
case CONST_POLY_INT:
return 4;
default:
return 0;
}
}
/* X is a doubleword constant that can be handled by splitting it into
two words and loading each word separately. Return the number of
instructions required to do this. */
int
riscv_split_const_insns (rtx x)
{
unsigned int low, high;
/* This is not called from pattern conditions, so we can let
our location in the RTL pipeline control whether or not
new pseudos are created. */
bool allow_new_pseudos = can_create_pseudo_p ();
low = riscv_const_insns (riscv_subword (x, false), allow_new_pseudos);
high = riscv_const_insns (riscv_subword (x, true), allow_new_pseudos);
gcc_assert (low > 0 && high > 0);
return low + high;
}
/* Return the number of instructions needed to implement INSN,
given that it loads from or stores to MEM. */
int
riscv_load_store_insns (rtx mem, rtx_insn *insn)
{
machine_mode mode;
bool might_split_p;
rtx set;
gcc_assert (MEM_P (mem));
mode = GET_MODE (mem);
/* Try to prove that INSN does not need to be split. */
might_split_p = true;
if (GET_MODE_BITSIZE (mode).to_constant () <= 32)
might_split_p = false;
else if (GET_MODE_BITSIZE (mode).to_constant () == 64)
{
set = single_set (insn);
if (set && !riscv_split_64bit_move_p (SET_DEST (set), SET_SRC (set)))
might_split_p = false;
}
return riscv_address_insns (XEXP (mem, 0), mode, might_split_p);
}
/* Emit a move from SRC to DEST. Assume that the move expanders can
handle all moves if !can_create_pseudo_p (). The distinction is
important because, unlike emit_move_insn, the move expanders know
how to force Pmode objects into the constant pool even when the
constant pool address is not itself legitimate. */
rtx
riscv_emit_move (rtx dest, rtx src)
{
return (can_create_pseudo_p ()
? emit_move_insn (dest, src)
: emit_move_insn_1 (dest, src));
}
/* Emit an instruction of the form (set TARGET SRC). */
static rtx
riscv_emit_set (rtx target, rtx src)
{
emit_insn (gen_rtx_SET (target, src));
return target;
}
/* Emit an instruction of the form (set DEST (CODE X)). */
rtx
riscv_emit_unary (enum rtx_code code, rtx dest, rtx x)
{
return riscv_emit_set (dest, gen_rtx_fmt_e (code, GET_MODE (dest), x));
}
/* Emit an instruction of the form (set DEST (CODE X Y)). */
rtx
riscv_emit_binary (enum rtx_code code, rtx dest, rtx x, rtx y)
{
return riscv_emit_set (dest, gen_rtx_fmt_ee (code, GET_MODE (dest), x, y));
}
/* Compute (CODE X Y) and store the result in a new register
of mode MODE. Return that new register. */
static rtx
riscv_force_binary (machine_mode mode, enum rtx_code code, rtx x, rtx y)
{
return riscv_emit_binary (code, gen_reg_rtx (mode), x, y);
}
static rtx
riscv_swap_instruction (rtx inst)
{
gcc_assert (GET_MODE (inst) == SImode);
if (BYTES_BIG_ENDIAN)
inst = expand_unop (SImode, bswap_optab, inst, gen_reg_rtx (SImode), 1);
return inst;
}
/* Copy VALUE to a register and return that register. If new pseudos
are allowed, copy it into a new register, otherwise use DEST. */
static rtx
riscv_force_temporary (rtx dest, rtx value)
{
if (can_create_pseudo_p ())
return force_reg (Pmode, value);
else
{
riscv_emit_move (dest, value);
return dest;
}
}
/* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
then add CONST_INT OFFSET to the result. */
static rtx
riscv_unspec_address_offset (rtx base, rtx offset,
enum riscv_symbol_type symbol_type)
{
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
UNSPEC_ADDRESS_FIRST + symbol_type);
if (offset != const0_rtx)
base = gen_rtx_PLUS (Pmode, base, offset);
return gen_rtx_CONST (Pmode, base);
}
/* Return an UNSPEC address with underlying address ADDRESS and symbol
type SYMBOL_TYPE. */
rtx
riscv_unspec_address (rtx address, enum riscv_symbol_type symbol_type)
{
rtx base, offset;
split_const (address, &base, &offset);
return riscv_unspec_address_offset (base, offset, symbol_type);
}
/* If OP is an UNSPEC address, return the address to which it refers,
otherwise return OP itself. */
static rtx
riscv_strip_unspec_address (rtx op)
{
rtx base, offset;
split_const (op, &base, &offset);
if (UNSPEC_ADDRESS_P (base))
op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset));
return op;
}
/* If riscv_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
high part to BASE and return the result. Just return BASE otherwise.
TEMP is as for riscv_force_temporary.
The returned expression can be used as the first operand to a LO_SUM. */
static rtx
riscv_unspec_offset_high (rtx temp, rtx addr, enum riscv_symbol_type symbol_type)
{
addr = gen_rtx_HIGH (Pmode, riscv_unspec_address (addr, symbol_type));
return riscv_force_temporary (temp, addr);
}
/* Load an entry from the GOT for a TLS GD access. */
static rtx riscv_got_load_tls_gd (rtx dest, rtx sym)
{
if (Pmode == DImode)
return gen_got_load_tls_gddi (dest, sym);
else
return gen_got_load_tls_gdsi (dest, sym);
}
/* Load an entry from the GOT for a TLS IE access. */
static rtx riscv_got_load_tls_ie (rtx dest, rtx sym)
{
if (Pmode == DImode)
return gen_got_load_tls_iedi (dest, sym);
else
return gen_got_load_tls_iesi (dest, sym);
}
/* Add in the thread pointer for a TLS LE access. */
static rtx riscv_tls_add_tp_le (rtx dest, rtx base, rtx sym)
{
rtx tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
if (Pmode == DImode)
return gen_tls_add_tp_ledi (dest, base, tp, sym);
else
return gen_tls_add_tp_lesi (dest, base, tp, sym);
}
/* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
it appears in a MEM of that mode. Return true if ADDR is a legitimate
constant in that context and can be split into high and low parts.
If so, and if LOW_OUT is nonnull, emit the high part and store the
low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
TEMP is as for riscv_force_temporary and is used to load the high
part into a register.
When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
a legitimize SET_SRC for an .md pattern, otherwise the low part
is guaranteed to be a legitimate address for mode MODE. */
bool
riscv_split_symbol (rtx temp, rtx addr, machine_mode mode, rtx *low_out)
{
enum riscv_symbol_type symbol_type;
if ((GET_CODE (addr) == HIGH && mode == MAX_MACHINE_MODE)
|| !riscv_symbolic_constant_p (addr, &symbol_type)
|| riscv_symbol_insns (symbol_type) == 0
|| !riscv_split_symbol_type (symbol_type))
return false;
if (low_out)
switch (symbol_type)
{
case SYMBOL_FORCE_TO_MEM:
return false;
case SYMBOL_ABSOLUTE:
{
rtx high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
high = riscv_force_temporary (temp, high);
*low_out = gen_rtx_LO_SUM (Pmode, high, addr);
}
break;
case SYMBOL_PCREL:
{
static unsigned seqno;
char buf[32];
rtx label;
ssize_t bytes = snprintf (buf, sizeof (buf), ".LA%u", seqno);
gcc_assert ((size_t) bytes < sizeof (buf));
label = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
SYMBOL_REF_FLAGS (label) |= SYMBOL_FLAG_LOCAL;
/* ??? Ugly hack to make weak symbols work. May need to change the
RTL for the auipc and/or low patterns to get a better fix for
this. */
if (! nonzero_address_p (addr))
SYMBOL_REF_WEAK (label) = 1;
if (temp == NULL)
temp = gen_reg_rtx (Pmode);
if (Pmode == DImode)
emit_insn (gen_auipcdi (temp, copy_rtx (addr), GEN_INT (seqno)));
else
emit_insn (gen_auipcsi (temp, copy_rtx (addr), GEN_INT (seqno)));
*low_out = gen_rtx_LO_SUM (Pmode, temp, label);
seqno++;
}
break;
default:
gcc_unreachable ();
}
return true;
}
/* Return a legitimate address for REG + OFFSET. TEMP is as for
riscv_force_temporary; it is only needed when OFFSET is not a
SMALL_OPERAND. */
static rtx
riscv_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
{
if (!SMALL_OPERAND (offset))
{
rtx high;
/* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
The addition inside the macro CONST_HIGH_PART may cause an
overflow, so we need to force a sign-extension check. */
high = gen_int_mode (CONST_HIGH_PART (offset), Pmode);
offset = CONST_LOW_PART (offset);
high = riscv_force_temporary (temp, high);
reg = riscv_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
}
return plus_constant (Pmode, reg, offset);
}
/* The __tls_get_attr symbol. */
static GTY(()) rtx riscv_tls_symbol;
/* Return an instruction sequence that calls __tls_get_addr. SYM is
the TLS symbol we are referencing and TYPE is the symbol type to use
(either global dynamic or local dynamic). RESULT is an RTX for the
return value location. */
static rtx_insn *
riscv_call_tls_get_addr (rtx sym, rtx result)
{
rtx a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST), func;
rtx_insn *insn;
if (!riscv_tls_symbol)
riscv_tls_symbol = init_one_libfunc ("__tls_get_addr");
func = gen_rtx_MEM (FUNCTION_MODE, riscv_tls_symbol);
start_sequence ();
emit_insn (riscv_got_load_tls_gd (a0, sym));
insn = emit_call_insn (gen_call_value (result, func, const0_rtx,
gen_int_mode (RISCV_CC_BASE, SImode)));
RTL_CONST_CALL_P (insn) = 1;
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
insn = get_insns ();
end_sequence ();
return insn;
}
/* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
its address. The return value will be both a valid address and a valid
SET_SRC (either a REG or a LO_SUM). */
static rtx
riscv_legitimize_tls_address (rtx loc)
{
rtx dest, tp, tmp, a0;
enum tls_model model = SYMBOL_REF_TLS_MODEL (loc);
#if 0
/* TLS copy relocs are now deprecated and should not be used. */
/* Since we support TLS copy relocs, non-PIC TLS accesses may all use LE. */
if (!flag_pic)
model = TLS_MODEL_LOCAL_EXEC;
#endif
switch (model)
{
case TLS_MODEL_LOCAL_DYNAMIC:
/* Rely on section anchors for the optimization that LDM TLS
provides. The anchor's address is loaded with GD TLS. */
case TLS_MODEL_GLOBAL_DYNAMIC:
if (TARGET_TLSDESC)
{
tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
dest = gen_reg_rtx (Pmode);
emit_insn (gen_tlsdesc (Pmode, loc));
emit_insn (gen_add3_insn (dest, a0, tp));
}
else
{
tmp = gen_rtx_REG (Pmode, GP_RETURN);
dest = gen_reg_rtx (Pmode);
emit_libcall_block (riscv_call_tls_get_addr (loc, tmp), dest, tmp,
loc);
}
break;
case TLS_MODEL_INITIAL_EXEC:
/* la.tls.ie; tp-relative add */
tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
tmp = gen_reg_rtx (Pmode);
emit_insn (riscv_got_load_tls_ie (tmp, loc));
dest = gen_reg_rtx (Pmode);
emit_insn (gen_add3_insn (dest, tmp, tp));
break;
case TLS_MODEL_LOCAL_EXEC:
tmp = riscv_unspec_offset_high (NULL, loc, SYMBOL_TLS_LE);
dest = gen_reg_rtx (Pmode);
emit_insn (riscv_tls_add_tp_le (dest, tmp, loc));
dest = gen_rtx_LO_SUM (Pmode, dest,
riscv_unspec_address (loc, SYMBOL_TLS_LE));
break;
default:
gcc_unreachable ();
}
return dest;
}
/* If X is not a valid address for mode MODE, force it into a register. */
static rtx
riscv_force_address (rtx x, machine_mode mode)
{
if (!riscv_legitimate_address_p (mode, x, false))
{
if (can_create_pseudo_p ())
return force_reg (Pmode, x);
else
{
/* It's only safe for the thunk function.
Use ra as the temp register. */
gcc_assert (riscv_in_thunk_func);
rtx reg = RISCV_PROLOGUE_TEMP2 (Pmode);
riscv_emit_move (reg, x);
return reg;
}
}
return x;
}
/* Modify base + offset so that offset fits within a compressed load/store insn
and the excess is added to base. */
static rtx
riscv_shorten_lw_offset (rtx base, HOST_WIDE_INT offset)
{
rtx addr, high;
/* Leave OFFSET as an unsigned 5-bit offset scaled by 4 and put the excess
into HIGH. */
high = GEN_INT (offset & ~CSW_MAX_OFFSET);
offset &= CSW_MAX_OFFSET;
if (!SMALL_OPERAND (INTVAL (high)))
high = force_reg (Pmode, high);
base = force_reg (Pmode, gen_rtx_PLUS (Pmode, high, base));
addr = plus_constant (Pmode, base, offset);
return addr;
}
/* Helper for riscv_legitimize_address. Given X, return true if it
is a left shift by 1, 2 or 3 positions or a multiply by 2, 4 or 8.
This respectively represent canonical shift-add rtxs or scaled
memory addresses. */
static bool
mem_shadd_or_shadd_rtx_p (rtx x)
{
return ((GET_CODE (x) == ASHIFT
|| GET_CODE (x) == MULT)
&& register_operand (XEXP (x, 0), GET_MODE (x))
&& CONST_INT_P (XEXP (x, 1))
&& ((GET_CODE (x) == ASHIFT && IN_RANGE (INTVAL (XEXP (x, 1)), 1, 3))
|| (GET_CODE (x) == MULT
&& IN_RANGE (exact_log2 (INTVAL (XEXP (x, 1))), 1, 3))));
}
/* This function is used to implement LEGITIMIZE_ADDRESS. If X can
be legitimized in a way that the generic machinery might not expect,
return a new address, otherwise return NULL. MODE is the mode of
the memory being accessed. */
static rtx
riscv_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
machine_mode mode)
{
rtx addr;
if (riscv_tls_symbol_p (x))
return riscv_legitimize_tls_address (x);
/* See if the address can split into a high part and a LO_SUM. */
if (riscv_split_symbol (NULL, x, mode, &addr))
return riscv_force_address (addr, mode);
/* Handle BASE + OFFSET. */
if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))
&& INTVAL (XEXP (x, 1)) != 0)
{
rtx base = XEXP (x, 0);
HOST_WIDE_INT offset = INTVAL (XEXP (x, 1));
/* Handle (plus (plus (mult (a) (mem_shadd_constant)) (fp)) (C)) case. */
if (GET_CODE (base) == PLUS && mem_shadd_or_shadd_rtx_p (XEXP (base, 0))
&& SMALL_OPERAND (offset))
{
rtx index = XEXP (base, 0);
rtx fp = XEXP (base, 1);
if (REG_P (fp) && REGNO (fp) == VIRTUAL_STACK_VARS_REGNUM)
{
/* If we were given a MULT, we must fix the constant
as we're going to create the ASHIFT form. */
int shift_val = INTVAL (XEXP (index, 1));
if (GET_CODE (index) == MULT)
shift_val = exact_log2 (shift_val);
rtx reg1 = gen_reg_rtx (Pmode);
rtx reg2 = gen_reg_rtx (Pmode);
rtx reg3 = gen_reg_rtx (Pmode);
riscv_emit_binary (PLUS, reg1, fp, GEN_INT (offset));
riscv_emit_binary (ASHIFT, reg2, XEXP (index, 0), GEN_INT (shift_val));
riscv_emit_binary (PLUS, reg3, reg2, reg1);
return reg3;
}
}
if (!riscv_valid_base_register_p (base, mode, false))
base = copy_to_mode_reg (Pmode, base);
if (optimize_function_for_size_p (cfun)
&& (strcmp (current_pass->name, "shorten_memrefs") == 0)
&& mode == SImode)
/* Convert BASE + LARGE_OFFSET into NEW_BASE + SMALL_OFFSET to allow
possible compressed load/store. */
addr = riscv_shorten_lw_offset (base, offset);
else
addr = riscv_add_offset (NULL, base, offset);
return riscv_force_address (addr, mode);
}
return x;
}
/* Load VALUE into DEST. TEMP is as for riscv_force_temporary. ORIG_MODE
is the original src mode before promotion. */
void
riscv_move_integer (rtx temp, rtx dest, HOST_WIDE_INT value,
machine_mode orig_mode)
{
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
machine_mode mode;
int i, num_ops;
rtx x = NULL_RTX;
mode = GET_MODE (dest);
/* We use the original mode for the riscv_build_integer call, because HImode
values are given special treatment. */
num_ops = riscv_build_integer (codes, value, orig_mode, can_create_pseudo_p ());
if (can_create_pseudo_p () && num_ops > 2 /* not a simple constant */
&& num_ops >= riscv_split_integer_cost (value))
x = riscv_split_integer (value, mode);
else
{
rtx old_value = NULL_RTX;
for (i = 0; i < num_ops; i++)
{
if (i != 0 && !can_create_pseudo_p ())
x = riscv_emit_set (temp, x);
else if (i != 0)
x = force_reg (mode, x);
codes[i].value = trunc_int_for_mode (codes[i].value, mode);
if (codes[i].code == UNKNOWN)
{
/* UNKNOWN means load the constant value into X. */
x = GEN_INT (codes[i].value);
}
else if (codes[i].use_uw)
{
/* If the sequence requires using a "uw" form of an insn, we're
going to have to construct the RTL ourselves and put it in
a register to avoid force_reg/force_operand from mucking
things up. */
gcc_assert (TARGET_64BIT || TARGET_ZBA);
rtx t = can_create_pseudo_p () ? gen_reg_rtx (mode) : temp;
/* Create the proper mask for the slli.uw instruction. */
unsigned HOST_WIDE_INT value = 0xffffffff;
value <<= codes[i].value;
/* Right now the only "uw" form we use is slli, we may add more
in the future. */
x = gen_rtx_fmt_ee (codes[i].code, mode,
x, GEN_INT (codes[i].value));
x = gen_rtx_fmt_ee (AND, mode, x, GEN_INT (value));
x = riscv_emit_set (t, x);
}
else if (codes[i].code == FMA)
{
HOST_WIDE_INT value = exact_log2 (codes[i].value - 1);
rtx ashift = gen_rtx_fmt_ee (ASHIFT, mode, x, GEN_INT (value));
x = gen_rtx_fmt_ee (PLUS, mode, ashift, x);
rtx t = can_create_pseudo_p () ? gen_reg_rtx (mode) : temp;
x = riscv_emit_set (t, x);
}
else if (codes[i].code == CONCAT || codes[i].code == VEC_MERGE)
{
if (codes[i].code == CONCAT && !TARGET_ZBKB)
{
/* The two values should have no bits in common, so we can
use PLUS instead of IOR which has a higher chance of
using a compressed instruction. */
x = gen_rtx_PLUS (mode, x, old_value);
}
else
{
rtx t = can_create_pseudo_p () ? gen_reg_rtx (mode) : temp;
rtx t2 = codes[i].code == VEC_MERGE ? old_value : x;
gcc_assert (t2);
t2 = gen_lowpart (SImode, t2);
emit_insn (gen_riscv_xpack_di_si_2 (t, x, GEN_INT (32), t2));
x = t;
}
}
else
x = gen_rtx_fmt_ee (codes[i].code, mode,
x, GEN_INT (codes[i].value));
/* If this entry in the code table indicates we should save away
the temporary holding the current value of X, then do so. */
if (codes[i].save_temporary)
{
gcc_assert (old_value == NULL_RTX);
x = force_reg (mode, x);
old_value = x;
}
}
}
riscv_emit_set (dest, x);
}
/* Subroutine of riscv_legitimize_move. Move constant SRC into register
DEST given that SRC satisfies immediate_operand but doesn't satisfy
move_operand. */
static void
riscv_legitimize_const_move (machine_mode mode, rtx dest, rtx src)
{
rtx base, offset;
/* Split moves of big integers into smaller pieces. */
if (splittable_const_int_operand (src, mode))
{
riscv_move_integer (dest, dest, INTVAL (src), mode);
return;
}
if (satisfies_constraint_zfli (src))
{
riscv_emit_set (dest, src);
return;
}
/* Split moves of symbolic constants into high/low pairs. */
if (riscv_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
{
riscv_emit_set (dest, src);
return;
}
/* Generate the appropriate access sequences for TLS symbols. */
if (riscv_tls_symbol_p (src))
{
riscv_emit_move (dest, riscv_legitimize_tls_address (src));
return;
}
/* If we have (const (plus symbol offset)), and that expression cannot
be forced into memory, load the symbol first and add in the offset. Also
prefer to do this even if the constant _can_ be forced into memory, as it
usually produces better code. */
split_const (src, &base, &offset);
if (offset != const0_rtx
&& (targetm.cannot_force_const_mem (mode, src) || can_create_pseudo_p ()))
{
base = riscv_force_temporary (dest, base);
riscv_emit_move (dest, riscv_add_offset (NULL, base, INTVAL (offset)));
return;
}
/* Handle below format.
(const:DI
(plus:DI
(symbol_ref:DI ("ic") [flags 0x2] ) <- op_0
(const_poly_int:DI [16, 16]) // <- op_1
))
*/
if (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == PLUS
&& CONST_POLY_INT_P (XEXP (XEXP (src, 0), 1)))
{
rtx dest_tmp = gen_reg_rtx (mode);
rtx tmp = gen_reg_rtx (mode);
riscv_emit_move (dest, XEXP (XEXP (src, 0), 0));
riscv_legitimize_poly_move (mode, dest_tmp, tmp, XEXP (XEXP (src, 0), 1));
emit_insn (gen_rtx_SET (dest, gen_rtx_PLUS (mode, dest, dest_tmp)));
return;
}
src = force_const_mem (mode, src);
/* When using explicit relocs, constant pool references are sometimes
not legitimate addresses. */
riscv_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
riscv_emit_move (dest, src);
}
/* Report when we try to do something that requires vector when vector is
disabled. This is an error of last resort and isn't very high-quality. It
usually involves attempts to measure the vector length in some way. */
static void
riscv_report_v_required (void)
{
static bool reported_p = false;
/* Avoid reporting a slew of messages for a single oversight. */
if (reported_p)
return;
error ("this operation requires the RVV ISA extension");
inform (input_location, "you can enable RVV using the command-line"
" option %<-march%>, or by using the %"
" attribute or pragma");
reported_p = true;
}
/* Helper function to operation for rtx_code CODE. */
static void
riscv_expand_op (enum rtx_code code, machine_mode mode, rtx op0, rtx op1,
rtx op2)
{
if (can_create_pseudo_p ())
{
rtx result;
if (GET_RTX_CLASS (code) == RTX_UNARY)
result = expand_simple_unop (mode, code, op1, NULL_RTX, false);
else
result = expand_simple_binop (mode, code, op1, op2, NULL_RTX, false,
OPTAB_DIRECT);
riscv_emit_move (op0, result);
}
else
{
rtx pat;
/* The following implementation is for prologue and epilogue.
Because prologue and epilogue can not use pseudo register.
We can't using expand_simple_binop or expand_simple_unop. */
if (GET_RTX_CLASS (code) == RTX_UNARY)
pat = gen_rtx_fmt_e (code, mode, op1);
else
pat = gen_rtx_fmt_ee (code, mode, op1, op2);
emit_insn (gen_rtx_SET (op0, pat));
}
}
/* Expand mult operation with constant integer, multiplicand also used as a
* temporary register. */
static void
riscv_expand_mult_with_const_int (machine_mode mode, rtx dest, rtx multiplicand,
HOST_WIDE_INT multiplier)
{
if (multiplier == 0)
{
riscv_emit_move (dest, GEN_INT (0));
return;
}
bool neg_p = multiplier < 0;
unsigned HOST_WIDE_INT multiplier_abs = abs (multiplier);
if (multiplier_abs == 1)
{
if (neg_p)
riscv_expand_op (NEG, mode, dest, multiplicand, NULL_RTX);
else
riscv_emit_move (dest, multiplicand);
}
else
{
if (pow2p_hwi (multiplier_abs))
{
/*
multiplicand = [BYTES_PER_RISCV_VECTOR].
1. const_poly_int:P [BYTES_PER_RISCV_VECTOR * 8].
Sequence:
csrr a5, vlenb
slli a5, a5, 3
2. const_poly_int:P [-BYTES_PER_RISCV_VECTOR * 8].
Sequence:
csrr a5, vlenb
slli a5, a5, 3
neg a5, a5
*/
riscv_expand_op (ASHIFT, mode, dest, multiplicand,
gen_int_mode (exact_log2 (multiplier_abs), QImode));
if (neg_p)
riscv_expand_op (NEG, mode, dest, dest, NULL_RTX);
}
else if (pow2p_hwi (multiplier_abs + 1))
{
/*
multiplicand = [BYTES_PER_RISCV_VECTOR].
1. const_poly_int:P [BYTES_PER_RISCV_VECTOR * 7].
Sequence:
csrr a5, vlenb
slli a4, a5, 3
sub a5, a4, a5
2. const_poly_int:P [-BYTES_PER_RISCV_VECTOR * 7].
Sequence:
csrr a5, vlenb
slli a4, a5, 3
sub a5, a4, a5 + neg a5, a5 => sub a5, a5, a4
*/
riscv_expand_op (ASHIFT, mode, dest, multiplicand,
gen_int_mode (exact_log2 (multiplier_abs + 1),
QImode));
if (neg_p)
riscv_expand_op (MINUS, mode, dest, multiplicand, dest);
else
riscv_expand_op (MINUS, mode, dest, dest, multiplicand);
}
else if (pow2p_hwi (multiplier - 1))
{
/*
multiplicand = [BYTES_PER_RISCV_VECTOR].
1. const_poly_int:P [BYTES_PER_RISCV_VECTOR * 9].
Sequence:
csrr a5, vlenb
slli a4, a5, 3
add a5, a4, a5
2. const_poly_int:P [-BYTES_PER_RISCV_VECTOR * 9].
Sequence:
csrr a5, vlenb
slli a4, a5, 3
add a5, a4, a5
neg a5, a5
*/
riscv_expand_op (ASHIFT, mode, dest, multiplicand,
gen_int_mode (exact_log2 (multiplier_abs - 1),
QImode));
riscv_expand_op (PLUS, mode, dest, dest, multiplicand);
if (neg_p)
riscv_expand_op (NEG, mode, dest, dest, NULL_RTX);
}
else
{
/* We use multiplication for remaining cases. */
gcc_assert (
TARGET_MUL
&& "M-extension must be enabled to calculate the poly_int "
"size/offset.");
riscv_emit_move (dest, gen_int_mode (multiplier, mode));
riscv_expand_op (MULT, mode, dest, dest, multiplicand);
}
}
}
/* Analyze src and emit const_poly_int mov sequence. */
void
riscv_legitimize_poly_move (machine_mode mode, rtx dest, rtx tmp, rtx src)
{
poly_int64 value = rtx_to_poly_int64 (src);
/* It use HOST_WIDE_INT instead of int since 32bit type is not enough
for e.g. (const_poly_int:DI [549755813888, 549755813888]). */
HOST_WIDE_INT offset = value.coeffs[0];
HOST_WIDE_INT factor = value.coeffs[1];
int vlenb = BYTES_PER_RISCV_VECTOR.coeffs[1];
int div_factor = 0;
/* Calculate (const_poly_int:MODE [m, n]) using scalar instructions.
For any (const_poly_int:MODE [m, n]), the calculation formula is as
follows.
constant = m - n.
When minimum VLEN = 32, poly of VLENB = (4, 4).
base = vlenb(4, 4) or vlenb/2(2, 2) or vlenb/4(1, 1).
When minimum VLEN > 32, poly of VLENB = (8, 8).
base = vlenb(8, 8) or vlenb/2(4, 4) or vlenb/4(2, 2) or vlenb/8(1, 1).
magn = (n, n) / base.
(m, n) = base * magn + constant.
This calculation doesn't need div operation. */
if (known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (Pmode)))
emit_move_insn (tmp, gen_int_mode (BYTES_PER_RISCV_VECTOR, mode));
else
{
emit_move_insn (gen_highpart (Pmode, tmp), CONST0_RTX (Pmode));
emit_move_insn (gen_lowpart (Pmode, tmp),
gen_int_mode (BYTES_PER_RISCV_VECTOR, Pmode));
}
if (BYTES_PER_RISCV_VECTOR.is_constant ())
{
gcc_assert (value.is_constant ());
riscv_emit_move (dest, GEN_INT (value.to_constant ()));
return;
}
else
{
int max_power = exact_log2 (MAX_POLY_VARIANT);
for (int i = 0; i <= max_power; i++)
{
int possible_div_factor = 1 << i;
if (factor % (vlenb / possible_div_factor) == 0)
{
div_factor = possible_div_factor;
break;
}
}
gcc_assert (div_factor != 0);
}
if (div_factor != 1)
riscv_expand_op (LSHIFTRT, mode, tmp, tmp,
gen_int_mode (exact_log2 (div_factor), QImode));
riscv_expand_mult_with_const_int (mode, dest, tmp,
factor / (vlenb / div_factor));
HOST_WIDE_INT constant = offset - factor;
if (constant == 0)
return;
else if (SMALL_OPERAND (constant))
riscv_expand_op (PLUS, mode, dest, dest, gen_int_mode (constant, mode));
else
{
/* Handle the constant value is not a 12-bit value. */
rtx high;
/* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
The addition inside the macro CONST_HIGH_PART may cause an
overflow, so we need to force a sign-extension check. */
high = gen_int_mode (CONST_HIGH_PART (constant), mode);
constant = CONST_LOW_PART (constant);
riscv_emit_move (tmp, high);
riscv_expand_op (PLUS, mode, dest, tmp, dest);
riscv_expand_op (PLUS, mode, dest, dest, gen_int_mode (constant, mode));
}
}
/* Take care below subreg const_poly_int move:
1. (set (subreg:DI (reg:TI 237) 8)
(subreg:DI (const_poly_int:TI [4, 2]) 8))
=>
(set (subreg:DI (reg:TI 237) 8)
(const_int 0)) */
static bool
riscv_legitimize_subreg_const_poly_move (machine_mode mode, rtx dest, rtx src)
{
gcc_assert (SUBREG_P (src) && CONST_POLY_INT_P (SUBREG_REG (src)));
gcc_assert (SUBREG_BYTE (src).is_constant ());
int byte_offset = SUBREG_BYTE (src).to_constant ();
rtx const_poly = SUBREG_REG (src);
machine_mode subreg_mode = GET_MODE (const_poly);
if (subreg_mode != TImode) /* Only TImode is needed for now. */
return false;
if (byte_offset == 8)
{
/* The const_poly_int cannot exceed int64, just set zero here. */
emit_move_insn (dest, CONST0_RTX (mode));
return true;
}
/* The below transform will be covered in somewhere else.
Thus, ignore this here.
(set (subreg:DI (reg:TI 237) 0)
(subreg:DI (const_poly_int:TI [4, 2]) 0))
=>
(set (subreg:DI (reg:TI 237) 0)
(const_poly_int:DI [4, 2])) */
return false;
}
/* If (set DEST SRC) is not a valid move instruction, emit an equivalent
sequence that is valid. */
bool
riscv_legitimize_move (machine_mode mode, rtx dest, rtx src)
{
if (CONST_POLY_INT_P (src))
{
/*
Handle:
(insn 183 182 184 6 (set (mem:QI (plus:DI (reg/f:DI 156)
(const_int 96 [0x60])) [0 S1 A8])
(const_poly_int:QI [8, 8]))
"../../../../riscv-gcc/libgcc/unwind-dw2.c":1579:3 -1 (nil))
*/
if (MEM_P (dest))
{
emit_move_insn (dest, force_reg (mode, src));
return true;
}
poly_int64 value = rtx_to_poly_int64 (src);
if (!value.is_constant () && !TARGET_VECTOR)
{
riscv_report_v_required ();
return false;
}
if (satisfies_constraint_vp (src) && GET_MODE (src) == Pmode)
return false;
if (GET_MODE_SIZE (mode).to_constant () < GET_MODE_SIZE (Pmode))
{
/* In RV32 system, handle (const_poly_int:QI [m, n])
(const_poly_int:HI [m, n]).
In RV64 system, handle (const_poly_int:QI [m, n])
(const_poly_int:HI [m, n])
(const_poly_int:SI [m, n]). */
rtx tmp = gen_reg_rtx (Pmode);
rtx tmp2 = gen_reg_rtx (Pmode);
riscv_legitimize_poly_move (Pmode, tmp2, tmp, src);
emit_move_insn (dest, gen_lowpart (mode, tmp2));
}
else
{
/* In RV32 system, handle (const_poly_int:SI [m, n])
(const_poly_int:DI [m, n]).
In RV64 system, handle (const_poly_int:DI [m, n]).
FIXME: Maybe we could gen SImode in RV32 and then sign-extend to
DImode, the offset should not exceed 4GiB in general. */
rtx tmp = gen_reg_rtx (mode);
riscv_legitimize_poly_move (mode, dest, tmp, src);
}
return true;
}
if (SUBREG_P (src) && CONST_POLY_INT_P (SUBREG_REG (src))
&& riscv_legitimize_subreg_const_poly_move (mode, dest, src))
return true;
/* Expand
(set (reg:DI target) (subreg:DI (reg:V8QI reg) 0))
Expand this data movement instead of simply forbid it since
we can improve the code generation for this following scenario
by RVV auto-vectorization:
(set (reg:V8QI 149) (vec_duplicate:V8QI (reg:QI))
(set (reg:DI target) (subreg:DI (reg:V8QI reg) 0))
Since RVV mode and scalar mode are in different REG_CLASS,
we need to explicitly move data from V_REGS to GR_REGS by scalar move. */
if (SUBREG_P (src) && riscv_v_ext_mode_p (GET_MODE (SUBREG_REG (src))))
{
machine_mode vmode = GET_MODE (SUBREG_REG (src));
unsigned int mode_size = GET_MODE_SIZE (mode).to_constant ();
unsigned int vmode_size = GET_MODE_SIZE (vmode).to_constant ();
/* We should be able to handle both partial and paradoxical subreg. */
unsigned int nunits = vmode_size > mode_size ? vmode_size / mode_size : 1;
scalar_mode smode = as_a (mode);
unsigned int index = SUBREG_BYTE (src).to_constant () / mode_size;
unsigned int num = known_eq (GET_MODE_SIZE (smode), 8)
&& !TARGET_VECTOR_ELEN_64 ? 2 : 1;
bool need_int_reg_p = false;
if (num == 2)
{
/* If we want to extract 64bit value but ELEN < 64,
we use RVV vector mode with EEW = 32 to extract
the highpart and lowpart. */
need_int_reg_p = smode == DFmode;
smode = SImode;
nunits = nunits * 2;
}
if (riscv_vector::get_vector_mode (smode, nunits).exists (&vmode))
{
rtx v = gen_lowpart (vmode, SUBREG_REG (src));
rtx int_reg = dest;
if (need_int_reg_p)
{
int_reg = gen_reg_rtx (DImode);
emit_move_insn (int_reg, gen_lowpart (GET_MODE (int_reg), dest));
}
for (unsigned int i = 0; i < num; i++)
{
rtx result;
if (num == 1)
result = int_reg;
else if (i == 0)
result = gen_lowpart (smode, int_reg);
else
result = gen_reg_rtx (smode);
riscv_vector::emit_vec_extract (result, v,
gen_int_mode (index + i, Pmode));
if (i == 1)
{
if (UNITS_PER_WORD < mode_size)
/* If Pmode = SImode and mode = DImode, we just need to
extract element of index = 1 from the vector and move it
into the highpart of the DEST since DEST consists of 2
scalar registers. */
emit_move_insn (gen_highpart (smode, int_reg), result);
else
{
rtx tmp = expand_binop (Pmode, ashl_optab,
gen_lowpart (Pmode, result),
gen_int_mode (32, Pmode),
NULL_RTX, 0, OPTAB_DIRECT);
rtx tmp2 = expand_binop (Pmode, ior_optab, tmp, int_reg,
NULL_RTX, 0, OPTAB_DIRECT);
emit_move_insn (int_reg, tmp2);
}
}
}
if (need_int_reg_p)
emit_move_insn (dest, gen_lowpart (GET_MODE (dest), int_reg));
else
emit_move_insn (dest, int_reg);
}
else
gcc_unreachable ();
return true;
}
/* Expand
(set (reg:QI target) (mem:QI (address)))
to
(set (reg:DI temp) (zero_extend:DI (mem:QI (address))))
(set (reg:QI target) (subreg:QI (reg:DI temp) 0))
with auto-sign/zero extend. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode).to_constant () < UNITS_PER_WORD
&& can_create_pseudo_p ()
&& MEM_P (src))
{
rtx temp_reg;
int zero_extend_p;
temp_reg = gen_reg_rtx (word_mode);
zero_extend_p = (LOAD_EXTEND_OP (mode) == ZERO_EXTEND);
emit_insn (gen_extend_insn (temp_reg, src, word_mode, mode,
zero_extend_p));
riscv_emit_move (dest, gen_lowpart (mode, temp_reg));
return true;
}
if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
{
rtx reg;
if (GET_CODE (src) == CONST_INT)
{
/* Apply the equivalent of PROMOTE_MODE here for constants to
improve cse. */
machine_mode promoted_mode = mode;
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode).to_constant () < UNITS_PER_WORD)
promoted_mode = word_mode;
if (splittable_const_int_operand (src, mode))
{
reg = gen_reg_rtx (promoted_mode);
riscv_move_integer (reg, reg, INTVAL (src), mode);
}
else
reg = force_reg (promoted_mode, src);
if (promoted_mode != mode)
reg = gen_lowpart (mode, reg);
}
else
reg = force_reg (mode, src);
riscv_emit_move (dest, reg);
return true;
}
/* In order to fit NaN boxing, expand
(set FP_REG (reg:HF/BF src))
to
(set (reg:SI/DI mask) (const_int -65536)
(set (reg:SI/DI temp) (zero_extend:SI/DI (subreg:HI (reg:HF/BF src) 0)))
(set (reg:SI/DI temp) (ior:SI/DI (reg:SI/DI mask) (reg:SI/DI temp)))
(set (reg:HF/BF dest) (unspec:HF/BF[ (reg:SI/DI temp) ] UNSPEC_FMV_FP16_X))
*/
if (TARGET_HARD_FLOAT
&& !TARGET_ZFHMIN
&& (mode == HFmode || mode == BFmode)
&& REG_P (dest) && FP_REG_P (REGNO (dest))
&& REG_P (src) && !FP_REG_P (REGNO (src))
&& can_create_pseudo_p ())
{
rtx mask = force_reg (word_mode, gen_int_mode (-65536, word_mode));
rtx temp = gen_reg_rtx (word_mode);
emit_insn (gen_extend_insn (temp,
gen_lowpart (HImode, src),
word_mode, HImode, 1));
if (word_mode == SImode)
emit_insn (gen_iorsi3 (temp, mask, temp));
else
emit_insn (gen_iordi3 (temp, mask, temp));
riscv_emit_move (dest, gen_rtx_UNSPEC (mode, gen_rtvec (1, temp),
UNSPEC_FMV_FP16_X));
return true;
}
/* We need to deal with constants that would be legitimate
immediate_operands but aren't legitimate move_operands. */
if (CONSTANT_P (src) && !move_operand (src, mode))
{
riscv_legitimize_const_move (mode, dest, src);
set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
return true;
}
/* RISC-V GCC may generate non-legitimate address due to we provide some
pattern for optimize access PIC local symbol and it's make GCC generate
unrecognizable instruction during optimizing. */
if (MEM_P (dest) && !riscv_legitimate_address_p (mode, XEXP (dest, 0),
reload_completed))
{
XEXP (dest, 0) = riscv_force_address (XEXP (dest, 0), mode);
}
if (MEM_P (src) && !riscv_legitimate_address_p (mode, XEXP (src, 0),
reload_completed))
{
XEXP (src, 0) = riscv_force_address (XEXP (src, 0), mode);
}
return false;
}
/* Return true if there is an instruction that implements CODE and accepts
X as an immediate operand. */
static int
riscv_immediate_operand_p (int code, HOST_WIDE_INT x)
{
switch (code)
{
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
/* All shift counts are truncated to a valid constant. */
return true;
case AND:
case IOR:
case XOR:
case PLUS:
case LT:
case LTU:
/* These instructions take 12-bit signed immediates. */
return SMALL_OPERAND (x);
case LE:
/* We add 1 to the immediate and use SLT. */
return SMALL_OPERAND (x + 1);
case LEU:
/* Likewise SLTU, but reject the always-true case. */
return SMALL_OPERAND (x + 1) && x + 1 != 0;
case GE:
case GEU:
/* We can emulate an immediate of 1 by using GT/GTU against x0. */
return x == 1;
default:
/* By default assume that x0 can be used for 0. */
return x == 0;
}
}
/* Return the cost of binary operation X, given that the instruction
sequence for a word-sized or smaller operation takes SINGLE_INSNS
instructions and that the sequence of a double-word operation takes
DOUBLE_INSNS instructions. */
static int
riscv_binary_cost (rtx x, int single_insns, int double_insns)
{
if (!riscv_v_ext_mode_p (GET_MODE (x))
&& GET_MODE_SIZE (GET_MODE (x)).to_constant () == UNITS_PER_WORD * 2)
return COSTS_N_INSNS (double_insns);
return COSTS_N_INSNS (single_insns);
}
/* Return the cost of sign- or zero-extending OP. */
static int
riscv_extend_cost (rtx op, bool unsigned_p)
{
if (MEM_P (op))
return 0;
if (unsigned_p && GET_MODE (op) == QImode)
/* We can use ANDI. */
return COSTS_N_INSNS (1);
/* ZBA provide zext.w. */
if (TARGET_ZBA && TARGET_64BIT && unsigned_p && GET_MODE (op) == SImode)
return COSTS_N_INSNS (1);
/* ZBB provide zext.h, sext.b and sext.h. */
if (TARGET_ZBB)
{
if (!unsigned_p && GET_MODE (op) == QImode)
return COSTS_N_INSNS (1);
if (GET_MODE (op) == HImode)
return COSTS_N_INSNS (1);
}
if (!unsigned_p && GET_MODE (op) == SImode)
/* We can use SEXT.W. */
return COSTS_N_INSNS (1);
/* We need to use a shift left and a shift right. */
return COSTS_N_INSNS (2);
}
/* Implement TARGET_RTX_COSTS. */
#define SINGLE_SHIFT_COST 1
static bool
riscv_rtx_costs (rtx x, machine_mode mode, int outer_code, int opno ATTRIBUTE_UNUSED,
int *total, bool speed)
{
/* TODO: We set RVV instruction cost as 1 by default.
Cost Model need to be well analyzed and supported in the future. */
if (riscv_v_ext_mode_p (mode))
{
*total = COSTS_N_INSNS (1);
return true;
}
bool float_mode_p = FLOAT_MODE_P (mode);
int cost;
switch (GET_CODE (x))
{
case SET:
/* If we are called for an INSN that's a simple set of a register,
then cost based on the SET_SRC alone. */
if (outer_code == INSN
&& register_operand (SET_DEST (x), GET_MODE (SET_DEST (x))))
{
if (REG_P (SET_SRC (x)) && TARGET_DOUBLE_FLOAT && mode == DFmode)
{
*total = COSTS_N_INSNS (1);
return true;
}
riscv_rtx_costs (SET_SRC (x), mode, SET, opno, total, speed);
return true;
}
/* Otherwise return FALSE indicating we should recurse into both the
SET_DEST and SET_SRC combining the cost of both. */
return false;
case CONST_INT:
/* trivial constants checked using OUTER_CODE in case they are
encodable in insn itself w/o need for additional insn(s). */
if (riscv_immediate_operand_p (outer_code, INTVAL (x)))
{
*total = 0;
return true;
}
/* Fall through. */
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
/* With TARGET_SUPPORTS_WIDE_INT const int can't be in CONST_DOUBLE
rtl object. Weird recheck due to switch-case fall through above. */
if (GET_CODE (x) == CONST_DOUBLE)
gcc_assert (GET_MODE (x) != VOIDmode);
/* Fall through. */
case CONST:
/* Non trivial CONST_INT Fall through: check if need multiple insns. */
if ((cost = riscv_const_insns (x, can_create_pseudo_p ())) > 0)
{
/* 1. Hoist will GCSE constants only if TOTAL returned is non-zero.
2. For constants loaded more than once, the approach so far has
been to duplicate the operation than to CSE the constant.
