/* Subroutines used for code generation on IA-32. Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "config.h" #include "system.h" #include "rtl.h" #include "tree.h" #include "tm_p.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "except.h" #include "function.h" #include "recog.h" #include "expr.h" #include "toplev.h" #include "basic-block.h" #include "ggc.h" #ifndef CHECK_STACK_LIMIT #define CHECK_STACK_LIMIT -1 #endif /* Processor costs (relative to an add) */ struct processor_costs i386_cost = { /* 386 specific costs */ 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 3, /* variable shift costs */ 2, /* constant shift costs */ 6, /* cost of starting a multiply */ 1, /* cost of multiply per each bit set */ 23, /* cost of a divide/mod */ 15, /* "large" insn */ 3, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {8, 8, 8}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {8, 8, 8} /* cost of loading integer registers */ }; struct processor_costs i486_cost = { /* 486 specific costs */ 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 3, /* variable shift costs */ 2, /* constant shift costs */ 12, /* cost of starting a multiply */ 1, /* cost of multiply per each bit set */ 40, /* cost of a divide/mod */ 15, /* "large" insn */ 3, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {8, 8, 8}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {8, 8, 8} /* cost of loading integer registers */ }; struct processor_costs pentium_cost = { 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 4, /* variable shift costs */ 1, /* constant shift costs */ 11, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ 25, /* cost of a divide/mod */ 8, /* "large" insn */ 6, /* MOVE_RATIO */ 6, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6} /* cost of loading integer registers */ }; struct processor_costs pentiumpro_cost = { 1, /* cost of an add instruction */ 1, /* cost of a lea instruction */ 1, /* variable shift costs */ 1, /* constant shift costs */ 4, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ 17, /* cost of a divide/mod */ 8, /* "large" insn */ 6, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 2, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6} /* cost of loading integer registers */ }; struct processor_costs k6_cost = { 1, /* cost of an add instruction */ 2, /* cost of a lea instruction */ 1, /* variable shift costs */ 1, /* constant shift costs */ 3, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ 18, /* cost of a divide/mod */ 8, /* "large" insn */ 4, /* MOVE_RATIO */ 3, /* cost for loading QImode using movzbl */ {4, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 3, 2}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {6, 6, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 4} /* cost of loading integer registers */ }; struct processor_costs athlon_cost = { 1, /* cost of an add instruction */ 2, /* cost of a lea instruction */ 1, /* variable shift costs */ 1, /* constant shift costs */ 5, /* cost of starting a multiply */ 0, /* cost of multiply per each bit set */ 42, /* cost of a divide/mod */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 3, 2}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {6, 6, 20}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 16} /* cost of loading integer registers */ }; struct processor_costs *ix86_cost = &pentium_cost; /* Processor feature/optimization bitmasks. */ #define m_386 (1<machine->stack_locals) /* which cpu are we scheduling for */ enum processor_type ix86_cpu; /* which instruction set architecture to use. */ int ix86_arch; /* Strings to hold which cpu and instruction set architecture to use. */ const char *ix86_cpu_string; /* for -mcpu= */ const char *ix86_arch_string; /* for -march= */ /* Register allocation order */ const char *ix86_reg_alloc_order; static char regs_allocated[FIRST_PSEUDO_REGISTER]; /* # of registers to use to pass arguments. */ const char *ix86_regparm_string; /* ix86_regparm_string as a number */ int ix86_regparm; /* Alignment to use for loops and jumps: */ /* Power of two alignment for loops. */ const char *ix86_align_loops_string; /* Power of two alignment for non-loop jumps. */ const char *ix86_align_jumps_string; /* Power of two alignment for stack boundary in bytes. */ const char *ix86_preferred_stack_boundary_string; /* Preferred alignment for stack boundary in bits. */ int ix86_preferred_stack_boundary; /* Values 1-5: see jump.c */ int ix86_branch_cost; const char *ix86_branch_cost_string; /* Power of two alignment for functions. */ int ix86_align_funcs; const char *ix86_align_funcs_string; /* Power of two alignment for loops. */ int ix86_align_loops; /* Power of two alignment for non-loop jumps. */ int ix86_align_jumps; static void output_pic_addr_const PARAMS ((FILE *, rtx, int)); static void put_condition_code PARAMS ((enum rtx_code, enum machine_mode, int, int, FILE *)); static enum rtx_code unsigned_comparison PARAMS ((enum rtx_code code)); static rtx ix86_expand_int_compare PARAMS ((enum rtx_code, rtx, rtx)); static enum machine_mode ix86_fp_compare_mode PARAMS ((enum rtx_code)); static enum rtx_code ix86_prepare_fp_compare_args PARAMS ((enum rtx_code, rtx *, rtx *)); static rtx gen_push PARAMS ((rtx)); static int memory_address_length PARAMS ((rtx addr)); static int ix86_flags_dependant PARAMS ((rtx, rtx, enum attr_type)); static int ix86_agi_dependant PARAMS ((rtx, rtx, enum attr_type)); static int ix86_safe_length PARAMS ((rtx)); static enum attr_memory ix86_safe_memory PARAMS ((rtx)); static enum attr_pent_pair ix86_safe_pent_pair PARAMS ((rtx)); static enum attr_ppro_uops ix86_safe_ppro_uops PARAMS ((rtx)); static void ix86_dump_ppro_packet PARAMS ((FILE *)); static void ix86_reorder_insn PARAMS ((rtx *, rtx *)); static rtx * ix86_pent_find_pair PARAMS ((rtx *, rtx *, enum attr_pent_pair, rtx)); static void ix86_init_machine_status PARAMS ((struct function *)); static void ix86_mark_machine_status PARAMS ((struct function *)); static void ix86_split_to_parts PARAMS ((rtx, rtx *, enum machine_mode)); static int ix86_safe_length_prefix PARAMS ((rtx)); static HOST_WIDE_INT ix86_compute_frame_size PARAMS((HOST_WIDE_INT, int *, int *, int *)); static int ix86_nsaved_regs PARAMS((void)); static void ix86_emit_save_regs PARAMS((void)); static void ix86_emit_restore_regs_using_mov PARAMS ((rtx, int)); static void ix86_emit_epilogue_esp_adjustment PARAMS((int)); static void ix86_sched_reorder_pentium PARAMS((rtx *, rtx *)); static void ix86_sched_reorder_ppro PARAMS((rtx *, rtx *)); static HOST_WIDE_INT ix86_GOT_alias_set PARAMS ((void)); struct ix86_address { rtx base, index, disp; HOST_WIDE_INT scale; }; static int ix86_decompose_address PARAMS ((rtx, struct ix86_address *)); /* Sometimes certain combinations of command options do not make sense on a particular target machine. You can define a macro `OVERRIDE_OPTIONS' to take account of this. This macro, if defined, is executed once just after all the command options have been parsed. Don't use this macro to turn on various extra optimizations for `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ void override_options () { /* Comes from final.c -- no real reason to change it. */ #define MAX_CODE_ALIGN 16 static struct ptt { struct processor_costs *cost; /* Processor costs */ int target_enable; /* Target flags to enable. */ int target_disable; /* Target flags to disable. */ int align_loop; /* Default alignments. */ int align_jump; int align_func; int branch_cost; } const processor_target_table[PROCESSOR_max] = { {&i386_cost, 0, 0, 2, 2, 2, 1}, {&i486_cost, 0, 0, 4, 4, 4, 1}, {&pentium_cost, 0, 0, -4, -4, -4, 1}, {&pentiumpro_cost, 0, 0, 4, -4, 4, 1}, {&k6_cost, 0, 0, -5, -5, 4, 1}, {&athlon_cost, 0, 0, 4, -4, 4, 1} }; static struct pta { const char *name; /* processor name or nickname. */ enum processor_type processor; } const processor_alias_table[] = { {"i386", PROCESSOR_I386}, {"i486", PROCESSOR_I486}, {"i586", PROCESSOR_PENTIUM}, {"pentium", PROCESSOR_PENTIUM}, {"i686", PROCESSOR_PENTIUMPRO}, {"pentiumpro", PROCESSOR_PENTIUMPRO}, {"k6", PROCESSOR_K6}, {"athlon", PROCESSOR_ATHLON}, }; int const pta_size = sizeof(processor_alias_table)/sizeof(struct pta); #ifdef SUBTARGET_OVERRIDE_OPTIONS SUBTARGET_OVERRIDE_OPTIONS; #endif ix86_arch = PROCESSOR_I386; ix86_cpu = (enum processor_type) TARGET_CPU_DEFAULT; if (ix86_arch_string != 0) { int i; for (i = 0; i < pta_size; i++) if (! strcmp (ix86_arch_string, processor_alias_table[i].name)) { ix86_arch = processor_alias_table[i].processor; /* Default cpu tuning to the architecture. */ ix86_cpu = ix86_arch; break; } if (i == pta_size) error ("bad value (%s) for -march= switch", ix86_arch_string); } if (ix86_cpu_string != 0) { int i; for (i = 0; i < pta_size; i++) if (! strcmp (ix86_cpu_string, processor_alias_table[i].name)) { ix86_cpu = processor_alias_table[i].processor; break; } if (i == pta_size) error ("bad value (%s) for -mcpu= switch", ix86_cpu_string); } ix86_cost = processor_target_table[ix86_cpu].cost; target_flags |= processor_target_table[ix86_cpu].target_enable; target_flags &= ~processor_target_table[ix86_cpu].target_disable; /* Arrange to set up i386_stack_locals for all functions. */ init_machine_status = ix86_init_machine_status; mark_machine_status = ix86_mark_machine_status; /* Validate registers in register allocation order. */ if (ix86_reg_alloc_order) { int i, ch; for (i = 0; (ch = ix86_reg_alloc_order[i]) != '\0'; i++) { int regno = 0; switch (ch) { case 'a': regno = 0; break; case 'd': regno = 1; break; case 'c': regno = 2; break; case 'b': regno = 3; break; case 'S': regno = 4; break; case 'D': regno = 5; break; case 'B': regno = 6; break; default: fatal ("Register '%c' is unknown", ch); } if (regs_allocated[regno]) fatal ("Register '%c' already specified in allocation order", ch); regs_allocated[regno] = 1; } } /* Validate -mregparm= value. */ if (ix86_regparm_string) { ix86_regparm = atoi (ix86_regparm_string); if (ix86_regparm < 0 || ix86_regparm > REGPARM_MAX) fatal ("-mregparm=%d is not between 0 and %d", ix86_regparm, REGPARM_MAX); } /* Validate -malign-loops= value, or provide default. */ ix86_align_loops = processor_target_table[ix86_cpu].align_loop; if (ix86_align_loops_string) { ix86_align_loops = atoi (ix86_align_loops_string); if (ix86_align_loops < 0 || ix86_align_loops > MAX_CODE_ALIGN) fatal ("-malign-loops=%d is not between 0 and %d", ix86_align_loops, MAX_CODE_ALIGN); } /* Validate -malign-jumps= value, or provide default. */ ix86_align_jumps = processor_target_table[ix86_cpu].align_jump; if (ix86_align_jumps_string) { ix86_align_jumps = atoi (ix86_align_jumps_string); if (ix86_align_jumps < 0 || ix86_align_jumps > MAX_CODE_ALIGN) fatal ("-malign-jumps=%d is not between 0 and %d", ix86_align_jumps, MAX_CODE_ALIGN); } /* Validate -malign-functions= value, or provide default. */ ix86_align_funcs = processor_target_table[ix86_cpu].align_func; if (ix86_align_funcs_string) { ix86_align_funcs = atoi (ix86_align_funcs_string); if (ix86_align_funcs < 0 || ix86_align_funcs > MAX_CODE_ALIGN) fatal ("-malign-functions=%d is not between 0 and %d", ix86_align_funcs, MAX_CODE_ALIGN); } /* Validate -mpreferred-stack-boundary= value, or provide default. The default of 128 bits is for Pentium III's SSE __m128. */ ix86_preferred_stack_boundary = 128; if (ix86_preferred_stack_boundary_string) { int i = atoi (ix86_preferred_stack_boundary_string); if (i < 2 || i > 31) fatal ("-mpreferred-stack-boundary=%d is not between 2 and 31", i); ix86_preferred_stack_boundary = (1 << i) * BITS_PER_UNIT; } /* Validate -mbranch-cost= value, or provide default. */ ix86_branch_cost = processor_target_table[ix86_cpu].branch_cost; if (ix86_branch_cost_string) { ix86_branch_cost = atoi (ix86_branch_cost_string); if (ix86_branch_cost < 0 || ix86_branch_cost > 5) fatal ("-mbranch-cost=%d is not between 0 and 5", ix86_branch_cost); } /* Keep nonleaf frame pointers. */ if (TARGET_OMIT_LEAF_FRAME_POINTER) flag_omit_frame_pointer = 1; /* If we're doing fast math, we don't care about comparison order wrt NaNs. This lets us use a shorter comparison sequence. */ if (flag_fast_math) target_flags &= ~MASK_IEEE_FP; /* It makes no sense to ask for just SSE builtins, so MMX is also turned on by -msse. */ if (TARGET_SSE) target_flags |= MASK_MMX; } /* A C statement (sans semicolon) to choose the order in which to allocate hard registers for pseudo-registers local to a basic block. Store the desired register order in the array `reg_alloc_order'. Element 0 should be the register to allocate first; element 1, the next register; and so on. The macro body should not assume anything about the contents of `reg_alloc_order' before execution of the macro. On most machines, it is not necessary to define this macro. */ void order_regs_for_local_alloc () { int i, ch, order; /* User specified the register allocation order. */ if (ix86_reg_alloc_order) { for (i = order = 0; (ch = ix86_reg_alloc_order[i]) != '\0'; i++) { int regno = 0; switch (ch) { case 'a': regno = 0; break; case 'd': regno = 1; break; case 'c': regno = 2; break; case 'b': regno = 3; break; case 'S': regno = 4; break; case 'D': regno = 5; break; case 'B': regno = 6; break; } reg_alloc_order[order++] = regno; } for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (! regs_allocated[i]) reg_alloc_order[order++] = i; } } /* If user did not specify a register allocation order, use natural order. */ else { for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) reg_alloc_order[i] = i; } } void optimization_options (level, size) int level; int size ATTRIBUTE_UNUSED; { /* For -O2 and beyond, turn off -fschedule-insns by default. It tends to make the problem with not enough registers even worse. */ #ifdef INSN_SCHEDULING if (level > 1) flag_schedule_insns = 0; #endif } /* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific attribute for DECL. The attributes in ATTRIBUTES have previously been assigned to DECL. */ int ix86_valid_decl_attribute_p (decl, attributes, identifier, args) tree decl ATTRIBUTE_UNUSED; tree attributes ATTRIBUTE_UNUSED; tree identifier ATTRIBUTE_UNUSED; tree args ATTRIBUTE_UNUSED; { return 0; } /* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific attribute for TYPE. The attributes in ATTRIBUTES have previously been assigned to TYPE. */ int ix86_valid_type_attribute_p (type, attributes, identifier, args) tree type; tree attributes ATTRIBUTE_UNUSED; tree identifier; tree args; { if (TREE_CODE (type) != FUNCTION_TYPE && TREE_CODE (type) != METHOD_TYPE && TREE_CODE (type) != FIELD_DECL && TREE_CODE (type) != TYPE_DECL) return 0; /* Stdcall attribute says callee is responsible for popping arguments if they are not variable. */ if (is_attribute_p ("stdcall", identifier)) return (args == NULL_TREE); /* Cdecl attribute says the callee is a normal C declaration. */ if (is_attribute_p ("cdecl", identifier)) return (args == NULL_TREE); /* Regparm attribute specifies how many integer arguments are to be passed in registers. */ if (is_attribute_p ("regparm", identifier)) { tree cst; if (! args || TREE_CODE (args) != TREE_LIST || TREE_CHAIN (args) != NULL_TREE || TREE_VALUE (args) == NULL_TREE) return 0; cst = TREE_VALUE (args); if (TREE_CODE (cst) != INTEGER_CST) return 0; if (compare_tree_int (cst, REGPARM_MAX) > 0) return 0; return 1; } return 0; } /* Return 0 if the attributes for two types are incompatible, 1 if they are compatible, and 2 if they are nearly compatible (which causes a warning to be generated). */ int ix86_comp_type_attributes (type1, type2) tree type1; tree type2; { /* Check for mismatch of non-default calling convention. */ const char *rtdstr = TARGET_RTD ? "cdecl" : "stdcall"; if (TREE_CODE (type1) != FUNCTION_TYPE) return 1; /* Check for mismatched return types (cdecl vs stdcall). */ if (!lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type1)) != !lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type2))) return 0; return 1; } /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. On the 80386, the RTD insn may be used to pop them if the number of args is fixed, but if the number is variable then the caller must pop them all. RTD can't be used for library calls now because the library is compiled with the Unix compiler. Use of RTD is a selectable option, since it is incompatible with standard Unix calling sequences. If the option is not selected, the caller must always pop the args. The attribute stdcall is equivalent to RTD on a per module basis. */ int ix86_return_pops_args (fundecl, funtype, size) tree fundecl; tree funtype; int size; { int rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE); /* Cdecl functions override -mrtd, and never pop the stack. */ if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) { /* Stdcall functions will pop the stack if not variable args. */ if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype))) rtd = 1; if (rtd && (TYPE_ARG_TYPES (funtype) == NULL_TREE || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype))) == void_type_node))) return size; } /* Lose any fake structure return argument. */ if (aggregate_value_p (TREE_TYPE (funtype))) return GET_MODE_SIZE (Pmode); return 0; } /* Argument support functions. */ /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void init_cumulative_args (cum, fntype, libname) CUMULATIVE_ARGS *cum; /* Argument info to initialize */ tree fntype; /* tree ptr for function decl */ rtx libname; /* SYMBOL_REF of library name or 0 */ { static CUMULATIVE_ARGS zero_cum; tree param, next_param; if (TARGET_DEBUG_ARG) { fprintf (stderr, "\ninit_cumulative_args ("); if (fntype) fprintf (stderr, "fntype code = %s, ret code = %s", tree_code_name[(int) TREE_CODE (fntype)], tree_code_name[(int) TREE_CODE (TREE_TYPE (fntype))]); else fprintf (stderr, "no fntype"); if (libname) fprintf (stderr, ", libname = %s", XSTR (libname, 0)); } *cum = zero_cum; /* Set up the number of registers to use for passing arguments. */ cum->nregs = ix86_regparm; if (fntype) { tree attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (fntype)); if (attr) cum->nregs = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))); } /* Determine if this function has variable arguments. This is indicated by the last argument being 'void_type_mode' if there are no variable arguments. If there are variable arguments, then we won't pass anything in registers */ if (cum->nregs) { for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0; param != 0; param = next_param) { next_param = TREE_CHAIN (param); if (next_param == 0 && TREE_VALUE (param) != void_type_node) cum->nregs = 0; } } if (TARGET_DEBUG_ARG) fprintf (stderr, ", nregs=%d )\n", cum->nregs); return; } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ void function_arg_advance (cum, mode, type, named) CUMULATIVE_ARGS *cum; /* current arg information */ enum machine_mode mode; /* current arg mode */ tree type; /* type of the argument or 0 if lib support */ int named; /* whether or not the argument was named */ { int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (TARGET_DEBUG_ARG) fprintf (stderr, "function_adv (sz=%d, wds=%2d, nregs=%d, mode=%s, named=%d)\n\n", words, cum->words, cum->nregs, GET_MODE_NAME (mode), named); cum->words += words; cum->nregs -= words; cum->regno += words; if (cum->nregs <= 0) { cum->nregs = 0; cum->regno = 0; } return; } /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ struct rtx_def * function_arg (cum, mode, type, named) CUMULATIVE_ARGS *cum; /* current arg information */ enum machine_mode mode; /* current arg mode */ tree type; /* type of the argument or 0 if lib support */ int named; /* != 0 for normal args, == 0 for ... args */ { rtx ret = NULL_RTX; int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; switch (mode) { /* For now, pass fp/complex values on the stack. */ default: break; case BLKmode: case DImode: case SImode: case HImode: case QImode: if (words <= cum->nregs) ret = gen_rtx_REG (mode, cum->regno); break; } if (TARGET_DEBUG_ARG) { fprintf (stderr, "function_arg (size=%d, wds=%2d, nregs=%d, mode=%4s, named=%d", words, cum->words, cum->nregs, GET_MODE_NAME (mode), named); if (ret) fprintf (stderr, ", reg=%%e%s", reg_names[ REGNO(ret) ]); else fprintf (stderr, ", stack"); fprintf (stderr, " )\n"); } return ret; } /* Return nonzero if OP is (const_int 1), else return zero. */ int const_int_1_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && INTVAL (op) == 1); } /* Returns 1 if OP is either a symbol reference or a sum of a symbol reference and a constant. */ int symbolic_operand (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF || (GET_CODE (op) == UNSPEC && XINT (op, 1) >= 6 && XINT (op, 1) <= 7)) return 1; if (GET_CODE (op) != PLUS || GET_CODE (XEXP (op, 1)) != CONST_INT) return 0; op = XEXP (op, 0); if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return 1; /* Only @GOTOFF gets offsets. */ if (GET_CODE (op) != UNSPEC || XINT (op, 1) != 7) return 0; op = XVECEXP (op, 0, 0); if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return 1; return 0; default: return 0; } } /* Return true if the operand contains a @GOT or @GOTOFF reference. */ int pic_symbolic_operand (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == CONST) { op = XEXP (op, 0); if (GET_CODE (op) == UNSPEC) return 1; if (GET_CODE (op) != PLUS || GET_CODE (XEXP (op, 1)) != CONST_INT) return 0; op = XEXP (op, 0); if (GET_CODE (op) == UNSPEC) return 1; } return 0; } /* Test for a valid operand for a call instruction. Don't allow the arg pointer register or virtual regs since they may decay into reg + const, which the patterns can't handle. */ int call_insn_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { /* Disallow indirect through a virtual register. This leads to compiler aborts when trying to eliminate them. */ if (GET_CODE (op) == REG && (op == arg_pointer_rtx || op == frame_pointer_rtx || (REGNO (op) >= FIRST_PSEUDO_REGISTER && REGNO (op) <= LAST_VIRTUAL_REGISTER))) return 0; /* Disallow `call 1234'. Due to varying assembler lameness this gets either rejected or translated to `call .+1234'. */ if (GET_CODE (op) == CONST_INT) return 0; /* Explicitly allow SYMBOL_REF even if pic. */ if (GET_CODE (op) == SYMBOL_REF) return 1; /* Half-pic doesn't allow anything but registers and constants. We've just taken care of the later. */ if (HALF_PIC_P ()) return register_operand (op, Pmode); /* Otherwise we can allow any general_operand in the address. */ return general_operand (op, Pmode); } int constant_call_address_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return GET_CODE (op) == SYMBOL_REF; } /* Match exactly zero and one. */ int const0_operand (op, mode) register rtx op; enum machine_mode mode; { return op == CONST0_RTX (mode); } int const1_operand (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return op == const1_rtx; } /* Match 2, 4, or 8. Used for leal multiplicands. */ int const248_operand (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && (INTVAL (op) == 2 || INTVAL (op) == 4 || INTVAL (op) == 8)); } /* True if this is a constant appropriate for an increment or decremenmt. */ int incdec_operand (op, mode) register rtx op; enum machine_mode mode; { if (op == const1_rtx || op == constm1_rtx) return 1; if (GET_CODE (op) != CONST_INT) return 0; if (mode == SImode && INTVAL (op) == (HOST_WIDE_INT) 0xffffffff) return 1; if (mode == HImode && INTVAL (op) == (HOST_WIDE_INT) 0xffff) return 1; if (mode == QImode && INTVAL (op) == (HOST_WIDE_INT) 0xff) return 1; return 0; } /* Return false if this is the stack pointer, or any other fake register eliminable to the stack pointer. Otherwise, this is a register operand. This is used to prevent esp from being used as an index reg. Which would only happen in pathological cases. */ int reg_no_sp_operand (op, mode) register rtx op; enum machine_mode mode; { rtx t = op; if (GET_CODE (t) == SUBREG) t = SUBREG_REG (t); if (t == stack_pointer_rtx || t == arg_pointer_rtx || t == frame_pointer_rtx) return 0; return register_operand (op, mode); } /* Return false if this is any eliminable register. Otherwise general_operand. */ int general_no_elim_operand (op, mode) register rtx op; enum machine_mode mode; { rtx t = op; if (GET_CODE (t) == SUBREG) t = SUBREG_REG (t); if (t == arg_pointer_rtx || t == frame_pointer_rtx || t == virtual_incoming_args_rtx || t == virtual_stack_vars_rtx || t == virtual_stack_dynamic_rtx) return 0; return general_operand (op, mode); } /* Return false if this is any eliminable register. Otherwise register_operand or const_int. */ int nonmemory_no_elim_operand (op, mode) register rtx op; enum machine_mode mode; { rtx t = op; if (GET_CODE (t) == SUBREG) t = SUBREG_REG (t); if (t == arg_pointer_rtx || t == frame_pointer_rtx || t == virtual_incoming_args_rtx || t == virtual_stack_vars_rtx || t == virtual_stack_dynamic_rtx) return 0; return GET_CODE (op) == CONST_INT || register_operand (op, mode); } /* Return true if op is a Q_REGS class register. */ int q_regs_operand (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != mode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return QI_REG_P (op); } /* Return true if op is a NON_Q_REGS class register. */ int non_q_regs_operand (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != mode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return NON_QI_REG_P (op); } /* Return 1 if OP is a comparison operator that can use the condition code generated by a logical operation, which characteristicly does not set overflow or carry. To be used with CCNOmode. */ int no_comparison_operator (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != mode) return 0; switch (GET_CODE (op)) { case EQ: case NE: case LT: case GE: case LEU: case LTU: case GEU: case GTU: return 1; default: return 0; } } /* Return 1 if OP is a comparison operator that can be issued by fcmov. */ int fcmov_comparison_operator (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != mode) return 0; switch (GET_CODE (op)) { case EQ: case NE: case LEU: case LTU: case GEU: case GTU: case UNORDERED: case ORDERED: return 1; default: return 0; } } /* Return 1 if OP is any normal comparison operator plus {UN}ORDERED. */ int uno_comparison_operator (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && GET_MODE (op) != mode) return 0; switch (GET_CODE (op)) { case EQ: case NE: case LE: case LT: case GE: case GT: case LEU: case LTU: case GEU: case GTU: case UNORDERED: case ORDERED: return 1; default: return 0; } } /* Return 1 if OP is a binary operator that can be promoted to wider mode. */ int promotable_binary_operator (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case MULT: /* Modern CPUs have same latency for HImode and SImode multiply, but 386 and 486 do HImode multiply faster. */ return ix86_cpu > PROCESSOR_I486; case PLUS: case AND: case IOR: case XOR: case ASHIFT: return 1; default: return 0; } } /* Nearly general operand, but accept any const_double, since we wish to be able to drop them into memory rather than have them get pulled into registers. */ int cmp_fp_expander_operand (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && mode != GET_MODE (op)) return 0; if (GET_CODE (op) == CONST_DOUBLE) return 1; return general_operand (op, mode); } /* Match an SI or HImode register for a zero_extract. */ int ext_register_operand (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_MODE (op) != SImode && GET_MODE (op) != HImode) return 0; return register_operand (op, VOIDmode); } /* Return 1 if this is a valid binary floating-point operation. OP is the expression matched, and MODE is its mode. */ int binary_fp_operator (op, mode) register rtx op; enum machine_mode mode; { if (mode != VOIDmode && mode != GET_MODE (op)) return 0; switch (GET_CODE (op)) { case PLUS: case MINUS: case MULT: case DIV: return GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT; default: return 0; } } int mult_operator(op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return GET_CODE (op) == MULT; } int div_operator(op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return GET_CODE (op) == DIV; } int arith_or_logical_operator (op, mode) rtx op; enum machine_mode mode; { return ((mode == VOIDmode || GET_MODE (op) == mode) && (GET_RTX_CLASS (GET_CODE (op)) == 'c' || GET_RTX_CLASS (GET_CODE (op)) == '2')); } /* Returns 1 if OP is memory operand with a displacement. */ int memory_displacement_operand (op, mode) register rtx op; enum machine_mode mode; { struct ix86_address parts; if (! memory_operand (op, mode)) return 0; if (! ix86_decompose_address (XEXP (op, 0), &parts)) abort (); return parts.disp != NULL_RTX; } /* To avoid problems when jump re-emits comparisons like testqi_ext_ccno_0, re-recognize the operand to avoid a copy_to_mode_reg that will fail. ??? It seems likely that this will only work because cmpsi is an expander, and no actual insns use this. */ int cmpsi_operand (op, mode) rtx op; enum machine_mode mode; { if (general_operand (op, mode)) return 1; if (GET_CODE (op) == AND && GET_MODE (op) == SImode && GET_CODE (XEXP (op, 0)) == ZERO_EXTRACT && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT && GET_CODE (XEXP (XEXP (op, 0), 2)) == CONST_INT && INTVAL (XEXP (XEXP (op, 0), 1)) == 8 && INTVAL (XEXP (XEXP (op, 0), 2)) == 8 && GET_CODE (XEXP (op, 1)) == CONST_INT) return 1; return 0; } /* Returns 1 if OP is memory operand that can not be represented by the modRM array. */ int long_memory_operand (op, mode) register rtx op; enum machine_mode mode; { if (! memory_operand (op, mode)) return 0; return memory_address_length (op) != 0; } /* Return nonzero if the rtx is known aligned. */ int aligned_operand (op, mode) rtx op; enum machine_mode mode; { struct ix86_address parts; if (!general_operand (op, mode)) return 0; /* Registers and immediate operands are always "aligned". */ if (GET_CODE (op) != MEM) return 1; /* Don't even try to do any aligned optimizations with volatiles. */ if (MEM_VOLATILE_P (op)) return 0; op = XEXP (op, 0); /* Pushes and pops are only valid on the stack pointer. */ if (GET_CODE (op) == PRE_DEC || GET_CODE (op) == POST_INC) return 1; /* Decode the address. */ if (! ix86_decompose_address (op, &parts)) abort (); /* Look for some component that isn't known to be aligned. */ if (parts.index) { if (parts.scale < 4 && REGNO_POINTER_ALIGN (REGNO (parts.index)) < 32) return 0; } if (parts.base) { if (REGNO_POINTER_ALIGN (REGNO (parts.base)) < 32) return 0; } if (parts.disp) { if (GET_CODE (parts.disp) != CONST_INT || (INTVAL (parts.disp) & 3) != 0) return 0; } /* Didn't find one -- this must be an aligned address. */ return 1; } /* Return true if the constant is something that can be loaded with a special instruction. Only handle 0.0 and 1.0; others are less worthwhile. */ int standard_80387_constant_p (x) rtx x; { if (GET_CODE (x) != CONST_DOUBLE) return -1; #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) { REAL_VALUE_TYPE d; jmp_buf handler; int is0, is1; if (setjmp (handler)) return 0; set_float_handler (handler); REAL_VALUE_FROM_CONST_DOUBLE (d, x); is0 = REAL_VALUES_EQUAL (d, dconst0) && !REAL_VALUE_MINUS_ZERO (d); is1 = REAL_VALUES_EQUAL (d, dconst1); set_float_handler (NULL_PTR); if (is0) return 1; if (is1) return 2; /* Note that on the 80387, other constants, such as pi, are much slower to load as standard constants than to load from doubles in memory! */ /* ??? Not true on K6: all constants are equal cost. */ } #endif return 0; } /* Returns 1 if OP contains a symbol reference */ int symbolic_reference_mentioned_p (op) rtx op; { register const char *fmt; register int i; if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return 1; fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { register int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return 1; } else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i))) return 1; } return 0; } /* Return 1 if it is appropriate to emit `ret' instructions in the body of a function. Do this only if the epilogue is simple, needing a couple of insns. Prior to reloading, we can't tell how many registers must be saved, so return 0 then. Return 0 if there is no frame marker to de-allocate. If NON_SAVING_SETJMP is defined and true, then it is not possible for the epilogue to be simple, so return 0. This is a special case since NON_SAVING_SETJMP will not cause regs_ever_live to change until final, but jump_optimize may need to know sooner if a `return' is OK. */ int ix86_can_use_return_insn_p () { HOST_WIDE_INT tsize; int nregs; #ifdef NON_SAVING_SETJMP if (NON_SAVING_SETJMP && current_function_calls_setjmp) return 0; #endif #ifdef FUNCTION_BLOCK_PROFILER_EXIT if (profile_block_flag == 2) return 0; #endif if (! reload_completed || frame_pointer_needed) return 0; /* Don't allow more than 32 pop, since that's all we can do with one instruction. */ if (current_function_pops_args && current_function_args_size >= 32768) return 0; tsize = ix86_compute_frame_size (get_frame_size (), &nregs, NULL, NULL); return tsize == 0 && nregs == 0; } static char *pic_label_name; static int pic_label_output; static char *global_offset_table_name; /* This function generates code for -fpic that loads %ebx with the return address of the caller and then returns. */ void asm_output_function_prefix (file, name) FILE *file; const char *name ATTRIBUTE_UNUSED; { rtx xops[2]; int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table || current_function_uses_const_pool); xops[0] = pic_offset_table_rtx; xops[1] = stack_pointer_rtx; /* Deep branch prediction favors having a return for every call. */ if (pic_reg_used && TARGET_DEEP_BRANCH_PREDICTION) { if (!pic_label_output) { /* This used to call ASM_DECLARE_FUNCTION_NAME() but since it's an internal (non-global) label that's being emitted, it didn't make sense to have .type information for local labels. This caused the SCO OpenServer 5.0.4 ELF assembler grief (why are you giving me debug info for a label that you're declaring non-global?) this was changed to call ASM_OUTPUT_LABEL() instead. */ ASM_OUTPUT_LABEL (file, pic_label_name); xops[1] = gen_rtx_MEM (SImode, xops[1]); output_asm_insn ("mov{l}\t{%1, %0|%0, %1}", xops); output_asm_insn ("ret", xops); pic_label_output = 1; } } } void load_pic_register () { rtx gotsym, pclab; if (global_offset_table_name == NULL) { global_offset_table_name = ggc_alloc_string ("_GLOBAL_OFFSET_TABLE_", 21); ggc_add_string_root (&global_offset_table_name, 1); } gotsym = gen_rtx_SYMBOL_REF (Pmode, global_offset_table_name); if (TARGET_DEEP_BRANCH_PREDICTION) { if (pic_label_name == NULL) { pic_label_name = ggc_alloc_string (NULL, 32); ggc_add_string_root (&pic_label_name, 1); ASM_GENERATE_INTERNAL_LABEL (pic_label_name, "LPR", 0); } pclab = gen_rtx_MEM (QImode, gen_rtx_SYMBOL_REF (Pmode, pic_label_name)); } else { pclab = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ()); } emit_insn (gen_prologue_get_pc (pic_offset_table_rtx, pclab)); if (! TARGET_DEEP_BRANCH_PREDICTION) emit_insn (gen_popsi1 (pic_offset_table_rtx)); emit_insn (gen_prologue_set_got (pic_offset_table_rtx, gotsym, pclab)); } /* Generate an SImode "push" pattern for input ARG. */ static rtx gen_push (arg) rtx arg; { return gen_rtx_SET (VOIDmode, gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)), arg); } /* Return number of registers to be saved on the stack. */ static int ix86_nsaved_regs () { int nregs = 0; int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table || current_function_uses_const_pool); int limit = (frame_pointer_needed ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM); int regno; for (regno = limit - 1; regno >= 0; regno--) if ((regs_ever_live[regno] && ! call_used_regs[regno]) || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used)) { nregs ++; } return nregs; } /* Return the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ HOST_WIDE_INT ix86_initial_elimination_offset (from, to) int from; int to; { int padding1; int nregs; /* Stack grows downward: [arguments] <- ARG_POINTER saved pc saved frame pointer if frame_pointer_needed <- HARD_FRAME_POINTER [saved regs] [padding1] \ | <- FRAME_POINTER [frame] > tsize | [padding2] / */ if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) /* Skip saved PC and previous frame pointer. Executed only when frame_pointer_needed. */ return 8; else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) { ix86_compute_frame_size (get_frame_size (), &nregs, &padding1, (int *)0); padding1 += nregs * UNITS_PER_WORD; return -padding1; } else { /* ARG_POINTER or FRAME_POINTER to STACK_POINTER elimination. */ int frame_size = frame_pointer_needed ? 