/* Subroutines for insn-output.c for Motorola 88000. Copyright (C) 1988, 92, 93, 94, 1995 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@mcc.com) Currently maintained by (gcc@dg-rtp.dg.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include "assert.h" #include "config.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" #include "tree.h" #include "c-tree.h" #include "expr.h" #include "flags.h" extern char *version_string; extern time_t time (); extern char *ctime (); extern int flag_traditional; extern FILE *asm_out_file; static char out_rcs_id[] = "$What: <@(#) m88k.c,v 1.8> $"; static char tm_rcs_id [] = TM_RCS_ID; char *m88k_pound_sign = ""; /* Either # for SVR4 or empty for SVR3 */ char *m88k_short_data; char *m88k_version; char m88k_volatile_code; unsigned m88k_gp_threshold = 0; int m88k_prologue_done = 0; /* Ln directives can now be emitted */ int m88k_function_number = 0; /* Counter unique to each function */ int m88k_fp_offset = 0; /* offset of frame pointer if used */ int m88k_stack_size = 0; /* size of allocated stack (including frame) */ int m88k_case_index; rtx m88k_compare_reg; /* cmp output pseudo register */ rtx m88k_compare_op0; /* cmpsi operand 0 */ rtx m88k_compare_op1; /* cmpsi operand 1 */ enum processor_type m88k_cpu; /* target cpu */ /* Determine what instructions are needed to manufacture the integer VALUE in the given MODE. */ enum m88k_instruction classify_integer (mode, value) enum machine_mode mode; register int value; { register int mask; if (value == 0) return m88k_zero; else if (SMALL_INTVAL (value)) return m88k_or; else if (SMALL_INTVAL (-value)) return m88k_subu; else if (mode == HImode) return m88k_or_lo16; else if (mode == QImode) return m88k_or_lo8; else if ((value & 0xffff) == 0) return m88k_oru_hi16; else if (integer_ok_for_set (value)) return m88k_set; else return m88k_oru_or; } /* Return the bit number in a compare word corresponding to CONDITION. */ int condition_value (condition) rtx condition; { switch (GET_CODE (condition)) { case EQ: return 2; case NE: return 3; case GT: return 4; case LE: return 5; case LT: return 6; case GE: return 7; case GTU: return 8; case LEU: return 9; case LTU: return 10; case GEU: return 11; default: abort (); } } int integer_ok_for_set (value) register unsigned value; { /* All the "one" bits must be contiguous. If so, MASK + 1 will be a power of two or zero. */ register unsigned mask = (value | (value - 1)); return (value && POWER_OF_2_or_0 (mask + 1)); } char * output_load_const_int (mode, operands) enum machine_mode mode; rtx *operands; { static char *patterns[] = { "or %0,%#r0,0", "or %0,%#r0,%1", "subu %0,%#r0,%n1", "or %0,%#r0,%h1", "or %0,%#r0,%q1", "set %0,%#r0,%s1", "or.u %0,%#r0,%X1", "or.u %0,%#r0,%X1\n\tor %0,%0,%x1", }; if (! REG_P (operands[0]) || GET_CODE (operands[1]) != CONST_INT) abort (); return patterns[classify_integer (mode, INTVAL (operands[1]))]; } /* These next two routines assume that floating point numbers are represented in a manner which is consistent between host and target machines. */ char * output_load_const_float (operands) rtx *operands; { /* These can return 0 under some circumstances when cross-compiling. */ operands[0] = operand_subword (operands[0], 0, 0, SFmode); operands[1] = operand_subword (operands[1], 0, 0, SFmode); return output_load_const_int (SImode, operands); } char * output_load_const_double (operands) rtx *operands; { rtx latehalf[2]; /* These can return zero on some cross-compilers, but there's nothing we can do about it. */ latehalf[0] = operand_subword (operands[0], 1, 0, DFmode); latehalf[1] = operand_subword (operands[1], 1, 0, DFmode); operands[0] = operand_subword (operands[0], 0, 0, DFmode); operands[1] = operand_subword (operands[1], 0, 0, DFmode); output_asm_insn (output_load_const_int (SImode, operands), operands); operands[0] = latehalf[0]; operands[1] = latehalf[1]; return output_load_const_int (SImode, operands); } char * output_load_const_dimode (operands) rtx *operands; { rtx latehalf[2]; latehalf[0] = operand_subword (operands[0], 1, 0, DImode); latehalf[1] = operand_subword (operands[1], 1, 0, DImode); operands[0] = operand_subword (operands[0], 0, 0, DImode); operands[1] = operand_subword (operands[1], 0, 0, DImode); output_asm_insn (output_load_const_int (SImode, operands), operands); operands[0] = latehalf[0]; operands[1] = latehalf[1]; return output_load_const_int (SImode, operands); } /* Emit insns to move operands[1] into operands[0]. Return 1 if we have written out everything that needs to be done to do the move. Otherwise, return 0 and the caller will emit the move normally. SCRATCH if non zero can be used as a scratch register for the move operation. It is provided by a SECONDARY_RELOAD_* macro if needed. */ int emit_move_sequence (operands, mode, scratch) rtx *operands; enum machine_mode mode; rtx scratch; { register rtx operand0 = operands[0]; register rtx operand1 = operands[1]; if (CONSTANT_P (operand1) && flag_pic && pic_address_needs_scratch (operand1)) operands[1] = operand1 = legitimize_address (1, operand1, 0, 0); /* Handle most common case first: storing into a register. */ if (register_operand (operand0, mode)) { if (register_operand (operand1, mode) || (GET_CODE (operand1) == CONST_INT && SMALL_INT (operand1)) || GET_CODE (operand1) == HIGH /* Only `general_operands' can come here, so MEM is ok. */ || GET_CODE (operand1) == MEM) { /* Run this case quickly. */ emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1)); return 1; } } else if (GET_CODE (operand0) == MEM) { if (register_operand (operand1, mode) || (operand1 == const0_rtx && GET_MODE_SIZE (mode) <= UNITS_PER_WORD)) { /* Run this case quickly. */ emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1)); return 1; } if (! reload_in_progress && ! reload_completed) { operands[0] = validize_mem (operand0); operands[1] = operand1 = force_reg (mode, operand1); } } /* Simplify the source if we need to. */ if (GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode)) { if (GET_CODE (operand1) != CONST_INT && GET_CODE (operand1) != CONST_DOUBLE) { rtx temp = ((reload_in_progress || reload_completed) ? operand0 : 0); operands[1] = legitimize_address (flag_pic && symbolic_address_p (operand1), operand1, temp, scratch); if (mode != SImode) operands[1] = gen_rtx (SUBREG, mode, operands[1], 0); } } /* Now have insn-emit do whatever it normally does. */ return 0; } /* Return a legitimate reference for ORIG (either an address or a MEM) using the register REG. If PIC and the address is already position-independent, use ORIG. Newly generated position-independent addresses go into a reg. This is REG if non zero, otherwise we allocate register(s) as necessary. If this is called during reload, and we need a second temp register, then we use SCRATCH, which is provided via the SECONDARY_INPUT_RELOAD_CLASS mechanism. */ struct rtx_def * legitimize_address (pic, orig, reg, scratch) int pic; rtx orig; rtx reg; rtx scratch; { rtx addr = (GET_CODE (orig) == MEM ? XEXP (orig, 0) : orig); rtx new = orig; rtx temp, insn; if (pic) { if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF) { if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } if (flag_pic == 2) { /* If not during reload, allocate another temp reg here for loading in the address, so that these instructions can be optimized properly. */ temp = ((reload_in_progress || reload_completed) ? reg : gen_reg_rtx (Pmode)); emit_insn (gen_rtx (SET, VOIDmode, temp, gen_rtx (HIGH, SImode, gen_rtx (UNSPEC, SImode, gen_rtvec (1, addr), 0)))); emit_insn (gen_rtx (SET, VOIDmode, temp, gen_rtx (LO_SUM, SImode, temp, gen_rtx (UNSPEC, SImode, gen_rtvec (1, addr), 0)))); addr = temp; } new = gen_rtx (MEM, Pmode, gen_rtx (PLUS, SImode, pic_offset_table_rtx, addr)); current_function_uses_pic_offset_table = 1; RTX_UNCHANGING_P (new) = 1; insn = emit_move_insn (reg, new); /* Put a REG_EQUAL note on this insn, so that it can be optimized by loop. */ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig, REG_NOTES (insn)); new = reg; } else if (GET_CODE (addr) == CONST) { rtx base, offset; if (GET_CODE (XEXP (addr, 0)) == PLUS && XEXP (XEXP (addr, 0), 0) == pic_offset_table_rtx) return orig; if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } if (GET_CODE (XEXP (addr, 0)) != PLUS) abort (); base = legitimize_address (1, XEXP (XEXP (addr, 0), 0), reg, 0); addr = legitimize_address (1, XEXP (XEXP (addr, 0), 1), base == reg ? 