/* Subroutines used for code generation on the Renesas M32R cpu. Copyright (C) 1996-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #define IN_TARGET_CODE 1 #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "df.h" #include "memmodel.h" #include "tm_p.h" #include "stringpool.h" #include "attribs.h" #include "insn-config.h" #include "emit-rtl.h" #include "recog.h" #include "diagnostic-core.h" #include "alias.h" #include "stor-layout.h" #include "varasm.h" #include "calls.h" #include "output.h" #include "insn-attr.h" #include "explow.h" #include "expr.h" #include "tm-constrs.h" #include "builtins.h" #include "opts.h" /* This file should be included last. */ #include "target-def.h" /* Array of valid operand punctuation characters. */ static char m32r_punct_chars[256]; /* Machine-specific symbol_ref flags. */ #define SYMBOL_FLAG_MODEL_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT #define SYMBOL_REF_MODEL(X) \ ((enum m32r_model) ((SYMBOL_REF_FLAGS (X) >> SYMBOL_FLAG_MODEL_SHIFT) & 3)) /* For string literals, etc. */ #define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.') /* Forward declaration. */ static void m32r_option_override (void); static void init_reg_tables (void); static void block_move_call (rtx, rtx, rtx); static int m32r_is_insn (rtx); static bool m32r_legitimate_address_p (machine_mode, rtx, bool, code_helper = ERROR_MARK); static rtx m32r_legitimize_address (rtx, rtx, machine_mode); static bool m32r_mode_dependent_address_p (const_rtx, addr_space_t); static tree m32r_handle_model_attribute (tree *, tree, tree, int, bool *); static void m32r_print_operand (FILE *, rtx, int); static void m32r_print_operand_address (FILE *, machine_mode, rtx); static bool m32r_print_operand_punct_valid_p (unsigned char code); static void m32r_output_function_prologue (FILE *); static void m32r_output_function_epilogue (FILE *); static void m32r_file_start (void); static int m32r_adjust_priority (rtx_insn *, int); static int m32r_issue_rate (void); static void m32r_encode_section_info (tree, rtx, int); static bool m32r_in_small_data_p (const_tree); static bool m32r_return_in_memory (const_tree, const_tree); static rtx m32r_function_value (const_tree, const_tree, bool); static rtx m32r_libcall_value (machine_mode, const_rtx); static bool m32r_function_value_regno_p (const unsigned int); static void m32r_setup_incoming_varargs (cumulative_args_t, const function_arg_info &, int *, int); static void init_idents (void); static bool m32r_rtx_costs (rtx, machine_mode, int, int, int *, bool speed); static int m32r_memory_move_cost (machine_mode, reg_class_t, bool); static bool m32r_pass_by_reference (cumulative_args_t, const function_arg_info &arg); static int m32r_arg_partial_bytes (cumulative_args_t, const function_arg_info &); static rtx m32r_function_arg (cumulative_args_t, const function_arg_info &); static void m32r_function_arg_advance (cumulative_args_t, const function_arg_info &); static bool m32r_can_eliminate (const int, const int); static void m32r_conditional_register_usage (void); static void m32r_trampoline_init (rtx, tree, rtx); static bool m32r_legitimate_constant_p (machine_mode, rtx); static bool m32r_attribute_identifier (const_tree); static bool m32r_hard_regno_mode_ok (unsigned int, machine_mode); static bool m32r_modes_tieable_p (machine_mode, machine_mode); static HOST_WIDE_INT m32r_starting_frame_offset (void); /* M32R specific attributes. */ TARGET_GNU_ATTRIBUTES (m32r_attribute_table, { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, affects_type_identity, handler, exclude } */ { "interrupt", 0, 0, true, false, false, false, NULL, NULL }, { "model", 1, 1, true, false, false, false, m32r_handle_model_attribute, NULL } }); /* Initialize the GCC target structure. */ #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE m32r_attribute_table #undef TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P #define TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P m32r_attribute_identifier #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P m32r_legitimate_address_p #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS m32r_legitimize_address #undef TARGET_MODE_DEPENDENT_ADDRESS_P #define TARGET_MODE_DEPENDENT_ADDRESS_P m32r_mode_dependent_address_p #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t" #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" #undef TARGET_PRINT_OPERAND #define TARGET_PRINT_OPERAND m32r_print_operand #undef TARGET_PRINT_OPERAND_ADDRESS #define TARGET_PRINT_OPERAND_ADDRESS m32r_print_operand_address #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P #define TARGET_PRINT_OPERAND_PUNCT_VALID_P m32r_print_operand_punct_valid_p #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE m32r_output_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE m32r_output_function_epilogue #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START m32r_file_start #undef TARGET_SCHED_ADJUST_PRIORITY #define TARGET_SCHED_ADJUST_PRIORITY m32r_adjust_priority #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE m32r_issue_rate #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE m32r_option_override #undef TARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO m32r_encode_section_info #undef TARGET_IN_SMALL_DATA_P #define TARGET_IN_SMALL_DATA_P m32r_in_small_data_p #undef TARGET_MEMORY_MOVE_COST #define TARGET_MEMORY_MOVE_COST m32r_memory_move_cost #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS m32r_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0 #undef TARGET_PROMOTE_PROTOTYPES #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY m32r_return_in_memory #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE m32r_function_value #undef TARGET_LIBCALL_VALUE #define TARGET_LIBCALL_VALUE m32r_libcall_value #undef TARGET_FUNCTION_VALUE_REGNO_P #define TARGET_FUNCTION_VALUE_REGNO_P m32r_function_value_regno_p #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS m32r_setup_incoming_varargs #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE m32r_pass_by_reference #undef TARGET_ARG_PARTIAL_BYTES #define TARGET_ARG_PARTIAL_BYTES m32r_arg_partial_bytes #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG m32r_function_arg #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE m32r_function_arg_advance #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE m32r_can_eliminate #undef TARGET_CONDITIONAL_REGISTER_USAGE #define TARGET_CONDITIONAL_REGISTER_USAGE m32r_conditional_register_usage #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT m32r_trampoline_init #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P m32r_legitimate_constant_p #undef TARGET_HARD_REGNO_MODE_OK #define TARGET_HARD_REGNO_MODE_OK m32r_hard_regno_mode_ok #undef TARGET_MODES_TIEABLE_P #define TARGET_MODES_TIEABLE_P m32r_modes_tieable_p #undef TARGET_CONSTANT_ALIGNMENT #define TARGET_CONSTANT_ALIGNMENT constant_alignment_word_strings #undef TARGET_STARTING_FRAME_OFFSET #define TARGET_STARTING_FRAME_OFFSET m32r_starting_frame_offset #undef TARGET_HAVE_SPECULATION_SAFE_VALUE #define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed struct gcc_target targetm = TARGET_INITIALIZER; /* Called by m32r_option_override to initialize various things. */ void m32r_init (void) { init_reg_tables (); /* Initialize array for TARGET_PRINT_OPERAND_PUNCT_VALID_P. */ memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars)); m32r_punct_chars['#'] = 1; m32r_punct_chars['@'] = 1; /* ??? no longer used */ /* Provide default value if not specified. */ if (!OPTION_SET_P (g_switch_value)) g_switch_value = SDATA_DEFAULT_SIZE; } static void m32r_option_override (void) { /* These need to be done at start up. It's convenient to do them here. */ m32r_init (); SUBTARGET_OVERRIDE_OPTIONS; } /* Vectors to keep interesting information about registers where it can easily be got. We use to use the actual mode value as the bit number, but there is (or may be) more than 32 modes now. Instead we use two tables: one indexed by hard register number, and one indexed by mode. */ /* The purpose of m32r_mode_class is to shrink the range of modes so that they all fit (as bit numbers) in a 32-bit word (again). Each real mode is mapped into one m32r_mode_class mode. */ enum m32r_mode_class { C_MODE, S_MODE, D_MODE, T_MODE, O_MODE, SF_MODE, DF_MODE, TF_MODE, OF_MODE, A_MODE }; /* Modes for condition codes. */ #define C_MODES (1 << (int) C_MODE) /* Modes for single-word and smaller quantities. */ #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE)) /* Modes for double-word and smaller quantities. */ #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE)) /* Modes for quad-word and smaller quantities. */ #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE)) /* Modes for accumulators. */ #define A_MODES (1 << (int) A_MODE) /* Value is 1 if register/mode pair is acceptable on arc. */ static const unsigned int