;; ARM VFP instruction patterns ;; Copyright (C) 2003-2022 Free Software Foundation, Inc. ;; Written by CodeSourcery. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . */ ;; Patterns for HI moves which provide more data transfer instructions when VFP ;; support is enabled. (define_insn "*arm_movhi_vfp" [(set (match_operand:HI 0 "nonimmediate_operand" "=rk, r, r, m, r, *t, r, *t") (match_operand:HI 1 "general_operand" "rIk, K, n, r, mi, r, *t, *t"))] "TARGET_ARM && TARGET_HARD_FLOAT && !TARGET_VFP_FP16INST && (register_operand (operands[0], HImode) || register_operand (operands[1], HImode))" { switch (which_alternative) { case 0: return "mov%?\t%0, %1\t%@ movhi"; case 1: return "mvn%?\t%0, #%B1\t%@ movhi"; case 2: return "movw%?\t%0, %L1\t%@ movhi"; case 3: return "strh%?\t%1, %0\t%@ movhi"; case 4: return "ldrh%?\t%0, %1\t%@ movhi"; case 5: case 6: return "vmov%?\t%0, %1\t%@ int"; case 7: return "vmov%?.f32\t%0, %1\t%@ int"; default: gcc_unreachable (); } } [(set_attr "predicable" "yes") (set_attr_alternative "type" [(if_then_else (match_operand 1 "const_int_operand" "") (const_string "mov_imm") (const_string "mov_reg")) (const_string "mvn_imm") (const_string "mov_imm") (const_string "store_4") (const_string "load_4") (const_string "f_mcr") (const_string "f_mrc") (const_string "fmov")]) (set_attr "arch" "*, *, v6t2, *, *, *, *, *") (set_attr "pool_range" "*, *, *, *, 256, *, *, *") (set_attr "neg_pool_range" "*, *, *, *, 244, *, *, *") (set_attr "length" "4")] ) (define_insn "*thumb2_movhi_vfp" [(set (match_operand:MVE_7_HI 0 "nonimmediate_operand" "=rk, r, l, r, m, r, *t, r, *t, Up, r") (match_operand:MVE_7_HI 1 "general_operand" "rk, IDB, Py, n, r, m, r, *t, *t, r, Up"))] "TARGET_THUMB2 && TARGET_VFP_BASE && !TARGET_VFP_FP16INST && (register_operand (operands[0], mode) || register_operand (operands[1], mode))" { switch (which_alternative) { case 0: case 2: return "mov%?\t%0, %1\t%@ movhi"; case 1: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_VECTOR_BOOL) operands[1] = mve_bool_vec_to_const (operands[1]); else operands[1] = gen_lowpart (HImode, operands[1]); return "mov%?\t%0, %1\t%@ movhi"; case 3: return "movw%?\t%0, %L1\t%@ movhi"; case 4: return "strh%?\t%1, %0\t%@ movhi"; case 5: return "ldrh%?\t%0, %1\t%@ movhi"; case 6: case 7: return "vmov%?\t%0, %1\t%@ int"; case 8: return "vmov%?.f32\t%0, %1\t%@ int"; case 9: return "vmsr%?\t P0, %1\t@ movhi"; case 10: return "vmrs%?\t %0, P0\t@ movhi"; default: gcc_unreachable (); } } [(set_attr "predicable" "yes") (set_attr "predicable_short_it" "yes, no, yes, no, no, no, no, no, no, no, no") (set_attr "type" "mov_reg, mov_imm, mov_imm, mov_imm, store_4, load_4,\ f_mcr, f_mrc, fmov, mve_move, mve_move") (set_attr "arch" "*, *, *, v6t2, *, *, *, *, *, mve, mve") (set_attr "pool_range" "*, *, *, *, *, 4094, *, *, *, *, *") (set_attr "neg_pool_range" "*, *, *, *, *, 250, *, *, *, *, *") (set_attr "length" "2, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4")] ) ;; Patterns for HI moves which provide more data transfer instructions when FP16 ;; instructions are available. (define_insn "*arm_movhi_fp16" [(set (match_operand:HI 0 "nonimmediate_operand" "=r, r, r, m, r, *t, r, *t") (match_operand:HI 1 "general_operand" "rIk, K, n, r, mi, r, *t, *t"))] "TARGET_ARM && TARGET_VFP_FP16INST && (register_operand (operands[0], HImode) || register_operand (operands[1], HImode))" { switch (which_alternative) { case 0: return "mov%?