3. TODO: make cost more accurate specially if riscv_const_insns
returns > 1. */
if (outer_code == SET || GET_MODE (x) == VOIDmode)
*total = COSTS_N_INSNS (1);
}
else /* The instruction will be fetched from the constant pool. */
*total = COSTS_N_INSNS (riscv_symbol_insns (SYMBOL_ABSOLUTE));
return true;
case MEM:
/* If the address is legitimate, return the number of
instructions it needs. */
if ((cost = riscv_address_insns (XEXP (x, 0), mode, true)) > 0)
{
/* When optimizing for size, make uncompressible 32-bit addresses
more expensive so that compressible 32-bit addresses are
preferred. */
if ((TARGET_RVC || TARGET_ZCA)
&& !speed && riscv_mshorten_memrefs && mode == SImode
&& !riscv_compressed_lw_address_p (XEXP (x, 0)))
cost++;
*total = COSTS_N_INSNS (cost + tune_param->memory_cost);
return true;
}
/* Otherwise use the default handling. */
return false;
case IF_THEN_ELSE:
if ((TARGET_SFB_ALU || TARGET_XTHEADCONDMOV)
&& reg_or_0_operand (XEXP (x, 1), mode)
&& sfb_alu_operand (XEXP (x, 2), mode)
&& comparison_operator (XEXP (x, 0), VOIDmode))
{
/* For predicated conditional-move operations we assume the cost
of a single instruction even though there are actually two. */
*total = COSTS_N_INSNS (1);
return true;
}
else if (TARGET_ZICOND_LIKE
&& outer_code == SET
&& ((GET_CODE (XEXP (x, 1)) == REG
&& XEXP (x, 2) == CONST0_RTX (GET_MODE (XEXP (x, 1))))
|| (GET_CODE (XEXP (x, 2)) == REG
&& XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 2))))
|| (COMPARISON_P (XEXP (x, 0))
&& GET_CODE (XEXP (x, 1)) == REG
&& rtx_equal_p (XEXP (x, 1), XEXP (XEXP (x, 0), 0)))
|| (COMPARISON_P (XEXP (x, 0))
&& GET_CODE (XEXP (x, 1)) == REG
&& rtx_equal_p (XEXP (x, 2), XEXP (XEXP (x, 0), 0)))))
{
*total = COSTS_N_INSNS (1);
return true;
}
else if (LABEL_REF_P (XEXP (x, 1)) && XEXP (x, 2) == pc_rtx)
{
if (equality_operator (XEXP (x, 0), mode)
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTRACT)
{
*total = COSTS_N_INSNS (SINGLE_SHIFT_COST + 1);
return true;
}
if (ordered_comparison_operator (XEXP (x, 0), mode))
{
*total = COSTS_N_INSNS (1);
return true;
}
}
return false;
case NOT:
*total = COSTS_N_INSNS (GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD ? 2 : 1);
return false;
case AND:
/* slli.uw pattern for zba. */
if (TARGET_ZBA && TARGET_64BIT && mode == DImode
&& GET_CODE (XEXP (x, 0)) == ASHIFT)
{
rtx and_rhs = XEXP (x, 1);
rtx ashift_lhs = XEXP (XEXP (x, 0), 0);
rtx ashift_rhs = XEXP (XEXP (x, 0), 1);
if (register_operand (ashift_lhs, GET_MODE (ashift_lhs))
&& CONST_INT_P (ashift_rhs)
&& CONST_INT_P (and_rhs)
&& ((INTVAL (and_rhs) >> INTVAL (ashift_rhs)) == 0xffffffff))
*total = COSTS_N_INSNS (1);
return true;
}
/* bclri pattern for zbs. */
if (TARGET_ZBS
&& not_single_bit_mask_operand (XEXP (x, 1), VOIDmode))
{
*total = COSTS_N_INSNS (1);
return true;
}
/* bclr pattern for zbs. */
if (TARGET_ZBS
&& register_operand (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
&& GET_CODE (XEXP (x, 0)) == ROTATE
&& CONST_INT_P (XEXP ((XEXP (x, 0)), 0))
&& INTVAL (XEXP ((XEXP (x, 0)), 0)) == -2)
{
*total = COSTS_N_INSNS (1);
return true;
}
gcc_fallthrough ();
case IOR:
case XOR:
/* orn, andn and xorn pattern for zbb. */
if (TARGET_ZBB
&& GET_CODE (XEXP (x, 0)) == NOT)
{
*total = riscv_binary_cost (x, 1, 2);
return true;
}
/* bset[i] and binv[i] pattern for zbs. */
if ((GET_CODE (x) == IOR || GET_CODE (x) == XOR)
&& TARGET_ZBS
&& ((GET_CODE (XEXP (x, 0)) == ASHIFT
&& CONST_INT_P (XEXP (XEXP (x, 0), 0)))
|| single_bit_mask_operand (XEXP (x, 1), VOIDmode)))
{
*total = COSTS_N_INSNS (1);
return true;
}
/* Double-word operations use two single-word operations. */
*total = riscv_binary_cost (x, 1, 2);
return false;
case ZERO_EXTRACT:
/* This is an SImode shift. */
if (outer_code == SET
&& CONST_INT_P (XEXP (x, 1))
&& CONST_INT_P (XEXP (x, 2))
&& (INTVAL (XEXP (x, 2)) > 0)
&& (INTVAL (XEXP (x, 1)) + INTVAL (XEXP (x, 2)) == 32))
{
*total = COSTS_N_INSNS (SINGLE_SHIFT_COST);
return true;
}
/* bit extraction pattern (zbs:bext, xtheadbs:tst). */
if ((TARGET_ZBS || TARGET_XTHEADBS) && outer_code == SET
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == 1)
{
*total = COSTS_N_INSNS (SINGLE_SHIFT_COST);
return true;
}
gcc_fallthrough ();
case SIGN_EXTRACT:
if (TARGET_XTHEADBB && outer_code == SET
&& CONST_INT_P (XEXP (x, 1))
&& CONST_INT_P (XEXP (x, 2)))
{
*total = COSTS_N_INSNS (SINGLE_SHIFT_COST);
return true;
}
return false;
case ASHIFT:
/* bset pattern for zbs. */
if (TARGET_ZBS
&& CONST_INT_P (XEXP (x, 0))
&& INTVAL (XEXP (x, 0)) == 1)
{
*total = COSTS_N_INSNS (1);
return true;
}
gcc_fallthrough ();
case ASHIFTRT:
case LSHIFTRT:
*total = riscv_binary_cost (x, SINGLE_SHIFT_COST,
CONSTANT_P (XEXP (x, 1)) ? 4 : 9);
return false;
case ABS:
*total = COSTS_N_INSNS (float_mode_p ? 1 : 3);
return false;
case LO_SUM:
*total = (set_src_cost (XEXP (x, 0), mode, speed)
+ set_src_cost (XEXP (x, 1), mode, speed));
return true;
case LT:
/* This is an SImode shift. */
if (outer_code == SET && GET_MODE (x) == DImode
&& GET_MODE (XEXP (x, 0)) == SImode)
{
*total = COSTS_N_INSNS (SINGLE_SHIFT_COST);
return true;
}
/* Fall through. */
case LTU:
case LE:
case LEU:
case GT:
case GTU:
case GE:
case GEU:
case EQ:
case NE:
/* Branch comparisons have VOIDmode, so use the first operand's
mode instead. */
mode = GET_MODE (XEXP (x, 0));
if (float_mode_p)
*total = tune_param->fp_add[mode == DFmode];
else
*total = riscv_binary_cost (x, 1, 3);
return false;
case UNORDERED:
case ORDERED:
/* (FEQ(A, A) & FEQ(B, B)) compared against 0. */
mode = GET_MODE (XEXP (x, 0));
*total = tune_param->fp_add[mode == DFmode] + COSTS_N_INSNS (2);
return false;
case UNEQ:
/* (FEQ(A, A) & FEQ(B, B)) compared against FEQ(A, B). */
mode = GET_MODE (XEXP (x, 0));
*total = tune_param->fp_add[mode == DFmode] + COSTS_N_INSNS (3);
return false;
case LTGT:
/* (FLT(A, A) || FGT(B, B)). */
mode = GET_MODE (XEXP (x, 0));
*total = tune_param->fp_add[mode == DFmode] + COSTS_N_INSNS (2);
return false;
case UNGE:
case UNGT:
case UNLE:
case UNLT:
/* FLT or FLE, but guarded by an FFLAGS read and write. */
mode = GET_MODE (XEXP (x, 0));
*total = tune_param->fp_add[mode == DFmode] + COSTS_N_INSNS (4);
return false;
case MINUS:
if (float_mode_p)
*total = tune_param->fp_add[mode == DFmode];
else
*total = riscv_binary_cost (x, 1, 4);
return false;
case PLUS:
/* add.uw pattern for zba. */
if (TARGET_ZBA
&& (TARGET_64BIT && (mode == DImode))
&& GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
&& register_operand (XEXP (XEXP (x, 0), 0),
GET_MODE (XEXP (XEXP (x, 0), 0)))
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode)
{
*total = COSTS_N_INSNS (1);
return true;
}
/* shNadd pattern for zba. */
if (TARGET_ZBA
&& ((!TARGET_64BIT && (mode == SImode)) ||
(TARGET_64BIT && (mode == DImode)))
&& (GET_CODE (XEXP (x, 0)) == ASHIFT)
&& register_operand (XEXP (XEXP (x, 0), 0),
GET_MODE (XEXP (XEXP (x, 0), 0)))
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
&& IN_RANGE (INTVAL (XEXP (XEXP (x, 0), 1)), 1, 3))
{
*total = COSTS_N_INSNS (1);
return true;
}
/* Before strength-reduction, the shNadd can be expressed as the addition
of a multiplication with a power-of-two. If this case is not handled,
the strength-reduction in expmed.c will calculate an inflated cost. */
if (TARGET_ZBA
&& mode == word_mode
&& GET_CODE (XEXP (x, 0)) == MULT
&& register_operand (XEXP (XEXP (x, 0), 0),
GET_MODE (XEXP (XEXP (x, 0), 0)))
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
&& pow2p_hwi (INTVAL (XEXP (XEXP (x, 0), 1)))
&& IN_RANGE (exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1))), 1, 3))
{
*total = COSTS_N_INSNS (1);
return true;
}
/* shNadd.uw pattern for zba.
[(set (match_operand:DI 0 "register_operand" "=r")
(plus:DI
(and:DI (ashift:DI (match_operand:DI 1 "register_operand" "r")
(match_operand:QI 2 "immediate_operand" "I"))
(match_operand 3 "immediate_operand" ""))
(match_operand:DI 4 "register_operand" "r")))]
"TARGET_64BIT && TARGET_ZBA
&& (INTVAL (operands[2]) >= 1) && (INTVAL (operands[2]) <= 3)
&& (INTVAL (operands[3]) >> INTVAL (operands[2])) == 0xffffffff"
*/
if (TARGET_ZBA
&& (TARGET_64BIT && (mode == DImode))
&& (GET_CODE (XEXP (x, 0)) == AND)
&& register_operand (XEXP (x, 1), GET_MODE (XEXP (x, 1))))
{
do {
rtx and_lhs = XEXP (XEXP (x, 0), 0);
rtx and_rhs = XEXP (XEXP (x, 0), 1);
if (GET_CODE (and_lhs) != ASHIFT)
break;
if (!CONST_INT_P (and_rhs))
break;
rtx ashift_rhs = XEXP (and_lhs, 1);
if (!CONST_INT_P (ashift_rhs)
|| !IN_RANGE (INTVAL (ashift_rhs), 1, 3))
break;
if (CONST_INT_P (and_rhs)
&& ((INTVAL (and_rhs) >> INTVAL (ashift_rhs)) == 0xffffffff))
{
*total = COSTS_N_INSNS (1);
return true;
}
} while (false);
}
if (float_mode_p)
*total = tune_param->fp_add[mode == DFmode];
else
*total = riscv_binary_cost (x, 1, 4);
return false;
case NEG:
{
rtx op = XEXP (x, 0);
if (GET_CODE (op) == FMA && !HONOR_SIGNED_ZEROS (mode))
{
*total = (tune_param->fp_mul[mode == DFmode]
+ set_src_cost (XEXP (op, 0), mode, speed)
+ set_src_cost (XEXP (op, 1), mode, speed)
+ set_src_cost (XEXP (op, 2), mode, speed));
return true;
}
}
if (float_mode_p)
*total = tune_param->fp_add[mode == DFmode];
else
*total = COSTS_N_INSNS (GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD ? 4 : 1);
return false;
case MULT:
if (float_mode_p)
*total = tune_param->fp_mul[mode == DFmode];
else if (!(TARGET_MUL || TARGET_ZMMUL))
/* Estimate the cost of a library call. */
*total = COSTS_N_INSNS (speed ? 32 : 6);
else if (GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD)
*total = 3 * tune_param->int_mul[0] + COSTS_N_INSNS (2);
else if (!speed)
*total = COSTS_N_INSNS (1);
else
*total = tune_param->int_mul[mode == DImode];
return false;
case DIV:
case SQRT:
case MOD:
if (float_mode_p)
{
*total = tune_param->fp_div[mode == DFmode];
return false;
}
/* Fall through. */
case UDIV:
case UMOD:
if (!TARGET_DIV)
/* Estimate the cost of a library call. */
*total = COSTS_N_INSNS (speed ? 32 : 6);
else if (speed)
*total = tune_param->int_div[mode == DImode];
else
*total = COSTS_N_INSNS (1);
return false;
case ZERO_EXTEND:
/* This is an SImode shift. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT)
{
*total = COSTS_N_INSNS (SINGLE_SHIFT_COST);
return true;
}
/* Fall through. */
case SIGN_EXTEND:
*total = riscv_extend_cost (XEXP (x, 0), GET_CODE (x) == ZERO_EXTEND);
return false;
case BSWAP:
if (TARGET_ZBB)
{
/* RISC-V only defines rev8 for XLEN, so we will need an extra
shift-right instruction for smaller modes. */
*total = COSTS_N_INSNS (mode == word_mode ? 1 : 2);
return true;
}
return false;
case FLOAT:
case UNSIGNED_FLOAT:
case FIX:
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
*total = tune_param->fp_add[mode == DFmode];
return false;
case FMA:
*total = (tune_param->fp_mul[mode == DFmode]
+ set_src_cost (XEXP (x, 0), mode, speed)
+ set_src_cost (XEXP (x, 1), mode, speed)
+ set_src_cost (XEXP (x, 2), mode, speed));
return true;
case UNSPEC:
if (XINT (x, 1) == UNSPEC_AUIPC)
{
/* Make AUIPC cheap to avoid spilling its result to the stack. */
*total = 1;
return true;
}
return false;
default:
return false;
}
}
/* Implement TARGET_ADDRESS_COST. */
static int
riscv_address_cost (rtx addr, machine_mode mode,
addr_space_t as ATTRIBUTE_UNUSED,
bool speed ATTRIBUTE_UNUSED)
{
/* When optimizing for size, make uncompressible 32-bit addresses more
* expensive so that compressible 32-bit addresses are preferred. */
if ((TARGET_RVC || TARGET_ZCA)
&& !speed && riscv_mshorten_memrefs && mode == SImode
&& !riscv_compressed_lw_address_p (addr))
return riscv_address_insns (addr, mode, false) + 1;
return riscv_address_insns (addr, mode, false);
}
/* Implement TARGET_INSN_COST. We factor in the branch cost in the cost
calculation for conditional branches: one unit is considered the cost
of microarchitecture-dependent actual branch execution and therefore
multiplied by BRANCH_COST and any remaining units are considered fixed
branch overhead. Branches on a floating-point condition incur an extra
instruction cost as they will be split into an FCMP operation followed
by a branch on an integer condition. */
static int
riscv_insn_cost (rtx_insn *insn, bool speed)
{
rtx x = PATTERN (insn);
int cost = pattern_cost (x, speed);
if (JUMP_P (insn))
{
if (GET_CODE (x) == PARALLEL)
x = XVECEXP (x, 0, 0);
if (GET_CODE (x) == SET
&& GET_CODE (SET_DEST (x)) == PC
&& GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
{
cost += COSTS_N_INSNS (BRANCH_COST (speed, false) - 1);
if (FLOAT_MODE_P (GET_MODE (XEXP (XEXP (SET_SRC (x), 0), 0))))
cost += COSTS_N_INSNS (1);
}
}
return cost;
}
/* Implement TARGET_MAX_NOCE_IFCVT_SEQ_COST. Like the default implementation,
but we consider cost units of branch instructions equal to cost units of
other instructions. */
static unsigned int
riscv_max_noce_ifcvt_seq_cost (edge e)
{
bool predictable_p = predictable_edge_p (e);
if (predictable_p)
{
if (OPTION_SET_P (param_max_rtl_if_conversion_predictable_cost))
return param_max_rtl_if_conversion_predictable_cost;
}
else
{
if (OPTION_SET_P (param_max_rtl_if_conversion_unpredictable_cost))
return param_max_rtl_if_conversion_unpredictable_cost;
}
return COSTS_N_INSNS (BRANCH_COST (true, predictable_p));
}
/* Implement TARGET_NOCE_CONVERSION_PROFITABLE_P. We replace the cost of a
conditional branch assumed by `noce_find_if_block' at `COSTS_N_INSNS (2)'
by our actual conditional branch cost, observing that our branches test
conditions directly, so there is no preparatory extra condition-set
instruction. */
static bool
riscv_noce_conversion_profitable_p (rtx_insn *seq,
struct noce_if_info *if_info)
{
struct noce_if_info riscv_if_info = *if_info;
riscv_if_info.original_cost -= COSTS_N_INSNS (2);
riscv_if_info.original_cost += insn_cost (if_info->jump, if_info->speed_p);
/* Hack alert! When `noce_try_store_flag_mask' uses `cstore4'
to emit a conditional set operation on DImode output it comes up
with a sequence such as:
(insn 26 0 27 (set (reg:SI 140)
(eq:SI (reg/v:DI 137 [ c ])
(const_int 0 [0]))) 302 {*seq_zero_disi}
(nil))
(insn 27 26 28 (set (reg:DI 139)
(zero_extend:DI (reg:SI 140))) 116 {*zero_extendsidi2_internal}
(nil))
because our `cstore4' pattern expands to an insn that gives
a SImode output. The output of conditional set is 0 or 1 boolean,
so it is valid for input in any scalar integer mode and therefore
combine later folds the zero extend operation into an equivalent
conditional set operation that produces a DImode output, however
this redundant zero extend operation counts towards the cost of
the replacement sequence. Compensate for that by incrementing the
cost of the original sequence as well as the maximum sequence cost
accordingly. Likewise for sign extension. */
rtx last_dest = NULL_RTX;
for (rtx_insn *insn = seq; insn; insn = NEXT_INSN (insn))
{
if (!NONDEBUG_INSN_P (insn))
continue;
rtx x = PATTERN (insn);
if (NONJUMP_INSN_P (insn)
&& GET_CODE (x) == SET)
{
rtx src = SET_SRC (x);
enum rtx_code code = GET_CODE (src);
if (last_dest != NULL_RTX
&& (code == SIGN_EXTEND || code == ZERO_EXTEND)
&& REG_P (XEXP (src, 0))
&& REGNO (XEXP (src, 0)) == REGNO (last_dest))
{
riscv_if_info.original_cost += COSTS_N_INSNS (1);
riscv_if_info.max_seq_cost += COSTS_N_INSNS (1);
}
rtx dest = SET_DEST (x);
/* Do something similar for the moves that are likely to
turn into NOP moves by the time the register allocator is
done. These are also side effects of how our sCC expanders
work. We'll want to check and update LAST_DEST here too. */
if (last_dest
&& REG_P (dest)
&& GET_MODE (dest) == SImode
&& SUBREG_P (src)
&& SUBREG_PROMOTED_VAR_P (src)
&& REGNO (SUBREG_REG (src)) == REGNO (last_dest))
{
riscv_if_info.original_cost += COSTS_N_INSNS (1);
riscv_if_info.max_seq_cost += COSTS_N_INSNS (1);
if (last_dest)
last_dest = dest;
}
else
last_dest = NULL_RTX;
if (COMPARISON_P (src) && REG_P (dest))
last_dest = dest;
}
else
last_dest = NULL_RTX;
}
return default_noce_conversion_profitable_p (seq, &riscv_if_info);
}
/* Return one word of double-word value OP. HIGH_P is true to select the
high part or false to select the low part. */
rtx
riscv_subword (rtx op, bool high_p)
{
unsigned int byte = (high_p != BYTES_BIG_ENDIAN) ? UNITS_PER_WORD : 0;
machine_mode mode = GET_MODE (op);
if (mode == VOIDmode)
mode = TARGET_64BIT ? TImode : DImode;
if (MEM_P (op))
return adjust_address (op, word_mode, byte);
if (REG_P (op))
gcc_assert (!FP_REG_RTX_P (op));
return simplify_gen_subreg (word_mode, op, mode, byte);
}
/* Return true if a 64-bit move from SRC to DEST should be split into two. */
bool
riscv_split_64bit_move_p (rtx dest, rtx src)
{
if (TARGET_64BIT)
return false;
/* There is no need to split if the FLI instruction in the `Zfa` extension can be used. */
if (satisfies_constraint_zfli (src))
return false;
/* Allow FPR <-> FPR and FPR <-> MEM moves, and permit the special case
of zeroing an FPR with FCVT.D.W. */
if (TARGET_DOUBLE_FLOAT
&& ((FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
|| (FP_REG_RTX_P (dest) && MEM_P (src))
|| (FP_REG_RTX_P (src) && MEM_P (dest))
|| (FP_REG_RTX_P (dest) && src == CONST0_RTX (GET_MODE (src)))))
return false;
return true;
}
/* Split a doubleword move from SRC to DEST. On 32-bit targets,
this function handles 64-bit moves for which riscv_split_64bit_move_p
holds. For 64-bit targets, this function handles 128-bit moves. */
void
riscv_split_doubleword_move (rtx dest, rtx src)
{
/* ZFA or XTheadFmv has instructions for accessing the upper bits of a double. */
if (!TARGET_64BIT && (TARGET_ZFA || TARGET_XTHEADFMV))
{
if (FP_REG_RTX_P (dest))
{
rtx low_src = riscv_subword (src, false);
rtx high_src = riscv_subword (src, true);
if (TARGET_ZFA)
emit_insn (gen_movdfsisi3_rv32 (dest, high_src, low_src));
else
emit_insn (gen_th_fmv_hw_w_x (dest, high_src, low_src));
return;
}
if (FP_REG_RTX_P (src))
{
rtx low_dest = riscv_subword (dest, false);
rtx high_dest = riscv_subword (dest, true);
if (TARGET_ZFA)
{
emit_insn (gen_movsidf2_low_rv32 (low_dest, src));
emit_insn (gen_movsidf2_high_rv32 (high_dest, src));
return;
}
else
{
emit_insn (gen_th_fmv_x_w (low_dest, src));
emit_insn (gen_th_fmv_x_hw (high_dest, src));
}
return;
}
}
/* The operation can be split into two normal moves. Decide in
which order to do them. */
rtx low_dest = riscv_subword (dest, false);
if (REG_P (low_dest) && reg_overlap_mentioned_p (low_dest, src))
{
riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true));
riscv_emit_move (low_dest, riscv_subword (src, false));
}
else
{
riscv_emit_move (low_dest, riscv_subword (src, false));
riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true));
}
}
/* Constant VAL is known to be sum of two S12 constants. Break it into
comprising BASE and OFF.
Numerically S12 is -2048 to 2047, however it uses the more conservative
range -2048 to 2032 as offsets pertain to stack related registers. */
void
riscv_split_sum_of_two_s12 (HOST_WIDE_INT val, HOST_WIDE_INT *base,
HOST_WIDE_INT *off)
{
if (SUM_OF_TWO_S12_N (val))
{
*base = -2048;
*off = val - (-2048);
}
else if (SUM_OF_TWO_S12_P_ALGN (val))
{
*base = 2032;
*off = val - 2032;
}
else
{
gcc_unreachable ();
}
}
/* Return the appropriate instructions to move SRC into DEST. Assume
that SRC is operand 1 and DEST is operand 0. */
const char *
riscv_output_move (rtx dest, rtx src)
{
enum rtx_code dest_code, src_code;
machine_mode mode;
bool dbl_p;
unsigned width;
const char *insn;
if ((insn = th_output_move (dest, src)))
return insn;
dest_code = GET_CODE (dest);
src_code = GET_CODE (src);
mode = GET_MODE (dest);
dbl_p = (GET_MODE_SIZE (mode).to_constant () == 8);
width = GET_MODE_SIZE (mode).to_constant ();
if (dbl_p && riscv_split_64bit_move_p (dest, src))
return "#";
if (dest_code == REG && GP_REG_P (REGNO (dest)))
{
if (src_code == REG && FP_REG_P (REGNO (src)))
switch (width)
{
case 2:
if (TARGET_ZFHMIN || TARGET_ZFBFMIN)
return "fmv.x.h\t%0,%1";
/* Using fmv.x.s + sign-extend to emulate fmv.x.h. */
return "fmv.x.s\t%0,%1;slli\t%0,%0,16;srai\t%0,%0,16";
case 4:
return "fmv.x.s\t%0,%1";
case 8:
return "fmv.x.d\t%0,%1";
}
if (src_code == MEM)
switch (width)
{
case 1: return "lbu\t%0,%1";
case 2: return "lhu\t%0,%1";
case 4: return "lw\t%0,%1";
case 8: return "ld\t%0,%1";
}
if (src_code == CONST_INT)
{
if (SMALL_OPERAND (INTVAL (src)) || LUI_OPERAND (INTVAL (src)))
return "li\t%0,%1";
if (TARGET_ZBS
&& SINGLE_BIT_MASK_OPERAND (INTVAL (src)))
return "bseti\t%0,zero,%S1";
/* Should never reach here. */
abort ();
}
if (src_code == HIGH)
return "lui\t%0,%h1";
if (symbolic_operand (src, VOIDmode))
switch (riscv_classify_symbolic_expression (src))
{
case SYMBOL_GOT_DISP: return "la\t%0,%1";
case SYMBOL_ABSOLUTE: return "lla\t%0,%1";
case SYMBOL_PCREL: return "lla\t%0,%1";
default: gcc_unreachable ();
}
}
if ((src_code == REG && GP_REG_P (REGNO (src)))
|| (src == CONST0_RTX (mode)))
{
if (dest_code == REG)
{
if (GP_REG_P (REGNO (dest)))
return "mv\t%0,%z1";
if (FP_REG_P (REGNO (dest)))
switch (width)
{
case 2:
if (TARGET_ZFHMIN || TARGET_ZFBFMIN)
return "fmv.h.x\t%0,%z1";
/* High 16 bits should be all-1, otherwise HW will treated
as a n-bit canonical NaN, but isn't matter for softfloat. */
return "fmv.s.x\t%0,%1";
case 4:
return "fmv.s.x\t%0,%z1";
case 8:
if (TARGET_64BIT)
return "fmv.d.x\t%0,%z1";
/* in RV32, we can emulate fmv.d.x %0, x0 using fcvt.d.w */
gcc_assert (src == CONST0_RTX (mode));
return "fcvt.d.w\t%0,x0";
}
}
if (dest_code == MEM)
switch (width)
{
case 1: return "sb\t%z1,%0";
case 2: return "sh\t%z1,%0";
case 4: return "sw\t%z1,%0";
case 8: return "sd\t%z1,%0";
}
}
if (src_code == REG && FP_REG_P (REGNO (src)))
{
if (dest_code == REG && FP_REG_P (REGNO (dest)))
switch (width)
{
case 2:
if (TARGET_ZFH)
return "fmv.h\t%0,%1";
return "fmv.s\t%0,%1";
case 4:
return "fmv.s\t%0,%1";
case 8:
return "fmv.d\t%0,%1";
}
if (dest_code == MEM)
switch (width)
{
case 2:
return "fsh\t%1,%0";
case 4:
return "fsw\t%1,%0";
case 8:
return "fsd\t%1,%0";
}
}
if (dest_code == REG && FP_REG_P (REGNO (dest)))
{
if (src_code == MEM)
switch (width)
{
case 2:
return "flh\t%0,%1";
case 4:
return "flw\t%0,%1";
case 8:
return "fld\t%0,%1";
}
if (src_code == CONST_DOUBLE && satisfies_constraint_zfli (src))
switch (width)
{
case 2:
return "fli.h\t%0,%1";
case 4:
return "fli.s\t%0,%1";
case 8:
return "fli.d\t%0,%1";
}
}
if (dest_code == REG && GP_REG_P (REGNO (dest)) && src_code == CONST_POLY_INT)
{
/* We only want a single full vector register VLEN read after reload. */
gcc_assert (known_eq (rtx_to_poly_int64 (src), BYTES_PER_RISCV_VECTOR));
return "csrr\t%0,vlenb";
}
gcc_unreachable ();
}
const char *
riscv_output_return ()
{
if (cfun->machine->naked_p)
return "";
return "ret";
}
/* Return true if CMP1 is a suitable second operand for integer ordering
test CODE. See also the *sCC patterns in riscv.md. */
static bool
riscv_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
{
switch (code)
{
case GT:
case GTU:
return reg_or_0_operand (cmp1, VOIDmode);
case GE:
case GEU:
return cmp1 == const1_rtx;
case LT:
case LTU:
return arith_operand (cmp1, VOIDmode);
case LE:
return sle_operand (cmp1, VOIDmode);
case LEU:
return sleu_operand (cmp1, VOIDmode);
default:
gcc_unreachable ();
}
}
/* Return true if *CMP1 (of mode MODE) is a valid second operand for
integer ordering test *CODE, or if an equivalent combination can
be formed by adjusting *CODE and *CMP1. When returning true, update
*CODE and *CMP1 with the chosen code and operand, otherwise leave
them alone. */
static bool
riscv_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
machine_mode mode)
{
HOST_WIDE_INT plus_one;
if (riscv_int_order_operand_ok_p (*code, *cmp1))
return true;
if (CONST_INT_P (*cmp1))
switch (*code)
{
case LE:
plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
if (INTVAL (*cmp1) < plus_one)
{
*code = LT;
*cmp1 = force_reg (mode, GEN_INT (plus_one));
return true;
}
break;
case LEU:
plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
if (plus_one != 0)
{
*code = LTU;
*cmp1 = force_reg (mode, GEN_INT (plus_one));
return true;
}
break;
default:
break;
}
return false;
}
/* Compare CMP0 and CMP1 using ordering test CODE and store the result
in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
is nonnull, it's OK to set TARGET to the inverse of the result and
flip *INVERT_PTR instead. */
static void
riscv_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
rtx target, rtx cmp0, rtx cmp1)
{
machine_mode mode;
/* First see if there is a RISCV instruction that can do this operation.
If not, try doing the same for the inverse operation. If that also
fails, force CMP1 into a register and try again. */
mode = GET_MODE (cmp0);
if (riscv_canonicalize_int_order_test (&code, &cmp1, mode))
riscv_emit_binary (code, target, cmp0, cmp1);
else
{
enum rtx_code inv_code = reverse_condition (code);
if (!riscv_canonicalize_int_order_test (&inv_code, &cmp1, mode))
{
cmp1 = force_reg (mode, cmp1);
riscv_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
}
else if (invert_ptr == 0)
{
rtx inv_target = riscv_force_binary (word_mode,
inv_code, cmp0, cmp1);
riscv_emit_binary (EQ, target, inv_target, const0_rtx);
}
else
{
*invert_ptr = !*invert_ptr;
riscv_emit_binary (inv_code, target, cmp0, cmp1);
}
}
}
/* Return a register that is zero iff CMP0 and CMP1 are equal.
The register will have the same mode as CMP0. */
static rtx
riscv_zero_if_equal (rtx cmp0, rtx cmp1)
{
if (cmp1 == const0_rtx)
return cmp0;
return expand_binop (GET_MODE (cmp0), sub_optab,
cmp0, cmp1, 0, 0, OPTAB_DIRECT);
}
/* Helper function for riscv_extend_comparands to Sign-extend the OP.
However if the OP is SI subreg promoted with an inner DI, such as
(subreg/s/v:SI (reg/v:DI) 0)
just peel off the SUBREG to get DI, avoiding extraneous extension. */
static void
riscv_sign_extend_if_not_subreg_prom (rtx *op)
{
if (GET_CODE (*op) == SUBREG
&& SUBREG_PROMOTED_VAR_P (*op)
&& SUBREG_PROMOTED_SIGNED_P (*op)
&& (GET_MODE_SIZE (GET_MODE (XEXP (*op, 0))).to_constant ()
== GET_MODE_SIZE (word_mode)))
*op = XEXP (*op, 0);
else
*op = gen_rtx_SIGN_EXTEND (word_mode, *op);
}
/* Sign- or zero-extend OP0 and OP1 for integer comparisons. */
static void
riscv_extend_comparands (rtx_code code, rtx *op0, rtx *op1)
{
/* Comparisons consider all XLEN bits, so extend sub-XLEN values. */
if (GET_MODE_SIZE (word_mode) > GET_MODE_SIZE (GET_MODE (*op0)).to_constant ())
{
/* It is more profitable to zero-extend QImode values. But not if the
first operand has already been sign-extended, and the second one is
is a constant or has already been sign-extended also. */
if (unsigned_condition (code) == code
&& (GET_MODE (*op0) == QImode
&& ! (GET_CODE (*op0) == SUBREG
&& SUBREG_PROMOTED_VAR_P (*op0)
&& SUBREG_PROMOTED_SIGNED_P (*op0)
&& (CONST_INT_P (*op1)
|| (GET_CODE (*op1) == SUBREG
&& SUBREG_PROMOTED_VAR_P (*op1)
&& SUBREG_PROMOTED_SIGNED_P (*op1))))))
{
*op0 = gen_rtx_ZERO_EXTEND (word_mode, *op0);
if (CONST_INT_P (*op1))
*op1 = GEN_INT ((uint8_t) INTVAL (*op1));
else
*op1 = gen_rtx_ZERO_EXTEND (word_mode, *op1);
}
else
{
riscv_sign_extend_if_not_subreg_prom (op0);
if (*op1 != const0_rtx)
riscv_sign_extend_if_not_subreg_prom (op1);
}
}
}
/* Convert a comparison into something that can be used in a branch or
conditional move. On entry, *OP0 and *OP1 are the values being
compared and *CODE is the code used to compare them.
Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are
emitted. */
static void
riscv_emit_int_compare (enum rtx_code *code, rtx *op0, rtx *op1,
bool need_eq_ne_p = false)
{
if (need_eq_ne_p)
{
rtx cmp_op0 = *op0;
rtx cmp_op1 = *op1;
if (*code == EQ || *code == NE)
{
*op0 = riscv_zero_if_equal (cmp_op0, cmp_op1);
*op1 = const0_rtx;
return;
}
gcc_unreachable ();
}
if (splittable_const_int_operand (*op1, VOIDmode))
{
HOST_WIDE_INT rhs = INTVAL (*op1);
if (*code == EQ || *code == NE)
{
/* Convert e.g. OP0 == 2048 into OP0 - 2048 == 0. */
if (SMALL_OPERAND (-rhs))
{
*op0 = riscv_force_binary (GET_MODE (*op0), PLUS, *op0,
GEN_INT (-rhs));
*op1 = const0_rtx;
}
}
else
{
static const enum rtx_code mag_comparisons[][2] = {
{LEU, LTU}, {GTU, GEU}, {LE, LT}, {GT, GE}
};
/* Convert e.g. (OP0 <= 0xFFF) into (OP0 < 0x1000). */
for (size_t i = 0; i < ARRAY_SIZE (mag_comparisons); i++)
{
HOST_WIDE_INT new_rhs;
bool increment = *code == mag_comparisons[i][0];
bool decrement = *code == mag_comparisons[i][1];
if (!increment && !decrement)
continue;
new_rhs = rhs + (increment ? 1 : -1);
new_rhs = trunc_int_for_mode (new_rhs, GET_MODE (*op0));
if (riscv_integer_cost (new_rhs, true) < riscv_integer_cost (rhs, true)
&& (rhs < 0) == (new_rhs < 0))
{
*op1 = GEN_INT (new_rhs);
*code = mag_comparisons[i][increment];
}
break;
}
}
}
riscv_extend_comparands (*code, op0, op1);
*op0 = force_reg (word_mode, *op0);
if (*op1 != const0_rtx)
*op1 = force_reg (word_mode, *op1);
}
/* Like riscv_emit_int_compare, but for floating-point comparisons. */
static void
riscv_emit_float_compare (enum rtx_code *code, rtx *op0, rtx *op1,
bool *invert_ptr = nullptr)
{
rtx tmp0, tmp1, cmp_op0 = *op0, cmp_op1 = *op1;
enum rtx_code fp_code = *code;
*code = NE;
switch (fp_code)
{
case UNORDERED:
*code = EQ;
/* Fall through. */
case ORDERED:
/* a == a && b == b */
tmp0 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op0);
tmp1 = riscv_force_binary (word_mode, EQ, cmp_op1, cmp_op1);
*op0 = riscv_force_binary (word_mode, AND, tmp0, tmp1);
*op1 = const0_rtx;
break;
case UNEQ:
/* ordered(a, b) > (a == b) */
*code = EQ;
tmp0 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op0);
tmp1 = riscv_force_binary (word_mode, EQ, cmp_op1, cmp_op1);
*op0 = riscv_force_binary (word_mode, AND, tmp0, tmp1);
*op1 = riscv_force_binary (word_mode, EQ, cmp_op0, cmp_op1);
break;
#define UNORDERED_COMPARISON(CODE, CMP) \
case CODE: \
*code = EQ; \
*op0 = gen_reg_rtx (word_mode); \
if (GET_MODE (cmp_op0) == SFmode && TARGET_64BIT) \
emit_insn (gen_f##CMP##_quietsfdi4 (*op0, cmp_op0, cmp_op1)); \
else if (GET_MODE (cmp_op0) == SFmode) \
emit_insn (gen_f##CMP##_quietsfsi4 (*op0, cmp_op0, cmp_op1)); \
else if (GET_MODE (cmp_op0) == DFmode && TARGET_64BIT) \
emit_insn (gen_f##CMP##_quietdfdi4 (*op0, cmp_op0, cmp_op1)); \
else if (GET_MODE (cmp_op0) == DFmode) \
emit_insn (gen_f##CMP##_quietdfsi4 (*op0, cmp_op0, cmp_op1)); \
else if (GET_MODE (cmp_op0) == HFmode && TARGET_64BIT) \
emit_insn (gen_f##CMP##_quiethfdi4 (*op0, cmp_op0, cmp_op1)); \
else if (GET_MODE (cmp_op0) == HFmode) \
emit_insn (gen_f##CMP##_quiethfsi4 (*op0, cmp_op0, cmp_op1)); \
else \
gcc_unreachable (); \
*op1 = const0_rtx; \
break;
case UNLT:
std::swap (cmp_op0, cmp_op1);
gcc_fallthrough ();
UNORDERED_COMPARISON(UNGT, le)
case UNLE:
std::swap (cmp_op0, cmp_op1);
gcc_fallthrough ();
UNORDERED_COMPARISON(UNGE, lt)
#undef UNORDERED_COMPARISON
case NE:
fp_code = EQ;
if (invert_ptr != nullptr)
*invert_ptr = !*invert_ptr;
else
{
cmp_op0 = riscv_force_binary (word_mode, fp_code, cmp_op0, cmp_op1);
cmp_op1 = const0_rtx;
}
gcc_fallthrough ();
case EQ:
case LE:
case LT:
case GE:
case GT:
/* We have instructions for these cases. */
*code = fp_code;
*op0 = cmp_op0;
*op1 = cmp_op1;
break;
case LTGT:
/* (a < b) | (a > b) */
tmp0 = riscv_force_binary (word_mode, LT, cmp_op0, cmp_op1);
tmp1 = riscv_force_binary (word_mode, GT, cmp_op0, cmp_op1);
*op0 = riscv_force_binary (word_mode, IOR, tmp0, tmp1);
*op1 = const0_rtx;
break;
default:
gcc_unreachable ();
}
}
/* CODE-compare OP0 and OP1. Store the result in TARGET. */
void
riscv_expand_int_scc (rtx target, enum rtx_code code, rtx op0, rtx op1, bool *invert_ptr)
{
riscv_extend_comparands (code, &op0, &op1);
op0 = force_reg (word_mode, op0);
/* For sub-word targets on rv64, do the computation in DImode
then extract the lowpart for the final target, marking it
as sign extended. Note that it's also properly zero extended,
but it's probably more profitable to expose it as sign extended. */
rtx t;
if (TARGET_64BIT && GET_MODE (target) == SImode)
t = gen_reg_rtx (DImode);
else
t = target;
if (code == EQ || code == NE)
{
rtx zie = riscv_zero_if_equal (op0, op1);
riscv_emit_binary (code, t, zie, const0_rtx);
}
else
riscv_emit_int_order_test (code, invert_ptr, t, op0, op1);
if (t != target)
{
t = gen_lowpart (SImode, t);
SUBREG_PROMOTED_VAR_P (t) = 1;
SUBREG_PROMOTED_SET (t, SRP_SIGNED);
emit_move_insn (target, t);
}
}
/* Like riscv_expand_int_scc, but for floating-point comparisons. */
void
riscv_expand_float_scc (rtx target, enum rtx_code code, rtx op0, rtx op1,
bool *invert_ptr)
{
riscv_emit_float_compare (&code, &op0, &op1, invert_ptr);
machine_mode mode = GET_MODE (target);
if (mode != word_mode)
{
rtx cmp = riscv_force_binary (word_mode, code, op0, op1);
riscv_emit_set (target, lowpart_subreg (mode, cmp, word_mode));
}
else
riscv_emit_binary (code, target, op0, op1);
}
/* Jump to LABEL if (CODE OP0 OP1) holds. */
void
riscv_expand_conditional_branch (rtx label, rtx_code code, rtx op0, rtx op1)
{
if (FLOAT_MODE_P (GET_MODE (op1)))
riscv_emit_float_compare (&code, &op0, &op1);
else
riscv_emit_int_compare (&code, &op0, &op1);
if (FLOAT_MODE_P (GET_MODE (op0)))
{
op0 = riscv_force_binary (word_mode, code, op0, op1);
op1 = const0_rtx;
code = NE;
}
rtx condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
emit_jump_insn (gen_condjump (condition, label));
}
/* Emit a cond move: If OP holds, move CONS to DEST; else move ALT to DEST.
