/* Definitions of target machine for GCC for IA-32. Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* The purpose of this file is to define the characteristics of the i386, independent of assembler syntax or operating system. Three other files build on this one to describe a specific assembler syntax: bsd386.h, att386.h, and sun386.h. The actual tm.h file for a particular system should include this file, and then the file for the appropriate assembler syntax. Many macros that specify assembler syntax are omitted entirely from this file because they really belong in the files for particular assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */ /* Redefines for option macros. */ #define TARGET_64BIT OPTION_ISA_64BIT #define TARGET_MMX OPTION_ISA_MMX #define TARGET_3DNOW OPTION_ISA_3DNOW #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A #define TARGET_SSE OPTION_ISA_SSE #define TARGET_SSE2 OPTION_ISA_SSE2 #define TARGET_SSE3 OPTION_ISA_SSE3 #define TARGET_SSSE3 OPTION_ISA_SSSE3 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2 #define TARGET_AVX OPTION_ISA_AVX #define TARGET_FMA OPTION_ISA_FMA #define TARGET_SSE4A OPTION_ISA_SSE4A #define TARGET_FMA4 OPTION_ISA_FMA4 #define TARGET_XOP OPTION_ISA_XOP #define TARGET_LWP OPTION_ISA_LWP #define TARGET_ROUND OPTION_ISA_ROUND #define TARGET_ABM OPTION_ISA_ABM #define TARGET_POPCNT OPTION_ISA_POPCNT #define TARGET_SAHF OPTION_ISA_SAHF #define TARGET_MOVBE OPTION_ISA_MOVBE #define TARGET_CRC32 OPTION_ISA_CRC32 #define TARGET_AES OPTION_ISA_AES #define TARGET_PCLMUL OPTION_ISA_PCLMUL #define TARGET_CMPXCHG16B OPTION_ISA_CX16 /* SSE4.1 defines round instructions */ #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0) #include "config/vxworks-dummy.h" /* Algorithm to expand string function with. */ enum stringop_alg { no_stringop, libcall, rep_prefix_1_byte, rep_prefix_4_byte, rep_prefix_8_byte, loop_1_byte, loop, unrolled_loop }; #define NAX_STRINGOP_ALGS 4 /* Specify what algorithm to use for stringops on known size. When size is unknown, the UNKNOWN_SIZE alg is used. When size is known at compile time or estimated via feedback, the SIZE array is walked in order until MAX is greater then the estimate (or -1 means infinity). Corresponding ALG is used then. For example initializer: {{256, loop}, {-1, rep_prefix_4_byte}} will use loop for blocks smaller or equal to 256 bytes, rep prefix will be used otherwise. */ struct stringop_algs { const enum stringop_alg unknown_size; const struct stringop_strategy { const int max; const enum stringop_alg alg; } size [NAX_STRINGOP_ALGS]; }; /* Define the specific costs for a given cpu */ struct processor_costs { const int add; /* cost of an add instruction */ const int lea; /* cost of a lea instruction */ const int shift_var; /* variable shift costs */ const int shift_const; /* constant shift costs */ const int mult_init[5]; /* cost of starting a multiply in QImode, HImode, SImode, DImode, TImode*/ const int mult_bit; /* cost of multiply per each bit set */ const int divide[5]; /* cost of a divide/mod in QImode, HImode, SImode, DImode, TImode*/ int movsx; /* The cost of movsx operation. */ int movzx; /* The cost of movzx operation. */ const int large_insn; /* insns larger than this cost more */ const int move_ratio; /* The threshold of number of scalar memory-to-memory move insns. */ const int movzbl_load; /* cost of loading using movzbl */ const int int_load[3]; /* cost of loading integer registers in QImode, HImode and SImode relative to reg-reg move (2). */ const int int_store[3]; /* cost of storing integer register in QImode, HImode and SImode */ const int fp_move; /* cost of reg,reg fld/fst */ const int fp_load[3]; /* cost of loading FP register in SFmode, DFmode and XFmode */ const int fp_store[3]; /* cost of storing FP register in SFmode, DFmode and XFmode */ const int mmx_move; /* cost of moving MMX register. */ const int mmx_load[2]; /* cost of loading MMX register in SImode and DImode */ const int mmx_store[2]; /* cost of storing MMX register in SImode and DImode */ const int sse_move; /* cost of moving SSE register. */ const int sse_load[3]; /* cost of loading SSE register in SImode, DImode and TImode*/ const int sse_store[3]; /* cost of storing SSE register in SImode, DImode and TImode*/ const int mmxsse_to_integer; /* cost of moving mmxsse register to integer and vice versa. */ const int l1_cache_size; /* size of l1 cache, in kilobytes. */ const int l2_cache_size; /* size of l2 cache, in kilobytes. */ const int prefetch_block; /* bytes moved to cache for prefetch. */ const int simultaneous_prefetches; /* number of parallel prefetch operations. */ const int branch_cost; /* Default value for BRANCH_COST. */ const int fadd; /* cost of FADD and FSUB instructions. */ const int fmul; /* cost of FMUL instruction. */ const int fdiv; /* cost of FDIV instruction. */ const int fabs; /* cost of FABS instruction. */ const int fchs; /* cost of FCHS instruction. */ const int fsqrt; /* cost of FSQRT instruction. */ /* Specify what algorithm to use for stringops on unknown size. */ struct stringop_algs memcpy[2], memset[2]; const int scalar_stmt_cost; /* Cost of any scalar operation, excluding load and store. */ const int scalar_load_cost; /* Cost of scalar load. */ const int scalar_store_cost; /* Cost of scalar store. */ const int vec_stmt_cost; /* Cost of any vector operation, excluding load, store, vector-to-scalar and scalar-to-vector operation. */ const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */ const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */ const int vec_align_load_cost; /* Cost of aligned vector load. */ const int vec_unalign_load_cost; /* Cost of unaligned vector load. */ const int vec_store_cost; /* Cost of vector store. */ const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer cost model. */ const int cond_not_taken_branch_cost;/* Cost of not taken branch for vectorizer cost model. */ }; extern const struct processor_costs *ix86_cost; extern const struct processor_costs ix86_size_cost; #define ix86_cur_cost() \ (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost) /* Macros used in the machine description to test the flags. */ /* configure can arrange to make this 2, to force a 486. */ #ifndef TARGET_CPU_DEFAULT #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic #endif #ifndef TARGET_FPMATH_DEFAULT #define TARGET_FPMATH_DEFAULT \ (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387) #endif #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a compile-time constant. */ #ifdef IN_LIBGCC2 #undef TARGET_64BIT #ifdef __x86_64__ #define TARGET_64BIT 1 #else #define TARGET_64BIT 0 #endif #else #ifndef TARGET_BI_ARCH #undef TARGET_64BIT #if TARGET_64BIT_DEFAULT #define TARGET_64BIT 1 #else #define TARGET_64BIT 0 #endif #endif #endif #define HAS_LONG_COND_BRANCH 1 #define HAS_LONG_UNCOND_BRANCH 1 #define TARGET_386 (ix86_tune == PROCESSOR_I386) #define TARGET_486 (ix86_tune == PROCESSOR_I486) #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM) #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO) #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE) #define TARGET_K6 (ix86_tune == PROCESSOR_K6) #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON) #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4) #define TARGET_K8 (ix86_tune == PROCESSOR_K8) #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON) #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA) #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2) #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32) #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64) #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64) #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10) #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1) #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM) /* Feature tests against the various tunings. */ enum ix86_tune_indices { X86_TUNE_USE_LEAVE, X86_TUNE_PUSH_MEMORY, X86_TUNE_ZERO_EXTEND_WITH_AND, X86_TUNE_UNROLL_STRLEN, X86_TUNE_DEEP_BRANCH_PREDICTION, X86_TUNE_BRANCH_PREDICTION_HINTS, X86_TUNE_DOUBLE_WITH_ADD, X86_TUNE_USE_SAHF, X86_TUNE_MOVX, X86_TUNE_PARTIAL_REG_STALL, X86_TUNE_PARTIAL_FLAG_REG_STALL, X86_TUNE_USE_HIMODE_FIOP, X86_TUNE_USE_SIMODE_FIOP, X86_TUNE_USE_MOV0, X86_TUNE_USE_CLTD, X86_TUNE_USE_XCHGB, X86_TUNE_SPLIT_LONG_MOVES, X86_TUNE_READ_MODIFY_WRITE, X86_TUNE_READ_MODIFY, X86_TUNE_PROMOTE_QIMODE, X86_TUNE_FAST_PREFIX, X86_TUNE_SINGLE_STRINGOP, X86_TUNE_QIMODE_MATH, X86_TUNE_HIMODE_MATH, X86_TUNE_PROMOTE_QI_REGS, X86_TUNE_PROMOTE_HI_REGS, X86_TUNE_ADD_ESP_4, X86_TUNE_ADD_ESP_8, X86_TUNE_SUB_ESP_4, X86_TUNE_SUB_ESP_8, X86_TUNE_INTEGER_DFMODE_MOVES, X86_TUNE_PARTIAL_REG_DEPENDENCY, X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY, X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL, X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL, X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL, X86_TUNE_SSE_SPLIT_REGS, X86_TUNE_SSE_TYPELESS_STORES, X86_TUNE_SSE_LOAD0_BY_PXOR, X86_TUNE_MEMORY_MISMATCH_STALL, X86_TUNE_PROLOGUE_USING_MOVE, X86_TUNE_EPILOGUE_USING_MOVE, X86_TUNE_SHIFT1, X86_TUNE_USE_FFREEP, X86_TUNE_INTER_UNIT_MOVES, X86_TUNE_INTER_UNIT_CONVERSIONS, X86_TUNE_FOUR_JUMP_LIMIT, X86_TUNE_SCHEDULE, X86_TUNE_USE_BT, X86_TUNE_USE_INCDEC, X86_TUNE_PAD_RETURNS, X86_TUNE_EXT_80387_CONSTANTS, X86_TUNE_SHORTEN_X87_SSE, X86_TUNE_AVOID_VECTOR_DECODE, X86_TUNE_PROMOTE_HIMODE_IMUL, X86_TUNE_SLOW_IMUL_IMM32_MEM, X86_TUNE_SLOW_IMUL_IMM8, X86_TUNE_MOVE_M1_VIA_OR, X86_TUNE_NOT_UNPAIRABLE, X86_TUNE_NOT_VECTORMODE, X86_TUNE_USE_VECTOR_FP_CONVERTS, X86_TUNE_USE_VECTOR_CONVERTS, X86_TUNE_FUSE_CMP_AND_BRANCH, X86_TUNE_OPT_AGU, X86_TUNE_LAST }; extern unsigned char ix86_tune_features[X86_TUNE_LAST]; #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE] #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY] #define TARGET_ZERO_EXTEND_WITH_AND \ ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND] #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN] #define TARGET_DEEP_BRANCH_PREDICTION \ ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION] #define TARGET_BRANCH_PREDICTION_HINTS \ ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS] #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD] #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF] #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX] #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL] #define TARGET_PARTIAL_FLAG_REG_STALL \ ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL] #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP] #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP] #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0] #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD] #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB] #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES] #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE] #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY] #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE] #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX] #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP] #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH] #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH] #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS] #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS] #define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4] #define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8] #define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4] #define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8] #define TARGET_INTEGER_DFMODE_MOVES \ ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES] #define TARGET_PARTIAL_REG_DEPENDENCY \ ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY] #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \ ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY] #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \ ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL] #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \ ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL] #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \ ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL] #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS] #define TARGET_SSE_TYPELESS_STORES \ ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES] #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR] #define TARGET_MEMORY_MISMATCH_STALL \ ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL] #define TARGET_PROLOGUE_USING_MOVE \ ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE] #define TARGET_EPILOGUE_USING_MOVE \ ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE] #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1] #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP] #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES] #define TARGET_INTER_UNIT_CONVERSIONS\ ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS] #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT] #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE] #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT] #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC] #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS] #define