m32r_hard_regno_modes[FIRST_PSEUDO_REGISTER] = { T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES, S_MODES, C_MODES, A_MODES, A_MODES }; static unsigned int m32r_mode_class [NUM_MACHINE_MODES]; enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER]; static void init_reg_tables (void) { int i; for (i = 0; i < NUM_MACHINE_MODES; i++) { machine_mode m = (machine_mode) i; switch (GET_MODE_CLASS (m)) { case MODE_INT: case MODE_PARTIAL_INT: case MODE_COMPLEX_INT: if (GET_MODE_SIZE (m) <= 4) m32r_mode_class[i] = 1 << (int) S_MODE; else if (GET_MODE_SIZE (m) == 8) m32r_mode_class[i] = 1 << (int) D_MODE; else if (GET_MODE_SIZE (m) == 16) m32r_mode_class[i] = 1 << (int) T_MODE; else if (GET_MODE_SIZE (m) == 32) m32r_mode_class[i] = 1 << (int) O_MODE; else m32r_mode_class[i] = 0; break; case MODE_FLOAT: case MODE_COMPLEX_FLOAT: if (GET_MODE_SIZE (m) <= 4) m32r_mode_class[i] = 1 << (int) SF_MODE; else if (GET_MODE_SIZE (m) == 8) m32r_mode_class[i] = 1 << (int) DF_MODE; else if (GET_MODE_SIZE (m) == 16) m32r_mode_class[i] = 1 << (int) TF_MODE; else if (GET_MODE_SIZE (m) == 32) m32r_mode_class[i] = 1 << (int) OF_MODE; else m32r_mode_class[i] = 0; break; case MODE_CC: m32r_mode_class[i] = 1 << (int) C_MODE; break; default: m32r_mode_class[i] = 0; break; } } for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (GPR_P (i)) m32r_regno_reg_class[i] = GENERAL_REGS; else if (i == ARG_POINTER_REGNUM) m32r_regno_reg_class[i] = GENERAL_REGS; else m32r_regno_reg_class[i] = NO_REGS; } } /* M32R specific attribute support. interrupt - for interrupt functions model - select code model used to access object small: addresses use 24 bits, use bl to make calls medium: addresses use 32 bits, use bl to make calls large: addresses use 32 bits, use seth/add3/jl to make calls Grep for MODEL in m32r.h for more info. */ static tree small_ident1; static tree small_ident2; static tree medium_ident1; static tree medium_ident2; static tree large_ident1; static tree large_ident2; static void init_idents (void) { if (small_ident1 == 0) { small_ident1 = get_identifier ("small"); small_ident2 = get_identifier ("__small__"); medium_ident1 = get_identifier ("medium"); medium_ident2 = get_identifier ("__medium__"); large_ident1 = get_identifier ("large"); large_ident2 = get_identifier ("__large__"); } } /* Handle an "model" attribute; arguments as in struct attribute_spec.handler. */ static tree m32r_handle_model_attribute (tree *node ATTRIBUTE_UNUSED, tree name, tree args, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { tree arg; init_idents (); arg = TREE_VALUE (args); if (arg != small_ident1 && arg != small_ident2 && arg != medium_ident1 && arg != medium_ident2 && arg != large_ident1 && arg != large_ident2) { warning (OPT_Wattributes, "invalid argument of %qs attribute", IDENTIFIER_POINTER (name)); *no_add_attrs = true; } return NULL_TREE; } static bool m32r_attribute_identifier (const_tree name) { return strcmp (IDENTIFIER_POINTER (name), "model") == 0 || strcmp (IDENTIFIER_POINTER (name), "__model__") == 0; } /* Encode section information of DECL, which is either a VAR_DECL, FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???. For the M32R we want to record: - whether the object lives in .sdata/.sbss. - what code model should be used to access the object */ static void m32r_encode_section_info (tree decl, rtx rtl, int first) { int extra_flags = 0; tree model_attr; enum m32r_model model; default_encode_section_info (decl, rtl, first); if (!DECL_P (decl)) return; model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl)); if (model_attr) { tree id; init_idents (); id = TREE_VALUE (TREE_VALUE (model_attr)); if (id == small_ident1 || id == small_ident2) model = M32R_MODEL_SMALL; else if (id == medium_ident1 || id == medium_ident2) model = M32R_MODEL_MEDIUM; else if (id == large_ident1 || id == large_ident2) model = M32R_MODEL_LARGE; else gcc_unreachable (); /* shouldn't happen */ } else { if (TARGET_MODEL_SMALL) model = M32R_MODEL_SMALL; else if (TARGET_MODEL_MEDIUM) model = M32R_MODEL_MEDIUM; else if (TARGET_MODEL_LARGE) model = M32R_MODEL_LARGE; else gcc_unreachable (); /* shouldn't happen */ } extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT; if (extra_flags) SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags; } /* Only mark the object as being small data area addressable if it hasn't been explicitly marked with a code model. The user can explicitly put an object in the small data area with the section attribute. If the object is in sdata/sbss and marked with a code model do both [put the object in .sdata and mark it as being addressed with a specific code model - don't mark it as being addressed with an SDA reloc though]. This is ok and might be useful at times. If the object doesn't fit the linker will give an error. */ static bool m32r_in_small_data_p (const_tree decl) { const char *section; if (TREE_CODE (decl) != VAR_DECL) return false; if (lookup_attribute ("model", DECL_ATTRIBUTES (decl))) return false; section = DECL_SECTION_NAME (decl); if (section) { if (strcmp (section, ".sdata") == 0 || strcmp (section, ".sbss") == 0) return true; } else { if (! TREE_READONLY (decl) && ! TARGET_SDATA_NONE) { int size = int_size_in_bytes (TREE_TYPE (decl)); if (size > 0 && size <= g_switch_value) return true; } } return false; } /* Do anything needed before RTL is emitted for each function. */ void m32r_init_expanders (void) { /* ??? At one point there was code here. The function is left in to make it easy to experiment. */ } bool call_operand (rtx op, machine_mode mode) { if (!MEM_P (op)) return 0; op = XEXP (op, 0); return call_address_operand (op, mode); } /* Return 1 if OP is a reference to an object in .sdata/.sbss. */ bool small_data_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED) { if (! TARGET_SDATA_USE) return 0; if (GET_CODE (op) == SYMBOL_REF) return SYMBOL_REF_SMALL_P (op); if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF && satisfies_constraint_J (XEXP (XEXP (op, 0), 1))) return SYMBOL_REF_SMALL_P (XEXP (XEXP (op, 0), 0)); return 0; } /* Return 1 if OP is a symbol that can use 24-bit addressing. */ int addr24_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED) { rtx sym; if (flag_pic) return 0; if (GET_CODE (op) == LABEL_REF) return TARGET_ADDR24; if (GET_CODE (op) == SYMBOL_REF) sym = op; else if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF && satisfies_constraint_M (XEXP (XEXP (op, 0), 1))) sym = XEXP (XEXP (op, 0), 0); else return 0; if (SYMBOL_REF_MODEL (sym) == M32R_MODEL_SMALL) return 1; if (TARGET_ADDR24 && (CONSTANT_POOL_ADDRESS_P (sym) || LIT_NAME_P (XSTR (sym, 0)))) return 1; return 0; } /* Return 1 if OP is a symbol that needs 32-bit addressing. */ int addr32_operand (rtx op, machine_mode mode) { rtx sym; if (GET_CODE (op) == LABEL_REF) return TARGET_ADDR32; if (GET_CODE (op) == SYMBOL_REF) sym = op; else if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF && CONST_INT_P (XEXP (XEXP (op, 0), 1)) && ! flag_pic) sym = XEXP (XEXP (op, 0), 0); else return 0; return (! addr24_operand (sym, mode) && ! small_data_operand (sym, mode)); } /* Return 1 if OP is a function that can be called with the `bl' insn. */ int call26_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED) { if (flag_pic) return 1; if (GET_CODE (op) == SYMBOL_REF) return SYMBOL_REF_MODEL (op) != M32R_MODEL_LARGE; return TARGET_CALL26; } /* Return 1 if OP is a DImode const we want to handle inline. This must match the code in the movdi pattern. It is used by the 'G' constraint. */ int easy_di_const (rtx op) { rtx high_rtx, low_rtx; HOST_WIDE_INT high, low; split_double (op, &high_rtx, &low_rtx); high = INTVAL (high_rtx); low = INTVAL (low_rtx); /* Pick constants loadable with 2 16-bit `ldi' insns. */ if (high >= -128 && high <= 127 && low >= -128 && low <= 127) return 1; return 0; } /* Return 1 if OP is a DFmode const we want to handle inline. This must match the code in the movdf pattern. It is used by the 'H' constraint. */ int easy_df_const (rtx op) { long l[2]; REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l); if (l[0] == 0 && l[1] == 0) return 1; if ((l[0] & 0xffff) == 0 && l[1] == 0) return 1; return 0; } /* Return 1 if OP is (mem (reg ...)). This is used in insn length calcs. */ bool memreg_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED) { return MEM_P (op) && REG_P (XEXP (op, 0)); } /* Return nonzero if ARG must be passed by indirect reference. */ static bool m32r_pass_by_reference (cumulative_args_t, const function_arg_info &arg) { int size = arg.type_size_in_bytes (); return (size < 0 || size > 8); } /* Comparisons. */ /* X and Y are two things to compare using CODE. Emit the compare insn and return the rtx for compare [arg0 of the if_then_else]. If need_compare is true then the comparison insn must be generated, rather than being subsumed into the following branch instruction. */ rtx gen_compare (enum rtx_code code, rtx