Return 0 if expansion failed. */
bool
riscv_expand_conditional_move (rtx dest, rtx op, rtx cons, rtx alt)
{
machine_mode mode = GET_MODE (dest);
rtx_code code = GET_CODE (op);
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (((TARGET_ZICOND_LIKE
|| (arith_operand (cons, mode) && arith_operand (alt, mode)))
&& (GET_MODE_CLASS (mode) == MODE_INT))
|| TARGET_SFB_ALU || TARGET_XTHEADCONDMOV)
{
machine_mode mode0 = GET_MODE (op0);
machine_mode mode1 = GET_MODE (op1);
/* An integer comparison must be comparing WORD_MODE objects. We
must enforce that so that we don't strip away a sign_extension
thinking it is unnecessary. We might consider using
riscv_extend_operands if they are not already properly extended. */
if ((INTEGRAL_MODE_P (mode0) && mode0 != word_mode)
|| (INTEGRAL_MODE_P (mode1) && mode1 != word_mode))
return false;
/* In the fallback generic case use MODE rather than WORD_MODE for
the output of the SCC instruction, to match the mode of the NEG
operation below. The output of SCC is 0 or 1 boolean, so it is
valid for input in any scalar integer mode. */
rtx tmp = gen_reg_rtx ((TARGET_ZICOND_LIKE
|| TARGET_SFB_ALU || TARGET_XTHEADCONDMOV)
? word_mode : mode);
bool invert = false;
/* Canonicalize the comparison. It must be an equality comparison
of integer operands, or with SFB it can be any comparison of
integer operands. If it isn't, then emit an SCC instruction
so that we can then use an equality comparison against zero. */
if ((!TARGET_SFB_ALU && !equality_operator (op, VOIDmode))
|| !INTEGRAL_MODE_P (mode0))
{
bool *invert_ptr = nullptr;
/* If riscv_expand_int_scc inverts the condition, then it will
flip the value of INVERT. We need to know where so that
we can adjust it for our needs. */
if (code == LE || code == LEU || code == GE || code == GEU)
invert_ptr = &invert;
/* Emit an SCC-like instruction into a temporary so that we can
use an EQ/NE comparison. We can support both FP and integer
conditional moves. */
if (INTEGRAL_MODE_P (mode0))
riscv_expand_int_scc (tmp, code, op0, op1, invert_ptr);
else if (FLOAT_MODE_P (mode0)
&& fp_scc_comparison (op, GET_MODE (op)))
riscv_expand_float_scc (tmp, code, op0, op1, &invert);
else
return false;
op = gen_rtx_fmt_ee (invert ? EQ : NE, mode, tmp, const0_rtx);
/* We've generated a new comparison. Update the local variables. */
code = GET_CODE (op);
op0 = XEXP (op, 0);
op1 = XEXP (op, 1);
}
else if (!TARGET_ZICOND_LIKE && !TARGET_SFB_ALU && !TARGET_XTHEADCONDMOV)
riscv_expand_int_scc (tmp, code, op0, op1, &invert);
if (TARGET_SFB_ALU || TARGET_XTHEADCONDMOV)
{
riscv_emit_int_compare (&code, &op0, &op1, !TARGET_SFB_ALU);
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
/* The expander is a bit loose in its specification of the true
arm of the conditional move. That allows us to support more
cases for extensions which are more general than SFB. But
does mean we need to force CONS into a register at this point. */
cons = force_reg (mode, cons);
/* With XTheadCondMov we need to force ALT into a register too. */
alt = force_reg (mode, alt);
emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond,
cons, alt)));
return true;
}
else if (!TARGET_ZICOND_LIKE)
{
if (invert)
std::swap (cons, alt);
rtx reg1 = gen_reg_rtx (mode);
rtx reg2 = gen_reg_rtx (mode);
rtx reg3 = gen_reg_rtx (mode);
rtx reg4 = gen_reg_rtx (mode);
riscv_emit_unary (NEG, reg1, tmp);
riscv_emit_binary (AND, reg2, reg1, cons);
riscv_emit_unary (NOT, reg3, reg1);
riscv_emit_binary (AND, reg4, reg3, alt);
riscv_emit_binary (IOR, dest, reg2, reg4);
return true;
}
/* 0, reg or 0, imm */
else if (cons == CONST0_RTX (mode)
&& (REG_P (alt)
|| (CONST_INT_P (alt) && alt != CONST0_RTX (mode))))
{
riscv_emit_int_compare (&code, &op0, &op1, true);
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
alt = force_reg (mode, alt);
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (mode, cond,
cons, alt)));
return true;
}
/* imm, imm */
else if (CONST_INT_P (cons) && cons != CONST0_RTX (mode)
&& CONST_INT_P (alt) && alt != CONST0_RTX (mode))
{
riscv_emit_int_compare (&code, &op0, &op1, true);
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
HOST_WIDE_INT t = INTVAL (alt) - INTVAL (cons);
alt = force_reg (mode, gen_int_mode (t, mode));
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (mode, cond,
CONST0_RTX (mode),
alt)));
/* CONS might not fit into a signed 12 bit immediate suitable
for an addi instruction. If that's the case, force it
into a register. */
if (!SMALL_OPERAND (INTVAL (cons)))
cons = force_reg (mode, cons);
riscv_emit_binary (PLUS, dest, dest, cons);
return true;
}
/* imm, reg */
else if (CONST_INT_P (cons) && cons != CONST0_RTX (mode) && REG_P (alt))
{
/* Optimize for register value of 0. */
if (code == NE && rtx_equal_p (op0, alt) && op1 == CONST0_RTX (mode))
{
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
cons = force_reg (mode, cons);
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (mode, cond,
cons, alt)));
return true;
}
riscv_emit_int_compare (&code, &op0, &op1, true);
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
rtx temp1 = gen_reg_rtx (mode);
rtx temp2 = gen_int_mode (-1 * INTVAL (cons), mode);
/* TEMP2 and/or CONS might not fit into a signed 12 bit immediate
suitable for an addi instruction. If that's the case, force it
into a register. */
if (!SMALL_OPERAND (INTVAL (temp2)))
temp2 = force_reg (mode, temp2);
if (!SMALL_OPERAND (INTVAL (cons)))
cons = force_reg (mode, cons);
riscv_emit_binary (PLUS, temp1, alt, temp2);
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (mode, cond,
CONST0_RTX (mode),
temp1)));
riscv_emit_binary (PLUS, dest, dest, cons);
return true;
}
/* reg, 0 or imm, 0 */
else if ((REG_P (cons)
|| (CONST_INT_P (cons) && cons != CONST0_RTX (mode)))
&& alt == CONST0_RTX (mode))
{
riscv_emit_int_compare (&code, &op0, &op1, true);
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
cons = force_reg (mode, cons);
emit_insn (gen_rtx_SET (dest, gen_rtx_IF_THEN_ELSE (mode, cond,
cons, alt)));
return true;
}
/* reg, imm */
else if (REG_P (cons) && CONST_INT_P (alt) && alt != CONST0_RTX (mode))
{
/* Optimize for register value of 0. */
if (code == EQ && rtx_equal_p (op0, cons) && op1 == CONST0_RTX (mode))
{
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
alt = force_reg (mode, alt);
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (mode, cond,
cons, alt)));
return true;
}
riscv_emit_int_compare (&code, &op0, &op1, true);
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
rtx temp1 = gen_reg_rtx (mode);
rtx temp2 = gen_int_mode (-1 * INTVAL (alt), mode);
/* TEMP2 and/or ALT might not fit into a signed 12 bit immediate
suitable for an addi instruction. If that's the case, force it
into a register. */
if (!SMALL_OPERAND (INTVAL (temp2)))
temp2 = force_reg (mode, temp2);
if (!SMALL_OPERAND (INTVAL (alt)))
alt = force_reg (mode, alt);
riscv_emit_binary (PLUS, temp1, cons, temp2);
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (mode, cond,
temp1,
CONST0_RTX (mode))));
riscv_emit_binary (PLUS, dest, dest, alt);
return true;
}
/* reg, reg */
else if (REG_P (cons) && REG_P (alt))
{
if (((code == EQ && rtx_equal_p (cons, op0))
|| (code == NE && rtx_equal_p (alt, op0)))
&& op1 == CONST0_RTX (mode))
{
rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
alt = force_reg (mode, alt);
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (mode, cond,
cons, alt)));
return true;
}
rtx reg1 = gen_reg_rtx (mode);
rtx reg2 = gen_reg_rtx (mode);
riscv_emit_int_compare (&code, &op0, &op1, true);
rtx cond1 = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
rtx cond2 = gen_rtx_fmt_ee (code == NE ? EQ : NE,
GET_MODE (op0), op0, op1);
emit_insn (gen_rtx_SET (reg2,
gen_rtx_IF_THEN_ELSE (mode, cond2,
CONST0_RTX (mode),
cons)));
emit_insn (gen_rtx_SET (reg1,
gen_rtx_IF_THEN_ELSE (mode, cond1,
CONST0_RTX (mode),
alt)));
riscv_emit_binary (PLUS, dest, reg1, reg2);
return true;
}
}
return false;
}
/* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at
least PARM_BOUNDARY bits of alignment, but will be given anything up
to PREFERRED_STACK_BOUNDARY bits if the type requires it. */
static unsigned int
riscv_function_arg_boundary (machine_mode mode, const_tree type)
{
unsigned int alignment;
/* Use natural alignment if the type is not aggregate data. */
if (type && !AGGREGATE_TYPE_P (type))
alignment = TYPE_ALIGN (TYPE_MAIN_VARIANT (type));
else
alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
return MIN (PREFERRED_STACK_BOUNDARY, MAX (PARM_BOUNDARY, alignment));
}
/* If MODE represents an argument that can be passed or returned in
floating-point registers, return the number of registers, else 0. */
static unsigned
riscv_pass_mode_in_fpr_p (machine_mode mode)
{
if (GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FP_ARG)
{
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
return 1;
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
return 2;
}
return 0;
}
typedef struct {
const_tree type;
HOST_WIDE_INT offset;
} riscv_aggregate_field;
/* Identify subfields of aggregates that are candidates for passing in
floating-point registers. */
static int
riscv_flatten_aggregate_field (const_tree type,
riscv_aggregate_field fields[2],
int n, HOST_WIDE_INT offset,
bool ignore_zero_width_bit_field_p)
{
switch (TREE_CODE (type))
{
case RECORD_TYPE:
/* Can't handle incomplete types nor sizes that are not fixed. */
if (!COMPLETE_TYPE_P (type)
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
|| !tree_fits_uhwi_p (TYPE_SIZE (type)))
return -1;
for (tree f = TYPE_FIELDS (type); f; f = DECL_CHAIN (f))
if (TREE_CODE (f) == FIELD_DECL)
{
if (!TYPE_P (TREE_TYPE (f)))
return -1;
/* The C++ front end strips zero-length bit-fields from structs.
So we need to ignore them in the C front end to make C code
compatible with C++ code. */
if (ignore_zero_width_bit_field_p
&& DECL_BIT_FIELD (f)
&& (DECL_SIZE (f) == NULL_TREE
|| integer_zerop (DECL_SIZE (f))))
;
else
{
HOST_WIDE_INT pos = offset + int_byte_position (f);
n = riscv_flatten_aggregate_field (TREE_TYPE (f),
fields, n, pos,
ignore_zero_width_bit_field_p);
}
if (n < 0)
return -1;
}
return n;
case ARRAY_TYPE:
{
HOST_WIDE_INT n_elts;
riscv_aggregate_field subfields[2];
tree index = TYPE_DOMAIN (type);
tree elt_size = TYPE_SIZE_UNIT (TREE_TYPE (type));
int n_subfields = riscv_flatten_aggregate_field (TREE_TYPE (type),
subfields, 0, offset,
ignore_zero_width_bit_field_p);
/* Can't handle incomplete types nor sizes that are not fixed. */
if (n_subfields <= 0
|| !COMPLETE_TYPE_P (type)
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
|| !index
|| !TYPE_MAX_VALUE (index)
|| !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
|| !TYPE_MIN_VALUE (index)
|| !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
|| !tree_fits_uhwi_p (elt_size))
return -1;
n_elts = 1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
- tree_to_uhwi (TYPE_MIN_VALUE (index));
gcc_assert (n_elts >= 0);
for (HOST_WIDE_INT i = 0; i < n_elts; i++)
for (int j = 0; j < n_subfields; j++)
{
if (n >= 2)
return -1;
fields[n] = subfields[j];
fields[n++].offset += i * tree_to_uhwi (elt_size);
}
return n;
}
case COMPLEX_TYPE:
{
/* Complex type need consume 2 field, so n must be 0. */
if (n != 0)
return -1;
HOST_WIDE_INT elt_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type))).to_constant ();
if (elt_size <= UNITS_PER_FP_ARG)
{
fields[0].type = TREE_TYPE (type);
fields[0].offset = offset;
fields[1].type = TREE_TYPE (type);
fields[1].offset = offset + elt_size;
return 2;
}
return -1;
}
default:
if (n < 2
&& ((SCALAR_FLOAT_TYPE_P (type)
&& GET_MODE_SIZE (TYPE_MODE (type)).to_constant () <= UNITS_PER_FP_ARG)
|| (INTEGRAL_TYPE_P (type)
&& GET_MODE_SIZE (TYPE_MODE (type)).to_constant () <= UNITS_PER_WORD)))
{
fields[n].type = type;
fields[n].offset = offset;
return n + 1;
}
else
return -1;
}
}
/* Identify candidate aggregates for passing in floating-point registers.
Candidates have at most two fields after flattening. */
static int
riscv_flatten_aggregate_argument (const_tree type,
riscv_aggregate_field fields[2],
bool ignore_zero_width_bit_field_p)
{
if (!type || TREE_CODE (type) != RECORD_TYPE)
return -1;
return riscv_flatten_aggregate_field (type, fields, 0, 0,
ignore_zero_width_bit_field_p);
}
/* See whether TYPE is a record whose fields should be returned in one or
two floating-point registers. If so, populate FIELDS accordingly. */
static unsigned
riscv_pass_aggregate_in_fpr_pair_p (const_tree type,
riscv_aggregate_field fields[2])
{
static int warned = 0;
/* This is the old ABI, which differs for C++ and C. */
int n_old = riscv_flatten_aggregate_argument (type, fields, false);
for (int i = 0; i < n_old; i++)
if (!SCALAR_FLOAT_TYPE_P (fields[i].type))
{
n_old = -1;
break;
}
/* This is the new ABI, which is the same for C++ and C. */
int n_new = riscv_flatten_aggregate_argument (type, fields, true);
for (int i = 0; i < n_new; i++)
if (!SCALAR_FLOAT_TYPE_P (fields[i].type))
{
n_new = -1;
break;
}
if ((n_old != n_new) && (warned == 0))
{
warning (OPT_Wpsabi, "ABI for flattened struct with zero-length "
"bit-fields changed in GCC 10");
warned = 1;
}
return n_new > 0 ? n_new : 0;
}
/* See whether TYPE is a record whose fields should be returned in one or
floating-point register and one integer register. If so, populate
FIELDS accordingly. */
static bool
riscv_pass_aggregate_in_fpr_and_gpr_p (const_tree type,
riscv_aggregate_field fields[2])
{
static int warned = 0;
/* This is the old ABI, which differs for C++ and C. */
unsigned num_int_old = 0, num_float_old = 0;
int n_old = riscv_flatten_aggregate_argument (type, fields, false);
for (int i = 0; i < n_old; i++)
{
num_float_old += SCALAR_FLOAT_TYPE_P (fields[i].type);
num_int_old += INTEGRAL_TYPE_P (fields[i].type);
}
/* This is the new ABI, which is the same for C++ and C. */
unsigned num_int_new = 0, num_float_new = 0;
int n_new = riscv_flatten_aggregate_argument (type, fields, true);
for (int i = 0; i < n_new; i++)
{
num_float_new += SCALAR_FLOAT_TYPE_P (fields[i].type);
num_int_new += INTEGRAL_TYPE_P (fields[i].type);
}
if (((num_int_old == 1 && num_float_old == 1
&& (num_int_old != num_int_new || num_float_old != num_float_new))
|| (num_int_new == 1 && num_float_new == 1
&& (num_int_old != num_int_new || num_float_old != num_float_new)))
&& (warned == 0))
{
warning (OPT_Wpsabi, "ABI for flattened struct with zero-length "
"bit-fields changed in GCC 10");
warned = 1;
}
return num_int_new == 1 && num_float_new == 1;
}
/* Return the representation of an argument passed or returned in an FPR
when the value has mode VALUE_MODE and the type has TYPE_MODE. The
two modes may be different for structures like:
struct __attribute__((packed)) foo { float f; }
where the SFmode value "f" is passed in REGNO but the struct itself
has mode BLKmode. */
static rtx
riscv_pass_fpr_single (machine_mode type_mode, unsigned regno,
machine_mode value_mode,
HOST_WIDE_INT offset)
{
rtx x = gen_rtx_REG (value_mode, regno);
if (type_mode != value_mode)
{
x = gen_rtx_EXPR_LIST (VOIDmode, x, GEN_INT (offset));
x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
}
return x;
}
/* Pass or return a composite value in the FPR pair REGNO and REGNO + 1.
MODE is the mode of the composite. MODE1 and OFFSET1 are the mode and
byte offset for the first value, likewise MODE2 and OFFSET2 for the
second value. */
static rtx
riscv_pass_fpr_pair (machine_mode mode, unsigned regno1,
machine_mode mode1, HOST_WIDE_INT offset1,
unsigned regno2, machine_mode mode2,
HOST_WIDE_INT offset2)
{
return gen_rtx_PARALLEL
(mode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode1, regno1),
GEN_INT (offset1)),
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode2, regno2),
GEN_INT (offset2))));
}
static rtx
riscv_pass_vls_aggregate_in_gpr (struct riscv_arg_info *info, machine_mode mode,
unsigned gpr_base)
{
gcc_assert (riscv_v_ext_vls_mode_p (mode));
unsigned count = 0;
unsigned regnum = 0;
machine_mode gpr_mode = VOIDmode;
unsigned vls_size = GET_MODE_SIZE (mode).to_constant ();
unsigned gpr_size = GET_MODE_SIZE (Xmode);
if (IN_RANGE (vls_size, 0, gpr_size * 2))
{
count = riscv_v_vls_mode_aggregate_gpr_count (vls_size, gpr_size);
if (count + info->gpr_offset <= MAX_ARGS_IN_REGISTERS)
{
regnum = gpr_base + info->gpr_offset;
info->num_gprs = count;
gpr_mode = riscv_v_vls_to_gpr_mode (vls_size);
}
}
if (!regnum)
return NULL_RTX; /* Return NULL_RTX if we cannot find a suitable reg. */
gcc_assert (gpr_mode != VOIDmode);
rtx reg = gen_rtx_REG (gpr_mode, regnum);
rtx x = gen_rtx_EXPR_LIST (VOIDmode, reg, CONST0_RTX (gpr_mode));
return gen_rtx_PARALLEL (mode, gen_rtvec (1, x));
}
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
riscv_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx, tree, int)
{
memset (cum, 0, sizeof (*cum));
if (fntype)
cum->variant_cc = (riscv_cc) fntype_abi (fntype).id ();
else
cum->variant_cc = RISCV_CC_BASE;
}
/* Return true if TYPE is a vector type that can be passed in vector registers.
*/
static bool
riscv_vector_type_p (const_tree type)
{
/* Currently, only builtin scalable vector type is allowed, in the future,
more vector types may be allowed, such as GNU vector type, etc. */
return riscv_vector::builtin_type_p (type);
}
static unsigned int
riscv_hard_regno_nregs (unsigned int regno, machine_mode mode);
/* Subroutine of riscv_get_arg_info. */
static rtx
riscv_get_vector_arg (struct riscv_arg_info *info, const CUMULATIVE_ARGS *cum,
machine_mode mode, bool return_p)
{
gcc_assert (riscv_v_ext_mode_p (mode));
info->mr_offset = cum->num_mrs;
if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL)
{
/* For scalable mask return value. */
if (return_p)
return gen_rtx_REG (mode, V_REG_FIRST);
/* For the first scalable mask argument. */
if (info->mr_offset < MAX_ARGS_IN_MASK_REGISTERS)
{
info->num_mrs = 1;
return gen_rtx_REG (mode, V_REG_FIRST);
}
else
{
/* Rest scalable mask arguments are treated as scalable data
arguments. */
}
}
/* The number and alignment of vector registers need for this scalable vector
argument. When the mode size is less than a full vector, we use 1 vector
register to pass. Just call TARGET_HARD_REGNO_NREGS for the number
information. */
int nregs = riscv_hard_regno_nregs (V_ARG_FIRST, mode);
int LMUL = riscv_v_ext_tuple_mode_p (mode)
? nregs / riscv_vector::get_nf (mode)
: nregs;
int arg_reg_start = V_ARG_FIRST - V_REG_FIRST;
int arg_reg_end = V_ARG_LAST - V_REG_FIRST;
int aligned_reg_start = ROUND_UP (arg_reg_start, LMUL);
/* For scalable data and scalable tuple return value. */
if (return_p)
return gen_rtx_REG (mode, aligned_reg_start + V_REG_FIRST);
/* Iterate through the USED_VRS array to find vector register groups that have
not been allocated and the first register is aligned with LMUL. */
for (int i = aligned_reg_start; i + nregs - 1 <= arg_reg_end; i += LMUL)
{
/* The index in USED_VRS array. */
int idx = i - arg_reg_start;
/* Find the first register unused. */
if (!cum->used_vrs[idx])
{
bool find_set = true;
/* Ensure there are NREGS continuous unused registers. */
for (int j = 1; j < nregs; j++)
if (cum->used_vrs[idx + j])
{
find_set = false;
/* Update I to the last aligned register which
cannot be used and the next iteration will add
LMUL step to I. */
i += (j / LMUL) * LMUL;
break;
}
if (find_set)
{
info->num_vrs = nregs;
info->vr_offset = idx;
return gen_rtx_REG (mode, i + V_REG_FIRST);
}
}
}
return NULL_RTX;
}
/* Fill INFO with information about a single argument, and return an RTL
pattern to pass or return the argument. Return NULL_RTX if argument cannot
pass or return in registers, then the argument may be passed by reference or
through the stack or . CUM is the cumulative state for earlier arguments.
MODE is the mode of this argument and TYPE is its type (if known). NAMED is
true if this is a named (fixed) argument rather than a variable one. RETURN_P
is true if returning the argument, or false if passing the argument. */
static rtx
riscv_get_arg_info (struct riscv_arg_info *info, const CUMULATIVE_ARGS *cum,
machine_mode mode, const_tree type, bool named,
bool return_p)
{
unsigned num_bytes, num_words;
unsigned fpr_base = return_p ? FP_RETURN : FP_ARG_FIRST;
unsigned gpr_base = return_p ? GP_RETURN : GP_ARG_FIRST;
unsigned alignment = riscv_function_arg_boundary (mode, type);
memset (info, 0, sizeof (*info));
info->gpr_offset = cum->num_gprs;
info->fpr_offset = cum->num_fprs;
/* Passed by reference when the scalable vector argument is anonymous. */
if (riscv_v_ext_mode_p (mode) && !named)
return NULL_RTX;
if (named)
{
riscv_aggregate_field fields[2];
unsigned fregno = fpr_base + info->fpr_offset;
unsigned gregno = gpr_base + info->gpr_offset;
/* Pass one- or two-element floating-point aggregates in FPRs. */
if ((info->num_fprs = riscv_pass_aggregate_in_fpr_pair_p (type, fields))
&& info->fpr_offset + info->num_fprs <= MAX_ARGS_IN_REGISTERS)
switch (info->num_fprs)
{
case 1:
return riscv_pass_fpr_single (mode, fregno,
TYPE_MODE (fields[0].type),
fields[0].offset);
case 2:
return riscv_pass_fpr_pair (mode, fregno,
TYPE_MODE (fields[0].type),
fields[0].offset,
fregno + 1,
TYPE_MODE (fields[1].type),
fields[1].offset);
default:
gcc_unreachable ();
}
/* Pass real and complex floating-point numbers in FPRs. */
if ((info->num_fprs = riscv_pass_mode_in_fpr_p (mode))
&& info->fpr_offset + info->num_fprs <= MAX_ARGS_IN_REGISTERS)
switch (GET_MODE_CLASS (mode))
{
case MODE_FLOAT:
return gen_rtx_REG (mode, fregno);
case MODE_COMPLEX_FLOAT:
return riscv_pass_fpr_pair (mode, fregno, GET_MODE_INNER (mode), 0,
fregno + 1, GET_MODE_INNER (mode),
GET_MODE_UNIT_SIZE (mode));
default:
gcc_unreachable ();
}
/* Pass structs with one float and one integer in an FPR and a GPR. */
if (riscv_pass_aggregate_in_fpr_and_gpr_p (type, fields)
&& info->gpr_offset < MAX_ARGS_IN_REGISTERS
&& info->fpr_offset < MAX_ARGS_IN_REGISTERS)
{
info->num_gprs = 1;
info->num_fprs = 1;
if (!SCALAR_FLOAT_TYPE_P (fields[0].type))
std::swap (fregno, gregno);
return riscv_pass_fpr_pair (mode, fregno, TYPE_MODE (fields[0].type),
fields[0].offset,
gregno, TYPE_MODE (fields[1].type),
fields[1].offset);
}
/* For scalable vector argument. */
if (riscv_vector_type_p (type) && riscv_v_ext_mode_p (mode))
return riscv_get_vector_arg (info, cum, mode, return_p);
/* For vls mode aggregated in gpr. */
if (riscv_v_ext_vls_mode_p (mode))
return riscv_pass_vls_aggregate_in_gpr (info, mode, gpr_base);
}
/* Work out the size of the argument. */
num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode).to_constant ();
num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
/* Doubleword-aligned varargs start on an even register boundary. */
if (!named && num_bytes != 0 && alignment > BITS_PER_WORD)
info->gpr_offset += info->gpr_offset & 1;
/* Partition the argument between registers and stack. */
info->num_fprs = 0;
info->num_gprs = MIN (num_words, MAX_ARGS_IN_REGISTERS - info->gpr_offset);
info->stack_p = (num_words - info->num_gprs) != 0;
if (info->num_gprs || return_p)
return gen_rtx_REG (mode, gpr_base + info->gpr_offset);
return NULL_RTX;
}
/* Implement TARGET_FUNCTION_ARG. */
static rtx
riscv_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
struct riscv_arg_info info;
if (arg.end_marker_p ())
/* Return the calling convention that used by the current function. */
return gen_int_mode (cum->variant_cc, SImode);
return riscv_get_arg_info (&info, cum, arg.mode, arg.type, arg.named, false);
}
/* Implement TARGET_FUNCTION_ARG_ADVANCE. */
static void
riscv_function_arg_advance (cumulative_args_t cum_v,
const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
struct riscv_arg_info info;
riscv_get_arg_info (&info, cum, arg.mode, arg.type, arg.named, false);
/* Set the corresponding register in USED_VRS to used status. */
for (unsigned int i = 0; i < info.num_vrs; i++)
{
gcc_assert (!cum->used_vrs[info.vr_offset + i]);
cum->used_vrs[info.vr_offset + i] = true;
}
if ((info.num_vrs > 0 || info.num_mrs > 0) && cum->variant_cc != RISCV_CC_V)
{
error ("RVV type %qT cannot be passed to an unprototyped function",
arg.type);
/* Avoid repeating the message */
cum->variant_cc = RISCV_CC_V;
}
/* Advance the register count. This has the effect of setting
num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
argument required us to skip the final GPR and pass the whole
argument on the stack. */
cum->num_fprs = info.fpr_offset + info.num_fprs;
cum->num_gprs = info.gpr_offset + info.num_gprs;
cum->num_mrs = info.mr_offset + info.num_mrs;
}
/* Implement TARGET_ARG_PARTIAL_BYTES. */
static int
riscv_arg_partial_bytes (cumulative_args_t cum,
const function_arg_info &generic_arg)
{
struct riscv_arg_info arg;
riscv_get_arg_info (&arg, get_cumulative_args (cum), generic_arg.mode,
generic_arg.type, generic_arg.named, false);
return arg.stack_p ? arg.num_gprs * UNITS_PER_WORD : 0;
}
/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
VALTYPE is the return type and MODE is VOIDmode. For libcalls,
VALTYPE is null and MODE is the mode of the return value. */
rtx
riscv_function_value (const_tree type, const_tree func, machine_mode mode)
{
struct riscv_arg_info info;
CUMULATIVE_ARGS args;
if (type)
{
int unsigned_p = TYPE_UNSIGNED (type);
mode = TYPE_MODE (type);
/* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
return values, promote the mode here too. */
mode = promote_function_mode (type, mode, &unsigned_p, func, 1);
}
memset (&args, 0, sizeof args);
return riscv_get_arg_info (&info, &args, mode, type, true, true);
}
/* Implement TARGET_PASS_BY_REFERENCE. */
static bool
riscv_pass_by_reference (cumulative_args_t cum_v, const function_arg_info &arg)
{
HOST_WIDE_INT size = arg.type_size_in_bytes ().to_constant ();;
struct riscv_arg_info info;
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
/* ??? std_gimplify_va_arg_expr passes NULL for cum. Fortunately, we
never pass variadic arguments in floating-point and vector registers,
so we can avoid the call to riscv_get_arg_info in this case. */
if (cum != NULL)
{
riscv_get_arg_info (&info, cum, arg.mode, arg.type, arg.named, false);
/* Don't pass by reference if we can use a floating-point register. */
if (info.num_fprs)
return false;
/* Don't pass by reference if we can use general register(s) for vls. */
if (info.num_gprs && riscv_v_ext_vls_mode_p (arg.mode))
return false;
/* Don't pass by reference if we can use vector register groups. */
if (info.num_vrs > 0 || info.num_mrs > 0)
return false;
}
/* Passed by reference when:
1. The scalable vector argument is anonymous.
2. Args cannot be passed through vector registers. */
if (riscv_v_ext_mode_p (arg.mode))
return true;
/* Pass by reference if the data do not fit in two integer registers. */
return !IN_RANGE (size, 0, 2 * UNITS_PER_WORD);
}
/* Implement TARGET_RETURN_IN_MEMORY. */
static bool
riscv_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
{
CUMULATIVE_ARGS args;
cumulative_args_t cum = pack_cumulative_args (&args);
/* The rules for returning in memory are the same as for passing the
first named argument by reference. */
memset (&args, 0, sizeof args);
function_arg_info arg (const_cast (type), /*named=*/true);
return riscv_pass_by_reference (cum, arg);
}
/* Implement TARGET_SETUP_INCOMING_VARARGS. */
static void
riscv_setup_incoming_varargs (cumulative_args_t cum,
const function_arg_info &arg,
int *pretend_size ATTRIBUTE_UNUSED, int no_rtl)
{
CUMULATIVE_ARGS local_cum;
int gp_saved;
/* The caller has advanced CUM up to, but not beyond, the last named
argument. Advance a local copy of CUM past the last "real" named
argument, to find out how many registers are left over. */
local_cum = *get_cumulative_args (cum);
if (!TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (current_function_decl))
|| arg.type != NULL_TREE)
riscv_function_arg_advance (pack_cumulative_args (&local_cum), arg);
/* Found out how many registers we need to save. */
gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
if (!no_rtl && gp_saved > 0)
{
rtx ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
REG_PARM_STACK_SPACE (cfun->decl)
- gp_saved * UNITS_PER_WORD);
rtx mem = gen_frame_mem (BLKmode, ptr);
set_mem_alias_set (mem, get_varargs_alias_set ());
move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
mem, gp_saved);
}
if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
cfun->machine->varargs_size = gp_saved * UNITS_PER_WORD;
}
/* Return the descriptor of the Standard Vector Calling Convention Variant. */
static const predefined_function_abi &
riscv_v_abi ()
{
predefined_function_abi &v_abi = function_abis[RISCV_CC_V];
if (!v_abi.initialized_p ())
{
HARD_REG_SET full_reg_clobbers
= default_function_abi.full_reg_clobbers ();
/* Callee-saved vector registers: v1-v7, v24-v31. */
for (int regno = V_REG_FIRST + 1; regno <= V_REG_FIRST + 7; regno += 1)
CLEAR_HARD_REG_BIT (full_reg_clobbers, regno);
for (int regno = V_REG_FIRST + 24; regno <= V_REG_FIRST + 31; regno += 1)
CLEAR_HARD_REG_BIT (full_reg_clobbers, regno);
v_abi.initialize (RISCV_CC_V, full_reg_clobbers);
}
return v_abi;
}
static bool
riscv_vector_int_type_p (const_tree type)
{
machine_mode mode = TYPE_MODE (type);
if (VECTOR_MODE_P (mode))
return INTEGRAL_MODE_P (GET_MODE_INNER (mode));
const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
return strstr (name, "int") != NULL || strstr (name, "uint") != NULL;
}
bool
riscv_vector_float_type_p (const_tree type)
{
if (!riscv_vector_type_p (type))
return false;
machine_mode mode = TYPE_MODE (type);
if (VECTOR_MODE_P (mode))
return FLOAT_MODE_P (GET_MODE_INNER (mode));
const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
return strstr (name, "vfloat") != NULL;
}
static int
riscv_vector_element_bitsize (const_tree type)
{
machine_mode mode = TYPE_MODE (type);
if (VECTOR_MODE_P (mode))
return GET_MODE_BITSIZE (GET_MODE_INNER (mode));
const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
if (strstr (name, "bool") != NULL)
return 1;
else if (strstr (name, "int8") != NULL)
return 8;
else if (strstr (name, "int16") != NULL || strstr (name, "float16") != NULL)
return 16;
else if (strstr (name, "int32") != NULL || strstr (name, "float32") != NULL)
return 32;
else if (strstr (name, "int64") != NULL || strstr (name, "float64") != NULL)
return 64;
gcc_unreachable ();
}
static int
riscv_vector_required_min_vlen (const_tree type)
{
machine_mode mode = TYPE_MODE (type);
if (riscv_v_ext_mode_p (mode))
return TARGET_MIN_VLEN;
int element_bitsize = riscv_vector_element_bitsize (type);
const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
if (strstr (name, "bool64") != NULL)
return element_bitsize * 64;
else if (strstr (name, "bool32") != NULL)
return element_bitsize * 32;
else if (strstr (name, "bool16") != NULL)
return element_bitsize * 16;
else if (strstr (name, "bool8") != NULL)
return element_bitsize * 8;
else if (strstr (name, "bool4") != NULL)
return element_bitsize * 4;
else if (strstr (name, "bool2") != NULL)
return element_bitsize * 2;
if (strstr (name, "mf8") != NULL)
return element_bitsize * 8;
else if (strstr (name, "mf4") != NULL)
return element_bitsize * 4;
else if (strstr (name, "mf2") != NULL)
return element_bitsize * 2;
return element_bitsize;
}
static void
riscv_validate_vector_type (const_tree type, const char *hint)
{
gcc_assert (riscv_vector_type_p (type));
if (!TARGET_VECTOR)
{
error_at (input_location, "%s %qT requires the V ISA extension",
hint, type);
return;
}
int element_bitsize = riscv_vector_element_bitsize (type);
bool int_type_p = riscv_vector_int_type_p (type);
if (int_type_p && element_bitsize == 64
&& !TARGET_VECTOR_ELEN_64_P (riscv_vector_elen_flags))
{
error_at (input_location,
"%s %qT requires the zve64x, zve64f, zve64d or v ISA extension",
hint, type);
return;
}
bool float_type_p = riscv_vector_float_type_p (type);
if (float_type_p && element_bitsize == 16
&& (!TARGET_VECTOR_ELEN_FP_16_P (riscv_vector_elen_flags)
&& !TARGET_VECTOR_ELEN_BF_16_P (riscv_vector_elen_flags)))
{
const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
if (strstr (name, "vfloat"))
error_at (input_location,
"%s %qT requires the zvfhmin or zvfh ISA extension",
hint, type);
return;
}
if (float_type_p && element_bitsize == 32
&& !TARGET_VECTOR_ELEN_FP_32_P (riscv_vector_elen_flags))
{
error_at (input_location,
"%s %qT requires the zve32f, zve64f, zve64d or v ISA extension",
hint, type);
return;
}
if (float_type_p && element_bitsize == 64
&& !TARGET_VECTOR_ELEN_FP_64_P (riscv_vector_elen_flags))
{
error_at (input_location,
"%s %qT requires the zve64d or v ISA extension", hint, type);
return;
}
int required_min_vlen = riscv_vector_required_min_vlen (type);
if (TARGET_MIN_VLEN < required_min_vlen)
{
error_at (
input_location,
"%s %qT requires the minimal vector length %qd but %qd is given",
hint, type, required_min_vlen, TARGET_MIN_VLEN);
return;
}
}
/* Return true if a function with type FNTYPE returns its value in
RISC-V V registers. */
static bool
riscv_return_value_is_vector_type_p (const_tree fntype)
{
tree return_type = TREE_TYPE (fntype);
if (riscv_vector_type_p (return_type))
{
riscv_validate_vector_type (return_type, "return type");
return true;
}
else
return false;
}
/* Return true if a function with type FNTYPE takes arguments in
RISC-V V registers. */
static bool
riscv_arguments_is_vector_type_p (const_tree fntype)
{
for (tree chain = TYPE_ARG_TYPES (fntype); chain && chain != void_list_node;
chain = TREE_CHAIN (chain))
{
tree arg_type = TREE_VALUE (chain);
if (riscv_vector_type_p (arg_type))
{
riscv_validate_vector_type (arg_type, "argument type");
return true;
}
}
return false;
}
/* Return true if FUNC is a riscv_vector_cc function.
For more details please reference the below link.
https://github.com/riscv-non-isa/riscv-c-api-doc/pull/67 */
static bool
riscv_vector_cc_function_p (const_tree fntype)
{
tree attr = TYPE_ATTRIBUTES (fntype);
bool vector_cc_p = lookup_attribute ("vector_cc", attr) != NULL_TREE
|| lookup_attribute ("riscv_vector_cc", attr) != NULL_TREE;
if (vector_cc_p && !TARGET_VECTOR)
error_at (input_location,
"function attribute %qs requires the V ISA extension",
"riscv_vector_cc");
return vector_cc_p;
}
/* Implement TARGET_FNTYPE_ABI. */
static const predefined_function_abi &
riscv_fntype_abi (const_tree fntype)
{
/* Implement the vector calling convention. For more details please
reference the below link.
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/389 */
if (riscv_return_value_is_vector_type_p (fntype)
|| riscv_arguments_is_vector_type_p (fntype)
|| riscv_vector_cc_function_p (fntype))
return riscv_v_abi ();
return default_function_abi;
}
/* Return riscv calling convention of call_insn. */
riscv_cc
get_riscv_cc (const rtx use)
{
gcc_assert (GET_CODE (use) == USE);
rtx unspec = XEXP (use, 0);
gcc_assert (GET_CODE (unspec) == UNSPEC
&& XINT (unspec, 1) == UNSPEC_CALLEE_CC);
riscv_cc cc = (riscv_cc) INTVAL (XVECEXP (unspec, 0, 0));
gcc_assert (cc < RISCV_CC_UNKNOWN);
return cc;
}
/* Implement TARGET_INSN_CALLEE_ABI. */
const predefined_function_abi &
riscv_insn_callee_abi (const rtx_insn *insn)
{
rtx pat = PATTERN (insn);
gcc_assert (GET_CODE (pat) == PARALLEL);
riscv_cc cc = get_riscv_cc (XVECEXP (pat, 0, 1));
return function_abis[cc];
}
/* Handle an attribute requiring a FUNCTION_DECL;
arguments as in struct attribute_spec.handler. */
static tree
riscv_handle_fndecl_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (TREE_CODE (*node) != FUNCTION_DECL)
{
warning (OPT_Wattributes, "%qE attribute only applies to functions",
name);
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Verify type based attributes. NODE is the what the attribute is being
applied to. NAME is the attribute name. ARGS are the attribute args.
FLAGS gives info about the context. NO_ADD_ATTRS should be set to true if
the attribute should be ignored. */
static tree
riscv_handle_type_attribute (tree *node ATTRIBUTE_UNUSED, tree name, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
/* Check for an argument. */
if (is_attribute_p ("interrupt", name))
{
if (args)
{
tree cst = TREE_VALUE (args);
const char *string;
if (TREE_CODE (cst) != STRING_CST)
{
warning (OPT_Wattributes,
"%qE attribute requires a string argument",
name);
*no_add_attrs = true;
return NULL_TREE;
}
string = TREE_STRING_POINTER (cst);
if (strcmp (string, "user") && strcmp (string, "supervisor")
&& strcmp (string, "machine"))
{
warning (OPT_Wattributes,
"argument to %qE attribute is not %<\"user\"%>, %<\"supervisor\"%>, "
"or %<\"machine\"%>", name);
*no_add_attrs = true;
}
}
}
return NULL_TREE;
}
static tree
riscv_handle_rvv_vector_bits_attribute (tree *node, tree name, tree args,
ATTRIBUTE_UNUSED int flags,
bool *no_add_attrs)
{
if (!is_attribute_p ("riscv_rvv_vector_bits", name))
return NULL_TREE;
*no_add_attrs = true;
if (rvv_vector_bits != RVV_VECTOR_BITS_ZVL)
{
error (
"%qs is only supported when %<-mrvv-vector-bits=zvl%> is specified",
"riscv_rvv_vector_bits");
return NULL_TREE;
}
tree type = *node;
if (!VECTOR_TYPE_P (type) || !riscv_vector::builtin_type_p (type))
{
error ("%qs applied to non-RVV type %qT", "riscv_rvv_vector_bits", type);
return NULL_TREE;
}
tree size = TREE_VALUE (args);
if (TREE_CODE (size) != INTEGER_CST)
{
error ("%qs requires an integer constant", "riscv_rvv_vector_bits");
return NULL_TREE;
}
unsigned HOST_WIDE_INT args_in_bits = tree_to_uhwi (size);
unsigned HOST_WIDE_INT type_mode_bits
= GET_MODE_PRECISION (TYPE_MODE (type)).to_constant ();
if (args_in_bits != type_mode_bits)
{
error ("invalid RVV vector size %qd, "
"expected size is %qd based on LMUL of type and %qs",
(int)args_in_bits, (int)type_mode_bits, "-mrvv-vector-bits=zvl");
return NULL_TREE;
}
type = build_distinct_type_copy (type);
TYPE_ATTRIBUTES (type)
= remove_attribute ("RVV sizeless type",
copy_list (TYPE_ATTRIBUTES (type)));
/* The operations like alu/cmp on vbool*_t is not well defined,
continue to treat vbool*_t as indivisible. */
if (!VECTOR_BOOLEAN_TYPE_P (type))
TYPE_INDIVISIBLE_P (type) = 0;
*node = type;
return NULL_TREE;
}
/* Return true if function TYPE is an interrupt function. */
static bool
riscv_interrupt_type_p (tree type)
{
return lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type)) != NULL;
}
/* Return true if FUNC is a naked function. */
static bool
riscv_naked_function_p (tree func)
{
tree func_decl = func;
if (func == NULL_TREE)
func_decl = current_function_decl;
return NULL_TREE != lookup_attribute ("naked", DECL_ATTRIBUTES (func_decl));
}
/* Implement TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS. */
static bool
riscv_allocate_stack_slots_for_args ()
{
/* Naked functions should not allocate stack slots for arguments. */
return !riscv_naked_function_p (current_function_decl);
}
/* Implement TARGET_WARN_FUNC_RETURN. */
static bool
riscv_warn_func_return (tree decl)
{
/* Naked functions are implemented entirely in assembly, including the
return sequence, so suppress warnings about this. */
return !riscv_naked_function_p (decl);
}
/* Implement TARGET_EXPAND_BUILTIN_VA_START. */
static void
riscv_va_start (tree valist, rtx nextarg)
{
nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size);
std_expand_builtin_va_start (valist, nextarg);
}
/* Make ADDR suitable for use as a call or sibcall target. */
rtx
riscv_legitimize_call_address (rtx addr)
{
if (!call_insn_operand (addr, VOIDmode))
{
rtx reg = RISCV_CALL_ADDRESS_TEMP (Pmode);
riscv_emit_move (reg, addr);
return reg;
}
return addr;
}
/* Print symbolic operand OP, which is part of a HIGH or LO_SUM
in context CONTEXT. HI_RELOC indicates a high-part reloc. */
static void
riscv_print_operand_reloc (FILE *file, rtx op, bool hi_reloc)
{
const char *reloc;
switch (riscv_classify_symbolic_expression (op))
{
case SYMBOL_ABSOLUTE:
reloc = hi_reloc ? "%hi" : "%lo";
break;
case SYMBOL_PCREL:
reloc = hi_reloc ? "%pcrel_hi" : "%pcrel_lo";
break;
case SYMBOL_TLS_LE:
reloc = hi_reloc ? "%tprel_hi" : "%tprel_lo";
break;
default:
output_operand_lossage ("invalid use of '%%%c'", hi_reloc ? 'h' : 'R');
return;
}
fprintf (file, "%s(", reloc);
output_addr_const (file, riscv_strip_unspec_address (op));
fputc (')', file);
}
/* Return the memory model that encapsulates both given models. */
enum memmodel
riscv_union_memmodels (enum memmodel model1, enum memmodel model2)
{
model1 = memmodel_base (model1);
model2 = memmodel_base (model2);
enum memmodel weaker = model1 <= model2 ? model1 : model2;
enum memmodel stronger = model1 > model2 ? model1 : model2;
switch (stronger)
{
case MEMMODEL_SEQ_CST:
case MEMMODEL_ACQ_REL:
return stronger;
case MEMMODEL_RELEASE:
if (weaker == MEMMODEL_ACQUIRE || weaker == MEMMODEL_CONSUME)
return MEMMODEL_ACQ_REL;
else
return stronger;
case MEMMODEL_ACQUIRE:
case MEMMODEL_CONSUME:
case MEMMODEL_RELAXED:
return stronger;
default:
gcc_unreachable ();
}
}
/* Return true if the .AQ suffix should be added to an AMO to implement the
acquire portion of memory model MODEL. */
static bool
riscv_memmodel_needs_amo_acquire (enum memmodel model)
{
/* ZTSO amo mappings require no annotations. */
if (TARGET_ZTSO)
return false;
switch (model)
{
case MEMMODEL_ACQ_REL:
case MEMMODEL_SEQ_CST:
case MEMMODEL_ACQUIRE:
case MEMMODEL_CONSUME:
return true;
case MEMMODEL_RELEASE:
case MEMMODEL_RELAXED:
return false;
default:
gcc_unreachable ();
}
}
/* Return true if the .RL suffix should be added to an AMO to implement the
release portion of memory model MODEL. */
static bool
riscv_memmodel_needs_amo_release (enum memmodel model)
{
/* ZTSO amo mappings require no annotations. */
if (TARGET_ZTSO)
return false;
switch (model)
{
case MEMMODEL_ACQ_REL:
case MEMMODEL_SEQ_CST:
case MEMMODEL_RELEASE:
return true;
case MEMMODEL_ACQUIRE:
case MEMMODEL_CONSUME:
case MEMMODEL_RELAXED:
return false;
default:
gcc_unreachable ();
}
}
/* Get REGNO alignment of vector mode.
The alignment = LMUL when the LMUL >= 1.
Otherwise, alignment = 1. */
int
riscv_get_v_regno_alignment (machine_mode mode)
{
/* 3.3.2. LMUL = 2,4,8, register numbers should be multiple of 2,4,8.
but for mask vector register, register numbers can be any number. */
int lmul = 1;
machine_mode rvv_mode = mode;
if (riscv_v_ext_vls_mode_p (rvv_mode))
{
int size = GET_MODE_BITSIZE (rvv_mode).to_constant ();
if (size < TARGET_MIN_VLEN)
return 1;
else
return size / TARGET_MIN_VLEN;
}
if (riscv_v_ext_tuple_mode_p (rvv_mode))
rvv_mode = riscv_vector::get_subpart_mode (rvv_mode);
poly_int64 size = GET_MODE_SIZE (rvv_mode);
if (known_gt (size, UNITS_PER_V_REG))
lmul = exact_div (size, UNITS_PER_V_REG).to_constant ();
return lmul;
}
/* Define ASM_OUTPUT_OPCODE to do anything special before
emitting an opcode. */
const char *
riscv_asm_output_opcode (FILE *asm_out_file, const char *p)
{
if (TARGET_XTHEADVECTOR)
return th_asm_output_opcode (asm_out_file, p);
return p;
}
/* Implement TARGET_PRINT_OPERAND. The RISCV-specific operand codes are:
'h' Print the high-part relocation associated with OP, after stripping
any outermost HIGH.
'R' Print the low-part relocation associated with OP.
'C' Print the integer branch condition for comparison OP.
'N' Print the inverse of the integer branch condition for comparison OP.
'A' Print the atomic operation suffix for memory model OP.
'I' Print the LR suffix for memory model OP.
'J' Print the SC suffix for memory model OP.
'L' Print a non-temporal locality hints instruction.
'z' Print x0 if OP is zero, otherwise print OP normally.
'i' Print i if the operand is not a register.
'S' Print shift-index of single-bit mask OP.
'T' Print shift-index of inverted single-bit mask OP.
'~' Print w if TARGET_64BIT is true; otherwise not print anything.
Note please keep this list and the list in riscv.md in sync. */
static void
riscv_print_operand (FILE *file, rtx op, int letter)
{
/* `~` does not take an operand so op will be null
Check for before accessing op.
*/
if (letter == '~')
{
if (TARGET_64BIT)
fputc('w', file);
return;
}
machine_mode mode = GET_MODE (op);
enum rtx_code code = GET_CODE (op);
switch (letter)
{
case 'o': {
/* Print 'OP' variant for RVV instructions.