TARGET_EXT_80387_CONSTANTS \ ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS] #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE] #define TARGET_AVOID_VECTOR_DECODE \ ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE] #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \ ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL] #define TARGET_SLOW_IMUL_IMM32_MEM \ ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM] #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8] #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR] #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE] #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE] #define TARGET_USE_VECTOR_FP_CONVERTS \ ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS] #define TARGET_USE_VECTOR_CONVERTS \ ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS] #define TARGET_FUSE_CMP_AND_BRANCH \ ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH] #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU] /* Feature tests against the various architecture variations. */ enum ix86_arch_indices { X86_ARCH_CMOVE, /* || TARGET_SSE */ X86_ARCH_CMPXCHG, X86_ARCH_CMPXCHG8B, X86_ARCH_XADD, X86_ARCH_BSWAP, X86_ARCH_LAST }; extern unsigned char ix86_arch_features[X86_ARCH_LAST]; #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE] #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG] #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B] #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD] #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP] #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387) extern int x86_prefetch_sse; #define TARGET_PREFETCH_SSE x86_prefetch_sse #define ASSEMBLER_DIALECT (ix86_asm_dialect) #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0) #define TARGET_MIX_SSE_I387 \ ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387)) #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU) #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2) #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS) #define TARGET_SUN_TLS 0 extern int ix86_isa_flags; #ifndef TARGET_64BIT_DEFAULT #define TARGET_64BIT_DEFAULT 0 #endif #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0 #endif /* Fence to use after loop using storent. */ extern tree x86_mfence; #define FENCE_FOLLOWING_MOVNT x86_mfence /* Once GDB has been enhanced to deal with functions without frame pointers, we can change this to allow for elimination of the frame pointer in leaf functions. */ #define TARGET_DEFAULT 0 /* Extra bits to force. */ #define TARGET_SUBTARGET_DEFAULT 0 #define TARGET_SUBTARGET_ISA_DEFAULT 0 /* Extra bits to force on w/ 32-bit mode. */ #define TARGET_SUBTARGET32_DEFAULT 0 #define TARGET_SUBTARGET32_ISA_DEFAULT 0 /* Extra bits to force on w/ 64-bit mode. */ #define TARGET_SUBTARGET64_DEFAULT 0 #define TARGET_SUBTARGET64_ISA_DEFAULT 0 /* This is not really a target flag, but is done this way so that it's analogous to similar code for Mach-O on PowerPC. darwin.h redefines this to 1. */ #define TARGET_MACHO 0 /* Likewise, for the Windows 64-bit ABI. */ #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI) /* Available call abi. */ enum calling_abi { SYSV_ABI = 0, MS_ABI = 1 }; /* The abi used by target. */ extern enum calling_abi ix86_abi; /* The default abi used by target. */ #define DEFAULT_ABI SYSV_ABI /* Subtargets may reset this to 1 in order to enable 96-bit long double with the rounding mode forced to 53 bits. */ #define TARGET_96_ROUND_53_LONG_DOUBLE 0 /* Sometimes certain combinations of command options do not make sense on a particular target machine. You can define a macro `OVERRIDE_OPTIONS' to take account of this. This macro, if defined, is executed once just after all the command options have been parsed. Don't use this macro to turn on various extra optimizations for `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ #define OVERRIDE_OPTIONS override_options (true) /* Define this to change the optimizations performed by default. */ #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \ optimization_options ((LEVEL), (SIZE)) /* -march=native handling only makes sense with compiler running on an x86 or x86_64 chip. If changing this condition, also change the condition in driver-i386.c. */ #if defined(__i386__) || defined(__x86_64__) /* In driver-i386.c. */ extern const char *host_detect_local_cpu (int argc, const char **argv); #define EXTRA_SPEC_FUNCTIONS \ { "local_cpu_detect", host_detect_local_cpu }, #define HAVE_LOCAL_CPU_DETECT #endif #if TARGET_64BIT_DEFAULT #define OPT_ARCH64 "!m32" #define OPT_ARCH32 "m32" #else #define OPT_ARCH64 "m64" #define OPT_ARCH32 "!m64" #endif /* Support for configure-time defaults of some command line options. The order here is important so that -march doesn't squash the tune or cpu values. */ #define OPTION_DEFAULT_SPECS \ {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ {"arch", "%{!march=*:-march=%(VALUE)}"}, \ {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \ {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"}, /* Specs for the compiler proper */ #ifndef CC1_CPU_SPEC #define CC1_CPU_SPEC_1 "\ %{mcpu=*:-mtune=%* \ %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \ % BX_REG && !TARGET_64BIT ? SImode \ : (MODE)) /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* on the 386 the pc register is %eip, and is not usable as a general register. The ordinary mov instructions won't work */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 7 /* Base register for access to local variables of the function. */ #define HARD_FRAME_POINTER_REGNUM 6 /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 20 /* First floating point reg */ #define FIRST_FLOAT_REG 8 /* First & last stack-like regs */ #define FIRST_STACK_REG FIRST_FLOAT_REG #define LAST_STACK_REG (FIRST_FLOAT_REG + 7) #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1) #define LAST_SSE_REG (FIRST_SSE_REG + 7) #define FIRST_MMX_REG (LAST_SSE_REG + 1) #define LAST_MMX_REG (FIRST_MMX_REG + 7) #define FIRST_REX_INT_REG (LAST_MMX_REG + 1) #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7) #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7) /* Override this in other tm.h files to cope with various OS lossage requiring a frame pointer. */ #ifndef SUBTARGET_FRAME_POINTER_REQUIRED #define SUBTARGET_FRAME_POINTER_REQUIRED 0 #endif /* Make sure we can access arbitrary call frames. */ #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses () /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM 16 /* Register to hold the addressing base for position independent code access to