0 : reg, 0); if (GET_CODE (addr) == CONST_INT) { if (ADD_INT (addr)) return plus_constant_for_output (base, INTVAL (addr)); else if (! reload_in_progress && ! reload_completed) addr = force_reg (Pmode, addr); /* We can't create any new registers during reload, so use the SCRATCH reg provided by the reload_insi pattern. */ else if (scratch) { emit_move_insn (scratch, addr); addr = scratch; } else /* If we reach here, then the SECONDARY_INPUT_RELOAD_CLASS macro needs to be adjusted so that a scratch reg is provided for this address. */ abort (); } new = gen_rtx (PLUS, SImode, base, addr); /* Should we set special REG_NOTEs here? */ } } else if (! SHORT_ADDRESS_P (addr, temp)) { if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } emit_insn (gen_rtx (SET, VOIDmode, reg, gen_rtx (HIGH, SImode, addr))); new = gen_rtx (LO_SUM, SImode, reg, addr); } if (new != orig && GET_CODE (orig) == MEM) { new = gen_rtx (MEM, GET_MODE (orig), new); RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (orig); MEM_VOLATILE_P (new) = MEM_VOLATILE_P (orig); MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (orig); } return new; } /* Support functions for code to emit a block move. There are four methods used to perform the block move: + call memcpy + call the looping library function, e.g. __movstrSI64n8 + call a non-looping library function, e.g. __movstrHI15x11 + produce an inline sequence of ld/st instructions The parameters below describe the library functions produced by movstr-m88k.sh. */ #define MOVSTR_LOOP 64 /* __movstrSI64n68 .. __movstrSI64n8 */ #define MOVSTR_QI 16 /* __movstrQI16x16 .. __movstrQI16x2 */ #define MOVSTR_HI 48 /* __movstrHI48x48 .. __movstrHI48x4 */ #define MOVSTR_SI 96 /* __movstrSI96x96 .. __movstrSI96x8 */ #define MOVSTR_DI 96 /* __movstrDI96x96 .. __movstrDI96x16 */ #define MOVSTR_ODD_HI 16 /* __movstrHI15x15 .. __movstrHI15x5 */ #define MOVSTR_ODD_SI 48 /* __movstrSI47x47 .. __movstrSI47x11, __movstrSI46x46 .. __movstrSI46x10, __movstrSI45x45 .. __movstrSI45x9 */ #define MOVSTR_ODD_DI 48 /* __movstrDI47x47 .. __movstrDI47x23, __movstrDI46x46 .. __movstrDI46x22, __movstrDI45x45 .. __movstrDI45x21, __movstrDI44x44 .. __movstrDI44x20, __movstrDI43x43 .. __movstrDI43x19, __movstrDI42x42 .. __movstrDI42x18, __movstrDI41x41 .. __movstrDI41x17 */ /* Limits for using the non-looping movstr functions. For the m88100 processor, we assume the source and destination are word aligned. The QImode and HImode limits are the break even points where memcpy does just as well and beyond which memcpy does better. For the m88110, we tend to assume double word alignment, but also analyze the word aligned cases. The analysis is complicated because memcpy may use the cache control instructions for better performance. */ #define MOVSTR_QI_LIMIT_88100 13 #define MOVSTR_HI_LIMIT_88100 38 #define MOVSTR_SI_LIMIT_88100 MOVSTR_SI #define MOVSTR_DI_LIMIT_88100 MOVSTR_SI #define MOVSTR_QI_LIMIT_88000 16 #define MOVSTR_HI_LIMIT_88000 38 #define MOVSTR_SI_LIMIT_88000 72 #define MOVSTR_DI_LIMIT_88000 72 #define MOVSTR_QI_LIMIT_88110 16 #define MOVSTR_HI_LIMIT_88110 38 #define MOVSTR_SI_LIMIT_88110 72 #define MOVSTR_DI_LIMIT_88110 72 static enum machine_mode mode_from_align[] = {VOIDmode, QImode, HImode, VOIDmode, SImode, VOIDmode, VOIDmode, VOIDmode, DImode}; static int max_from_align[] = {0, MOVSTR_QI, MOVSTR_HI, 0, MOVSTR_SI, 0, 0, 0, MOVSTR_DI}; static int all_from_align[] = {0, MOVSTR_QI, MOVSTR_ODD_HI, 0, MOVSTR_ODD_SI, 0, 0, 0, MOVSTR_ODD_DI}; static int best_from_align[3][9] = {0, MOVSTR_QI_LIMIT_88100, MOVSTR_HI_LIMIT_88100, 0, MOVSTR_SI_LIMIT_88100, 0, 0, 0, MOVSTR_DI_LIMIT_88100, 0, MOVSTR_QI_LIMIT_88110, MOVSTR_HI_LIMIT_88110, 0, MOVSTR_SI_LIMIT_88110, 0, 0, 0, MOVSTR_DI_LIMIT_88110, 0, MOVSTR_QI_LIMIT_88000, MOVSTR_HI_LIMIT_88000, 0, MOVSTR_SI_LIMIT_88000, 0, 0, 0, MOVSTR_DI_LIMIT_88000}; static void block_move_loop (); static void block_move_no_loop (); static void block_move_sequence (); /* Emit code to perform a block move. Choose the best method. OPERANDS[0] is the destination. OPERANDS[1] is the source. OPERANDS[2] is the size. OPERANDS[3] is the alignment safe to use. */ void expand_block_move (dest_mem, src_mem, operands) rtx dest_mem; rtx src_mem; rtx *operands; { int align = INTVAL (operands[3]); int constp = (GET_CODE (operands[2]) == CONST_INT); int bytes = (constp ? INTVAL (operands[2]) : 0); int target = (int) m88k_cpu; assert (PROCESSOR_M88100 == 0); assert (PROCESSOR_M88110 == 1); assert (PROCESSOR_M88000 == 2); if (constp && bytes <= 0) return; /* Determine machine mode to do move with. */ if (align > 4 && !TARGET_88110) align = 4; else if (align <= 0 || align == 3) abort (); /* block move invalid alignment. */ if (constp && bytes <= 3 * align) block_move_sequence (operands[0], dest_mem, operands[1], src_mem, bytes, align, 0); else if (constp && bytes <= best_from_align[target][align]) block_move_no_loop (operands[0], dest_mem, operands[1], src_mem, bytes, align); else if (constp && align == 4 && TARGET_88100) block_move_loop (operands[0], dest_mem, operands[1], src_mem, bytes, align); else { #ifdef TARGET_MEM_FUNCTIONS emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "memcpy"), 0, VOIDmode, 3, operands[0], Pmode, operands[1], Pmode, operands[2], SImode); #else emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "bcopy"), 0, VOIDmode, 3, operands[1], Pmode, operands[0], Pmode, operands[2], SImode); #endif } } /* Emit code to perform a block move by calling a looping movstr library function. SIZE and ALIGN are known constants. DEST and SRC are registers. */ static void block_move_loop (dest, dest_mem, src, src_mem, size, align) rtx dest, dest_mem; rtx src, src_mem; int size; int align; { enum machine_mode mode; int count; int units; int remainder; rtx offset_rtx; rtx value_rtx; char entry[30]; tree entry_name; /* Determine machine mode to do move with. */ if (align != 4) abort (); /* Determine the structure of the loop. */ count = size / MOVSTR_LOOP; units = (size - count * MOVSTR_LOOP) / align; if (units < 2) { count--; units += MOVSTR_LOOP / align; } if (count <= 0) { block_move_no_loop (dest, dest_mem, src, src_mem, size, align); return; } remainder = size - count * MOVSTR_LOOP - units * align; mode = mode_from_align[align]; sprintf (entry, "__movstr%s%dn%d", GET_MODE_NAME (mode), MOVSTR_LOOP, units * align); entry_name = get_identifier (entry); offset_rtx = gen_rtx (CONST_INT, VOIDmode, MOVSTR_LOOP + (1 - units) * align); value_rtx = gen_rtx (MEM, MEM_IN_STRUCT_P (src_mem) ? mode : BLKmode, gen_rtx (PLUS, Pmode, gen_rtx (REG, Pmode, 3), offset_rtx)); RTX_UNCHANGING_P (value_rtx) = RTX_UNCHANGING_P (src_mem); MEM_VOLATILE_P (value_rtx) = MEM_VOLATILE_P (src_mem); MEM_IN_STRUCT_P (value_rtx) = MEM_IN_STRUCT_P (src_mem); emit_insn (gen_call_movstrsi_loop (gen_rtx (SYMBOL_REF, Pmode, IDENTIFIER_POINTER (entry_name)), dest, src, offset_rtx, value_rtx, gen_rtx (REG, mode, ((units & 1) ? 4 : 5)), gen_rtx (CONST_INT, VOIDmode, count))); if (remainder) block_move_sequence (gen_rtx (REG, Pmode, 2), dest_mem, gen_rtx (REG, Pmode, 3), src_mem, remainder, align, MOVSTR_LOOP + align); } /* Emit code to perform a block move by calling a non-looping library function. SIZE and ALIGN are known constants. DEST and SRC are registers. OFFSET is the known starting point for the output pattern. */ static void block_move_no_loop (dest, dest_mem, src, src_mem, size, align) rtx dest, dest_mem; rtx src, src_mem; int size; int align; { enum machine_mode mode = mode_from_align[align]; int units = size / align; int remainder = size - units * align; int most; int value_reg; rtx offset_rtx; rtx value_rtx; char entry[30]; tree entry_name; if (remainder && size <= all_from_align[align]) { most = all_from_align[align] - (align - remainder); remainder = 0; } else { most = max_from_align[align]; } sprintf (entry, "__movstr%s%dx%d", GET_MODE_NAME (mode), most, size - remainder); entry_name = get_identifier (entry); offset_rtx = gen_rtx (CONST_INT, VOIDmode, most - (size - remainder)); value_rtx = gen_rtx (MEM, MEM_IN_STRUCT_P (src_mem) ? mode : BLKmode, gen_rtx (PLUS, Pmode, gen_rtx (REG, Pmode, 3), offset_rtx)); RTX_UNCHANGING_P (value_rtx) = RTX_UNCHANGING_P (src_mem); MEM_VOLATILE_P (value_rtx) = MEM_VOLATILE_P (src_mem); MEM_IN_STRUCT_P (value_rtx) = MEM_IN_STRUCT_P (src_mem); value_reg = ((((most - (size - remainder)) / align) & 1) == 0 ? (align == 8 ? 6 : 5) : 4); emit_insn (gen_call_block_move (gen_rtx (SYMBOL_REF, Pmode, IDENTIFIER_POINTER (entry_name)), dest, src, offset_rtx, value_rtx, gen_rtx (REG, mode, value_reg))); if (remainder) block_move_sequence (gen_rtx (REG, Pmode, 2), dest_mem, gen_rtx (REG, Pmode, 3), src_mem, remainder, align, most); } /* Emit code to perform a block move with an offset sequence of ld/st instructions (..., ld 0, st 1, ld 1, st 0, ...). SIZE and ALIGN are known constants. DEST and SRC are registers. OFFSET is the known starting point for the output pattern. */ static void block_move_sequence (dest, dest_mem, src, src_mem, size, align, offset) rtx dest, dest_mem; rtx src, src_mem; int size; int align; int offset; { rtx temp[2]; enum machine_mode mode[2]; int amount[2]; int active[2]; int phase = 0; int next; int offset_ld = offset; int offset_st = offset; active[0] = active[1] = FALSE; /* Establish parameters for the first load and for the second load if it is known to be the same mode as the first. */ amount[0] = amount[1] = align; mode[0] = mode_from_align[align]; temp[0] = gen_reg_rtx (mode[0]); if (size >= 2 * align) { mode[1] = mode[0]; temp[1] = gen_reg_rtx (mode[1]); } do { rtx srcp, dstp; next = phase; phase = !phase; if (size > 0) { /* Change modes as the sequence tails off. */ if (size < amount[next]) { amount[next] = (size >= 4 ? 4 : (size >= 2 ? 