\t%0, %1\t%@ movhi"; case 1: return "mvn%?\t%0, #%B1\t%@ movhi"; case 2: return "movw%?\t%0, %L1\t%@ movhi"; case 3: return "strh%?\t%1, %0\t%@ movhi"; case 4: return "ldrh%?\t%0, %1\t%@ movhi"; case 5: case 6: return "vmov.f16\t%0, %1\t%@ int"; case 7: return "vmov%?.f32\t%0, %1\t%@ int"; default: gcc_unreachable (); } } [(set_attr "predicable" "yes, yes, yes, yes, yes, no, no, yes") (set_attr_alternative "type" [(if_then_else (match_operand 1 "const_int_operand" "") (const_string "mov_imm") (const_string "mov_reg")) (const_string "mvn_imm") (const_string "mov_imm") (const_string "store_4") (const_string "load_4") (const_string "f_mcr") (const_string "f_mrc") (const_string "fmov")]) (set_attr "arch" "*, *, v6t2, *, *, *, *, *") (set_attr "pool_range" "*, *, *, *, 256, *, *, *") (set_attr "neg_pool_range" "*, *, *, *, 244, *, *, *") (set_attr "length" "4")] ) (define_insn "*thumb2_movhi_fp16" [(set (match_operand:MVE_7_HI 0 "nonimmediate_operand" "=rk, r, l, r, m, r, *t, r, *t, Up, r") (match_operand:MVE_7_HI 1 "general_operand" "rk, IDB, Py, n, r, m, r, *t, *t, r, Up"))] "TARGET_THUMB2 && (TARGET_VFP_FP16INST || TARGET_HAVE_MVE) && (register_operand (operands[0], mode) || register_operand (operands[1], mode))" { switch (which_alternative) { case 0: case 2: return "mov%?\t%0, %1\t%@ movhi"; case 1: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_VECTOR_BOOL) operands[1] = mve_bool_vec_to_const (operands[1]); else operands[1] = gen_lowpart (HImode, operands[1]); return "mov%?\t%0, %1\t%@ movhi"; case 3: return "movw%?\t%0, %L1\t%@ movhi"; case 4: return "strh%?\t%1, %0\t%@ movhi"; case 5: return "ldrh%?\t%0, %1\t%@ movhi"; case 6: case 7: return "vmov.f16\t%0, %1\t%@ int"; case 8: return "vmov%?.f32\t%0, %1\t%@ int"; case 9: return "vmsr%?\t P0, %1\t%@ movhi"; case 10: return "vmrs%?\t%0, P0\t%@ movhi"; default: gcc_unreachable (); } } [(set_attr "predicable" "yes, yes, yes, yes, yes, yes, no, no, yes, yes, yes") (set_attr "predicable_short_it" "yes, no, yes, no, no, no, no, no, no, no, no") (set_attr "type" "mov_reg, mov_imm, mov_imm, mov_imm, store_4, load_4,\ f_mcr, f_mrc, fmov, mve_move, mve_move") (set_attr "arch" "*, *, *, v6t2, *, *, *, *, *, mve, mve") (set_attr "pool_range" "*, *, *, *, *, 4094, *, *, *, *, *") (set_attr "neg_pool_range" "*, *, *, *, *, 250, *, *, *, *, *") (set_attr "length" "2, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4")] ) ;; SImode moves ;; ??? For now do not allow loading constants into vfp regs. This causes ;; problems because small constants get converted into adds. (define_insn "*arm_movsi_vfp" [(set (match_operand:SI 0 "nonimmediate_operand" "=rk,r,r,r,rk,m ,*t,r,*t,*t, *Uv") (match_operand:SI 1 "general_operand" "rk, I,K,j,mi,rk,r,t,*t,*Uvi,*t"))] "TARGET_ARM && TARGET_HARD_FLOAT && ( s_register_operand (operands[0], SImode) || s_register_operand (operands[1], SImode))" "* switch (which_alternative) { case 0: case 1: return \"mov%?