x, rtx y, int need_compare) { enum rtx_code compare_code; enum rtx_code branch_code; rtx cc_reg = gen_rtx_REG (CCmode, CARRY_REGNUM); int must_swap = 0; switch (code) { case EQ: compare_code = EQ; branch_code = NE; break; case NE: compare_code = EQ; branch_code = EQ; break; case LT: compare_code = LT; branch_code = NE; break; case LE: compare_code = LT; branch_code = EQ; must_swap = 1; break; case GT: compare_code = LT; branch_code = NE; must_swap = 1; break; case GE: compare_code = LT; branch_code = EQ; break; case LTU: compare_code = LTU; branch_code = NE; break; case LEU: compare_code = LTU; branch_code = EQ; must_swap = 1; break; case GTU: compare_code = LTU; branch_code = NE; must_swap = 1; break; case GEU: compare_code = LTU; branch_code = EQ; break; default: gcc_unreachable (); } if (need_compare) { switch (compare_code) { case EQ: if (satisfies_constraint_P (y) /* Reg equal to small const. */ && y != const0_rtx) { rtx tmp = gen_reg_rtx (SImode); emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y)))); x = tmp; y = const0_rtx; } else if (CONSTANT_P (y)) /* Reg equal to const. */ { rtx tmp = force_reg (GET_MODE (x), y); y = tmp; } if (register_operand (y, SImode) /* Reg equal to reg. */ || y == const0_rtx) /* Reg equal to zero. */ { emit_insn (gen_cmp_eqsi_insn (x, y)); return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx); } break; case LT: if (register_operand (y, SImode) || satisfies_constraint_P (y)) { rtx tmp = gen_reg_rtx (SImode); /* Reg compared to reg. */ switch (code) { case LT: emit_insn (gen_cmp_ltsi_insn (x, y)); code = EQ; break; case LE: if (y == const0_rtx) tmp = const1_rtx; else emit_insn (gen_addsi3 (tmp, y, constm1_rtx)); emit_insn (gen_cmp_ltsi_insn (x, tmp)); code = EQ; break; case GT: if (CONST_INT_P (y)) tmp = gen_rtx_PLUS (SImode, y, const1_rtx); else emit_insn (gen_addsi3 (tmp, y, constm1_rtx)); emit_insn (gen_cmp_ltsi_insn (x, tmp)); code = NE; break; case GE: emit_insn (gen_cmp_ltsi_insn (x, y)); code = NE; break; default: gcc_unreachable (); } return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx); } break; case LTU: if (register_operand (y, SImode) || satisfies_constraint_P (y)) { rtx tmp = gen_reg_rtx (SImode); /* Reg (unsigned) compared to reg. */ switch (code) { case LTU: emit_insn (gen_cmp_ltusi_insn (x, y)); code = EQ; break; case LEU: if (y == const0_rtx) tmp = const1_rtx; else emit_insn (gen_addsi3 (tmp, y, constm1_rtx)); emit_insn (gen_cmp_ltusi_insn (x, tmp)); code = EQ; break; case GTU: if (CONST_INT_P (y)) tmp = gen_rtx_PLUS (SImode, y, const1_rtx); else emit_insn (gen_addsi3 (tmp, y, constm1_rtx)); emit_insn (gen_cmp_ltusi_insn (x, tmp)); code = NE; break; case GEU: emit_insn (gen_cmp_ltusi_insn (x, y)); code = NE; break; default: gcc_unreachable (); } return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx); } break; default: gcc_unreachable (); } } else { /* Reg/reg equal comparison. */ if (compare_code == EQ && register_operand (y, SImode)) return gen_rtx_fmt_ee (code, CCmode, x, y); /* Reg/zero signed comparison. */ if ((compare_code == EQ || compare_code == LT) && y == const0_rtx) return gen_rtx_fmt_ee (code, CCmode, x, y); /* Reg/smallconst equal comparison. */ if (compare_code == EQ && satisfies_constraint_P (y)) { rtx tmp = gen_reg_rtx (SImode); emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y)))); return gen_rtx_fmt_ee (code, CCmode, tmp, const0_rtx); } /* Reg/const equal comparison. */ if (compare_code == EQ && CONSTANT_P (y)) { rtx tmp = force_reg (GET_MODE (x), y); return gen_rtx_fmt_ee (code, CCmode, x, tmp); } } if (CONSTANT_P (y)) { if (must_swap) y = force_reg (GET_MODE (x), y); else { int ok_const = reg_or_int16_operand (y, GET_MODE (y)); if (! ok_const) y = force_reg (GET_MODE (x), y); } } switch (compare_code) { case EQ : emit_insn (gen_cmp_eqsi_insn (must_swap ? y : x, must_swap ? x : y)); break; case LT : emit_insn (gen_cmp_ltsi_insn (must_swap ? y : x, must_swap ? x : y)); break; case LTU : emit_insn (gen_cmp_ltusi_insn (must_swap ? y : x, must_swap ? x : y)); break; default: gcc_unreachable (); } return gen_rtx_fmt_ee (branch_code, VOIDmode, cc_reg, CONST0_RTX (CCmode)); } bool gen_cond_store (enum rtx_code code, rtx op0, rtx op1, rtx op2) { machine_mode mode = GET_MODE (op0); gcc_assert (mode == SImode); switch (code) { case EQ: if (!register_operand (op1, mode)) op1 = force_reg (mode, op1); if (TARGET_M32RX || TARGET_M32R2) { if (!reg_or_zero_operand (op2, mode)) op2 = force_reg (mode, op2); emit_insn (gen_seq_insn_m32rx (op0, op1, op2)); return true; } if (CONST_INT_P (op2) && INTVAL (op2) == 0) { emit_insn (gen_seq_zero_insn (op0, op1)); return true; } if (!reg_or_eq_int16_operand (op2, mode)) op2 = force_reg (mode, op2); emit_insn (gen_seq_insn (op0, op1, op2)); return true; case NE: if (!CONST_INT_P (op2) || (INTVAL (op2) != 0 && satisfies_constraint_K (op2))) { rtx reg; if (reload_completed || reload_in_progress) return false; reg = gen_reg_rtx (SImode); emit_insn (gen_xorsi3 (reg, op1, op2)); op1 = reg; if (!register_operand (op1, mode)) op1 = force_reg (mode, op1); emit_insn (gen_sne_zero_insn (op0, op1)); return true; } return false; case LT: case GT: if (code == GT) { rtx tmp = op2; op2 = op1; op1 = tmp; code = LT; } if (!register_operand (op1, mode)) op1 = force_reg (mode, op1); if (!reg_or_int16_operand (op2, mode)) op2 = force_reg (mode, op2); emit_insn (gen_slt_insn (op0, op1, op2)); return true; case LTU: case GTU: if (code == GTU) { rtx tmp = op2; op2 = op1; op1 = tmp; code = LTU; } if (!register_operand (op1, mode)) op1 = force_reg (mode, op1); if (!reg_or_int16_operand (op2, mode)) op2 = force_reg (mode, op2); emit_insn (gen_sltu_insn (op0, op1, op2)); return true; case GE: case GEU: if (!register_operand (op1, mode)) op1 = force_reg (mode, op1); if (!reg_or_int16_operand (op2, mode)) op2 = force_reg (mode, op2); if (code == GE) emit_insn (gen_sge_insn (op0, op1, op2)); else emit_insn (gen_sgeu_insn (op0, op1, op2)); return true; case LE: case LEU: if (!register_operand (op1, mode)) op1 = force_reg (mode, op1); if (CONST_INT_P (op2)) { HOST_WIDE_INT value = INTVAL (op2); if (value >= 2147483647) { emit_move_insn (op0, const1_rtx); return true; } op2 = GEN_INT (value + 1); if (value < -32768 || value >= 32767) op2 = force_reg (mode, op2); if (code == LEU) emit_insn (gen_sltu_insn (op0, op1, op2)); else emit_insn (gen_slt_insn (op0, op1, op2)); return true; } if (!register_operand (op2, mode)) op2 = force_reg (mode, op2); if (code == LEU) emit_insn (gen_sleu_insn (op0, op1, op2)); else emit_insn (gen_sle_insn (op0, op1, op2)); return true; default: gcc_unreachable (); } } /* Split a 2 word move (DI or DF) into component parts. */ rtx gen_split_move_double (rtx operands[]) { machine_mode mode = GET_MODE (operands[0]); rtx dest = operands[0]; rtx src = operands[1]; rtx val; /* We might have (SUBREG (MEM)) here, so just get rid of the subregs to make this code simpler. It is safe to call alter_subreg any time after reload. */ if (GET_CODE (dest) == SUBREG) alter_subreg (&dest, true); if (GET_CODE (src) == SUBREG) alter_subreg (&src, true); start_sequence (); if (REG_P (dest)) { int dregno = REGNO (dest); /* Reg = reg. */ if (REG_P (src)) { int sregno = REGNO (src); int reverse = (dregno == sregno + 1); /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. */ emit_insn (gen_rtx_SET (operand_subword (dest, reverse, TRUE, mode), operand_subword (src, reverse, TRUE, mode))); emit_insn (gen_rtx_SET (operand_subword (dest, !reverse, TRUE, mode), operand_subword (src, !reverse, TRUE, mode))); } /* Reg = constant. */ else if (CONST_INT_P (src) || GET_CODE (src) == CONST_DOUBLE) { rtx words[2]; split_double (src, &words[0], &words[1]); emit_insn (gen_rtx_SET (operand_subword (dest, 0, TRUE, mode), words[0])); emit_insn (gen_rtx_SET (operand_subword (dest, 1, TRUE, mode), words[1])); } /* Reg = mem. */ else if (MEM_P (src)) { /* If the high-address word is used in the address, we must load it last. Otherwise, load it first. */ int reverse = refers_to_regno_p (dregno, XEXP (src, 0)); /* We used to optimize loads from single registers as ld r1,r3+; ld r2,r3 if r3 were not used subsequently. However, the REG_NOTES aren't propagated correctly by the reload phase, and it can cause bad code to be generated. We could still try: ld r1,r3+; ld r2,r3; addi r3,-4 which saves 2 bytes and doesn't force longword alignment. */ emit_insn (gen_rtx_SET (operand_subword (dest, reverse, TRUE, mode), adjust_address (src, SImode, reverse * UNITS_PER_WORD))); emit_insn (gen_rtx_SET (operand_subword (dest, !reverse, TRUE, mode), adjust_address (src, SImode, !reverse * UNITS_PER_WORD))); } else gcc_unreachable (); } /* Mem = reg. */ /* We used to optimize loads from single registers as st r1,r3; st r2,+r3 if r3 were not used subsequently. However, the REG_NOTES aren't propagated correctly by the reload phase, and it can cause bad code to be generated. We could still try: st