2 : 1)); mode[next] = mode_from_align[amount[next]]; temp[next] = gen_reg_rtx (mode[next]); } size -= amount[next]; srcp = gen_rtx (MEM, MEM_IN_STRUCT_P (src_mem) ? mode[next] : BLKmode, gen_rtx (PLUS, Pmode, src, gen_rtx (CONST_INT, SImode, offset_ld))); RTX_UNCHANGING_P (srcp) = RTX_UNCHANGING_P (src_mem); MEM_VOLATILE_P (srcp) = MEM_VOLATILE_P (src_mem); MEM_IN_STRUCT_P (srcp) = MEM_IN_STRUCT_P (src_mem); emit_insn (gen_rtx (SET, VOIDmode, temp[next], srcp)); offset_ld += amount[next]; active[next] = TRUE; } if (active[phase]) { active[phase] = FALSE; dstp = gen_rtx (MEM, MEM_IN_STRUCT_P (dest_mem) ? mode[phase] : BLKmode, gen_rtx (PLUS, Pmode, dest, gen_rtx (CONST_INT, SImode, offset_st))); RTX_UNCHANGING_P (dstp) = RTX_UNCHANGING_P (dest_mem); MEM_VOLATILE_P (dstp) = MEM_VOLATILE_P (dest_mem); MEM_IN_STRUCT_P (dstp) = MEM_IN_STRUCT_P (dest_mem); emit_insn (gen_rtx (SET, VOIDmode, dstp, temp[phase])); offset_st += amount[phase]; } } while (active[next]); } /* Emit the code to do an AND operation. */ char * output_and (operands) rtx operands[]; { unsigned int value; if (REG_P (operands[2])) return "and %0,%1,%2"; value = INTVAL (operands[2]); if (SMALL_INTVAL (value)) return "mask %0,%1,%2"; else if ((value & 0xffff0000) == 0xffff0000) return "and %0,%1,%x2"; else if ((value & 0xffff) == 0xffff) return "and.u %0,%1,%X2"; else if ((value & 0xffff) == 0) return "mask.u %0,%1,%X2"; else if (integer_ok_for_set (~value)) return "clr %0,%1,%S2"; else return "and.u %0,%1,%X2\n\tand %0,%0,%x2"; } /* Emit the code to do an inclusive OR operation. */ char * output_ior (operands) rtx operands[]; { unsigned int value; if (REG_P (operands[2])) return "or %0,%1,%2"; value = INTVAL (operands[2]); if (SMALL_INTVAL (value)) return "or %0,%1,%2"; else if ((value & 0xffff) == 0) return "or.u %0,%1,%X2"; else if (integer_ok_for_set (value)) return "set %0,%1,%s2"; else return "or.u %0,%1,%X2\n\tor %0,%0,%x2"; } /* Emit the instructions for doing an XOR. */ char * output_xor (operands) rtx operands[]; { unsigned int value; if (REG_P (operands[2])) return "xor %0,%1,%2"; value = INTVAL (operands[2]); if (SMALL_INTVAL (value)) return "xor %0,%1,%2"; else if ((value & 0xffff) == 0) return "xor.u %0,%1,%X2"; else return "xor.u %0,%1,%X2\n\txor %0,%0,%x2"; } /* Output a call. Normally this is just bsr or jsr, but this also deals with accomplishing a branch after the call by incrementing r1. This requires that various assembler bugs be accommodated. The 4.30 DG/UX assembler requires that forward references not occur when computing the difference of two labels. The [version?] Motorola assembler computes a word difference. No doubt there's more to come! It would seem the same idea could be used to tail call, but in this case, the epilogue will be non-null. */ static rtx sb_name = 0; static rtx sb_high = 0; static rtx sb_low = 0; char * output_call (operands, addr) rtx operands[]; rtx addr; { operands[0] = addr; if (final_sequence) { rtx jump; rtx seq_insn; /* This can be generalized, but there is currently no need. */ if (XVECLEN (final_sequence, 0) != 2) abort (); /* The address of interior insns is not computed, so use the sequence. */ seq_insn = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0))); jump = XVECEXP (final_sequence, 0, 1); if (GET_CODE (jump) == JUMP_INSN) { rtx low, high; char *last; rtx dest = XEXP (SET_SRC (PATTERN (jump)), 0); int delta = 4 * (insn_addresses[INSN_UID (dest)] - insn_addresses[INSN_UID (seq_insn)] - 2); #if (MONITOR_GCC & 0x2) /* How often do long branches happen? */ if ((unsigned) (delta + 0x8000) >= 0x10000) warning ("Internal gcc monitor: short-branch(%x)", delta); #endif /* Delete the jump. */ PUT_CODE (jump, NOTE); NOTE_LINE_NUMBER (jump) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (jump) = 0; /* We only do this optimization if -O2, modifying the value of r1 in the delay slot confuses debuggers and profilers on some systems. If we loose, we must use the non-delay form. This is unlikely to ever happen. If it becomes a problem, claim that a call has two delay slots and only the second can be filled with a jump. The 88110 can lose when a jsr.n r1 is issued and a page fault occurs accessing the delay slot. So don't use jsr.n form when jumping thru r1. */ #ifdef AS_BUG_IMMEDIATE_LABEL /* The assembler restricts immediate values. */ if (optimize < 2 || ! ADD_INTVAL (delta * 2) #else if (optimize < 2 || ! ADD_INTVAL (delta) #endif || (REG_P (addr) && REGNO (addr) == 1)) { operands[1] = dest; return (REG_P (addr) ? "jsr %0\n\tbr %l1" : (flag_pic ? "bsr %0#plt\n\tbr %l1" : "bsr %0\n\tbr %l1")); } /* Output the short branch form. */ output_asm_insn ((REG_P (addr) ? "jsr.n %0" : (flag_pic ? "bsr.n %0#plt" : "bsr.n %0")), operands); #ifdef USE_GAS last = (delta < 0 ? "subu %#r1,%#r1,.-%l0+4" : "addu %#r1,%#r1,%l0-.-4"); operands[0] = dest; #else operands[0] = gen_label_rtx (); operands[1] = gen_label_rtx (); if (delta < 0) { low = dest; high = operands[1]; last = "subu %#r1,%#r1,%l0\n%l1:"; } else { low = operands[1]; high = dest; last = "addu %#r1,%#r1,%l0\n%l1:"; } /* Record the values to be computed later as "def name,high-low". */ sb_name = gen_rtx (EXPR_LIST, VOIDmode, operands[0], sb_name); sb_high = gen_rtx (EXPR_LIST, VOIDmode, high, sb_high); sb_low = gen_rtx (EXPR_LIST, VOIDmode, low, sb_low); #endif /* Don't USE_GAS */ return last; } } return (REG_P (addr) ? "jsr%. %0" : (flag_pic ? "bsr%. %0#plt" : "bsr%. %0")); } static void output_short_branch_defs (stream) FILE *stream; { char name[256], high[256], low[256]; for (; sb_name && sb_high && sb_low; sb_name = XEXP (sb_name, 1), sb_high = XEXP (sb_high, 1), sb_low = XEXP (sb_low, 1)) { ASM_GENERATE_INTERNAL_LABEL (name, "L", CODE_LABEL_NUMBER (XEXP (sb_name, 0))); ASM_GENERATE_INTERNAL_LABEL (high, "L", CODE_LABEL_NUMBER (XEXP (sb_high, 0))); ASM_GENERATE_INTERNAL_LABEL (low, "L", CODE_LABEL_NUMBER (XEXP (sb_low, 0))); /* This will change as the assembler requirements become known. */ fprintf (stream, "\t%s\t %s,%s-%s\n", SET_ASM_OP, &name[1], &high[1], &low[1]); } if (sb_name || sb_high || sb_low) abort (); } /* Return truth value of the statement that this conditional branch is likely to fall through. CONDITION, is the condition that JUMP_INSN is testing. */ int mostly_false_jump (jump_insn, condition) rtx jump_insn, condition; { rtx target_label = JUMP_LABEL (jump_insn); rtx insnt, insnj; /* Much of this isn't computed unless we're optimizing. */ if (optimize == 0) return 0; /* Determine if one path or the other leads to a return. */ for (insnt = NEXT_INSN (target_label); insnt; insnt = NEXT_INSN (insnt)) { if (GET_CODE (insnt) == JUMP_INSN) break; else if (GET_CODE (insnt) == INSN && GET_CODE (PATTERN (insnt)) == SEQUENCE && GET_CODE (XVECEXP (PATTERN (insnt), 0, 0)) == JUMP_INSN) { insnt = XVECEXP (PATTERN (insnt), 0, 0); break; } } if (insnt && (GET_CODE (PATTERN (insnt)) == RETURN || (GET_CODE (PATTERN (insnt)) == SET && GET_CODE (SET_SRC (PATTERN (insnt))) == REG && REGNO (SET_SRC (PATTERN (insnt))) == 1))) insnt = 0; for (insnj = NEXT_INSN (jump_insn); insnj; insnj = NEXT_INSN (insnj)) { if (GET_CODE (insnj) == JUMP_INSN) break; else if (GET_CODE (insnj) == INSN && GET_CODE (PATTERN (insnj)) == SEQUENCE && GET_CODE (XVECEXP (PATTERN (insnj), 0, 0)) == JUMP_INSN) { insnj = XVECEXP (PATTERN (insnj), 0, 0); break; } } if (insnj && (GET_CODE (PATTERN (insnj)) == RETURN || (GET_CODE (PATTERN (insnj)) == SET && GET_CODE (SET_SRC (PATTERN (insnj))) == REG && REGNO (SET_SRC (PATTERN (insnj))) == 1))) insnj = 0; /* Predict to not return. */ if ((insnt == 0) != (insnj == 0)) return (insnt == 0); /* Predict loops to loop. */ for (insnt = PREV_INSN (target_label); insnt && GET_CODE (insnt) == NOTE; insnt = PREV_INSN (insnt)) if (NOTE_LINE_NUMBER (insnt) == NOTE_INSN_LOOP_END) return 1; else if (NOTE_LINE_NUMBER (insnt) == NOTE_INSN_LOOP_BEG) return 0; else if (NOTE_LINE_NUMBER (insnt) == NOTE_INSN_LOOP_CONT) return 0; /* Predict backward branches usually take. */ if (final_sequence) insnj = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0))); else insnj = jump_insn; if (insn_addresses[INSN_UID (insnj)] > insn_addresses[INSN_UID (target_label)]) return 0; /* EQ tests are usually false and NE tests are usually true. Also, most quantities are positive, so we can make the appropriate guesses about signed comparisons against zero. Consider unsigned comparisons to be a range check and assume quantities to be in range. */ switch (GET_CODE (condition)) { case CONST_INT: /* Unconditional branch. */ return 0; case EQ: return 1; case NE: return 0; case LE: case LT: case GEU: case GTU: /* Must get casesi right at least. */ if (XEXP (condition, 1) == const0_rtx) return 1; break; case GE: case GT: case LEU: case LTU: if (XEXP (condition, 1) == const0_rtx) return 0; break; } return 0; } /* Return true if the operand is a power of two and is a floating point type (to optimize division by power of two into multiplication). */ int real_power_of_2_operand (op, mode) rtx op; enum machine_mode mode; { union { REAL_VALUE_TYPE d; int i[sizeof (REAL_VALUE_TYPE) / sizeof (int)]; struct { /* IEEE double precision format */ unsigned sign : 1; unsigned exponent : 11; unsigned mantissa1 : 20; unsigned mantissa2; } s; struct { /* IEEE double format to quick check */ unsigned sign : 1; /* if it fits in a float */ unsigned exponent1 : 4; unsigned exponent2 : 7; unsigned mantissa1 : 20; unsigned mantissa2; } s2; } u; if (GET_MODE (op) != DFmode && GET_MODE (op) != SFmode) return 0; if (GET_CODE (op) != CONST_DOUBLE) return 0; u.i[0] = CONST_DOUBLE_LOW (op); u.i[1] = CONST_DOUBLE_HIGH (op); if (u.s.mantissa1 != 0 || u.s.mantissa2 != 0 /* not a power of two */ || u.s.exponent == 0 /* constant 0.0 */ || u.s.exponent == 0x7ff /* NAN */ || (u.s2.exponent1 != 0x8 && u.s2.exponent1 != 0x7)) return 0; /* const won't fit in float */ return 1; } /* Make OP legitimate for mode MODE. Currently this only deals with DFmode operands, putting them in registers and making CONST_DOUBLE values SFmode where possible. */ struct rtx_def * legitimize_operand (op, mode) rtx op; enum machine_mode mode; { rtx temp; union { union real_extract r; struct { /* IEEE double precision format */ unsigned sign : 1; unsigned exponent : 11; unsigned mantissa1 : 20; unsigned mantissa2; } d; struct { /* IEEE double format to quick check */ unsigned sign : 1; /* if it fits in a float */ unsigned exponent1 : 4; unsigned exponent2 : 7; unsigned mantissa1 : 20; unsigned mantissa2; } s; } u; if (GET_CODE (op) == REG || mode != DFmode) return op; if (GET_CODE (op) == CONST_DOUBLE) { bcopy (&CONST_DOUBLE_LOW (op), &u.r, sizeof u); if (u.d.exponent != 0x7ff /* NaN */ && u.d.mantissa2 == 0 /* Mantissa fits */ && (u.s.exponent1 == 0x8 || u.s.exponent1 == 0x7) /* Exponent fits */ && (temp = simplify_unary_operation (FLOAT_TRUNCATE, SFmode, op, mode)) != 0) return gen_rtx (FLOAT_EXTEND, mode, force_reg (SFmode, temp)); } else if (register_operand (op, mode)) return op; return force_reg (mode, op); } /* Return true if OP is a suitable input for a move insn. */ int move_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT) return (classify_integer (mode, INTVAL (op)) < m88k_oru_hi16); if (GET_MODE (op) != mode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); if (GET_CODE (op) == LO_SUM) return (REG_P (XEXP (op, 0)) && symbolic_address_p (XEXP (op, 1))); return memory_address_p (mode, op); } /* Return true if OP is suitable for a call insn. */ int call_address_operand (op, mode) rtx op; enum machine_mode mode; { return (REG_P (op) || symbolic_address_p (op)); } /* Returns true if OP is either a symbol reference or a sum of a symbol reference and a constant. */ int symbolic_address_p (op) register rtx op; { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); default: return 0; } } /* Return true if OP is a register or const0_rtx. */ int reg_or_0_operand (op, mode) rtx op; enum machine_mode mode; { return (op == const0_rtx || register_operand (op, mode)); } /* Nonzero if OP is a valid second operand for an arithmetic insn. */ int arith_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SMALL_INT (op))); } /* Return true if OP is a register or 5 bit integer. */ int arith5_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 32)); } int arith32_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || GET_CODE (op) == CONST_INT); } int arith64_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || GET_CODE (op) == CONST_INT || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)); } int int5_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 32); } int int32_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT); } /* Return true if OP is a register or a valid immediate operand for addu or subu. */ int add_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && ADD_INT (op))); } /* Nonzero if this is a bitmask filling the bottom bits, for optimizing and + shift left combinations into a single mak instruction. */ int mak_mask_p (value) int value; { return (value && POWER_OF_2_or_0 (value + 1)); } int reg_or_bbx_mask_operand (op, mode) rtx op; enum machine_mode mode; { int value; if (register_operand (op, mode)) return 1; if (GET_CODE (op) != CONST_INT) return 0; value = INTVAL (op); if (POWER_OF_2 (value)) return 1; return 0; } /* Return true if OP is valid to use in the context of a floating point operation. Special case 0.0, since we can use r0. */ int real_or_0_operand (op, mode) rtx op; enum machine_mode mode; { if (mode != SFmode && mode != DFmode) return 0; return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && op == CONST0_RTX (mode))); } /* Return true if OP is valid to use in the context of logic arithmetic on condition codes. */ int partial_ccmode_register_operand (op, mode) rtx op; enum machine_mode mode; { return register_operand (op, CCmode) || register_operand (op, CCEVENmode); } /* Return true if OP is a relational operator. */ int relop (op, mode) rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case EQ: case NE: case LT: case LE: case GE: case GT: case LTU: case LEU: case GEU: case GTU: return 1; default: return 0; } } int even_relop (op, mode) rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case EQ: case LT: case GT: case LTU: case GTU: return 1; default: return 0; } } int odd_relop (op, mode) rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case NE: case LE: case GE: case LEU: case GEU: return 1; default: return 0; } } /* Return true if OP is a relational operator, and is not an unsigned relational operator. */ int relop_no_unsigned (op, mode) rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case EQ: case NE: case LT: case LE: case GE: case GT: /* @@ What is this test doing? Why not use `mode'? */ if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT || GET_MODE (op) == DImode || GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_FLOAT || GET_MODE (XEXP (op, 0)) == DImode || GET_MODE_CLASS (GET_MODE (XEXP (op, 1))) == MODE_FLOAT || GET_MODE (XEXP (op, 1)) == DImode) return 0; return 1; default: return 0; } } /* Return true if the code of this rtx pattern is EQ or NE. */ int equality_op (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == EQ || GET_CODE (op) == NE); } /* Return true if the code of this rtx pattern is pc or label_ref. */ int pc_or_label_ref (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == PC || GET_CODE (op) == LABEL_REF); } /* Output to FILE the start of the assembler file. */ struct option { char *string; int *variable; int on_value; }; static int output_option (file, sep, type, name, indent, pos, max) FILE *file; char *sep; char *type; char *name; char *indent; int pos; int max; { if (strlen (sep) + strlen (type) + strlen (name) + pos > max) { fprintf (file, indent); return fprintf (file, "%s%s", type, name); } return pos + fprintf (file, "%s%s%s", sep, type, name); } static struct { char *name; int value; } m_options[] = TARGET_SWITCHES; static void output_options (file, f_options, f_len, W_options, W_len, pos, max, sep, indent, term) FILE *file; struct option *f_options; struct option *W_options; int f_len, W_len; int pos; int max; char *indent; char *term; { register int j; if (optimize) pos = output_option (file, sep, "-O", "", indent, pos, max); if (write_symbols != NO_DEBUG) pos = output_option (file, sep, "-g", "", indent, pos, max); if (flag_traditional) pos = output_option (file, sep, "-traditional", "", indent, pos, max); if (profile_flag) pos = output_option (file, sep, "-p", "", indent, pos, max); if (profile_block_flag) pos = output_option (file, sep, "-a", "", indent, pos, max); for (j = 0; j < f_len; j++) if (*f_options[j].variable == f_options[j].on_value) pos = output_option (file, sep, "-f", f_options[j].string, indent, pos, max); for (j = 0; j < W_len; j++) if (*W_options[j].variable == W_options[j].on_value) pos = output_option (file, sep, "-W", W_options[j].string, indent, pos, max); for (j = 0; j < sizeof m_options / sizeof m_options[0]; j++) if (m_options[j].name[0] != '\0' && m_options[j].value > 0 && ((m_options[j].value & target_flags) == m_options[j].value)) pos = output_option (file, sep, "-m", m_options[j].name, indent, pos, max); if (m88k_short_data) pos = output_option (file, sep, "-mshort-data-", m88k_short_data, indent, pos, max); fprintf (file, term); } void output_file_start (file, f_options, f_len, W_options, W_len) FILE *file; struct option *f_options; struct option *W_options; int f_len, W_len; { register int pos; ASM_FIRST_LINE (file); if (TARGET_88110 && TARGET_SVR4) fprintf (file, "\t%s\n", REQUIRES_88110_ASM_OP); output_file_directive (file, main_input_filename); /* Switch to the data section so that the coffsem symbol and the gcc2_compiled. symbol aren't in the text section. */ data_section (); ASM_COFFSEM (file); pos = fprintf (file, "\n; cc1 (%s) arguments:", VERSION_STRING); output_options (file, f_options, f_len, W_options, W_len, pos, 75, " ", "\n; ", "\n\n"); if (TARGET_IDENTIFY_REVISION) { char indent[256]; time_t now = time ((time_t *)0); sprintf (indent, "]\"\n\t%s\t \"@(#)%s [", IDENT_ASM_OP, main_input_filename); fprintf (file, indent+3); pos = fprintf (file, "gcc %s, %.24s,", VERSION_STRING, ctime (&now)); output_options (file, f_options, f_len, W_options, W_len, pos, 150 - strlen (indent), " ", indent, "]\"\n\n"); } } /* Output an ascii string. */ void output_ascii (file, opcode, max, p, size) FILE *file; char *opcode; int max; unsigned char *p; int size; { int i; int in_escape = 0; register int num = 0; fprintf (file, "\t%s\t \"", opcode); for (i = 0; i < size; i++) { register int c = p[i]; if (num > max) { fprintf (file, "\"\n\t%s\t \"", opcode); num = 0; } if (c == '\"' || c == '\\') { escape: putc ('\\', file); putc (c, file); num += 2; in_escape = 0; } else if (in_escape && c >= '0' && c <= '9') { /* If a digit follows an octal-escape, the Vax assembler fails to stop reading the escape after three digits. Continue to output the values as an octal-escape until a non-digit is found. */ fprintf (file, "\\%03o", c); num += 4; } else if (c >= ' ' && c < 0177) { putc (c, file); num++; in_escape = 0; } else { switch (c) { /* Some assemblers can't handle \a, \v, or \?. */ case '\t': c = 't'; goto escape; case '\f': c = 'f'; goto escape; case '\b': c = 'b'; goto escape; case '\r': c = 'r'; goto escape; case '\n': c = 'n'; goto escape; } fprintf (file, "\\%03o", c); num += 4; in_escape = 1; } } fprintf (file, "\"\n"); } /* Output a label (allows insn-output.c to be compiled without including m88k.c or needing to include stdio.h). */ void output_label (label_number) int label_number; { ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", label_number); } /* Generate the assembly code for function entry. The prologue is responsible for setting up the stack frame, initializing the frame pointer register, saving registers that must be saved, and allocating SIZE additional bytes of storage for the local variables. SIZE is an integer. FILE is a stdio stream to which the assembler code should be output. The label for the beginning of the function need not be output by this macro. That has already been done when the macro is run. To determine which registers to save, the macro can refer to the array `regs_ever_live': element R is nonzero if hard register R is used anywhere within the function. This implies the function prologue should save register R, but not if it is one of the call-used registers. On machines where functions may or may not have frame-pointers, the function entry code must vary accordingly; it must set up the frame pointer if one is