1. If the operand is VECTOR REG, we print 'v'(vnsrl.wv).
2. If the operand is CONST_INT/CONST_VECTOR, we print 'i'(vnsrl.wi).
3. If the operand is SCALAR REG, we print 'x'(vnsrl.wx). */
if (riscv_v_ext_mode_p (mode))
{
if (REG_P (op))
asm_fprintf (file, "v");
else if (CONST_VECTOR_P (op))
asm_fprintf (file, "i");
else
output_operand_lossage ("invalid vector operand");
}
else
{
if (CONST_INT_P (op))
asm_fprintf (file, "i");
else
asm_fprintf (file, "x");
}
break;
}
case 'v': {
rtx elt;
if (REG_P (op))
asm_fprintf (file, "%s", reg_names[REGNO (op)]);
else
{
if (!const_vec_duplicate_p (op, &elt))
output_operand_lossage ("invalid vector constant");
else if (satisfies_constraint_Wc0 (op))
asm_fprintf (file, "0");
else if (satisfies_constraint_vi (op)
|| satisfies_constraint_vj (op)
|| satisfies_constraint_vk (op))
asm_fprintf (file, "%wd", INTVAL (elt));
else
output_operand_lossage ("invalid vector constant");
}
break;
}
case 'V': {
rtx elt;
if (!const_vec_duplicate_p (op, &elt))
output_operand_lossage ("invalid vector constant");
else if (satisfies_constraint_vj (op))
asm_fprintf (file, "%wd", -INTVAL (elt));
else
output_operand_lossage ("invalid vector constant");
break;
}
case 'm': {
if (riscv_v_ext_mode_p (mode))
{
/* Calculate lmul according to mode and print the value. */
int lmul = riscv_get_v_regno_alignment (mode);
asm_fprintf (file, "%d", lmul);
}
else if (code == CONST_INT)
{
/* If it is a const_int value, it denotes the VLMUL field enum. */
unsigned int vlmul = UINTVAL (op);
switch (vlmul)
{
case riscv_vector::LMUL_1:
asm_fprintf (file, "%s", "m1");
break;
case riscv_vector::LMUL_2:
asm_fprintf (file, "%s", "m2");
break;
case riscv_vector::LMUL_4:
asm_fprintf (file, "%s", "m4");
break;
case riscv_vector::LMUL_8:
asm_fprintf (file, "%s", "m8");
break;
case riscv_vector::LMUL_F8:
asm_fprintf (file, "%s", "mf8");
break;
case riscv_vector::LMUL_F4:
asm_fprintf (file, "%s", "mf4");
break;
case riscv_vector::LMUL_F2:
asm_fprintf (file, "%s", "mf2");
break;
default:
gcc_unreachable ();
}
}
else
output_operand_lossage ("invalid vector constant");
break;
}
case 'p': {
if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL)
{
/* Print for RVV mask operand.
If op is reg, print ",v0.t".
Otherwise, don't print anything. */
if (code == REG)
fprintf (file, ",%s.t", reg_names[REGNO (op)]);
}
else if (code == CONST_INT)
{
/* Tail && Mask policy. */
asm_fprintf (file, "%s", IS_AGNOSTIC (UINTVAL (op)) ? "a" : "u");
}
else
output_operand_lossage ("invalid vector constant");
break;
}
case 'h':
if (code == HIGH)
op = XEXP (op, 0);
riscv_print_operand_reloc (file, op, true);
break;
case 'R':
riscv_print_operand_reloc (file, op, false);
break;
case 'C':
/* The RTL names match the instruction names. */
fputs (GET_RTX_NAME (code), file);
break;
case 'N':
/* The RTL names match the instruction names. */
fputs (GET_RTX_NAME (reverse_condition (code)), file);
break;
case 'A': {
const enum memmodel model = memmodel_base (INTVAL (op));
if (riscv_memmodel_needs_amo_acquire (model)
&& riscv_memmodel_needs_amo_release (model))
fputs (".aqrl", file);
else if (riscv_memmodel_needs_amo_acquire (model))
fputs (".aq", file);
else if (riscv_memmodel_needs_amo_release (model))
fputs (".rl", file);
break;
}
case 'I': {
const enum memmodel model = memmodel_base (INTVAL (op));
if (TARGET_ZTSO && model != MEMMODEL_SEQ_CST)
/* LR ops only have an annotation for SEQ_CST in the Ztso mapping. */
break;
else if (model == MEMMODEL_SEQ_CST)
fputs (".aqrl", file);
else if (riscv_memmodel_needs_amo_acquire (model))
fputs (".aq", file);
break;
}
case 'J': {
const enum memmodel model = memmodel_base (INTVAL (op));
if (TARGET_ZTSO && model == MEMMODEL_SEQ_CST)
/* SC ops only have an annotation for SEQ_CST in the Ztso mapping. */
fputs (".rl", file);
else if (TARGET_ZTSO)
break;
else if (riscv_memmodel_needs_amo_release (model))
fputs (".rl", file);
break;
}
case 'L':
{
const char *ntl_hint = NULL;
switch (INTVAL (op))
{
case 0:
ntl_hint = "ntl.all";
break;
case 1:
ntl_hint = "ntl.pall";
break;
case 2:
ntl_hint = "ntl.p1";
break;
}
if (ntl_hint)
asm_fprintf (file, "%s\n\t", ntl_hint);
break;
}
case 'i':
if (code != REG)
fputs ("i", file);
break;
case 'B':
fputs (GET_RTX_NAME (code), file);
break;
case 'S':
{
rtx newop = GEN_INT (ctz_hwi (INTVAL (op)));
output_addr_const (file, newop);
break;
}
case 'T':
{
rtx newop = GEN_INT (ctz_hwi (~INTVAL (op)));
output_addr_const (file, newop);
break;
}
case 'X':
{
int ival = INTVAL (op) + 1;
rtx newop = GEN_INT (ctz_hwi (ival) + 1);
output_addr_const (file, newop);
break;
}
case 'Y':
{
unsigned int imm = (UINTVAL (op) & 63);
gcc_assert (imm <= 63);
rtx newop = GEN_INT (imm);
output_addr_const (file, newop);
break;
}
default:
switch (code)
{
case REG:
if (letter && letter != 'z')
output_operand_lossage ("invalid use of '%%%c'", letter);
fprintf (file, "%s", reg_names[REGNO (op)]);
break;
case MEM:
if (letter && letter != 'z')
output_operand_lossage ("invalid use of '%%%c'", letter);
else
output_address (mode, XEXP (op, 0));
break;
case CONST_DOUBLE:
{
if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
{
fputs (reg_names[GP_REG_FIRST], file);
break;
}
int fli_index = riscv_float_const_rtx_index_for_fli (op);
if (fli_index == -1 || fli_index > 31)
{
output_operand_lossage ("invalid use of '%%%c'", letter);
break;
}
asm_fprintf (file, "%s", fli_value_print[fli_index]);
break;
}
default:
if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
fputs (reg_names[GP_REG_FIRST], file);
else if (letter && letter != 'z')
output_operand_lossage ("invalid use of '%%%c'", letter);
else
output_addr_const (file, riscv_strip_unspec_address (op));
break;
}
}
}
/* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P */
static bool
riscv_print_operand_punct_valid_p (unsigned char code)
{
return (code == '~');
}
/* Implement TARGET_PRINT_OPERAND_ADDRESS. */
static void
riscv_print_operand_address (FILE *file, machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
struct riscv_address_info addr;
if (th_print_operand_address (file, mode, x))
return;
if (riscv_classify_address (&addr, x, word_mode, true))
switch (addr.type)
{
case ADDRESS_REG:
output_addr_const (file, riscv_strip_unspec_address (addr.offset));
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
return;
case ADDRESS_LO_SUM:
riscv_print_operand_reloc (file, addr.offset, false);
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
return;
case ADDRESS_CONST_INT:
output_addr_const (file, x);
fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
return;
case ADDRESS_SYMBOLIC:
output_addr_const (file, riscv_strip_unspec_address (x));
return;
default:
gcc_unreachable ();
}
gcc_unreachable ();
}
static bool
riscv_size_ok_for_small_data_p (int size)
{
return g_switch_value && IN_RANGE (size, 1, g_switch_value);
}
/* Return true if EXP should be placed in the small data section. */
static bool
riscv_in_small_data_p (const_tree x)
{
/* Because default_use_anchors_for_symbol_p doesn't gather small data to use
the anchor symbol to address nearby objects. In large model, it can get
the better result using the anchor optimization. */
if (riscv_cmodel == CM_LARGE)
return false;
if (TREE_CODE (x) == STRING_CST || TREE_CODE (x) == FUNCTION_DECL)
return false;
if (VAR_P (x) && DECL_SECTION_NAME (x))
{
const char *sec = DECL_SECTION_NAME (x);
return strcmp (sec, ".sdata") == 0 || strcmp (sec, ".sbss") == 0;
}
return riscv_size_ok_for_small_data_p (int_size_in_bytes (TREE_TYPE (x)));
}
/* Switch to the appropriate section for output of DECL. */
static section *
riscv_select_section (tree decl, int reloc,
unsigned HOST_WIDE_INT align)
{
switch (categorize_decl_for_section (decl, reloc))
{
case SECCAT_SRODATA:
return get_named_section (decl, ".srodata", reloc);
default:
return default_elf_select_section (decl, reloc, align);
}
}
/* Switch to the appropriate section for output of DECL. */
static void
riscv_unique_section (tree decl, int reloc)
{
const char *prefix = NULL;
bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP;
switch (categorize_decl_for_section (decl, reloc))
{
case SECCAT_SRODATA:
prefix = one_only ? ".sr" : ".srodata";
break;
default:
break;
}
if (prefix)
{
const char *name, *linkonce;
char *string;
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
name = targetm.strip_name_encoding (name);
/* If we're using one_only, then there needs to be a .gnu.linkonce
prefix to the section name. */
linkonce = one_only ? ".gnu.linkonce" : "";
string = ACONCAT ((linkonce, prefix, ".", name, NULL));
set_decl_section_name (decl, string);
return;
}
default_unique_section (decl, reloc);
}
/* Constant pools are per-function when in large code model. */
static inline bool
riscv_can_use_per_function_literal_pools_p (void)
{
return riscv_cmodel == CM_LARGE;
}
static bool
riscv_use_blocks_for_constant_p (machine_mode, const_rtx)
{
/* We can't use blocks for constants when we're using a per-function
constant pool. */
return !riscv_can_use_per_function_literal_pools_p ();
}
/* Return a section for X, handling small data. */
static section *
riscv_elf_select_rtx_section (machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
/* The literal pool stays with the function. */
if (riscv_can_use_per_function_literal_pools_p ())
return function_section (current_function_decl);
section *s = default_elf_select_rtx_section (mode, x, align);
if (riscv_size_ok_for_small_data_p (GET_MODE_SIZE (mode).to_constant ()))
{
if (startswith (s->named.name, ".rodata.cst"))
{
/* Rename .rodata.cst* to .srodata.cst*. */
char *name = (char *) alloca (strlen (s->named.name) + 2);
sprintf (name, ".s%s", s->named.name + 1);
return get_section (name, s->named.common.flags, NULL);
}
if (s == data_section)
return sdata_section;
}
return s;
}
/* Make the last instruction frame-related and note that it performs
the operation described by FRAME_PATTERN. */
static void
riscv_set_frame_expr (rtx frame_pattern)
{
rtx insn;
insn = get_last_insn ();
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
frame_pattern,
REG_NOTES (insn));
}
/* Return a frame-related rtx that stores REG at MEM.
REG must be a single register. */
static rtx
riscv_frame_set (rtx mem, rtx reg)
{
rtx set = gen_rtx_SET (mem, reg);
RTX_FRAME_RELATED_P (set) = 1;
return set;
}
/* Returns true if the current function might contain a far jump. */
static bool
riscv_far_jump_used_p ()
{
size_t func_size = 0;
if (cfun->machine->far_jump_used)
return true;
/* We can't change far_jump_used during or after reload, as there is
no chance to change stack frame layout. So we must rely on the
conservative heuristic below having done the right thing. */
if (reload_in_progress || reload_completed)
return false;
/* Estimate the function length. */
for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
func_size += get_attr_length (insn);
/* Conservatively determine whether some jump might exceed 1 MiB
displacement. */
if (func_size * 2 >= 0x100000)
cfun->machine->far_jump_used = true;
return cfun->machine->far_jump_used;
}
/* Return true, if the current function must save the incoming return
address. */
static bool
riscv_save_return_addr_reg_p (void)
{
/* The $ra register is call-clobbered: if this is not a leaf function,
save it. */
if (!crtl->is_leaf)
return true;
/* We need to save the incoming return address if __builtin_eh_return
is being used to set a different return address. */
if (crtl->calls_eh_return)
return true;
/* Far jumps/branches use $ra as a temporary to set up the target jump
location (clobbering the incoming return address). */
if (riscv_far_jump_used_p ())
return true;
/* We need to save it if anyone has used that. */
if (df_regs_ever_live_p (RETURN_ADDR_REGNUM))
return true;
/* Need not to use ra for leaf when frame pointer is turned off by
option whatever the omit-leaf-frame's value. */
if (frame_pointer_needed && crtl->is_leaf
&& !TARGET_OMIT_LEAF_FRAME_POINTER)
return true;
return false;
}
/* Return true if the current function must save register REGNO. */
static bool
riscv_save_reg_p (unsigned int regno)
{
bool call_saved = !global_regs[regno] && !call_used_or_fixed_reg_p (regno);
bool might_clobber = crtl->saves_all_registers
|| df_regs_ever_live_p (regno);
if (call_saved && might_clobber)
return true;
/* Save callee-saved V registers. */
if (V_REG_P (regno) && !crtl->abi->clobbers_full_reg_p (regno)
&& might_clobber)
return true;
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
return true;
if (regno == RETURN_ADDR_REGNUM && riscv_save_return_addr_reg_p ())
return true;
/* If this is an interrupt handler, then must save extra registers. */
if (cfun->machine->interrupt_handler_p)
{
/* zero register is always zero. */
if (regno == GP_REG_FIRST)
return false;
/* The function will return the stack pointer to its original value. */
if (regno == STACK_POINTER_REGNUM)
return false;
/* By convention, we assume that gp and tp are safe. */
if (regno == GP_REGNUM || regno == THREAD_POINTER_REGNUM)
return false;
/* We must save every register used in this function. If this is not a
leaf function, then we must save all temporary registers. */
if (df_regs_ever_live_p (regno)
|| (!crtl->is_leaf && call_used_or_fixed_reg_p (regno)))
return true;
}
return false;
}
/* Return TRUE if Zcmp push and pop insns should be
avoided. FALSE otherwise.
Only use multi push & pop if all GPRs masked can be covered,
and stack access is SP based,
and GPRs are at top of the stack frame,
and no conflicts in stack allocation with other features */
static bool
riscv_avoid_multi_push (const struct riscv_frame_info *frame)
{
if (!TARGET_ZCMP || crtl->calls_eh_return || frame_pointer_needed
|| cfun->machine->interrupt_handler_p || cfun->machine->varargs_size != 0
|| crtl->args.pretend_args_size != 0
|| (use_shrink_wrapping_separate ()
&& !riscv_avoid_shrink_wrapping_separate ())
|| (frame->mask & ~MULTI_PUSH_GPR_MASK))
return true;
return false;
}
/* Determine whether to use multi push insn. */
static bool
riscv_use_multi_push (const struct riscv_frame_info *frame)
{
if (riscv_avoid_multi_push (frame))
return false;
return (frame->multi_push_adj_base != 0);
}
/* Return TRUE if a libcall to save/restore GPRs should be
avoided. FALSE otherwise. */
static bool
riscv_avoid_save_libcall (void)
{
if (!TARGET_SAVE_RESTORE
|| crtl->calls_eh_return
|| frame_pointer_needed
|| cfun->machine->interrupt_handler_p
|| cfun->machine->varargs_size != 0
|| crtl->args.pretend_args_size != 0)
return true;
return false;
}
/* Determine whether to call GPR save/restore routines. */
static bool
riscv_use_save_libcall (const struct riscv_frame_info *frame)
{
if (riscv_avoid_save_libcall ())
return false;
return frame->save_libcall_adjustment != 0;
}
/* Determine which GPR save/restore routine to call. */
static unsigned
riscv_save_libcall_count (unsigned mask)
{
for (unsigned n = GP_REG_LAST; n > GP_REG_FIRST; n--)
if (BITSET_P (mask, n))
return CALLEE_SAVED_REG_NUMBER (n) + 1;
abort ();
}
/* calculate number of s regs in multi push and pop.
Note that {s0-s10} is not valid in Zcmp, use {s0-s11} instead. */
static unsigned
riscv_multi_push_sregs_count (unsigned mask)
{
unsigned num = riscv_save_libcall_count (mask);
return (num == ZCMP_INVALID_S0S10_SREGS_COUNTS) ? ZCMP_S0S11_SREGS_COUNTS
: num;
}
/* calculate number of regs(ra, s0-sx) in multi push and pop. */
static unsigned
riscv_multi_push_regs_count (unsigned mask)
{
/* 1 is for ra */
return riscv_multi_push_sregs_count (mask) + 1;
}
/* Handle 16 bytes align for poly_int. */
static poly_int64
riscv_16bytes_align (poly_int64 value)
{
return aligned_upper_bound (value, 16);
}
static HOST_WIDE_INT
riscv_16bytes_align (HOST_WIDE_INT value)
{
return ROUND_UP (value, 16);
}
/* Handle stack align for poly_int. */
static poly_int64
riscv_stack_align (poly_int64 value)
{
return aligned_upper_bound (value, PREFERRED_STACK_BOUNDARY / 8);
}
static HOST_WIDE_INT
riscv_stack_align (HOST_WIDE_INT value)
{
return RISCV_STACK_ALIGN (value);
}
/* Populate the current function's riscv_frame_info structure.
RISC-V stack frames grown downward. High addresses are at the top.
+-------------------------------+
| |
| incoming stack arguments |
| |
+-------------------------------+ <-- incoming stack pointer
| |
| callee-allocated save area |
| for arguments that are |
| split between registers and |
| the stack |
| |
+-------------------------------+ <-- arg_pointer_rtx
| |
| callee-allocated save area |
| for register varargs |
| |
+-------------------------------+ <-- hard_frame_pointer_rtx;
| | stack_pointer_rtx + gp_sp_offset
| GPR save area | + UNITS_PER_WORD
| |
+-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
| | + UNITS_PER_FP_REG
| FPR save area |
| |
+-------------------------------+ <-- stack_pointer_rtx
| | + v_sp_offset_top
| Vector Registers save area |
| |
| ----------------------------- | <-- stack_pointer_rtx
| padding | + v_sp_offset_bottom
+-------------------------------+ <-- frame_pointer_rtx (virtual)
| |
| local variables |
| |
P +-------------------------------+
| |
| outgoing stack arguments |
| |
+-------------------------------+ <-- stack_pointer_rtx
Dynamic stack allocations such as alloca insert data at point P.
They decrease stack_pointer_rtx but leave frame_pointer_rtx and
hard_frame_pointer_rtx unchanged. */
static HOST_WIDE_INT riscv_first_stack_step (struct riscv_frame_info *frame, poly_int64 remaining_size);
static void
riscv_compute_frame_info (void)
{
struct riscv_frame_info *frame;
poly_int64 offset;
bool interrupt_save_prologue_temp = false;
unsigned int regno, i, num_x_saved = 0, num_f_saved = 0, x_save_size = 0;
unsigned int num_v_saved = 0;
frame = &cfun->machine->frame;
/* Adjust the outgoing arguments size if required. Keep it in sync with what
the mid-end is doing. */
crtl->outgoing_args_size = STACK_DYNAMIC_OFFSET (cfun);
/* In an interrupt function, there are two cases in which t0 needs to be used:
1, If we have a large frame, then we need to save/restore t0. We check for
this before clearing the frame struct.
2, Need to save and restore some CSRs in the frame. */
if (cfun->machine->interrupt_handler_p)
{
HOST_WIDE_INT step1 = riscv_first_stack_step (frame, frame->total_size);
if (! POLY_SMALL_OPERAND_P ((frame->total_size - step1))
|| (TARGET_HARD_FLOAT || TARGET_ZFINX))
interrupt_save_prologue_temp = true;
}
frame->reset();
if (!cfun->machine->naked_p)
{
/* Find out which GPRs we need to save. */
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (riscv_save_reg_p (regno)
|| (interrupt_save_prologue_temp
&& (regno == RISCV_PROLOGUE_TEMP_REGNUM)))
frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++;
/* If this function calls eh_return, we must also save and restore the
EH data registers. */
if (crtl->calls_eh_return)
for (i = 0; (regno = EH_RETURN_DATA_REGNO (i)) != INVALID_REGNUM; i++)
frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++;
/* Find out which FPRs we need to save. This loop must iterate over
the same space as its companion in riscv_for_each_saved_reg. */
if (TARGET_HARD_FLOAT)
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
if (riscv_save_reg_p (regno))
frame->fmask |= 1 << (regno - FP_REG_FIRST), num_f_saved++;
/* Find out which V registers we need to save. */
if (TARGET_VECTOR)
for (regno = V_REG_FIRST; regno <= V_REG_LAST; regno++)
if (riscv_save_reg_p (regno))
{
frame->vmask |= 1 << (regno - V_REG_FIRST);
num_v_saved++;
}
}
if (frame->mask)
{
x_save_size = riscv_stack_align (num_x_saved * UNITS_PER_WORD);
/* 1 is for ra */
unsigned num_save_restore = 1 + riscv_save_libcall_count (frame->mask);
/* Only use save/restore routines if they don't alter the stack size. */
if (riscv_stack_align (num_save_restore * UNITS_PER_WORD) == x_save_size
&& !riscv_avoid_save_libcall ())
{
/* Libcall saves/restores 3 registers at once, so we need to
allocate 12 bytes for callee-saved register. */
if (TARGET_RVE)
x_save_size = 3 * UNITS_PER_WORD;
frame->save_libcall_adjustment = x_save_size;
}
if (!riscv_avoid_multi_push (frame))
{
/* num(ra, s0-sx) */
unsigned num_multi_push = riscv_multi_push_regs_count (frame->mask);
x_save_size = riscv_stack_align (num_multi_push * UNITS_PER_WORD);
frame->multi_push_adj_base = riscv_16bytes_align (x_save_size);
}
}
/* In an interrupt function, we need extra space for the initial saves of CSRs. */
if (cfun->machine->interrupt_handler_p
&& ((TARGET_HARD_FLOAT && frame->fmask)
|| (TARGET_ZFINX
/* Except for RISCV_PROLOGUE_TEMP_REGNUM. */
&& (frame->mask & ~(1 << RISCV_PROLOGUE_TEMP_REGNUM)))))
/* Save and restore FCSR. */
/* TODO: When P or V extensions support interrupts, some of their CSRs
may also need to be saved and restored. */
x_save_size += riscv_stack_align (1 * UNITS_PER_WORD);
/* At the bottom of the frame are any outgoing stack arguments. */
offset = riscv_stack_align (crtl->outgoing_args_size);
/* Next are local stack variables. */
offset += riscv_stack_align (get_frame_size ());
/* The virtual frame pointer points above the local variables. */
frame->frame_pointer_offset = offset;
/* Next are the callee-saved VRs. */
if (frame->vmask)
offset += riscv_stack_align (num_v_saved * UNITS_PER_V_REG);
frame->v_sp_offset_top = offset;
frame->v_sp_offset_bottom
= frame->v_sp_offset_top - num_v_saved * UNITS_PER_V_REG;
/* Next are the callee-saved FPRs. */
if (frame->fmask)
offset += riscv_stack_align (num_f_saved * UNITS_PER_FP_REG);
frame->fp_sp_offset = offset - UNITS_PER_FP_REG;
/* Next are the callee-saved GPRs. */
if (frame->mask)
{
offset += x_save_size;
/* align to 16 bytes and add paddings to GPR part to honor
both stack alignment and zcmp pus/pop size alignment. */
if (riscv_use_multi_push (frame)
&& known_lt (offset, frame->multi_push_adj_base
+ ZCMP_SP_INC_STEP * ZCMP_MAX_SPIMM))
offset = riscv_16bytes_align (offset);
}
frame->gp_sp_offset = offset - UNITS_PER_WORD;
/* The hard frame pointer points above the callee-saved GPRs. */
frame->hard_frame_pointer_offset = offset;
/* Above the hard frame pointer is the callee-allocated varags save area. */
offset += riscv_stack_align (cfun->machine->varargs_size);
/* Next is the callee-allocated area for pretend stack arguments. */
offset += riscv_stack_align (crtl->args.pretend_args_size);
/* Arg pointer must be below pretend args, but must be above alignment
padding. */
frame->arg_pointer_offset = offset - crtl->args.pretend_args_size;
frame->total_size = offset;
/* Next points the incoming stack pointer and any incoming arguments. */
}
/* Implement TARGET_CAN_INLINE_P. Determine whether inlining the function
CALLER into the function CALLEE is safe. Inlining should be rejected if
there is no always_inline attribute and the target options differ except
for differences in ISA extensions or performance tuning options like the
code model, TLS dialect, and stack protector, etc. Inlining is
permissible when the non-ISA extension options are identical and the ISA
extensions of CALLEE are a subset of those of CALLER, thereby improving
the performance of Function Multi-Versioning. */
static bool
riscv_can_inline_p (tree caller, tree callee)
{
/* Do not inline when callee is versioned but caller is not. */
if (DECL_FUNCTION_VERSIONED (callee) && ! DECL_FUNCTION_VERSIONED (caller))
return false;
tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);
tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
/* It's safe to inline if callee has no opts. */
if (! callee_tree)
return true;
if (! caller_tree)
caller_tree = target_option_default_node;
struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);
struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree);
int isa_flag_mask = riscv_x_target_flags_isa_mask ();
/* Callee and caller should have the same target options except for ISA. */
int callee_target_flags = callee_opts->x_target_flags & ~isa_flag_mask;
int caller_target_flags = caller_opts->x_target_flags & ~isa_flag_mask;
if (callee_target_flags != caller_target_flags)
return false;
/* Callee's ISA should be a subset of the caller's ISA. */
if (! riscv_ext_is_subset (caller_opts, callee_opts))
return false;
/* If the callee has always_inline set, we can ignore the rest attributes. */
if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee)))
return true;
if (caller_opts->x_riscv_cmodel != callee_opts->x_riscv_cmodel)
return false;
if (caller_opts->x_riscv_tls_dialect != callee_opts->x_riscv_tls_dialect)
return false;
if (caller_opts->x_riscv_stack_protector_guard_reg
!= callee_opts->x_riscv_stack_protector_guard_reg)
return false;
if (caller_opts->x_riscv_stack_protector_guard_offset
!= callee_opts->x_riscv_stack_protector_guard_offset)
return false;
if (caller_opts->x_rvv_vector_strict_align
!= callee_opts->x_rvv_vector_strict_align)
return false;
return true;
}
/* Make sure that we're not trying to eliminate to the wrong hard frame
pointer. */
static bool
riscv_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
}
/* Helper to determine if reg X pertains to stack. */
bool
riscv_reg_frame_related (rtx x)
{
return REG_P (x)
&& (REGNO (x) == FRAME_POINTER_REGNUM
|| REGNO (x) == HARD_FRAME_POINTER_REGNUM
|| REGNO (x) == ARG_POINTER_REGNUM
|| REGNO (x) == VIRTUAL_STACK_VARS_REGNUM);
}
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
or argument pointer. TO is either the stack pointer or hard frame
pointer. */
poly_int64
riscv_initial_elimination_offset (int from, int to)
{
poly_int64 src, dest;
riscv_compute_frame_info ();
if (to == HARD_FRAME_POINTER_REGNUM)
dest = cfun->machine->frame.hard_frame_pointer_offset;
else if (to == STACK_POINTER_REGNUM)
dest = 0; /* The stack pointer is the base of all offsets, hence 0. */
else
gcc_unreachable ();
if (from == FRAME_POINTER_REGNUM)
src = cfun->machine->frame.frame_pointer_offset;
else if (from == ARG_POINTER_REGNUM)
src = cfun->machine->frame.arg_pointer_offset;
else
gcc_unreachable ();
return src - dest;
}
/* Implement RETURN_ADDR_RTX. We do not support moving back to a
previous frame. */
rtx
riscv_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
if (count != 0)
return const0_rtx;
return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
}
/* Emit code to change the current function's return address to
ADDRESS. SCRATCH is available as a scratch register, if needed.
ADDRESS and SCRATCH are both word-mode GPRs. */
void
riscv_set_return_address (rtx address, rtx scratch)
{
rtx slot_address;
gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM));
slot_address = riscv_add_offset (scratch, stack_pointer_rtx,
cfun->machine->frame.gp_sp_offset.to_constant());
riscv_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
}
/* Save register REG to MEM. Make the instruction frame-related. */
static void
riscv_save_reg (rtx reg, rtx mem)
{
riscv_emit_move (mem, reg);
riscv_set_frame_expr (riscv_frame_set (mem, reg));
}
/* Restore register REG from MEM. */
static void
riscv_restore_reg (rtx reg, rtx mem)
{
rtx insn = riscv_emit_move (reg, mem);
rtx dwarf = NULL_RTX;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
if (known_gt (epilogue_cfa_sp_offset, 0)
&& REGNO (reg) == HARD_FRAME_POINTER_REGNUM)
{
rtx cfa_adjust_rtx
= gen_rtx_PLUS (Pmode, stack_pointer_rtx,
gen_int_mode (epilogue_cfa_sp_offset, Pmode));
dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf);
}
REG_NOTES (insn) = dwarf;
RTX_FRAME_RELATED_P (insn) = 1;
}
/* A function to save or store a register. The first argument is the
register and the second is the stack slot. */
typedef void (*riscv_save_restore_fn) (rtx, rtx);
/* Use FN to save or restore register REGNO. MODE is the register's
mode and OFFSET is the offset of its save slot from the current
stack pointer. */
static void
riscv_save_restore_reg (machine_mode mode, int regno,
HOST_WIDE_INT offset, riscv_save_restore_fn fn)
{
rtx mem;
mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset));
fn (gen_rtx_REG (mode, regno), mem);
}
/* Return the next register up from REGNO up to LIMIT for the callee
to save or restore. OFFSET will be adjusted accordingly.
If INC is set, then REGNO will be incremented first.
Returns INVALID_REGNUM if there is no such next register. */
static unsigned int
riscv_next_saved_reg (unsigned int regno, unsigned int limit,
HOST_WIDE_INT *offset, bool inc = true)
{
if (inc)
regno++;
while (regno <= limit)
{
if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
{
*offset = *offset - UNITS_PER_WORD;
return regno;
}
regno++;
}
return INVALID_REGNUM;
}
/* Return TRUE if provided REGNO is eh return data register. */
static bool
riscv_is_eh_return_data_register (unsigned int regno)
{
unsigned int i, regnum;
if (!crtl->calls_eh_return)
return false;
for (i = 0; (regnum = EH_RETURN_DATA_REGNO (i)) != INVALID_REGNUM; i++)
if (regno == regnum)
{
return true;
}
return false;
}
/* Call FN for each register that is saved by the current function.
SP_OFFSET is the offset of the current stack pointer from the start
of the frame. */
static void
riscv_for_each_saved_reg (poly_int64 sp_offset, riscv_save_restore_fn fn,
bool epilogue, bool maybe_eh_return)
{
HOST_WIDE_INT offset, first_fp_offset;
unsigned int regno, num_masked_fp = 0;
unsigned int start = GP_REG_FIRST;
unsigned int limit = GP_REG_LAST;
/* Save the link register and s-registers. */
offset = (cfun->machine->frame.gp_sp_offset - sp_offset).to_constant ()
+ UNITS_PER_WORD;
for (regno = riscv_next_saved_reg (start, limit, &offset, false);
regno != INVALID_REGNUM;
regno = riscv_next_saved_reg (regno, limit, &offset))
{
if (cfun->machine->reg_is_wrapped_separately[regno])
continue;
/* If this is a normal return in a function that calls the eh_return
builtin, then do not restore the eh return data registers as that
would clobber the return value. But we do still need to save them
in the prologue, and restore them for an exception return, so we
need special handling here. */
if (epilogue && !maybe_eh_return
&& riscv_is_eh_return_data_register (regno))
continue;
/* In an interrupt function, save and restore some necessary CSRs in the stack
to avoid changes in CSRs. */
if (regno == RISCV_PROLOGUE_TEMP_REGNUM
&& cfun->machine->interrupt_handler_p
&& ((TARGET_HARD_FLOAT && cfun->machine->frame.fmask)
|| (TARGET_ZFINX
&& (cfun->machine->frame.mask & ~(1 << RISCV_PROLOGUE_TEMP_REGNUM)))))
{
/* Always assume FCSR occupy UNITS_PER_WORD to prevent stack
offset misaligned later. */
unsigned int fcsr_size = UNITS_PER_WORD;
if (!epilogue)
{
riscv_save_restore_reg (word_mode, regno, offset, fn);
offset -= fcsr_size;
emit_insn (gen_riscv_frcsr (RISCV_PROLOGUE_TEMP (SImode)));
riscv_save_restore_reg (SImode, RISCV_PROLOGUE_TEMP_REGNUM,
offset, riscv_save_reg);
}
else
{
riscv_save_restore_reg (SImode, RISCV_PROLOGUE_TEMP_REGNUM,
offset - fcsr_size, riscv_restore_reg);
emit_insn (gen_riscv_fscsr (RISCV_PROLOGUE_TEMP (SImode)));
riscv_save_restore_reg (word_mode, regno, offset, fn);
offset -= fcsr_size;
}
continue;
}
if (TARGET_XTHEADMEMPAIR)
{
/* Get the next reg/offset pair. */
HOST_WIDE_INT offset2 = offset;
unsigned int regno2 = riscv_next_saved_reg (regno, limit, &offset2);
/* Validate everything before emitting a mempair instruction. */
if (regno2 != INVALID_REGNUM
&& !cfun->machine->reg_is_wrapped_separately[regno2]
&& !(epilogue && !maybe_eh_return
&& riscv_is_eh_return_data_register (regno2)))
{
bool load_p = (fn == riscv_restore_reg);
rtx operands[4];
th_mempair_prepare_save_restore_operands (operands,
load_p, word_mode,
regno, offset,
regno2, offset2);
/* If the operands fit into a mempair insn, then emit one. */
if (th_mempair_operands_p (operands, load_p, word_mode))
{
th_mempair_save_restore_regs (operands, load_p, word_mode);
offset = offset2;
regno = regno2;
continue;
}
}
}
riscv_save_restore_reg (word_mode, regno, offset, fn);
}
/* This loop must iterate over the same space as its companion in
riscv_compute_frame_info. */
first_fp_offset
= (cfun->machine->frame.fp_sp_offset - sp_offset).to_constant ();
for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
{
bool handle_reg = !cfun->machine->reg_is_wrapped_separately[regno];
machine_mode mode = TARGET_DOUBLE_FLOAT ? DFmode : SFmode;
unsigned int slot = (riscv_use_multi_push (&cfun->machine->frame))
? CALLEE_SAVED_FREG_NUMBER (regno)
: num_masked_fp;
offset = first_fp_offset - slot * GET_MODE_SIZE (mode).to_constant ();
if (handle_reg)
riscv_save_restore_reg (mode, regno, offset, fn);
num_masked_fp++;
}
}
/* Call FN for each V register that is saved by the current function. */
static void
riscv_for_each_saved_v_reg (poly_int64 &remaining_size,
riscv_save_restore_fn fn, bool prologue)
{
rtx vlen = NULL_RTX;
if (cfun->machine->frame.vmask != 0)
{
if (UNITS_PER_V_REG.is_constant ()
&& SMALL_OPERAND (UNITS_PER_V_REG.to_constant ()))
vlen = GEN_INT (UNITS_PER_V_REG.to_constant ());
else
{
vlen = RISCV_PROLOGUE_TEMP (Pmode);
rtx insn
= emit_move_insn (vlen, gen_int_mode (UNITS_PER_V_REG, Pmode));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Select the mode where LMUL is 1 and SEW is largest. */
machine_mode m1_mode = TARGET_VECTOR_ELEN_64 ? RVVM1DImode : RVVM1SImode;
if (prologue)
{
/* This loop must iterate over the same space as its companion in
riscv_compute_frame_info. */
for (unsigned int regno = V_REG_FIRST; regno <= V_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.vmask, regno - V_REG_FIRST))
{
bool handle_reg = !cfun->machine->reg_is_wrapped_separately[regno];
if (handle_reg)
{
rtx insn = NULL_RTX;
if (CONST_INT_P (vlen))
{
gcc_assert (SMALL_OPERAND (-INTVAL (vlen)));
insn = emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-INTVAL (vlen))));
}
else
insn = emit_insn (
gen_sub3_insn (stack_pointer_rtx, stack_pointer_rtx, vlen));
gcc_assert (insn != NULL_RTX);
RTX_FRAME_RELATED_P (insn) = 1;
riscv_save_restore_reg (m1_mode, regno, 0, fn);
remaining_size -= UNITS_PER_V_REG;
}
}
}
else
{
/* This loop must iterate over the same space as its companion in
riscv_compute_frame_info. */
for (unsigned int regno = V_REG_LAST; regno >= V_REG_FIRST; regno--)
if (BITSET_P (cfun->machine->frame.vmask, regno - V_REG_FIRST))
{
bool handle_reg = !cfun->machine->reg_is_wrapped_separately[regno];
if (handle_reg)
{
riscv_save_restore_reg (m1_mode, regno, 0, fn);
rtx insn = emit_insn (
gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, vlen));
gcc_assert (insn != NULL_RTX);
RTX_FRAME_RELATED_P (insn) = 1;
remaining_size -= UNITS_PER_V_REG;
}
}
}
}
/* For stack frames that can't be allocated with a single ADDI instruction,
compute the best value to initially allocate. It must at a minimum
allocate enough space to spill the callee-saved registers. If TARGET_RVC,
try to pick a value that will allow compression of the register saves
without adding extra instructions. */
static HOST_WIDE_INT
riscv_first_stack_step (struct riscv_frame_info *frame, poly_int64 remaining_size)
{
HOST_WIDE_INT remaining_const_size;
if (!remaining_size.is_constant ())
remaining_const_size
= riscv_stack_align (remaining_size.coeffs[0])
- riscv_stack_align (remaining_size.coeffs[1]);
else
remaining_const_size = remaining_size.to_constant ();
/* First step must be set to the top of vector registers save area if any
vector registers need be preserved. */
if (frame->vmask != 0)
return (remaining_size - frame->v_sp_offset_top).to_constant ();
if (SMALL_OPERAND (remaining_const_size))
return remaining_const_size;
poly_int64 callee_saved_first_step =
remaining_size - frame->frame_pointer_offset;
gcc_assert(callee_saved_first_step.is_constant ());
HOST_WIDE_INT min_first_step =
riscv_stack_align (callee_saved_first_step.to_constant ());
HOST_WIDE_INT max_first_step = IMM_REACH / 2 - PREFERRED_STACK_BOUNDARY / 8;
HOST_WIDE_INT min_second_step = remaining_const_size - max_first_step;
gcc_assert (min_first_step <= max_first_step);
/* As an optimization, use the least-significant bits of the total frame
size, so that the second adjustment step is just LUI + ADD. */
if (!SMALL_OPERAND (min_second_step)
&& remaining_const_size % IMM_REACH <= max_first_step
&& remaining_const_size % IMM_REACH >= min_first_step)
return remaining_const_size % IMM_REACH;
if (TARGET_RVC || TARGET_ZCA)
{
/* If we need two subtracts, and one is small enough to allow compressed
loads and stores, then put that one first. */
if (IN_RANGE (min_second_step, 0,
(TARGET_64BIT ? SDSP_REACH : SWSP_REACH)))
return MAX (min_second_step, min_first_step);
/* If we need LUI + ADDI + ADD for the second adjustment step, then start
with the minimum first step, so that we can get compressed loads and
stores. */
else if (!SMALL_OPERAND (min_second_step))
return min_first_step;
}
return max_first_step;
}
static rtx
riscv_adjust_libcall_cfi_prologue ()
{
rtx dwarf = NULL_RTX;
rtx adjust_sp_rtx, reg, mem, insn;
int saved_size = cfun->machine->frame.save_libcall_adjustment;
int offset;
for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
{
/* The save order is ra, s0, s1, s2 to s11. */
if (regno == RETURN_ADDR_REGNUM)
offset = saved_size - UNITS_PER_WORD;
else if (regno == S0_REGNUM)
offset = saved_size - UNITS_PER_WORD * 2;
else if (regno == S1_REGNUM)
offset = saved_size - UNITS_PER_WORD * 3;
else
offset = saved_size - ((regno - S2_REGNUM + 4) * UNITS_PER_WORD);
reg = gen_rtx_REG (Pmode, regno);
mem = gen_frame_mem (Pmode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
insn = gen_rtx_SET (mem, reg);
dwarf = alloc_reg_note (REG_CFA_OFFSET, insn, dwarf);
}
/* Debug info for adjust sp. */
adjust_sp_rtx =
gen_rtx_SET (stack_pointer_rtx,
gen_rtx_PLUS (GET_MODE(stack_pointer_rtx), stack_pointer_rtx, GEN_INT (-saved_size)));
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx,
dwarf);
return dwarf;
}
static rtx
riscv_adjust_multi_push_cfi_prologue (int saved_size)
{
rtx dwarf = NULL_RTX;
rtx adjust_sp_rtx, reg, mem, insn;
unsigned int mask = cfun->machine->frame.mask;
int offset;
int saved_cnt = 0;
if (mask & S10_MASK)
mask |= S11_MASK;
for (int regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
if (BITSET_P (mask & MULTI_PUSH_GPR_MASK, regno - GP_REG_FIRST))
{
/* The save order is s11-s0, ra
from high to low addr. */
offset = saved_size - UNITS_PER_WORD * (++saved_cnt);
reg = gen_rtx_REG (Pmode, regno);
mem = gen_frame_mem (Pmode,
plus_constant (Pmode, stack_pointer_rtx, offset));
insn = gen_rtx_SET (mem, reg);
dwarf = alloc_reg_note (REG_CFA_OFFSET, insn, dwarf);
}
/* Debug info for adjust sp. */
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, -saved_size));
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx, dwarf);
return dwarf;
}
static void
riscv_emit_stack_tie (rtx reg)
{
if (Pmode == SImode)
emit_insn (gen_stack_tiesi (stack_pointer_rtx, reg));
else
emit_insn (gen_stack_tiedi (stack_pointer_rtx, reg));
}
/*zcmp multi push and pop code_for_push_pop function ptr array */
static const code_for_push_pop_t code_for_push_pop[ZCMP_MAX_GRP_SLOTS][ZCMP_OP_NUM]
= {{code_for_gpr_multi_push_up_to_ra, code_for_gpr_multi_pop_up_to_ra,
code_for_gpr_multi_popret_up_to_ra, code_for_gpr_multi_popretz_up_to_ra},
{code_for_gpr_multi_push_up_to_s0, code_for_gpr_multi_pop_up_to_s0,
code_for_gpr_multi_popret_up_to_s0, code_for_gpr_multi_popretz_up_to_s0},
{code_for_gpr_multi_push_up_to_s1, code_for_gpr_multi_pop_up_to_s1,
code_for_gpr_multi_popret_up_to_s1, code_for_gpr_multi_popretz_up_to_s1},
{code_for_gpr_multi_push_up_to_s2, code_for_gpr_multi_pop_up_to_s2,
code_for_gpr_multi_popret_up_to_s2, code_for_gpr_multi_popretz_up_to_s2},
{code_for_gpr_multi_push_up_to_s3, code_for_gpr_multi_pop_up_to_s3,
code_for_gpr_multi_popret_up_to_s3, code_for_gpr_multi_popretz_up_to_s3},
{code_for_gpr_multi_push_up_to_s4, code_for_gpr_multi_pop_up_to_s4,
code_for_gpr_multi_popret_up_to_s4, code_for_gpr_multi_popretz_up_to_s4},
{code_for_gpr_multi_push_up_to_s5, code_for_gpr_multi_pop_up_to_s5,
code_for_gpr_multi_popret_up_to_s5, code_for_gpr_multi_popretz_up_to_s5},
{code_for_gpr_multi_push_up_to_s6, code_for_gpr_multi_pop_up_to_s6,
code_for_gpr_multi_popret_up_to_s6, code_for_gpr_multi_popretz_up_to_s6},
{code_for_gpr_multi_push_up_to_s7, code_for_gpr_multi_pop_up_to_s7,
code_for_gpr_multi_popret_up_to_s7, code_for_gpr_multi_popretz_up_to_s7},
{code_for_gpr_multi_push_up_to_s8, code_for_gpr_multi_pop_up_to_s8,
code_for_gpr_multi_popret_up_to_s8, code_for_gpr_multi_popretz_up_to_s8},
{code_for_gpr_multi_push_up_to_s9, code_for_gpr_multi_pop_up_to_s9,
code_for_gpr_multi_popret_up_to_s9, code_for_gpr_multi_popretz_up_to_s9},
{nullptr, nullptr, nullptr, nullptr},
{code_for_gpr_multi_push_up_to_s11, code_for_gpr_multi_pop_up_to_s11,
code_for_gpr_multi_popret_up_to_s11,
code_for_gpr_multi_popretz_up_to_s11}};
/* Set a probe loop for stack clash protection. */
static void
riscv_allocate_and_probe_stack_loop (rtx tmp, enum rtx_code code,
rtx op0, rtx op1, bool vector,
HOST_WIDE_INT offset)
{
tmp = riscv_force_temporary (tmp, gen_int_mode (offset, Pmode));
/* Loop. */
rtx label = gen_label_rtx ();
emit_label (label);
/* Allocate and probe stack. */
emit_insn (gen_sub3_insn (stack_pointer_rtx, stack_pointer_rtx, tmp));
emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
STACK_CLASH_CALLER_GUARD));
emit_insn (gen_blockage ());
/* Adjust the remaining vector length. */
if (vector)
emit_insn (gen_sub3_insn (op0, op0, tmp));
/* Branch if there's still more bytes to probe. */
riscv_expand_conditional_branch (label, code, op0, op1);
JUMP_LABEL (get_last_insn ()) = label;
emit_insn (gen_blockage ());
}
/* Adjust scalable frame of vector for prologue && epilogue. */
static void
riscv_v_adjust_scalable_frame (rtx target, poly_int64 offset, bool epilogue)
{
rtx tmp = RISCV_PROLOGUE_TEMP (Pmode);
rtx adjust_size = RISCV_PROLOGUE_TEMP2 (Pmode);
rtx insn, dwarf, adjust_frame_rtx;
riscv_legitimize_poly_move (Pmode, adjust_size, tmp,
gen_int_mode (offset, Pmode));
/* If doing stack clash protection then we use a loop to allocate and probe
the stack. */
if (flag_stack_clash_protection)
{
if (epilogue)
{
insn = emit_insn (gen_add3_insn (target, target, adjust_size));
if (!frame_pointer_needed)
{
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx, -offset));
RTX_FRAME_RELATED_P (insn) = 1;
}
return;
}
HOST_WIDE_INT min_probe_threshold
= (1 << param_stack_clash_protection_guard_size) - STACK_CLASH_CALLER_GUARD;
if (!frame_pointer_needed)
{
/* This is done to provide unwinding information for the stack
adjustments we're about to do, however to prevent the optimizers
from removing the T3 move and leaving the CFA note (which would be
very wrong) we tie the old and new stack pointer together.