data items. We don't use PIC pointer for 64bit mode. Define the regnum to dummy value to prevent gcc from pessimizing code dealing with EBX. To avoid clobbering a call-saved register unnecessarily, we renumber the pic register when possible. The change is visible after the prologue has been emitted. */ #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG #define PIC_OFFSET_TABLE_REGNUM \ ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \ || !flag_pic ? INVALID_REGNUM \ : reload_completed ? REGNO (pic_offset_table_rtx) \ : REAL_PIC_OFFSET_TABLE_REGNUM) #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_" /* This is overridden by . */ #define MS_AGGREGATE_RETURN 0 /* This is overridden by . */ #define KEEP_AGGREGATE_RETURN_POINTER 0 /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. It might seem that class BREG is unnecessary, since no useful 386 opcode needs reg %ebx. But some systems pass args to the OS in ebx, and the "b" register constraint is useful in asms for syscalls. The flags, fpsr and fpcr registers are in no class. */ enum reg_class { NO_REGS, AREG, DREG, CREG, BREG, SIREG, DIREG, AD_REGS, /* %eax/%edx for DImode */ CLOBBERED_REGS, /* call-clobbered integers */ Q_REGS, /* %eax %ebx %ecx %edx */ NON_Q_REGS, /* %esi %edi %ebp %esp */ INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/ FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ FLOAT_REGS, SSE_FIRST_REG, SSE_REGS, MMX_REGS, FP_TOP_SSE_REGS, FP_SECOND_SSE_REGS, FLOAT_SSE_REGS, FLOAT_INT_REGS, INT_SSE_REGS, FLOAT_INT_SSE_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES ((int) LIM_REG_CLASSES) #define INTEGER_CLASS_P(CLASS) \ reg_class_subset_p ((CLASS), GENERAL_REGS) #define FLOAT_CLASS_P(CLASS) \ reg_class_subset_p ((CLASS), FLOAT_REGS) #define SSE_CLASS_P(CLASS) \ reg_class_subset_p ((CLASS), SSE_REGS) #define MMX_CLASS_P(CLASS) \ ((CLASS) == MMX_REGS) #define MAYBE_INTEGER_CLASS_P(CLASS) \ reg_classes_intersect_p ((CLASS), GENERAL_REGS) #define MAYBE_FLOAT_CLASS_P(CLASS) \ reg_classes_intersect_p ((CLASS), FLOAT_REGS) #define MAYBE_SSE_CLASS_P(CLASS) \ reg_classes_intersect_p (SSE_REGS, (CLASS)) #define MAYBE_MMX_CLASS_P(CLASS) \ reg_classes_intersect_p (MMX_REGS, (CLASS)) #define Q_CLASS_P(CLASS) \ reg_class_subset_p ((CLASS), Q_REGS) /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ { "NO_REGS", \ "AREG", "DREG", "CREG", "BREG", \ "SIREG", "DIREG", \ "AD_REGS", \ "CLOBBERED_REGS", \ "Q_REGS", "NON_Q_REGS", \ "INDEX_REGS", \ "LEGACY_REGS", \ "GENERAL_REGS", \ "FP_TOP_REG", "FP_SECOND_REG", \ "FLOAT_REGS", \ "SSE_FIRST_REG", \ "SSE_REGS", \ "MMX_REGS", \ "FP_TOP_SSE_REGS", \ "FP_SECOND_SSE_REGS", \ "FLOAT_SSE_REGS", \ "FLOAT_INT_REGS", \ "INT_SSE_REGS", \ "FLOAT_INT_SSE_REGS", \ "ALL_REGS" } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. Note that the default setting of CLOBBERED_REGS is for 32-bit; this is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect. */ #define REG_CLASS_CONTENTS \ { { 0x00, 0x0 }, \ { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \ { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \ { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \ { 0x03, 0x0 }, /* AD_REGS */ \ { 0x07, 0x0 }, /* CLOBBERED_REGS */ \ { 0x0f, 0x0 }, /* Q_REGS */ \ { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \ { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \ { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \ { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \ { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\ { 0xff00, 0x0 }, /* FLOAT_REGS */ \ { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \ { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \ { 0xe0000000, 0x1f }, /* MMX_REGS */ \ { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \ { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \ { 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \ { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \ { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \ { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \ { 0xffffffff,0x1fffff } \ } /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) /* When this hook returns true for MODE, the compiler allows registers explicitly used in the rtl to be used as spill registers but prevents the compiler from extending the lifetime of these registers. */ #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG) #define GENERAL_REGNO_P(N) \ ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N)) #define GENERAL_REG_P(X) \ (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X)) #define REX_INT_REGNO_P(N) \ IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG) #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X))) #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X))) #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG) #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X))) #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N)) #define X87_FLOAT_MODE_P(MODE) \ (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode)) #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N))) #define SSE_REGNO_P(N) \ (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \ || REX_SSE_REGNO_P (N)) #define REX_SSE_REGNO_P(N) \ IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG) #define SSE_REGNO(N) \ ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8) #define SSE_FLOAT_MODE_P(MODE) \ ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode)) #define SSE_VEC_FLOAT_MODE_P(MODE) \ ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode)) #define AVX_FLOAT_MODE_P(MODE) \ (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode)) #define AVX128_VEC_FLOAT_MODE_P(MODE) \ (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode)) #define AVX256_VEC_FLOAT_MODE_P(MODE) \ (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode)) #define AVX_VEC_FLOAT_MODE_P(MODE) \ (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \ || (MODE) == V8SFmode || (MODE) == V4DFmode)) #define FMA4_VEC_FLOAT_MODE_P(MODE) \ (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \ || (MODE) == V8SFmode || (MODE) == V4DFmode)) #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP))) #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG) #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP))) #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG) #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG) #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG) /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS INDEX_REGS #define BASE_REG_CLASS GENERAL_REGS /* Place additional restrictions on the register class to use when it is necessary to be able to hold a value of mode MODE in a reload register for which class CLASS would ordinarily be used. */ #define LIMIT_RELOAD_CLASS(MODE, CLASS) \ ((MODE) == QImode && !TARGET_64BIT \ && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \ || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \ ? Q_REGS : (CLASS)) /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. On the 80386 series, we prevent floating constants from being reloaded into floating registers (since no move-insn can do that) and we ensure that QImodes aren't reloaded into the esi or edi reg. */ /* Put float CONST_DOUBLE in the constant pool instead of fp regs. QImode must go into class Q_REGS. Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and movdf to do mem-to-mem moves through integer regs. */ #define PREFERRED_RELOAD_CLASS(X, CLASS) \ ix86_preferred_reload_class ((X), (CLASS)) /* Discourage putting floating-point values in SSE registers unless SSE math is being used, and likewise for the 387 registers. */ #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \ ix86_preferred_output_reload_class ((X), (CLASS)) /* If we are copying between general and FP registers, we need a memory location. The same is true for SSE and MMX registers. */ #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1) /* Get_secondary_mem widens integral modes to BITS_PER_WORD. There is no need to emit full 64 bit move on 64 bit targets for integral modes that can be moved using 32 bit move. */ #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \ (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \ ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \ : MODE) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. */ /* On the 80386, this is the size of MODE in words, except in the FP regs, where a single reg is always enough. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ (!MAYBE_INTEGER_CLASS_P (CLASS) \ ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \ + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) /* A C expression whose value is nonzero if pseudos that have been assigned to registers of class CLASS would likely be spilled because registers of CLASS are needed for spill registers. The default value of this macro returns 1 if CLASS has exactly one register and zero otherwise. On most machines, this default should be used. Only define this macro to some other expression if pseudo allocated by `local-alloc.c' end up in memory because their hard registers were needed for spill registers. If this macro returns nonzero for those classes, those pseudos will only be allocated by `global.c', which knows how to reallocate the pseudo to another register. If there would not be another register available for reallocation, you should not change the definition of this macro since the only effect of such a definition would be to slow down register allocation. */ #define CLASS_LIKELY_SPILLED_P(CLASS) \ (((CLASS) == AREG) \ || ((CLASS) == DREG) \ || ((CLASS) == CREG) \ || ((CLASS) == BREG) \ || ((CLASS) == AD_REGS) \ || ((CLASS) == SIREG) \ || ((CLASS) == DIREG) \ || ((CLASS) == SSE_FIRST_REG) \ || ((CLASS) == FP_TOP_REG) \ || ((CLASS) == FP_SECOND_REG)) /* Return a class of registers that cannot change FROM mode to TO mode. */ #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ ix86_cannot_change_mode_class (FROM, TO, CLASS) /* Stack layout; function entry, exit and calling. */ /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD /* Define this to nonzero if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. */ #define FRAME_GROWS_DOWNWARD 1 /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. */ #define STARTING_FRAME_OFFSET 0 /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On 386, we have pushw instruction that decrements by exactly 2 no matter what the position was, there is no pushb. But as CIE data alignment factor on this arch is -4, we need to make sure all stack pointer adjustments are in multiple of 4. For 64bit ABI we round up to 8 bytes. */ #define PUSH_ROUNDING(BYTES) \ (TARGET_64BIT \ ? (((BYTES) + 7) & (-8)) \ : (((BYTES) + 3) & (-4))) /* If defined, the maximum amount of space required for outgoing arguments will be computed and placed into the variable `crtl->outgoing_args_size'. No space will be pushed onto the stack for each call; instead, the function prologue should increase the stack frame size by this amount. MS ABI seem to require 16 byte alignment everywhere except for function prologue and apilogue. This is not possible without ACCUMULATE_OUTGOING_ARGS. */ #define ACCUMULATE_OUTGOING_ARGS \ (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI) /* If defined, a C expression whose value is nonzero when we want to use PUSH instructions to pass outgoing arguments. */ #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS) /* We want the stack and args grow in opposite directions, even if PUSH_ARGS is 0. */ #define PUSH_ARGS_REVERSED 1 /* Offset of first parameter from the argument pointer register value. */ #define FIRST_PARM_OFFSET(FNDECL) 0 /* Define this macro if functions should assume that stack space has been allocated for arguments even when their values are passed in registers. The value of this macro is the size, in bytes, of the area reserved for arguments passed in registers for the function represented by FNDECL. This space can be allocated by the caller, or be a part of the machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says which. */ #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL) #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \ (ix86_function_type_abi (FNTYPE) == MS_ABI) /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. On the 80386, the RTD insn may be used to pop them if the number of args is fixed, but if the number is variable then the caller must pop them all. RTD can't be used for library calls now because the library is compiled with the Unix compiler. Use of RTD is a selectable option, since it is incompatible with standard Unix calling sequences. If the option is not selected, the caller must always pop the args. The attribute stdcall is equivalent to RTD on a per module basis. */ #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \ ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE)) /* Define how to find the value returned by a library function assuming the value has mode MODE. */ #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE) /* Define the size of the result block used for communication between untyped_call and untyped_return. The block contains a DImode value followed by the block used by fnsave and frstor. */ #define APPLY_RESULT_SIZE (8+108) /* 