wanted, and not otherwise. To determine whether a frame pointer is in wanted, the macro can refer to the variable `frame_pointer_needed'. The variable's value will be 1 at run time in a function that needs a frame pointer. On machines where an argument may be passed partly in registers and partly in memory, this macro must examine the variable `current_function_pretend_args_size', and allocate that many bytes of uninitialized space on the stack just underneath the first argument arriving on the stack. (This may not be at the very end of the stack, if the calling sequence has pushed anything else since pushing the stack arguments. But usually, on such machines, nothing else has been pushed yet, because the function prologue itself does all the pushing.) If `ACCUMULATE_OUTGOING_ARGS' is defined, the variable `current_function_outgoing_args_size' contains the size in bytes required for the outgoing arguments. This macro must add that amount of uninitialized space to very bottom of the stack. The stack frame we use looks like this: caller callee |==============================================| | caller's frame | |==============================================| | [caller's outgoing memory arguments] | |==============================================| | caller's outgoing argument area (32 bytes) | sp -> |==============================================| <- ap | [local variable space] | |----------------------------------------------| | [return address (r1)] | |----------------------------------------------| | [previous frame pointer (r30)] | |==============================================| <- fp | [preserved registers (r25..r14)] | |----------------------------------------------| | [preserved registers (x29..x22)] | |==============================================| | [dynamically allocated space (alloca)] | |==============================================| | [callee's outgoing memory arguments] | |==============================================| | [callee's outgoing argument area (32 bytes)] | |==============================================| <- sp Notes: r1 and r30 must be saved if debugging. fp (if present) is located two words down from the local variable space. */ static void emit_add (); static void preserve_registers (); static void emit_ldst (); static void output_tdesc (); static int nregs; static int nxregs; static char save_regs[FIRST_PSEUDO_REGISTER]; static int frame_laid_out; static int frame_size; static int variable_args_p; static int epilogue_marked; static int prologue_marked; extern char call_used_regs[]; extern int current_function_pretend_args_size; extern int current_function_outgoing_args_size; extern int frame_pointer_needed; #define FIRST_OCS_PRESERVE_REGISTER 14 #define LAST_OCS_PRESERVE_REGISTER 30 #define FIRST_OCS_EXTENDED_PRESERVE_REGISTER (32 + 22) #define LAST_OCS_EXTENDED_PRESERVE_REGISTER (32 + 31) #define STACK_UNIT_BOUNDARY (STACK_BOUNDARY / BITS_PER_UNIT) #define ROUND_CALL_BLOCK_SIZE(BYTES) \ (((BYTES) + (STACK_UNIT_BOUNDARY - 1)) & ~(STACK_UNIT_BOUNDARY - 1)) /* Establish the position of the FP relative to the SP. This is done either during FUNCTION_PROLOGUE or by INITIAL_ELIMINATION_OFFSET. */ void m88k_layout_frame () { int regno, sp_size; frame_laid_out++; bzero ((char *) &save_regs[0], sizeof (save_regs)); sp_size = nregs = nxregs = 0; frame_size = get_frame_size (); /* Since profiling requires a call, make sure r1 is saved. */ if (profile_flag || profile_block_flag) save_regs[1] = 1; /* If we are producing debug information, store r1 and r30 where the debugger wants to find them (r30 at r30+0, r1 at r30+4). Space has already been reserved for r1/r30 in STARTING_FRAME_OFFSET. */ if (write_symbols != NO_DEBUG && !TARGET_OCS_FRAME_POSITION) save_regs[1] = 1; /* If there is a call, alloca is used, __builtin_alloca is used, or a dynamic-sized object is defined, add the 8 additional words for the callee's argument area. The common denominator is that the FP is required. may_call_alloca only gets calls to alloca; current_function_calls_alloca gets alloca and __builtin_alloca. */ if (regs_ever_live[1] || frame_pointer_needed) { save_regs[1] = 1; sp_size += REG_PARM_STACK_SPACE (0); } /* If we are producing PIC, save the addressing base register and r1. */ if (flag_pic && current_function_uses_pic_offset_table) { save_regs[PIC_OFFSET_TABLE_REGNUM] = 1; nregs++; } /* If a frame is requested, save the previous FP, and the return address (r1), so that a traceback can be done without using tdesc information. Otherwise, simply save the FP if it is used as a preserve register. */ if (frame_pointer_needed) save_regs[FRAME_POINTER_REGNUM] = save_regs[1] = 1; else if (regs_ever_live[FRAME_POINTER_REGNUM]) save_regs[FRAME_POINTER_REGNUM] = 1; /* Figure out which extended register(s) needs to be saved. */ for (regno = FIRST_EXTENDED_REGISTER + 1; regno < FIRST_PSEUDO_REGISTER; regno++) if (regs_ever_live[regno] && ! call_used_regs[regno]) { save_regs[regno] = 1; nxregs++; } /* Figure out which normal register(s) needs to be saved. */ for (regno = 2; regno < FRAME_POINTER_REGNUM; regno++) if (regs_ever_live[regno] && ! call_used_regs[regno]) { save_regs[regno] = 1; nregs++; } /* Achieve greatest use of double memory ops. Either we end up saving r30 or we use that slot to align the registers we do save. */ if (nregs >= 2 && save_regs[1] && !save_regs[FRAME_POINTER_REGNUM]) sp_size += 4; nregs += save_regs[1] + save_regs[FRAME_POINTER_REGNUM]; /* if we need to align extended registers, add a word */ if (nxregs > 0 && (nregs & 1) != 0) sp_size +=4; sp_size += 4 * nregs; sp_size += 8 * nxregs; sp_size += current_function_outgoing_args_size; /* The first two saved registers are placed above the new frame pointer if any. In the only case this matters, they are r1 and r30. */ if (frame_pointer_needed || sp_size) m88k_fp_offset = ROUND_CALL_BLOCK_SIZE (sp_size - STARTING_FRAME_OFFSET); else m88k_fp_offset = -STARTING_FRAME_OFFSET; m88k_stack_size = m88k_fp_offset + STARTING_FRAME_OFFSET; /* First, combine m88k_stack_size and size. If m88k_stack_size is non-zero, align the frame size to 8 mod 16; otherwise align the frame size to 0 mod 16. (If stacks are 8 byte aligned, this ends up as a NOP. */ { int need = ((m88k_stack_size ? STACK_UNIT_BOUNDARY - STARTING_FRAME_OFFSET : 0) - (frame_size % STACK_UNIT_BOUNDARY)); if (need) { if (need < 0) need += STACK_UNIT_BOUNDARY; (void) assign_stack_local (BLKmode, need, BITS_PER_UNIT); frame_size = get_frame_size (); } m88k_stack_size = ROUND_CALL_BLOCK_SIZE (m88k_stack_size + frame_size + current_function_pretend_args_size); } } /* Return true if this function is known to have a null prologue. */ int null_prologue () { if (! reload_completed) return 0; if (! frame_laid_out) m88k_layout_frame (); return (! frame_pointer_needed && nregs == 0 && nxregs == 0 && m88k_stack_size == 0); } /* Determine if the current function has any references to the arg pointer. This is done indirectly by examining the DECL_ARGUMENTS' DECL_RTL. It is OK to return TRUE if there are no references, but FALSE must be correct. */ static int uses_arg_area_p () { register tree parm; if (current_function_decl == 0 || current_function_varargs || variable_args_p) return 1; for (parm = DECL_ARGUMENTS (current_function_decl); parm; parm = TREE_CHAIN (parm)) { if (DECL_RTL (parm) == 0 || GET_CODE (DECL_RTL (parm)) == MEM) return 1; if (DECL_INCOMING_RTL (parm) == 0 || GET_CODE (DECL_INCOMING_RTL (parm)) == MEM) return 1; } return 0; } void m88k_begin_prologue (stream, size) FILE *stream; int size; { m88k_prologue_done = 1; /* it's ok now to put out ln directives */ } void m88k_end_prologue (stream) FILE *stream; { if (TARGET_OCS_DEBUG_INFO && !prologue_marked) { PUT_OCS_FUNCTION_START (stream); prologue_marked = 1; /* If we've already passed the start of the epilogue, say that it starts here. This marks the function as having a null body, but at a point where the return address is in a known location. Originally, I thought this couldn't happen, but the pic prologue for leaf functions ends with the instruction that restores the return address from the temporary register. If the temporary register is never used, that instruction can float all the way to the end of the function. */ if (epilogue_marked) PUT_OCS_FUNCTION_END (stream); } } void m88k_expand_prologue () { m88k_layout_frame (); if (TARGET_OPTIMIZE_ARG_AREA && m88k_stack_size && ! uses_arg_area_p ()) { /* The incoming argument area is used for stack space if it is not used (or if -mno-optimize-arg-area is given). */ if ((m88k_stack_size -= REG_PARM_STACK_SPACE (0)) < 0) m88k_stack_size = 0; } if (m88k_stack_size) emit_add (stack_pointer_rtx, stack_pointer_rtx, -m88k_stack_size); if (nregs || nxregs) preserve_registers (m88k_fp_offset + 4, 1); if (frame_pointer_needed) emit_add (frame_pointer_rtx, stack_pointer_rtx, m88k_fp_offset); if (flag_pic && save_regs[PIC_OFFSET_TABLE_REGNUM]) { rtx return_reg = gen_rtx (REG, SImode, 1); rtx label = gen_label_rtx (); rtx temp_reg; if (! save_regs[1]) { temp_reg = gen_rtx (REG, SImode, TEMP_REGNUM); emit_move_insn (temp_reg, return_reg); } emit_insn (gen_locate1 (pic_offset_table_rtx, label)); emit_insn (gen_locate2 (pic_offset_table_rtx, label)); emit_insn (gen_addsi3 (pic_offset_table_rtx, pic_offset_table_rtx, return_reg)); if (! save_regs[1]) emit_move_insn (return_reg, temp_reg); } if (profile_flag || profile_block_flag) emit_insn (gen_blockage ()); } /* This function generates the assembly code for function exit, on machines that need it. Args are same as for FUNCTION_PROLOGUE. The function epilogue should not depend on the current stack pointer! It should use the frame pointer only, if there is a frame pointer. This