r1,r3; st r2,+r3; addi r3,-4 which saves 2 bytes and doesn't force longword alignment. */ else if (MEM_P (dest) && REG_P (src)) { emit_insn (gen_rtx_SET (adjust_address (dest, SImode, 0), operand_subword (src, 0, TRUE, mode))); emit_insn (gen_rtx_SET (adjust_address (dest, SImode, UNITS_PER_WORD), operand_subword (src, 1, TRUE, mode))); } else gcc_unreachable (); val = get_insns (); end_sequence (); return val; } static int m32r_arg_partial_bytes (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); int words; unsigned int size = (arg.promoted_size_in_bytes () + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (*cum >= M32R_MAX_PARM_REGS) words = 0; else if (*cum + size > M32R_MAX_PARM_REGS) words = (*cum + size) - M32R_MAX_PARM_REGS; else words = 0; return words * UNITS_PER_WORD; } /* The ROUND_ADVANCE* macros are local to this file. */ /* Round SIZE up to a word boundary. */ #define ROUND_ADVANCE(SIZE) \ (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* Round arg MODE/TYPE up to the next word boundary. */ #define ROUND_ADVANCE_ARG(MODE, TYPE) \ ((MODE) == BLKmode \ ? ROUND_ADVANCE ((unsigned int) int_size_in_bytes (TYPE)) \ : ROUND_ADVANCE ((unsigned int) GET_MODE_SIZE (MODE))) /* Round CUM up to the necessary point for argument MODE/TYPE. */ #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) (CUM) /* Return boolean indicating arg of type TYPE and mode MODE will be passed in a reg. This includes arguments that have to be passed by reference as the pointer to them is passed in a reg if one is available (and that is what we're given). This macro is only used in this file. */ #define PASS_IN_REG_P(CUM, MODE, TYPE) \ (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) < M32R_MAX_PARM_REGS) /* Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. ARG is a description of the argument. */ /* On the M32R the first M32R_MAX_PARM_REGS args are normally in registers and the rest are pushed. */ static rtx m32r_function_arg (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); return (PASS_IN_REG_P (*cum, arg.mode, arg.type) ? gen_rtx_REG (arg.mode, ROUND_ADVANCE_CUM (*cum, arg.mode, arg.type)) : NULL_RTX); } /* Update the data in CUM to advance over argument ARG. */ static void m32r_function_arg_advance (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); *cum = (ROUND_ADVANCE_CUM (*cum, arg.mode, arg.type) + ROUND_ADVANCE_ARG (arg.mode, arg.type)); } /* Worker function for TARGET_RETURN_IN_MEMORY. */ static bool m32r_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) { cumulative_args_t dummy = pack_cumulative_args (NULL); function_arg_info arg (const_cast (type), /*named=*/false); return m32r_pass_by_reference (dummy, arg); } /* Worker function for TARGET_FUNCTION_VALUE. */ static rtx m32r_function_value (const_tree valtype, const_tree fn_decl_or_type ATTRIBUTE_UNUSED, bool outgoing ATTRIBUTE_UNUSED) { return gen_rtx_REG (TYPE_MODE (valtype), 0); } /* Worker function for TARGET_LIBCALL_VALUE. */ static rtx m32r_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED) { return gen_rtx_REG (mode, 0); } /* Worker function for TARGET_FUNCTION_VALUE_REGNO_P. ??? What about r1 in DI/DF values. */ static bool m32r_function_value_regno_p (const unsigned int regno) { return (regno == 0); } /* Do any needed setup for a variadic function. For the M32R, we must create a register parameter block, and then copy any anonymous arguments in registers to memory. CUM has not been updated for the last named argument (which is given by ARG), and we rely on this fact. */ static void m32r_setup_incoming_varargs (cumulative_args_t cum, const function_arg_info &arg, int *pretend_size, int no_rtl) { int first_anon_arg; if (no_rtl) return; /* All BLKmode values are passed by reference. */ if (!TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (current_function_decl))) gcc_assert (arg.mode != BLKmode); if (!TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (current_function_decl)) || arg.type != NULL_TREE) first_anon_arg = (ROUND_ADVANCE_CUM (*get_cumulative_args (cum), arg.mode, arg.type) + ROUND_ADVANCE_ARG (arg.mode, arg.type)); else first_anon_arg = *get_cumulative_args (cum); if (first_anon_arg < M32R_MAX_PARM_REGS) { /* Note that first_reg_offset < M32R_MAX_PARM_REGS. */ int first_reg_offset = first_anon_arg; /* Size in words to "pretend" allocate. */ int size = M32R_MAX_PARM_REGS - first_reg_offset; rtx regblock; regblock = gen_frame_mem (BLKmode, plus_constant (Pmode, arg_pointer_rtx, FIRST_PARM_OFFSET (0))); set_mem_alias_set (regblock, get_varargs_alias_set ()); move_block_from_reg (first_reg_offset, regblock, size); *pretend_size = (size * UNITS_PER_WORD); } } /* Return true if INSN is real instruction bearing insn. */ static int m32r_is_insn (rtx insn) { return (NONDEBUG_INSN_P (insn) && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER); } /* Increase the priority of long instructions so that the short instructions are scheduled ahead of the long ones. */ static int m32r_adjust_priority (rtx_insn *insn, int priority) { if (m32r_is_insn (insn) && get_attr_insn_size (insn) != INSN_SIZE_SHORT) priority <<= 3; return priority; } /* Indicate how many instructions can be issued at the same time. This is sort of a lie. The m32r can issue only 1 long insn at once, but it can issue 2 short insns. The default therefore is set at 2, but this can be overridden by the command line option -missue-rate=1. */ static int m32r_issue_rate (void) { return ((TARGET_LOW_ISSUE_RATE) ? 1 : 2); } /* Cost functions. */ /* Memory is 3 times as expensive as registers. ??? Is that the right way to look at it? */ static int m32r_memory_move_cost (machine_mode mode, reg_class_t rclass ATTRIBUTE_UNUSED, bool in ATTRIBUTE_UNUSED) { if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD) return 6; else return 12; } static bool m32r_rtx_costs (rtx x, machine_mode mode ATTRIBUTE_UNUSED, int outer_code ATTRIBUTE_UNUSED, int opno ATTRIBUTE_UNUSED, int *total, bool speed ATTRIBUTE_UNUSED) { int code = GET_CODE (x); switch (code) { /* Small integers are as cheap as registers. 4 byte values can be fetched as immediate constants - let's give that the cost of an extra insn. */ case CONST_INT: if (INT16_P (INTVAL (x))) { *total = 0; return true; } /* FALLTHRU */ case CONST: case LABEL_REF: case SYMBOL_REF: *total = COSTS_N_INSNS (1); return true; case CONST_DOUBLE: { rtx high, low; split_double (x, &high, &low); *total = COSTS_N_INSNS (!INT16_P (INTVAL (high)) + !INT16_P (INTVAL (low))); return true; } case MULT: *total = COSTS_N_INSNS (3); return true; case DIV: case UDIV: case MOD: case UMOD: *total = COSTS_N_INSNS (10); return true; default: return false; } } /* Type of function DECL. The result is cached. To reset the cache at the end of a function, call with DECL = NULL_TREE. */ enum m32r_function_type m32r_compute_function_type (tree decl) { /* Cached value. */ static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN; /* Last function we were called for. */ static tree last_fn = NULL_TREE; /* Resetting the cached value? */ if (decl == NULL_TREE) { fn_type = M32R_FUNCTION_UNKNOWN; last_fn = NULL_TREE; return fn_type; } if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN) return fn_type; /* Compute function type. */ fn_type = (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE ? M32R_FUNCTION_INTERRUPT : M32R_FUNCTION_NORMAL); last_fn = decl; return fn_type; } /* Function prologue/epilogue handlers. */ /* M32R stack frames look like: Before call After call +-----------------------+ +-----------------------+ | | | | high | local variables, | | local variables, | mem | reg save area, etc. | | reg save area, etc. | | | | | +-----------------------+ +-----------------------+ | | | | | arguments on stack. | | arguments on stack. | | | | | SP+0->+-----------------------+ +-----------------------+ | reg parm save area, | | only created for | | variable argument | | functions | +-----------------------+ | previous frame ptr | +-----------------------+ | | | register save area | | | +-----------------------+ | return address | +-----------------------+ | | | local variables | | | +-----------------------+ | | | alloca allocations | | | +-----------------------+ | | low | arguments on stack | memory | | SP+0->+-----------------------+ Notes: 1) The "reg parm save area" does not exist for non variable argument fns. 2) The "reg parm save area" can be eliminated completely if we saved regs containing anonymous args separately but that complicates things too much (so it's not done). 