8 : 4; HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), &nregs, &padding1, (int *)0); if (to != STACK_POINTER_REGNUM) abort (); else if (from == ARG_POINTER_REGNUM) return tsize + nregs * UNITS_PER_WORD + frame_size; else if (from != FRAME_POINTER_REGNUM) abort (); else return tsize - padding1; } } /* Compute the size of local storage taking into consideration the desired stack alignment which is to be maintained. Also determine the number of registers saved below the local storage. PADDING1 returns padding before stack frame and PADDING2 returns padding after stack frame; */ static HOST_WIDE_INT ix86_compute_frame_size (size, nregs_on_stack, rpadding1, rpadding2) HOST_WIDE_INT size; int *nregs_on_stack; int *rpadding1; int *rpadding2; { int nregs; int padding1 = 0; int padding2 = 0; HOST_WIDE_INT total_size; int stack_alignment_needed = cfun->stack_alignment_needed / BITS_PER_UNIT; int offset; int preferred_alignment = cfun->preferred_stack_boundary / BITS_PER_UNIT; nregs = ix86_nsaved_regs (); total_size = size; offset = frame_pointer_needed ? 8 : 4; /* Do some sanity checking of stack_alignment_needed and preferred_alignment, since i386 port is the only using those features that may break easilly. */ if (size && !stack_alignment_needed) abort (); if (!size && stack_alignment_needed != STACK_BOUNDARY / BITS_PER_UNIT) abort (); if (preferred_alignment < STACK_BOUNDARY / BITS_PER_UNIT) abort (); if (preferred_alignment > PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT) abort (); if (stack_alignment_needed > PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT) abort (); if (stack_alignment_needed < 4) stack_alignment_needed = 4; offset += nregs * UNITS_PER_WORD; if (ACCUMULATE_OUTGOING_ARGS) total_size += current_function_outgoing_args_size; total_size += offset; /* Align start of frame for local function. */ padding1 = ((offset + stack_alignment_needed - 1) & -stack_alignment_needed) - offset; total_size += padding1; /* Align stack boundary. */ padding2 = ((total_size + preferred_alignment - 1) & -preferred_alignment) - total_size; if (ACCUMULATE_OUTGOING_ARGS) padding2 += current_function_outgoing_args_size; if (nregs_on_stack) *nregs_on_stack = nregs; if (rpadding1) *rpadding1 = padding1; if (rpadding2) *rpadding2 = padding2; return size + padding1 + padding2; } /* Emit code to save registers in the prologue. */ static void ix86_emit_save_regs () { register int regno; int limit; rtx insn; int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table || current_function_uses_const_pool); limit = (frame_pointer_needed ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM); for (regno = limit - 1; regno >= 0; regno--) if ((regs_ever_live[regno] && !call_used_regs[regno]) || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used)) { insn = emit_insn (gen_push (gen_rtx_REG (SImode, regno))); RTX_FRAME_RELATED_P (insn) = 1; } } /* Expand the prologue into a bunch of separate insns. */ void ix86_expand_prologue () { HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), (int *)0, (int *)0, (int *)0); rtx insn; int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table || current_function_uses_const_pool); /* Note: AT&T enter does NOT have reversed args. Enter is probably slower on all targets. Also sdb doesn't like it. */ if (frame_pointer_needed) { insn = emit_insn (gen_push (hard_frame_pointer_rtx)); RTX_FRAME_RELATED_P (insn) = 1; insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; } ix86_emit_save_regs (); if (tsize == 0) ; else if (! TARGET_STACK_PROBE || tsize < CHECK_STACK_LIMIT) { if (frame_pointer_needed) insn = emit_insn (gen_pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-tsize), hard_frame_pointer_rtx)); else insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-tsize))); RTX_FRAME_RELATED_P (insn) = 1; } else { /* ??? Is this only valid for Win32? */ rtx arg0, sym; arg0 = gen_rtx_REG (SImode, 0); emit_move_insn (arg0, GEN_INT (tsize)); sym = gen_rtx_MEM (FUNCTION_MODE, gen_rtx_SYMBOL_REF (Pmode, "_alloca")); insn = emit_call_insn (gen_call (sym, const0_rtx)); CALL_INSN_FUNCTION_USAGE (insn) = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_USE (VOIDmode, arg0), CALL_INSN_FUNCTION_USAGE (insn)); } #ifdef SUBTARGET_PROLOGUE SUBTARGET_PROLOGUE; #endif if (pic_reg_used) load_pic_register (); /* If we are profiling, make sure no instructions are scheduled before the call to mcount. However, if -fpic, the above call will have done that. */ if ((profile_flag || profile_block_flag) && ! pic_reg_used) emit_insn (gen_blockage ()); } /* Emit code to add TSIZE to esp value. Use POP instruction when profitable. */ static void ix86_emit_epilogue_esp_adjustment (tsize) int tsize; { /* If a frame pointer is present, we must be sure to tie the sp to the fp so that we don't mis-schedule. */ if (frame_pointer_needed) emit_insn (gen_pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (tsize), hard_frame_pointer_rtx)); else emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (tsize))); } /* Emit code to restore saved registers using MOV insns. First register is restored from POINTER + OFFSET. */ static void ix86_emit_restore_regs_using_mov (pointer, offset) rtx pointer; int offset; { int regno; int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table || current_function_uses_const_pool); int limit = (frame_pointer_needed ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM); for (regno = 0; regno < limit; regno++) if ((regs_ever_live[regno] && !call_used_regs[regno]) || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used)) { emit_move_insn (gen_rtx_REG (SImode, regno), adj_offsettable_operand (gen_rtx_MEM (SImode, pointer), offset)); offset += 4; } } /* Restore function stack, frame, and registers. */ void ix86_expand_epilogue (emit_return) int emit_return; { int nregs; int regno; int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table || current_function_uses_const_pool); int sp_valid = !frame_pointer_needed || current_function_sp_is_unchanging; HOST_WIDE_INT offset; HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), &nregs, (int *)0, (int *)0); /* Calculate start of saved registers relative to ebp. */ offset = -nregs * UNITS_PER_WORD; #ifdef FUNCTION_BLOCK_PROFILER_EXIT if (profile_block_flag == 2) { FUNCTION_BLOCK_PROFILER_EXIT; } #endif /* If we're only restoring one register and sp is not valid then using a move instruction to restore the register since it's less work than reloading sp and popping the register. The default code result in stack adjustment using add/lea instruction, while this code results in LEAVE instruction (or discrete equivalent), so it is profitable in some other cases as well. Especially when there are no registers to restore. We also use this code when TARGET_USE_LEAVE and there is exactly one register to pop. This heruistic may need some tuning in future. */ if ((!sp_valid && nregs <= 1) || (frame_pointer_needed && !nregs && tsize) || (frame_pointer_needed && TARGET_USE_LEAVE && !optimize_size && nregs == 1)) { /* Restore registers. We can use ebp or esp to address the memory locations. If both are available, default to ebp, since offsets are known to be small. Only exception is esp pointing directly to the end of block of saved registers, where we may simplify addressing mode. */ if (!frame_pointer_needed || (sp_valid && !tsize)) ix86_emit_restore_regs_using_mov (stack_pointer_rtx, tsize); else ix86_emit_restore_regs_using_mov (hard_frame_pointer_rtx, offset); if (!frame_pointer_needed) ix86_emit_epilogue_esp_adjustment (tsize + nregs * UNITS_PER_WORD); /* If not an i386, mov & pop is faster than "leave". */ else if (TARGET_USE_LEAVE || optimize_size) emit_insn (gen_leave ()); else { emit_insn (gen_pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, const0_rtx, hard_frame_pointer_rtx)); emit_insn (gen_popsi1 (hard_frame_pointer_rtx)); } } else { /* First step is to deallocate the stack frame so that we can pop the registers. */ if (!sp_valid) { if (!frame_pointer_needed) abort (); emit_insn (gen_pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, GEN_INT (offset), hard_frame_pointer_rtx)); } else if (tsize) ix86_emit_epilogue_esp_adjustment (tsize); for (regno = 0; regno < STACK_POINTER_REGNUM; regno++) if ((regs_ever_live[regno] && !call_used_regs[regno]) || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used)) emit_insn (gen_popsi1 (gen_rtx_REG (SImode, regno))); } /* Sibcall epilogues don't want a return instruction. */ if (! emit_return) return; if (current_function_pops_args && current_function_args_size) { rtx popc = GEN_INT (current_function_pops_args); /* i386 can only pop 64K bytes. If asked to pop more, pop return address, do explicit add, and jump indirectly to the caller. */ if (current_function_pops_args >= 65536) { rtx ecx = gen_rtx_REG (SImode, 2); emit_insn (gen_popsi1 (ecx)); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, popc)); emit_jump_insn (gen_return_indirect_internal (ecx)); } else emit_jump_insn (gen_return_pop_internal (popc)); } else emit_jump_insn (gen_return_internal ()); } /* Extract the parts of an RTL expression that is a valid memory address for an instruction. Return false if the structure of the address is grossly off. */ static int ix86_decompose_address (addr, out) register rtx addr; struct ix86_address *out; { rtx base = NULL_RTX; rtx index = NULL_RTX; rtx disp = NULL_RTX; HOST_WIDE_INT scale = 1; rtx scale_rtx = NULL_RTX; if (GET_CODE (addr) == REG || GET_CODE (addr) == SUBREG) base = addr; else if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0); rtx op1 = XEXP (addr, 1); enum rtx_code code0 = GET_CODE (op0); enum rtx_code code1 = GET_CODE (op1); if (code0 == REG || code0 == SUBREG) { if (code1 == REG || code1 == SUBREG) index = op0, base = op1; /* index + base */ else base = op0, disp = op1; /* base + displacement */ } else if (code0 == MULT) { index = XEXP (op0, 0); scale_rtx = XEXP (op0, 1); if (code1 == REG || code1 == SUBREG) base = op1; /* index*scale + base */ else disp = op1; /* index*scale + disp */ } else if (code0 == PLUS && GET_CODE (XEXP (op0, 0)) == MULT) { index = XEXP (XEXP (op0, 0), 0); /* index*scale + base + disp */ scale_rtx = XEXP (XEXP (op0, 0), 1); base = XEXP (op0, 1); disp = op1; } else if (code0 == PLUS) { index = XEXP (op0, 0); /* index + base + disp */ base = XEXP (op0, 1); disp = op1; } else return FALSE; } else if (GET_CODE (addr) == MULT) { index = XEXP (addr, 0); /* index*scale */ scale_rtx = XEXP (addr, 1); } else if (GET_CODE (addr) == ASHIFT) { rtx tmp; /* We're called for lea too, which implements ashift on occasion. */ index = XEXP (addr, 0); tmp = XEXP (addr, 1); if (GET_CODE (tmp) != CONST_INT) return FALSE; scale = INTVAL (tmp); if ((unsigned HOST_WIDE_INT) scale > 3) return FALSE; scale = 1 << scale; } else disp = addr; /* displacement */ /* Extract the integral value of scale. */ if (scale_rtx) { if (GET_CODE (scale_rtx) != CONST_INT) return FALSE; scale = INTVAL (scale_rtx); } /* Allow arg pointer and stack pointer as index if there is not scaling */ if (base && index && scale == 1 && (index == arg_pointer_rtx || index == frame_pointer_rtx || index == stack_pointer_rtx)) { rtx tmp = base; base = index; index = tmp; } /* Special case: %ebp cannot be encoded as a base without a displacement. */ if ((base == hard_frame_pointer_rtx || base == frame_pointer_rtx || base == arg_pointer_rtx) && !disp) disp = const0_rtx; /* Special case: on K6, [%esi] makes the instruction vector decoded. Avoid this by transforming to [%esi+0]. */ if (ix86_cpu == PROCESSOR_K6 && !optimize_size && base && !index && !disp && REG_P (base) && REGNO_REG_CLASS (REGNO (base)) == SIREG) disp = const0_rtx; /* Special case: encode reg+reg instead of reg*2. */ if (!base && index && scale && scale == 2) base = index, scale = 1; /* Special case: scaling cannot be encoded without base or displacement. */ if (!base && !disp && index && scale != 1) disp = const0_rtx; out->base = base; out->index = index; out->disp = disp; out->scale = scale; return TRUE; } /* Return cost of the memory address x. For i386, it is better to use a complex address than let gcc copy the address into a reg and make a new pseudo. But not if the address requires to two regs - that would mean more pseudos with longer lifetimes. */ int ix86_address_cost (x) rtx x; { struct ix86_address parts; int cost = 1; if (!ix86_decompose_address (x, &parts)) abort (); /* More complex memory references are better. */ if (parts.disp && parts.disp != const0_rtx) cost--; /* Attempt to minimize number of registers in the address. */ if ((parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER)) || (parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER))) cost++; if (parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER) && parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER) && parts.base != parts.index) cost++; /* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b, since it's predecode logic can't detect the length of instructions and it degenerates to vector decoded. Increase cost of such addresses here. The penalty is minimally 2 cycles. It may be worthwhile to split such addresses or even refuse such addresses at all. Following addressing modes are affected: [base+scale*index] [scale*index+disp] [base+index] The first and last case may be avoidable by explicitly coding the zero in memory address, but I don't have AMD-K6 machine handy to check this theory. */ if (TARGET_K6 && ((!parts.disp && parts.base && parts.index && parts.scale != 1) || (parts.disp && !parts.base && parts.index && parts.scale != 1) || (!parts.disp && parts.base && parts.index && parts.scale == 1))) cost += 10; return cost; } /* If X is a machine specific address (i.e. a symbol or label being referenced as a displacement from the GOT implemented using an UNSPEC), then return the base term. Otherwise return X. */ rtx ix86_find_base_term (x) rtx x; { rtx term; if (GET_CODE (x) != PLUS || XEXP (x, 0) != pic_offset_table_rtx || GET_CODE (XEXP (x, 1)) != CONST) return x; term = XEXP (XEXP (x, 1), 0); if (GET_CODE (term) == PLUS && GET_CODE (XEXP (term, 1)) == CONST_INT) term = XEXP (term, 0); if (GET_CODE (term) != UNSPEC || XVECLEN (term, 0) != 1 || XINT (term, 1) != 7) return x; term = XVECEXP (term, 0, 0); if (GET_CODE (term) != SYMBOL_REF && GET_CODE (term) != LABEL_REF) return x; return term; } /* Determine if a given CONST RTX is a valid memory displacement in PIC mode. */ int legitimate_pic_address_disp_p (disp) register rtx disp; { if (GET_CODE (disp) != CONST) return 0; disp = XEXP (disp, 0); if (GET_CODE (disp) == PLUS) { if (GET_CODE (XEXP (disp, 1)) != CONST_INT) return 0; disp = XEXP (disp, 0); } if (GET_CODE (disp) != UNSPEC || XVECLEN (disp, 0) != 1) return 0; /* Must be @GOT or @GOTOFF. */ if (XINT (disp, 1) != 6 && XINT (disp, 1) != 7) return 0; if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF) return 0; return 1; } /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should convert common non-canonical forms to canonical form so that they will be recognized. */ int legitimate_address_p (mode, addr, strict) enum machine_mode mode; register rtx addr; int strict; { struct ix86_address parts; rtx base, index, disp; HOST_WIDE_INT scale; const char *reason = NULL; rtx reason_rtx = NULL_RTX; if (TARGET_DEBUG_ADDR) { fprintf (stderr, "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n", GET_MODE_NAME (mode), strict); debug_rtx (addr); } if (! ix86_decompose_address (addr, &parts)) { reason = "decomposition failed"; goto report_error; } base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; /* Validate base register. Don't allow SUBREG's here, it can lead to spill failures when the base is one word out of a two word structure, which is represented internally as a DImode int. */ if (base) { reason_rtx = base; if (GET_CODE (base) != REG) { reason = "base is not a register"; goto report_error; } if (GET_MODE (base) != Pmode) { reason = "base is not in Pmode"; goto report_error; } if ((strict && ! REG_OK_FOR_BASE_STRICT_P (base)) || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (base))) { reason = "base is not valid"; goto report_error; } } /* Validate index register. Don't allow SUBREG's here, it can lead to spill failures when the index is one word out of a two word structure, which is represented internally as a DImode int. */ if (index) { reason_rtx = index; if (GET_CODE (index) != REG) { reason = "index is not a register"; goto report_error; } if (GET_MODE (index) != Pmode) { reason = "index is not in Pmode"; goto report_error; } if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (index)) || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (index))) { reason = "index is not valid"; goto report_error; } } /* Validate scale factor. */ if (scale != 1) { reason_rtx = GEN_INT (scale); if (!index) { reason = "scale without index"; goto report_error; } if (scale != 2 && scale != 4 && scale != 8) { reason = "scale is not a valid multiplier"; goto report_error; } } /* Validate displacement. */ if (disp) { reason_rtx = disp; if (!CONSTANT_ADDRESS_P (disp)) { reason = "displacement is not constant"; goto report_error; } if (GET_CODE (disp) == CONST_DOUBLE) { reason = "displacement is a const_double"; goto report_error; } if (flag_pic && SYMBOLIC_CONST (disp)) { if (! legitimate_pic_address_disp_p (disp)) { reason = "displacement is an invalid pic construct"; goto report_error; } /* This code used to verify that a symbolic pic displacement includes the pic_offset_table_rtx register. While this is good idea, unfortunately these constructs may be created by "adds using lea" optimization for incorrect code like: int a; int foo(int i) { return *(&a+i); } This code is nonsensical, but results in addressing GOT table with pic_offset_table_rtx base. We can't just refuse it easilly, since it gets matched by "addsi3" pattern, that later gets split to lea in the case output register differs from input. While this can be handled by separate addsi pattern for this case that never results in lea, this seems to be easier and correct fix for crash to disable this test. */ } else if (HALF_PIC_P ()) { if (! HALF_PIC_ADDRESS_P (disp) || (base != NULL_RTX || index != NULL_RTX)) { reason = "displacement is an invalid half-pic reference"; goto report_error; } } } /* Everything looks valid. */ if (TARGET_DEBUG_ADDR) fprintf (stderr, "Success.\n"); return TRUE; report_error: if (TARGET_DEBUG_ADDR) { fprintf (stderr, "Error: %s\n", reason); debug_rtx (reason_rtx); } return FALSE; } /* Return an unique alias set for the GOT. */ static HOST_WIDE_INT ix86_GOT_alias_set () { static HOST_WIDE_INT set = -1; if (set == -1) set = new_alias_set (); return set; } /* Return a legitimate reference for ORIG (an address) using the register REG. If REG is 0, a new pseudo is generated. There are two types of references that must be handled: 1. Global data references must load the address from the GOT, via the PIC reg. An insn is emitted to do this load, and the reg is returned. 