is mandatory because of alloca; we also take advantage of it to omit stack adjustments before returning. */ void m88k_begin_epilogue (stream) FILE *stream; { if (TARGET_OCS_DEBUG_INFO && !epilogue_marked && prologue_marked) { PUT_OCS_FUNCTION_END (stream); } epilogue_marked = 1; } void m88k_end_epilogue (stream, size) FILE *stream; int size; { rtx insn = get_last_insn (); if (TARGET_OCS_DEBUG_INFO && !epilogue_marked) PUT_OCS_FUNCTION_END (stream); /* If the last insn isn't a BARRIER, we must write a return insn. This should only happen if the function has no prologue and no body. */ if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn == 0 || GET_CODE (insn) != BARRIER) fprintf (stream, "\tjmp\t %s\n", reg_names[1]); output_short_branch_defs (stream); fprintf (stream, "\n"); if (TARGET_OCS_DEBUG_INFO) output_tdesc (stream, m88k_fp_offset + 4); m88k_function_number++; m88k_prologue_done = 0; /* don't put out ln directives */ variable_args_p = 0; /* has variable args */ frame_laid_out = 0; epilogue_marked = 0; prologue_marked = 0; } void m88k_expand_epilogue () { #if (MONITOR_GCC & 0x4) /* What are interesting prologue/epilogue values? */ fprintf (stream, "; size = %d, m88k_fp_offset = %d, m88k_stack_size = %d\n", size, m88k_fp_offset, m88k_stack_size); #endif if (frame_pointer_needed) emit_add (stack_pointer_rtx, frame_pointer_rtx, -m88k_fp_offset); if (nregs || nxregs) preserve_registers (m88k_fp_offset + 4, 0); if (m88k_stack_size) emit_add (stack_pointer_rtx, stack_pointer_rtx, m88k_stack_size); } /* Emit insns to set DSTREG to SRCREG + AMOUNT during the prologue or epilogue. */ static void emit_add (dstreg, srcreg, amount) rtx dstreg; rtx srcreg; int amount; { rtx incr = gen_rtx (CONST_INT, VOIDmode, abs (amount)); if (! ADD_INTVAL (amount)) { rtx temp = gen_rtx (REG, SImode, TEMP_REGNUM); emit_move_insn (temp, incr); incr = temp; } emit_insn ((amount < 0 ? gen_subsi3 : gen_addsi3) (dstreg, srcreg, incr)); } /* Save/restore the preserve registers. base is the highest offset from r31 at which a register is stored. store_p is true if stores are to be done; otherwise loads. */ static void preserve_registers (base, store_p) int base; int store_p; { int regno, offset; struct mem_op { int regno; int nregs; int offset; } mem_op[FIRST_PSEUDO_REGISTER]; struct mem_op *mo_ptr = mem_op; /* The 88open OCS mandates that preserved registers be stored in increasing order. For compatibility with current practice, the order is r1, r30, then the preserve registers. */ offset = base; if (save_regs[1]) { /* An extra word is given in this case to make best use of double memory ops. */ if (nregs > 2 && !save_regs[FRAME_POINTER_REGNUM]) offset -= 4; emit_ldst (store_p, 1, SImode, offset); offset -= 4; base = offset; } /* Walk the registers to save recording all single memory operations. */ for (regno = FRAME_POINTER_REGNUM; regno > 1; regno--) if (save_regs[regno]) { if ((offset & 7) != 4 || (regno & 1) != 1 || !save_regs[regno-1]) { mo_ptr->nregs = 1; mo_ptr->regno = regno; mo_ptr->offset = offset; mo_ptr++; offset -= 4; } else { regno--; offset -= 2*4; } } /* Walk the registers to save recording all double memory operations. This avoids a delay in the epilogue (ld.d/ld). */ offset = base; for (regno = FRAME_POINTER_REGNUM; regno > 1; regno--) if (save_regs[regno]) { if ((offset & 7) != 4 || (regno & 1) != 1 || !save_regs[regno-1]) { offset -= 4; } else { mo_ptr->nregs = 2; mo_ptr->regno = regno-1; mo_ptr->offset = offset-4; mo_ptr++; regno--; offset -= 2*4; } } /* Walk the extended registers to record all memory operations. */ /* Be sure the offset is double word aligned. */ offset = (offset - 1) & ~7; for (regno = FIRST_PSEUDO_REGISTER - 1; regno > FIRST_EXTENDED_REGISTER; regno--) if (save_regs[regno]) { mo_ptr->nregs = 2; mo_ptr->regno = regno; mo_ptr->offset = offset; mo_ptr++; offset -= 2*4; } mo_ptr->regno = 0; /* Output the memory operations. */ for (mo_ptr = mem_op; mo_ptr->regno; mo_ptr++) { if (mo_ptr->nregs) emit_ldst (store_p, mo_ptr->regno, (mo_ptr->nregs > 1 ? DImode : SImode), mo_ptr->offset); } } static void emit_ldst (store_p, regno, mode, offset) int store_p; int regno; enum machine_mode mode; int offset; { rtx reg = gen_rtx (REG, mode, regno); rtx mem; if (SMALL_INTVAL (offset)) { mem = gen_rtx (MEM, mode, plus_constant (stack_pointer_rtx, offset)); } else { /* offset is too large for immediate index must use register */ rtx disp = gen_rtx (CONST_INT, VOIDmode, offset); rtx temp = gen_rtx (REG, SImode, TEMP_REGNUM); rtx regi = gen_rtx (PLUS, SImode, stack_pointer_rtx, temp); emit_move_insn (temp, disp); mem = gen_rtx (MEM, mode, regi); } if (store_p) emit_move_insn (mem, reg); else emit_move_insn (reg, mem); } /* Convert the address expression REG to a CFA offset. */ int m88k_debugger_offset (reg, offset) register rtx reg; register int offset; { if (GET_CODE (reg) == PLUS) { offset = INTVAL (XEXP (reg, 1)); reg = XEXP (reg, 0); } /* Put the offset in terms of the CFA (arg pointer). */ if (reg == frame_pointer_rtx) offset += m88k_fp_offset - m88k_stack_size; else if (reg == stack_pointer_rtx) offset -= m88k_stack_size; else if (reg != arg_pointer_rtx) { #if (MONITOR_GCC & 0x10) /* Watch for suspicious symbolic locations. */ if (! (GET_CODE (reg) == REG && REGNO (reg) >= FIRST_PSEUDO_REGISTER)) warning ("Internal gcc error: Can't express symbolic location"); #endif return 0; } return offset; } /* Output the 88open OCS proscribed text description information. The information is: 0 8: zero 0 22: info-byte-length (16 or 20 bytes) 0 2: info-alignment (word 2) 1 32: info-protocol (version 1 or 2(pic)) 2 32: starting-address (inclusive, not counting prologue) 3 32: ending-address (exclusive, not counting epilog) 4 8: info-variant (version 1 or 3(extended registers)) 4 17: register-save-mask (from register 14 to 30) 4 1: zero 4 1: return-address-info-discriminant 4 5: frame-address-register 5 32: frame-address-offset 6 32: return-address-info 7 32: register-save-offset 8 16: extended-register-save-mask (x16 - x31) 8 16: extended-register-save-offset (WORDS from register-save-offset) */ static void output_tdesc (file, offset) FILE *file; int offset; { int regno, i, j; long mask, return_address_info, register_save_offset; long xmask, xregister_save_offset; char buf[256]; for (mask = 0, i = 0, regno = FIRST_OCS_PRESERVE_REGISTER; regno <= LAST_OCS_PRESERVE_REGISTER; regno++) { mask <<= 1; if (save_regs[regno]) { mask |= 1; i++; } } for (xmask = 0, j = 0, regno = FIRST_OCS_EXTENDED_PRESERVE_REGISTER; regno <= LAST_OCS_EXTENDED_PRESERVE_REGISTER; regno++) { xmask <<= 1; if (save_regs[regno]) { xmask |= 1; j++; } } if (save_regs[1]) { if ((nxregs > 0 || nregs > 2) && !save_regs[FRAME_POINTER_REGNUM]) offset -= 4; return_address_info = - m88k_stack_size + offset; register_save_offset = return_address_info - i*4; } else { return_address_info = 1; register_save_offset = - m88k_stack_size + offset + 4 - i*4; } xregister_save_offset = - (j * 2 + ((register_save_offset >> 2) & 1)); tdesc_section (); fprintf (file, "\t%s\t %d,%d", INT_ASM_OP, /* 8:0,22:(20 or 16),2:2 */ (((xmask != 0) ? 20 : 16) << 2) | 2, flag_pic ? 2 : 1); ASM_GENERATE_INTERNAL_LABEL (buf, OCS_START_PREFIX, m88k_function_number); fprintf (file, ",%s%s", buf+1, flag_pic ? "#rel" : ""); ASM_GENERATE_INTERNAL_LABEL (buf, OCS_END_PREFIX, m88k_function_number); fprintf (file, ",%s%s", buf+1, flag_pic ? "#rel" : ""); fprintf (file, ",0x%x,0x%x,0x%x,0x%x", /* 8:1,17:0x%.3x,1:0,1:%d,5:%d */ (((xmask ? 3 : 1) << (17+1+1+5)) | (mask << (1+1+5)) | ((!!save_regs[1]) << 5) | (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM)), (m88k_stack_size - (frame_pointer_needed ? m88k_fp_offset : 0)), return_address_info, register_save_offset); if (xmask) fprintf (file, ",0x%x%04x", xmask, (0xffff & xregister_save_offset)); fputc ('\n', file); text_section (); } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. NAME is the mcount function name (varies), SAVEP indicates whether the parameter registers need to be saved and restored. */ void output_function_profiler (file, labelno, name, savep) FILE *file; int labelno; char *name; int savep; { char label[256]; char dbi[256]; char *temp = (savep ? reg_names[2] : reg_names[10]); /* Remember to update FUNCTION_PROFILER_LENGTH. */ if (savep) { fprintf (file, "\tsubu\t %s,%s,64\n", reg_names[31], reg_names[31]); fprintf (file, "\tst.d\t %s,%s,32\n", reg_names[2], reg_names[31]); fprintf (file, "\tst.d\t %s,%s,40\n", reg_names[4], reg_names[31]); fprintf (file, "\tst.d\t %s,%s,48\n", reg_names[6], reg_names[31]); fprintf (file, "\tst.d\t %s,%s,56\n", reg_names[8], reg_names[31]); } ASM_GENERATE_INTERNAL_LABEL (label, "LP", labelno); if (flag_pic == 2) { fprintf (file, "\tor.u\t %s,%s,%shi16(%s#got_rel)\n", temp, reg_names[0], m88k_pound_sign, &label[1]); fprintf (file, "\tor\t %s,%s,%slo16(%s#got_rel)\n", temp, temp, m88k_pound_sign, &label[1]); sprintf (dbi, "\tld\t %s,%s,%s\n", temp, reg_names[PIC_OFFSET_TABLE_REGNUM], temp); } else if (flag_pic) { sprintf (dbi, "\tld\t %s,%s,%s#got_rel\n", temp, reg_names[PIC_OFFSET_TABLE_REGNUM], &label[1]); } else { fprintf (file, "\tor.u\t %s,%s,%shi16(%s)\n", temp, reg_names[0], m88k_pound_sign, &label[1]); sprintf (dbi, "\tor\t %s,%s,%slo16(%s)\n", temp, temp, m88k_pound_sign, &label[1]); } if (flag_pic) fprintf (file, "\tbsr.n\t %s#plt\n", name); else fprintf (file, "\tbsr.n\t %s\n", name); fputs (dbi, file); if (savep) { fprintf (file, "\tld.d\t %s,%s,32\n", reg_names[2], reg_names[31]); fprintf (file, "\tld.d\t %s,%s,40\n", reg_names[4], reg_names[31]); fprintf (file, "\tld.d\t %s,%s,48\n", reg_names[6], reg_names[31]); fprintf (file, "\tld.d\t %s,%s,56\n", reg_names[8], reg_names[31]); fprintf (file, "\taddu\t %s,%s,64\n", reg_names[31], reg_names[31]); } } /* Output assembler code to FILE to initialize basic-block profiling for the current module. LABELNO is unique to each instance. */ void output_function_block_profiler (file, labelno) FILE *file; int labelno; { char block[256]; char label[256]; /* Remember to update FUNCTION_BLOCK_PROFILER_LENGTH. */ ASM_GENERATE_INTERNAL_LABEL (block, "LPBX", 0); ASM_GENERATE_INTERNAL_LABEL (label, "LPY", labelno); /* @@ Need to deal with PIC. I'm not sure what the requirements are on register usage, so I used r26/r27 to be safe. */ fprintf (file, "\tor.u\t %s,%s,%shi16(%s)\n", reg_names[27], reg_names[0], m88k_pound_sign, &block[1]); fprintf (file, "\tld\t %s,%s,%slo16(%s)\n", reg_names[26], reg_names[27], m88k_pound_sign, &block[1]); fprintf (file, "\tbcnd\t %sne0,%s,%s\n", m88k_pound_sign, reg_names[26], &label[1]); fprintf (file, "\tsubu\t %s,%s,64\n", reg_names[31], reg_names[31]); fprintf (file, "\tst.d\t %s,%s,32\n", reg_names[2], reg_names[31]); fprintf (file, "\tst.d\t %s,%s,40\n", reg_names[4], reg_names[31]); fprintf (file, "\tst.d\t %s,%s,48\n", reg_names[6], reg_names[31]); fprintf (file, "\tst.d\t %s,%s,56\n", reg_names[8], reg_names[31]); fputs ("\tbsr.n\t ", file); ASM_OUTPUT_LABELREF (file, "__bb_init_func"); putc ('\n', file); fprintf (file, "\tor\t %s,%s,%slo16(%s)\n", reg_names[2], reg_names[27], m88k_pound_sign, &block[1]); fprintf (file, "\tld.d\t %s,%s,32\n", reg_names[2], reg_names[31]); fprintf (file, "\tld.d\t %s,%s,40\n", reg_names[4], reg_names[31]); fprintf (file, "\tld.d\t %s,%s,48\n", reg_names[6], reg_names[31]); fprintf (file, "\tld.d\t %s,%s,56\n", reg_names[8], reg_names[31]); fprintf (file, "\taddu\t %s,%s,64\n", reg_names[31], reg_names[31]); ASM_OUTPUT_INTERNAL_LABEL (file, "LPY", labelno); } /* Output assembler code to FILE to increment the count associated with the basic block number BLOCKNO. */ void output_block_profiler (file, blockno) FILE *file; int blockno; { char block[256]; /* Remember to update BLOCK_PROFILER_LENGTH. */ ASM_GENERATE_INTERNAL_LABEL (block, "LPBX", 2); /* @@ Need to deal with PIC. I'm not sure what the requirements are on register usage, so I used r26/r27 to be safe. */ fprintf (file, "\tor.u\t %s,%s,%shi16(%s+%d)\n", reg_names[27], reg_names[0], m88k_pound_sign, &block[1], 4 * blockno); fprintf (file, "\tld\t %s,%s,%slo16(%s+%d)\n", reg_names[26], reg_names[27], m88k_pound_sign, &block[1], 4 * blockno); fprintf (file, "\taddu\t %s,%s,1\n", reg_names[26], reg_names[26]); fprintf (file, "\tst\t %s,%s,%slo16(%s+%d)\n", reg_names[26], reg_names[27], m88k_pound_sign, &block[1], 4 * blockno); } /* Determine whether a function argument is passed in a register, and which register. The arguments are CUM, which summarizes all the previous arguments; MODE, the machine mode of the argument; TYPE, the data type of the argument as a tree node or 0 if that is not known (which happens for C support library functions); and NAMED, which is 1 for an ordinary argument and 0 for nameless arguments that correspond to `...' in the called function's prototype. The value of the expression should either be a `reg' RTX for the hard register in which to pass the argument, or zero to pass the argument on the stack. On the m88000 the first eight words of args are normally in registers and the rest are pushed. Double precision floating point must be double word aligned (and if in a register, starting on an even register). Structures and unions which are not 4 byte, and word aligned are passed in memory rather than registers, even if they would fit completely in the registers under OCS rules. Note that FUNCTION_ARG and FUNCTION_INCOMING_ARG were different. For structures that are passed in memory, but could have been passed in registers, we first load the structure into the register, and then when the last argument is passed, we store the registers into the stack locations. This fixes some bugs where GCC did not expect to have register arguments, followed by stack arguments, followed by register arguments. */ struct rtx_def * m88k_function_arg (args_so_far, mode, type, named) CUMULATIVE_ARGS args_so_far; enum machine_mode mode; tree type; int named; { int bytes, words; if (type != 0 /* undo putting struct in register */ && (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE)) mode = BLKmode; if (mode == BLKmode && TARGET_WARN_PASS_STRUCT) warning ("argument #%d is a structure", args_so_far + 1); if ((args_so_far & 1) != 0 && (mode == DImode || mode == DFmode || (type != 0 && TYPE_ALIGN (type) > 32))) args_so_far++; #ifdef ESKIT if (no_reg_params) return (rtx) 0; /* don't put args in registers */ #endif if (type == 0 && mode == BLKmode) abort (); /* m88k_function_arg argument `type' is NULL for BLKmode. */ bytes = (mode != BLKmode) ? GET_MODE_SIZE (mode) : int_size_in_bytes (type); words = (bytes + 3) / 4; if (args_so_far + words > 8) return (rtx) 0; /* args have exhausted registers */ else if (mode == BLKmode && (TYPE_ALIGN (type) != BITS_PER_WORD || bytes != UNITS_PER_WORD)) return (rtx) 0; return gen_rtx (REG, ((mode == BLKmode) ? TYPE_MODE (type) : mode), 2 + args_so_far); } /* Do what is necessary for `va_start'. The argument is ignored; We look at the current function to determine if stdargs or varargs is used and fill in an initial va_list. A pointer to this constructor is returned. */ struct rtx_def * m88k_builtin_saveregs (arglist) tree arglist; { rtx block, addr, argsize; tree fntype = TREE_TYPE (current_function_decl); int argadj = ((!(TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node))) ? -UNITS_PER_WORD : 0) + UNITS_PER_WORD - 1; int fixed; variable_args_p = 1; if (CONSTANT_P (current_function_arg_offset_rtx)) { fixed = (XINT (current_function_arg_offset_rtx, 0) + argadj) / UNITS_PER_WORD; argsize = gen_rtx (CONST_INT, VOIDmode, fixed); } else { fixed = 0; argsize = plus_constant (current_function_arg_offset_rtx, argadj); argsize = expand_shift (RSHIFT_EXPR, Pmode, argsize, build_int_2 (2, 0), argsize, 0); } /* Allocate the va_list constructor */ block = assign_stack_local (BLKmode, 3 * UNITS_PER_WORD, BITS_PER_WORD); RTX_UNCHANGING_P (block) = 1; RTX_UNCHANGING_P (XEXP (block, 0)) = 1; /* Store the argsize as the __va_arg member. */ emit_move_insn (change_address (block, SImode, XEXP (block, 0)), argsize); /* Store the arg pointer in the __va_stk member. */ emit_move_insn (change_address (block, Pmode, plus_constant (XEXP (block, 0), UNITS_PER_WORD)), copy_to_reg (virtual_incoming_args_rtx)); /* Allocate the register space, and store it as the __va_reg member. */ addr = assign_stack_local (BLKmode, 8 * UNITS_PER_WORD, -1); MEM_IN_STRUCT_P (addr) = 1; RTX_UNCHANGING_P (addr) = 1; RTX_UNCHANGING_P (XEXP (addr, 0)) = 1; emit_move_insn (change_address (block, Pmode, plus_constant (XEXP (block, 0), 2 * UNITS_PER_WORD)), copy_to_reg (XEXP (addr, 0))); /* Now store the incoming registers. */ if (fixed < 8) move_block_from_reg (2 + fixed, change_address (addr, Pmode, plus_constant (XEXP (addr, 0), fixed * UNITS_PER_WORD)), 8 - fixed, UNITS_PER_WORD * (8 - fixed)); /* Return the address of the va_list constructor, but don't put it in a register. This fails when not optimizing and produces worse code when optimizing. */ return XEXP (block, 0); } /* If cmpsi has not been generated, emit code to do the test. Return the expression describing the test of operator OP. */ rtx emit_test (op, mode) enum rtx_code op; enum machine_mode mode; { if (m88k_compare_reg == 0) emit_insn (gen_test (m88k_compare_op0, m88k_compare_op1)); return (gen_rtx (op, mode, m88k_compare_reg, const0_rtx)); } /* Determine how to best perform cmpsi/bxx, where cmpsi has a constant operand. All tests with zero (albeit swapped) and all equality tests with a constant are done with bcnd. The remaining cases are swapped as needed. */ void emit_bcnd (op, label) enum rtx_code op; rtx label; { if (m88k_compare_op1 == const0_rtx) emit_jump_insn( gen_bcnd ( gen_rtx (op, VOIDmode,m88k_compare_op0, const0_rtx), label)); else if (m88k_compare_op0 == const0_rtx) emit_jump_insn( gen_bcnd( gen_rtx( swap_condition (op), VOIDmode, m88k_compare_op1, const0_rtx), label)); else if (op != EQ && op != NE) emit_jump_insn (gen_bxx (emit_test (op, VOIDmode), label)); else { rtx zero = gen_reg_rtx (SImode); rtx reg, constant; int value; if (GET_CODE (m88k_compare_op1) == CONST_INT) { reg = force_reg (SImode, m88k_compare_op0); constant = m88k_compare_op1; } else { reg = force_reg (SImode, m88k_compare_op1); constant = m88k_compare_op0; } value = INTVAL (constant); /* Perform an arithmetic computation to make the compared-to value zero, but avoid loosing if the bcnd is later changed into sxx. */ if (SMALL_INTVAL (value)) emit_jump_insn (gen_bxx (emit_test (op, VOIDmode), label)); else { if (SMALL_INTVAL (-value)) emit_insn (gen_addsi3 (zero, reg, gen_rtx (CONST_INT, VOIDmode, -value))); else emit_insn (gen_xorsi3 (zero, reg, constant)); emit_jump_insn (gen_bcnd (gen_rtx (op, VOIDmode, zero, const0_rtx), label)); } } } /* Print an operand. Recognize special options, documented below. */ void print_operand (file, x, code) FILE *file; rtx x; char code; { enum rtx_code xc = (x ? GET_CODE (x) : UNKNOWN); register int value = (xc == CONST_INT ? INTVAL (x) : 0); static int sequencep; static int reversep; if (sequencep) { if (code < 'B' || code > 'E') output_operand_lossage ("%R not followed by %B/C/D/E"); if (reversep) xc = reverse_condition (xc); sequencep = 0; } switch (code) { case '*': /* addressing base register for PIC */ fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file); return; case '#': /* SVR4 pound-sign syntax character (empty if SVR3) */ fputs (m88k_pound_sign, file); return; case 'V': /* Output a serializing instruction as needed if the operand (assumed to be a MEM) is a volatile load. */ case 'v': /* ditto for a volatile store. */ if (MEM_VOLATILE_P (x) && TARGET_SERIALIZE_VOLATILE) { /* The m88110 implements two FIFO queues, one for loads and one for stores. These queues mean that loads complete in their issue order as do stores. An interaction between the history buffer and the store reservation station ensures that a store will not bypass load. Finally, a load will not bypass store, but only when they reference the same address. To avoid this reordering (a load bypassing a store) for volatile references, a serializing instruction is output. We choose the fldcr instruction as it does not serialize on the m88100 so that -m88000 code will not be degraded. The mechanism below is completed by having CC_STATUS_INIT set the code to the unknown value. */ /* hassey 6/30/93 A problem with 88110 4.1 & 4.2 makes the use of fldcr for this purpose undesirable. Instead we will use tb1, this will cause serialization on the 88100 but such is life. */ static rtx last_addr = 0; if (code == 'V' /* Only need to serialize before a load. */ && m88k_volatile_code != 'V' /* Loads complete in FIFO order. */ && !