1 if N is a possible register number for function argument passing. */ #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N) /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. */ typedef struct ix86_args { int words; /* # words passed so far */ int nregs; /* # registers available for passing */ int regno; /* next available register number */ int fastcall; /* fastcall or thiscall calling convention is used */ int sse_words; /* # sse words passed so far */ int sse_nregs; /* # sse registers available for passing */ int warn_avx; /* True when we want to warn about AVX ABI. */ int warn_sse; /* True when we want to warn about SSE ABI. */ int warn_mmx; /* True when we want to warn about MMX ABI. */ int sse_regno; /* next available sse register number */ int mmx_words; /* # mmx words passed so far */ int mmx_nregs; /* # mmx registers available for passing */ int mmx_regno; /* next available mmx register number */ int maybe_vaarg; /* true for calls to possibly vardic fncts. */ int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should be passed in SSE registers. Otherwise 0. */ enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise MS_ABI for ms abi. */ } CUMULATIVE_ARGS; /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL)) /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED)) /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ function_arg (&(CUM), (MODE), (TYPE), (NAMED)) /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO) #define MCOUNT_NAME "_mcount" #define PROFILE_COUNT_REGISTER "edx" /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ /* Note on the 386 it might be more efficient not to define this since we have to restore it ourselves from the frame pointer, in order to use pop */ #define EXIT_IGNORE_STACK 1 /* Output assembler code for a block containing the constant parts of a trampoline, leaving space for the variable parts. */ /* On the 386, the trampoline contains two instructions: mov #STATIC,ecx jmp FUNCTION The trampoline is generated entirely at runtime. The operand of JMP is the address of FUNCTION relative to the instruction following the JMP (which is 5 bytes long). */ /* Length in units of the trampoline for entering a nested function. */ #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10) /* Definitions for register eliminations. This is an array of structures. Each structure initializes one pair of eliminable registers. The "from" register number is given first, followed by "to". Eliminations of the same "from" register are listed in order of preference. There are two registers that can always be eliminated on the i386. The frame pointer and the arg pointer can be replaced by either the hard frame pointer or to the stack pointer, depending upon the circumstances. The hard frame pointer is not used before reload and so it is not eligible for elimination. */ #define ELIMINABLE_REGS \ {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ /* Define the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO))) /* Addressing modes, and classification of registers for them. */ /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in local-alloc.c. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ ((REGNO) < STACK_POINTER_REGNUM \ || REX_INT_REGNO_P (REGNO) \ || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \ || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)])) #define REGNO_OK_FOR_BASE_P(REGNO) \ (GENERAL_REGNO_P (REGNO) \ || (REGNO) == ARG_POINTER_REGNUM \ || (REGNO) == FRAME_POINTER_REGNUM \ || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)])) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them unless they have been allocated suitable hard regs. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Source files for reload pass need to be strict. After reload, it makes no difference, since pseudo regs have been eliminated by then. */ /* Non strict versions, pseudos are ok. */ #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ (REGNO (X) < STACK_POINTER_REGNUM \ || REX_INT_REGNO_P (REGNO (X)) \ || REGNO (X) >= FIRST_PSEUDO_REGISTER) #define REG_OK_FOR_BASE_NONSTRICT_P(X) \ (GENERAL_REGNO_P (REGNO (X)) \ || REGNO (X) == ARG_POINTER_REGNUM \ || REGNO (X) == FRAME_POINTER_REGNUM \ || REGNO (X) >= FIRST_PSEUDO_REGISTER) /* Strict versions, hard registers only */ #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) #ifndef REG_OK_STRICT #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X) #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X) #else #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X) #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X) #endif /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P, except for CONSTANT_ADDRESS_P which is usually machine-independent. See legitimize_pic_address in i386.c for details as to what constitutes a legitimate address when -fpic is used. */ #define MAX_REGS_PER_ADDRESS 2 #define CONSTANT_ADDRESS_P(X) constant_address_p (X) /* Nonzero if the constant value X is a legitimate general operand. It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X) /* If defined, a C expression to determine the base term of address X. This macro is used in only one place: `find_base_term' in alias.c. It is always safe for this macro to not be defined. It exists so that alias analysis can understand machine-dependent addresses. The typical use of this macro is to handle addresses containing a label_ref or symbol_ref within an UNSPEC. */ #define FIND_BASE_TERM(X) ix86_find_base_term (X) /* Nonzero if the constant value X is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X) #define SYMBOLIC_CONST(X) \ (GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == LABEL_REF \ || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) /* Max number of args passed in registers. If this is more than 3, we will have problems with ebx (register #4), since it is a caller save register and is also used as the pic register in ELF. So for now, don't allow more than 3 registers to be passed in registers. */ /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */ #define X86_64_REGPARM_MAX 6 #define X86_64_MS_REGPARM_MAX 4 #define X86_32_REGPARM_MAX 3 #define REGPARM_MAX \ (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_REGPARM_MAX \ : X86_64_REGPARM_MAX) \ : X86_32_REGPARM_MAX) #define X86_64_SSE_REGPARM_MAX 8 #define X86_64_MS_SSE_REGPARM_MAX 4 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0) #define SSE_REGPARM_MAX \ (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_SSE_REGPARM_MAX \ : X86_64_SSE_REGPARM_MAX) \ : X86_32_SSE_REGPARM_MAX) #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0)) /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE \ (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode) /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 1 /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX 16 /* MOVE_MAX_PIECES is the number of bytes at a time which we can move efficiently, as opposed to MOVE_MAX which is the maximum number of bytes we can move with a single instruction. */ #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4) /* If a memory-to-memory move would take MOVE_RATIO or more simple move-instruction pairs, we will do a movmem or libcall instead. Increasing the value will always make code faster, but eventually incurs high cost in increased code size. If you don't define this, a reasonable default is used. */ #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3) /* If a clear memory operation would take CLEAR_RATIO or more simple move-instruction sequences, we will do a clrmem or libcall instead. */ #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2) /* Define if shifts truncate the shift count which implies one can omit a sign-extension or zero-extension of a shift count. */ /* On i386, shifts do truncate the count. But bit opcodes don't. */ /* #define SHIFT_COUNT_TRUNCATED */ /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* A macro to update M and UNSIGNEDP when an object whose type is TYPE and which has the specified mode and signedness is to be stored in a register. This macro is only called when TYPE is a scalar type. On i386 it is sometimes useful to promote HImode and QImode quantities to SImode. The choice depends on target type. */ #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ do { \ if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \ || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \ (MODE) = SImode; \ } while (0) /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #define Pmode (TARGET_64BIT ? DImode : SImode) /* A function address in a call instruction is a byte address (for indexing purposes) so give the MEM rtx a byte's mode. */ #define FUNCTION_MODE QImode /* A C expression for the cost of moving data from a register in class FROM to one in class TO. The classes are expressed using the enumeration values such as `GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. It is not required that the cost always equal 2 when FROM is the same as TO; on some machines it is expensive to move between registers if they are not general registers. */ #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \ ix86_register_move_cost ((MODE), (CLASS1), (CLASS2)) /* A C expression for the cost of moving data of mode M between a register and memory. A value of 2 is the default; this cost is relative to those in `REGISTER_MOVE_COST'. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. */ #define MEMORY_MOVE_COST(MODE, CLASS, IN) \ ix86_memory_move_cost ((MODE), (CLASS), (IN)) /* A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that. */ #define BRANCH_COST(speed_p, predictable_p) \ (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost) /* Define this macro as a C expression which is nonzero if accessing less than a word of memory (i.e. a `char' or a `short') is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads. When this macro is not defined, the compiler will access a field by finding the smallest containing object; when it is defined, a fullword load will be used if alignment permits. Unless bytes accesses are faster than word accesses, using word accesses is preferable since it may eliminate subsequent memory access if subsequent accesses occur to other fields in the same word of the structure, but to different bytes. */ #define SLOW_BYTE_ACCESS 0 /* Nonzero if access to memory by shorts is slow and undesirable. */ #define SLOW_SHORT_ACCESS 0 /* Define this macro to be the value 1 if unaligned accesses have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler. When this macro is nonzero, the compiler will act as if `STRICT_ALIGNMENT' were nonzero when generating code for block moves. This can cause significantly more instructions to be produced. Therefore, do not set this macro nonzero if unaligned accesses only add a cycle or two to the time for a memory access. If the value of this macro is always zero, it need not be defined. */ /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */ /* Define this macro if it is as good or better to call a constant function address than to call an address kept in a register. Desirable on the 386 because a CALL with a constant address is faster than one with a register address. */ #define NO_FUNCTION_CSE /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, return the mode to be used for the comparison. For floating-point equality comparisons, CCFPEQmode should be used. VOIDmode should be used in all other cases. For integer comparisons against zero, reduce to CCNOmode or CCZmode if possible, to allow for more combinations. */ #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y)) /* Return nonzero if MODE implies a floating point inequality can be reversed. */ #define REVERSIBLE_CC_MODE(MODE) 1 /* A C expression whose value is reversed condition code of the CODE for comparison done in CC_MODE mode. */ #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE)) /* Control the assembler format that we output, to the extent this does not vary between assemblers. */ /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e". For non floating point regs, the following are the HImode names. For float regs, the stack top is sometimes referred to as "%st(0)" instead of just "%st". PRINT_OPERAND handles this with the "y" code. */ #define HI_REGISTER_NAMES \ {"ax","dx","cx","bx","si","di","bp","sp", \ "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \ "argp", "flags", "fpsr", "fpcr", "frame", \ "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \ "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"} #define REGISTER_NAMES HI_REGISTER_NAMES /* Table of additional register names to use in user input. */ #define ADDITIONAL_REGISTER_NAMES \ { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \ { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \ { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \ { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \ { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \ { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } } /* Note we are omitting these since currently I don't know how to get gcc to use these, since they want the same but different number as al, and ax. */ #define QI_REGISTER_NAMES \ {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",} /* These