\\t%0, %1\"; case 2: return \"mvn%?\\t%0, #%B1\"; case 3: return \"movw%?\\t%0, %1\"; case 4: return \"ldr%?\\t%0, %1\"; case 5: return \"str%?\\t%1, %0\"; case 6: return \"vmov%?\\t%0, %1\\t%@ int\"; case 7: return \"vmov%?\\t%0, %1\\t%@ int\"; case 8: return \"vmov%?.f32\\t%0, %1\\t%@ int\"; case 9: case 10: return output_move_vfp (operands); default: gcc_unreachable (); } " [(set_attr "predicable" "yes") (set_attr "type" "mov_reg,mov_reg,mvn_imm,mov_imm,load_4,store_4, f_mcr,f_mrc,fmov,f_loads,f_stores") (set_attr "pool_range" "*,*,*,*,4096,*,*,*,*,1020,*") (set_attr "neg_pool_range" "*,*,*,*,4084,*,*,*,*,1008,*")] ) ;; See thumb2.md:thumb2_movsi_insn for an explanation of the split ;; high/low register alternatives for loads and stores here. ;; The l/Py alternative should come after r/I to ensure that the short variant ;; is chosen with length 2 when the instruction is predicated for ;; arm_restrict_it. (define_insn "*thumb2_movsi_vfp" [(set (match_operand:SI 0 "nonimmediate_operand" "=rk,r,l,r,r,l,*hk,m,*m,*t,\ r,*t,*t,*Uv, Up, r,Uf,r") (match_operand:SI 1 "general_operand" "rk,I,Py,K,j,mi,*mi,l,*hk,r,*t,\ *t,*UvTu,*t, r, Up,r,Uf"))] "TARGET_THUMB2 && TARGET_VFP_BASE && ( s_register_operand (operands[0], SImode) || s_register_operand (operands[1], SImode))" "* switch (which_alternative) { case 0: case 1: case 2: return \"mov%?\\t%0, %1\"; case 3: return \"mvn%?\\t%0, #%B1\"; case 4: return \"movw%?\\t%0, %1\"; case 5: case 6: /* Cannot load it directly, split to load it via MOV / MOVT. */ if (!MEM_P (operands[1]) && arm_disable_literal_pool) return \"#\"; return \"ldr%?\\t%0, %1\"; case 7: case 8: return \"str%?\\t%1, %0\"; case 9: return \"vmov%?\\t%0, %1\\t%@ int\"; case 10: return \"vmov%?\\t%0, %1\\t%@ int\"; case 11: return \"vmov%?.f32\\t%0, %1\\t%@ int\"; case 12: case 13: return output_move_vfp (operands); case 14: return \"vmsr\\t P0, %1\"; case 15: return \"vmrs\\t %0, P0\"; case 16: return \"mcr\\tp10, 7, %1, cr1, cr0, 0\\t @SET_FPSCR\"; case 17: return \"mrc\\tp10, 7, %0, cr1, cr0, 0\\t @GET_FPSCR\"; default: gcc_unreachable (); } " [(set_attr "predicable" "yes") (set_attr "predicable_short_it" "yes,no,yes,no,no,no,no,no,no,no,no,no,no,\ no,no,no,no,no") (set_attr "type" "mov_reg,mov_reg,mov_reg,mvn_reg,mov_imm,load_4,load_4,\ store_4,store_4,f_mcr,f_mrc,fmov,f_loads,f_stores,mve_move,\ mve_move,mrs,mrs") (set_attr "length" "2,4,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4") (set_attr "pool_range" "*,*,*,*,*,1018,4094,*,*,*,*,*,1018,*,*,*,*,*") (set_attr "arch" "*,*,*,*,*,*,*,*,*,*,*,*,*,*,mve,mve,mve,mve") (set_attr "neg_pool_range" "*,*,*,*,*, 0, 0,*,*,*,*,*,1008,*,*,*,*,*")] ) ;; DImode moves (define_insn "*movdi_vfp" [(set (match_operand:DI 0 "nonimmediate_di_operand" "=r,r,r,r,r,r,m,w,!r,w,w, Uv") (match_operand:DI 1 "di_operand" "r,rDa,Db,Dc,mi,mi,r,r,w,w,UvTu,w"))] "TARGET_32BIT && TARGET_VFP_BASE && ( register_operand (operands[0], DImode) || register_operand (operands[1], DImode)) && !