(m88k_volatile_code == 'v' && GET_CODE (XEXP (x, 0)) == LO_SUM && rtx_equal_p (XEXP (XEXP (x, 0), 1), last_addr))) fprintf (file, #if 0 #ifdef AS_BUG_FLDCR "fldcr\t %s,%scr63\n\t", #else "fldcr\t %s,%sfcr63\n\t", #endif reg_names[0], m88k_pound_sign); #else /* 0 */ "tb1\t 1,%s,0xff\n\t", reg_names[0]); #endif /* 0 */ m88k_volatile_code = code; last_addr = (GET_CODE (XEXP (x, 0)) == LO_SUM ? XEXP (XEXP (x, 0), 1) : 0); } return; case 'X': /* print the upper 16 bits... */ value >>= 16; case 'x': /* print the lower 16 bits of the integer constant in hex */ if (xc != CONST_INT) output_operand_lossage ("invalid %x/X value"); fprintf (file, "0x%x", value & 0xffff); return; case 'H': /* print the low 16 bits of the negated integer constant */ if (xc != CONST_INT) output_operand_lossage ("invalid %H value"); value = -value; case 'h': /* print the register or low 16 bits of the integer constant */ if (xc == REG) goto reg; if (xc != CONST_INT) output_operand_lossage ("invalid %h value"); fprintf (file, "%d", value & 0xffff); return; case 'Q': /* print the low 8 bits of the negated integer constant */ if (xc != CONST_INT) output_operand_lossage ("invalid %Q value"); value = -value; case 'q': /* print the register or low 8 bits of the integer constant */ if (xc == REG) goto reg; if (xc != CONST_INT) output_operand_lossage ("invalid %q value"); fprintf (file, "%d", value & 0xff); return; case 'w': /* print the integer constant (X == 32 ? 0 : 32 - X) */ if (xc != CONST_INT) output_operand_lossage ("invalid %o value"); fprintf (file, "%d", value == 32 ? 0 : 32 - value); return; case 'p': /* print the logarithm of the integer constant */ if (xc != CONST_INT || (value = exact_log2 (value)) < 0) output_operand_lossage ("invalid %p value"); fprintf (file, "%d", value); return; case 'S': /* compliment the value and then... */ value = ~value; case 's': /* print the width and offset values forming the integer constant with a SET instruction. See integer_ok_for_set. */ { register unsigned mask, uval = value; register int top, bottom; if (xc != CONST_INT) output_operand_lossage ("invalid %s/S value"); /* All the "one" bits must be contiguous. If so, MASK will be a power of two or zero. */ mask = (uval | (uval - 1)) + 1; if (!(uval && POWER_OF_2_or_0 (mask))) output_operand_lossage ("invalid %s/S value"); top = mask ? exact_log2 (mask) : 32; bottom = exact_log2 (uval & ~(uval - 1)); fprintf (file,"%d<%d>", top - bottom, bottom); return; } case 'P': /* print nothing if pc_rtx; output label_ref */ if (xc == LABEL_REF) output_addr_const (file, x); else if (xc != PC) output_operand_lossage ("invalid %P operand"); return; case 'L': /* print 0 or 1 if operand is label_ref and then... */ fputc (xc == LABEL_REF ? '1' : '0', file); case '.': /* print .n if delay slot is used */ fputs ((final_sequence && ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))) ? ".n\t" : "\t", file); return; case '!': /* Reverse the following condition. */ sequencep++; reversep = 1; return; case 'R': /* reverse the condition of the next print_operand if operand is a label_ref. */ sequencep++; reversep = (xc == LABEL_REF); return; case 'B': /* bcnd branch values */ fputs (m88k_pound_sign, file); switch (xc) { case EQ: fputs ("eq0", file); return; case NE: fputs ("ne0", file); return; case GT: fputs ("gt0", file); return; case LE: fputs ("le0", file); return; case LT: fputs ("lt0", file); return; case GE: fputs ("ge0", file); return; default: output_operand_lossage ("invalid %B value"); } case 'C': /* bb0/bb1 branch values for comparisons */ fputs (m88k_pound_sign, file); switch (xc) { case EQ: fputs ("eq", file); return; case NE: fputs ("ne", file); return; case GT: fputs ("gt", file); return; case LE: fputs ("le", file); return; case LT: fputs ("lt", file); return; case GE: fputs ("ge", file); return; case GTU: fputs ("hi", file); return; case LEU: fputs ("ls", file); return; case LTU: fputs ("lo", file); return; case GEU: fputs ("hs", file); return; default: output_operand_lossage ("invalid %C value"); } case 'D': /* bcnd branch values for float comparisons */ switch (xc) { case EQ: fputs ("0xa", file); return; case NE: fputs ("0x5", file); return; case GT: fputs (m88k_pound_sign, file); fputs ("gt0", file); return; case LE: fputs ("0xe", file); return; case LT: fputs ("0x4", file); return; case GE: fputs ("0xb", file); return; default: output_operand_lossage ("invalid %D value"); } case 'E': /* bcnd branch values for special integers */ switch (xc) { case EQ: fputs ("0x8", file); return; case NE: fputs ("0x7", file); return; default: output_operand_lossage ("invalid %E value"); } case 'd': /* second register of a two register pair */ if (xc != REG) output_operand_lossage ("`%d' operand isn't a register"); fputs (reg_names[REGNO (x) + 1], file); return; case 'r': /* an immediate 0 should be represented as `r0' */ if (x == const0_rtx) { fputs (reg_names[0], file); return; } else if (xc != REG) output_operand_lossage ("invalid %r value"); case 0: name: if (xc == REG) { reg: if (REGNO (x) == ARG_POINTER_REGNUM) output_operand_lossage ("operand is r0"); else fputs (reg_names[REGNO (x)], file); } else if (xc == PLUS) output_address (x); else if (xc == MEM) output_address (XEXP (x, 0)); else if (flag_pic && xc == UNSPEC) { output_addr_const (file, XVECEXP (x, 0, 0)); fputs ("#got_rel", file); } else if (xc == CONST_DOUBLE) output_operand_lossage ("operand is const_double"); else output_addr_const (file, x); return; case 'g': /* append #got_rel as needed */ if (flag_pic && (xc == SYMBOL_REF || xc == LABEL_REF)) { output_addr_const (file, x); fputs ("#got_rel", file); return; } goto name; case 'a': /* (standard), assume operand is an address */ case 'c': /* (standard), assume operand is an immediate value */ case 'l': /* (standard), assume operand is a label_ref */ case 'n': /* (standard), like %c, except negate first */ default: output_operand_lossage ("invalid code"); } } void print_operand_address (file, addr) FILE *file; rtx addr; { register rtx reg0, reg1, temp; switch (GET_CODE (addr)) { case REG: if (REGNO (addr) == ARG_POINTER_REGNUM) abort (); else fprintf (file, "%s,%s", reg_names[0], reg_names [REGNO (addr)]); break; case LO_SUM: fprintf (file, "%s,%slo16(", reg_names[REGNO (XEXP (addr, 0))], m88k_pound_sign); output_addr_const (file, XEXP (addr, 1)); fputc (')', file); break; case PLUS: reg0 = XEXP (addr, 0); reg1 = XEXP (addr, 1); if (GET_CODE (reg0) == MULT || GET_CODE (reg0) == CONST_INT) { rtx tmp = reg0; reg0 = reg1; reg1 = tmp; } if ((REG_P (reg0) && REGNO (reg0) == ARG_POINTER_REGNUM) || (REG_P (reg1) && REGNO (reg1) == ARG_POINTER_REGNUM)) abort (); else if (REG_P (reg0)) { if (REG_P (reg1)) fprintf (file, "%s,%s", reg_names [REGNO (reg0)], reg_names [REGNO (reg1)]); else if (GET_CODE (reg1) == CONST_INT) fprintf (file, "%s,%d", reg_names [REGNO (reg0)], INTVAL (reg1)); else if (GET_CODE (reg1) == MULT) { rtx mreg = XEXP (reg1, 0); if (REGNO (mreg) == ARG_POINTER_REGNUM) abort (); fprintf (file, "%s[%s]", reg_names[REGNO (reg0)], reg_names[REGNO (mreg)]); } else if (GET_CODE (reg1) == ZERO_EXTRACT) { fprintf (file, "%s,%slo16(", reg_names[REGNO (reg0)], m88k_pound_sign); output_addr_const (file, XEXP (reg1, 0)); fputc (')', file); } else if (flag_pic) { fprintf (file, "%s,", reg_names[REGNO (reg0)]); output_addr_const (file, reg1); fputs ("#got_rel", file); } else abort (); } else abort (); break; case MULT: if (REGNO (XEXP (addr, 0)) == ARG_POINTER_REGNUM) abort (); fprintf (file, "%s[%s]", reg_names[0], reg_names[REGNO (XEXP (addr, 0))]); break; case CONST_INT: fprintf (file, "%s,%d", reg_names[0], INTVAL (addr)); break; default: fprintf (file, "%s,", reg_names[0]); if (SHORT_ADDRESS_P (addr, temp)) { fprintf (file, "%siw16(", m88k_pound_sign); output_addr_const (file, addr); fputc (')', file); } else output_addr_const (file, addr); } } /* Return true if X is an address which needs a temporary register when reloaded while generating PIC code. */ int pic_address_needs_scratch (x) rtx x; { /* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && ! ADD_INT (XEXP (XEXP (x, 0), 1))) return 1; return 0; } /* Returns 1 if OP is either a symbol reference or a sum of a symbol reference and a constant. */ int symbolic_operand (op, mode) register rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); /* ??? This clause seems to be irrelevant. */ case CONST_DOUBLE: return GET_MODE (op) == mode; default: return 0; } }