3) The return address is saved after the register save area so as to have as many insns as possible between the restoration of `lr' and the `jmp lr'. */ /* Structure to be filled in by m32r_compute_frame_size with register save masks, and offsets for the current function. */ struct m32r_frame_info { unsigned int total_size; /* # bytes that the entire frame takes up. */ unsigned int extra_size; /* # bytes of extra stuff. */ unsigned int pretend_size; /* # bytes we push and pretend caller did. */ unsigned int args_size; /* # bytes that outgoing arguments take up. */ unsigned int reg_size; /* # bytes needed to store regs. */ unsigned int var_size; /* # bytes that variables take up. */ unsigned int gmask; /* Mask of saved gp registers. */ unsigned int save_fp; /* Nonzero if fp must be saved. */ unsigned int save_lr; /* Nonzero if lr (return addr) must be saved. */ int initialized; /* Nonzero if frame size already calculated. */ }; /* Current frame information calculated by m32r_compute_frame_size. */ static struct m32r_frame_info current_frame_info; /* Zero structure to initialize current_frame_info. */ static struct m32r_frame_info zero_frame_info; #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM)) #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM)) /* Tell prologue and epilogue if register REGNO should be saved / restored. The return address and frame pointer are treated separately. Don't consider them here. */ #define MUST_SAVE_REGISTER(regno, interrupt_p) \ ((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \ && (df_regs_ever_live_p (regno) && (!call_used_regs[regno] || interrupt_p))) #define MUST_SAVE_FRAME_POINTER (df_regs_ever_live_p (FRAME_POINTER_REGNUM)) #define MUST_SAVE_RETURN_ADDR (df_regs_ever_live_p (RETURN_ADDR_REGNUM) || crtl->profile) #define SHORT_INSN_SIZE 2 /* Size of small instructions. */ #define LONG_INSN_SIZE 4 /* Size of long instructions. */ /* Return the bytes needed to compute the frame pointer from the current stack pointer. SIZE is the size needed for local variables. */ unsigned int m32r_compute_frame_size (poly_int64 size) /* # of var. bytes allocated. */ { unsigned int regno; unsigned int total_size, var_size, args_size, pretend_size, extra_size; unsigned int reg_size; unsigned int gmask; enum m32r_function_type fn_type; int interrupt_p; int pic_reg_used = flag_pic && (crtl->uses_pic_offset_table | crtl->profile); var_size = M32R_STACK_ALIGN (size); args_size = M32R_STACK_ALIGN (crtl->outgoing_args_size); pretend_size = crtl->args.pretend_args_size; extra_size = FIRST_PARM_OFFSET (0); total_size = extra_size + pretend_size + args_size + var_size; reg_size = 0; gmask = 0; /* See if this is an interrupt handler. Call used registers must be saved for them too. */ fn_type = m32r_compute_function_type (current_function_decl); interrupt_p = M32R_INTERRUPT_P (fn_type); /* Calculate space needed for registers. */ for (regno = 0; regno < M32R_MAX_INT_REGS; regno++) { if (MUST_SAVE_REGISTER (regno, interrupt_p) || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used)) { reg_size += UNITS_PER_WORD; gmask |= 1 << regno; } } current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER; current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR || pic_reg_used; reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr) * UNITS_PER_WORD); total_size += reg_size; /* ??? Not sure this is necessary, and I don't think the epilogue handler will do the right thing if this changes total_size. */ total_size = M32R_STACK_ALIGN (total_size); /* frame_size = total_size - (pretend_size + reg_size); */ /* Save computed information. */ current_frame_info.total_size = total_size; current_frame_info.extra_size = extra_size; current_frame_info.pretend_size = pretend_size; current_frame_info.var_size = var_size; current_frame_info.args_size = args_size; current_frame_info.reg_size = reg_size; current_frame_info.gmask = gmask; current_frame_info.initialized = reload_completed; /* Ok, we're done. */ return total_size; } /* Worker function for TARGET_CAN_ELIMINATE. */ bool m32r_can_eliminate (const int from, const int to) { return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true); } /* The table we use to reference PIC data. */ static rtx global_offset_table; static void m32r_reload_lr (rtx sp, int size) { rtx lr = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); if (size == 0) emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, sp))); else if (size < 32768) emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, gen_rtx_PLUS (Pmode, sp, GEN_INT (size))))); else { rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM); emit_insn (gen_movsi (tmp, GEN_INT (size))); emit_insn (gen_addsi3 (tmp, tmp, sp)); emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, tmp))); } emit_use (lr); } void m32r_load_pic_register (void) { global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table, GEN_INT (TARGET_MODEL_SMALL))); /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp can cause life info to screw up. */ emit_use (pic_offset_table_rtx); } /* Expand the m32r prologue as a series of insns. */ void m32r_expand_prologue (void) { int regno; int frame_size; unsigned int gmask; int pic_reg_used = flag_pic && (crtl->uses_pic_offset_table | crtl->profile); if (! current_frame_info.initialized) m32r_compute_frame_size (get_frame_size ()); if (flag_stack_usage_info) current_function_static_stack_size = current_frame_info.total_size; gmask = current_frame_info.gmask; /* These cases shouldn't happen. Catch them now. */ gcc_assert (current_frame_info.total_size || !gmask); /* Allocate space for register arguments if this is a variadic function. */ if (current_frame_info.pretend_size != 0) { /* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives the wrong result on a 64-bit host. */ HOST_WIDE_INT pretend_size = current_frame_info.pretend_size; emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-pretend_size))); } /* Save any registers we need to and set up fp. */ if (current_frame_info.save_fp) emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx)); gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK); /* Save any needed call-saved regs (and call-used if this is an interrupt handler). */ for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno) { if ((gmask & (1 << regno)) != 0) emit_insn (gen_movsi_push (stack_pointer_rtx, gen_rtx_REG (Pmode, regno))); } if (current_frame_info.save_lr) emit_insn (gen_movsi_push (stack_pointer_rtx, gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM))); /* Allocate the stack frame. */ frame_size = (current_frame_info.total_size - (current_frame_info.pretend_size + current_frame_info.reg_size)); if (frame_size == 0) ; /* Nothing to do. */ else if (frame_size <= 32768) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-frame_size))); else { rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM); emit_insn (gen_movsi (tmp, GEN_INT (frame_size))); emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp)); } if (frame_pointer_needed) emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx)); if (crtl->profile) /* Push lr for mcount (form_pc, x). */ emit_insn (gen_movsi_push (stack_pointer_rtx, gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM))); if (pic_reg_used) { m32r_load_pic_register (); m32r_reload_lr (stack_pointer_rtx, (crtl->profile ? 0 : frame_size)); } if (crtl->profile && !pic_reg_used) emit_insn (gen_blockage ()); } /* Set up the stack and frame pointer (if desired) for the function. Note, if this is changed, you need to mirror the changes in m32r_compute_frame_size which calculates the prolog size. */ static void m32r_output_function_prologue (FILE * file) { enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl); /* If this is an interrupt handler, mark it as such. */ if (M32R_INTERRUPT_P (fn_type)) fprintf (file, "\t%s interrupt handler\n", ASM_COMMENT_START); if (! current_frame_info.initialized) m32r_compute_frame_size (get_frame_size ()); /* This is only for the human reader. */ fprintf (file, "\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n", ASM_COMMENT_START, current_frame_info.var_size, current_frame_info.reg_size / 4, current_frame_info.args_size, current_frame_info.extra_size); } /* Output RTL to pop register REGNO from the stack. */ static void pop (int regno) { rtx x; x = emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, regno), stack_pointer_rtx)); add_reg_note (x, REG_INC, stack_pointer_rtx); } /* Expand the m32r epilogue as a series of insns. */ void m32r_expand_epilogue (void) { int regno; int noepilogue = FALSE; int total_size; gcc_assert (current_frame_info.initialized); total_size = current_frame_info.total_size; if (total_size == 0) { rtx_insn *insn = get_last_insn (); /* If the last insn was a BARRIER, we don't have to write any code because a jump (aka return) was put there. */ if (insn && NOTE_P (insn)) insn = prev_nonnote_insn (insn); if (insn && BARRIER_P (insn)) noepilogue = TRUE; } if (!noepilogue) { unsigned int var_size = current_frame_info.var_size; unsigned int args_size = current_frame_info.args_size; unsigned int gmask = current_frame_info.gmask; int can_trust_sp_p = !cfun->calls_alloca; if (flag_exceptions) emit_insn (gen_blockage ()); /* The first thing to do is point the sp at the bottom