((TARGET_NEON || TARGET_HAVE_MVE) && CONST_INT_P (operands[1]) && simd_immediate_valid_for_move (operands[1], DImode, NULL, NULL))" "* switch (which_alternative) { case 0: case 1: case 2: case 3: return \"#\"; case 4: case 5: /* Cannot load it directly, split to load it via MOV / MOVT. */ if (!MEM_P (operands[1]) && arm_disable_literal_pool) return \"#\"; /* Fall through. */ case 6: return output_move_double (operands, true, NULL); case 7: return \"vmov%?\\t%P0, %Q1, %R1\\t%@ int\"; case 8: return \"vmov%?\\t%Q0, %R0, %P1\\t%@ int\"; case 9: if (TARGET_VFP_SINGLE || TARGET_HAVE_MVE) return \"vmov%?.f32\\t%0, %1\\t%@ int\;vmov%?.f32\\t%p0, %p1\\t%@ int\"; else return \"vmov%?.f64\\t%P0, %P1\\t%@ int\"; case 10: case 11: return output_move_vfp (operands); default: gcc_unreachable (); } " [(set_attr "type" "multiple,multiple,multiple,multiple,load_8,load_8,store_8,f_mcrr,f_mrrc,ffarithd,f_loadd,f_stored") (set (attr "length") (cond [(eq_attr "alternative" "1") (const_int 8) (eq_attr "alternative" "2") (const_int 12) (eq_attr "alternative" "3") (const_int 16) (eq_attr "alternative" "4,5,6") (symbol_ref "arm_count_output_move_double_insns (operands) * 4") (eq_attr "alternative" "9") (if_then_else (match_test "TARGET_VFP_SINGLE") (const_int 8) (const_int 4))] (const_int 4))) (set_attr "predicable" "yes") (set_attr "arm_pool_range" "*,*,*,*,1020,4096,*,*,*,*,1020,*") (set_attr "thumb2_pool_range" "*,*,*,*,1018,4094,*,*,*,*,1018,*") (set_attr "neg_pool_range" "*,*,*,*,1004,0,*,*,*,*,1004,*") (set (attr "ce_count") (symbol_ref "get_attr_length (insn) / 4")) (set_attr "arch" "t2,any,any,any,a,t2,any,any,any,any,any,any")] ) ;; HFmode and BFmode moves (define_insn "*mov_vfp_16" [(set (match_operand:HFBF 0 "nonimmediate_operand" "= ?r,?m,t,r,t,r,t, t, Uj,r") (match_operand:HFBF 1 "general_operand" " m,r,t,r,r,t,Dv,Uj,t, F"))] "TARGET_32BIT && (TARGET_VFP_FP16INST || TARGET_HAVE_MVE) && (s_register_operand (operands[0], mode) || s_register_operand (operands[1], mode))" { switch (which_alternative) { case 0: /* ARM register from memory. */ return \"ldrh%?\\t%0, %1\\t%@ __\"; case 1: /* Memory from ARM register. */ return \"strh%?\\t%1, %0\\t%@ __\"; case 2: /* S register from S register. */ return \"vmov\\t%0, %1\t%@ __\"; case 3: /* ARM register from ARM register. */ return \"mov%?