The tie will expand to nothing but the optimizers will not touch
the instruction. */
insn = get_last_insn ();
rtx stack_ptr_copy = gen_rtx_REG (Pmode, RISCV_STACK_CLASH_VECTOR_CFA_REGNUM);
emit_move_insn (stack_ptr_copy, stack_pointer_rtx);
riscv_emit_stack_tie (stack_ptr_copy);
/* We want the CFA independent of the stack pointer for the
duration of the loop. */
add_reg_note (insn, REG_CFA_DEF_CFA, stack_ptr_copy);
RTX_FRAME_RELATED_P (insn) = 1;
}
riscv_allocate_and_probe_stack_loop (tmp, GE, adjust_size, tmp, true,
min_probe_threshold);
/* Allocate the residual. */
insn = emit_insn (gen_sub3_insn (target, target, adjust_size));
/* Now reset the CFA register if needed. */
if (!frame_pointer_needed)
{
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx, offset));
RTX_FRAME_RELATED_P (insn) = 1;
}
return;
}
if (epilogue)
insn = gen_add3_insn (target, target, adjust_size);
else
insn = gen_sub3_insn (target, target, adjust_size);
insn = emit_insn (insn);
RTX_FRAME_RELATED_P (insn) = 1;
adjust_frame_rtx
= gen_rtx_SET (target,
plus_constant (Pmode, target, epilogue ? offset : -offset));
dwarf = alloc_reg_note (REG_FRAME_RELATED_EXPR, copy_rtx (adjust_frame_rtx),
NULL_RTX);
REG_NOTES (insn) = dwarf;
}
static rtx
riscv_gen_multi_push_pop_insn (riscv_zcmp_op_t op, HOST_WIDE_INT adj_size,
unsigned int regs_num)
{
gcc_assert (op < ZCMP_OP_NUM);
gcc_assert (regs_num <= ZCMP_MAX_GRP_SLOTS
&& regs_num != ZCMP_INVALID_S0S10_SREGS_COUNTS + 1); /* 1 for ra*/
rtx stack_adj = GEN_INT (adj_size);
return GEN_FCN (code_for_push_pop[regs_num - 1][op](Pmode)) (stack_adj);
}
static unsigned
get_multi_push_fpr_mask (unsigned max_fprs_push)
{
unsigned mask_fprs_push = 0, num_f_pushed = 0;
for (unsigned regno = FP_REG_FIRST;
regno <= FP_REG_LAST && num_f_pushed < max_fprs_push; regno++)
if (riscv_save_reg_p (regno))
mask_fprs_push |= 1 << (regno - FP_REG_FIRST), num_f_pushed++;
return mask_fprs_push;
}
/* Allocate SIZE bytes of stack space using TEMP1 as a scratch register.
If SIZE is not large enough to require a probe this function will only
adjust the stack.
We emit barriers after each stack adjustment to prevent optimizations from
breaking the invariant that we never drop the stack more than a page. This
invariant is needed to make it easier to correctly handle asynchronous
events, e.g. if we were to allow the stack to be dropped by more than a page
and then have multiple probes up and we take a signal somewhere in between
then the signal handler doesn't know the state of the stack and can make no
assumptions about which pages have been probed. */
static void
riscv_allocate_and_probe_stack_space (rtx temp1, HOST_WIDE_INT size)
{
HOST_WIDE_INT guard_size
= 1 << param_stack_clash_protection_guard_size;
HOST_WIDE_INT guard_used_by_caller = STACK_CLASH_CALLER_GUARD;
HOST_WIDE_INT byte_sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
HOST_WIDE_INT min_probe_threshold = guard_size - guard_used_by_caller;
rtx insn;
/* We should always have a positive probe threshold. */
gcc_assert (min_probe_threshold > 0);
/* If SIZE is not large enough to require probing, just adjust the stack and
exit. */
if (known_lt (size, min_probe_threshold)
|| !flag_stack_clash_protection)
{
if (flag_stack_clash_protection)
{
if (known_eq (cfun->machine->frame.total_size, 0))
dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false);
else
dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
}
if (SMALL_OPERAND (-size))
{
insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-size));
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
}
else if (SUM_OF_TWO_S12_ALGN (-size))
{
HOST_WIDE_INT one, two;
riscv_split_sum_of_two_s12 (-size, &one, &two);
insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (one));
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (two));
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
}
else
{
temp1 = riscv_force_temporary (temp1, GEN_INT (-size));
emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, temp1));
insn = plus_constant (Pmode, stack_pointer_rtx, -size);
insn = gen_rtx_SET (stack_pointer_rtx, insn);
riscv_set_frame_expr (insn);
}
/* We must have allocated the remainder of the stack frame.
Emit a stack tie if we have a frame pointer so that the
allocation is ordered WRT fp setup and subsequent writes
into the frame. */
if (frame_pointer_needed)
riscv_emit_stack_tie (hard_frame_pointer_rtx);
return;
}
gcc_assert (multiple_p (size, byte_sp_alignment));
if (dump_file)
fprintf (dump_file,
"Stack clash prologue: " HOST_WIDE_INT_PRINT_DEC
" bytes, probing will be required.\n", size);
/* Round size to the nearest multiple of guard_size, and calculate the
residual as the difference between the original size and the rounded
size. */
HOST_WIDE_INT rounded_size = ROUND_DOWN (size, guard_size);
HOST_WIDE_INT residual = size - rounded_size;
/* We can handle a small number of allocations/probes inline. Otherwise
punt to a loop. */
if (rounded_size <= STACK_CLASH_MAX_UNROLL_PAGES * guard_size)
{
temp1 = riscv_force_temporary (temp1, gen_int_mode (guard_size, Pmode));
for (HOST_WIDE_INT i = 0; i < rounded_size; i += guard_size)
{
emit_insn (gen_sub3_insn (stack_pointer_rtx, stack_pointer_rtx, temp1));
insn = plus_constant (Pmode, stack_pointer_rtx, -guard_size);
insn = gen_rtx_SET (stack_pointer_rtx, insn);
riscv_set_frame_expr (insn);
emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
guard_used_by_caller));
emit_insn (gen_blockage ());
}
dump_stack_clash_frame_info (PROBE_INLINE, size != rounded_size);
}
else
{
/* Compute the ending address. */
rtx temp2 = gen_rtx_REG (Pmode, RISCV_PROLOGUE_TEMP2_REGNUM);
temp2 = riscv_force_temporary (temp2, gen_int_mode (rounded_size, Pmode));
insn = emit_insn (gen_sub3_insn (temp2, stack_pointer_rtx, temp2));
if (!frame_pointer_needed)
{
/* We want the CFA independent of the stack pointer for the
duration of the loop. */
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, temp1, rounded_size));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* This allocates and probes the stack. */
riscv_allocate_and_probe_stack_loop (temp1, NE, stack_pointer_rtx, temp2,
false, guard_size);
/* Now reset the CFA register if needed. */
if (!frame_pointer_needed)
{
insn = get_last_insn ();
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, stack_pointer_rtx, rounded_size));
RTX_FRAME_RELATED_P (insn) = 1;
}
dump_stack_clash_frame_info (PROBE_LOOP, size != rounded_size);
}
/* Handle any residuals. Residuals of at least MIN_PROBE_THRESHOLD have to
be probed. This maintains the requirement that each page is probed at
least once. For initial probing we probe only if the allocation is
more than GUARD_SIZE - buffer, and below the saved registers we probe
if the amount is larger than buffer. GUARD_SIZE - buffer + buffer ==
GUARD_SIZE. This works that for any allocation that is large enough to
trigger a probe here, we'll have at least one, and if they're not large
enough for this code to emit anything for them, The page would have been
probed by the saving of FP/LR either by this function or any callees. If
we don't have any callees then we won't have more stack adjustments and so
are still safe. */
if (residual)
{
gcc_assert (guard_used_by_caller + byte_sp_alignment <= size);
temp1 = riscv_force_temporary (temp1, gen_int_mode (residual, Pmode));
emit_insn (gen_sub3_insn (stack_pointer_rtx, stack_pointer_rtx, temp1));
insn = plus_constant (Pmode, stack_pointer_rtx, -residual);
insn = gen_rtx_SET (stack_pointer_rtx, insn);
riscv_set_frame_expr (insn);
if (residual >= min_probe_threshold)
{
if (dump_file)
fprintf (dump_file,
"Stack clash prologue residuals: "
HOST_WIDE_INT_PRINT_DEC " bytes, probing will be required."
"\n", residual);
emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
guard_used_by_caller));
emit_insn (gen_blockage ());
}
}
}
/* Expand the "prologue" pattern. */
void
riscv_expand_prologue (void)
{
struct riscv_frame_info *frame = &cfun->machine->frame;
poly_int64 remaining_size = frame->total_size;
unsigned mask = frame->mask;
unsigned fmask = frame->fmask;
int spimm, multi_push_additional, stack_adj;
rtx insn, dwarf = NULL_RTX;
unsigned th_int_mask = 0;
if (flag_stack_usage_info)
current_function_static_stack_size = constant_lower_bound (remaining_size);
if (cfun->machine->naked_p)
return;
/* prefer multi-push to save-restore libcall. */
if (riscv_use_multi_push (frame))
{
remaining_size -= frame->multi_push_adj_base;
/* If there are vector registers that need to be saved, then it can only
be reduced to the frame->v_sp_offset_top position at most, since the
vector registers will need to be saved one by one by decreasing the SP
later. */
poly_int64 remaining_size_above_varea
= frame->vmask != 0
? remaining_size - frame->v_sp_offset_top
: remaining_size;
if (known_gt (remaining_size_above_varea, 2 * ZCMP_SP_INC_STEP))
spimm = 3;
else if (known_gt (remaining_size_above_varea, ZCMP_SP_INC_STEP))
spimm = 2;
else if (known_gt (remaining_size_above_varea, 0))
spimm = 1;
else
spimm = 0;
multi_push_additional = spimm * ZCMP_SP_INC_STEP;
frame->multi_push_adj_addi = multi_push_additional;
remaining_size -= multi_push_additional;
/* emit multi push insn & dwarf along with it. */
stack_adj = frame->multi_push_adj_base + multi_push_additional;
insn = emit_insn (riscv_gen_multi_push_pop_insn (
PUSH_IDX, -stack_adj, riscv_multi_push_regs_count (frame->mask)));
dwarf = riscv_adjust_multi_push_cfi_prologue (stack_adj);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = dwarf;
/* Temporarily fib that we need not save GPRs. */
frame->mask = 0;
/* push FPRs into the additional reserved space by cm.push. */
if (fmask)
{
unsigned mask_fprs_push
= get_multi_push_fpr_mask (multi_push_additional / UNITS_PER_WORD);
frame->fmask &= mask_fprs_push;
riscv_for_each_saved_reg (remaining_size, riscv_save_reg, false,
false);
frame->fmask = fmask & ~mask_fprs_push; /* mask for the rest FPRs. */
}
}
/* When optimizing for size, call a subroutine to save the registers. */
else if (riscv_use_save_libcall (frame))
{
rtx dwarf = NULL_RTX;
dwarf = riscv_adjust_libcall_cfi_prologue ();
remaining_size -= frame->save_libcall_adjustment;
insn = emit_insn (riscv_gen_gpr_save_insn (frame));
frame->mask = 0; /* Temporarily fib that we need not save GPRs. */
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = dwarf;
}
th_int_mask = th_int_get_mask (frame->mask);
if (th_int_mask && TH_INT_INTERRUPT (cfun))
{
frame->mask &= ~th_int_mask;
/* RISCV_PROLOGUE_TEMP may be used to handle some CSR for
interrupts, such as fcsr. */
if ((TARGET_HARD_FLOAT && frame->fmask)
|| (TARGET_ZFINX && frame->mask))
frame->mask |= (1 << RISCV_PROLOGUE_TEMP_REGNUM);
unsigned save_adjustment = th_int_get_save_adjustment ();
frame->gp_sp_offset -= save_adjustment;
remaining_size -= save_adjustment;
insn = emit_insn (gen_th_int_push ());
rtx dwarf = th_int_adjust_cfi_prologue (th_int_mask);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = dwarf;
}
/* Save the GP, FP registers. */
if ((frame->mask | frame->fmask) != 0)
{
if (known_gt (remaining_size, frame->frame_pointer_offset))
{
HOST_WIDE_INT step1 = riscv_first_stack_step (frame, remaining_size);
remaining_size -= step1;
insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-step1));
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
}
riscv_for_each_saved_reg (remaining_size, riscv_save_reg, false, false);
}
/* Undo the above fib. */
frame->mask = mask;
frame->fmask = fmask;
/* Set up the frame pointer, if we're using one. */
if (frame_pointer_needed)
{
insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx,
GEN_INT ((frame->hard_frame_pointer_offset - remaining_size).to_constant ()));
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
riscv_emit_stack_tie (hard_frame_pointer_rtx);
}
/* Save the V registers. */
if (frame->vmask != 0)
riscv_for_each_saved_v_reg (remaining_size, riscv_save_reg, true);
/* Allocate the rest of the frame. */
if (known_gt (remaining_size, 0))
{
/* Two step adjustment:
1.scalable frame. 2.constant frame. */
poly_int64 scalable_frame (0, 0);
if (!remaining_size.is_constant ())
{
/* First for scalable frame. */
poly_int64 scalable_frame = remaining_size;
scalable_frame.coeffs[0] = remaining_size.coeffs[1];
riscv_v_adjust_scalable_frame (stack_pointer_rtx, scalable_frame, false);
remaining_size -= scalable_frame;
}
/* Second step for constant frame. */
HOST_WIDE_INT constant_frame = remaining_size.to_constant ();
if (constant_frame == 0)
{
/* We must have allocated stack space for the scalable frame.
Emit a stack tie if we have a frame pointer so that the
allocation is ordered WRT fp setup and subsequent writes
into the frame. */
if (frame_pointer_needed)
riscv_emit_stack_tie (hard_frame_pointer_rtx);
return;
}
riscv_allocate_and_probe_stack_space (RISCV_PROLOGUE_TEMP (Pmode), constant_frame);
}
else if (flag_stack_clash_protection)
{
if (known_eq (frame->total_size, 0))
dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false);
else
dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
}
}
static rtx
riscv_adjust_multi_pop_cfi_epilogue (int saved_size)
{
rtx dwarf = NULL_RTX;
rtx adjust_sp_rtx, reg;
unsigned int mask = cfun->machine->frame.mask;
if (mask & S10_MASK)
mask |= S11_MASK;
/* Debug info for adjust sp. */
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, saved_size));
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx, dwarf);
for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (BITSET_P (mask, regno - GP_REG_FIRST))
{
reg = gen_rtx_REG (Pmode, regno);
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
return dwarf;
}
static rtx
riscv_adjust_libcall_cfi_epilogue ()
{
rtx dwarf = NULL_RTX;
rtx adjust_sp_rtx, reg;
int saved_size = cfun->machine->frame.save_libcall_adjustment;
/* Debug info for adjust sp. */
adjust_sp_rtx =
gen_rtx_SET (stack_pointer_rtx,
gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (saved_size)));
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, adjust_sp_rtx,
dwarf);
for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
{
reg = gen_rtx_REG (Pmode, regno);
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
return dwarf;
}
static void
riscv_gen_multi_pop_insn (bool use_multi_pop_normal, unsigned mask,
unsigned multipop_size)
{
rtx insn;
unsigned regs_count = riscv_multi_push_regs_count (mask);
if (!use_multi_pop_normal)
insn = emit_insn (
riscv_gen_multi_push_pop_insn (POP_IDX, multipop_size, regs_count));
else
insn = emit_jump_insn (
riscv_gen_multi_push_pop_insn (POPRET_IDX, multipop_size, regs_count));
rtx dwarf = riscv_adjust_multi_pop_cfi_epilogue (multipop_size);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = dwarf;
}
/* Expand an "epilogue", "sibcall_epilogue", or "eh_return_internal" pattern;
style says which. */
void
riscv_expand_epilogue (int style)
{
/* Split the frame into 3 steps. STEP1 is the amount of stack we should
deallocate before restoring the registers. STEP2 is the amount we
should deallocate afterwards including the callee saved regs. STEP3
is the amount deallocated by save-restore libcall.
Start off by assuming that no registers need to be restored. */
struct riscv_frame_info *frame = &cfun->machine->frame;
unsigned mask = frame->mask;
unsigned fmask = frame->fmask;
unsigned mask_fprs_push = 0;
poly_int64 step2 = 0;
bool use_multi_pop_normal
= ((style == NORMAL_RETURN) && riscv_use_multi_push (frame));
bool use_multi_pop_sibcall
= ((style == SIBCALL_RETURN) && riscv_use_multi_push (frame));
bool use_multi_pop = use_multi_pop_normal || use_multi_pop_sibcall;
bool use_restore_libcall
= !use_multi_pop
&& ((style == NORMAL_RETURN) && riscv_use_save_libcall (frame));
unsigned libcall_size = use_restore_libcall && !use_multi_pop
? frame->save_libcall_adjustment
: 0;
unsigned multipop_size
= use_multi_pop ? frame->multi_push_adj_base + frame->multi_push_adj_addi
: 0;
rtx ra = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
unsigned th_int_mask = 0;
rtx insn;
/* We need to add memory barrier to prevent read from deallocated stack. */
bool need_barrier_p = known_ne (get_frame_size ()
+ cfun->machine->frame.arg_pointer_offset, 0);
if (cfun->machine->naked_p)
{
gcc_assert (style == NORMAL_RETURN);
emit_jump_insn (gen_return ());
return;
}
if ((style == NORMAL_RETURN) && riscv_can_use_return_insn ())
{
emit_jump_insn (gen_return ());
return;
}
/* Reset the epilogue cfa info before starting to emit the epilogue. */
epilogue_cfa_sp_offset = 0;
/* Move past any dynamic stack allocations. */
if (cfun->calls_alloca)
{
/* Emit a barrier to prevent loads from a deallocated stack. */
riscv_emit_stack_tie (hard_frame_pointer_rtx);
need_barrier_p = false;
poly_int64 adjust_offset = -frame->hard_frame_pointer_offset;
rtx dwarf_adj = gen_int_mode (adjust_offset, Pmode);
rtx adjust = NULL_RTX;
bool sum_of_two_s12 = false;
HOST_WIDE_INT one, two;
if (!adjust_offset.is_constant ())
{
rtx tmp1 = RISCV_PROLOGUE_TEMP (Pmode);
rtx tmp2 = RISCV_PROLOGUE_TEMP2 (Pmode);
riscv_legitimize_poly_move (Pmode, tmp1, tmp2,
gen_int_mode (adjust_offset, Pmode));
adjust = tmp1;
}
else
{
HOST_WIDE_INT adj_off_value = adjust_offset.to_constant ();
if (SMALL_OPERAND (adj_off_value))
{
adjust = GEN_INT (adj_off_value);
}
else if (SUM_OF_TWO_S12_ALGN (adj_off_value))
{
riscv_split_sum_of_two_s12 (adj_off_value, &one, &two);
dwarf_adj = adjust = GEN_INT (one);
sum_of_two_s12 = true;
}
else
{
riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode),
GEN_INT (adj_off_value));
adjust = RISCV_PROLOGUE_TEMP (Pmode);
}
}
insn = emit_insn (
gen_add3_insn (stack_pointer_rtx, hard_frame_pointer_rtx,
adjust));
rtx dwarf = NULL_RTX;
rtx cfa_adjust_value = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx,
dwarf_adj);
rtx cfa_adjust_rtx = gen_rtx_SET (stack_pointer_rtx, cfa_adjust_value);
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, cfa_adjust_rtx, dwarf);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = dwarf;
if (sum_of_two_s12)
{
insn = emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (two)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
if (use_restore_libcall || use_multi_pop)
frame->mask = 0; /* Temporarily fib that we need not restore GPRs. */
/* If we need to restore registers, deallocate as much stack as
possible in the second step without going out of range. */
if (use_multi_pop)
{
if (frame->fmask
&& known_gt (frame->total_size - multipop_size,
frame->frame_pointer_offset))
step2
= riscv_first_stack_step (frame, frame->total_size - multipop_size);
}
else if ((frame->mask | frame->fmask) != 0)
step2 = riscv_first_stack_step (frame, frame->total_size - libcall_size);
if (use_restore_libcall || use_multi_pop)
frame->mask = mask; /* Undo the above fib. */
poly_int64 step1;
/* STEP1 must be set to the bottom of vector registers save area if any
vector registers need be preserved. */
if (frame->vmask != 0)
{
step1 = frame->v_sp_offset_bottom;
step2 = frame->total_size - step1 - libcall_size - multipop_size;
}
else
step1 = frame->total_size - step2 - libcall_size - multipop_size;
/* Set TARGET to BASE + STEP1. */
if (known_gt (step1, 0))
{
/* Emit a barrier to prevent loads from a deallocated stack. */
riscv_emit_stack_tie (hard_frame_pointer_rtx);
need_barrier_p = false;
/* Restore the scalable frame which is assigned in prologue. */
if (!step1.is_constant ())
{
poly_int64 scalable_frame = step1;
scalable_frame.coeffs[0] = step1.coeffs[1];
riscv_v_adjust_scalable_frame (stack_pointer_rtx, scalable_frame,
true);
step1 -= scalable_frame;
}
/* Get an rtx for STEP1 that we can add to BASE.
Skip if adjust equal to zero. */
HOST_WIDE_INT step1_value = step1.to_constant ();
if (step1_value != 0)
{
rtx adjust = GEN_INT (step1_value);
if (SUM_OF_TWO_S12_ALGN (step1_value))
{
HOST_WIDE_INT one, two;
riscv_split_sum_of_two_s12 (step1_value, &one, &two);
insn = emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (one)));
RTX_FRAME_RELATED_P (insn) = 1;
adjust = GEN_INT (two);
}
else if (!SMALL_OPERAND (step1_value))
{
riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), adjust);
adjust = RISCV_PROLOGUE_TEMP (Pmode);
}
insn = emit_insn (gen_add3_insn (stack_pointer_rtx,
stack_pointer_rtx,
adjust));
rtx dwarf = NULL_RTX;
rtx cfa_adjust_rtx
= gen_rtx_PLUS (Pmode, stack_pointer_rtx,
gen_int_mode (step2 + libcall_size + multipop_size,
Pmode));
dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = dwarf;
}
}
else if (frame_pointer_needed)
{
/* Tell riscv_restore_reg to emit dwarf to redefine CFA when restoring
old value of FP. */
epilogue_cfa_sp_offset = step2;
}
if (use_multi_pop)
{
frame->mask = 0; /* Temporarily fib that we need not restore GPRs. */
if (fmask)
{
mask_fprs_push = get_multi_push_fpr_mask (frame->multi_push_adj_addi
/ UNITS_PER_WORD);
frame->fmask &= ~mask_fprs_push; /* FPRs not saved by cm.push */
}
}
else if (use_restore_libcall)
frame->mask = 0; /* Temporarily fib that we need not restore GPRs. */
th_int_mask = th_int_get_mask (frame->mask);
if (th_int_mask && TH_INT_INTERRUPT (cfun))
{
frame->mask &= ~th_int_mask;
/* RISCV_PROLOGUE_TEMP may be used to handle some CSR for
interrupts, such as fcsr. */
if ((TARGET_HARD_FLOAT && frame->fmask)
|| (TARGET_ZFINX && frame->mask))
frame->mask |= (1 << RISCV_PROLOGUE_TEMP_REGNUM);
}
/* Restore the registers. */
riscv_for_each_saved_v_reg (step2, riscv_restore_reg, false);
riscv_for_each_saved_reg (frame->total_size - step2 - libcall_size
- multipop_size,
riscv_restore_reg, true, style == EXCEPTION_RETURN);
if (th_int_mask && TH_INT_INTERRUPT (cfun))
{
frame->mask = mask; /* Undo the above fib. */
unsigned save_adjustment = th_int_get_save_adjustment ();
gcc_assert (step2.to_constant () >= save_adjustment);
step2 -= save_adjustment;
}
if (use_restore_libcall)
frame->mask = mask; /* Undo the above fib. */
if (need_barrier_p)
riscv_emit_stack_tie (hard_frame_pointer_rtx);
/* Deallocate the final bit of the frame. */
if (step2.to_constant () > 0)
{
insn = emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (step2.to_constant ())));
rtx dwarf = NULL_RTX;
rtx cfa_adjust_rtx
= gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (libcall_size + multipop_size));
dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf);
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = dwarf;
}
if (use_multi_pop)
{
/* restore FPRs pushed by cm.push. */
frame->fmask = fmask & mask_fprs_push;
if (frame->fmask)
riscv_for_each_saved_reg (frame->total_size - libcall_size
- multipop_size,
riscv_restore_reg, true,
style == EXCEPTION_RETURN);
/* Undo the above fib. */
frame->mask = mask;
frame->fmask = fmask;
riscv_gen_multi_pop_insn (use_multi_pop_normal, frame->mask,
multipop_size);
if (use_multi_pop_normal)
return;
}
else if (use_restore_libcall)
{
rtx dwarf = riscv_adjust_libcall_cfi_epilogue ();
insn = emit_insn (gen_gpr_restore (GEN_INT (riscv_save_libcall_count (mask))));
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = dwarf;
emit_jump_insn (gen_gpr_restore_return (ra));
return;
}
/* Add in the __builtin_eh_return stack adjustment. */
if ((style == EXCEPTION_RETURN) && crtl->calls_eh_return)
emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
EH_RETURN_STACKADJ_RTX));
/* Return from interrupt. */
if (cfun->machine->interrupt_handler_p)
{
enum riscv_privilege_levels mode = cfun->machine->interrupt_mode;
gcc_assert (mode != UNKNOWN_MODE);
if (th_int_mask && TH_INT_INTERRUPT (cfun))
emit_jump_insn (gen_th_int_pop ());
else if (mode == MACHINE_MODE)
emit_jump_insn (gen_riscv_mret ());
else if (mode == SUPERVISOR_MODE)
emit_jump_insn (gen_riscv_sret ());
else
emit_jump_insn (gen_riscv_uret ());
}
else if (style != SIBCALL_RETURN)
emit_jump_insn (gen_simple_return_internal (ra));
}
/* Implement EPILOGUE_USES. */
bool
riscv_epilogue_uses (unsigned int regno)
{
if (regno == RETURN_ADDR_REGNUM)
return true;
if (epilogue_completed && cfun->machine->interrupt_handler_p)
{
/* An interrupt function restores temp regs, so we must indicate that
they are live at function end. */
if (df_regs_ever_live_p (regno)
|| (!crtl->is_leaf && call_used_or_fixed_reg_p (regno)))
return true;
}
return false;
}
static bool
riscv_avoid_shrink_wrapping_separate ()
{
if (riscv_use_save_libcall (&cfun->machine->frame)
|| cfun->machine->interrupt_handler_p
|| !cfun->machine->frame.gp_sp_offset.is_constant ())
return true;
return false;
}
/* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS. */
static sbitmap
riscv_get_separate_components (void)
{
HOST_WIDE_INT offset;
sbitmap components = sbitmap_alloc (FIRST_PSEUDO_REGISTER);
bitmap_clear (components);
if (riscv_avoid_shrink_wrapping_separate ())
return components;
offset = cfun->machine->frame.gp_sp_offset.to_constant ();
for (unsigned int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
{
/* We can only wrap registers that have small operand offsets.
For large offsets a pseudo register might be needed which
cannot be created during the shrink wrapping pass. */
if (SMALL_OPERAND (offset))
bitmap_set_bit (components, regno);
offset -= UNITS_PER_WORD;
}
offset = cfun->machine->frame.fp_sp_offset.to_constant ();
for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
{
machine_mode mode = TARGET_DOUBLE_FLOAT ? DFmode : SFmode;
/* We can only wrap registers that have small operand offsets.
For large offsets a pseudo register might be needed which
cannot be created during the shrink wrapping pass. */
if (SMALL_OPERAND (offset))
bitmap_set_bit (components, regno);
offset -= GET_MODE_SIZE (mode).to_constant ();
}
/* Don't mess with the hard frame pointer. */
if (frame_pointer_needed)
bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM);
bitmap_clear_bit (components, RETURN_ADDR_REGNUM);
return components;
}
/* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB. */
static sbitmap
riscv_components_for_bb (basic_block bb)
{
bitmap in = DF_LIVE_IN (bb);
bitmap gen = &DF_LIVE_BB_INFO (bb)->gen;
bitmap kill = &DF_LIVE_BB_INFO (bb)->kill;
sbitmap components = sbitmap_alloc (FIRST_PSEUDO_REGISTER);
bitmap_clear (components);
function_abi_aggregator callee_abis;
rtx_insn *insn;
FOR_BB_INSNS (bb, insn)
if (CALL_P (insn))
callee_abis.note_callee_abi (insn_callee_abi (insn));
HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
/* GPRs are used in a bb if they are in the IN, GEN, or KILL sets. */
for (unsigned int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (!fixed_regs[regno]
&& !crtl->abi->clobbers_full_reg_p (regno)
&& (TEST_HARD_REG_BIT (extra_caller_saves, regno)
|| bitmap_bit_p (in, regno)
|| bitmap_bit_p (gen, regno)
|| bitmap_bit_p (kill, regno)))
bitmap_set_bit (components, regno);
for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
if (!fixed_regs[regno]
&& !crtl->abi->clobbers_full_reg_p (regno)
&& (TEST_HARD_REG_BIT (extra_caller_saves, regno)
|| bitmap_bit_p (in, regno)
|| bitmap_bit_p (gen, regno)
|| bitmap_bit_p (kill, regno)))
bitmap_set_bit (components, regno);
return components;
}
/* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS. */
static void
riscv_disqualify_components (sbitmap, edge, sbitmap, bool)
{
/* Nothing to do for riscv. */
}
static void
riscv_process_components (sbitmap components, bool prologue_p)
{
HOST_WIDE_INT offset;
riscv_save_restore_fn fn = prologue_p? riscv_save_reg : riscv_restore_reg;
offset = cfun->machine->frame.gp_sp_offset.to_constant ();
for (unsigned int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
{
if (bitmap_bit_p (components, regno))
riscv_save_restore_reg (word_mode, regno, offset, fn);
offset -= UNITS_PER_WORD;
}
offset = cfun->machine->frame.fp_sp_offset.to_constant ();
for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
{
machine_mode mode = TARGET_DOUBLE_FLOAT ? DFmode : SFmode;
if (bitmap_bit_p (components, regno))
riscv_save_restore_reg (mode, regno, offset, fn);
offset -= GET_MODE_SIZE (mode).to_constant ();
}
}
/* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS. */
static void
riscv_emit_prologue_components (sbitmap components)
{
riscv_process_components (components, true);
}
/* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS. */
static void
riscv_emit_epilogue_components (sbitmap components)
{
riscv_process_components (components, false);
}
static void
riscv_set_handled_components (sbitmap components)
{
for (unsigned int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
if (bitmap_bit_p (components, regno))
cfun->machine->reg_is_wrapped_separately[regno] = true;
for (unsigned int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
if (bitmap_bit_p (components, regno))
cfun->machine->reg_is_wrapped_separately[regno] = true;
}
/* Return nonzero if this function is known to have a null epilogue.
This allows the optimizer to omit jumps to jumps if no stack
was created. */
bool
riscv_can_use_return_insn (void)
{
return (reload_completed && known_eq (cfun->machine->frame.total_size, 0)
&& ! cfun->machine->interrupt_handler_p);
}
/* Given that there exists at least one variable that is set (produced)
by OUT_INSN and read (consumed) by IN_INSN, return true iff
IN_INSN represents one or more memory store operations and none of
the variables set by OUT_INSN is used by IN_INSN as the address of a
store operation. If either IN_INSN or OUT_INSN does not represent
a "single" RTL SET expression (as loosely defined by the
implementation of the single_set function) or a PARALLEL with only
SETs, CLOBBERs, and USEs inside, this function returns false.
Borrowed from rs6000, riscv_store_data_bypass_p checks for certain
conditions that result in assertion failures in the generic
store_data_bypass_p function and returns FALSE in such cases.
This is required to make -msave-restore work with the sifive-7
pipeline description. */
bool
riscv_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
{
rtx out_set, in_set;
rtx out_pat, in_pat;
rtx out_exp, in_exp;
int i, j;
in_set = single_set (in_insn);
if (in_set)
{
if (MEM_P (SET_DEST (in_set)))
{
out_set = single_set (out_insn);
if (!out_set)
{
out_pat = PATTERN (out_insn);
if (GET_CODE (out_pat) == PARALLEL)
{
for (i = 0; i < XVECLEN (out_pat, 0); i++)
{
out_exp = XVECEXP (out_pat, 0, i);
if ((GET_CODE (out_exp) == CLOBBER)
|| (GET_CODE (out_exp) == USE))
continue;
else if (GET_CODE (out_exp) != SET)
return false;
}
}
}
}
}
else
{
in_pat = PATTERN (in_insn);
if (GET_CODE (in_pat) != PARALLEL)
return false;
for (i = 0; i < XVECLEN (in_pat, 0); i++)
{
in_exp = XVECEXP (in_pat, 0, i);
if ((GET_CODE (in_exp) == CLOBBER) || (GET_CODE (in_exp) == USE))
continue;
else if (GET_CODE (in_exp) != SET)
return false;
if (MEM_P (SET_DEST (in_exp)))
{
out_set = single_set (out_insn);
if (!out_set)
{
out_pat = PATTERN (out_insn);
if (GET_CODE (out_pat) != PARALLEL)
return false;
for (j = 0; j < XVECLEN (out_pat, 0); j++)
{
out_exp = XVECEXP (out_pat, 0, j);
if ((GET_CODE (out_exp) == CLOBBER)
|| (GET_CODE (out_exp) == USE))
continue;
else if (GET_CODE (out_exp) != SET)
return false;
}
}
}
}
}
return store_data_bypass_p (out_insn, in_insn);
}
/* Implement TARGET_SECONDARY_MEMORY_NEEDED.
When floating-point registers are wider than integer ones, moves between
them must go through memory. */
static bool
riscv_secondary_memory_needed (machine_mode mode, reg_class_t class1,
reg_class_t class2)
{
return (!riscv_v_ext_mode_p (mode)
&& GET_MODE_SIZE (mode).to_constant () > UNITS_PER_WORD
&& (class1 == FP_REGS) != (class2 == FP_REGS)
&& !TARGET_XTHEADFMV
&& !TARGET_ZFA);
}
/* Implement TARGET_REGISTER_MOVE_COST. */
static int
riscv_register_move_cost (machine_mode mode,
reg_class_t from, reg_class_t to)
{
if ((from == FP_REGS && to == GR_REGS) ||
(from == GR_REGS && to == FP_REGS))
return tune_param->fmv_cost;
return riscv_secondary_memory_needed (mode, from, to) ? 8 : 2;
}
/* Implement TARGET_HARD_REGNO_NREGS. */
static unsigned int
riscv_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
if (riscv_v_ext_vector_mode_p (mode))
{
/* Handle fractional LMUL, it only occupy part of vector register but
still need one vector register to hold. */
if (maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_V_REG))
return 1;
return exact_div (GET_MODE_SIZE (mode), UNITS_PER_V_REG).to_constant ();
}
/* For tuple modes, the number of register = NF * LMUL. */
if (riscv_v_ext_tuple_mode_p (mode))
{
unsigned int nf = riscv_vector::get_nf (mode);
machine_mode subpart_mode = riscv_vector::get_subpart_mode (mode);
poly_int64 size = GET_MODE_SIZE (subpart_mode);
gcc_assert (known_eq (size * nf, GET_MODE_SIZE (mode)));
if (maybe_lt (size, UNITS_PER_V_REG))
return nf;
else
{
unsigned int lmul = exact_div (size, UNITS_PER_V_REG).to_constant ();
return nf * lmul;
}
}
/* For VLS modes, we allocate registers according to TARGET_MIN_VLEN. */
if (riscv_v_ext_vls_mode_p (mode))
{
int size = GET_MODE_BITSIZE (mode).to_constant ();
if (size < TARGET_MIN_VLEN)
return 1;
else
return size / TARGET_MIN_VLEN;
}
/* mode for VL or VTYPE are just a marker, not holding value,
so it always consume one register. */
if (VTYPE_REG_P (regno) || VL_REG_P (regno) || VXRM_REG_P (regno)
|| FRM_REG_P (regno))
return 1;
/* Assume every valid non-vector mode fits in one vector register. */
if (V_REG_P (regno))
return 1;
if (FP_REG_P (regno))
return (GET_MODE_SIZE (mode).to_constant () + UNITS_PER_FP_REG - 1) / UNITS_PER_FP_REG;
/* All other registers are word-sized. */
return (GET_MODE_SIZE (mode).to_constant () + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}
/* Implement TARGET_HARD_REGNO_MODE_OK. */
static bool
riscv_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
unsigned int nregs = riscv_hard_regno_nregs (regno, mode);
if (GP_REG_P (regno))
{
if (riscv_v_ext_mode_p (mode))
return false;
if (!GP_REG_P (regno + nregs - 1))
return false;
}
else if (FP_REG_P (regno))
{
if (riscv_v_ext_mode_p (mode))
return false;
if (!FP_REG_P (regno + nregs - 1))
return false;
if (GET_MODE_CLASS (mode) != MODE_FLOAT
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
return false;
/* Only use callee-saved registers if a potential callee is guaranteed
to spill the requisite width. */
if (GET_MODE_UNIT_SIZE (mode) > UNITS_PER_FP_REG
|| (!call_used_or_fixed_reg_p (regno)
&& GET_MODE_UNIT_SIZE (mode) > UNITS_PER_FP_ARG))
return false;
}
else if (V_REG_P (regno))
{
if (!riscv_v_ext_mode_p (mode))
return false;
if (!V_REG_P (regno + nregs - 1))
return false;
int regno_alignment = riscv_get_v_regno_alignment (mode);
if (regno_alignment != 1)
return ((regno % regno_alignment) == 0);
}
else if (VTYPE_REG_P (regno) || VL_REG_P (regno) || VXRM_REG_P (regno)
|| FRM_REG_P (regno))
return true;
else
return false;
/* Require same callee-savedness for all registers. */
for (unsigned i = 1; i < nregs; i++)
if (call_used_or_fixed_reg_p (regno)
!= call_used_or_fixed_reg_p (regno + i))
return false;
/* Only use even registers in RV32 ZDINX */
if (!TARGET_64BIT && TARGET_ZDINX){
if (GET_MODE_CLASS (mode) == MODE_FLOAT &&
GET_MODE_UNIT_SIZE (mode) == GET_MODE_SIZE (DFmode))
return !(regno & 1);
}
return true;
}
/* Implement TARGET_MODES_TIEABLE_P.
Don't allow floating-point modes to be tied, since type punning of
single-precision and double-precision is implementation defined. */
static bool
riscv_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
/* We don't allow different REG_CLASS modes tieable since it
will cause ICE in register allocation (RA).