of the register save area. */ if (can_trust_sp_p) { unsigned int reg_offset = var_size + args_size; if (reg_offset == 0) ; /* Nothing to do. */ else if (reg_offset < 32768) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (reg_offset))); else { rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM); emit_insn (gen_movsi (tmp, GEN_INT (reg_offset))); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp)); } } else if (frame_pointer_needed) { unsigned int reg_offset = var_size + args_size; if (reg_offset == 0) emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx)); else if (reg_offset < 32768) emit_insn (gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx, GEN_INT (reg_offset))); else { rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM); emit_insn (gen_movsi (tmp, GEN_INT (reg_offset))); emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx)); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp)); } } else gcc_unreachable (); if (current_frame_info.save_lr) pop (RETURN_ADDR_REGNUM); /* Restore any saved registers, in reverse order of course. */ gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK); for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno) { if ((gmask & (1L << regno)) != 0) pop (regno); } if (current_frame_info.save_fp) pop (FRAME_POINTER_REGNUM); /* Remove varargs area if present. */ if (current_frame_info.pretend_size != 0) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (current_frame_info.pretend_size))); emit_insn (gen_blockage ()); } } /* Do any necessary cleanup after a function to restore stack, frame, and regs. */ static void m32r_output_function_epilogue (FILE *) { /* Reset state info for each function. */ current_frame_info = zero_frame_info; m32r_compute_function_type (NULL_TREE); } /* Return nonzero if this function is known to have a null or 1 instruction epilogue. */ int direct_return (void) { if (!reload_completed) return FALSE; if (M32R_INTERRUPT_P (m32r_compute_function_type (current_function_decl))) return FALSE; if (! current_frame_info.initialized) m32r_compute_frame_size (get_frame_size ()); return current_frame_info.total_size == 0; } /* PIC. */ int m32r_legitimate_pic_operand_p (rtx x) { if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) return 0; if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF) && (CONST_INT_P (XEXP (XEXP (x, 0), 1)))) return 0; return 1; } rtx m32r_legitimize_pic_address (rtx orig, rtx reg) { #ifdef DEBUG_PIC printf("m32r_legitimize_pic_address()\n"); #endif if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF) { rtx pic_ref, address; int subregs = 0; if (reg == 0) { gcc_assert (!reload_in_progress && !reload_completed); reg = gen_reg_rtx (Pmode); subregs = 1; } if (subregs) address = gen_reg_rtx (Pmode); else address = reg; crtl->uses_pic_offset_table = 1; if (GET_CODE (orig) == LABEL_REF || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig))) { emit_insn (gen_gotoff_load_addr (reg, orig)); emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx)); return reg; } emit_insn (gen_pic_load_addr (address, orig)); emit_insn (gen_addsi3 (address, address, pic_offset_table_rtx)); pic_ref = gen_const_mem (Pmode, address); emit_move_insn (reg, pic_ref); return reg; } else if (GET_CODE (orig) == CONST) { rtx base, offset; if (GET_CODE (XEXP (orig, 0)) == PLUS && XEXP (XEXP (orig, 0), 1) == pic_offset_table_rtx) return orig; if (reg == 0) { gcc_assert (!reload_in_progress && !reload_completed); reg = gen_reg_rtx (Pmode); } if (GET_CODE (XEXP (orig, 0)) == PLUS) { base = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg); if (base == reg) offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), NULL_RTX); else offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), reg); } else return orig; if (CONST_INT_P (offset)) { if (INT16_P (INTVAL (offset))) return plus_constant (Pmode, base, INTVAL (offset)); else { gcc_assert (! reload_in_progress && ! reload_completed); offset = force_reg (Pmode, offset); } } return gen_rtx_PLUS (Pmode, base, offset); } return orig; } static rtx m32r_legitimize_address (rtx x, rtx orig_x ATTRIBUTE_UNUSED, machine_mode mode ATTRIBUTE_UNUSED) { if (flag_pic) return m32r_legitimize_pic_address (x, NULL_RTX); else return x; } /* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P. */ static bool m32r_mode_dependent_address_p (const_rtx addr, addr_space_t as ATTRIBUTE_UNUSED) { if (GET_CODE (addr) == LO_SUM) return true; return false; } /* Nested function support. */ /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. */ void m32r_initialize_trampoline (rtx tramp ATTRIBUTE_UNUSED, rtx fnaddr ATTRIBUTE_UNUSED, rtx cxt ATTRIBUTE_UNUSED) { } static void m32r_file_start (void) { default_file_start (); if (flag_verbose_asm) fprintf (asm_out_file, "%s M32R/D special options: -G %d\n", ASM_COMMENT_START, g_switch_value); if (TARGET_LITTLE_ENDIAN) fprintf (asm_out_file, "\t.little\n"); } /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ static void m32r_print_operand (FILE * file, rtx x, int code) { rtx addr; switch (code) { /* The 's' and 'p' codes are used by output_block_move() to indicate post-increment 's'tores and 'p're-increment loads. */ case 's': if (REG_P (x)) fprintf (file, "@+%s", reg_names [REGNO (x)]); else output_operand_lossage ("invalid operand to %%s code"); return; case 'p': if (REG_P (x)) fprintf (file, "@%s+", reg_names [REGNO (x)]); else output_operand_lossage ("invalid operand to %%p code"); return; case 'R' : /* Write second word of DImode or DFmode reference, register or memory. */ if (REG_P (x)) fputs (reg_names[REGNO (x)+1], file); else if (MEM_P (x)) { machine_mode mode = GET_MODE (x); fprintf (file, "@("); /* Handle possible auto-increment. Since it is pre-increment and we have already done it, we can just use an offset of four. */ /* ??? This is taken from rs6000.cc I think. I don't think it is currently necessary, but keep it around. */ if (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC) output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0), 4)); else output_address (mode, plus_constant (Pmode, XEXP (x, 0), 4)); fputc (')', file); } else output_operand_lossage ("invalid operand to %%R code"); return; case 'H' : /* High word. */ case 'L' : /* Low word. */ if (REG_P (x)) { /* L = least significant word, H = most significant word. */ if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L')) fputs (reg_names[REGNO (x)], file); else fputs (reg_names[REGNO (x)+1], file); } else if (CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE) { rtx first, second; split_double (x, &first, &second); fprintf (file, HOST_WIDE_INT_PRINT_HEX, code == 'L' ? INTVAL (first) : INTVAL (second)); } else output_operand_lossage ("invalid operand to %%H/%%L code"); return; case 'A' : { char str[30]; if (GET_CODE (x) != CONST_DOUBLE || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT) fatal_insn ("bad insn for 'A'", x); real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1); fprintf (file, "%s", str); return; } case 'B' : /* Bottom half. */ case 'T' : /* Top half. */ /* Output the argument to a `seth' insn (sets the Top half-word). For constants output arguments to a seth/or3 pair to set Top and Bottom halves. For symbols output arguments to a seth/add3 pair to set Top and Bottom halves. The difference exists because for constants seth/or3 is more readable but for symbols we need to use the same scheme as `ld' and `st' insns (16-bit addend is signed). */ switch (GET_CODE (x)) { case CONST_INT : case CONST_DOUBLE : { rtx first, second; split_double (x, &first, &second); x = WORDS_BIG_ENDIAN ? second : first; fprintf (file, HOST_WIDE_INT_PRINT_HEX, (code == 'B' ? INTVAL (x) & 0xffff : (INTVAL (x) >> 16) & 0xffff)); } return; case CONST : case SYMBOL_REF : if (code == 'B' && small_data_operand (x, VOIDmode)) { fputs ("sda(", file); output_addr_const (file, x); fputc (')', file); return; } /* fall through */ case LABEL_REF : fputs (code == 'T' ? "shigh(" : "low(", file); output_addr_const (file, x); fputc (')', file); return; default : output_operand_lossage ("invalid operand to %%T/%%B code"); return; } break; case 'U' : /* ??? wip */ /* Output a load/store with update indicator if appropriate. */ if (MEM_P (x)) { if (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC) fputs (".a", file); } else output_operand_lossage ("invalid operand to %%U code"); return; case 'N' : /* Print a constant value negated. */ if (CONST_INT_P (x)) output_addr_const (file, GEN_INT (- INTVAL (x))); else output_operand_lossage ("invalid operand to %%N code"); return; case 'X' : /* Print a const_int in hex. Used in comments. */ if (CONST_INT_P (x)) fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x)); return; case '#' : fputs (IMMEDIATE_PREFIX, file); return; case 0 : /* Do nothing special. */ break; default : /* Unknown flag. */ output_operand_lossage ("invalid operand output code"); } switch (GET_CODE (x)) { case REG : fputs (reg_names[REGNO (x)], file); break; case MEM : addr = XEXP (x, 0); if (GET_CODE (addr) == PRE_INC) { if (!REG_P (XEXP (addr, 0))) fatal_insn ("pre-increment address is not a register", x); fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]); } else if (GET_CODE (addr) == PRE_DEC) { if (!REG_P (XEXP (addr, 0))) fatal_insn ("pre-decrement address is not a register", x); fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]); } else if (GET_CODE (addr) == POST_INC) { if (!REG_P (XEXP (addr, 0))) fatal_insn ("post-increment address is not a register", x); fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]); } else { fputs ("@(", file); output_address (GET_MODE (x), addr); fputc (')', file); } break; case CONST_DOUBLE : /* We handle SFmode constants here as output_addr_const doesn't. */ if (GET_MODE (x) == SFmode) { long l; REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l); fprintf (file, "0x%08lx", l); break; } /* FALLTHRU */ /* Let output_addr_const deal with it. */ default : output_addr_const (file, x); break; } } /* Print a memory address as an operand to reference that memory location. */ static void m32r_print_operand_address (FILE * file, machine_mode /*mode*/, rtx addr) { rtx base; rtx index = 0; int offset = 0; switch (GET_CODE (addr)) { case REG : fputs (reg_names[REGNO (addr)], file); break; case PLUS : if (CONST_INT_P (XEXP (addr, 0))) offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); else if (CONST_INT_P (XEXP (addr, 1))) offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); else base = XEXP (addr, 0), index = XEXP (addr, 1); if (REG_P (base)) { /* Print the offset first (if present) to conform to the manual. */ if (index == 0) { if (offset != 0) fprintf (file, "%d,", offset); fputs (reg_names[REGNO (base)], file); } /* The chip doesn't support this, but left in for generality. */ else if (REG_P (index)) fprintf (file, "%s,%s", reg_names[REGNO (base)], reg_names[REGNO (index)]); /* Not sure this can happen, but leave in for now. */ else if (GET_CODE (index) == SYMBOL_REF) { output_addr_const (file, index); fputc (',', file); fputs (reg_names[REGNO (base)], file); } else fatal_insn ("bad address", addr); } else if (GET_CODE (base) == LO_SUM) { gcc_assert (!index && REG_P (XEXP (base, 0))); if (small_data_operand (XEXP (base, 1), VOIDmode)) fputs ("sda(", file); else fputs ("low(", file); output_addr_const (file, plus_constant (Pmode, XEXP (base, 1), offset)); fputs ("),", file); fputs (reg_names[REGNO (XEXP (base, 0))], file); } else fatal_insn ("bad address", addr); break; case LO_SUM : if (!REG_P (XEXP (addr, 0))) fatal_insn ("lo_sum not of register", addr); if (small_data_operand (XEXP (addr, 1), VOIDmode)) fputs ("sda(", file); else fputs ("low(", file); output_addr_const (file, XEXP (addr, 1)); fputs ("),", file); fputs (reg_names[REGNO (XEXP (addr, 0))], file); break; case PRE_INC : /* Assume SImode. */ fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]); break; case PRE_DEC : /* Assume SImode. */ fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]); break; case POST_INC : /* Assume SImode. */ fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]); break; default : output_addr_const (file, addr); break; } } static bool m32r_print_operand_punct_valid_p (unsigned char code) { return m32r_punct_chars[code]; } /* Return true if the operands are the constants 0 and 1. */ int zero_and_one (rtx operand1, rtx operand2) { return CONST_INT_P (operand1) && CONST_INT_P (operand2) && ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1)) ||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0))); } /* Generate the correct assembler code to handle the conditional loading of a value into a register. It is known that the operands satisfy the conditional_move_operand() function above. The destination is operand[0]. The condition is operand [1]. The 'true' value is operand [2] and the 'false' value is operand [3]. */ char * emit_cond_move (rtx * operands, rtx insn ATTRIBUTE_UNUSED) { static char buffer [100]; const char * dest = reg_names [REGNO (operands [0])]; buffer [0] = 0; /* Destination must be a register. */ gcc_assert (REG_P (operands [0])); gcc_assert (conditional_move_operand (operands [2], SImode)); gcc_assert (conditional_move_operand (operands [3], SImode)); /* Check to see if the test is reversed. */ if (GET_CODE (operands [1]) == NE) { rtx tmp = operands [2]; operands [2] = operands [3]; operands [3] = tmp; } sprintf (buffer, "mvfc %s, cbr", dest); /* If the true value was '0' then we need to invert the results of the move. */ if (INTVAL (operands [2]) == 0) sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1", dest, dest); return buffer; } /* Returns true if the registers contained in the two rtl expressions are different. */ int m32r_not_same_reg (rtx a, rtx b) { int reg_a = -1; int reg_b = -2; while (GET_CODE (a) == SUBREG) a = SUBREG_REG (a); if (REG_P (a)) reg_a = REGNO (a); while (GET_CODE (b) == SUBREG) b = SUBREG_REG (b); if (REG_P (b)) reg_b = REGNO (b); return reg_a != reg_b; } rtx m32r_function_symbol (const char *name) { int extra_flags = 0; enum m32r_model model; rtx sym = gen_rtx_SYMBOL_REF (Pmode, name); if (TARGET_MODEL_SMALL) model = M32R_MODEL_SMALL; else if (TARGET_MODEL_MEDIUM) model = M32R_MODEL_MEDIUM; else if (TARGET_MODEL_LARGE) model = M32R_MODEL_LARGE; else gcc_unreachable (); /* Shouldn't happen. */ extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT; if (extra_flags) SYMBOL_REF_FLAGS (sym) |= extra_flags; return sym; } /* Use a library function to move some bytes. */ static void block_move_call (rtx dest_reg, rtx src_reg, rtx bytes_rtx) { /* We want to pass the size as Pmode, which will normally be SImode but will be DImode if we are using 64-bit longs and pointers. */ if (GET_MODE (bytes_rtx) != VOIDmode && GET_MODE (bytes_rtx) != Pmode) bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1); emit_library_call (m32r_function_symbol ("memcpy"), LCT_NORMAL, VOIDmode, dest_reg, Pmode, src_reg, Pmode, convert_to_mode (TYPE_MODE (sizetype), bytes_rtx, TYPE_UNSIGNED (sizetype)), TYPE_MODE (sizetype)); } /* Expand string/block move operations. operands[0] is the pointer to the destination. operands[1] is the pointer to the source. operands[2] is the number of bytes to move. operands[3] is the alignment. Returns 1 upon success, 0 otherwise. */ int m32r_expand_block_move (rtx operands[]) { rtx orig_dst = operands[0]; rtx orig_src = operands[1]; rtx bytes_rtx = operands[2]; rtx align_rtx = operands[3]; int constp = CONST_INT_P (bytes_rtx); HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0; int align = INTVAL (align_rtx); int leftover; rtx src_reg; rtx dst_reg; if (constp && bytes <= 0) return 1; /* Move the address into scratch registers. */ dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0)); src_reg = copy_addr_to_reg (XEXP (orig_src, 0)); if (align > UNITS_PER_WORD) align = UNITS_PER_WORD; /* If we prefer size over speed, always use a function call. If we do not know the size, use a function call. If the blocks are not word aligned, use a function call. */ if (optimize_size || ! constp || align != UNITS_PER_WORD) { block_move_call (dst_reg, src_reg, bytes_rtx); return 0; } leftover = bytes % MAX_MOVE_BYTES; bytes -= leftover; /* If necessary, generate a loop to handle the bulk of the copy. */ if (bytes) { rtx_code_label *label = NULL; rtx final_src = NULL_RTX; rtx at_a_time = GEN_INT (MAX_MOVE_BYTES); rtx rounded_total = GEN_INT (bytes); rtx new_dst_reg = gen_reg_rtx (SImode); rtx new_src_reg = gen_reg_rtx (SImode); /* If we are going to have to perform this loop more than once, then generate a label and compute the address the source register will contain upon completion of the final iteration. */ if (bytes > MAX_MOVE_BYTES) { final_src = gen_reg_rtx (Pmode); if (INT16_P(bytes)) emit_insn (gen_addsi3 (final_src, src_reg, rounded_total)); else { emit_insn (gen_movsi (final_src, rounded_total)); emit_insn (gen_addsi3 (final_src, final_src, src_reg)); } label = gen_label_rtx (); emit_label (label); } /* It is known that output_block_move() will update src_reg to point to the word after the end of the source block, and dst_reg to point to the last word of the destination block, provided that the block is MAX_MOVE_BYTES long. */ emit_insn (gen_cpymemsi_internal (dst_reg, src_reg, at_a_time, new_dst_reg, new_src_reg)); emit_move_insn (dst_reg, new_dst_reg); emit_move_insn (src_reg, new_src_reg); emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4))); if (bytes > MAX_MOVE_BYTES) { rtx test = gen_rtx_NE (VOIDmode, src_reg, final_src); emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label)); } } if (leftover) emit_insn (gen_cpymemsi_internal (dst_reg, src_reg, GEN_INT (leftover), gen_reg_rtx (SImode), gen_reg_rtx (SImode))); return 1; } /* Emit load/stores for a small constant word aligned block_move. operands[0] is the memory