\\t%0, %1\\t%@ __\"; case 4: /* S register from ARM register. */ case 5: /* ARM register from S register. */ case 6: /* S register from immediate. */ return \"vmov.f16\\t%0, %1\t%@ __\"; case 7: /* S register from memory. */ if (TARGET_HAVE_MVE) return \"vldr.16\\t%0, %1\"; else return \"vld1.16\\t{%z0}, %A1\"; case 8: /* Memory from S register. */ if (TARGET_HAVE_MVE) return \"vstr.16\\t%1, %0\"; else return \"vst1.16\\t{%z1}, %A0\"; case 9: /* ARM register from constant. */ { long bits; rtx ops[4]; bits = real_to_target (NULL, CONST_DOUBLE_REAL_VALUE (operands[1]), mode); ops[0] = operands[0]; ops[1] = GEN_INT (bits); ops[2] = GEN_INT (bits & 0xff00); ops[3] = GEN_INT (bits & 0x00ff); if (arm_arch_thumb2) output_asm_insn (\"movw\\t%0, %1\", ops); else output_asm_insn (\"mov\\t%0, %2\;orr\\t%0, %0, %3\", ops); return \"\"; } default: gcc_unreachable (); } } [(set_attr "conds" "*, *, unconditional, *, unconditional, unconditional,\ unconditional, unconditional, unconditional,\ unconditional") (set_attr "predicable" "yes, yes, no, yes, no, no, no, no, no, no") (set_attr "predicable_short_it" "no, no, no, yes,\ no, no, no, no,\ no, no") (set_attr_alternative "type" [(const_string "load_4") (const_string "store_4") (const_string "fmov") (const_string "mov_reg") (const_string "f_mcr") (const_string "f_mrc") (const_string "fconsts") (const_string "neon_load1_1reg") (const_string "neon_store1_1reg") (if_then_else (match_test "arm_arch_thumb2") (const_string "mov_imm") (const_string "multiple"))]) (set_attr_alternative "length" [(const_int 4) (const_int 4) (const_int 4) (const_int 4) (const_int 4) (const_int 4) (const_int 4) (const_int 4) (const_int 4) (if_then_else (match_test "arm_arch_thumb2") (const_int 4) (const_int 8))])] ) (define_insn "*mov_vfp_neon" [(set (match_operand:HFBF 0 "nonimmediate_operand" "= t,Um,?r,?m,t,r,t,r,r") (match_operand:HFBF 1 "general_operand" " Um, t, m, r,t,r,r,t,F"))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_NEON_FP16 && !TARGET_VFP_FP16INST && ( s_register_operand (operands[0], mode) || s_register_operand (operands[1], mode))" "* switch (which_alternative) { case 0: /* S register from memory */ return \"vld1.16\\t{%z0}, %A1\"; case 1: /* memory from S register */ return \"vst1.16\\t{%z1}, %A0\"; case 2: /* ARM register from memory */ return \"ldrh\\t%0, %1\\t%@ __\"; case 3: /* memory from ARM register */ return \"strh\\t%1, %0\\t%@ __\"; case 4: /* S register from S register */ return \"vmov.f32\\t%0, %1\"; case 5: /* ARM register from ARM register */ return \"mov\\t%0, %1\\t%@ __\"; case 6: /* S register from ARM register */ return \"vmov\\t%0, %1\"; case 7: /* ARM register from S register */ return \"vmov\\t%0, %1\"; case 8: /* ARM register from constant */ { long bits; rtx ops[4]; bits = real_to_target (NULL, CONST_DOUBLE_REAL_VALUE (operands[1]), mode); ops[0] = operands[0]; ops[1] = GEN_INT (bits); ops[2] = GEN_INT (bits & 0xff00); ops[3] = GEN_INT (bits & 0x00ff); if (arm_arch_thumb2) output_asm_insn (\"movw\\t%0, %1\", ops); else output_asm_insn (\"mov\\t%0, %2\;orr\\t%0, %0, %3\", ops); return \"\"; } default: gcc_unreachable (); } " [(set_attr "conds" "unconditional") (set_attr "type" "neon_load1_1reg,neon_store1_1reg,\ load_4,store_4,fmov,mov_reg,f_mcr,f_mrc,multiple") (set_attr "length" "4,4,4,4,4,4,4,4,8")] ) ;; FP16 without element load/store instructions. (define_insn "*mov_vfp" [(set (match_operand:HFBF 0 "nonimmediate_operand" "=r,m,t,r,t,r,r") (match_operand:HFBF 1 "general_operand" " m,r,t,r,r,t,F"))] "TARGET_32BIT && TARGET_HARD_FLOAT && !TARGET_NEON_FP16 && !TARGET_VFP_FP16INST && ( s_register_operand (operands[0], mode) || s_register_operand (operands[1], mode))" "* switch (which_alternative) { case 0: /* ARM register from memory */ return \"ldrh\\t%0, %1\\t%@ __\"; case 1: /* memory from ARM register */ return \"strh\\t%1, %0\\t%@ __\"; case 2: /* S register from S register */ return \"vmov.f32\\t%0, %1\"; case 3: /* ARM register from ARM register */ return \"mov\\t%0, %1\\t%@ __\"; case 4: /* S register from ARM register */ return \"vmov\\t%0, %1\"; case 5: /* ARM register from S register */ return \"vmov\\t%0, %1\"; case 6: /* ARM register from constant */ { long bits; rtx ops[4]; bits = real_to_target (NULL, CONST_DOUBLE_REAL_VALUE (operands[1]), mode); ops[0] = operands[0]; ops[1] = GEN_INT (bits); ops[2] = GEN_INT (bits & 0xff00); ops[3] = GEN_INT (bits & 0x00ff); if (arm_arch_thumb2) output_asm_insn (\"movw\\t%0, %1\", ops); else output_asm_insn (\"mov\\t%0, %2\;orr\\t%0, %0, %3\", ops); return \"\"; } default: gcc_unreachable (); } " [(set_attr "conds" "unconditional") (set_attr "type" "load_4,store_4,fmov,mov_reg,f_mcr,f_mrc,multiple") (set_attr "length" "4,4,4,4,4,4,8")] ) ;; SFmode moves ;; Disparage the w<->r cases because reloading an invalid address is ;; preferable to loading the value via integer registers. (define_insn "*movsf_vfp" [(set (match_operand:SF 0 "nonimmediate_operand" "=t,?r,t ,t ,Uv,r ,m,t,r") (match_operand:SF 1 "general_operand" " ?r,t,Dv,UvE,t, mE,r,t,r"))] "TARGET_ARM && TARGET_HARD_FLOAT && ( s_register_operand (operands[0], SFmode) || s_register_operand (operands[1], SFmode))" "* switch (which_alternative) { case 0: return \"vmov%?\\t%0, %1\"; case 1: return \"vmov%?\\t%0, %1\"; case 2: return \"vmov%?.f32\\t%0, %1\"; case 3: case 4: return output_move_vfp (operands); case 5: return \"ldr%?\\t%0, %1\\t%@ float\"; case 6: return \"str%?\\t%1, %0\\t%@ float\"; case 7: return \"vmov%?.f32\\t%0, %1\"; case 8: return \"mov%?\\t%0, %1\\t%@ float\"; default: gcc_unreachable (); } " [(set_attr "predicable" "yes") (set_attr "type" "f_mcr,f_mrc,fconsts,f_loads,f_stores,load_4,store_4,fmov,mov_reg") (set_attr "pool_range" "*,*,*,1020,*,4096,*,*,*") (set_attr "neg_pool_range" "*,*,*,1008,*,4080,*,*,*")] ) (define_insn "*thumb2_movsf_vfp" [(set (match_operand:SF 0 "nonimmediate_operand" "=t,?r,t, t ,Uv,r ,m,t,r") (match_operand:SF 1 "hard_sf_operand" " ?r,t,Dv,UvHa,t, mHa,r,t,r"))] "TARGET_THUMB2 && TARGET_VFP_BASE && ( s_register_operand (operands[0], SFmode) || s_register_operand (operands[1], SFmode))" "* switch (which_alternative) { case 0: return \"vmov%?\\t%0, %1\"; case 1: return \"vmov%?\\t%0, %1\"; case 2: return \"vmov%?.f32\\t%0, %1\"; case 3: case 4: return output_move_vfp (operands); case 5: return \"ldr%?