E.g. V2SI and DI are not tieable. */
if (riscv_v_ext_mode_p (mode1) != riscv_v_ext_mode_p (mode2))
return false;
return (mode1 == mode2
|| !(GET_MODE_CLASS (mode1) == MODE_FLOAT
&& GET_MODE_CLASS (mode2) == MODE_FLOAT));
}
/* Implement TARGET_CLASS_MAX_NREGS. */
static unsigned char
riscv_class_max_nregs (reg_class_t rclass, machine_mode mode)
{
if (reg_class_subset_p (rclass, FP_REGS))
return riscv_hard_regno_nregs (FP_REG_FIRST, mode);
if (reg_class_subset_p (rclass, GR_REGS))
return riscv_hard_regno_nregs (GP_REG_FIRST, mode);
if (reg_class_subset_p (rclass, V_REGS))
return riscv_hard_regno_nregs (V_REG_FIRST, mode);
return 0;
}
/* Implement TARGET_MEMORY_MOVE_COST. */
static int
riscv_memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
{
return (tune_param->memory_cost
+ memory_move_secondary_cost (mode, rclass, in));
}
/* Return the number of instructions that can be issued per cycle. */
static int
riscv_issue_rate (void)
{
return tune_param->issue_rate;
}
/* Implement TARGET_SCHED_VARIABLE_ISSUE. */
static int
riscv_sched_variable_issue (FILE *, int, rtx_insn *insn, int more)
{
if (DEBUG_INSN_P (insn))
return more;
rtx_code code = GET_CODE (PATTERN (insn));
if (code == USE || code == CLOBBER)
return more;
/* GHOST insns are used for blockage and similar cases which
effectively end a cycle. */
if (get_attr_type (insn) == TYPE_GHOST)
return 0;
/* If we ever encounter an insn with an unknown type, trip
an assert so we can find and fix this problem. */
gcc_assert (get_attr_type (insn) != TYPE_UNKNOWN);
/* If we ever encounter an insn without an insn reservation, trip
an assert so we can find and fix this problem. */
gcc_assert (insn_has_dfa_reservation_p (insn));
return more - 1;
}
/* Implement TARGET_SCHED_MACRO_FUSION_P. Return true if target supports
instruction fusion of some sort. */
static bool
riscv_macro_fusion_p (void)
{
return tune_param->fusible_ops != RISCV_FUSE_NOTHING;
}
/* Return true iff the instruction fusion described by OP is enabled. */
static bool
riscv_fusion_enabled_p(enum riscv_fusion_pairs op)
{
return tune_param->fusible_ops & op;
}
/* Implement TARGET_SCHED_MACRO_FUSION_PAIR_P. Return true if PREV and CURR
should be kept together during scheduling. */
static bool
riscv_macro_fusion_pair_p (rtx_insn *prev, rtx_insn *curr)
{
rtx prev_set = single_set (prev);
rtx curr_set = single_set (curr);
/* prev and curr are simple SET insns i.e. no flag setting or branching. */
bool simple_sets_p = prev_set && curr_set && !any_condjump_p (curr);
if (!riscv_macro_fusion_p ())
return false;
if (simple_sets_p
&& (riscv_fusion_enabled_p (RISCV_FUSE_ZEXTW)
|| riscv_fusion_enabled_p (RISCV_FUSE_ZEXTWS)))
{
/* We are trying to match the following:
prev (slli) == (set (reg:DI rD)
(ashift:DI (reg:DI rS) (const_int 32)))
curr (slri) == (set (reg:DI rD)
(lshiftrt:DI (reg:DI rD) (const_int )))
with being either 32 for FUSE_ZEXTW, or
`less than 32 for FUSE_ZEXTWS. */
if (GET_CODE (SET_SRC (prev_set)) == ASHIFT
&& GET_CODE (SET_SRC (curr_set)) == LSHIFTRT
&& REG_P (SET_DEST (prev_set))
&& REG_P (SET_DEST (curr_set))
&& REGNO (SET_DEST (prev_set)) == REGNO (SET_DEST (curr_set))
&& REGNO (XEXP (SET_SRC (curr_set), 0)) == REGNO(SET_DEST (curr_set))
&& CONST_INT_P (XEXP (SET_SRC (prev_set), 1))
&& CONST_INT_P (XEXP (SET_SRC (curr_set), 1))
&& INTVAL (XEXP (SET_SRC (prev_set), 1)) == 32
&& (( INTVAL (XEXP (SET_SRC (curr_set), 1)) == 32
&& riscv_fusion_enabled_p(RISCV_FUSE_ZEXTW) )
|| ( INTVAL (XEXP (SET_SRC (curr_set), 1)) < 32
&& riscv_fusion_enabled_p(RISCV_FUSE_ZEXTWS))))
return true;
}
if (simple_sets_p && riscv_fusion_enabled_p (RISCV_FUSE_ZEXTH))
{
/* We are trying to match the following:
prev (slli) == (set (reg:DI rD)
(ashift:DI (reg:DI rS) (const_int 48)))
curr (slri) == (set (reg:DI rD)
(lshiftrt:DI (reg:DI rD) (const_int 48))) */
if (GET_CODE (SET_SRC (prev_set)) == ASHIFT
&& GET_CODE (SET_SRC (curr_set)) == LSHIFTRT
&& REG_P (SET_DEST (prev_set))
&& REG_P (SET_DEST (curr_set))
&& REGNO (SET_DEST (prev_set)) == REGNO (SET_DEST (curr_set))
&& REGNO (XEXP (SET_SRC (curr_set), 0)) == REGNO(SET_DEST (curr_set))
&& CONST_INT_P (XEXP (SET_SRC (prev_set), 1))
&& CONST_INT_P (XEXP (SET_SRC (curr_set), 1))
&& INTVAL (XEXP (SET_SRC (prev_set), 1)) == 48
&& INTVAL (XEXP (SET_SRC (curr_set), 1)) == 48)
return true;
}
if (simple_sets_p && riscv_fusion_enabled_p (RISCV_FUSE_LDINDEXED))
{
/* We are trying to match the following:
prev (add) == (set (reg:DI rD)
(plus:DI (reg:DI rS1) (reg:DI rS2))
curr (ld) == (set (reg:DI rD)
(mem:DI (reg:DI rD))) */
if (MEM_P (SET_SRC (curr_set))
&& REG_P (XEXP (SET_SRC (curr_set), 0))
&& REGNO (XEXP (SET_SRC (curr_set), 0)) == REGNO (SET_DEST (prev_set))
&& GET_CODE (SET_SRC (prev_set)) == PLUS
&& REG_P (XEXP (SET_SRC (prev_set), 0))
&& REG_P (XEXP (SET_SRC (prev_set), 1)))
return true;
/* We are trying to match the following:
prev (add) == (set (reg:DI rD)
(plus:DI (reg:DI rS1) (reg:DI rS2)))
curr (lw) == (set (any_extend:DI (mem:SUBX (reg:DI rD)))) */
if ((GET_CODE (SET_SRC (curr_set)) == SIGN_EXTEND
|| (GET_CODE (SET_SRC (curr_set)) == ZERO_EXTEND))
&& MEM_P (XEXP (SET_SRC (curr_set), 0))
&& REG_P (XEXP (XEXP (SET_SRC (curr_set), 0), 0))
&& REGNO (XEXP (XEXP (SET_SRC (curr_set), 0), 0)) == REGNO (SET_DEST (prev_set))
&& GET_CODE (SET_SRC (prev_set)) == PLUS
&& REG_P (XEXP (SET_SRC (prev_set), 0))
&& REG_P (XEXP (SET_SRC (prev_set), 1)))
return true;
}
if (simple_sets_p && riscv_fusion_enabled_p (RISCV_FUSE_LDPREINCREMENT))
{
/* We are trying to match the following:
prev (add) == (set (reg:DI rS)
(plus:DI (reg:DI rS) (const_int))
curr (ld) == (set (reg:DI rD)
(mem:DI (reg:DI rS))) */
if (MEM_P (SET_SRC (curr_set))
&& REG_P (XEXP (SET_SRC (curr_set), 0))
&& REGNO (XEXP (SET_SRC (curr_set), 0)) == REGNO (SET_DEST (prev_set))
&& GET_CODE (SET_SRC (prev_set)) == PLUS
&& REG_P (XEXP (SET_SRC (prev_set), 0))
&& CONST_INT_P (XEXP (SET_SRC (prev_set), 1)))
return true;
}
if (simple_sets_p && riscv_fusion_enabled_p (RISCV_FUSE_LUI_ADDI))
{
/* We are trying to match the following:
prev (lui) == (set (reg:DI rD) (const_int UPPER_IMM_20))
curr (addi) == (set (reg:DI rD)
(plus:DI (reg:DI rD) (const_int IMM12))) */
if ((GET_CODE (SET_SRC (curr_set)) == LO_SUM
|| (GET_CODE (SET_SRC (curr_set)) == PLUS
&& CONST_INT_P (XEXP (SET_SRC (curr_set), 1))
&& SMALL_OPERAND (INTVAL (XEXP (SET_SRC (curr_set), 1)))))
&& (GET_CODE (SET_SRC (prev_set)) == HIGH
|| (CONST_INT_P (SET_SRC (prev_set))
&& LUI_OPERAND (INTVAL (SET_SRC (prev_set))))))
return true;
}
if (simple_sets_p && riscv_fusion_enabled_p (RISCV_FUSE_AUIPC_ADDI))
{
/* We are trying to match the following:
prev (auipc) == (set (reg:DI rD) (unspec:DI [...] UNSPEC_AUIPC))
curr (addi) == (set (reg:DI rD)
(plus:DI (reg:DI rD) (const_int IMM12)))
and
prev (auipc) == (set (reg:DI rD) (unspec:DI [...] UNSPEC_AUIPC))
curr (addi) == (set (reg:DI rD)
(lo_sum:DI (reg:DI rD) (const_int IMM12))) */
if (GET_CODE (SET_SRC (prev_set)) == UNSPEC
&& XINT (SET_SRC (prev_set), 1) == UNSPEC_AUIPC
&& (GET_CODE (SET_SRC (curr_set)) == LO_SUM
|| (GET_CODE (SET_SRC (curr_set)) == PLUS
&& CONST_INT_P (XEXP (SET_SRC (curr_set), 1))
&& SMALL_OPERAND (INTVAL (XEXP (SET_SRC (curr_set), 1))))))
return true;
}
if (simple_sets_p && riscv_fusion_enabled_p (RISCV_FUSE_LUI_LD))
{
/* We are trying to match the following:
prev (lui) == (set (reg:DI rD) (const_int UPPER_IMM_20))
curr (ld) == (set (reg:DI rD)
(mem:DI (plus:DI (reg:DI rD) (const_int IMM12)))) */
if (CONST_INT_P (SET_SRC (prev_set))
&& LUI_OPERAND (INTVAL (SET_SRC (prev_set)))
&& MEM_P (SET_SRC (curr_set))
&& GET_CODE (XEXP (SET_SRC (curr_set), 0)) == PLUS)
return true;
if (GET_CODE (SET_SRC (prev_set)) == HIGH
&& MEM_P (SET_SRC (curr_set))
&& GET_CODE (XEXP (SET_SRC (curr_set), 0)) == LO_SUM
&& REGNO (SET_DEST (prev_set)) == REGNO (XEXP (XEXP (SET_SRC (curr_set), 0), 0)))
return true;
if (GET_CODE (SET_SRC (prev_set)) == HIGH
&& (GET_CODE (SET_SRC (curr_set)) == SIGN_EXTEND
|| GET_CODE (SET_SRC (curr_set)) == ZERO_EXTEND)
&& MEM_P (XEXP (SET_SRC (curr_set), 0))
&& (GET_CODE (XEXP (XEXP (SET_SRC (curr_set), 0), 0)) == LO_SUM
&& REGNO (SET_DEST (prev_set)) == REGNO (XEXP (XEXP (XEXP (SET_SRC (curr_set), 0), 0), 0))))
return true;
}
if (simple_sets_p && riscv_fusion_enabled_p (RISCV_FUSE_AUIPC_LD))
{
/* We are trying to match the following:
prev (auipc) == (set (reg:DI rD) (unspec:DI [...] UNSPEC_AUIPC))
curr (ld) == (set (reg:DI rD)
(mem:DI (plus:DI (reg:DI rD) (const_int IMM12)))) */
if (GET_CODE (SET_SRC (prev_set)) == UNSPEC
&& XINT (prev_set, 1) == UNSPEC_AUIPC
&& MEM_P (SET_SRC (curr_set))
&& GET_CODE (XEXP (SET_SRC (curr_set), 0)) == PLUS)
return true;
}
if (simple_sets_p && riscv_fusion_enabled_p (RISCV_FUSE_ALIGNED_STD))
{
/* We are trying to match the following:
prev (sd) == (set (mem (plus (reg sp|fp) (const_int)))
(reg rS1))
curr (sd) == (set (mem (plus (reg sp|fp) (const_int)))
(reg rS2)) */
if (MEM_P (SET_DEST (prev_set))
&& MEM_P (SET_DEST (curr_set))
/* We can probably relax this condition. The documentation is a bit
unclear about sub-word cases. So we just model DImode for now. */
&& GET_MODE (SET_DEST (curr_set)) == DImode
&& GET_MODE (SET_DEST (prev_set)) == DImode)
{
rtx base_prev, base_curr, offset_prev, offset_curr;
extract_base_offset_in_addr (SET_DEST (prev_set), &base_prev, &offset_prev);
extract_base_offset_in_addr (SET_DEST (curr_set), &base_curr, &offset_curr);
/* Fail if we did not find both bases. */
if (base_prev == NULL_RTX || base_curr == NULL_RTX)
return false;
/* Fail if either base is not a register. */
if (!REG_P (base_prev) || !REG_P (base_curr))
return false;
/* Fail if the bases are not the same register. */
if (REGNO (base_prev) != REGNO (base_curr))
return false;
/* Originally the thought was to check MEM_ALIGN, but that was
reporting incorrect alignments, even for SP/FP accesses, so we
gave up on that approach. Instead just check for stack/hfp
which we know are aligned. */
if (REGNO (base_prev) != STACK_POINTER_REGNUM
&& REGNO (base_prev) != HARD_FRAME_POINTER_REGNUM)
return false;
/* The two stores must be contained within opposite halves of the
same 16 byte aligned block of memory. We know that the stack
pointer and the frame pointer have suitable alignment. So we
just need to check the offsets of the two stores for suitable
alignment. */
/* Get the smaller offset into OFFSET_PREV. */
if (INTVAL (offset_prev) > INTVAL (offset_curr))
std::swap (offset_prev, offset_curr);
/* If the smaller offset (OFFSET_PREV) is not 16 byte aligned,
then fail. */
if ((INTVAL (offset_prev) % 16) != 0)
return false;
/* The higher offset must be 8 bytes more than the lower
offset. */
return (INTVAL (offset_prev) + 8 == INTVAL (offset_curr));
}
}
return false;
}
/* Adjust the cost/latency of instructions for scheduling.
For now this is just used to change the latency of vector instructions
according to their LMUL. We assume that an insn with LMUL == 8 requires
eight times more execution cycles than the same insn with LMUL == 1.
As this may cause very high latencies which lead to scheduling artifacts
we currently only perform the adjustment when -madjust-lmul-cost is given.
*/
static int
riscv_sched_adjust_cost (rtx_insn *, int, rtx_insn *insn, int cost,
unsigned int)
{
/* Only do adjustments for the generic out-of-order scheduling model. */
if (!TARGET_VECTOR || riscv_microarchitecture != generic_ooo)
return cost;
if (recog_memoized (insn) < 0)
return cost;
enum attr_type type = get_attr_type (insn);
if (type == TYPE_VFREDO || type == TYPE_VFWREDO)
{
/* TODO: For ordered reductions scale the base cost relative to the
number of units. */
;
}
/* Don't do any LMUL-based latency adjustment unless explicitly asked to. */
if (!TARGET_ADJUST_LMUL_COST)
return cost;
/* vsetvl has a vlmul attribute but its latency does not depend on it. */
if (type == TYPE_VSETVL || type == TYPE_VSETVL_PRE)
return cost;
enum riscv_vector::vlmul_type lmul =
(riscv_vector::vlmul_type)get_attr_vlmul (insn);
double factor = 1;
switch (lmul)
{
case riscv_vector::LMUL_2:
factor = 2;
break;
case riscv_vector::LMUL_4:
factor = 4;
break;
case riscv_vector::LMUL_8:
factor = 8;
break;
case riscv_vector::LMUL_F2:
factor = 0.5;
break;
case riscv_vector::LMUL_F4:
factor = 0.25;
break;
case riscv_vector::LMUL_F8:
factor = 0.125;
break;
default:
factor = 1;
}
/* If the latency was nonzero, keep it that way. */
int new_cost = MAX (cost > 0 ? 1 : 0, cost * factor);
return new_cost;
}
/* Auxiliary function to emit RISC-V ELF attribute. */
static void
riscv_emit_attribute ()
{
fprintf (asm_out_file, "\t.attribute arch, \"%s\"\n",
riscv_arch_str ().c_str ());
fprintf (asm_out_file, "\t.attribute unaligned_access, %d\n",
TARGET_STRICT_ALIGN ? 0 : 1);
fprintf (asm_out_file, "\t.attribute stack_align, %d\n",
riscv_stack_boundary / 8);
}
/* Output .variant_cc for function symbol which follows vector calling
convention. */
static void
riscv_asm_output_variant_cc (FILE *stream, const tree decl, const char *name)
{
if (TREE_CODE (decl) == FUNCTION_DECL)
{
riscv_cc cc = (riscv_cc) fndecl_abi (decl).id ();
if (cc == RISCV_CC_V)
{
fprintf (stream, "\t.variant_cc\t");
assemble_name (stream, name);
fprintf (stream, "\n");
}
}
}
/* Implement ASM_DECLARE_FUNCTION_NAME. */
void
riscv_declare_function_name (FILE *stream, const char *name, tree fndecl)
{
riscv_asm_output_variant_cc (stream, fndecl, name);
ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "function");
ASM_OUTPUT_FUNCTION_LABEL (stream, name, fndecl);
if (DECL_FUNCTION_SPECIFIC_TARGET (fndecl)
|| lookup_attribute ("norelax", DECL_ATTRIBUTES (fndecl)))
{
fprintf (stream, "\t.option push\n");
if (lookup_attribute ("norelax", DECL_ATTRIBUTES (fndecl)))
{
fprintf (stream, "\t.option norelax\n");
}
if (DECL_FUNCTION_SPECIFIC_TARGET (fndecl))
{
struct cl_target_option *local_cl_target
= TREE_TARGET_OPTION (DECL_FUNCTION_SPECIFIC_TARGET (fndecl));
struct cl_target_option *global_cl_target
= TREE_TARGET_OPTION (target_option_default_node);
const char *local_arch_str = get_arch_str (local_cl_target);
const char *arch_str = local_arch_str != NULL
? local_arch_str
: riscv_arch_str (true).c_str ();
fprintf (stream, "\t.option arch, %s\n", arch_str);
const char *local_tune_str = get_tune_str (local_cl_target);
const char *global_tune_str = get_tune_str (global_cl_target);
if (strcmp (local_tune_str, global_tune_str) != 0)
fprintf (stream, "\t# tune = %s\n", local_tune_str);
}
}
}
void
riscv_declare_function_size (FILE *stream, const char *name, tree fndecl)
{
if (!flag_inhibit_size_directive)
ASM_OUTPUT_MEASURED_SIZE (stream, name);
if (DECL_FUNCTION_SPECIFIC_TARGET (fndecl)
|| lookup_attribute ("norelax", DECL_ATTRIBUTES (fndecl)))
{
fprintf (stream, "\t.option pop\n");
}
}
/* Implement ASM_OUTPUT_DEF_FROM_DECLS. */
void
riscv_asm_output_alias (FILE *stream, const tree decl, const tree target)
{
const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
const char *value = IDENTIFIER_POINTER (target);
riscv_asm_output_variant_cc (stream, decl, name);
ASM_OUTPUT_DEF (stream, name, value);
}
/* Implement ASM_OUTPUT_EXTERNAL. */
void
riscv_asm_output_external (FILE *stream, tree decl, const char *name)
{
default_elf_asm_output_external (stream, decl, name);
riscv_asm_output_variant_cc (stream, decl, name);
}
/* Implement TARGET_ASM_FILE_START. */
static void
riscv_file_start (void)
{
default_file_start ();
/* Instruct GAS to generate position-[in]dependent code. */
fprintf (asm_out_file, "\t.option %spic\n", (flag_pic ? "" : "no"));
/* If the user specifies "-mno-relax" on the command line then disable linker
relaxation in the assembler. */
if (! riscv_mrelax)
fprintf (asm_out_file, "\t.option norelax\n");
/* If the user specifies "-mcsr-check" on the command line then enable csr
check in the assembler. */
if (riscv_mcsr_check)
fprintf (asm_out_file, "\t.option csr-check\n");
if (riscv_emit_attribute_p)
riscv_emit_attribute ();
}
/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
in order to avoid duplicating too much logic from elsewhere. */
static void
riscv_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl));
rtx this_rtx, temp1, temp2, fnaddr;
rtx_insn *insn;
riscv_in_thunk_func = true;
/* Pretend to be a post-reload pass while generating rtl. */
reload_completed = 1;
/* Mark the end of the (empty) prologue. */
emit_note (NOTE_INSN_PROLOGUE_END);
/* Determine if we can use a sibcall to call FUNCTION directly. */
fnaddr = gen_rtx_MEM (FUNCTION_MODE, XEXP (DECL_RTL (function), 0));
/* We need two temporary registers in some cases. */
temp1 = gen_rtx_REG (Pmode, RISCV_PROLOGUE_TEMP_REGNUM);
temp2 = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
/* Find out which register contains the "this" pointer. */
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
else
this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);
/* Add DELTA to THIS_RTX. */
if (delta != 0)
{
rtx offset = GEN_INT (delta);
if (!SMALL_OPERAND (delta))
{
riscv_emit_move (temp1, offset);
offset = temp1;
}
emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
}
/* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
if (vcall_offset != 0)
{
rtx addr;
/* Set TEMP1 to *THIS_RTX. */
riscv_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));
/* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
addr = riscv_add_offset (temp2, temp1, vcall_offset);
/* Load the offset and add it to THIS_RTX. */
riscv_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
}
/* Jump to the target function. */
rtx callee_cc = gen_int_mode (fndecl_abi (function).id (), SImode);
insn = emit_call_insn (gen_sibcall (fnaddr, const0_rtx, callee_cc));
SIBLING_CALL_P (insn) = 1;
/* Run just enough of rest_of_compilation. This sequence was
"borrowed" from alpha.cc. */
insn = get_insns ();
split_all_insns_noflow ();
shorten_branches (insn);
assemble_start_function (thunk_fndecl, fnname);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
assemble_end_function (thunk_fndecl, fnname);
/* Clean up the vars set above. Note that final_end_function resets
the global pointer for us. */
reload_completed = 0;
riscv_in_thunk_func = false;
}
/* Allocate a chunk of memory for per-function machine-dependent data. */
static struct machine_function *
riscv_init_machine_status (void)
{
return ggc_cleared_alloc ();
}
/* Return the VLEN value associated with -march and -mrvv-vector-bits.
TODO: So far we only support length-agnostic value. */
static poly_uint16
riscv_convert_vector_chunks (struct gcc_options *opts)
{
int chunk_num;
int min_vlen = TARGET_MIN_VLEN_OPTS (opts);
if (min_vlen > 32)
{
/* When targeting minimum VLEN > 32, we should use 64-bit chunk size.
Otherwise we can not include SEW = 64bits.
Runtime invariant: The single indeterminate represent the
number of 64-bit chunks in a vector beyond minimum length of 64 bits.
Thus the number of bytes in a vector is 8 + 8 * x1 which is
riscv_vector_chunks * 8 = poly_int (8, 8). */
riscv_bytes_per_vector_chunk = 8;
/* Adjust BYTES_PER_RISCV_VECTOR according to TARGET_MIN_VLEN:
- TARGET_MIN_VLEN = 64bit: [8,8]
- TARGET_MIN_VLEN = 128bit: [16,16]
- TARGET_MIN_VLEN = 256bit: [32,32]
- TARGET_MIN_VLEN = 512bit: [64,64]
- TARGET_MIN_VLEN = 1024bit: [128,128]
- TARGET_MIN_VLEN = 2048bit: [256,256]
- TARGET_MIN_VLEN = 4096bit: [512,512]
FIXME: We currently DON'T support TARGET_MIN_VLEN > 4096bit. */
chunk_num = min_vlen / 64;
}
else
{
/* When targeting minimum VLEN = 32, we should use 32-bit
chunk size. Runtime invariant: The single indeterminate represent the
number of 32-bit chunks in a vector beyond minimum length of 32 bits.
Thus the number of bytes in a vector is 4 + 4 * x1 which is
riscv_vector_chunks * 4 = poly_int (4, 4). */
riscv_bytes_per_vector_chunk = 4;
chunk_num = 1;
}
/* Set riscv_vector_chunks as poly (1, 1) run-time constant if TARGET_VECTOR
is enabled. Set riscv_vector_chunks as 1 compile-time constant if
TARGET_VECTOR is disabled. riscv_vector_chunks is used in "riscv-modes.def"
to set RVV mode size. The RVV machine modes size are run-time constant if
TARGET_VECTOR is enabled. The RVV machine modes size remains default
compile-time constant if TARGET_VECTOR is disabled. */
if (TARGET_VECTOR_OPTS_P (opts))
{
switch (opts->x_rvv_vector_bits)
{
case RVV_VECTOR_BITS_SCALABLE:
return poly_uint16 (chunk_num, chunk_num);
case RVV_VECTOR_BITS_ZVL:
return (int) min_vlen / (riscv_bytes_per_vector_chunk * 8);
default:
gcc_unreachable ();
}
}
else
return 1;
}
/* 'Unpack' up the internal tuning structs and update the options
in OPTS. The caller must have set up selected_tune and selected_arch
as all the other target-specific codegen decisions are
derived from them. */
void
riscv_override_options_internal (struct gcc_options *opts)
{
const struct riscv_tune_info *cpu;
/* The presence of the M extension implies that division instructions
are present, so include them unless explicitly disabled.
Similarly, if the M extension is not available, then disable
division instructions, unless they are explicitly enabled. */
if (TARGET_MUL_OPTS_P (opts) && (target_flags_explicit & MASK_DIV) == 0)
opts->x_target_flags |= MASK_DIV;
else if (!TARGET_MUL_OPTS_P (opts) && (target_flags_explicit & MASK_DIV) == 0)
opts->x_target_flags &= ~MASK_DIV;
else if (!TARGET_MUL_OPTS_P (opts) && TARGET_DIV_OPTS_P (opts))
error ("%<-mdiv%> requires %<-march%> to subsume the % extension");
/* We might use a multiplication to calculate the scalable vector length at
runtime. Therefore, require the M extension. */
if (TARGET_VECTOR && !TARGET_MUL)
sorry ("Currently the % implementation requires the % extension");
/* Likewise floating-point division and square root. */
if ((TARGET_HARD_FLOAT_OPTS_P (opts) || TARGET_ZFINX_OPTS_P (opts))
&& ((target_flags_explicit & MASK_FDIV) == 0))
opts->x_target_flags |= MASK_FDIV;
/* Handle -mtune, use -mcpu if -mtune is not given, and use default -mtune
if both -mtune and -mcpu are not given. */
const char *tune_string = get_tune_str (opts);
cpu = riscv_parse_tune (tune_string, false);
riscv_microarchitecture = cpu->microarchitecture;
tune_param = opts->x_optimize_size
? &optimize_size_tune_info
: cpu->tune_param;
/* If not optimizing for size, set the default
alignment to what the target wants. */
if (!opts->x_optimize_size)
{
if (opts->x_flag_align_loops && !opts->x_str_align_loops)
opts->x_str_align_loops = tune_param->loop_align;
if (opts->x_flag_align_jumps && !opts->x_str_align_jumps)
opts->x_str_align_jumps = tune_param->jump_align;
if (opts->x_flag_align_functions && !opts->x_str_align_functions)
opts->x_str_align_functions = tune_param->function_align;
}
/* Use -mtune's setting for slow_unaligned_access, even when optimizing
for size. For architectures that trap and emulate unaligned accesses,
the performance cost is too great, even for -Os. Similarly, if
-m[no-]strict-align is left unspecified, heed -mtune's advice. */
riscv_slow_unaligned_access_p = (cpu->tune_param->slow_unaligned_access
|| TARGET_STRICT_ALIGN);
/* By default, when -mno-vector-strict-align is not specified, do not allow
unaligned vector memory accesses except if -mtune's setting explicitly
allows it. */
riscv_vector_unaligned_access_p = opts->x_rvv_vector_strict_align == 0
|| cpu->tune_param->vector_unaligned_access;
/* Make a note if user explicitly passed -mstrict-align for later
builtin macro generation. Can't use target_flags_explicitly since
it is set even for -mno-strict-align. */
riscv_user_wants_strict_align = TARGET_STRICT_ALIGN_OPTS_P (opts);
if ((target_flags_explicit & MASK_STRICT_ALIGN) == 0
&& cpu->tune_param->slow_unaligned_access)
opts->x_target_flags |= MASK_STRICT_ALIGN;
/* If the user hasn't specified a branch cost, use the processor's
default. */
if (opts->x_riscv_branch_cost == 0)
opts->x_riscv_branch_cost = tune_param->branch_cost;
/* FIXME: We don't allow TARGET_MIN_VLEN > 4096 since the datatypes of
both GET_MODE_SIZE and GET_MODE_BITSIZE are poly_uint16.
We can only allow TARGET_MIN_VLEN * 8 (LMUL) < 65535. */
if (TARGET_MIN_VLEN_OPTS (opts) > 4096)
sorry ("Current RISC-V GCC does not support VLEN greater than 4096bit for "
"'V' Extension");
/* FIXME: We don't support RVV in big-endian for now, we may enable RVV with
big-endian after finishing full coverage testing. */
if (TARGET_VECTOR && TARGET_BIG_ENDIAN)
sorry ("Current RISC-V GCC does not support RVV in big-endian mode");
/* Convert -march and -mrvv-vector-bits to a chunks count. */
riscv_vector_chunks = riscv_convert_vector_chunks (opts);
}
/* Implement TARGET_OPTION_OVERRIDE. */
void
riscv_option_override (void)
{
#ifdef SUBTARGET_OVERRIDE_OPTIONS
SUBTARGET_OVERRIDE_OPTIONS;
#endif
flag_pcc_struct_return = 0;
if (flag_pic)
g_switch_value = 0;
/* Always prefer medlow than medany for RV32 since medlow can access
full address space. */
if (riscv_cmodel == CM_LARGE && !TARGET_64BIT)
riscv_cmodel = CM_MEDLOW;
if (riscv_cmodel == CM_LARGE && TARGET_EXPLICIT_RELOCS)
sorry ("code model %qs with %qs", "large", "-mexplicit-relocs");
if (riscv_cmodel == CM_LARGE && flag_pic)
sorry ("code model %qs with %qs", "large",
global_options.x_flag_pic > 1 ? "-fPIC" : "-fpic");
if (flag_pic)
riscv_cmodel = CM_PIC;
/* We need to save the fp with ra for non-leaf functions with no fp and ra
for leaf functions while no-omit-frame-pointer with
omit-leaf-frame-pointer. The x_flag_omit_frame_pointer has the first
priority to determine whether the frame pointer is needed. If we do not
override it, the fp and ra will be stored for leaf functions, which is not
our wanted. */
riscv_save_frame_pointer = false;
if (TARGET_OMIT_LEAF_FRAME_POINTER_P (global_options.x_target_flags))
{
if (!global_options.x_flag_omit_frame_pointer)
riscv_save_frame_pointer = true;
global_options.x_flag_omit_frame_pointer = 1;
}
/* We get better code with explicit relocs for CM_MEDLOW, but
worse code for the others (for now). Pick the best default. */
if ((target_flags_explicit & MASK_EXPLICIT_RELOCS) == 0)
if (riscv_cmodel == CM_MEDLOW)
target_flags |= MASK_EXPLICIT_RELOCS;
/* Require that the ISA supports the requested floating-point ABI. */
if (UNITS_PER_FP_ARG > (TARGET_HARD_FLOAT ? UNITS_PER_FP_REG : 0))
error ("requested ABI requires %<-march%> to subsume the %qc extension",
UNITS_PER_FP_ARG > 8 ? 'Q' : (UNITS_PER_FP_ARG > 4 ? 'D' : 'F'));
/* RVE requires specific ABI. */
if (TARGET_RVE)
{
if (!TARGET_64BIT && riscv_abi != ABI_ILP32E)
error ("rv32e requires ilp32e ABI");
else if (TARGET_64BIT && riscv_abi != ABI_LP64E)
error ("rv64e requires lp64e ABI");
}
/* ILP32E does not support the 'd' extension. */
if (riscv_abi == ABI_ILP32E && UNITS_PER_FP_REG > 4)
error ("ILP32E ABI does not support the %qc extension",
UNITS_PER_FP_REG > 8 ? 'Q' : 'D');
if (riscv_abi == ABI_LP64E)
{
if (warning (OPT_Wdeprecated, "LP64E ABI is marked for deprecation in GCC"))
inform (UNKNOWN_LOCATION, "if you need LP64E please notify the GCC "
"project via %{PR116152%}", "https://gcc.gnu.org/PR116152");
}
/* Zfinx require abi ilp32, ilp32e, lp64 or lp64e. */
if (TARGET_ZFINX
&& riscv_abi != ABI_ILP32 && riscv_abi != ABI_LP64
&& riscv_abi != ABI_ILP32E && riscv_abi != ABI_LP64E)
error ("z*inx requires ABI ilp32, ilp32e, lp64 or lp64e");
/* We do not yet support ILP32 on RV64. */
if (BITS_PER_WORD != POINTER_SIZE)
error ("ABI requires %<-march=rv%d%>", POINTER_SIZE);
/* Validate -mpreferred-stack-boundary= value. */
riscv_stack_boundary = ABI_STACK_BOUNDARY;
if (riscv_preferred_stack_boundary_arg)
{
int min = ctz_hwi (STACK_BOUNDARY / 8);
int max = 8;
if (!IN_RANGE (riscv_preferred_stack_boundary_arg, min, max))
error ("%<-mpreferred-stack-boundary=%d%> must be between %d and %d",
riscv_preferred_stack_boundary_arg, min, max);
riscv_stack_boundary = 8 << riscv_preferred_stack_boundary_arg;
}
if (riscv_emit_attribute_p < 0)
#ifdef HAVE_AS_RISCV_ATTRIBUTE
riscv_emit_attribute_p = TARGET_RISCV_ATTRIBUTE;
#else
riscv_emit_attribute_p = 0;
if (riscv_emit_attribute_p)
error ("%<-mriscv-attribute%> RISC-V ELF attribute requires GNU as 2.32"
" [%<-mriscv-attribute%>]");
#endif
if (riscv_stack_protector_guard == SSP_GLOBAL
&& OPTION_SET_P (riscv_stack_protector_guard_offset_str))
{
error ("incompatible options %<-mstack-protector-guard=global%> and "
"%<-mstack-protector-guard-offset=%s%>",
riscv_stack_protector_guard_offset_str);
}
if (riscv_stack_protector_guard == SSP_TLS
&& !(OPTION_SET_P (riscv_stack_protector_guard_offset_str)
&& OPTION_SET_P (riscv_stack_protector_guard_reg_str)))
{
error ("both %<-mstack-protector-guard-offset%> and "
"%<-mstack-protector-guard-reg%> must be used "
"with %<-mstack-protector-guard=sysreg%>");
}
if (OPTION_SET_P (riscv_stack_protector_guard_reg_str))
{
const char *str = riscv_stack_protector_guard_reg_str;
int reg = decode_reg_name (str);
if (!IN_RANGE (reg, GP_REG_FIRST + 1, GP_REG_LAST))
error ("%qs is not a valid base register in %qs", str,
"-mstack-protector-guard-reg=");
riscv_stack_protector_guard_reg = reg;
}
if (OPTION_SET_P (riscv_stack_protector_guard_offset_str))
{
char *end;
const char *str = riscv_stack_protector_guard_offset_str;
errno = 0;
long offs = strtol (riscv_stack_protector_guard_offset_str, &end, 0);
if (!*str || *end || errno)
error ("%qs is not a valid number in %qs", str,
"-mstack-protector-guard-offset=");
if (!SMALL_OPERAND (offs))
error ("%qs is not a valid offset in %qs", str,
"-mstack-protector-guard-offset=");
riscv_stack_protector_guard_offset = offs;
}
int guard_size = param_stack_clash_protection_guard_size;
/* Enforce that interval is the same size as guard size so the mid-end does
the right thing. */
SET_OPTION_IF_UNSET (&global_options, &global_options_set,
param_stack_clash_protection_probe_interval,
guard_size);
/* The maybe_set calls won't update the value if the user has explicitly set
one. Which means we need to validate that probing interval and guard size
are equal. */
int probe_interval
= param_stack_clash_protection_probe_interval;
if (guard_size != probe_interval)
error ("stack clash guard size %<%d%> must be equal to probing interval "
"%<%d%>", guard_size, probe_interval);
SET_OPTION_IF_UNSET (&global_options, &global_options_set,
param_sched_pressure_algorithm,
SCHED_PRESSURE_MODEL);
/* Function to allocate machine-dependent function status. */
init_machine_status = &riscv_init_machine_status;
riscv_override_options_internal (&global_options);
/* Save these options as the default ones in case we push and pop them later
while processing functions with potential target attributes. */
target_option_default_node = target_option_current_node
= build_target_option_node (&global_options, &global_options_set);
}
/* Restore or save the TREE_TARGET_GLOBALS from or to NEW_TREE.
Used by riscv_set_current_function to
make sure optab availability predicates are recomputed when necessary. */
void
riscv_save_restore_target_globals (tree new_tree)
{
if (TREE_TARGET_GLOBALS (new_tree))
restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
else if (new_tree == target_option_default_node)
restore_target_globals (&default_target_globals);
else
TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
}
/* Implements TARGET_OPTION_RESTORE. Restore the backend codegen decisions
using the information saved in PTR. */
static void
riscv_option_restore (struct gcc_options *opts,
struct gcc_options * /* opts_set */,
struct cl_target_option * /* ptr */)
{
riscv_override_options_internal (opts);
}
static GTY (()) tree riscv_previous_fndecl;
/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
static void
riscv_conditional_register_usage (void)
{
/* We have only x0~x15 on RV32E/RV64E. */
if (TARGET_RVE)
{
for (int r = 16; r <= 31; r++)
fixed_regs[r] = 1;
}
if (riscv_abi == ABI_ILP32E)
{
for (int r = 16; r <= 31; r++)
call_used_regs[r] = 1;
}
if (!TARGET_HARD_FLOAT)
{
for (int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
fixed_regs[regno] = call_used_regs[regno] = 1;
}
/* In the soft-float ABI, there are no callee-saved FP registers. */
if (UNITS_PER_FP_ARG == 0)
{
for (int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
call_used_regs[regno] = 1;
}
if (!TARGET_VECTOR)
{
for (int regno = V_REG_FIRST; regno <= V_REG_LAST; regno++)
fixed_regs[regno] = call_used_regs[regno] = 1;
fixed_regs[VTYPE_REGNUM] = call_used_regs[VTYPE_REGNUM] = 1;
fixed_regs[VL_REGNUM] = call_used_regs[VL_REGNUM] = 1;
fixed_regs[VXRM_REGNUM] = call_used_regs[VXRM_REGNUM] = 1;
fixed_regs[FRM_REGNUM] = call_used_regs[FRM_REGNUM] = 1;
}
}
/* Return a register priority for hard reg REGNO. */
static int
riscv_register_priority (int regno)
{
/* Favor compressed registers to improve the odds of RVC instruction
selection. */
if (riscv_compressed_reg_p (regno))
return 1;
return 0;
}
/* Implement TARGET_TRAMPOLINE_INIT. */
static void
riscv_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
rtx addr, end_addr, mem;
uint32_t trampoline[4];
unsigned int i;
HOST_WIDE_INT static_chain_offset, target_function_offset;
/* Work out the offsets of the pointers from the start of the
trampoline code. */
gcc_assert (ARRAY_SIZE (trampoline) * 4 == TRAMPOLINE_CODE_SIZE);
/* Get pointers to the beginning and end of the code block. */
addr = force_reg (Pmode, XEXP (m_tramp, 0));
end_addr = riscv_force_binary (Pmode, PLUS, addr,
GEN_INT (TRAMPOLINE_CODE_SIZE));
if (Pmode == SImode)
{
chain_value = force_reg (Pmode, chain_value);
rtx target_function = force_reg (Pmode, XEXP (DECL_RTL (fndecl), 0));
/* lui t2, hi(chain)
lui t0, hi(func)
addi t2, t2, lo(chain)
jr t0, lo(func)
*/
unsigned HOST_WIDE_INT lui_hi_chain_code, lui_hi_func_code;
unsigned HOST_WIDE_INT lo_chain_code, lo_func_code;
rtx uimm_mask = force_reg (SImode, gen_int_mode (-IMM_REACH, SImode));
/* 0xfff. */
rtx imm12_mask = gen_reg_rtx (SImode);
emit_insn (gen_one_cmplsi2 (imm12_mask, uimm_mask));
rtx fixup_value = force_reg (SImode, gen_int_mode (IMM_REACH/2, SImode));
/* Gen lui t2, hi(chain). */
rtx hi_chain = riscv_force_binary (SImode, PLUS, chain_value,
fixup_value);
hi_chain = riscv_force_binary (SImode, AND, hi_chain,
uimm_mask);
lui_hi_chain_code = OPCODE_LUI | (STATIC_CHAIN_REGNUM << SHIFT_RD);
rtx lui_hi_chain = riscv_force_binary (SImode, IOR, hi_chain,
gen_int_mode (lui_hi_chain_code, SImode));
mem = adjust_address (m_tramp, SImode, 0);
riscv_emit_move (mem, riscv_swap_instruction (lui_hi_chain));
/* Gen lui t0, hi(func). */
rtx hi_func = riscv_force_binary (SImode, PLUS, target_function,
fixup_value);
hi_func = riscv_force_binary (SImode, AND, hi_func,
uimm_mask);
lui_hi_func_code = OPCODE_LUI | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RD);
rtx lui_hi_func = riscv_force_binary (SImode, IOR, hi_func,
gen_int_mode (lui_hi_func_code, SImode));
mem = adjust_address (m_tramp, SImode, 1 * GET_MODE_SIZE (SImode));
riscv_emit_move (mem, riscv_swap_instruction (lui_hi_func));
/* Gen addi t2, t2, lo(chain). */
rtx lo_chain = riscv_force_binary (SImode, AND, chain_value,
imm12_mask);
lo_chain = riscv_force_binary (SImode, ASHIFT, lo_chain, GEN_INT (20));
lo_chain_code = OPCODE_ADDI
| (STATIC_CHAIN_REGNUM << SHIFT_RD)
| (STATIC_CHAIN_REGNUM << SHIFT_RS1);
rtx addi_lo_chain = riscv_force_binary (SImode, IOR, lo_chain,
force_reg (SImode, GEN_INT (lo_chain_code)));
mem = adjust_address (m_tramp, SImode, 2 * GET_MODE_SIZE (SImode));
riscv_emit_move (mem, riscv_swap_instruction (addi_lo_chain));
/* Gen jr t0, lo(func). */
rtx lo_func = riscv_force_binary (SImode, AND, target_function,
imm12_mask);
lo_func = riscv_force_binary (SImode, ASHIFT, lo_func, GEN_INT (20));
lo_func_code = OPCODE_JALR | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RS1);
rtx jr_lo_func = riscv_force_binary (SImode, IOR, lo_func,
force_reg (SImode, GEN_INT (lo_func_code)));
mem = adjust_address (m_tramp, SImode, 3 * GET_MODE_SIZE (SImode));
riscv_emit_move (mem, riscv_swap_instruction (jr_lo_func));
}
else
{
static_chain_offset = TRAMPOLINE_CODE_SIZE;
target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);
/* auipc t2, 0
l[wd] t0, target_function_offset(t2)
l[wd] t2, static_chain_offset(t2)
jr t0
*/
trampoline[0] = OPCODE_AUIPC | (STATIC_CHAIN_REGNUM << SHIFT_RD);
trampoline[1] = (Pmode == DImode ? OPCODE_LD : OPCODE_LW)
| (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RD)
| (STATIC_CHAIN_REGNUM << SHIFT_RS1)
| (target_function_offset << SHIFT_IMM);
trampoline[2] = (Pmode == DImode ? OPCODE_LD : OPCODE_LW)
| (STATIC_CHAIN_REGNUM << SHIFT_RD)
| (STATIC_CHAIN_REGNUM << SHIFT_RS1)
| (static_chain_offset << SHIFT_IMM);
trampoline[3] = OPCODE_JALR | (RISCV_PROLOGUE_TEMP_REGNUM << SHIFT_RS1);
/* Copy the trampoline code. */
for (i = 0; i < ARRAY_SIZE (trampoline); i++)
{
if (BYTES_BIG_ENDIAN)
trampoline[i] = __builtin_bswap32(trampoline[i]);
mem = adjust_address (m_tramp, SImode, i * GET_MODE_SIZE (SImode));
riscv_emit_move (mem, gen_int_mode (trampoline[i], SImode));
}
/* Set up the static chain pointer field. */
mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
riscv_emit_move (mem, chain_value);
/* Set up the target function field. */
mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
riscv_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));
}
/* Flush the code part of the trampoline. */
emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE)));
emit_insn (gen_clear_cache (addr, end_addr));
}
/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
static bool
riscv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
tree exp ATTRIBUTE_UNUSED)
{
/* Don't use sibcalls when use save-restore routine. */
if (TARGET_SAVE_RESTORE)
return false;
/* Don't use sibcall for naked functions. */
if (cfun->machine->naked_p)
return false;
/* Don't use sibcall for interrupt functions. */
if (cfun->machine->interrupt_handler_p)
return false;
/* Don't use sibcalls in the large model, because a sibcall instruction
expanding and a epilogue expanding both use RISCV_PROLOGUE_TEMP
register. */
if (riscv_cmodel == CM_LARGE)
return false;
return true;
}
/* Get the interrupt type, return UNKNOWN_MODE if it's not
interrupt function. */
static enum riscv_privilege_levels
riscv_get_interrupt_type (tree decl)
{
gcc_assert (decl != NULL_TREE);
if ((TREE_CODE(decl) != FUNCTION_DECL)
|| (!riscv_interrupt_type_p (TREE_TYPE (decl))))
return UNKNOWN_MODE;
tree attr_args
= TREE_VALUE (lookup_attribute ("interrupt",
TYPE_ATTRIBUTES (TREE_TYPE (decl))));
if (attr_args && TREE_CODE (TREE_VALUE (attr_args)) != VOID_TYPE)
{
const char *string = TREE_STRING_POINTER (TREE_VALUE (attr_args));
if (!strcmp (string, "user"))
return USER_MODE;
else if (!strcmp (string, "supervisor"))
return SUPERVISOR_MODE;
else /* Must be "machine". */
return MACHINE_MODE;
}
else
/* Interrupt attributes are machine mode by default. */
return MACHINE_MODE;
}
/* Implement `TARGET_SET_CURRENT_FUNCTION'. Unpack the codegen decisions
like tuning and ISA features from the DECL_FUNCTION_SPECIFIC_TARGET
of the function, if such exists. This function may be called multiple
times on a single function so use aarch64_previous_fndecl to avoid
setting up identical state. */
/* Sanity checking for above function attributes. */
static void
riscv_set_current_function (tree decl)
{
if (decl == NULL_TREE
|| current_function_decl == NULL_TREE
|| current_function_decl == error_mark_node
|| ! cfun->machine)
return;
if (!cfun->machine->attributes_checked_p)
{
cfun->machine->naked_p = riscv_naked_function_p (decl);
cfun->machine->interrupt_handler_p
= riscv_interrupt_type_p (TREE_TYPE (decl));
if (cfun->machine->naked_p && cfun->machine->interrupt_handler_p)
error ("function attributes %qs and %qs are mutually exclusive",
"interrupt", "naked");
if (cfun->machine->interrupt_handler_p)
{
tree ret = TREE_TYPE (TREE_TYPE (decl));
tree args = TYPE_ARG_TYPES (TREE_TYPE (decl));
if (TREE_CODE (ret) != VOID_TYPE)
error ("%qs function cannot return a value", "interrupt");
if (args && TREE_CODE (TREE_VALUE (args)) != VOID_TYPE)
error ("%qs function cannot have arguments", "interrupt");
cfun->machine->interrupt_mode = riscv_get_interrupt_type (decl);
gcc_assert (cfun->machine->interrupt_mode != UNKNOWN_MODE);
}
/* Don't print the above diagnostics more than once. */
cfun->machine->attributes_checked_p = 1;
}
if (!decl || decl == riscv_previous_fndecl)
return;
tree old_tree = (riscv_previous_fndecl
? DECL_FUNCTION_SPECIFIC_TARGET (riscv_previous_fndecl)
: NULL_TREE);
tree new_tree = DECL_FUNCTION_SPECIFIC_TARGET (decl);
/* If current function has no attributes but the previous one did,
use the default node. */
if (!new_tree && old_tree)
new_tree = target_option_default_node;
/* If nothing to do, return. #pragma GCC reset or #pragma GCC pop to
the default have been handled by aarch64_save_restore_target_globals from
aarch64_pragma_target_parse. */
if (old_tree == new_tree)
return;
riscv_previous_fndecl = decl;
/* First set the target options. */
cl_target_option_restore (&global_options, &global_options_set,
TREE_TARGET_OPTION (new_tree));
/* The ISA extension can vary based on the function extension like target.
Thus, make sure that the machine modes are reflected correctly here. */
init_adjust_machine_modes ();
riscv_save_restore_target_globals (new_tree);
}
/* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
static tree
riscv_merge_decl_attributes (tree olddecl, tree newdecl)
{
tree combined_attrs;
enum riscv_privilege_levels old_interrupt_type
= riscv_get_interrupt_type (olddecl);
enum riscv_privilege_levels new_interrupt_type
= riscv_get_interrupt_type (newdecl);
/* Check old and new has same interrupt type. */
if ((old_interrupt_type != UNKNOWN_MODE)
&& (new_interrupt_type != UNKNOWN_MODE)
&& (old_interrupt_type != new_interrupt_type))
error ("%qs function cannot have different interrupt type", "interrupt");
/* Create combined attributes. */
combined_attrs = merge_attributes (DECL_ATTRIBUTES (olddecl),
DECL_ATTRIBUTES (newdecl));
return combined_attrs;
}
/* Implement TARGET_CANNOT_COPY_INSN_P. */
static bool
riscv_cannot_copy_insn_p (rtx_insn *insn)
{
return recog_memoized (insn) >= 0 && get_attr_cannot_copy (insn);
}
/* Implement TARGET_SLOW_UNALIGNED_ACCESS. */
static bool
riscv_slow_unaligned_access (machine_mode mode, unsigned int)
{
return VECTOR_MODE_P (mode) ? TARGET_VECTOR_MISALIGN_SUPPORTED
: riscv_slow_unaligned_access_p;
}
static bool
riscv_overlap_op_by_pieces (void)
{
return tune_param->overlap_op_by_pieces;
}
/* Implement TARGET_CAN_CHANGE_MODE_CLASS. */
static bool
riscv_can_change_mode_class (machine_mode from, machine_mode to,
reg_class_t rclass)
{
/* We have RVV VLS modes and VLA modes sharing same REG_CLASS.
In 'cprop_hardreg' stage, we will try to do hard reg copy propagation
between wider mode (FROM) and narrow mode (TO).
E.g. We should not allow copy propagation
- RVVMF8BI (precision = [16, 16]) -> V32BI (precision = [32, 0])
since we can't order their size which will cause ICE in regcprop.
TODO: Even though they are have different size, they always change
the whole register. We may enhance such case in regcprop to optimize
it in the future. */
if (reg_classes_intersect_p (V_REGS, rclass)
&& !ordered_p (GET_MODE_PRECISION (from), GET_MODE_PRECISION (to)))
return false;
/* Subregs of modes larger than one vector are ambiguous.
A V4DImode with rv64gcv_zvl128b could, for example, span two registers/one
register group of two at VLEN = 128 or one register at VLEN >= 256 and
we cannot, statically, determine which part of it to extract.