address of the destination. operands[1] is the memory address of the source. operands[2] is the number of bytes to move. operands[3] is a temp register. operands[4] is a temp register. */ void m32r_output_block_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[]) { HOST_WIDE_INT bytes = INTVAL (operands[2]); int first_time; int got_extra = 0; gcc_assert (bytes >= 1 && bytes <= MAX_MOVE_BYTES); /* We do not have a post-increment store available, so the first set of stores are done without any increment, then the remaining ones can use the pre-increment addressing mode. Note: expand_block_move() also relies upon this behavior when building loops to copy large blocks. */ first_time = 1; while (bytes > 0) { if (bytes >= 8) { if (first_time) { output_asm_insn ("ld\t%5, %p1", operands); output_asm_insn ("ld\t%6, %p1", operands); output_asm_insn ("st\t%5, @%0", operands); output_asm_insn ("st\t%6, %s0", operands); } else { output_asm_insn ("ld\t%5, %p1", operands); output_asm_insn ("ld\t%6, %p1", operands); output_asm_insn ("st\t%5, %s0", operands); output_asm_insn ("st\t%6, %s0", operands); } bytes -= 8; } else if (bytes >= 4) { if (bytes > 4) got_extra = 1; output_asm_insn ("ld\t%5, %p1", operands); if (got_extra) output_asm_insn ("ld\t%6, %p1", operands); if (first_time) output_asm_insn ("st\t%5, @%0", operands); else output_asm_insn ("st\t%5, %s0", operands); bytes -= 4; } else { /* Get the entire next word, even though we do not want all of it. The saves us from doing several smaller loads, and we assume that we cannot cause a page fault when at least part of the word is in valid memory [since we don't get called if things aren't properly aligned]. */ int dst_offset = first_time ? 0 : 4; /* The amount of increment we have to make to the destination pointer. */ int dst_inc_amount = dst_offset + bytes - 4; /* The same for the source pointer. */ int src_inc_amount = bytes - (got_extra ? 4 : 0); int last_shift; rtx my_operands[3]; /* If got_extra is true then we have already loaded the next word as part of loading and storing the previous word. */ if (! got_extra) output_asm_insn ("ld\t%6, @%1", operands); if (bytes >= 2) { bytes -= 2; output_asm_insn ("sra3\t%5, %6, #16", operands); my_operands[0] = operands[5]; my_operands[1] = GEN_INT (dst_offset); my_operands[2] = operands[0]; output_asm_insn ("sth\t%0, @(%1,%2)", my_operands); /* If there is a byte left to store then increment the destination address and shift the contents of the source register down by 8 bits. We could not do the address increment in the store half word instruction, because it does not have an auto increment mode. */ if (bytes > 0) /* assert (bytes == 1) */ { dst_offset += 2; last_shift = 8; } } else last_shift = 24; if (bytes > 0) { my_operands[0] = operands[6]; my_operands[1] = GEN_INT (last_shift); output_asm_insn ("srai\t%0, #%1", my_operands); my_operands[0] = operands[6]; my_operands[1] = GEN_INT (dst_offset); my_operands[2] = operands[0]; output_asm_insn ("stb\t%0, @(%1,%2)", my_operands); } /* Update the destination pointer if needed. We have to do this so that the patterns matches what we output in this function. */ if (dst_inc_amount && !find_reg_note (insn, REG_UNUSED, operands[0])) { my_operands[0] = operands[0]; my_operands[1] = GEN_INT (dst_inc_amount); output_asm_insn ("addi\t%0, #%1", my_operands); } /* Update the source pointer if needed. We have to do this so that the patterns matches what we output in this function. */ if (src_inc_amount && !find_reg_note (insn, REG_UNUSED, operands[1])) { my_operands[0] = operands[1]; my_operands[1] = GEN_INT (src_inc_amount); output_asm_insn ("addi\t%0, #%1", my_operands); } bytes = 0; } first_time = 0; } } /* Implement TARGET_HARD_REGNO_MODE_OK. */ static bool m32r_hard_regno_mode_ok (unsigned int regno, machine_mode mode) { return (m32r_hard_regno_modes[regno] & m32r_mode_class[mode]) != 0; } /* Implement TARGET_MODES_TIEABLE_P. Tie QI/HI/SI modes together. */ static bool m32r_modes_tieable_p (machine_mode mode1, machine_mode mode2) { return (GET_MODE_CLASS (mode1) == MODE_INT && GET_MODE_CLASS (mode2) == MODE_INT && GET_MODE_SIZE (mode1) <= UNITS_PER_WORD && GET_MODE_SIZE (mode2) <= UNITS_PER_WORD); } /* Return true if using NEW_REG in place of OLD_REG is ok. */ int m32r_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED, unsigned int new_reg) { /* Interrupt routines can't clobber any register that isn't already used. */ if (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl)) && !df_regs_ever_live_p (new_reg)) return 0; return 1; } rtx m32r_return_addr (int count) { if (count != 0) return const0_rtx; return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); } static void m32r_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { emit_move_insn (adjust_address (m_tramp, SImode, 0), gen_int_mode (TARGET_LITTLE_ENDIAN ? 0x017e8e17 : 0x178e7e01, SImode)); emit_move_insn (adjust_address (m_tramp, SImode, 4), gen_int_mode (TARGET_LITTLE_ENDIAN ? 0x0c00ae86 : 0x86ae000c, SImode)); emit_move_insn (adjust_address (m_tramp, SImode, 8), gen_int_mode (TARGET_LITTLE_ENDIAN ? 0xe627871e : 0x1e8727e6, SImode)); emit_move_insn (adjust_address (m_tramp, SImode, 12), gen_int_mode (TARGET_LITTLE_ENDIAN ? 0xc616c626 : 0x26c61fc6, SImode)); emit_move_insn (adjust_address (m_tramp, SImode, 16), chain_value); emit_move_insn (adjust_address (m_tramp, SImode, 20), XEXP (DECL_RTL (fndecl), 0)); if (m32r_cache_flush_trap >= 0) emit_insn (gen_flush_icache (validize_mem (adjust_address (m_tramp, SImode, 0)), gen_int_mode (m32r_cache_flush_trap, SImode))); else if (m32r_cache_flush_func && m32r_cache_flush_func[0]) emit_library_call (m32r_function_symbol (m32r_cache_flush_func), LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode, gen_int_mode (TRAMPOLINE_SIZE, SImode), SImode, GEN_INT (3), SImode); } /* True if X is a reg that can be used as a base reg. */ static bool m32r_rtx_ok_for_base_p (const_rtx x, bool strict) { if (! REG_P (x)) return false; if (strict) { if (GPR_P (REGNO (x))) return true; } else { if (GPR_P (REGNO (x)) || REGNO (x) == ARG_POINTER_REGNUM || ! HARD_REGISTER_P (x)) return true; } return false; } static inline bool m32r_rtx_ok_for_offset_p (const_rtx x) { return (CONST_INT_P (x) && INT16_P (INTVAL (x))); } static inline bool m32r_legitimate_offset_addres_p (machine_mode mode ATTRIBUTE_UNUSED, const_rtx x, bool strict) { if (GET_CODE (x) == PLUS && m32r_rtx_ok_for_base_p (XEXP (x, 0), strict) && m32r_rtx_ok_for_offset_p (XEXP (x, 1))) return true; return false; } /* For LO_SUM addresses, do not allow them if the MODE is > 1 word, since more than one instruction will be required. */ static inline bool m32r_legitimate_lo_sum_addres_p (machine_mode mode, const_rtx x, bool strict) { if (GET_CODE (x) == LO_SUM && (mode != BLKmode && GET_MODE_SIZE (mode) <= UNITS_PER_WORD) && m32r_rtx_ok_for_base_p (XEXP (x, 0), strict) && CONSTANT_P (XEXP (x, 1))) return true; return false; } /* Is this a load and increment operation. */ static inline bool m32r_load_postinc_p (machine_mode mode, const_rtx x, bool strict) { if ((mode == SImode || mode == SFmode) && GET_CODE (x) == POST_INC && REG_P (XEXP (x, 0)) && m32r_rtx_ok_for_base_p (XEXP (x, 0), strict)) return true; return false; } /* Is this an increment/decrement and store operation. */ static inline bool m32r_store_preinc_predec_p (machine_mode mode, const_rtx x, bool strict) { if ((mode == SImode || mode == SFmode) && (GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC) && REG_P (XEXP (x, 0)) \ && m32r_rtx_ok_for_base_p (XEXP (x, 0), strict)) return true; return false; } /* Implement TARGET_LEGITIMATE_ADDRESS_P. */ static bool m32r_legitimate_address_p (machine_mode mode, rtx x, bool strict, code_helper) { if (m32r_rtx_ok_for_base_p (x, strict) || m32r_legitimate_offset_addres_p (mode, x, strict) || m32r_legitimate_lo_sum_addres_p (mode, x, strict) || m32r_load_postinc_p (mode, x, strict) || m32r_store_preinc_predec_p (mode, x, strict)) return true; return false; } static void m32r_conditional_register_usage (void) { if (flag_pic) fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; } /* Implement TARGET_LEGITIMATE_CONSTANT_P We don't allow (plus symbol large-constant) as the relocations can't describe it. INTVAL > 32767 handles both 16-bit and 24-bit relocations. We allow all CONST_DOUBLE's as the md file patterns will force the constant to memory if they can't handle them. */ static bool m32r_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x) { return !(GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF) && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && UINTVAL (XEXP (XEXP (x, 0), 1)) > 32767); } /* Implement TARGET_STARTING_FRAME_OFFSET. The frame pointer points at the same place as the stack pointer, except if alloca has been called. */ static HOST_WIDE_INT m32r_starting_frame_offset (void) { return M32R_STACK_ALIGN (crtl->outgoing_args_size); }