parallel the array above, and can be used to access bits 8:15 of regs 0 through 3. */ #define QI_HIGH_REGISTER_NAMES \ {"ah", "dh", "ch", "bh", } /* How to renumber registers for dbx and gdb. */ #define DBX_REGISTER_NUMBER(N) \ (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)]) extern int const dbx_register_map[FIRST_PSEUDO_REGISTER]; extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER]; extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER]; /* Before the prologue, RA is at 0(%esp). */ #define INCOMING_RETURN_ADDR_RTX \ gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM)) /* After the prologue, RA is at -4(AP) in the current frame. */ #define RETURN_ADDR_RTX(COUNT, FRAME) \ ((COUNT) == 0 \ ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \ : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD))) /* PC is dbx register 8; let's use that column for RA. */ #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8) /* Before the prologue, the top of the frame is at 4(%esp). */ #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD /* Describe how we implement __builtin_eh_return. */ #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM) #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2) /* Select a format to encode pointers in exception handling data. CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. ??? All x86 object file formats are capable of representing this. After all, the relocation needed is the same as for the call insn. Whether or not a particular assembler allows us to enter such, I guess we'll have to see. */ #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ asm_preferred_eh_data_format ((CODE), (GLOBAL)) /* This is how to output an insn to push a register on the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ do { \ if (TARGET_64BIT) \ asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \ reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \ else \ asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \ } while (0) /* This is how to output an insn to pop a register from the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_POP(FILE, REGNO) \ do { \ if (TARGET_64BIT) \ asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \ reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \ else \ asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \ } while (0) /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ ix86_output_addr_vec_elt ((FILE), (VALUE)) /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ ix86_output_addr_diff_elt ((FILE), (VALUE), (REL)) /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */ #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \ { \ if ((PTR)[0] == '%' && (PTR)[1] == 'v') \ { \ if (TARGET_AVX) \ (PTR) += 1; \ else \ (PTR) += 2; \ } \ } /* A C statement or statements which output an assembler instruction opcode to the stdio stream STREAM. The macro-operand PTR is a variable of type `char *' which points to the opcode name in its "internal" form--the form that is written in the machine description. */ #define ASM_OUTPUT_OPCODE(STREAM, PTR) \ ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR)) /* A C statement to output to the stdio stream FILE an assembler command to pad the location counter to a multiple of 1<machine->stack_locals) #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size) #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size) #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching) #define ix86_current_function_needs_cld (cfun->machine->needs_cld) #define ix86_tls_descriptor_calls_expanded_in_cfun \ (cfun->machine->tls_descriptor_call_expanded_p) /* Since tls_descriptor_call_expanded is not cleared, even if all TLS calls are optimized away, we try to detect cases in which it was optimized away. Since such instructions (use (reg REG_SP)), we can verify whether there's any such instruction live by testing that REG_SP is live. */ #define ix86_current_function_calls_tls_descriptor \ (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG)) #define ix86_cfa_state (&cfun->machine->cfa) #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack) /* Control behavior of x86_file_start. */ #define X86_FILE_START_VERSION_DIRECTIVE false #define X86_FILE_START_FLTUSED false /* Flag to mark data that is in the large address area. */ #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0) #define SYMBOL_REF_FAR_ADDR_P(X) \ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0) /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to have defined always, to avoid ifdefing. */ #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1) #define SYMBOL_REF_DLLIMPORT_P(X) \ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0) #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2) #define SYMBOL_REF_DLLEXPORT_P(X) \ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0) /* Model costs for vectorizer. */ /* Cost of conditional branch. */ #undef TARG_COND_BRANCH_COST #define TARG_COND_BRANCH_COST ix86_cost->branch_cost /* Cost of any scalar operation, excluding load and store. */ #undef TARG_SCALAR_STMT_COST #define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost /* Cost of scalar load. */ #undef TARG_SCALAR_LOAD_COST #define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost /* Cost of scalar store. */ #undef TARG_SCALAR_STORE_COST #define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost /* Cost of any vector operation, excluding load, store or vector to scalar operation. */ #undef TARG_VEC_STMT_COST #define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost /* Cost of vector to scalar operation. */ #undef TARG_VEC_TO_SCALAR_COST #define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost /* Cost of scalar to vector operation. */ #undef TARG_SCALAR_TO_VEC_COST #define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost /* Cost of aligned vector load. */ #undef TARG_VEC_LOAD_COST #define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost /* Cost of misaligned vector load. */ #undef TARG_VEC_UNALIGNED_LOAD_COST #define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost /* Cost of vector store. */ #undef TARG_VEC_STORE_COST #define TARG_VEC_STORE_COST ix86_cost->vec_store_cost /* Cost of conditional taken branch for vectorizer cost model. */ #undef TARG_COND_TAKEN_BRANCH_COST #define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost /* Cost of conditional not taken branch for vectorizer cost model. */ #undef TARG_COND_NOT_TAKEN_BRANCH_COST #define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost /* Local variables: version-control: t End: */