2. Static data references, constant pool addresses, and code labels compute the address as an offset from the GOT, whose base is in the PIC reg. Static data objects have SYMBOL_REF_FLAG set to differentiate them from global data objects. The returned address is the PIC reg + an unspec constant. GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC reg also appears in the address. */ rtx legitimize_pic_address (orig, reg) rtx orig; rtx reg; { rtx addr = orig; rtx new = orig; rtx base; if (GET_CODE (addr) == LABEL_REF || (GET_CODE (addr) == SYMBOL_REF && (CONSTANT_POOL_ADDRESS_P (addr) || SYMBOL_REF_FLAG (addr)))) { /* This symbol may be referenced via a displacement from the PIC base address (@GOTOFF). */ current_function_uses_pic_offset_table = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 7); new = gen_rtx_CONST (Pmode, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new); if (reg != 0) { emit_move_insn (reg, new); new = reg; } } else if (GET_CODE (addr) == SYMBOL_REF) { /* This symbol must be referenced via a load from the Global Offset Table (@GOT). */ current_function_uses_pic_offset_table = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 6); new = gen_rtx_CONST (Pmode, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new); new = gen_rtx_MEM (Pmode, new); RTX_UNCHANGING_P (new) = 1; MEM_ALIAS_SET (new) = ix86_GOT_alias_set (); if (reg == 0) reg = gen_reg_rtx (Pmode); emit_move_insn (reg, new); new = reg; } else { if (GET_CODE (addr) == CONST) { addr = XEXP (addr, 0); if (GET_CODE (addr) == UNSPEC) { /* Check that the unspec is one of the ones we generate? */ } else if (GET_CODE (addr) != PLUS) abort (); } if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1); /* Check first to see if this is a constant offset from a @GOTOFF symbol reference. */ if ((GET_CODE (op0) == LABEL_REF || (GET_CODE (op0) == SYMBOL_REF && (CONSTANT_POOL_ADDRESS_P (op0) || SYMBOL_REF_FLAG (op0)))) && GET_CODE (op1) == CONST_INT) { current_function_uses_pic_offset_table = 1; new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), 7); new = gen_rtx_PLUS (Pmode, new, op1); new = gen_rtx_CONST (Pmode, new); new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new); if (reg != 0) { emit_move_insn (reg, new); new = reg; } } else { base = legitimize_pic_address (XEXP (addr, 0), reg); new = legitimize_pic_address (XEXP (addr, 1), base == reg ? NULL_RTX : reg); if (GET_CODE (new) == CONST_INT) new = plus_constant (base, INTVAL (new)); else { if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1))) { base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0)); new = XEXP (new, 1); } new = gen_rtx_PLUS (Pmode, base, new); } } } } return new; } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. MODE and WIN are passed so that this macro can use GO_IF_LEGITIMATE_ADDRESS. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. For the 80386, we handle X+REG by loading X into a register R and using R+REG. R will go in a general reg and indexing will be used. However, if REG is a broken-out memory address or multiplication, nothing needs to be done because REG can certainly go in a general reg. When -fpic is used, special handling is needed for symbolic references. See comments by legitimize_pic_address in i386.c for details. */ rtx legitimize_address (x, oldx, mode) register rtx x; register rtx oldx ATTRIBUTE_UNUSED; enum machine_mode mode; { int changed = 0; unsigned log; if (TARGET_DEBUG_ADDR) { fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n", GET_MODE_NAME (mode)); debug_rtx (x); } if (flag_pic && SYMBOLIC_CONST (x)) return legitimize_pic_address (x, 0); /* Canonicalize shifts by 0, 1, 2, 3 into multiply */ if (GET_CODE (x) == ASHIFT && GET_CODE (XEXP (x, 1)) == CONST_INT && (log = (unsigned)exact_log2 (INTVAL (XEXP (x, 1)))) < 4) { changed = 1; x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)), GEN_INT (1 << log)); } if (GET_CODE (x) == PLUS) { /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */ if (GET_CODE (XEXP (x, 0)) == ASHIFT && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) < 4) { changed = 1; XEXP (x, 0) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 0), 0)), GEN_INT (1 << log)); } if (GET_CODE (XEXP (x, 1)) == ASHIFT && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT && (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1)))) < 4) { changed = 1; XEXP (x, 1) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 1), 0)), GEN_INT (1 << log)); } /* Put multiply first if it isn't already. */ if (GET_CODE (XEXP (x, 1)) == MULT) { rtx tmp = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1); XEXP (x, 1) = tmp; changed = 1; } /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const))) into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be created by virtual register instantiation, register elimination, and similar optimizations. */ if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS) { changed = 1; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)), XEXP (XEXP (x, 1), 1)); } /* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const) into (plus (plus (mult (reg) (const)) (reg)) (const)). */ else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS && CONSTANT_P (XEXP (x, 1))) { rtx constant; rtx other = NULL_RTX; if (GET_CODE (XEXP (x, 1)) == CONST_INT) { constant = XEXP (x, 1); other = XEXP (XEXP (XEXP (x, 0), 1), 1); } else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT) { constant = XEXP (XEXP (XEXP (x, 0), 1), 1); other = XEXP (x, 1); } else constant = 0; if (constant) { changed = 1; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0), XEXP (XEXP (XEXP (x, 0), 1), 0)), plus_constant (other, INTVAL (constant))); } } if (changed && legitimate_address_p (mode, x, FALSE)) return x; if (GET_CODE (XEXP (x, 0)) == MULT) { changed = 1; XEXP (x, 0) = force_operand (XEXP (x, 0), 0); } if (GET_CODE (XEXP (x, 1)) == MULT) { changed = 1; XEXP (x, 1) = force_operand (XEXP (x, 1), 0); } if (changed && GET_CODE (XEXP (x, 1)) == REG && GET_CODE (XEXP (x, 0)) == REG) return x; if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1))) { changed = 1; x = legitimize_pic_address (x, 0); } if (changed && legitimate_address_p (mode, x, FALSE)) return x; if (GET_CODE (XEXP (x, 0)) == REG) { register rtx temp = gen_reg_rtx (Pmode); register rtx val = force_operand (XEXP (x, 1), temp); if (val != temp) emit_move_insn (temp, val); XEXP (x, 1) = temp; return x; } else if (GET_CODE (XEXP (x, 1)) == REG) { register rtx temp = gen_reg_rtx (Pmode); register rtx val = force_operand (XEXP (x, 0), temp); if (val != temp) emit_move_insn (temp, val); XEXP (x, 0) = temp; return x; } } return x; } /* Print an integer constant expression in assembler syntax. Addition and subtraction are the only arithmetic that may appear in these expressions. FILE is the stdio stream to write to, X is the rtx, and CODE is the operand print code from the output string. */ static void output_pic_addr_const (file, x, code) FILE *file; rtx x; int code; { char buf[256]; switch (GET_CODE (x)) { case PC: if (flag_pic) putc ('.', file); else abort (); break; case SYMBOL_REF: assemble_name (file, XSTR (x, 0)); if (code == 'P' && ! SYMBOL_REF_FLAG (x)) fputs ("@PLT", file); break; case LABEL_REF: x = XEXP (x, 0); /* FALLTHRU */ case CODE_LABEL: ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); assemble_name (asm_out_file, buf); break; case CONST_INT: fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case CONST: /* This used to output parentheses around the expression, but that does not work on the 386 (either ATT or BSD assembler). */ output_pic_addr_const (file, XEXP (x, 0), code); break; case CONST_DOUBLE: if (GET_MODE (x) == VOIDmode) { /* We can use %d if the number is <32 bits and positive. */ if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0) fprintf (file, "0x%lx%08lx", (unsigned long) CONST_DOUBLE_HIGH (x), (unsigned long) CONST_DOUBLE_LOW (x)); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x)); } else /* We can't handle floating point constants; PRINT_OPERAND must handle them. */ output_operand_lossage ("floating constant misused"); break; case PLUS: /* Some assemblers need integer constants to appear first. */ if (GET_CODE (XEXP (x, 0)) == CONST_INT) { output_pic_addr_const (file, XEXP (x, 0), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 1), code); } else if (GET_CODE (XEXP (x, 1)) == CONST_INT) { output_pic_addr_const (file, XEXP (x, 1), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 0), code); } else abort (); break; case MINUS: putc (ASSEMBLER_DIALECT ? '(' : '[', file); output_pic_addr_const (file, XEXP (x, 0), code); putc ('-', file); output_pic_addr_const (file, XEXP (x, 1), code); putc (ASSEMBLER_DIALECT ? ')' : ']', file); break; case UNSPEC: if (XVECLEN (x, 0) != 1) abort (); output_pic_addr_const (file, XVECEXP (x, 0, 0), code); switch (XINT (x, 1)) { case 6: fputs ("@GOT", file); break; case 7: fputs ("@GOTOFF", file); break; case 8: fputs ("@PLT", file); break; default: output_operand_lossage ("invalid UNSPEC as operand"); break; } break; default: output_operand_lossage ("invalid expression as operand"); } } /* This is called from dwarfout.c via ASM_OUTPUT_DWARF_ADDR_CONST. We need to handle our special PIC relocations. */ void i386_dwarf_output_addr_const (file, x) FILE *file; rtx x; { fprintf (file, "\t%s\t", INT_ASM_OP); if (flag_pic) output_pic_addr_const (file, x, '\0'); else output_addr_const (file, x); fputc ('\n', file); } /* In the name of slightly smaller debug output, and to cater to general assembler losage, recognize PIC+GOTOFF and turn it back into a direct symbol reference. */ rtx i386_simplify_dwarf_addr (orig_x) rtx orig_x; { rtx x = orig_x; if (GET_CODE (x) != PLUS || GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST) return orig_x; x = XEXP (XEXP (x, 1), 0); if (GET_CODE (x) == UNSPEC && XINT (x, 1) == 7) return XVECEXP (x, 0, 0); if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == UNSPEC && GET_CODE (XEXP (x, 1)) == CONST_INT && XINT (XEXP (x, 0), 1) == 7) return gen_rtx_PLUS (VOIDmode, XVECEXP (XEXP (x, 0), 0, 0), XEXP (x, 1)); return orig_x; } static void put_condition_code (code, mode, reverse, fp, file) enum rtx_code code; enum machine_mode mode; int reverse, fp; FILE *file; { const char *suffix; if (reverse) code = reverse_condition (code); switch (code) { case EQ: suffix = "e"; break; case NE: suffix = "ne"; break; case GT: if (mode == CCNOmode) abort (); suffix = "g"; break; case GTU: /* ??? Use "nbe" instead of "a" for fcmov losage on some assemblers. Those same assemblers have the same but opposite losage on cmov. */ suffix = fp ? "nbe" : "a"; break; case LT: if (mode == CCNOmode) suffix = "s"; else suffix = "l"; break; case LTU: suffix = "b"; break; case GE: if (mode == CCNOmode) suffix = "ns"; else suffix = "ge"; break; case GEU: /* ??? As above. */ suffix = fp ? "nb" : "ae"; break; case LE: if (mode == CCNOmode) abort (); suffix = "le"; break; case LEU: suffix = "be"; break; case UNORDERED: suffix = "p"; break; case ORDERED: suffix = "np"; break; default: abort (); } fputs (suffix, file); } void print_reg (x, code, file) rtx x; int code; FILE *file; { if (REGNO (x) == ARG_POINTER_REGNUM || REGNO (x) == FRAME_POINTER_REGNUM || REGNO (x) == FLAGS_REG || REGNO (x) == FPSR_REG) abort (); if (ASSEMBLER_DIALECT == 0 || USER_LABEL_PREFIX[0] == 0) putc ('%', file); if (code == 'w') code = 2; else if (code == 'b') code = 1; else if (code == 'k') code = 4; else if (code == 'y') code = 3; else if (code == 'h') code = 0; else if (code == 'm' || MMX_REG_P (x)) code = 5; else code = GET_MODE_SIZE (GET_MODE (x)); switch (code) { case 5: fputs (hi_reg_name[REGNO (x)], file); break; case 3: if (STACK_TOP_P (x)) { fputs ("st(0)", file); break; } /* FALLTHRU */ case 4: case 8: case 12: if (! FP_REG_P (x)) putc ('e', file); /* FALLTHRU */ case 16: case 2: fputs (hi_reg_name[REGNO (x)], file); break; case 1: fputs (qi_reg_name[REGNO (x)], file); break; case 0: fputs (qi_high_reg_name[REGNO (x)], file); break; default: abort (); } } /* Meaning of CODE: L,W,B,Q,S,T -- print the opcode suffix for specified size of operand. C -- print opcode suffix for set/cmov insn. c -- like C, but print reversed condition R -- print the prefix for register names. z -- print the opcode suffix for the size of the current operand. * -- print a star (in certain assembler syntax) w -- print the operand as if it's a "word" (HImode) even if it isn't. s -- print a shift double count, followed by the assemblers argument delimiter. b -- print the QImode name of the register for the indicated operand. %b0 would print %al if operands[0] is reg 0. w -- likewise, print the HImode name of the register. k -- likewise, print the SImode name of the register. h -- print the QImode name for a "high" register, either ah, bh, ch or dh. y -- print "st(0)" instead of "st" as a register. m -- print "st(n)" as an mmx register. */ void print_operand (file, x, code) FILE *file; rtx x; int code; { if (code) { switch (code) { case '*': if (ASSEMBLER_DIALECT == 0) putc ('*', file); return; case 'L': if (ASSEMBLER_DIALECT == 0) putc ('l', file); return; case 'W': if (ASSEMBLER_DIALECT == 0) putc ('w', file); return; case 'B': if (ASSEMBLER_DIALECT == 0) putc ('b', file); return; case 'Q': if (ASSEMBLER_DIALECT == 0) putc ('l', file); return; case 'S': if (ASSEMBLER_DIALECT == 0) putc ('s', file); return; case 'T': if (ASSEMBLER_DIALECT == 0) putc ('t', file); return; case 'z': /* 387 opcodes don't get size suffixes if the operands are registers. */ if (STACK_REG_P (x)) return; /* Intel syntax has no truck with instruction suffixes. */ if (ASSEMBLER_DIALECT != 0) return; /* this is the size of op from size of operand */ switch (GET_MODE_SIZE (GET_MODE (x))) { case 2: #ifdef HAVE_GAS_FILDS_FISTS putc ('s', file); #endif return; case 4: if (GET_MODE (x) == SFmode) { putc ('s', file); return; } else putc ('l', file); return; case 12: putc ('t', file); return; case 8: if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) { #ifdef GAS_MNEMONICS putc ('q', file); #else putc ('l', file); putc ('l', file); #endif } else putc ('l', file); return; default: abort (); } case 'b': case 'w': case 'k': case 'h': case 'y': case 'm': case 'X': case 'P': break; case 's': if (GET_CODE (x) == CONST_INT || ! SHIFT_DOUBLE_OMITS_COUNT) { PRINT_OPERAND (file, x, 0); putc (',', file); } return; case 'C': put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 0, file); return; case 'F': put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 1, file); return; /* Like above, but reverse condition */ case 'c': put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 0, file); return; case 'f': put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 1, file); return; default: { char str[50]; sprintf (str, "invalid operand code `%c'", code); output_operand_lossage (str); } } } if (GET_CODE (x) == REG) { PRINT_REG (x, code, file); } else if (GET_CODE (x) == MEM) { /* No `byte ptr' prefix for call instructions. */ if (ASSEMBLER_DIALECT != 0 && code != 'X' && code != 'P') { const char * size; switch (GET_MODE_SIZE (GET_MODE (x))) { case 1: size = "BYTE"; break; case 2: size = "WORD"; break; case 4: size = "DWORD"; break; case 8: size = "QWORD"; break; case 12: size = "XWORD"; break; case 16: size = "XMMWORD"; break; default: abort (); } fputs (size, file); fputs (" PTR ", file); } x = XEXP (x, 0); if (flag_pic && CONSTANT_ADDRESS_P (x)) output_pic_addr_const (file, x, code); else output_address (x); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode) { REAL_VALUE_TYPE r; long l; REAL_VALUE_FROM_CONST_DOUBLE (r, x); REAL_VALUE_TO_TARGET_SINGLE (r, l); if (ASSEMBLER_DIALECT == 0) putc ('$', file); fprintf (file, "0x%lx", l); } /* These float cases don't actually occur as immediate operands. */ else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode) { REAL_VALUE_TYPE r; char dstr[30]; REAL_VALUE_FROM_CONST_DOUBLE (r, x); REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr); fprintf (file, "%s", dstr); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode) { REAL_VALUE_TYPE r; char dstr[30]; REAL_VALUE_FROM_CONST_DOUBLE (r, x); REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr); fprintf (file, "%s", dstr); } else { if (code != 'P') { if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE) { if (ASSEMBLER_DIALECT == 0) putc ('$', file); } else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) { if (ASSEMBLER_DIALECT == 0) putc ('$', file); else fputs ("OFFSET FLAT:", file); } } if (GET_CODE (x) == CONST_INT) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); else if (flag_pic) output_pic_addr_const (file, x, code); else output_addr_const (file, x); } } /* Print a memory operand whose address is ADDR. */ void print_operand_address (file, addr) FILE *file; register rtx addr; { struct ix86_address parts; rtx base, index, disp; int scale; if (! ix86_decompose_address (addr, &parts)) abort (); base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; if (!base && !index) { /* Displacement only requires special attention. */ if (GET_CODE (disp) == CONST_INT) { if (ASSEMBLER_DIALECT != 0) fputs ("ds:", file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr)); } else if (flag_pic) output_pic_addr_const (file, addr, 0); else output_addr_const (file, addr); } else { if (ASSEMBLER_DIALECT == 0) { if (disp) { if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else output_addr_const (file, disp); } putc ('(', file); if (base) PRINT_REG (base, 0, file); if (index) { putc (',', file); PRINT_REG (index, 0, file); if (scale != 1) fprintf (file, ",%d", scale); } putc (')', file); } else { rtx offset = NULL_RTX; if (disp) { /* Pull out the offset of a symbol; print any symbol itself. */ if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT) { offset = XEXP (XEXP (disp, 0), 1); disp = gen_rtx_CONST (VOIDmode, XEXP (XEXP (disp, 0), 0)); } if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else if (GET_CODE (disp) == CONST_INT) offset = disp; else output_addr_const (file, disp); } putc ('[', file); if (base) { PRINT_REG (base, 0, file); if (offset) { if (INTVAL (offset) >= 0) putc ('+', file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); } } else if (offset) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); else putc ('0', file); if (index) { putc ('+', file); PRINT_REG (index, 0, file); if (scale != 1) fprintf (file, "*%d", scale); } putc (']', file); } } } /* Split one or more DImode RTL references into pairs of SImode