Therefore prevent that. */
if (reg_classes_intersect_p (V_REGS, rclass)
&& riscv_v_ext_vls_mode_p (from)
&& !ordered_p (BITS_PER_RISCV_VECTOR, GET_MODE_PRECISION (from)))
return false;
return !reg_classes_intersect_p (FP_REGS, rclass);
}
/* Implement TARGET_CONSTANT_ALIGNMENT. */
static HOST_WIDE_INT
riscv_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
if ((TREE_CODE (exp) == STRING_CST || TREE_CODE (exp) == CONSTRUCTOR)
&& (riscv_align_data_type == riscv_align_data_type_xlen))
return MAX (align, BITS_PER_WORD);
return align;
}
/* Implement TARGET_PROMOTE_FUNCTION_MODE. */
/* This function is equivalent to default_promote_function_mode_always_promote
except that it returns a promoted mode even if type is NULL_TREE. This is
needed by libcalls which have no type (only a mode) such as fixed conversion
routines that take a signed or unsigned char/short/int argument and convert
it to a fixed type. */
static machine_mode
riscv_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
machine_mode mode,
int *punsignedp ATTRIBUTE_UNUSED,
const_tree fntype ATTRIBUTE_UNUSED,
int for_return ATTRIBUTE_UNUSED)
{
int unsignedp;
if (type != NULL_TREE)
return promote_mode (type, mode, punsignedp);
unsignedp = *punsignedp;
scalar_mode smode = as_a (mode);
PROMOTE_MODE (smode, unsignedp, type);
*punsignedp = unsignedp;
return smode;
}
/* Implement TARGET_MACHINE_DEPENDENT_REORG. */
static void
riscv_reorg (void)
{
/* Do nothing unless we have -msave-restore */
if (TARGET_SAVE_RESTORE)
riscv_remove_unneeded_save_restore_calls ();
}
/* Return nonzero if register FROM_REGNO can be renamed to register
TO_REGNO. */
bool
riscv_hard_regno_rename_ok (unsigned from_regno ATTRIBUTE_UNUSED,
unsigned to_regno)
{
/* Interrupt functions can only use registers that have already been
saved by the prologue, even if they would normally be
call-clobbered. */
return !cfun->machine->interrupt_handler_p || df_regs_ever_live_p (to_regno);
}
/* Implement TARGET_NEW_ADDRESS_PROFITABLE_P. */
bool
riscv_new_address_profitable_p (rtx memref, rtx_insn *insn, rtx new_addr)
{
/* Prefer old address if it is less expensive. */
addr_space_t as = MEM_ADDR_SPACE (memref);
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
int old_cost = address_cost (XEXP (memref, 0), GET_MODE (memref), as, speed);
int new_cost = address_cost (new_addr, GET_MODE (memref), as, speed);
return new_cost <= old_cost;
}
/* Helper function for generating gpr_save pattern. */
rtx
riscv_gen_gpr_save_insn (struct riscv_frame_info *frame)
{
unsigned count = riscv_save_libcall_count (frame->mask);
/* 1 for unspec 2 for clobber t0/t1 and 1 for ra. */
unsigned veclen = 1 + 2 + 1 + count;
rtvec vec = rtvec_alloc (veclen);
gcc_assert (veclen <= ARRAY_SIZE (gpr_save_reg_order));
RTVEC_ELT (vec, 0) =
gen_rtx_UNSPEC_VOLATILE (VOIDmode,
gen_rtvec (1, GEN_INT (count)), UNSPECV_GPR_SAVE);
for (unsigned i = 1; i < veclen; ++i)
{
unsigned regno = gpr_save_reg_order[i];
rtx reg = gen_rtx_REG (Pmode, regno);
rtx elt;
/* t0 and t1 are CLOBBERs, others are USEs. */
if (i < 3)
elt = gen_rtx_CLOBBER (Pmode, reg);
else
elt = gen_rtx_USE (Pmode, reg);
RTVEC_ELT (vec, i) = elt;
}
/* Largest number of caller-save register must set in mask if we are
not using __riscv_save_0. */
gcc_assert ((count == 0) ||
BITSET_P (frame->mask, gpr_save_reg_order[veclen - 1]));
return gen_rtx_PARALLEL (VOIDmode, vec);
}
static HOST_WIDE_INT
zcmp_base_adj (int regs_num)
{
return riscv_16bytes_align ((regs_num) *GET_MODE_SIZE (word_mode));
}
static HOST_WIDE_INT
zcmp_additional_adj (HOST_WIDE_INT total, int regs_num)
{
return total - zcmp_base_adj (regs_num);
}
bool
riscv_zcmp_valid_stack_adj_bytes_p (HOST_WIDE_INT total, int regs_num)
{
HOST_WIDE_INT additioanl_bytes = zcmp_additional_adj (total, regs_num);
return additioanl_bytes == 0 || additioanl_bytes == 1 * ZCMP_SP_INC_STEP
|| additioanl_bytes == 2 * ZCMP_SP_INC_STEP
|| additioanl_bytes == ZCMP_MAX_SPIMM * ZCMP_SP_INC_STEP;
}
/* Return true if it's valid gpr_save pattern. */
bool
riscv_gpr_save_operation_p (rtx op)
{
unsigned len = XVECLEN (op, 0);
if (len > ARRAY_SIZE (gpr_save_reg_order))
return false;
for (unsigned i = 0; i < len; i++)
{
rtx elt = XVECEXP (op, 0, i);
if (i == 0)
{
/* First element in parallel is unspec. */
if (GET_CODE (elt) != UNSPEC_VOLATILE
|| GET_CODE (XVECEXP (elt, 0, 0)) != CONST_INT
|| XINT (elt, 1) != UNSPECV_GPR_SAVE)
return false;
}
else
{
/* Two CLOBBER and USEs, must check the order. */
unsigned expect_code = i < 3 ? CLOBBER : USE;
if (GET_CODE (elt) != expect_code
|| !REG_P (XEXP (elt, 1))
|| (REGNO (XEXP (elt, 1)) != gpr_save_reg_order[i]))
return false;
}
break;
}
return true;
}
/* Implement TARGET_ASAN_SHADOW_OFFSET. */
static unsigned HOST_WIDE_INT
riscv_asan_shadow_offset (void)
{
/* We only have libsanitizer support for RV64 at present.
This number must match ASAN_SHADOW_OFFSET_CONST in the file
libsanitizer/asan/asan_mapping.h. */
return TARGET_64BIT ? HOST_WIDE_INT_UC (0xd55550000) : 0;
}
/* Implement TARGET_MANGLE_TYPE. */
static const char *
riscv_mangle_type (const_tree type)
{
/* Half-precision float, _Float16 is "DF16_" and __bf16 is "DF16b". */
if (SCALAR_FLOAT_TYPE_P (type) && TYPE_PRECISION (type) == 16)
{
if (TYPE_MODE (type) == HFmode)
return "DF16_";
if (TYPE_MODE (type) == BFmode)
return "DF16b";
gcc_unreachable ();
}
/* Mangle all vector type for vector extension. */
/* The mangle name follows the rule of RVV LLVM
that is "u" + length of (abi_name) + abi_name. */
if (TYPE_NAME (type) != NULL)
{
const char *res = riscv_vector::mangle_builtin_type (type);
if (res)
return res;
}
/* Use the default mangling. */
return NULL;
}
/* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
static bool
riscv_scalar_mode_supported_p (scalar_mode mode)
{
if (mode == HFmode || mode == BFmode)
return true;
else
return default_scalar_mode_supported_p (mode);
}
/* Implement TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P - return TRUE
if MODE is HFmode or BFmode, and punt to the generic implementation
otherwise. */
static bool
riscv_libgcc_floating_mode_supported_p (scalar_float_mode mode)
{
if (mode == HFmode || mode == BFmode)
return true;
else
return default_libgcc_floating_mode_supported_p (mode);
}
/* Set the value of FLT_EVAL_METHOD.
ISO/IEC TS 18661-3 defines two values that we'd like to make use of:
0: evaluate all operations and constants, whose semantic type has at
most the range and precision of type float, to the range and
precision of float; evaluate all other operations and constants to
the range and precision of the semantic type;
N, where _FloatN is a supported interchange floating type
evaluate all operations and constants, whose semantic type has at
most the range and precision of _FloatN type, to the range and
precision of the _FloatN type; evaluate all other operations and
constants to the range and precision of the semantic type;
If we have the zfh/zhinx/zvfh extensions then we support _Float16
in native precision, so we should set this to 16. */
static enum flt_eval_method
riscv_excess_precision (enum excess_precision_type type)
{
switch (type)
{
case EXCESS_PRECISION_TYPE_FAST:
case EXCESS_PRECISION_TYPE_STANDARD:
return ((TARGET_ZFH || TARGET_ZHINX || TARGET_ZVFH)
? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16
: FLT_EVAL_METHOD_PROMOTE_TO_FLOAT);
case EXCESS_PRECISION_TYPE_IMPLICIT:
case EXCESS_PRECISION_TYPE_FLOAT16:
return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16;
default:
gcc_unreachable ();
}
return FLT_EVAL_METHOD_UNPREDICTABLE;
}
/* Implement TARGET_FLOATN_MODE. */
static opt_scalar_float_mode
riscv_floatn_mode (int n, bool extended)
{
if (!extended && n == 16)
return HFmode;
return default_floatn_mode (n, extended);
}
/* Record that we have no arithmetic or comparison libfuncs for
machine_mode MODE. */
static void
riscv_block_arith_comp_libfuncs_for_mode (machine_mode mode)
{
/* Half-precision float or Brain float operations. The compiler handles all
operations with NULL libfuncs by converting to SFmode. */
/* Arithmetic. */
set_optab_libfunc (add_optab, mode, NULL);
set_optab_libfunc (sdiv_optab, mode, NULL);
set_optab_libfunc (smul_optab, mode, NULL);
set_optab_libfunc (neg_optab, mode, NULL);
set_optab_libfunc (sub_optab, mode, NULL);
/* Comparisons. */
set_optab_libfunc (eq_optab, mode, NULL);
set_optab_libfunc (ne_optab, mode, NULL);
set_optab_libfunc (lt_optab, mode, NULL);
set_optab_libfunc (le_optab, mode, NULL);
set_optab_libfunc (ge_optab, mode, NULL);
set_optab_libfunc (gt_optab, mode, NULL);
set_optab_libfunc (unord_optab, mode, NULL);
}
static void
riscv_init_libfuncs (void)
{
riscv_block_arith_comp_libfuncs_for_mode (HFmode);
riscv_block_arith_comp_libfuncs_for_mode (BFmode);
/* Convert between BFmode and HFmode using only trunc libfunc if needed. */
set_conv_libfunc (sext_optab, BFmode, HFmode, "__trunchfbf2");
set_conv_libfunc (sext_optab, HFmode, BFmode, "__truncbfhf2");
set_conv_libfunc (trunc_optab, BFmode, HFmode, "__trunchfbf2");
set_conv_libfunc (trunc_optab, HFmode, BFmode, "__truncbfhf2");
}
#if CHECKING_P
void
riscv_reinit (void)
{
riscv_option_override ();
init_adjust_machine_modes ();
init_derived_machine_modes ();
reinit_regs ();
init_optabs ();
}
#endif
#if CHECKING_P
#undef TARGET_RUN_TARGET_SELFTESTS
#define TARGET_RUN_TARGET_SELFTESTS selftest::riscv_run_selftests
#endif /* #if CHECKING_P */
/* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */
static bool
riscv_vector_mode_supported_p (machine_mode mode)
{
if (TARGET_VECTOR)
return riscv_v_ext_mode_p (mode);
return false;
}
/* Implement TARGET_VERIFY_TYPE_CONTEXT. */
static bool
riscv_verify_type_context (location_t loc, type_context_kind context,
const_tree type, bool silent_p)
{
return riscv_vector::verify_type_context (loc, context, type, silent_p);
}
/* Implement TARGET_VECTOR_ALIGNMENT. */
static HOST_WIDE_INT
riscv_vector_alignment (const_tree type)
{
/* ??? Checking the mode isn't ideal, but VECTOR_BOOLEAN_TYPE_P can
be set for non-predicate vectors of booleans. Modes are the most
direct way we have of identifying real RVV predicate types. */
/* FIXME: RVV didn't mention the alignment of bool, we uses
one byte align. */
if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_VECTOR_BOOL)
return 8;
widest_int min_size
= constant_lower_bound (wi::to_poly_widest (TYPE_SIZE (type)));
return wi::umin (min_size, 128).to_uhwi ();
}
/* Implement REGMODE_NATURAL_SIZE. */
poly_uint64
riscv_regmode_natural_size (machine_mode mode)
{
/* The natural size for RVV data modes is one RVV data vector,
and similarly for predicates. We can't independently modify
anything smaller than that. */
/* ??? For now, only do this for variable-width RVV registers.
Doing it for constant-sized registers breaks lower-subreg.c. */
if (riscv_v_ext_mode_p (mode))
{
poly_uint64 size = GET_MODE_SIZE (mode);
if (riscv_v_ext_tuple_mode_p (mode))
{
size = GET_MODE_SIZE (riscv_vector::get_subpart_mode (mode));
if (known_lt (size, BYTES_PER_RISCV_VECTOR))
return size;
}
else if (riscv_v_ext_vector_mode_p (mode))
{
/* RVV mask modes always consume a single register. */
if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL)
return BYTES_PER_RISCV_VECTOR;
}
if (!size.is_constant ())
return BYTES_PER_RISCV_VECTOR;
else if (!riscv_v_ext_vls_mode_p (mode))
/* For -march=rv64gc_zve32f, the natural vector register size
is 32bits which is smaller than scalar register size, so we
return minimum size between vector register size and scalar
register size. */
return MIN (size.to_constant (), UNITS_PER_WORD);
}
return UNITS_PER_WORD;
}
/* Implement the TARGET_DWARF_POLY_INDETERMINATE_VALUE hook. */
static unsigned int
riscv_dwarf_poly_indeterminate_value (unsigned int i, unsigned int *factor,
int *offset)
{
/* Polynomial invariant 1 == (VLENB / BYTES_PER_RISCV_VECTOR) - 1.
1. TARGET_MIN_VLEN == 32, polynomial invariant 1 == (VLENB / 4) - 1.
2. TARGET_MIN_VLEN > 32, polynomial invariant 1 == (VLENB / 8) - 1.
*/
gcc_assert (i == 1);
*factor = BYTES_PER_RISCV_VECTOR.coeffs[1];
*offset = 1;
return RISCV_DWARF_VLENB;
}
/* Implement TARGET_ESTIMATED_POLY_VALUE. */
static HOST_WIDE_INT
riscv_estimated_poly_value (poly_int64 val,
poly_value_estimate_kind kind = POLY_VALUE_LIKELY)
{
if (TARGET_VECTOR)
return riscv_vector::estimated_poly_value (val, kind);
return default_estimated_poly_value (val, kind);
}
/* Return true if the vector misalignment factor is supported by the
target. */
bool
riscv_support_vector_misalignment (machine_mode mode,
const_tree type ATTRIBUTE_UNUSED,
int misalignment,
bool is_packed ATTRIBUTE_UNUSED)
{
/* Depend on movmisalign pattern. */
return default_builtin_support_vector_misalignment (mode, type, misalignment,
is_packed);
}
/* Implement TARGET_VECTORIZE_GET_MASK_MODE. */
static opt_machine_mode
riscv_get_mask_mode (machine_mode mode)
{
if (TARGET_VECTOR && riscv_v_ext_mode_p (mode))
return riscv_vector::get_mask_mode (mode);
return default_get_mask_mode (mode);
}
/* Implement TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE. Assume for now that
it isn't worth branching around empty masked ops (including masked
stores). */
static bool
riscv_empty_mask_is_expensive (unsigned)
{
return false;
}
/* Return true if a shift-amount matches the trailing cleared bits on
a bitmask. */
bool
riscv_shamt_matches_mask_p (int shamt, HOST_WIDE_INT mask)
{
return shamt == ctz_hwi (mask);
}
static HARD_REG_SET
vector_zero_call_used_regs (HARD_REG_SET need_zeroed_hardregs)
{
HARD_REG_SET zeroed_hardregs;
CLEAR_HARD_REG_SET (zeroed_hardregs);
/* Find a register to hold vl. */
unsigned vl_regno = INVALID_REGNUM;
/* Skip the first GPR, otherwise the existing vl is kept due to the same
between vl and avl. */
for (unsigned regno = GP_REG_FIRST + 1; regno <= GP_REG_LAST; regno++)
{
if (TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
{
vl_regno = regno;
break;
}
}
if (vl_regno > GP_REG_LAST)
sorry ("cannot allocate vl register for %qs on this target",
"-fzero-call-used-regs");
/* Vector configurations need not be saved and restored here. The
-fzero-call-used-regs=* option will zero all vector registers and
return. So there's no vector operations between them. */
bool emitted_vlmax_vsetvl = false;
rtx vl = gen_rtx_REG (Pmode, vl_regno); /* vl is VLMAX. */
for (unsigned regno = V_REG_FIRST; regno <= V_REG_LAST; ++regno)
{
if (TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
{
rtx target = regno_reg_rtx[regno];
machine_mode mode = GET_MODE (target);
if (!emitted_vlmax_vsetvl)
{
riscv_vector::emit_hard_vlmax_vsetvl (mode, vl);
emitted_vlmax_vsetvl = true;
}
rtx ops[] = {target, CONST0_RTX (mode)};
riscv_vector::emit_vlmax_insn_lra (code_for_pred_mov (mode),
riscv_vector::UNARY_OP, ops, vl);
SET_HARD_REG_BIT (zeroed_hardregs, regno);
}
}
return zeroed_hardregs;
}
/* Generate a sequence of instructions that zero registers specified by
NEED_ZEROED_HARDREGS. Return the ZEROED_HARDREGS that are actually
zeroed. */
HARD_REG_SET
riscv_zero_call_used_regs (HARD_REG_SET need_zeroed_hardregs)
{
HARD_REG_SET zeroed_hardregs;
CLEAR_HARD_REG_SET (zeroed_hardregs);
if (TARGET_VECTOR)
zeroed_hardregs |= vector_zero_call_used_regs (need_zeroed_hardregs);
return zeroed_hardregs | default_zero_call_used_regs (need_zeroed_hardregs
& ~zeroed_hardregs);
}
/* Implement target hook TARGET_ARRAY_MODE. */
static opt_machine_mode
riscv_array_mode (machine_mode mode, unsigned HOST_WIDE_INT nelems)
{
machine_mode vmode;
if (TARGET_VECTOR
&& riscv_vector::get_tuple_mode (mode, nelems).exists (&vmode))
return vmode;
return opt_machine_mode ();
}
/* Given memory reference MEM, expand code to compute the aligned
memory address, shift and mask values and store them into
*ALIGNED_MEM, *SHIFT, *MASK and *NOT_MASK. */
void
riscv_subword_address (rtx mem, rtx *aligned_mem, rtx *shift, rtx *mask,
rtx *not_mask)
{
/* Align the memory address to a word. */
rtx addr = force_reg (Pmode, XEXP (mem, 0));
rtx addr_mask = gen_int_mode (-4, Pmode);
rtx aligned_addr = gen_reg_rtx (Pmode);
emit_move_insn (aligned_addr, gen_rtx_AND (Pmode, addr, addr_mask));
*aligned_mem = change_address (mem, SImode, aligned_addr);
/* Calculate the shift amount. */
emit_move_insn (*shift, gen_rtx_AND (SImode, gen_lowpart (SImode, addr),
gen_int_mode (3, SImode)));
emit_move_insn (*shift, gen_rtx_ASHIFT (SImode, *shift,
gen_int_mode (3, SImode)));
/* Calculate the mask. */
int unshifted_mask = GET_MODE_MASK (GET_MODE (mem));
emit_move_insn (*mask, gen_int_mode (unshifted_mask, SImode));
emit_move_insn (*mask, gen_rtx_ASHIFT (SImode, *mask,
gen_lowpart (QImode, *shift)));
emit_move_insn (*not_mask, gen_rtx_NOT (SImode, *mask));
}
/* Leftshift a subword within an SImode register. */
void
riscv_lshift_subword (machine_mode mode, rtx value, rtx shift,
rtx *shifted_value)
{
rtx value_reg = gen_reg_rtx (SImode);
emit_move_insn (value_reg, simplify_gen_subreg (SImode, value,
mode, 0));
emit_move_insn (*shifted_value, gen_rtx_ASHIFT (SImode, value_reg,
gen_lowpart (QImode, shift)));
}
/* Return TRUE if we should use the divmod expander, FALSE otherwise. This
allows the behavior to be tuned for specific implementations as well as
when optimizing for size. */
bool
riscv_use_divmod_expander (void)
{
return tune_param->use_divmod_expansion;
}
/* Implement TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */
static machine_mode
riscv_preferred_simd_mode (scalar_mode mode)
{
if (TARGET_VECTOR && !TARGET_XTHEADVECTOR)
return riscv_vector::preferred_simd_mode (mode);
return word_mode;
}
/* Implement target hook TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT. */
static poly_uint64
riscv_vectorize_preferred_vector_alignment (const_tree type)
{
if (riscv_v_ext_mode_p (TYPE_MODE (type)))
return TYPE_ALIGN (TREE_TYPE (type));
return TYPE_ALIGN (type);
}
/* Return true if it is static FRM rounding mode. */
static bool
riscv_static_frm_mode_p (int mode)
{
switch (mode)
{
case riscv_vector::FRM_RDN:
case riscv_vector::FRM_RUP:
case riscv_vector::FRM_RTZ:
case riscv_vector::FRM_RMM:
case riscv_vector::FRM_RNE:
return true;
default:
return false;
}
gcc_unreachable ();
}
/* Implement the floating-point Mode Switching. */
static void
riscv_emit_frm_mode_set (int mode, int prev_mode)
{
rtx backup_reg = DYNAMIC_FRM_RTL (cfun);
if (prev_mode == riscv_vector::FRM_DYN_CALL)
emit_insn (gen_frrmsi (backup_reg)); /* Backup frm when DYN_CALL. */
if (mode != prev_mode)
{
rtx frm = gen_int_mode (mode, SImode);
if (mode == riscv_vector::FRM_DYN_CALL
&& prev_mode != riscv_vector::FRM_DYN && STATIC_FRM_P (cfun))
/* No need to emit when prev mode is DYN already. */
emit_insn (gen_fsrmsi_restore_volatile (backup_reg));
else if (mode == riscv_vector::FRM_DYN_EXIT && STATIC_FRM_P (cfun)
&& prev_mode != riscv_vector::FRM_DYN
&& prev_mode != riscv_vector::FRM_DYN_CALL)
/* No need to emit when prev mode is DYN or DYN_CALL already. */
emit_insn (gen_fsrmsi_restore_volatile (backup_reg));
else if (mode == riscv_vector::FRM_DYN
&& prev_mode != riscv_vector::FRM_DYN_CALL)
/* Restore frm value from backup when switch to DYN mode. */
emit_insn (gen_fsrmsi_restore (backup_reg));
else if (riscv_static_frm_mode_p (mode))
/* Set frm value when switch to static mode. */
emit_insn (gen_fsrmsi_restore (frm));
}
}
/* Implement Mode switching. */
static void
riscv_emit_mode_set (int entity, int mode, int prev_mode,
HARD_REG_SET regs_live ATTRIBUTE_UNUSED)
{
switch (entity)
{
case RISCV_VXRM:
if (mode != VXRM_MODE_NONE && mode != prev_mode)
emit_insn (gen_vxrmsi (gen_int_mode (mode, SImode)));
break;
case RISCV_FRM:
riscv_emit_frm_mode_set (mode, prev_mode);
break;
default:
gcc_unreachable ();
}
}
/* Adjust the FRM_NONE insn after a call to FRM_DYN for the
underlying emit. */
static int
riscv_frm_adjust_mode_after_call (rtx_insn *cur_insn, int mode)
{
rtx_insn *insn = prev_nonnote_nondebug_insn_bb (cur_insn);
if (insn && CALL_P (insn))
return riscv_vector::FRM_DYN;
return mode;
}
/* Insert the backup frm insn to the end of the bb if and only if the call
is the last insn of this bb. */
static void
riscv_frm_emit_after_bb_end (rtx_insn *cur_insn)
{
edge eg;
bool abnormal_edge_p = false;
edge_iterator eg_iterator;
basic_block bb = BLOCK_FOR_INSN (cur_insn);
FOR_EACH_EDGE (eg, eg_iterator, bb->succs)
{
if (eg->flags & EDGE_ABNORMAL)
abnormal_edge_p = true;
else
{
start_sequence ();
emit_insn (gen_frrmsi (DYNAMIC_FRM_RTL (cfun)));
rtx_insn *backup_insn = get_insns ();
end_sequence ();
insert_insn_on_edge (backup_insn, eg);
}
}
if (abnormal_edge_p)
{
start_sequence ();
emit_insn (gen_frrmsi (DYNAMIC_FRM_RTL (cfun)));
rtx_insn *backup_insn = get_insns ();
end_sequence ();
insert_insn_end_basic_block (backup_insn, bb);
}
commit_edge_insertions ();
}
/* Return mode that frm must be switched into
prior to the execution of insn. */
static int
riscv_frm_mode_needed (rtx_insn *cur_insn, int code)
{
if (!DYNAMIC_FRM_RTL(cfun))
{
/* The dynamic frm will be initialized only onece during cfun. */
DYNAMIC_FRM_RTL (cfun) = gen_reg_rtx (SImode);
emit_insn_at_entry (gen_frrmsi (DYNAMIC_FRM_RTL (cfun)));
}
if (CALL_P (cur_insn))
{
rtx_insn *insn = next_nonnote_nondebug_insn_bb (cur_insn);
if (!insn)
riscv_frm_emit_after_bb_end (cur_insn);
return riscv_vector::FRM_DYN_CALL;
}
int mode = code >= 0 ? get_attr_frm_mode (cur_insn) : riscv_vector::FRM_NONE;
if (mode == riscv_vector::FRM_NONE)
/* After meet a call, we need to backup the frm because it may be
updated during the call. Here, for each insn, we will check if
the previous insn is a call or not. When previous insn is call,
there will be 2 cases for the emit mode set.
1. Current insn is not MODE_NONE, then the mode switch framework
will do the mode switch from MODE_CALL to MODE_NONE natively.
2. Current insn is MODE_NONE, we need to adjust the MODE_NONE to
the MODE_DYN, and leave the mode switch itself to perform
the emit mode set.
*/
mode = riscv_frm_adjust_mode_after_call (cur_insn, mode);
return mode;
}
/* If the current function needs a single VXRM mode, return it. Else
return VXRM_MODE_NONE.
This is called on the first insn in the chain and scans the full function
once to collect VXRM mode settings. If a single mode is needed, it will
often be better to set it once at the start of the function rather than
at an anticipation point. */
static int
singleton_vxrm_need (void)
{
/* Only needed for vector code. */
if (!TARGET_VECTOR)
return VXRM_MODE_NONE;
/* If ENTRY has more than once successor, then don't optimize, just to
keep things simple. */
if (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) > 1)
return VXRM_MODE_NONE;
/* Walk the IL noting if VXRM is needed and if there's more than one
mode needed. */
bool found = false;
int saved_vxrm_mode;
for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (!INSN_P (insn) || DEBUG_INSN_P (insn))
continue;
int code = recog_memoized (insn);
if (code < 0)
continue;
int vxrm_mode = get_attr_vxrm_mode (insn);
if (vxrm_mode == VXRM_MODE_NONE)
continue;
/* If this is the first VXRM need, note it. */
if (!found)
{
saved_vxrm_mode = vxrm_mode;
found = true;
continue;
}
/* Not the first VXRM need. If this is different than
the saved need, then we're not going to be able to
optimize and we can stop scanning now. */
if (saved_vxrm_mode != vxrm_mode)
return VXRM_MODE_NONE;
/* Same mode as we've seen, keep scanning. */
}
/* If we got here we scanned the whole function. If we found
some VXRM state, then we can optimize. If we didn't find
VXRM state, then there's nothing to optimize. */
return found ? saved_vxrm_mode : VXRM_MODE_NONE;
}
/* Return mode that entity must be switched into
prior to the execution of insn. */
static int
riscv_mode_needed (int entity, rtx_insn *insn, HARD_REG_SET)
{
int code = recog_memoized (insn);
switch (entity)
{
case RISCV_VXRM:
/* If CUR_INSN is the first insn in the function, then determine if we
want to signal a need in ENTRY->succs to allow for aggressive
elimination of subsequent sets of VXRM. */
if (insn == get_first_nonnote_insn ())
{
int need = singleton_vxrm_need ();
if (need != VXRM_MODE_NONE)
return need;
}
return code >= 0 ? get_attr_vxrm_mode (insn) : VXRM_MODE_NONE;
case RISCV_FRM:
return riscv_frm_mode_needed (insn, code);
default:
gcc_unreachable ();
}
}
/* Return TRUE that an insn is asm. */
static bool
asm_insn_p (rtx_insn *insn)
{
extract_insn (insn);
return recog_data.is_asm;
}
/* Return TRUE that an insn is unknown for VXRM. */
static bool
vxrm_unknown_p (rtx_insn *insn)
{
/* Return true if there is a definition of VXRM. */
if (reg_set_p (gen_rtx_REG (SImode, VXRM_REGNUM), insn))
return true;
/* A CALL function may contain an instruction that modifies the VXRM,
return true in this situation. */
if (CALL_P (insn))
return true;
/* Return true for all assembly since users may hardcode a assembly
like this: asm volatile ("csrwi vxrm, 0"). */
if (asm_insn_p (insn))
return true;
return false;
}
/* Return TRUE that an insn is unknown dynamic for FRM. */
static bool
frm_unknown_dynamic_p (rtx_insn *insn)
{
/* Return true if there is a definition of FRM. */
if (reg_set_p (gen_rtx_REG (SImode, FRM_REGNUM), insn))
return true;
return false;
}
/* Return the mode that an insn results in for VXRM. */
static int
riscv_vxrm_mode_after (rtx_insn *insn, int mode)
{
if (vxrm_unknown_p (insn))
return VXRM_MODE_NONE;
if (recog_memoized (insn) < 0)
return mode;
if (reg_mentioned_p (gen_rtx_REG (SImode, VXRM_REGNUM), PATTERN (insn)))
return get_attr_vxrm_mode (insn);
else
return mode;
}
/* Return the mode that an insn results in for FRM. */
static int
riscv_frm_mode_after (rtx_insn *insn, int mode)
{
STATIC_FRM_P (cfun) = STATIC_FRM_P (cfun) || riscv_static_frm_mode_p (mode);
if (CALL_P (insn))
return mode;
if (frm_unknown_dynamic_p (insn))
return riscv_vector::FRM_DYN;
if (recog_memoized (insn) < 0)
return mode;
if (reg_mentioned_p (gen_rtx_REG (SImode, FRM_REGNUM), PATTERN (insn)))
return get_attr_frm_mode (insn);
else
return mode;
}
/* Return the mode that an insn results in. */
static int
riscv_mode_after (int entity, int mode, rtx_insn *insn, HARD_REG_SET)
{
switch (entity)
{
case RISCV_VXRM:
return riscv_vxrm_mode_after (insn, mode);
case RISCV_FRM:
return riscv_frm_mode_after (insn, mode);
default:
gcc_unreachable ();
}
}
/* Return a mode that ENTITY is assumed to be
switched to at function entry. */
static int
riscv_mode_entry (int entity)
{
switch (entity)
{
case RISCV_VXRM:
return VXRM_MODE_NONE;
case RISCV_FRM:
{
/* According to RVV 1.0 spec, all vector floating-point operations use
the dynamic rounding mode in the frm register. Likewise in other
similar places. */
return riscv_vector::FRM_DYN;
}
default:
gcc_unreachable ();
}
}
/* Return a mode that ENTITY is assumed to be
switched to at function exit. */
static int
riscv_mode_exit (int entity)
{
switch (entity)
{
case RISCV_VXRM:
return VXRM_MODE_NONE;
case RISCV_FRM:
return riscv_vector::FRM_DYN_EXIT;
default:
gcc_unreachable ();
}
}
static int
riscv_mode_priority (int, int n)
{
return n;
}
/* Implement TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES. */
unsigned int
riscv_autovectorize_vector_modes (vector_modes *modes, bool all)
{
if (TARGET_VECTOR && !TARGET_XTHEADVECTOR)
return riscv_vector::autovectorize_vector_modes (modes, all);
return default_autovectorize_vector_modes (modes, all);
}
/* Implement TARGET_VECTORIZE_RELATED_MODE. */
opt_machine_mode
riscv_vectorize_related_mode (machine_mode vector_mode, scalar_mode element_mode,
poly_uint64 nunits)
{
if (TARGET_VECTOR)
return riscv_vector::vectorize_related_mode (vector_mode, element_mode,
nunits);
return default_vectorize_related_mode (vector_mode, element_mode, nunits);
}
/* Implement TARGET_VECTORIZE_VEC_PERM_CONST. */
static bool
riscv_vectorize_vec_perm_const (machine_mode vmode, machine_mode op_mode,
rtx target, rtx op0, rtx op1,
const vec_perm_indices &sel)
{
if (TARGET_VECTOR && riscv_v_ext_mode_p (vmode))
return riscv_vector::expand_vec_perm_const (vmode, op_mode, target, op0,
op1, sel);
return false;
}
static bool
riscv_frame_pointer_required (void)
{
return riscv_save_frame_pointer && !crtl->is_leaf;
}
/* Return the appropriate common costs according to VECTYPE from COSTS. */
static const common_vector_cost *
get_common_costs (const cpu_vector_cost *costs, tree vectype)
{
gcc_assert (costs);
if (vectype && riscv_v_ext_vls_mode_p (TYPE_MODE (vectype)))
return costs->vls;
return costs->vla;
}
/* Return the CPU vector costs according to -mtune if tune info has non-NULL
vector cost. Otherwise, return the default generic vector costs. */
const cpu_vector_cost *
get_vector_costs ()
{
const cpu_vector_cost *costs = tune_param->vec_costs;
if (!costs)
return &generic_vector_cost;
return costs;
}
/* Implement targetm.vectorize.builtin_vectorization_cost. */
static int
riscv_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
tree vectype, int misalign ATTRIBUTE_UNUSED)
{
const cpu_vector_cost *costs = get_vector_costs ();
bool fp = false;
if (vectype != NULL)
fp = FLOAT_TYPE_P (vectype);
const common_vector_cost *common_costs = get_common_costs (costs, vectype);
gcc_assert (common_costs != NULL);
switch (type_of_cost)
{
case scalar_stmt:
return fp ? costs->scalar_fp_stmt_cost : costs->scalar_int_stmt_cost;
case scalar_load:
return costs->scalar_load_cost;
case scalar_store:
return costs->scalar_store_cost;
case vector_stmt:
return fp ? common_costs->fp_stmt_cost : common_costs->int_stmt_cost;
case vector_load:
return common_costs->align_load_cost;
case vector_store:
return common_costs->align_store_cost;
case vec_to_scalar:
return common_costs->vec_to_scalar_cost;
case scalar_to_vec:
return common_costs->scalar_to_vec_cost;
case unaligned_load:
return common_costs->unalign_load_cost;
case vector_gather_load:
return common_costs->gather_load_cost;
case unaligned_store:
return common_costs->unalign_store_cost;
case vector_scatter_store:
return common_costs->scatter_store_cost;
case cond_branch_taken:
return costs->cond_taken_branch_cost;
case cond_branch_not_taken:
return costs->cond_not_taken_branch_cost;
case vec_perm:
return common_costs->permute_cost;
case vec_promote_demote:
return fp ? common_costs->fp_stmt_cost : common_costs->int_stmt_cost;
case vec_construct:
return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vectype));
default:
gcc_unreachable ();
}
return default_builtin_vectorization_cost (type_of_cost, vectype, misalign);
}
/* Implement targetm.vectorize.create_costs. */
static vector_costs *
riscv_vectorize_create_costs (vec_info *vinfo, bool costing_for_scalar)
{
if (TARGET_VECTOR)
return new riscv_vector::costs (vinfo, costing_for_scalar);
/* Default vector costs. */
return new vector_costs (vinfo, costing_for_scalar);
}
/* Implement TARGET_PREFERRED_ELSE_VALUE. */
static tree
riscv_preferred_else_value (unsigned ifn, tree vectype, unsigned int nops,
tree *ops)
{
if (riscv_v_ext_mode_p (TYPE_MODE (vectype)))
{
tree tmp_var = create_tmp_var (vectype);
TREE_NO_WARNING (tmp_var) = 1;
return get_or_create_ssa_default_def (cfun, tmp_var);
}
return default_preferred_else_value (ifn, vectype, nops, ops);
}
/* If MEM is in the form of "base+offset", extract the two parts
of address and set to BASE and OFFSET, otherwise return false
after clearing BASE and OFFSET. */
bool
extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset)
{
rtx addr;
gcc_assert (MEM_P (mem));
addr = XEXP (mem, 0);
if (REG_P (addr))
{
*base = addr;
*offset = const0_rtx;
return true;
}
if (GET_CODE (addr) == PLUS
&& REG_P (XEXP (addr, 0)) && CONST_INT_P (XEXP (addr, 1)))
{
*base = XEXP (addr, 0);
*offset = XEXP (addr, 1);
return true;
}
*base = NULL_RTX;
*offset = NULL_RTX;
return false;
}
/* Implements target hook vector_mode_supported_any_target_p. */
static bool
riscv_vector_mode_supported_any_target_p (machine_mode)
{
if (TARGET_XTHEADVECTOR)
return false;
return true;
}
/* Implements hook TARGET_FUNCTION_VALUE_REGNO_P. */
static bool
riscv_function_value_regno_p (const unsigned regno)
{
if (GP_RETURN_FIRST <= regno && regno <= GP_RETURN_LAST)
return true;
if (FP_RETURN_FIRST <= regno && regno <= FP_RETURN_LAST)
return true;
if (TARGET_VECTOR && regno == V_RETURN)
return true;
return false;
}
/* Implements hook TARGET_GET_RAW_RESULT_MODE. */
static fixed_size_mode
riscv_get_raw_result_mode (int regno)
{
if (!is_a (reg_raw_mode[regno]))
return as_a (VOIDmode);
return default_get_reg_raw_mode (regno);
}
/* Generate a REG rtx of Xmode from the given rtx and mode.
The rtx x can be REG (QI/HI/SI/DI) or const_int.
The machine_mode mode is the original mode from define pattern.
If rtx is REG and Xmode, the RTX x will be returned directly.
If rtx is REG and non-Xmode, the zero extended to new REG of Xmode will be
returned.
If rtx is const_int, a new REG rtx will be created to hold the value of
const_int and then returned.
According to the gccint doc, the constants generated for modes with fewer
bits than in HOST_WIDE_INT must be sign extended to full width. Thus there
will be two cases here, take QImode as example.
For .SAT_SUB (127, y) in QImode, we have (const_int 127) and one simple
mov from const_int to the new REG rtx is good enough here.
For .SAT_SUB (254, y) in QImode, we have (const_int -2) after define_expand.
Aka 0xfffffffffffffffe in Xmode of RV64 but we actually need 0xfe in Xmode
of RV64. So we need to cleanup the highest 56 bits of the new REG rtx moved
from the (const_int -2).
Then the underlying expanding can perform the code generation based on
the REG rtx of Xmode, instead of taking care of these in expand func. */
static rtx
riscv_gen_zero_extend_rtx (rtx x, machine_mode mode)
{
rtx xmode_reg = gen_reg_rtx (Xmode);
if (!CONST_INT_P (x))
{
if (mode == Xmode)
return x;
riscv_emit_unary (ZERO_EXTEND, xmode_reg, x);
return xmode_reg;
}
if (mode == Xmode)
emit_move_insn (xmode_reg, x);
else
{
rtx reg_x = gen_reg_rtx (mode);
emit_move_insn (reg_x, x);
riscv_emit_unary (ZERO_EXTEND, xmode_reg, reg_x);
}
return xmode_reg;
}
/* Implements the unsigned saturation add standard name usadd for int mode.
z = SAT_ADD(x, y).
=>
1. sum = x + y.
2. sum = truncate (sum) for non-Xmode.
3. lt = sum < x.
4. lt = -lt.
5. z = sum | lt. */
void
riscv_expand_usadd (rtx dest, rtx x, rtx y)
{
machine_mode mode = GET_MODE (dest);
rtx xmode_sum = gen_reg_rtx (Xmode);
rtx xmode_lt = gen_reg_rtx (Xmode);
rtx xmode_x = riscv_gen_zero_extend_rtx (x, mode);
rtx xmode_y = riscv_gen_zero_extend_rtx (y, mode);
rtx xmode_dest = gen_reg_rtx (Xmode);
/* Step-1: sum = x + y */
riscv_emit_binary (PLUS, xmode_sum, xmode_x, xmode_y);
/* Step-1.1: truncate sum for non-Xmode for overflow check. */
if (mode != Xmode)
{
int shift_bits = GET_MODE_BITSIZE (Xmode)
- GET_MODE_BITSIZE (mode).to_constant ();
gcc_assert (shift_bits > 0);
riscv_emit_binary (ASHIFT, xmode_sum, xmode_sum, GEN_INT (shift_bits));
riscv_emit_binary (LSHIFTRT, xmode_sum, xmode_sum, GEN_INT (shift_bits));
}
/* Step-2: lt = sum < x */
riscv_emit_binary (LTU, xmode_lt, xmode_sum, xmode_x);
/* Step-3: lt = -lt */
riscv_emit_unary (NEG, xmode_lt, xmode_lt);
/* Step-4: xmode_dest = sum | lt */
riscv_emit_binary (IOR, xmode_dest, xmode_lt, xmode_sum);
/* Step-5: dest = xmode_dest */
emit_move_insn (dest, gen_lowpart (mode, xmode_dest));
}
/* Return a new const RTX of MAX value based on given mode. Only
int scalar mode is allowed. */
static rtx
riscv_gen_sign_max_cst (machine_mode mode)
{
switch (mode)
{
case QImode:
return GEN_INT (INT8_MAX);
case HImode:
return GEN_INT (INT16_MAX);
case SImode:
return GEN_INT (INT32_MAX);
case DImode:
return GEN_INT (INT64_MAX);
default:
gcc_unreachable ();
}
}
/* Implements the signed saturation sub standard name ssadd for int mode.
z = SAT_ADD(x, y).
=>
1. sum = x + y
2. xor_0 = x ^ y
3. xor_1 = x ^ sum
4. lt = xor_1 < 0
5. ge = xor_0 >= 0
6. and = ge & lt
7. lt = x < 0
8. neg = -lt
9. max = INT_MAX
10. max = max ^ neg
11. neg = -and
12. max = max & neg
13. and = and - 1
14. z = sum & and
15. z = z | max */
void
riscv_expand_ssadd (rtx dest, rtx x, rtx y)
{
machine_mode mode = GET_MODE (dest);
unsigned bitsize = GET_MODE_BITSIZE (mode).to_constant ();
rtx shift_bits = GEN_INT (bitsize - 1);
rtx xmode_x = gen_lowpart (Xmode, x);
rtx xmode_y = gen_lowpart (Xmode, y);
rtx xmode_sum = gen_reg_rtx (Xmode);
rtx xmode_dest = gen_reg_rtx (Xmode);
rtx xmode_xor_0 = gen_reg_rtx (Xmode);
rtx xmode_xor_1 = gen_reg_rtx (Xmode);
rtx xmode_ge = gen_reg_rtx (Xmode);
rtx xmode_lt = gen_reg_rtx (Xmode);
rtx xmode_neg = gen_reg_rtx (Xmode);
rtx xmode_and = gen_reg_rtx (Xmode);
rtx xmode_max = gen_reg_rtx (Xmode);
/* Step-1: sum = x + y, xor_0 = x ^ y, xor_1 = x ^ sum. */
riscv_emit_binary (PLUS, xmode_sum, xmode_x, xmode_y);
riscv_emit_binary (XOR, xmode_xor_0, xmode_x, xmode_y);
riscv_emit_binary (XOR, xmode_xor_1, xmode_x, xmode_sum);
/* Step-2: lt = xor_1 < 0, ge = xor_0 >= 0, and = ge & lt. */
riscv_emit_binary (LSHIFTRT, xmode_lt, xmode_xor_1, shift_bits);
riscv_emit_binary (LSHIFTRT, xmode_ge, xmode_xor_0, shift_bits);
riscv_emit_binary (XOR, xmode_ge, xmode_ge, CONST1_RTX (Xmode));
riscv_emit_binary (AND, xmode_and, xmode_lt, xmode_ge);
riscv_emit_binary (AND, xmode_and, xmode_and, CONST1_RTX (Xmode));
/* Step-3: lt = x < 0, neg = -lt */
riscv_emit_binary (LT, xmode_lt, xmode_x, CONST0_RTX (Xmode));
riscv_emit_unary (NEG, xmode_neg, xmode_lt);
/* Step-4: max = 0x7f..., max = max ^ neg, neg = -and, max = max & neg */
riscv_emit_move (xmode_max, riscv_gen_sign_max_cst (mode));
riscv_emit_binary (XOR, xmode_max, xmode_max, xmode_neg);
riscv_emit_unary (NEG, xmode_neg, xmode_and);
riscv_emit_binary (AND, xmode_max, xmode_max, xmode_neg);
/* Step-5: and = and - 1, dest = sum & and */
riscv_emit_binary (PLUS, xmode_and, xmode_and, CONSTM1_RTX (Xmode));
riscv_emit_binary (AND, xmode_dest, xmode_sum, xmode_and);
/* Step-6: xmode_dest = xmode_dest | xmode_max, dest = xmode_dest */
riscv_emit_binary (IOR, xmode_dest, xmode_dest, xmode_max);
emit_move_insn (dest, gen_lowpart (mode, xmode_dest));
}
/* Implements the unsigned saturation sub standard name usadd for int mode.
z = SAT_SUB(x, y).
=>
1. minus = x - y.
2. lt = x < y.
3. lt = lt - 1.