references. The RTL can be REG, offsettable MEM, integer constant, or CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to split and "num" is its length. lo_half and hi_half are output arrays that parallel "operands". */ void split_di (operands, num, lo_half, hi_half) rtx operands[]; int num; rtx lo_half[], hi_half[]; { while (num--) { rtx op = operands[num]; if (CONSTANT_P (op)) split_double (op, &lo_half[num], &hi_half[num]); else if (! reload_completed) { lo_half[num] = gen_lowpart (SImode, op); hi_half[num] = gen_highpart (SImode, op); } else if (GET_CODE (op) == REG) { lo_half[num] = gen_rtx_REG (SImode, REGNO (op)); hi_half[num] = gen_rtx_REG (SImode, REGNO (op) + 1); } else if (offsettable_memref_p (op)) { rtx lo_addr = XEXP (op, 0); rtx hi_addr = XEXP (adj_offsettable_operand (op, 4), 0); lo_half[num] = change_address (op, SImode, lo_addr); hi_half[num] = change_address (op, SImode, hi_addr); } else abort (); } } /* Output code to perform a 387 binary operation in INSN, one of PLUS, MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3] is the expression of the binary operation. The output may either be emitted here, or returned to the caller, like all output_* functions. There is no guarantee that the operands are the same mode, as they might be within FLOAT or FLOAT_EXTEND expressions. */ #ifndef SYSV386_COMPAT /* Set to 1 for compatibility with brain-damaged assemblers. No-one wants to fix the assemblers because that causes incompatibility with gcc. No-one wants to fix gcc because that causes incompatibility with assemblers... You can use the option of -DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */ #define SYSV386_COMPAT 1 #endif const char * output_387_binary_op (insn, operands) rtx insn; rtx *operands; { static char buf[30]; const char *p; #ifdef ENABLE_CHECKING /* Even if we do not want to check the inputs, this documents input constraints. Which helps in understanding the following code. */ if (STACK_REG_P (operands[0]) && ((REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1]) && (STACK_REG_P (operands[2]) || GET_CODE (operands[2]) == MEM)) || (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]) && (STACK_REG_P (operands[1]) || GET_CODE (operands[1]) == MEM))) && (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2]))) ; /* ok */ else abort (); #endif switch (GET_CODE (operands[3])) { case PLUS: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fiadd"; else p = "fadd"; break; case MINUS: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fisub"; else p = "fsub"; break; case MULT: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fimul"; else p = "fmul"; break; case DIV: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fidiv"; else p = "fdiv"; break; default: abort (); } strcpy (buf, p); switch (GET_CODE (operands[3])) { case MULT: case PLUS: if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2])) { rtx temp = operands[2]; operands[2] = operands[1]; operands[1] = temp; } /* know operands[0] == operands[1]. */ if (GET_CODE (operands[2]) == MEM) { p = "%z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { if (STACK_TOP_P (operands[0])) /* How is it that we are storing to a dead operand[2]? Well, presumably operands[1] is dead too. We can't store the result to st(0) as st(0) gets popped on this instruction. Instead store to operands[2] (which I think has to be st(1)). st(1) will be popped later. gcc <= 2.8.1 didn't have this check and generated assembly code that the Unixware assembler rejected. */ p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ break; } if (STACK_TOP_P (operands[0])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ break; case MINUS: case DIV: if (GET_CODE (operands[1]) == MEM) { p = "r%z1\t%1"; break; } if (GET_CODE (operands[2]) == MEM) { p = "%z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { #if SYSV386_COMPAT /* The SystemV/386 SVR3.2 assembler, and probably all AT&T derived assemblers, confusingly reverse the direction of the operation for fsub{r} and fdiv{r} when the destination register is not st(0). The Intel assembler doesn't have this brain damage. Read !SYSV386_COMPAT to figure out what the hardware really does. */ if (STACK_TOP_P (operands[0])) p = "{p\t%0, %2|rp\t%2, %0}"; else p = "{rp\t%2, %0|p\t%0, %2}"; #else if (STACK_TOP_P (operands[0])) /* As above for fmul/fadd, we can't store to st(0). */ p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ #endif break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { #if SYSV386_COMPAT if (STACK_TOP_P (operands[0])) p = "{rp\t%0, %1|p\t%1, %0}"; else p = "{p\t%1, %0|rp\t%0, %1}"; #else if (STACK_TOP_P (operands[0])) p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */ else p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */ #endif break; } if (STACK_TOP_P (operands[0])) { if (STACK_TOP_P (operands[1])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */ break; } else if (STACK_TOP_P (operands[1])) { #if SYSV386_COMPAT p = "{\t%1, %0|r\t%0, %1}"; #else p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */ #endif } else { #if SYSV386_COMPAT p = "{r\t%2, %0|\t%0, %2}"; #else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ #endif } break; default: abort (); } strcat (buf, p); return buf; } /* Output code for INSN to convert a float to a signed int. OPERANDS are the insn operands. The output may be [HSD]Imode and the input operand may be [SDX]Fmode. */ const char * output_fix_trunc (insn, operands) rtx insn; rtx *operands; { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; int dimode_p = GET_MODE (operands[0]) == DImode; rtx xops[4]; /* Jump through a hoop or two for DImode, since the hardware has no non-popping instruction. We used to do this a different way, but that was somewhat fragile and broke with post-reload splitters. */ if (dimode_p && !stack_top_dies) output_asm_insn ("fld\t%y1", operands); if (! STACK_TOP_P (operands[1])) abort (); xops[0] = GEN_INT (12); xops[1] = adj_offsettable_operand (operands[2], 1); xops[1] = change_address (xops[1], QImode, NULL_RTX); xops[2] = operands[0]; if (GET_CODE (operands[0]) != MEM) xops[2] = operands[3]; output_asm_insn ("fnstcw\t%2", operands); output_asm_insn ("mov{l}\t{%2, %4|%4, %2}", operands); output_asm_insn ("mov{b}\t{%0, %1|%1, %0}", xops); output_asm_insn ("fldcw\t%2", operands); output_asm_insn ("mov{l}\t{%4, %2|%2, %4}", operands); if (stack_top_dies || dimode_p) output_asm_insn ("fistp%z2\t%2", xops); else output_asm_insn ("fist%z2\t%2", xops); output_asm_insn ("fldcw\t%2", operands); if (GET_CODE (operands[0]) != MEM) { if (dimode_p) { split_di (operands+0, 1, xops+0, xops+1); split_di (operands+3, 1, xops+2, xops+3); output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops); output_asm_insn ("mov{l}\t{%3, %1|%1, %3}", xops); } else if (GET_MODE (operands[0]) == SImode) output_asm_insn ("mov{l}\t{%3, %0|%0, %3}", operands); else output_asm_insn ("mov{w}\t{%3, %0|%0, %3}", operands); } return ""; } /* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi should be used and 2 when fnstsw should be used. UNORDERED_P is true when fucom should be used. */ const char * output_fp_compare (insn, operands, eflags_p, unordered_p) rtx insn; rtx *operands; int eflags_p, unordered_p; { int stack_top_dies; rtx cmp_op0 = operands[0]; rtx cmp_op1 = operands[1]; if (eflags_p == 2) { cmp_op0 = cmp_op1; cmp_op1 = operands[2]; } if (! STACK_TOP_P (cmp_op0)) abort (); stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (STACK_REG_P (cmp_op1) && stack_top_dies && find_regno_note (insn, REG_DEAD, REGNO (cmp_op1)) && REGNO (cmp_op1) != FIRST_STACK_REG) { /* If both the top of the 387 stack dies, and the other operand is also a stack register that dies, then this must be a `fcompp' float compare */ if (eflags_p == 1) { /* There is no double popping fcomi variant. Fortunately, eflags is immune from the fstp's cc clobbering. */ if (unordered_p) output_asm_insn ("fucomip\t{%y1, %0|%0, %y1}", operands); else output_asm_insn ("fcomip\t{%y1, %0|%0, %y1}", operands); return "fstp\t%y0"; } else { if (eflags_p == 2) { if (unordered_p) return "fucompp\n\tfnstsw\t%0"; else return "fcompp\n\tfnstsw\t%0"; } else { if (unordered_p) return "fucompp"; else return "fcompp"; } } } else { /* Encoded here as eflags_p | intmode | unordered_p | stack_top_dies. */ static const char * const alt[24] = { "fcom%z1\t%y1", "fcomp%z1\t%y1", "fucom%z1\t%y1", "fucomp%z1\t%y1", "ficom%z1\t%y1", "ficomp%z1\t%y1", NULL, NULL, "fcomi\t{%y1, %0|%0, %y1}", "fcomip\t{%y1, %0|%0, %y1}", "fucomi\t{%y1, %0|%0, %y1}", "fucomip\t{%y1, %0|%0, %y1}", NULL, NULL, NULL, NULL, "fcom%z2\t%y2\n\tfnstsw\t%0", "fcomp%z2\t%y2\n\tfnstsw\t%0", "fucom%z2\t%y2\n\tfnstsw\t%0", "fucomp%z2\t%y2\n\tfnstsw\t%0", "ficom%z2\t%y2\n\tfnstsw\t%0", "ficomp%z2\t%y2\n\tfnstsw\t%0", NULL, NULL }; int mask; const char *ret; mask = eflags_p << 3; mask |= (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT) << 2; mask |= unordered_p << 1; mask |= stack_top_dies; if (mask >= 24) abort (); ret = alt[mask]; if (ret == NULL) abort (); return ret; } } /* Output assembler code to FILE to initialize basic-block profiling. If profile_block_flag == 2 Output code to call the subroutine `__bb_init_trace_func' and pass two parameters to it. The first parameter is the address of a block allocated in the object module. The second parameter is the number of the first basic block of the function. The name of the block is a local symbol made with this statement: ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0); Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. The number of the first basic block of the function is passed to the macro in BLOCK_OR_LABEL. If described in a virtual assembler language the code to be output looks like: parameter1 <- LPBX0 parameter2 <- BLOCK_OR_LABEL call __bb_init_trace_func else if profile_block_flag != 0 Output code to call the subroutine `__bb_init_func' and pass one single parameter to it, which is the same as the first parameter to `__bb_init_trace_func'. The first word of this parameter is a flag which will be nonzero if the object module has already been initialized. So test this word first, and do not call `__bb_init_func' if the flag is nonzero. Note: When profile_block_flag == 2 the test need not be done but `__bb_init_trace_func' *must* be called. BLOCK_OR_LABEL may be used to generate a label number as a branch destination in case `__bb_init_func' will not be called. If described in a virtual assembler language the code to be output looks like: cmp (LPBX0),0 jne local_label parameter1 <- LPBX0 call __bb_init_func local_label: */ void ix86_output_function_block_profiler (file, block_or_label) FILE *file; int block_or_label; { static int num_func = 0; rtx xops[8]; char block_table[80], false_label[80]; ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); xops[5] = stack_pointer_rtx; xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; switch (profile_block_flag) { case 2: xops[2] = GEN_INT (block_or_label); xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_trace_func")); xops[6] = GEN_INT (8); output_asm_insn ("push{l}\t%2", xops); if (!flag_pic) output_asm_insn ("push{l}\t%1", xops); else { output_asm_insn ("lea{l}\t{%a1, %7|%7, %a1}", xops); output_asm_insn ("push{l}\t%7", xops); } output_asm_insn ("call\t%P3", xops); output_asm_insn ("add{l}\t{%6, %5|%5, %6}", xops); break; default: ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); xops[0] = const0_rtx; xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, false_label)); xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_func")); xops[4] = gen_rtx_MEM (Pmode, xops[1]); xops[6] = GEN_INT (4); CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; output_asm_insn ("cmp{l}\t{%0, %4|%4, %0}", xops); output_asm_insn ("jne\t%2", xops); if (!flag_pic) output_asm_insn ("push{l}\t%1", xops); else { output_asm_insn ("lea{l}\t{%a1, %7|%7, %a2}", xops); output_asm_insn ("push{l}\t%7", xops); } output_asm_insn ("call\t%P3", xops); output_asm_insn ("add{l}\t{%6, %5|%5, %6}", xops); ASM_OUTPUT_INTERNAL_LABEL (file, "LPBZ", num_func); num_func++; break; } } /* Output assembler code to FILE to increment a counter associated with basic block number BLOCKNO. If profile_block_flag == 2 Output code to initialize the global structure `__bb' and call the function `__bb_trace_func' which will increment the counter. `__bb' consists of two words. In the first word the number of the basic block has to be stored. In the second word the address of a block allocated in the object module has to be stored. The basic block number is given by BLOCKNO. The address of the block is given by the label created with ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0); by FUNCTION_BLOCK_PROFILER. Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. If described in a virtual assembler language the code to be output looks like: move BLOCKNO -> (__bb) move LPBX0 -> (__bb+4) call __bb_trace_func Note that function `__bb_trace_func' must not change the machine state, especially the flag register. To grant this, you must output code to save and restore registers either in this macro or in the macros MACHINE_STATE_SAVE and MACHINE_STATE_RESTORE. The last two macros will be used in the function `__bb_trace_func', so you must make sure that the function prologue does not change any register prior to saving it with MACHINE_STATE_SAVE. else if profile_block_flag != 0 Output code to increment the counter directly. Basic blocks are numbered separately from zero within each compiled object module. The count associated with block number BLOCKNO is at index BLOCKNO in an array of words; the name of this array is a local symbol made with this statement: ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2); Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. If described in a virtual assembler language the code to be output looks like: inc (LPBX2+4*BLOCKNO) */ void ix86_output_block_profiler (file, blockno) FILE *file ATTRIBUTE_UNUSED; int blockno; { rtx xops[8], cnt_rtx; char counts[80]; char *block_table = counts; switch (profile_block_flag) { case 2: ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); xops[2] = GEN_INT (blockno); xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_func")); xops[4] = gen_rtx_SYMBOL_REF (VOIDmode, "__bb"); xops[5] = plus_constant (xops[4], 4); xops[0] = gen_rtx_MEM (SImode, xops[4]); xops[6] = gen_rtx_MEM (SImode, xops[5]); CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; output_asm_insn ("pushf", xops); output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops); if (flag_pic) { xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ output_asm_insn ("push{l}\t%7", xops); output_asm_insn ("lea{l}\t{%a1, %7|%7, %a1}", xops); output_asm_insn ("mov{l}\t{%7, %6|%6, %7}", xops); output_asm_insn ("pop{l}\t%7", xops); } else output_asm_insn ("mov{l}\t{%1, %6|%6, %1}", xops); output_asm_insn ("call\t%P3", xops); output_asm_insn ("popf", xops); break; default: ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); cnt_rtx = gen_rtx_SYMBOL_REF (VOIDmode, counts); SYMBOL_REF_FLAG (cnt_rtx) = TRUE; if (blockno) cnt_rtx = plus_constant (cnt_rtx, blockno*4); if (flag_pic) cnt_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, cnt_rtx); xops[0] = gen_rtx_MEM (SImode, cnt_rtx); output_asm_insn ("inc{l}\t%0", xops); break; } } void ix86_expand_move (mode, operands) enum machine_mode mode; rtx operands[]; { int strict = (reload_in_progress || reload_completed); rtx insn; if (flag_pic && mode == Pmode && symbolic_operand (operands[1], Pmode)) { /* Emit insns to move operands[1] into operands[0]. */ if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (Pmode, operands[1]); else { rtx temp = operands[0]; if (GET_CODE (temp) != REG) temp = gen_reg_rtx (Pmode); temp = legitimize_pic_address (operands[1], temp); if (temp == operands[0]) return; operands[1] = temp; } } else { if (GET_CODE (operands[0]) == MEM && (GET_MODE (operands[0]) == QImode || !push_operand (operands[0], mode)) && GET_CODE (operands[1]) == MEM) operands[1] = force_reg (mode, operands[1]); if (push_operand (operands[0], mode) && ! general_no_elim_operand (operands[1], mode)) operands[1] = copy_to_mode_reg (mode, operands[1]); if (FLOAT_MODE_P (mode)) { /* If we are loading a floating point constant to a register, force the value to memory now, since we'll get better code out the back end. */ if (strict) ; else if (GET_CODE (operands[1]) == CONST_DOUBLE && register_operand (operands[0], mode)) operands[1] = validize_mem (force_const_mem (mode, operands[1])); } } insn = gen_rtx_SET (VOIDmode, operands[0], operands[1]); emit_insn (insn); } /* Attempt to expand a binary operator. Make the expansion closer to the actual machine, then just general_operand, which will allow 3 separate memory references (one output, two input) in a single insn. */ void ix86_expand_binary_operator (code, mode, operands) enum rtx_code code; enum machine_mode mode; rtx operands[]; { int matching_memory; rtx src1, src2, dst, op, clob; dst = operands[0]; src1 = operands[1]; src2 = operands[2]; /* Recognize = for commutative operators */ if (GET_RTX_CLASS (code) == 'c' && (rtx_equal_p (dst, src2) || immediate_operand (src1, mode))) { rtx temp = src1; src1 = src2; src2 = temp; } /* If the destination is memory, and we do not have matching source operands, do things in registers. */ matching_memory = 0; if (GET_CODE (dst) == MEM) { if (rtx_equal_p (dst, src1)) matching_memory = 1; else if (GET_RTX_CLASS (code) == 'c' && rtx_equal_p (dst, src2)) matching_memory = 2; else dst = gen_reg_rtx (mode); } /* Both source operands cannot be in memory. */ if (GET_CODE (src1) == MEM && GET_CODE (src2) == MEM) { if (matching_memory != 2) src2 = force_reg (mode, src2); else src1 = force_reg (mode, src1); } /* If the operation is not commutable, source 1 cannot be a constant or non-matching memory. */ if ((CONSTANT_P (src1) || (!matching_memory && GET_CODE (src1) == MEM)) && GET_RTX_CLASS (code) != 'c') src1 = force_reg (mode, src1); /* If optimizing, copy to regs to improve CSE */ if (optimize && ! no_new_pseudos) { if (GET_CODE (dst) == MEM) dst = gen_reg_rtx (mode); if (GET_CODE (src1) == MEM) src1 = force_reg (mode, src1); if (GET_CODE (src2) == MEM) src2 = force_reg (mode, src2); } /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, src1, src2)); if (reload_in_progress) { /* Reload doesn't know about the flags register, and doesn't know that it doesn't want to clobber it. We can only do this with PLUS. */ if (code != PLUS) abort (); emit_insn (op); } else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], dst); } /* Return TRUE or FALSE depending on whether the binary operator meets the appropriate constraints. */ int ix86_binary_operator_ok (code, mode, operands) enum rtx_code code; enum machine_mode mode ATTRIBUTE_UNUSED; rtx operands[3]; { /* Both source operands cannot be in memory. */ if (GET_CODE (operands[1]) == MEM && GET_CODE (operands[2]) == MEM) return 0; /* If the operation is not commutable, source 1 cannot be a constant. */ if (CONSTANT_P (operands[1]) && GET_RTX_CLASS (code) != 'c') return 0; /* If the destination is memory, we must have a matching source operand. */ if (GET_CODE (operands[0]) == MEM && ! (rtx_equal_p (operands[0], operands[1]) || (GET_RTX_CLASS (code) == 'c' && rtx_equal_p (operands[0], operands[2])))) return 0; /* If the operation is not commutable and the source 1 is memory, we must have a matching destionation. */ if (GET_CODE (operands[1]) == MEM && GET_RTX_CLASS (code) != 'c' && ! rtx_equal_p (operands[0], operands[1])) return 0; return 1; } /* Attempt to expand a unary operator. Make the expansion closer to the actual machine, then just general_operand, which will allow 2 separate memory references (one output, one input) in a single insn. */ void ix86_expand_unary_operator (code, mode, operands) enum rtx_code code; enum machine_mode mode; rtx operands[]; { int matching_memory; rtx src, dst, op, clob; dst = operands[0]; src = operands[1]; /* If the destination is memory, and we do not have matching source operands, do things in registers. */ matching_memory = 0; if (GET_CODE (dst) == MEM) { if (rtx_equal_p (dst, src)) matching_memory = 1; else dst = gen_reg_rtx (mode); } /* When source operand is memory, destination must match. */ if (!matching_memory && GET_CODE (src) == MEM) src = force_reg (mode, src); /* If optimizing, copy to regs to improve CSE */ if (optimize && ! no_new_pseudos) { if (GET_CODE (dst) == MEM) dst = gen_reg_rtx (mode); if (GET_CODE (src) == MEM) src = force_reg (mode, src); } /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_e (code, mode, src)); if (reload_in_progress || code == NOT) { /* Reload doesn't know about the flags register, and doesn't know that it doesn't want to clobber it. */ if (code != NOT) abort (); emit_insn (op); } else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], dst); } /* Return TRUE or FALSE depending on whether the unary operator meets the appropriate constraints. */ int ix86_unary_operator_ok (code, mode, operands) enum rtx_code code ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; rtx operands[2] ATTRIBUTE_UNUSED; { /* If one of operands is memory, source and destination must match. */ if ((GET_CODE (operands[0]) == MEM || GET_CODE (operands[1]) == MEM) && ! rtx_equal_p (operands[0], operands[1])) return FALSE; return TRUE; } /* Return TRUE or FALSE depending on whether the first SET in INSN has source and destination with matching CC modes, and that the CC mode is at least as constrained as REQ_MODE. */ int ix86_match_ccmode (insn, req_mode) rtx insn; enum machine_mode req_mode; { rtx set; enum machine_mode set_mode; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); if (GET_CODE (set) != SET) abort (); set_mode = GET_MODE (SET_DEST (set)); switch (set_mode) { case CCmode: if (req_mode == CCNOmode) return 0; /* FALLTHRU */ case CCNOmode: if (req_mode == CCZmode) return 0; /* FALLTHRU */ case CCZmode: break; default: abort (); } return (GET_MODE (SET_SRC (set)) == set_mode); } /* Produce an unsigned comparison for a given signed comparison. */ static enum rtx_code unsigned_comparison (code) enum rtx_code code; { switch (code) { case GT: code = GTU; break; case LT: code = LTU; break; case GE: code = GEU; break; case LE: code = LEU; break; case EQ: case NE: case LEU: case LTU: case GEU: case GTU: case UNORDERED: case ORDERED: break; default: abort (); } return code; } /* Generate insn patterns to do an integer compare of OPERANDS. */ static rtx ix86_expand_int_compare (code, op0, op1) enum rtx_code code; rtx op0, op1; { enum machine_mode cmpmode; rtx tmp, flags; cmpmode = SELECT_CC_MODE (code, op0, op1); flags = gen_rtx_REG (cmpmode, FLAGS_REG); /* This is very simple, but making the interface the same as in the FP case makes the rest of the code easier. */ tmp = gen_rtx_COMPARE (cmpmode, op0, op1); emit_insn (gen_rtx_SET (VOIDmode, flags, tmp)); /* Return the test that should be put into the flags user, i.e. the bcc, scc, or cmov instruction. */ return gen_rtx_fmt_ee (code, VOIDmode, flags, const0_rtx); } /* Figure out whether to use ordered or unordered fp comparisons. Return the appropriate mode to use. */ static enum machine_mode ix86_fp_compare_mode (code) enum rtx_code code; { int unordered; switch (code) { case NE: case EQ: /* When not doing IEEE compliant compares, fault on NaNs. */ unordered = (TARGET_IEEE_FP != 0); break; case LT: case LE: case GT: case GE: unordered = 0; break; case UNORDERED: case ORDERED: case UNEQ: case UNGE: case UNGT: case UNLE: case UNLT: case LTGT: unordered = 1; break; default: abort (); } /* ??? If we knew whether invalid-operand exceptions were masked, we could rely on fcom to raise an exception and take care of NaNs. But we don't. We could know this from c99 math pragmas. */ if (TARGET_IEEE_FP) unordered = 1; return unordered ? CCFPUmode : CCFPmode; } /* Return true if we should use an FCOMI instruction for this fp comparison. */ int ix86_use_fcomi_compare (code) enum rtx_code code; { return (TARGET_CMOVE && (code == ORDERED || code == UNORDERED /* All other unordered compares require checking multiple sets of bits. */ || ix86_fp_compare_mode (code) == CCFPmode)); } /* Swap, force into registers, or otherwise massage the two operands to a fp comparison. The operands are updated in place; the new comparsion code is returned. */ static enum rtx_code ix86_prepare_fp_compare_args (code, pop0, pop1) enum rtx_code code; rtx *pop0, *pop1; { enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code); rtx op0 = *pop0, op1 = *pop1; enum machine_mode op_mode = GET_MODE (op0); /* All of the unordered compare instructions only work on registers. The same is true of the XFmode compare instructions. The same is true of the fcomi compare instructions. */ if (fpcmp_mode == CCFPUmode || op_mode == XFmode || ix86_use_fcomi_compare (code)) { op0 = force_reg (op_mode, op0); op1 = force_reg (op_mode, op1); } else { /* %%% We only allow op1 in memory; op0 must be st(0). So swap things around if they appear profitable, otherwise force op0 into a register. */ if (standard_80387_constant_p (op0) == 0 || (GET_CODE (op0) == MEM && ! (standard_80387_constant_p (op1) == 0 || GET_CODE (op1) == MEM))) { rtx tmp; tmp = op0, op0 = op1, op1 = tmp; code = swap_condition (code); } if (GET_CODE (op0) != REG) op0 = force_reg (op_mode, op0); if (CONSTANT_P (op1)) { if (standard_80387_constant_p (op1)) op1 = force_reg (op_mode, op1); else op1 = validize_mem (force_const_mem (op_mode, op1)); } } *pop0 = op0; *pop1 = op1; return code; } /* Generate insn patterns to do a floating point compare of OPERANDS. */ rtx ix86_expand_fp_compare (code, op0, op1, scratch) enum rtx_code code; rtx op0, op1, scratch; { enum machine_mode fpcmp_mode, intcmp_mode; rtx tmp; fpcmp_mode = ix86_fp_compare_mode (code); code = ix86_prepare_fp_compare_args (code, &op0, &op1); /* %%% fcomi is probably always faster, even when dealing with memory, since compare-and-branch would be three insns instead of four. */ if (ix86_use_fcomi_compare (code)) { tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG), tmp); emit_insn (tmp); /* The FP codes work out to act like unsigned. */ code = unsigned_comparison (code); intcmp_mode = CCmode; } else { /* Sadness wrt reg-stack pops killing fpsr -- gotta get fnstsw first. */ rtx tmp2; tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), 9); emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2)); if (fpcmp_mode == CCFPmode || code == ORDERED || code == UNORDERED) { /* We have two options here -- use sahf, or testing bits of ah directly. On PPRO, they are equivalent, sahf being one byte smaller. On Pentium, sahf is non-pairable while test is UV pairable. */ if (TARGET_USE_SAHF || optimize_size) { do_sahf: emit_insn (gen_x86_sahf_1 (scratch)); /* The FP codes work out to act like unsigned. */ code = unsigned_comparison (code); intcmp_mode = CCmode; } else { /* * The numbers below correspond to the bits of the FPSW in AH. * C3, C2, and C0 are in bits 0x40, 0x4, and 0x01 respectively. * * cmp C3 C2 C0 * > 0 0 0 * < 0 0 1 * = 1 0 0 * un 1 1 1 */ int mask; switch (code) { case GT: mask = 0x41; code = EQ; break; case LT: mask = 0x01; code = NE; break; case GE: /* We'd have to use `xorb 1,ah; andb 0x41,ah', so it's faster in all cases to just fall back on sahf. */ goto do_sahf; case LE: mask = 0x41; code = NE; break; case EQ: mask = 0x40; code = NE; break; case NE: mask = 0x40; code = EQ; break; case UNORDERED: mask = 0x04; code = NE; break; case ORDERED: mask = 0x04; code = EQ; break; default: abort (); } emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (mask))); intcmp_mode = CCNOmode; } } else { /* In the unordered case, we have to check C2 for NaN's, which doesn't happen to work out to anything nice combination-wise. So do some bit twiddling on the value we've got in AH to come up with an appropriate set of condition codes. */ intcmp_mode = CCNOmode; switch (code) { case GT: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); code = EQ; break; case LT: emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x01))); intcmp_mode = CCmode; code = EQ; break; case GE: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x05))); code = EQ; break; case LE: emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); intcmp_mode = CCmode; code = LTU; break; case EQ: emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); intcmp_mode = CCmode; code = EQ; break; case NE: emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, GEN_INT (0x40))); code = NE; break; case UNORDERED: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); code = NE; break; case ORDERED: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); code = EQ; break; case UNEQ: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); code = NE; break; case UNGE: emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, GEN_INT (0x01))); code = NE; break; case UNGT: emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x44))); code = GEU; break; case UNLE: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); code = NE; break; case UNLT: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x01))); code = NE; break; case LTGT: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); code = EQ; break; default: abort (); } } } /* Return the test that should be put into the flags user, i.e. the bcc, scc, or cmov instruction. */ return gen_rtx_fmt_ee (code, VOIDmode, gen_rtx_REG (intcmp_mode, FLAGS_REG), const0_rtx); } rtx ix86_expand_compare (code) enum rtx_code code; { rtx op0, op1, ret; op0 = ix86_compare_op0; op1 = ix86_compare_op1; if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT) ret = ix86_expand_fp_compare (code, op0, op1, gen_reg_rtx (HImode)); else ret = ix86_expand_int_compare (code, op0, op1); return ret; } void ix86_expand_branch (code, label) enum rtx_code code; rtx label; { rtx tmp; switch (GET_MODE (ix86_compare_op0)) { case QImode: case HImode: case SImode: tmp = ix86_expand_compare (code); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); return; case SFmode: case DFmode: case XFmode: /* Don't expand the comparison early, so that we get better code when jump or whoever decides to reverse the comparison. */ { rtvec vec; int use_fcomi; code = ix86_prepare_fp_compare_args (code, &ix86_compare_op0, &ix86_compare_op1); tmp = gen_rtx_fmt_ee (code, VOIDmode, ix86_compare_op0, ix86_compare_op1); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); tmp = gen_rtx_SET (VOIDmode, pc_rtx, tmp); use_fcomi = ix86_use_fcomi_compare (code); vec = rtvec_alloc (3 + !use_fcomi); RTVEC_ELT (vec, 0) = tmp; RTVEC_ELT (vec, 1) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCFPmode, 18)); RTVEC_ELT (vec, 2) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCFPmode, 17)); if (! use_fcomi) RTVEC_ELT (vec, 3) = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (HImode)); emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, vec)); return; } case DImode: /* Expand DImode branch into multiple compare+branch. */ { rtx lo[2], hi[2], label2; enum rtx_code code1, code2, code3; if (CONSTANT_P (ix86_compare_op0) && ! CONSTANT_P (ix86_compare_op1)) { tmp = ix86_compare_op0; ix86_compare_op0 = ix86_compare_op1; ix86_compare_op1 = tmp; code = swap_condition (code); } split_di (&ix86_compare_op0, 1, lo+0, hi+0); split_di (&ix86_compare_op1, 1, lo+1, hi+1); /* When comparing for equality, we can use (hi0^hi1)|(lo0^lo1) to avoid two branches. This costs one extra insn, so disable when optimizing for size. */ if ((code == EQ || code == NE) && (!optimize_size || hi[1] == const0_rtx || lo[1] == const0_rtx)) { rtx xor0, xor1; xor1 = hi[0]; if (hi[1] != const0_rtx) xor1 = expand_binop (SImode, xor_optab, xor1, hi[1], NULL_RTX, 0, OPTAB_WIDEN); xor0 = lo[0]; if (lo[1] != const0_rtx) xor0 = expand_binop (SImode, xor_optab, xor0, lo[1], NULL_RTX, 0, OPTAB_WIDEN); tmp = expand_binop (SImode, ior_optab, xor1, xor0, NULL_RTX, 0, OPTAB_WIDEN); ix86_compare_op0 = tmp; ix86_compare_op1 = const0_rtx; ix86_expand_branch (code, label); return; } /* Otherwise, if we are doing less-than or greater-or-equal-than, op1 is a constant and the low word is zero, then we can just examine the high word. */ if (GET_CODE (hi[1]) == CONST_INT && lo[1] == const0_rtx) switch (code) { case LT: case LTU: case GE: case GEU: ix86_compare_op0 = hi[0]; ix86_compare_op1 = hi[1]; ix86_expand_branch (code, label); return; default: break; } /* Otherwise, we need two or three jumps. */ label2 = gen_label_rtx (); code1 = code; code2 = swap_condition (code); code3 = unsigned_condition (code); switch (code) { case LT: case GT: case LTU: case GTU: break; case LE: code1 = LT; code2 = GT; break; case GE: code1 = GT; code2 = LT; break; case LEU: code1 = LTU; code2 = GTU; break; case GEU: code1 = GTU; code2 = LTU; break; case EQ: code1 = NIL; code2 = NE; break; case NE: code2 = NIL; break; default: abort (); } /* * a < b => * if (hi(a) < hi(b)) goto true; * if (hi(a) > hi(b)) goto false; * if (lo(a) < lo(b)) goto true; * false: */ ix86_compare_op0 = hi[0]; ix86_compare_op1 = hi[1]; if (code1 != NIL) ix86_expand_branch (code1, label); if (code2 != NIL) ix86_expand_branch (code2, label2); ix86_compare_op0 = lo[0]; ix86_compare_op1 = lo[1]; ix86_expand_branch (code3, label); if (code2 != NIL) emit_label (label2); return; } default: abort (); } } int ix86_expand_setcc (code, dest) enum rtx_code code; rtx dest; { rtx ret, tmp; int type; if (GET_MODE (ix86_compare_op0) == DImode) return 0; /* FAIL */ /* Three modes of generation: 0 -- destination does not overlap compare sources: clear dest first, emit strict_low_part setcc. 1 -- destination does overlap compare sources: emit subreg setcc, zero extend. 2 -- destination is in QImode: emit setcc only. */ type = 0; if (GET_MODE (dest) == QImode) type = 2; else if (reg_overlap_mentioned_p (dest, ix86_compare_op0) || reg_overlap_mentioned_p (dest, ix86_compare_op1)) type = 1; if (type == 0) emit_move_insn (dest, const0_rtx); ret = ix86_expand_compare (code); PUT_MODE (ret, QImode); tmp = dest; if (type == 0) { tmp = gen_lowpart (QImode, dest); tmp = gen_rtx_STRICT_LOW_PART (VOIDmode, tmp); } else if (type == 1) { if (!cse_not_expected) tmp = gen_reg_rtx (QImode); else tmp = gen_lowpart (QImode, dest); } emit_insn (gen_rtx_SET (VOIDmode, tmp, ret)); if (type == 1) { rtx clob; tmp = gen_rtx_ZERO_EXTEND (GET_MODE (dest), tmp); tmp = gen_rtx_SET (VOIDmode, dest, tmp); clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob)); emit_insn (tmp); } return 1; /* DONE */ } int ix86_expand_int_movcc (operands) rtx operands[]; { enum rtx_code code = GET_CODE (operands[1]), compare_code; rtx compare_seq, compare_op; /* When the compare code is not LTU or GEU, we can not use sbbl case. In case comparsion is done with immediate, we can convert it to LTU or GEU by altering the integer. */ if ((code == LEU || code == GTU) && GET_CODE (ix86_compare_op1) == CONST_INT && GET_MODE (operands[0]) != HImode && (unsigned int)INTVAL (ix86_compare_op1) != 0xffffffff && GET_CODE (operands[2]) == CONST_INT && GET_CODE (operands[3]) == CONST_INT) { if (code == LEU) code = LTU; else code = GEU; ix86_compare_op1 = GEN_INT (INTVAL (ix86_compare_op1) + 1); } start_sequence (); compare_op = ix86_expand_compare (code); compare_seq = gen_sequence (); end_sequence (); compare_code = GET_CODE (compare_op); /* Don't attempt mode expansion here -- if we had to expand 5 or 6 HImode insns, we'd be swallowed in word prefix ops. */ if (GET_MODE (operands[0]) != HImode && GET_CODE (operands[2]) == CONST_INT && GET_CODE (operands[3]) == CONST_INT) { rtx out = operands[0]; HOST_WIDE_INT ct = INTVAL (operands[2]); HOST_WIDE_INT cf = INTVAL (operands[3]); HOST_WIDE_INT diff; if (compare_code == LTU || compare_code == GEU) { /* Detect overlap between destination and compare sources. */ rtx tmp = out; /* To simplify rest of code, restrict to the GEU case. */ if (compare_code == LTU) { int tmp = ct; ct = cf; cf = tmp; compare_code = reverse_condition (compare_code); code = reverse_condition (code); } diff = ct - cf; if (reg_overlap_mentioned_p (out, ix86_compare_op0) || reg_overlap_mentioned_p (out, ix86_compare_op1)) tmp = gen_reg_rtx (SImode); emit_insn (compare_seq); emit_insn (gen_x86_movsicc_0_m1 (tmp)); if (diff == 1) { /* * cmpl op0,op1 * sbbl dest,dest * [addl dest, ct] * * Size 5 - 8. */ if (ct) emit_insn (gen_addsi3 (out, out, GEN_INT (ct))); } else if (cf == -1) { /* * cmpl op0,op1 * sbbl dest,dest * orl $ct, dest * * Size 8. */ emit_insn (gen_iorsi3 (out, out, GEN_INT (ct))); } else if (diff == -1 && ct) { /* * cmpl op0,op1 * sbbl dest,dest * xorl $-1, dest * [addl dest, cf] * * Size 8 - 11. */ emit_insn (gen_one_cmplsi2 (tmp, tmp)); if (cf) emit_insn (gen_addsi3 (out, out, GEN_INT (cf))); } else { /* * cmpl op0,op1 * sbbl dest,dest * andl cf - ct, dest * [addl dest, ct] * * Size 8 - 11. */ emit_insn (gen_andsi3 (out, out, GEN_INT (cf - ct))); if (ct) emit_insn (gen_addsi3 (out, out, GEN_INT (ct))); } if (tmp != out) emit_move_insn (out, tmp); return 1; /* DONE */ } diff = ct - cf; if (diff < 0) { HOST_WIDE_INT tmp; tmp = ct, ct = cf, cf = tmp; diff = -diff; compare_code = reverse_condition (compare_code); code = reverse_condition (code); } if (diff == 1 || diff == 2 || diff == 4 || diff == 8 || diff == 3 || diff == 5 || diff == 9) { /* * xorl dest,dest * cmpl op1,op2 * setcc dest * lea cf(dest*(ct-cf)),dest * * Size 14. * * This also catches the degenerate setcc-only case. */ rtx tmp; int nops; out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, 1); nops = 0; if (diff == 1) tmp = out; else { tmp = gen_rtx_MULT (SImode, out, GEN_INT (diff & ~1)); nops++; if (diff & 1) { tmp = gen_rtx_PLUS (SImode, tmp, out); nops++; } } if (cf != 0) { tmp = gen_rtx_PLUS (SImode, tmp, GEN_INT (cf)); nops++; } if (tmp != out) { if (nops == 0) emit_move_insn (out, tmp); else if (nops == 1) { rtx clob; clob = gen_rtx_REG (CCmode, FLAGS_REG); clob = gen_rtx_CLOBBER (VOIDmode, clob); tmp = gen_rtx_SET (VOIDmode, out, tmp); tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob)); emit_insn (tmp); } else emit_insn (gen_rtx_SET (VOIDmode, out, tmp)); } if (out != operands[0]) emit_move_insn (operands[0], out); return 1; /* DONE */ } /* * General case: Jumpful: * xorl dest,dest cmpl op1, op2 * cmpl op1, op2 movl ct, dest * setcc dest jcc 1f * decl dest movl cf, dest * andl (cf-ct),dest 1: * addl ct,dest * * Size 20. Size 14. * * This is reasonably steep, but branch mispredict costs are * high on modern cpus, so consider failing only if optimizing * for space. * * %%% Parameterize branch_cost on the tuning architecture, then * use that. The 80386 couldn't care less about mispredicts. */ if (!optimize_size && !TARGET_CMOVE) { if (ct == 0) { ct = cf; cf = 0; compare_code = reverse_condition (compare_code); code = reverse_condition (code); } out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, 1); emit_insn (gen_addsi3 (out, out, constm1_rtx)); emit_insn (gen_andsi3 (out, out, GEN_INT (cf-ct))); if (ct != 0) emit_insn (gen_addsi3 (out, out, GEN_INT (ct))); if (out != operands[0]) emit_move_insn (operands[0], out); return 1; /* DONE */ } } if (!TARGET_CMOVE) { /* Try a few things more with specific constants and a variable. */ optab op; rtx var, orig_out, out, tmp; if (optimize_size) return 0; /* FAIL */ /* If one of the two operands is an interesting constant, load a constant with the above and mask it in with a logical operation. */ if (GET_CODE (operands[2]) == CONST_INT) { var = operands[3]; if (INTVAL (operands[2]) == 0) operands[3] = constm1_rtx, op = and_optab; else if (INTVAL (operands[2]) == -1) operands[3] = const0_rtx, op = ior_optab; else return 0; /* FAIL */ } else if (GET_CODE (operands[3]) == CONST_INT) { var = operands[2]; if (INTVAL (operands[3]) == 0) operands[2] = constm1_rtx, op = and_optab; else if (INTVAL (operands[3]) == -1) operands[2] = const0_rtx, op = ior_optab; else return 0; /* FAIL */ } else return 0; /* FAIL */ orig_out = operands[0]; tmp = gen_reg_rtx (GET_MODE (orig_out)); operands[0] = tmp; /* Recurse to get the constant loaded. */ if (ix86_expand_int_movcc (operands) == 0) return 0; /* FAIL */ /* Mask in the interesting variable. */ out = expand_binop (GET_MODE (orig_out), op, var, tmp, orig_out, 0, OPTAB_WIDEN); if (out != orig_out) emit_move_insn (orig_out, out); return 1; /* DONE */ } /* * For comparison with above, * * movl cf,dest * movl ct,tmp * cmpl op1,op2 * cmovcc tmp,dest * * Size 15. */ if (! nonimmediate_operand (operands[2], GET_MODE (operands[0]))) operands[2] = force_reg (GET_MODE (operands[0]), operands[2]); if (! nonimmediate_operand (operands[3], GET_MODE (operands[0]))) operands[3] = force_reg (GET_MODE (operands[0]), operands[3]); emit_insn (compare_seq); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), compare_op, operands[2], operands[3]))); return 1; /* DONE */ } int ix86_expand_fp_movcc (operands) rtx operands[]; { enum rtx_code code; enum machine_mode mode; rtx tmp; /* The floating point conditional move instructions don't directly support conditions resulting from a signed integer comparison. */ code = GET_CODE (operands[1]); switch (code) { case LT: case LE: case GE: case GT: tmp = gen_reg_rtx (QImode); ix86_expand_setcc (code, tmp); code = NE; ix86_compare_op0 = tmp; ix86_compare_op1 = const0_rtx; break; default: break; } mode = SELECT_CC_MODE (code, ix86_compare_op0, ix86_compare_op1); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (mode, FLAGS_REG), gen_rtx_COMPARE (mode, ix86_compare_op0, ix86_compare_op1))); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), gen_rtx_fmt_ee (code, VOIDmode, gen_rtx_REG (mode, FLAGS_REG), const0_rtx), operands[2], operands[3]))); return 1; } /* Split operands 0 and 1 into SImode parts. Similar to split_di, but works for floating pointer parameters and nonoffsetable memories. For pushes, it returns just stack offsets; the values will be saved in the right order. Maximally three parts are generated. */ static void ix86_split_to_parts (operand, parts, mode) rtx operand; rtx *parts; enum machine_mode mode; { int size = GET_MODE_SIZE (mode) / 4; if (GET_CODE (operand) == REG && MMX_REGNO_P (REGNO (operand))) abort (); if (size < 2 || size > 3) abort (); /* Optimize constant pool reference to immediates. This is used by fp moves, that force all constants to memory to allow combining. */ if (GET_CODE (operand) == MEM && GET_CODE (XEXP (operand, 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (operand, 0))) operand = get_pool_constant (XEXP (operand, 0)); if (GET_CODE (operand) == MEM && !offsettable_memref_p (operand)) { /* The only non-offsetable memories we handle are pushes. */ if (! push_operand (operand, VOIDmode)) abort (); PUT_MODE (operand, SImode); parts[0] = parts[1] = parts[2] = operand; } else { if (mode == DImode) split_di (&operand, 1, &parts[0], &parts[1]); else { if (REG_P (operand)) { if (!reload_completed) abort (); parts[0] = gen_rtx_REG (SImode, REGNO (operand) + 0); parts[1] = gen_rtx_REG (SImode, REGNO (operand) + 1); if (size == 3) parts[2] = gen_rtx_REG (SImode, REGNO (operand) + 2); } else if (offsettable_memref_p (operand)) { PUT_MODE (operand, SImode); parts[0] = operand; parts[1] = adj_offsettable_operand (operand, 4); if (size == 3) parts[2] = adj_offsettable_operand (operand, 8); } else if (GET_CODE (operand) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long l[3]; REAL_VALUE_FROM_CONST_DOUBLE (r, operand); switch (mode) { case XFmode: REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l); parts[2] = GEN_INT (l[2]); break; case DFmode: REAL_VALUE_TO_TARGET_DOUBLE (r, l); break; default: abort (); } parts[1] = GEN_INT (l[1]); parts[0] = GEN_INT (l[0]); } else abort (); } } return; } /* Emit insns to perform a move or push of DI, DF, and XF values. Return false when normal moves are needed; true when all required insns have been emitted. Operands 2-4 contain the input values int the correct order; operands 5-7 contain the output values. */ int ix86_split_long_move (operands1) rtx operands1[]; { rtx part[2][3]; rtx operands[2]; int size = GET_MODE_SIZE (GET_MODE (operands1[0])) / 4; int push = 0; int collisions = 0; /* Make our own copy to avoid clobbering the operands. */ operands[0] = copy_rtx (operands1[0]); operands[1] = copy_rtx (operands1[1]); if (size < 2 || size > 3) abort (); /* The only non-offsettable memory we handle is push. */ if (push_operand (operands[0], VOIDmode)) push = 1; else if (GET_CODE (operands[0]) == MEM && ! offsettable_memref_p (operands[0])) abort (); ix86_split_to_parts (operands[0], part[0], GET_MODE (operands1[0])); ix86_split_to_parts (operands[1], part[1], GET_MODE (operands1[0])); /* When emitting push, take care for source operands on the stack. */ if (push && GET_CODE (operands[1]) == MEM && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1])) { if (size == 3) part[1][1] = part[1][2]; part[1][0] = part[1][1]; } /* We need to do copy in the right order in case an address register of the source overlaps the destination. */ if (REG_P (part[0][0]) && GET_CODE (part[1][0]) == MEM) { if (reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0))) collisions++; if (reg_overlap_mentioned_p (part[0][1], XEXP (part[1][0], 0))) collisions++; if (size == 3 && reg_overlap_mentioned_p (part[0][2], XEXP (part[1][0], 0))) collisions++; /* Collision in the middle part can be handled by reordering. */ if (collisions == 1 && size == 3 && reg_overlap_mentioned_p (part[0][1], XEXP (part[1][0], 0))) { rtx tmp; tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp; tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp; } /* If there are more collisions, we can't handle it by reordering. Do an lea to the last part and use only one colliding move. */ else if (collisions > 1) { collisions = 1; emit_insn (gen_rtx_SET (VOIDmode, part[0][size - 1], XEXP (part[1][0], 0))); part[1][0] = change_address (part[1][0], SImode, part[0][size - 1]); part[1][1] = adj_offsettable_operand (part[1][0], 4); if (size == 3) part[1][2] = adj_offsettable_operand (part[1][0], 8); } } if (push) { if (size == 3) emit_insn (gen_push (part[1][2])); emit_insn (gen_push (part[1][1])); emit_insn (gen_push (part[1][0])); return 1; } /* Choose correct order to not overwrite the source before it is copied. */ if ((REG_P (part[0][0]) && REG_P (part[1][1]) && (REGNO (part[0][0]) == REGNO (part[1][1]) || (size == 3 && REGNO (part[0][0]) == REGNO (part[1][2])))) || (collisions > 0 && reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0)))) { if (size == 3) { operands1[2] = part[0][2]; operands1[3] = part[0][1]; operands1[4] = part[0][0]; operands1[5] = part[1][2]; operands1[6] = part[1][1]; operands1[7] = part[1][0]; } else { operands1[2] = part[0][1]; operands1[3] = part[0][0]; operands1[5] = part[1][1]; operands1[6] = part[1][0]; } } else { if (size == 3) { operands1[2] = part[0][0]; operands1[3] = part[0][1]; operands1[4] = part[0][2]; operands1[5] = part[1][0]; operands1[6] = part[1][1]; operands1[7] = part[1][2]; } else { operands1[2] = part[0][0]; operands1[3] = part[0][1]; operands1[5] = part[1][0]; operands1[6] = part[1][1]; } } return 0; } void ix86_split_ashldi (operands, scratch) rtx *operands, scratch; { rtx low[2], high[2]; int count; if (GET_CODE (operands[2]) == CONST_INT) { split_di (operands, 2, low, high); count = INTVAL (operands[2]) & 63; if (count >= 32) { emit_move_insn (high[0], low[1]); emit_move_insn (low[0], const0_rtx); if (count > 32) emit_insn (gen_ashlsi3 (high[0], high[0], GEN_INT (count - 32))); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_x86_shld_1 (high[0], low[0], GEN_INT (count))); emit_insn (gen_ashlsi3 (low[0], low[0], GEN_INT (count))); } } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_di (operands, 1, low, high); emit_insn (gen_x86_shld_1 (high[0], low[0], operands[2])); emit_insn (gen_ashlsi3 (low[0], low[0], operands[2])); if (TARGET_CMOVE && (! no_new_pseudos || scratch)) { if (! no_new_pseudos) scratch = force_reg (SImode, const0_rtx); else emit_move_insn (scratch, const0_rtx); emit_insn (gen_x86_shift_adj_1 (high[0], low[0], operands[2], scratch)); } else emit_insn (gen_x86_shift_adj_2 (high[0], low[0], operands[2])); } } void ix86_split_ashrdi (operands, scratch) rtx *operands, scratch; { rtx low[2], high[2]; int count; if (GET_CODE (operands[2]) == CONST_INT) { split_di (operands, 2, low, high); count = INTVAL (operands[2]) & 63; if (count >= 32) { emit_move_insn (low[0], high[1]); if (! reload_completed) emit_insn (gen_ashrsi3 (high[0], low[0], GEN_INT (31))); else { emit_move_insn (high[0], low[0]); emit_insn (gen_ashrsi3 (high[0], high[0], GEN_INT (31))); } if (count > 32) emit_insn (gen_ashrsi3 (low[0], low[0], GEN_INT (count - 32))); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_x86_shrd_1 (low[0], high[0], GEN_INT (count))); emit_insn (gen_ashrsi3 (high[0], high[0], GEN_INT (count))); } } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_di (operands, 1, low, high); emit_insn (gen_x86_shrd_1 (low[0], high[0], operands[2])); emit_insn (gen_ashrsi3 (high[0], high[0], operands[2])); if (TARGET_CMOVE && (! no_new_pseudos || scratch)) { if (! no_new_pseudos) scratch = gen_reg_rtx (SImode); emit_move_insn (scratch, high[0]); emit_insn (gen_ashrsi3 (scratch, scratch, GEN_INT (31))); emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2], scratch)); } else emit_insn (gen_x86_shift_adj_3 (low[0], high[0], operands[2])); } } void ix86_split_lshrdi (operands, scratch) rtx *operands, scratch; { rtx low[2], high[2]; int count; if (GET_CODE (operands[2]) == CONST_INT) { split_di (operands, 2, low, high); count = INTVAL (operands[2]) & 63; if (count >= 32) { emit_move_insn (low[0], high[1]); emit_move_insn (high[0], const0_rtx); if (count > 32) emit_insn (gen_lshrsi3 (low[0], low[0], GEN_INT (count - 32))); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_x86_shrd_1 (low[0], high[0], GEN_INT (count))); emit_insn (gen_lshrsi3 (high[0], high[0], GEN_INT (count))); } } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_di (operands, 1, low, high); emit_insn (gen_x86_shrd_1 (low[0], high[0], operands[2])); emit_insn (gen_lshrsi3 (high[0], high[0], operands[2])); /* Heh. By reversing the arguments, we can reuse this pattern. */ if (TARGET_CMOVE && (! no_new_pseudos || scratch)) { if (! no_new_pseudos) scratch = force_reg (SImode, const0_rtx); else emit_move_insn (scratch, const0_rtx); emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2], scratch)); } else emit_insn (gen_x86_shift_adj_2 (low[0], high[0], operands[2])); } } /* Expand the appropriate insns for doing strlen if not just doing repnz; scasb out = result, initialized with the start address align_rtx = alignment of the address. scratch = scratch register, initialized with the startaddress when not aligned, otherwise undefined This is just the body. It needs the initialisations mentioned above and some address computing at the end. These things are done in i386.md. */ void ix86_expand_strlensi_unroll_1 (out, align_rtx, scratch) rtx out, align_rtx, scratch; { int align; rtx tmp; rtx align_2_label = NULL_RTX; rtx align_3_label = NULL_RTX; rtx align_4_label = gen_label_rtx (); rtx end_0_label = gen_label_rtx (); rtx mem; rtx no_flags = gen_rtx_REG (CCNOmode, FLAGS_REG); rtx z_flags = gen_rtx_REG (CCNOmode, FLAGS_REG); rtx tmpreg = gen_reg_rtx (SImode); align = 0; if (GET_CODE (align_rtx) == CONST_INT) align = INTVAL (align_rtx); /* Loop to check 1..3 bytes for null to get an aligned pointer. */ /* Is there a known alignment and is it less than 4? */ if (align < 4) { /* Is there a known alignment and is it not 2? */ if (align != 2) { align_3_label = gen_label_rtx (); /* Label when aligned to 3-byte */ align_2_label = gen_label_rtx (); /* Label when aligned to 2-byte */ /* Leave just the 3 lower bits. */ align_rtx = expand_binop (SImode, and_optab, scratch, GEN_INT (3), NULL_RTX, 0, OPTAB_WIDEN); emit_insn (gen_cmpsi_ccz_1 (align_rtx, const0_rtx)); tmp = gen_rtx_EQ (VOIDmode, z_flags, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, align_4_label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); emit_insn (gen_cmpsi_ccno_1 (align_rtx, GEN_INT (2))); tmp = gen_rtx_EQ (VOIDmode, no_flags, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, align_2_label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); tmp = gen_rtx_GTU (VOIDmode, no_flags, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, align_3_label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); } else { /* Since the alignment is 2, we have to check 2 or 0 bytes; check if is aligned to 4 - byte. */ align_rtx = expand_binop (SImode, and_optab, scratch, GEN_INT (2), NULL_RTX, 0, OPTAB_WIDEN); emit_insn (gen_cmpsi_ccz_1 (align_rtx, const0_rtx)); tmp = gen_rtx_EQ (VOIDmode, z_flags, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, align_4_label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); } mem = gen_rtx_MEM (QImode, out); /* Now compare the bytes. */ /* Compare the first n unaligned byte on a byte per byte basis. */ emit_insn (gen_cmpqi_ccz_1 (mem, const0_rtx)); tmp = gen_rtx_EQ (VOIDmode, z_flags, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, end_0_label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); /* Increment the address. */ emit_insn (gen_addsi3 (out, out, const1_rtx)); /* Not needed with an alignment of 2 */ if (align != 2) { emit_label (align_2_label); emit_insn (gen_cmpqi_ccz_1 (mem, const0_rtx)); tmp = gen_rtx_EQ (VOIDmode, z_flags, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, end_0_label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); emit_insn (gen_addsi3 (out, out, const1_rtx)); emit_label (align_3_label); } emit_insn (gen_cmpqi_ccz_1 (mem, const0_rtx)); tmp = gen_rtx_EQ (VOIDmode, z_flags, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, end_0_label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); emit_insn (gen_addsi3 (out, out, const1_rtx)); } /* Generate loop to check 4 bytes at a time. It is not a good idea to align this loop. It gives only huge programs, but does not help to speed up. */ emit_label (align_4_label); mem = gen_rtx_MEM (SImode, out); emit_move_insn (scratch, mem); emit_insn (gen_addsi3 (out, out, GEN_INT (4))); /* This formula yields a nonzero result iff one of the bytes is zero. This saves three branches inside loop and many cycles. */ emit_insn (gen_addsi3 (tmpreg, scratch, GEN_INT (-0x01010101))); emit_insn (gen_one_cmplsi2 (scratch, scratch)); emit_insn (gen_andsi3 (tmpreg, tmpreg, scratch)); emit_insn (gen_andsi3 (tmpreg, tmpreg, GEN_INT (0x80808080))); emit_cmp_and_jump_insns (tmpreg, const0_rtx, EQ, 0, SImode, 1, 0, align_4_label); if (TARGET_CMOVE) { rtx reg = gen_reg_rtx (SImode); emit_move_insn (reg, tmpreg); emit_insn (gen_lshrsi3 (reg, reg, GEN_INT (16))); /* If zero is not in the first two bytes, move two bytes forward. */ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, tmpreg, gen_rtx_IF_THEN_ELSE (SImode, tmp, reg, tmpreg))); /* Emit lea manually to avoid clobbering of flags. */ emit_insn (gen_rtx_SET (SImode, reg, gen_rtx_PLUS (SImode, out, GEN_INT (2)))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_IF_THEN_ELSE (SImode, tmp, reg, out))); } else { rtx end_2_label = gen_label_rtx (); /* Is zero in the first two bytes? */ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_NE (VOIDmode, tmp, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, end_2_label), pc_rtx); tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); JUMP_LABEL (tmp) = end_2_label; /* Not in the first two. Move two bytes forward. */ emit_insn (gen_lshrsi3 (tmpreg, tmpreg, GEN_INT (16))); emit_insn (gen_addsi3 (out, out, GEN_INT (2))); emit_label (end_2_label); } /* Avoid branch in fixing the byte. */ tmpreg = gen_lowpart (QImode, tmpreg); emit_insn (gen_addqi3_cc (tmpreg, tmpreg, tmpreg)); emit_insn (gen_subsi3_carry (out, out, GEN_INT (3))); emit_label (end_0_label); } /* Clear stack slot assignments remembered from previous functions. This is called from INIT_EXPANDERS once before RTL is emitted for each function. */ static void ix86_init_machine_status (p) struct function *p; { enum machine_mode mode; int n; p->machine = (struct machine_function *) xmalloc (sizeof (struct machine_function)); for (mode = VOIDmode; (int) mode < (int) MAX_MACHINE_MODE; mode = (enum machine_mode) ((int) mode + 1)) for (n = 0; n < MAX_386_STACK_LOCALS; n++) ix86_stack_locals[(int) mode][n] = NULL_RTX; } /* Mark machine specific bits of P for GC. */ static void ix86_mark_machine_status (p) struct function *p; { enum machine_mode mode; int n; for (mode = VOIDmode; (int) mode < (int) MAX_MACHINE_MODE; mode = (enum machine_mode) ((int) mode + 1)) for (n = 0; n < MAX_386_STACK_LOCALS; n++) ggc_mark_rtx (p->machine->stack_locals[(int) mode][n]); } /* Return a MEM corresponding to a stack slot with mode MODE. Allocate a new slot if necessary. The RTL for a function can have several slots available: N is which slot to use. */ rtx assign_386_stack_local (mode, n) enum machine_mode mode; int n; { if (n < 0 || n >= MAX_386_STACK_LOCALS) abort (); if (ix86_stack_locals[(int) mode][n] == NULL_RTX) ix86_stack_locals[(int) mode][n] = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); return ix86_stack_locals[(int) mode][n]; } /* Calculate the length of the memory address in the instruction encoding. Does not include the one-byte modrm, opcode, or prefix. */ static int memory_address_length (addr) rtx addr; { struct ix86_address parts; rtx base, index, disp; int len; if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_INC) return 0; if (! ix86_decompose_address (addr, &parts)) abort (); base = parts.base; index = parts.index; disp = parts.disp; len = 0; /* Register Indirect. */ if (base && !index && !disp) { /* Special cases: ebp and esp need the two-byte modrm form. */ if (addr == stack_pointer_rtx || addr == arg_pointer_rtx || addr == frame_pointer_rtx || addr == hard_frame_pointer_rtx) len = 1; } /* Direct Addressing. */ else if (disp && !base && !index) len = 4; else { /* Find the length of the displacement constant. */ if (disp) { if (GET_CODE (disp) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (disp), 'K')) len = 1; else len = 4; } /* An index requires the two-byte modrm form. */ if (index) len += 1; } return len; } /* Compute default value for "length_immediate" attribute. When SHORTFORM is set expect that insn have 8bit immediate alternative. */ int ix86_attr_length_immediate_default (insn, shortform) rtx insn; int shortform; { int len = 0; int i; extract_insn (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (CONSTANT_P (recog_data.operand[i])) { if (len) abort (); if (shortform && GET_CODE (recog_data.operand[i]) == CONST_INT && CONST_OK_FOR_LETTER_P (INTVAL (recog_data.operand[i]), 'K')) len = 1; else { switch (get_attr_mode (insn)) { case MODE_QI: len+=1; break; case MODE_HI: len+=2; break; case MODE_SI: len+=4; break; default: fatal_insn ("Unknown insn mode", insn); } } } return len; } /* Compute default value for "length_address" attribute. */ int ix86_attr_length_address_default (insn) rtx insn; { int i; extract_insn (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (GET_CODE (recog_data.operand[i]) == MEM) { return memory_address_length (XEXP (recog_data.operand[i], 0)); break; } return 0; } /* Return the maximum number of instructions a cpu can issue. */ int ix86_issue_rate () { switch (ix86_cpu) { case PROCESSOR_PENTIUM: case PROCESSOR_K6: return 2; case PROCESSOR_PENTIUMPRO: return 3; default: return 1; } } /* A subroutine of ix86_adjust_cost -- return true iff INSN reads flags set by DEP_INSN and nothing set by DEP_INSN. */ static int ix86_flags_dependant (insn, dep_insn, insn_type) rtx insn, dep_insn; enum attr_type insn_type; { rtx set, set2; /* Simplify the test for uninteresting insns. */ if (insn_type != TYPE_SETCC && insn_type != TYPE_ICMOV && insn_type != TYPE_FCMOV && insn_type != TYPE_IBR) return 0; if ((set = single_set (dep_insn)) != 0) { set = SET_DEST (set); set2 = NULL_RTX; } else if (GET_CODE (PATTERN (dep_insn)) == PARALLEL && XVECLEN (PATTERN (dep_insn), 0) == 2 && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 0)) == SET && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 1)) == SET) { set = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); set2 = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); } else return 0; if (GET_CODE (set) != REG || REGNO (set) != FLAGS_REG) return 0; /* This test is true if the dependant insn reads the flags but not any other potentially set register. */ if (!reg_overlap_mentioned_p (set, PATTERN (insn))) return 0; if (set2 && reg_overlap_mentioned_p (set2, PATTERN (insn))) return 0; return 1; } /* A subroutine of ix86_adjust_cost -- return true iff INSN has a memory address with operands set by DEP_INSN. */ static int ix86_agi_dependant (insn, dep_insn, insn_type) rtx insn, dep_insn; enum attr_type insn_type; { rtx addr; if (insn_type == TYPE_LEA) { addr = PATTERN (insn); if (GET_CODE (addr) == SET) ; else if (GET_CODE (addr) == PARALLEL && GET_CODE (XVECEXP (addr, 0, 0)) == SET) addr = XVECEXP (addr, 0, 0); else abort (); addr = SET_SRC (addr); } else { int i; extract_insn (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (GET_CODE (recog_data.operand[i]) == MEM) { addr = XEXP (recog_data.operand[i], 0); goto found; } return 0; found:; } return modified_in_p (addr, dep_insn); } int ix86_adjust_cost (insn, link, dep_insn, cost) rtx insn, link, dep_insn; int cost; { enum attr_type insn_type, dep_insn_type; enum attr_memory memory; rtx set, set2; int dep_insn_code_number; /* Anti and output depenancies have zero cost on all CPUs. */ if (REG_NOTE_KIND (link) != 0) return 0; dep_insn_code_number = recog_memoized (dep_insn); /* If we can't recognize the insns, we can't really do anything. */ if (dep_insn_code_number < 0 || recog_memoized (insn) < 0) return cost; insn_type = get_attr_type (insn); dep_insn_type = get_attr_type (dep_insn); /* Prologue and epilogue allocators can have a false dependency on ebp. This results in one cycle extra stall on Pentium prologue scheduling, so handle this important case manually. */ if (dep_insn_code_number == CODE_FOR_pro_epilogue_adjust_stack && dep_insn_type == TYPE_ALU && !reg_mentioned_p (stack_pointer_rtx, insn)) return 0; switch (ix86_cpu) { case PROCESSOR_PENTIUM: /* Address Generation Interlock adds a cycle of latency. */ if (ix86_agi_dependant (insn, dep_insn, insn_type)) cost += 1; /* ??? Compares pair with jump/setcc. */ if (ix86_flags_dependant (insn, dep_insn, insn_type)) cost = 0; /* Floating point stores require value to be ready one cycle ealier. */ if (insn_type == TYPE_FMOV && get_attr_memory (insn) == MEMORY_STORE && !ix86_agi_dependant (insn, dep_insn, insn_type)) cost += 1; break; case PROCESSOR_PENTIUMPRO: /* Since we can't represent delayed latencies of load+operation, increase the cost here for non-imov insns. */ if (dep_insn_type != TYPE_IMOV && dep_insn_type != TYPE_FMOV && ((memory = get_attr_memory (dep_insn) == MEMORY_LOAD) || memory == MEMORY_BOTH)) cost += 1; /* INT->FP conversion is expensive. */ if (get_attr_fp_int_src (dep_insn)) cost += 5; /* There is one cycle extra latency between an FP op and a store. */ if (insn_type == TYPE_FMOV && (set = single_set (dep_insn)) != NULL_RTX && (set2 = single_set (insn)) != NULL_RTX && rtx_equal_p (SET_DEST (set), SET_SRC (set2)) && GET_CODE (SET_DEST (set2)) == MEM) cost += 1; break; case PROCESSOR_K6: /* The esp dependency is resolved before the instruction is really finished. */ if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP) && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP)) return 1; /* Since we can't represent delayed latencies of load+operation, increase the cost here for non-imov insns. */ if ((memory = get_attr_memory (dep_insn) == MEMORY_LOAD) || memory == MEMORY_BOTH) cost += (dep_insn_type != TYPE_IMOV) ? 2 : 1; /* INT->FP conversion is expensive. */ if (get_attr_fp_int_src (dep_insn)) cost += 5; break; case PROCESSOR_ATHLON: if ((memory = get_attr_memory (dep_insn)) == MEMORY_LOAD || memory == MEMORY_BOTH) { if (dep_insn_type == TYPE_IMOV || dep_insn_type == TYPE_FMOV) cost += 2; else cost += 3; } default: break; } return cost; } static union { struct ppro_sched_data { rtx decode[3]; int issued_this_cycle; } ppro; } ix86_sched_data; static int ix86_safe_length (insn) rtx insn; { if (recog_memoized (insn) >= 0) return get_attr_length(insn); else return 128; } static int ix86_safe_length_prefix (insn) rtx insn; { if (recog_memoized (insn) >= 0) return get_attr_length(insn); else return 0; } static enum attr_memory ix86_safe_memory (insn) rtx insn; { if (recog_memoized (insn) >= 0) return get_attr_memory(insn); else return MEMORY_UNKNOWN; } static enum attr_pent_pair ix86_safe_pent_pair (insn) rtx insn; { if (recog_memoized (insn) >= 0) return get_attr_pent_pair(insn); else return PENT_PAIR_NP; } static enum attr_ppro_uops ix86_safe_ppro_uops (insn) rtx insn; { if (recog_memoized (insn) >= 0) return get_attr_ppro_uops (insn); else return PPRO_UOPS_MANY; } static void ix86_dump_ppro_packet (dump) FILE *dump; { if (ix86_sched_data.ppro.decode[0]) { fprintf (dump, "PPRO packet: %d", INSN_UID (ix86_sched_data.ppro.decode[0])); if (ix86_sched_data.ppro.decode[1]) fprintf (dump, " %d", INSN_UID (ix86_sched_data.ppro.decode[1])); if (ix86_sched_data.ppro.decode[2]) fprintf (dump, " %d", INSN_UID (ix86_sched_data.ppro.decode[2])); fputc ('\n', dump); } } /* We're beginning a new block. Initialize data structures as necessary. */ void ix86_sched_init (dump, sched_verbose) FILE *dump ATTRIBUTE_UNUSED; int sched_verbose ATTRIBUTE_UNUSED; { memset (&ix86_sched_data, 0, sizeof (ix86_sched_data)); } /* Shift INSN to SLOT, and shift everything else down. */ static void ix86_reorder_insn (insnp, slot) rtx *insnp, *slot; { if (insnp != slot) { rtx insn = *insnp; do insnp[0] = insnp[1]; while (++insnp != slot); *insnp = insn; } } /* Find an instruction with given pairability and minimal amount of cycles lost by the fact that the CPU waits for both pipelines to finish before reading next instructions. Also take care that both instructions together can not exceed 7 bytes. */ static rtx * ix86_pent_find_pair (e_ready, ready, type, first) rtx *e_ready; rtx *ready; enum attr_pent_pair type; rtx first; { int mincycles, cycles; enum attr_pent_pair tmp; enum attr_memory memory; rtx *insnp, *bestinsnp = NULL; if (ix86_safe_length (first) > 7 + ix86_safe_length_prefix (first)) return NULL; memory = ix86_safe_memory (first); cycles = result_ready_cost (first); mincycles = INT_MAX; for (insnp = e_ready; insnp >= ready && mincycles; --insnp) if ((tmp = ix86_safe_pent_pair (*insnp)) == type && ix86_safe_length (*insnp) <= 7 + ix86_safe_length_prefix (*insnp)) { enum attr_memory second_memory; int secondcycles, currentcycles; second_memory = ix86_safe_memory (*insnp); secondcycles = result_ready_cost (*insnp); currentcycles = abs (cycles - secondcycles); if (secondcycles >= 1 && cycles >= 1) { /* Two read/modify/write instructions together takes two cycles longer. */ if (memory == MEMORY_BOTH && second_memory == MEMORY_BOTH) currentcycles += 2; /* Read modify/write instruction followed by read/modify takes one cycle longer. */ if (memory == MEMORY_BOTH && second_memory == MEMORY_LOAD && tmp != PENT_PAIR_UV && ix86_safe_pent_pair (first) != PENT_PAIR_UV) currentcycles += 1; } if (currentcycles < mincycles) bestinsnp = insnp, mincycles = currentcycles; } return bestinsnp; } /* Subroutines of ix86_sched_reorder. */ static void ix86_sched_reorder_pentium (ready, e_ready) rtx *ready; rtx *e_ready; { enum attr_pent_pair pair1, pair2; rtx *insnp; /* This wouldn't be necessary if Haifa knew that static insn ordering is important to which pipe an insn is issued to. So we have to make some minor rearrangements. */ pair1 = ix86_safe_pent_pair (*e_ready); /* If the first insn is non-pairable, let it be. */ if (pair1 == PENT_PAIR_NP) return; pair2 = PENT_PAIR_NP; insnp = 0; /* If the first insn is UV or PV pairable, search for a PU insn to go with. */ if (pair1 == PENT_PAIR_UV || pair1 == PENT_PAIR_PV) { insnp = ix86_pent_find_pair (e_ready-1, ready, PENT_PAIR_PU, *e_ready); if (insnp) pair2 = PENT_PAIR_PU; } /* If the first insn is PU or UV pairable, search for a PV insn to go with. */ if (pair2 == PENT_PAIR_NP && (pair1 == PENT_PAIR_PU || pair1 == PENT_PAIR_UV)) { insnp = ix86_pent_find_pair (e_ready-1, ready, PENT_PAIR_PV, *e_ready); if (insnp) pair2 = PENT_PAIR_PV; } /* If the first insn is pairable, search for a UV insn to go with. */ if (pair2 == PENT_PAIR_NP) { insnp = ix86_pent_find_pair (e_ready-1, ready, PENT_PAIR_UV, *e_ready); if (insnp) pair2 = PENT_PAIR_UV; } if (pair2 == PENT_PAIR_NP) return; /* Found something! Decide if we need to swap the order. */ if (pair1 == PENT_PAIR_PV || pair2 == PENT_PAIR_PU || (pair1 == PENT_PAIR_UV && pair2 == PENT_PAIR_UV && ix86_safe_memory (*e_ready) == MEMORY_BOTH && ix86_safe_memory (*insnp) == MEMORY_LOAD)) ix86_reorder_insn (insnp, e_ready); else ix86_reorder_insn (insnp, e_ready - 1); } static void ix86_sched_reorder_ppro (ready, e_ready) rtx *ready; rtx *e_ready; { rtx decode[3]; enum attr_ppro_uops cur_uops; int issued_this_cycle; rtx *insnp; int i; /* At this point .ppro.decode contains the state of the three decoders from last "cycle". That is, those insns that were actually independent. But here we're scheduling for the decoder, and we may find things that are decodable in the same cycle. */ memcpy (decode, ix86_sched_data.ppro.decode, sizeof(decode)); issued_this_cycle = 0; insnp = e_ready; cur_uops = ix86_safe_ppro_uops (*insnp); /* If the decoders are empty, and we've a complex insn at the head of the priority queue, let it issue without complaint. */ if (decode[0] == NULL) { if (cur_uops == PPRO_UOPS_MANY) { decode[0] = *insnp; goto ppro_done; } /* Otherwise, search for a 2-4 uop unsn to issue. */ while (cur_uops != PPRO_UOPS_FEW) { if (insnp == ready) break; cur_uops = ix86_safe_ppro_uops (*--insnp); } /* If so, move it to the head of the line. */ if (cur_uops == PPRO_UOPS_FEW) ix86_reorder_insn (insnp, e_ready); /* Issue the head of the queue. */ issued_this_cycle = 1; decode[0] = *e_ready--; } /* Look for simple insns to fill in the other two slots. */ for (i = 1; i < 3; ++i) if (decode[i] == NULL) { if (ready >= e_ready) goto ppro_done; insnp = e_ready; cur_uops = ix86_safe_ppro_uops (*insnp); while (cur_uops != PPRO_UOPS_ONE) { if (insnp == ready) break; cur_uops = ix86_safe_ppro_uops (*--insnp); } /* Found one. Move it to the head of the queue and issue it. */ if (cur_uops == PPRO_UOPS_ONE) { ix86_reorder_insn (insnp, e_ready); decode[i] = *e_ready--; issued_this_cycle++; continue; } /* ??? Didn't find one. Ideally, here we would do a lazy split of 2-uop insns, issue one and queue the other. */ } ppro_done: if (issued_this_cycle == 0) issued_this_cycle = 1; ix86_sched_data.ppro.issued_this_cycle = issued_this_cycle; } /* We are about to being issuing insns for this clock cycle. Override the default sort algorithm to better slot instructions. */ int ix86_sched_reorder (dump, sched_verbose, ready, n_ready, clock_var) FILE *dump ATTRIBUTE_UNUSED; int sched_verbose ATTRIBUTE_UNUSED; rtx *ready; int n_ready; int clock_var ATTRIBUTE_UNUSED; { rtx *e_ready = ready + n_ready - 1; if (n_ready < 2) goto out; switch (ix86_cpu) { default: break; case PROCESSOR_PENTIUM: ix86_sched_reorder_pentium (ready, e_ready); break; case PROCESSOR_PENTIUMPRO: ix86_sched_reorder_ppro (ready, e_ready); break; } out: return ix86_issue_rate (); } /* We are about to issue INSN. Return the number of insns left on the ready queue that can be issued this cycle. */ int ix86_variable_issue (dump, sched_verbose, insn, can_issue_more) FILE *dump; int sched_verbose; rtx insn; int can_issue_more; { int i; switch (ix86_cpu) { default: return can_issue_more - 1; case PROCESSOR_PENTIUMPRO: { enum attr_ppro_uops uops = ix86_safe_ppro_uops (insn); if (uops == PPRO_UOPS_MANY) { if (sched_verbose) ix86_dump_ppro_packet (dump); ix86_sched_data.ppro.decode[0] = insn; ix86_sched_data.ppro.decode[1] = NULL; ix86_sched_data.ppro.decode[2] = NULL; if (sched_verbose) ix86_dump_ppro_packet (dump); ix86_sched_data.ppro.decode[0] = NULL; } else if (uops == PPRO_UOPS_FEW) { if (sched_verbose) ix86_dump_ppro_packet (dump); ix86_sched_data.ppro.decode[0] = insn; ix86_sched_data.ppro.decode[1] = NULL; ix86_sched_data.ppro.decode[2] = NULL; } else { for (i = 0; i < 3; ++i) if (ix86_sched_data.ppro.decode[i] == NULL) { ix86_sched_data.ppro.decode[i] = insn; break; } if (i == 3) abort (); if (i == 2) { if (sched_verbose) ix86_dump_ppro_packet (dump); ix86_sched_data.ppro.decode[0] = NULL; ix86_sched_data.ppro.decode[1] = NULL; ix86_sched_data.ppro.decode[2] = NULL; } } } return --ix86_sched_data.ppro.issued_this_cycle; } } /* Compute the alignment given to a constant that is being placed in memory. EXP is the constant and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_constant_alignment (exp, align) tree exp; int align; { if (TREE_CODE (exp) == REAL_CST) { if (TYPE_MODE (TREE_TYPE (exp)) == DFmode && align < 64) return 64; else if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (exp))) && align < 128) return 128; } else if (TREE_CODE (exp) == STRING_CST && TREE_STRING_LENGTH (exp) >= 31 && align < 256) return 256; return align; } /* Compute the alignment for a static variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_data_alignment (type, align) tree type; int align; { if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 256 || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 256) return 256; if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if (TYPE_MODE (type) == XCmode && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Compute the alignment for a local variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. */ int ix86_local_alignment (type, align) tree type; int align; { if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if (TYPE_MODE (type) == XCmode && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; }