4. z = minus & lt. */
void
riscv_expand_ussub (rtx dest, rtx x, rtx y)
{
machine_mode mode = GET_MODE (dest);
rtx xmode_x = riscv_gen_zero_extend_rtx (x, mode);
rtx xmode_y = riscv_gen_zero_extend_rtx (y, mode);
rtx xmode_lt = gen_reg_rtx (Xmode);
rtx xmode_minus = gen_reg_rtx (Xmode);
rtx xmode_dest = gen_reg_rtx (Xmode);
/* Step-1: minus = x - y */
riscv_emit_binary (MINUS, xmode_minus, xmode_x, xmode_y);
/* Step-2: lt = x < y */
riscv_emit_binary (LTU, xmode_lt, xmode_x, xmode_y);
/* Step-3: lt = lt - 1 (lt + (-1)) */
riscv_emit_binary (PLUS, xmode_lt, xmode_lt, CONSTM1_RTX (Xmode));
/* Step-4: xmode_dest = minus & lt */
riscv_emit_binary (AND, xmode_dest, xmode_lt, xmode_minus);
/* Step-5: dest = xmode_dest */
emit_move_insn (dest, gen_lowpart (mode, xmode_dest));
}
/* Implements the signed saturation sub standard name ssadd for int mode.
z = SAT_SUB(x, y).
=>
1. minus = x - y
2. xor_0 = x ^ y
3. xor_1 = x ^ minus
4. lt_0 = xor_1 < 0
5. lt_1 = xor_0 < 0
6. and = lt_0 & lt_1
7. lt = x < 0
8. neg = -lt
9. max = INT_MAX
10. max = max ^ neg
11. neg = -and
12. max = max & neg
13. and = and - 1
14. z = minus & and
15. z = z | max */
void
riscv_expand_sssub (rtx dest, rtx x, rtx y)
{
machine_mode mode = GET_MODE (dest);
unsigned bitsize = GET_MODE_BITSIZE (mode).to_constant ();
rtx shift_bits = GEN_INT (bitsize - 1);
rtx xmode_x = gen_lowpart (Xmode, x);
rtx xmode_y = gen_lowpart (Xmode, y);
rtx xmode_minus = gen_reg_rtx (Xmode);
rtx xmode_xor_0 = gen_reg_rtx (Xmode);
rtx xmode_xor_1 = gen_reg_rtx (Xmode);
rtx xmode_lt_0 = gen_reg_rtx (Xmode);
rtx xmode_lt_1 = gen_reg_rtx (Xmode);
rtx xmode_and = gen_reg_rtx (Xmode);
rtx xmode_lt = gen_reg_rtx (Xmode);
rtx xmode_neg = gen_reg_rtx (Xmode);
rtx xmode_max = gen_reg_rtx (Xmode);
rtx xmode_dest = gen_reg_rtx (Xmode);
/* Step-1: mins = x - y, xor_0 = x ^ y, xor_1 = x ^ minus. */
riscv_emit_binary (MINUS, xmode_minus, xmode_x, xmode_y);
riscv_emit_binary (XOR, xmode_xor_0, xmode_x, xmode_y);
riscv_emit_binary (XOR, xmode_xor_1, xmode_x, xmode_minus);
/* Step-2: and = xor_0 < 0 & xor_1 < 0. */
riscv_emit_binary (LSHIFTRT, xmode_lt_0, xmode_xor_0, shift_bits);
riscv_emit_binary (LSHIFTRT, xmode_lt_1, xmode_xor_1, shift_bits);
riscv_emit_binary (AND, xmode_and, xmode_lt_0, xmode_lt_1);
riscv_emit_binary (AND, xmode_and, xmode_and, CONST1_RTX (Xmode));
/* Step-3: lt = x < 0, neg = -lt. */
riscv_emit_binary (LT, xmode_lt, xmode_x, CONST0_RTX (Xmode));
riscv_emit_unary (NEG, xmode_neg, xmode_lt);
/* Step-4: max = 0x7f..., max = max ^ neg, neg = -and, max = max & neg. */
riscv_emit_move (xmode_max, riscv_gen_sign_max_cst (mode));
riscv_emit_binary (XOR, xmode_max, xmode_max, xmode_neg);
riscv_emit_unary (NEG, xmode_neg, xmode_and);
riscv_emit_binary (AND, xmode_max, xmode_max, xmode_neg);
/* Step-5: and = and - 1, dest = minus & and. */
riscv_emit_binary (PLUS, xmode_and, xmode_and, CONSTM1_RTX (Xmode));
riscv_emit_binary (AND, xmode_dest, xmode_minus, xmode_and);
/* Step-6: dest = dest | max. */
riscv_emit_binary (IOR, xmode_dest, xmode_dest, xmode_max);
emit_move_insn (dest, gen_lowpart (mode, xmode_dest));
}
/* Implement the unsigned saturation truncation for int mode.
b = SAT_TRUNC (a);
=>
1. max = half truncated max
2. lt = a < max
3. lt = lt - 1 (lt 0, ge -1)
4. d = a | lt
5. b = (trunc)d */
void
riscv_expand_ustrunc (rtx dest, rtx src)
{
machine_mode mode = GET_MODE (dest);
rtx xmode_max = gen_reg_rtx (Xmode);
unsigned precision = GET_MODE_PRECISION (mode).to_constant ();
gcc_assert (precision < 64);
uint64_t max = ((uint64_t)1u << precision) - 1u;
rtx xmode_src = gen_lowpart (Xmode, src);
rtx xmode_dest = gen_reg_rtx (Xmode);
rtx xmode_lt = gen_reg_rtx (Xmode);
/* Step-1: max = half truncated max */
emit_move_insn (xmode_max, gen_int_mode (max, Xmode));
/* Step-2: lt = src < max */
riscv_emit_binary (LTU, xmode_lt, xmode_src, xmode_max);
/* Step-3: lt = lt - 1 */
riscv_emit_binary (PLUS, xmode_lt, xmode_lt, CONSTM1_RTX (Xmode));
/* Step-4: xmode_dest = lt | src */
riscv_emit_binary (IOR, xmode_dest, xmode_lt, xmode_src);
/* Step-5: dest = xmode_dest */
emit_move_insn (dest, gen_lowpart (mode, xmode_dest));
}
/* Implement the signed saturation truncation for int mode.
b = SAT_TRUNC (a);
=>
1. lt = a < max
2. gt = min < a
3. mask = lt & gt
4. trunc_mask = -mask
5. sat_mask = mask - 1
6. lt = a < 0
7. neg = -lt
8. sat = neg ^ max
9. trunc = src & trunc_mask
10. sat = sat & sat_mask
11. dest = trunc | sat */
void
riscv_expand_sstrunc (rtx dest, rtx src)
{
machine_mode mode = GET_MODE (dest);
unsigned narrow_prec = GET_MODE_PRECISION (mode).to_constant ();
HOST_WIDE_INT narrow_max = ((int64_t)1 << (narrow_prec - 1)) - 1; // 127
HOST_WIDE_INT narrow_min = -narrow_max - 1; // -128
rtx xmode_narrow_max = gen_reg_rtx (Xmode);
rtx xmode_narrow_min = gen_reg_rtx (Xmode);
rtx xmode_lt = gen_reg_rtx (Xmode);
rtx xmode_gt = gen_reg_rtx (Xmode);
rtx xmode_src = gen_lowpart (Xmode, src);
rtx xmode_dest = gen_reg_rtx (Xmode);
rtx xmode_mask = gen_reg_rtx (Xmode);
rtx xmode_sat = gen_reg_rtx (Xmode);
rtx xmode_trunc = gen_reg_rtx (Xmode);
rtx xmode_sat_mask = gen_reg_rtx (Xmode);
rtx xmode_trunc_mask = gen_reg_rtx (Xmode);
/* Step-1: lt = src < max, gt = min < src, mask = lt & gt */
emit_move_insn (xmode_narrow_min, gen_int_mode (narrow_min, Xmode));
emit_move_insn (xmode_narrow_max, gen_int_mode (narrow_max, Xmode));
riscv_emit_binary (LT, xmode_lt, xmode_src, xmode_narrow_max);
riscv_emit_binary (LT, xmode_gt, xmode_narrow_min, xmode_src);
riscv_emit_binary (AND, xmode_mask, xmode_lt, xmode_gt);
/* Step-2: sat_mask = mask - 1, trunc_mask = ~mask */
riscv_emit_binary (PLUS, xmode_sat_mask, xmode_mask, CONSTM1_RTX (Xmode));
riscv_emit_unary (NEG, xmode_trunc_mask, xmode_mask);
/* Step-3: lt = src < 0, lt = -lt, sat = lt ^ narrow_max */
riscv_emit_binary (LT, xmode_lt, xmode_src, CONST0_RTX (Xmode));
riscv_emit_unary (NEG, xmode_lt, xmode_lt);
riscv_emit_binary (XOR, xmode_sat, xmode_lt, xmode_narrow_max);
/* Step-4: xmode_dest = (src & trunc_mask) | (sat & sat_mask) */
riscv_emit_binary (AND, xmode_trunc, xmode_src, xmode_trunc_mask);
riscv_emit_binary (AND, xmode_sat, xmode_sat, xmode_sat_mask);
riscv_emit_binary (IOR, xmode_dest, xmode_trunc, xmode_sat);
/* Step-5: dest = xmode_dest */
emit_move_insn (dest, gen_lowpart (mode, xmode_dest));
}
/* Implement TARGET_C_MODE_FOR_FLOATING_TYPE. Return TFmode for
TI_LONG_DOUBLE_TYPE which is for long double type, go with the
default one for the others. */
static machine_mode
riscv_c_mode_for_floating_type (enum tree_index ti)
{
if (ti == TI_LONG_DOUBLE_TYPE)
return TFmode;
return default_mode_for_floating_type (ti);
}
/* This parses the attribute arguments to target_version in DECL and modifies
the feature mask and priority required to select those targets. */
static void
parse_features_for_version (tree decl,
struct riscv_feature_bits &res,
int &priority)
{
tree version_attr = lookup_attribute ("target_version",
DECL_ATTRIBUTES (decl));
if (version_attr == NULL_TREE)
{
res.length = 0;
priority = 0;
return;
}
const char *version_string = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE
(version_attr)));
gcc_assert (version_string != NULL);
if (strcmp (version_string, "default") == 0)
{
res.length = 0;
priority = 0;
return;
}
struct cl_target_option cur_target;
cl_target_option_save (&cur_target, &global_options,
&global_options_set);
/* Always set to default option before parsing "arch=+..." */
struct cl_target_option *default_opts
= TREE_TARGET_OPTION (target_option_default_node);
cl_target_option_restore (&global_options, &global_options_set,
default_opts);
riscv_process_target_version_attr (TREE_VALUE (version_attr),
DECL_SOURCE_LOCATION (decl));
priority = global_options.x_riscv_fmv_priority;
const char *arch_string = global_options.x_riscv_arch_string;
bool parse_res
= riscv_minimal_hwprobe_feature_bits (arch_string, &res,
DECL_SOURCE_LOCATION (decl));
gcc_assert (parse_res);
if (arch_string != default_opts->x_riscv_arch_string)
free (CONST_CAST (void *, (const void *) arch_string));
cl_target_option_restore (&global_options, &global_options_set,
&cur_target);
}
/* Compare priorities of two feature masks. Return:
1: mask1 is higher priority
-1: mask2 is higher priority
0: masks are equal.
Since riscv_feature_bits has total 128 bits to be used as mask, when counting
the total 1s in the mask, the 1s in group1 needs to multiply a weight. */
static int
compare_fmv_features (const struct riscv_feature_bits &mask1,
const struct riscv_feature_bits &mask2,
int prio1, int prio2)
{
unsigned length1 = mask1.length, length2 = mask2.length;
/* 1. Compare length, for length == 0 means default version, which should be
the lowest priority). */
if (length1 != length2)
return length1 > length2 ? 1 : -1;
/* 2. Compare the priority. */
if (prio1 != prio2)
return prio1 > prio2 ? 1 : -1;
/* 3. Compare the total number of 1s in the mask. */
unsigned pop1 = 0, pop2 = 0;
for (unsigned i = 0; i < length1; i++)
{
pop1 += __builtin_popcountll (mask1.features[i]);
pop2 += __builtin_popcountll (mask2.features[i]);
}
if (pop1 != pop2)
return pop1 > pop2 ? 1 : -1;
/* 4. Compare the mask bit by bit order. */
for (unsigned i = 0; i < length1; i++)
{
unsigned long long xor_mask = mask1.features[i] ^ mask2.features[i];
if (xor_mask == 0)
continue;
return TEST_BIT (mask1.features[i], __builtin_ctzll (xor_mask)) ? 1 : -1;
}
/* 5. If all bits are equal, return 0. */
return 0;
}
/* Compare priorities of two version decls. Return:
1: mask1 is higher priority
-1: mask2 is higher priority
0: masks are equal. */
int
riscv_compare_version_priority (tree decl1, tree decl2)
{
struct riscv_feature_bits mask1, mask2;
int prio1, prio2;
parse_features_for_version (decl1, mask1, prio1);
parse_features_for_version (decl2, mask2, prio2);
return compare_fmv_features (mask1, mask2, prio1, prio2);
}
/* This function returns true if FN1 and FN2 are versions of the same function,
that is, the target_version attributes of the function decls are different.
This assumes that FN1 and FN2 have the same signature. */
bool
riscv_common_function_versions (tree fn1, tree fn2)
{
if (TREE_CODE (fn1) != FUNCTION_DECL
|| TREE_CODE (fn2) != FUNCTION_DECL)
return false;
return riscv_compare_version_priority (fn1, fn2) != 0;
}
/* Implement TARGET_MANGLE_DECL_ASSEMBLER_NAME, to add function multiversioning
suffixes. */
tree
riscv_mangle_decl_assembler_name (tree decl, tree id)
{
/* For function version, add the target suffix to the assembler name. */
if (TREE_CODE (decl) == FUNCTION_DECL
&& DECL_FUNCTION_VERSIONED (decl))
{
std::string name = IDENTIFIER_POINTER (id) + std::string (".");
tree target_attr = lookup_attribute ("target_version",
DECL_ATTRIBUTES (decl));
if (target_attr == NULL_TREE)
{
name += "default";
return get_identifier (name.c_str ());
}
const char *version_string = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE
(target_attr)));
/* Replace non-alphanumeric characters with underscores as the suffix. */
for (const char *c = version_string; *c; c++)
name += ISALNUM (*c) == 0 ? '_' : *c;
if (DECL_ASSEMBLER_NAME_SET_P (decl))
SET_DECL_RTL (decl, NULL);
id = get_identifier (name.c_str ());
}
return id;
}
/* This adds a condition to the basic_block NEW_BB in function FUNCTION_DECL
to return a pointer to VERSION_DECL if all feature bits specified in
FEATURE_MASK are not set in MASK_VAR. This function will be called during
version dispatch to decide which function version to execute. It returns
the basic block at the end, to which more conditions can be added. */
static basic_block
add_condition_to_bb (tree function_decl, tree version_decl,
const struct riscv_feature_bits *features,
tree mask_var, basic_block new_bb)
{
gimple *return_stmt;
tree convert_expr, result_var;
gimple *convert_stmt;
gimple *if_else_stmt;
basic_block bb1, bb2, bb3;
edge e12, e23;
gimple_seq gseq;
push_cfun (DECL_STRUCT_FUNCTION (function_decl));
gcc_assert (new_bb != NULL);
gseq = bb_seq (new_bb);
convert_expr = build1 (CONVERT_EXPR, ptr_type_node,
build_fold_addr_expr (version_decl));
result_var = create_tmp_var (ptr_type_node);
convert_stmt = gimple_build_assign (result_var, convert_expr);
return_stmt = gimple_build_return (result_var);
if (features->length == 0)
{
/* Default version. */
gimple_seq_add_stmt (&gseq, convert_stmt);
gimple_seq_add_stmt (&gseq, return_stmt);
set_bb_seq (new_bb, gseq);
gimple_set_bb (convert_stmt, new_bb);
gimple_set_bb (return_stmt, new_bb);
pop_cfun ();
return new_bb;
}
tree zero_llu = build_int_cst (long_long_unsigned_type_node, 0);
tree cond_status = create_tmp_var (boolean_type_node);
tree mask_array_ele_var = create_tmp_var (long_long_unsigned_type_node);
tree and_expr_var = create_tmp_var (long_long_unsigned_type_node);
tree eq_expr_var = create_tmp_var (boolean_type_node);
/* cond_status = true. */
gimple *cond_init_stmt = gimple_build_assign (cond_status, boolean_true_node);
gimple_set_block (cond_init_stmt, DECL_INITIAL (function_decl));
gimple_set_bb (cond_init_stmt, new_bb);
gimple_seq_add_stmt (&gseq, cond_init_stmt);
for (int i = 0; i < RISCV_FEATURE_BITS_LENGTH; i++)
{
tree index_expr = build_int_cst (unsigned_type_node, i);
/* mask_array_ele_var = mask_var[i] */
tree mask_array_ref = build4 (ARRAY_REF, long_long_unsigned_type_node,
mask_var, index_expr, NULL_TREE, NULL_TREE);
gimple *mask_stmt = gimple_build_assign (mask_array_ele_var,
mask_array_ref);
gimple_set_block (mask_stmt, DECL_INITIAL (function_decl));
gimple_set_bb (mask_stmt, new_bb);
gimple_seq_add_stmt (&gseq, mask_stmt);
/* and_expr_var = mask_array_ele_var & features[i] */
tree and_expr = build2 (BIT_AND_EXPR,
long_long_unsigned_type_node,
mask_array_ele_var,
build_int_cst (long_long_unsigned_type_node,
features->features[i]));
gimple *and_stmt = gimple_build_assign (and_expr_var, and_expr);
gimple_set_block (and_stmt, DECL_INITIAL (function_decl));
gimple_set_bb (and_stmt, new_bb);
gimple_seq_add_stmt (&gseq, and_stmt);
/* eq_expr_var = and_expr_var == 0. */
tree eq_expr = build2 (EQ_EXPR, boolean_type_node,
and_expr_var, zero_llu);
gimple *eq_stmt = gimple_build_assign (eq_expr_var, eq_expr);
gimple_set_block (eq_stmt, DECL_INITIAL (function_decl));
gimple_set_bb (eq_stmt, new_bb);
gimple_seq_add_stmt (&gseq, eq_stmt);
/* cond_status = cond_status & eq_expr_var. */
tree cond_expr = build2 (BIT_AND_EXPR, boolean_type_node,
cond_status, eq_expr_var);
gimple *cond_stmt = gimple_build_assign (cond_status, cond_expr);
gimple_set_block (cond_stmt, DECL_INITIAL (function_decl));
gimple_set_bb (cond_stmt, new_bb);
gimple_seq_add_stmt (&gseq, cond_stmt);
}
if_else_stmt = gimple_build_cond (EQ_EXPR, cond_status, boolean_true_node,
NULL_TREE, NULL_TREE);
gimple_set_block (if_else_stmt, DECL_INITIAL (function_decl));
gimple_set_bb (if_else_stmt, new_bb);
gimple_seq_add_stmt (&gseq, if_else_stmt);
gimple_seq_add_stmt (&gseq, convert_stmt);
gimple_seq_add_stmt (&gseq, return_stmt);
set_bb_seq (new_bb, gseq);
bb1 = new_bb;
e12 = split_block (bb1, if_else_stmt);
bb2 = e12->dest;
e12->flags &= ~EDGE_FALLTHRU;
e12->flags |= EDGE_TRUE_VALUE;
e23 = split_block (bb2, return_stmt);
gimple_set_bb (convert_stmt, bb2);
gimple_set_bb (return_stmt, bb2);
bb3 = e23->dest;
make_edge (bb1, bb3, EDGE_FALSE_VALUE);
remove_edge (e23);
make_edge (bb2, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
pop_cfun ();
return bb3;
}
/* This function generates the dispatch function for
multi-versioned functions. DISPATCH_DECL is the function which will
contain the dispatch logic. FNDECLS are the function choices for
dispatch, and is a tree chain. EMPTY_BB is the basic block pointer
in DISPATCH_DECL in which the dispatch code is generated. */
static int
dispatch_function_versions (tree dispatch_decl,
void *fndecls_p,
basic_block *empty_bb)
{
gimple *ifunc_cpu_init_stmt;
gimple_seq gseq;
vec *fndecls;
gcc_assert (dispatch_decl != NULL
&& fndecls_p != NULL
&& empty_bb != NULL);
push_cfun (DECL_STRUCT_FUNCTION (dispatch_decl));
gseq = bb_seq (*empty_bb);
/* Function version dispatch is via IFUNC. IFUNC resolvers fire before
constructors, so explicity call __init_riscv_feature_bits here. */
tree init_fn_type = build_function_type_list (void_type_node,
long_unsigned_type_node,
ptr_type_node,
NULL);
tree init_fn_id = get_identifier ("__init_riscv_feature_bits");
tree init_fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
init_fn_id, init_fn_type);
DECL_EXTERNAL (init_fn_decl) = 1;
TREE_PUBLIC (init_fn_decl) = 1;
DECL_VISIBILITY (init_fn_decl) = VISIBILITY_HIDDEN;
DECL_VISIBILITY_SPECIFIED (init_fn_decl) = 1;
ifunc_cpu_init_stmt = gimple_build_call (init_fn_decl, 0);
gimple_seq_add_stmt (&gseq, ifunc_cpu_init_stmt);
gimple_set_bb (ifunc_cpu_init_stmt, *empty_bb);
/* Build the struct type for __riscv_feature_bits. */
tree global_type = lang_hooks.types.make_type (RECORD_TYPE);
tree features_type = build_array_type_nelts (long_long_unsigned_type_node,
RISCV_FEATURE_BITS_LENGTH);
tree field1 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
get_identifier ("length"),
unsigned_type_node);
tree field2 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
get_identifier ("features"),
features_type);
DECL_FIELD_CONTEXT (field1) = global_type;
DECL_FIELD_CONTEXT (field2) = global_type;
TYPE_FIELDS (global_type) = field1;
DECL_CHAIN (field1) = field2;
layout_type (global_type);
tree global_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
get_identifier ("__riscv_feature_bits"),
global_type);
DECL_EXTERNAL (global_var) = 1;
TREE_PUBLIC (global_var) = 1;
DECL_VISIBILITY (global_var) = VISIBILITY_HIDDEN;
DECL_VISIBILITY_SPECIFIED (global_var) = 1;
tree mask_var = create_tmp_var (features_type);
tree feature_ele_var = create_tmp_var (long_long_unsigned_type_node);
tree noted_var = create_tmp_var (long_long_unsigned_type_node);
for (int i = 0; i < RISCV_FEATURE_BITS_LENGTH; i++)
{
tree index_expr = build_int_cst (unsigned_type_node, i);
/* feature_ele_var = __riscv_feature_bits.features[i] */
tree component_expr = build3 (COMPONENT_REF, features_type,
global_var, field2, NULL_TREE);
tree feature_array_ref = build4 (ARRAY_REF, long_long_unsigned_type_node,
component_expr, index_expr,
NULL_TREE, NULL_TREE);
gimple *feature_stmt = gimple_build_assign (feature_ele_var,
feature_array_ref);
gimple_set_block (feature_stmt, DECL_INITIAL (dispatch_decl));
gimple_set_bb (feature_stmt, *empty_bb);
gimple_seq_add_stmt (&gseq, feature_stmt);
/* noted_var = ~feature_ele_var. */
tree not_expr = build1 (BIT_NOT_EXPR, long_long_unsigned_type_node,
feature_ele_var);
gimple *not_stmt = gimple_build_assign (noted_var, not_expr);
gimple_set_block (not_stmt, DECL_INITIAL (dispatch_decl));
gimple_set_bb (not_stmt, *empty_bb);
gimple_seq_add_stmt (&gseq, not_stmt);
/* mask_var[i] = noted_var. */
tree mask_array_ref = build4 (ARRAY_REF, long_long_unsigned_type_node,
mask_var, index_expr, NULL_TREE, NULL_TREE);
gimple *mask_assign_stmt = gimple_build_assign (mask_array_ref,
noted_var);
gimple_set_block (mask_assign_stmt, DECL_INITIAL (dispatch_decl));
gimple_set_bb (mask_assign_stmt, *empty_bb);
gimple_seq_add_stmt (&gseq, mask_assign_stmt);
}
set_bb_seq (*empty_bb, gseq);
pop_cfun ();
/* fndecls_p is actually a vector. */
fndecls = static_cast *> (fndecls_p);
/* At least one more version other than the default. */
unsigned int num_versions = fndecls->length ();
gcc_assert (num_versions >= 2);
struct function_version_info
{
tree version_decl;
struct riscv_feature_bits features;
int prio;
};
std::vector function_versions;
for (tree version_decl : *fndecls)
{
struct function_version_info version_info;
version_info.version_decl = version_decl;
// Get attribute string, parse it and find the right features.
parse_features_for_version (version_decl,
version_info.features,
version_info.prio);
function_versions.push_back (version_info);
}
auto compare_feature_version_info = [](const struct function_version_info &v1,
const struct function_version_info &v2)
{
return compare_fmv_features (v1.features, v2.features,
v1.prio, v2.prio) > 0;
};
/* Sort the versions according to descending order of dispatch priority. */
std::sort (function_versions.begin (), function_versions.end (),
compare_feature_version_info);
for (auto version : function_versions)
{
*empty_bb = add_condition_to_bb (dispatch_decl,
version.version_decl,
&version.features,
mask_var,
*empty_bb);
}
return 0;
}
/* Return an identifier for the base assembler name of a versioned function.
This is computed by taking the default version's assembler name, and
stripping off the ".default" suffix if it's already been appended. */
static tree
get_suffixed_assembler_name (tree default_decl, const char *suffix)
{
std::string name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (default_decl));
auto size = name.size ();
if (size >= 8 && name.compare (size - 8, 8, ".default") == 0)
name.resize (size - 8);
name += suffix;
return get_identifier (name.c_str ());
}
/* Make the resolver function decl to dispatch the versions of
a multi-versioned function, DEFAULT_DECL. IFUNC_ALIAS_DECL is
ifunc alias that will point to the created resolver. Create an
empty basic block in the resolver and store the pointer in
EMPTY_BB. Return the decl of the resolver function. */
static tree
make_resolver_func (const tree default_decl,
const tree ifunc_alias_decl,
basic_block *empty_bb)
{
tree decl, type, t;
/* Create resolver function name based on default_decl. We need to remove an
existing ".default" suffix if this has already been appended. */
tree decl_name = get_suffixed_assembler_name (default_decl, ".resolver");
const char *resolver_name = IDENTIFIER_POINTER (decl_name);
/* The resolver function should have signature
(void *) resolver (uint64_t, void *) */
type = build_function_type_list (ptr_type_node,
uint64_type_node,
ptr_type_node,
NULL_TREE);
decl = build_fn_decl (resolver_name, type);
SET_DECL_ASSEMBLER_NAME (decl, decl_name);
DECL_NAME (decl) = decl_name;
TREE_USED (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
TREE_PUBLIC (decl) = 0;
DECL_UNINLINABLE (decl) = 1;
/* Resolver is not external, body is generated. */
DECL_EXTERNAL (decl) = 0;
DECL_EXTERNAL (ifunc_alias_decl) = 0;
DECL_CONTEXT (decl) = NULL_TREE;
DECL_INITIAL (decl) = make_node (BLOCK);
DECL_STATIC_CONSTRUCTOR (decl) = 0;
if (DECL_COMDAT_GROUP (default_decl)
|| TREE_PUBLIC (default_decl))
{
/* In this case, each translation unit with a call to this
versioned function will put out a resolver. Ensure it
is comdat to keep just one copy. */
DECL_COMDAT (decl) = 1;
make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
}
else
TREE_PUBLIC (ifunc_alias_decl) = 0;
/* Build result decl and add to function_decl. */
t = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, ptr_type_node);
DECL_CONTEXT (t) = decl;
DECL_ARTIFICIAL (t) = 1;
DECL_IGNORED_P (t) = 1;
DECL_RESULT (decl) = t;
/* Build parameter decls and add to function_decl. */
tree arg1 = build_decl (UNKNOWN_LOCATION, PARM_DECL,
get_identifier ("hwcap"),
uint64_type_node);
tree arg2 = build_decl (UNKNOWN_LOCATION, PARM_DECL,
get_identifier ("hwprobe_func"),
ptr_type_node);
DECL_CONTEXT (arg1) = decl;
DECL_CONTEXT (arg2) = decl;
DECL_ARTIFICIAL (arg1) = 1;
DECL_ARTIFICIAL (arg2) = 1;
DECL_IGNORED_P (arg1) = 1;
DECL_IGNORED_P (arg2) = 1;
DECL_ARG_TYPE (arg1) = uint64_type_node;
DECL_ARG_TYPE (arg2) = ptr_type_node;
DECL_ARGUMENTS (decl) = arg1;
TREE_CHAIN (arg1) = arg2;
gimplify_function_tree (decl);
push_cfun (DECL_STRUCT_FUNCTION (decl));
*empty_bb = init_lowered_empty_function (decl, false,
profile_count::uninitialized ());
cgraph_node::add_new_function (decl, true);
symtab->call_cgraph_insertion_hooks (cgraph_node::get_create (decl));
pop_cfun ();
gcc_assert (ifunc_alias_decl != NULL);
/* Mark ifunc_alias_decl as "ifunc" with resolver as resolver_name. */
DECL_ATTRIBUTES (ifunc_alias_decl)
= make_attribute ("ifunc", resolver_name,
DECL_ATTRIBUTES (ifunc_alias_decl));
/* Create the alias for dispatch to resolver here. */
cgraph_node::create_same_body_alias (ifunc_alias_decl, decl);
return decl;
}
/* Implement TARGET_GENERATE_VERSION_DISPATCHER_BODY. */
tree
riscv_generate_version_dispatcher_body (void *node_p)
{
tree resolver_decl;
basic_block empty_bb;
tree default_ver_decl;
struct cgraph_node *versn;
struct cgraph_node *node;
struct cgraph_function_version_info *node_version_info = NULL;
struct cgraph_function_version_info *versn_info = NULL;
node = (cgraph_node *)node_p;
node_version_info = node->function_version ();
gcc_assert (node->dispatcher_function
&& node_version_info != NULL);
if (node_version_info->dispatcher_resolver)
return node_version_info->dispatcher_resolver;
/* The first version in the chain corresponds to the default version. */
default_ver_decl = node_version_info->next->this_node->decl;
/* node is going to be an alias, so remove the finalized bit. */
node->definition = false;
resolver_decl = make_resolver_func (default_ver_decl,
node->decl, &empty_bb);
node_version_info->dispatcher_resolver = resolver_decl;
push_cfun (DECL_STRUCT_FUNCTION (resolver_decl));
auto_vec fn_ver_vec;
for (versn_info = node_version_info->next; versn_info;
versn_info = versn_info->next)
{
versn = versn_info->this_node;
/* Check for virtual functions here again, as by this time it should
have been determined if this function needs a vtable index or
not. This happens for methods in derived classes that override
virtual methods in base classes but are not explicitly marked as
virtual. */
if (DECL_VINDEX (versn->decl))
sorry ("virtual function multiversioning not supported");
fn_ver_vec.safe_push (versn->decl);
}
dispatch_function_versions (resolver_decl, &fn_ver_vec, &empty_bb);
cgraph_edge::rebuild_edges ();
pop_cfun ();
/* Fix up symbol names. First we need to obtain the base name, which may
have already been mangled. */
tree base_name = get_suffixed_assembler_name (default_ver_decl, "");
/* We need to redo the version mangling on the non-default versions for the
target_clones case. Redoing the mangling for the target_version case is
redundant but does no harm. We need to skip the default version, because
expand_clones will append ".default" later; fortunately that suffix is the
one we want anyway. */
for (versn_info = node_version_info->next->next; versn_info;
versn_info = versn_info->next)
{
tree version_decl = versn_info->this_node->decl;
tree name = riscv_mangle_decl_assembler_name (version_decl,
base_name);
symtab->change_decl_assembler_name (version_decl, name);
}
/* We also need to use the base name for the ifunc declaration. */
symtab->change_decl_assembler_name (node->decl, base_name);
return resolver_decl;
}
/* Make a dispatcher declaration for the multi-versioned function DECL.
Calls to DECL function will be replaced with calls to the dispatcher
by the front-end. Returns the decl of the dispatcher function. */
tree
riscv_get_function_versions_dispatcher (void *decl)
{
tree fn = (tree) decl;
struct cgraph_node *node = NULL;
struct cgraph_node *default_node = NULL;
struct cgraph_function_version_info *node_v = NULL;
struct cgraph_function_version_info *first_v = NULL;
tree dispatch_decl = NULL;
struct cgraph_function_version_info *default_version_info = NULL;
gcc_assert (fn != NULL && DECL_FUNCTION_VERSIONED (fn));
node = cgraph_node::get (fn);
gcc_assert (node != NULL);
node_v = node->function_version ();
gcc_assert (node_v != NULL);
if (node_v->dispatcher_resolver != NULL)
return node_v->dispatcher_resolver;
/* Find the default version and make it the first node. */
first_v = node_v;
/* Go to the beginning of the chain. */
while (first_v->prev != NULL)
first_v = first_v->prev;
default_version_info = first_v;
while (default_version_info != NULL)
{
struct riscv_feature_bits res;
int priority; /* Unused. */
parse_features_for_version (default_version_info->this_node->decl,
res, priority);
if (res.length == 0)
break;
default_version_info = default_version_info->next;
}
/* If there is no default node, just return NULL. */
if (default_version_info == NULL)
return NULL;
/* Make default info the first node. */
if (first_v != default_version_info)
{
default_version_info->prev->next = default_version_info->next;
if (default_version_info->next)
default_version_info->next->prev = default_version_info->prev;
first_v->prev = default_version_info;
default_version_info->next = first_v;
default_version_info->prev = NULL;
}
default_node = default_version_info->this_node;
if (targetm.has_ifunc_p ())
{
struct cgraph_function_version_info *it_v = NULL;
struct cgraph_node *dispatcher_node = NULL;
struct cgraph_function_version_info *dispatcher_version_info = NULL;
/* Right now, the dispatching is done via ifunc. */
dispatch_decl = make_dispatcher_decl (default_node->decl);
TREE_NOTHROW (dispatch_decl) = TREE_NOTHROW (fn);
dispatcher_node = cgraph_node::get_create (dispatch_decl);
gcc_assert (dispatcher_node != NULL);
dispatcher_node->dispatcher_function = 1;
dispatcher_version_info
= dispatcher_node->insert_new_function_version ();
dispatcher_version_info->next = default_version_info;
dispatcher_node->definition = 1;
/* Set the dispatcher for all the versions. */
it_v = default_version_info;
while (it_v != NULL)
{
it_v->dispatcher_resolver = dispatch_decl;
it_v = it_v->next;
}
}
else
{
error_at (DECL_SOURCE_LOCATION (default_node->decl),
"multiversioning needs % which is not supported "
"on this target");
}
return dispatch_decl;
}
/* On riscv we have an ABI defined safe buffer. This constant is used to
determining the probe offset for alloca. */
static HOST_WIDE_INT
riscv_stack_clash_protection_alloca_probe_range (void)
{
return STACK_CLASH_CALLER_GUARD;
}
static bool
riscv_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
unsigned alignment,
enum by_pieces_operation op, bool speed_p)
{
/* For set/clear with size > UNITS_PER_WORD, by pieces uses vector broadcasts
with UNITS_PER_WORD size pieces. Use setmem instead which can use
bigger chunks. */
if (TARGET_VECTOR && stringop_strategy & STRATEGY_VECTOR
&& (op == CLEAR_BY_PIECES || op == SET_BY_PIECES)
&& speed_p && size > UNITS_PER_WORD)
return false;
return default_use_by_pieces_infrastructure_p (size, alignment, op, speed_p);
}
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE riscv_option_override
#undef TARGET_OPTION_RESTORE
#define TARGET_OPTION_RESTORE riscv_option_restore
#undef TARGET_OPTION_VALID_ATTRIBUTE_P
#define TARGET_OPTION_VALID_ATTRIBUTE_P riscv_option_valid_attribute_p
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS riscv_legitimize_address
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE riscv_issue_rate
#undef TARGET_SCHED_MACRO_FUSION_P
#define TARGET_SCHED_MACRO_FUSION_P riscv_macro_fusion_p
#undef TARGET_SCHED_MACRO_FUSION_PAIR_P
#define TARGET_SCHED_MACRO_FUSION_PAIR_P riscv_macro_fusion_pair_p
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE riscv_sched_variable_issue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST riscv_sched_adjust_cost
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL riscv_function_ok_for_sibcall
#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION riscv_set_current_function
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST riscv_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST riscv_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS riscv_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST riscv_address_cost
#undef TARGET_INSN_COST
#define TARGET_INSN_COST riscv_insn_cost
#undef TARGET_MAX_NOCE_IFCVT_SEQ_COST
#define TARGET_MAX_NOCE_IFCVT_SEQ_COST riscv_max_noce_ifcvt_seq_cost
#undef TARGET_NOCE_CONVERSION_PROFITABLE_P
#define TARGET_NOCE_CONVERSION_PROFITABLE_P riscv_noce_conversion_profitable_p
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START riscv_file_start
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END file_end_indicate_exec_stack
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START riscv_va_start
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE riscv_promote_function_mode
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY riscv_return_in_memory
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK riscv_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND riscv_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS riscv_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P riscv_print_operand_punct_valid_p
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS riscv_setup_incoming_varargs
#undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
#define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS riscv_allocate_stack_slots_for_args
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE riscv_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES riscv_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG riscv_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE riscv_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY riscv_function_arg_boundary
#undef TARGET_FNTYPE_ABI
#define TARGET_FNTYPE_ABI riscv_fntype_abi
#undef TARGET_INSN_CALLEE_ABI
#define TARGET_INSN_CALLEE_ABI riscv_insn_callee_abi
#undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
#define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS \
riscv_get_separate_components
#undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
#define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB \
riscv_components_for_bb
#undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS
#define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS \
riscv_disqualify_components
#undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS \
riscv_emit_prologue_components
#undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS \
riscv_emit_epilogue_components
#undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
#define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS \
riscv_set_handled_components
/* The generic ELF target does not always have TLS support. */
#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#endif
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM riscv_cannot_force_const_mem
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P riscv_legitimate_constant_p
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P riscv_use_blocks_for_constant_p
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P riscv_legitimate_address_p
#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P riscv_can_inline_p
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE riscv_can_eliminate
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE riscv_conditional_register_usage
#undef TARGET_CLASS_MAX_NREGS
#define TARGET_CLASS_MAX_NREGS riscv_class_max_nregs
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT riscv_trampoline_init
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P riscv_in_small_data_p
#undef TARGET_HAVE_SRODATA_SECTION
#define TARGET_HAVE_SRODATA_SECTION true
#undef TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION riscv_select_section
#undef TARGET_ASM_UNIQUE_SECTION
#define TARGET_ASM_UNIQUE_SECTION riscv_unique_section
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION riscv_elf_select_rtx_section
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET (-IMM_REACH/2)
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET (IMM_REACH/2-1)
#undef TARGET_REGISTER_PRIORITY
#define TARGET_REGISTER_PRIORITY riscv_register_priority
#undef TARGET_CANNOT_COPY_INSN_P
#define TARGET_CANNOT_COPY_INSN_P riscv_cannot_copy_insn_p
#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV riscv_atomic_assign_expand_fenv
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS riscv_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL riscv_builtin_decl
#undef TARGET_GIMPLE_FOLD_BUILTIN
#define TARGET_GIMPLE_FOLD_BUILTIN riscv_gimple_fold_builtin
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN riscv_expand_builtin
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS riscv_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK riscv_hard_regno_mode_ok
#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P riscv_modes_tieable_p
#undef TARGET_SLOW_UNALIGNED_ACCESS
#define TARGET_SLOW_UNALIGNED_ACCESS riscv_slow_unaligned_access
#undef TARGET_OVERLAP_OP_BY_PIECES_P
#define TARGET_OVERLAP_OP_BY_PIECES_P riscv_overlap_op_by_pieces
#undef TARGET_SECONDARY_MEMORY_NEEDED
#define TARGET_SECONDARY_MEMORY_NEEDED riscv_secondary_memory_needed
#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS riscv_can_change_mode_class
#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT riscv_constant_alignment
#undef TARGET_MERGE_DECL_ATTRIBUTES
#define TARGET_MERGE_DECL_ATTRIBUTES riscv_merge_decl_attributes
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE riscv_attribute_table
#undef TARGET_WARN_FUNC_RETURN
#define TARGET_WARN_FUNC_RETURN riscv_warn_func_return
/* The low bit is ignored by jump instructions so is safe to use. */
#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG riscv_reorg
#undef TARGET_NEW_ADDRESS_PROFITABLE_P
#define TARGET_NEW_ADDRESS_PROFITABLE_P riscv_new_address_profitable_p
#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE riscv_mangle_type
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P riscv_scalar_mode_supported_p
#undef TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P
#define TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P \
riscv_libgcc_floating_mode_supported_p
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS riscv_init_libfuncs
#undef TARGET_C_EXCESS_PRECISION
#define TARGET_C_EXCESS_PRECISION riscv_excess_precision
#undef TARGET_FLOATN_MODE
#define TARGET_FLOATN_MODE riscv_floatn_mode
#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET riscv_asan_shadow_offset
#ifdef TARGET_BIG_ENDIAN_DEFAULT
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (MASK_BIG_ENDIAN)
#endif
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P riscv_vector_mode_supported_p
#undef TARGET_VERIFY_TYPE_CONTEXT
#define TARGET_VERIFY_TYPE_CONTEXT riscv_verify_type_context
#undef TARGET_ESTIMATED_POLY_VALUE
#define TARGET_ESTIMATED_POLY_VALUE riscv_estimated_poly_value
#undef TARGET_VECTORIZE_GET_MASK_MODE
#define TARGET_VECTORIZE_GET_MASK_MODE riscv_get_mask_mode
#undef TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE
#define TARGET_VECTORIZE_EMPTY_MASK_IS_EXPENSIVE riscv_empty_mask_is_expensive
#undef TARGET_VECTOR_ALIGNMENT
#define TARGET_VECTOR_ALIGNMENT riscv_vector_alignment
#undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT riscv_support_vector_misalignment
#undef TARGET_DWARF_POLY_INDETERMINATE_VALUE
#define TARGET_DWARF_POLY_INDETERMINATE_VALUE riscv_dwarf_poly_indeterminate_value
#undef TARGET_ZERO_CALL_USED_REGS
#define TARGET_ZERO_CALL_USED_REGS riscv_zero_call_used_regs
#undef TARGET_ARRAY_MODE
#define TARGET_ARRAY_MODE riscv_array_mode
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE riscv_preferred_simd_mode
#undef TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT
#define TARGET_VECTORIZE_PREFERRED_VECTOR_ALIGNMENT \
riscv_vectorize_preferred_vector_alignment
#undef TARGET_STACK_CLASH_PROTECTION_ALLOCA_PROBE_RANGE
#define TARGET_STACK_CLASH_PROTECTION_ALLOCA_PROBE_RANGE \
riscv_stack_clash_protection_alloca_probe_range
/* Mode switching hooks. */
#undef TARGET_MODE_EMIT
#define TARGET_MODE_EMIT riscv_emit_mode_set
#undef TARGET_MODE_NEEDED
#define TARGET_MODE_NEEDED riscv_mode_needed
#undef TARGET_MODE_AFTER
#define TARGET_MODE_AFTER riscv_mode_after
#undef TARGET_MODE_ENTRY
#define TARGET_MODE_ENTRY riscv_mode_entry
#undef TARGET_MODE_EXIT
#define TARGET_MODE_EXIT riscv_mode_exit
#undef TARGET_MODE_PRIORITY
#define TARGET_MODE_PRIORITY riscv_mode_priority
#undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES
#define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES \
riscv_autovectorize_vector_modes
#undef TARGET_VECTORIZE_RELATED_MODE
#define TARGET_VECTORIZE_RELATED_MODE riscv_vectorize_related_mode
#undef TARGET_VECTORIZE_VEC_PERM_CONST
#define TARGET_VECTORIZE_VEC_PERM_CONST riscv_vectorize_vec_perm_const
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED riscv_frame_pointer_required
#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
riscv_builtin_vectorization_cost
#undef TARGET_VECTORIZE_CREATE_COSTS
#define TARGET_VECTORIZE_CREATE_COSTS riscv_vectorize_create_costs
#undef TARGET_PREFERRED_ELSE_VALUE
#define TARGET_PREFERRED_ELSE_VALUE riscv_preferred_else_value
#undef TARGET_VECTOR_MODE_SUPPORTED_ANY_TARGET_P
#define TARGET_VECTOR_MODE_SUPPORTED_ANY_TARGET_P riscv_vector_mode_supported_any_target_p
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P riscv_function_value_regno_p
#undef TARGET_GET_RAW_RESULT_MODE
#define TARGET_GET_RAW_RESULT_MODE riscv_get_raw_result_mode
#undef TARGET_C_MODE_FOR_FLOATING_TYPE
#define TARGET_C_MODE_FOR_FLOATING_TYPE riscv_c_mode_for_floating_type
#undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
#define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P riscv_use_by_pieces_infrastructure_p
#undef TARGET_OPTION_VALID_VERSION_ATTRIBUTE_P
#define TARGET_OPTION_VALID_VERSION_ATTRIBUTE_P \
riscv_option_valid_version_attribute_p
#undef TARGET_COMPARE_VERSION_PRIORITY
#define TARGET_COMPARE_VERSION_PRIORITY riscv_compare_version_priority
#undef TARGET_OPTION_FUNCTION_VERSIONS
#define TARGET_OPTION_FUNCTION_VERSIONS riscv_common_function_versions
#undef TARGET_MANGLE_DECL_ASSEMBLER_NAME
#define TARGET_MANGLE_DECL_ASSEMBLER_NAME riscv_mangle_decl_assembler_name
#undef TARGET_GENERATE_VERSION_DISPATCHER_BODY
#define TARGET_GENERATE_VERSION_DISPATCHER_BODY \
riscv_generate_version_dispatcher_body
#undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER
#define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER \
riscv_get_function_versions_dispatcher
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-riscv.h"