\\t%0, %1\\t%@ float\"; case 6: return \"str%?\\t%1, %0\\t%@ float\"; case 7: return \"vmov%?.f32\\t%0, %1\"; case 8: return \"mov%?\\t%0, %1\\t%@ float\"; default: gcc_unreachable (); } " [(set_attr "predicable" "yes") (set_attr "type" "f_mcr,f_mrc,fconsts,f_loads,f_stores,load_4,store_4,fmov,mov_reg") (set_attr "pool_range" "*,*,*,1018,*,4090,*,*,*") (set_attr "neg_pool_range" "*,*,*,1008,*,0,*,*,*")] ) ;; DFmode moves (define_insn "*movdf_vfp" [(set (match_operand:DF 0 "nonimmediate_soft_df_operand" "=w,?r,w ,w,w ,Uv,r, m,w,r") (match_operand:DF 1 "soft_df_operand" " ?r,w,Dy,G,UvF,w ,mF,r,w,r"))] "TARGET_ARM && TARGET_HARD_FLOAT && ( register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "* { switch (which_alternative) { case 0: return \"vmov%?\\t%P0, %Q1, %R1\"; case 1: return \"vmov%?\\t%Q0, %R0, %P1\"; case 2: gcc_assert (TARGET_VFP_DOUBLE); return \"vmov%?.f64\\t%P0, %1\"; case 3: gcc_assert (TARGET_VFP_DOUBLE); return \"vmov.i64\\t%P0, #0\\t%@ float\"; case 4: case 5: return output_move_vfp (operands); case 6: case 7: return output_move_double (operands, true, NULL); case 8: if (TARGET_VFP_SINGLE) return \"vmov%?.f32\\t%0, %1\;vmov%?.f32\\t%p0, %p1\"; else return \"vmov%?.f64\\t%P0, %P1\"; case 9: return \"#\"; default: gcc_unreachable (); } } " [(set_attr "type" "f_mcrr,f_mrrc,fconstd,neon_move,f_loadd,f_stored,\ load_8,store_8,ffarithd,multiple") (set (attr "length") (cond [(eq_attr "alternative" "6,7,9") (const_int 8) (eq_attr "alternative" "8") (if_then_else (match_test "TARGET_VFP_SINGLE") (const_int 8) (const_int 4))] (const_int 4))) (set_attr "predicable" "yes,yes,yes,no,yes,yes,yes,yes,yes,yes") (set_attr "pool_range" "*,*,*,*,1020,*,1020,*,*,*") (set_attr "neg_pool_range" "*,*,*,*,1004,*,1004,*,*,*") (set_attr "arch" "any,any,any,neon,any,any,any,any,any,any")] ) (define_insn "*thumb2_movdf_vfp" [(set (match_operand:DF 0 "nonimmediate_soft_df_operand" "=w,?r,w ,w,w ,Uv,r ,m,w,r") (match_operand:DF 1 "hard_df_operand" " ?r,w,Dy,G,UvHa,w, mHa,r, w,r"))] "TARGET_THUMB2 && TARGET_VFP_BASE && ( register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "* { switch (which_alternative) { case 0: return \"vmov%?\\t%P0, %Q1, %R1\"; case 1: return \"vmov%?\\t%Q0, %R0, %P1\"; case 2: gcc_assert (TARGET_VFP_DOUBLE); return \"vmov%?.f64\\t%P0, %1\"; case 3: gcc_assert (TARGET_VFP_DOUBLE); return \"vmov.i64\\t%P0, #0\\t%@ float\"; case 4: case 5: return output_move_vfp (operands); case 6: case 7: case 9: return output_move_double (operands, true, NULL); case 8: if (TARGET_VFP_SINGLE) return \"vmov%?.f32\\t%0, %1\;vmov%?.f32\\t%p0, %p1\"; else return \"vmov%?.f64\\t%P0, %P1\"; default: abort (); } } " [(set_attr "type" "f_mcrr,f_mrrc,fconstd,neon_move,f_loadd,\ f_stored,load_8,store_8,ffarithd,multiple") (set (attr "length") (cond [(eq_attr "alternative" "6,7,9") (const_int 8) (eq_attr "alternative" "8") (if_then_else (match_test "TARGET_VFP_SINGLE") (const_int 8) (const_int 4))] (const_int 4))) (set_attr "pool_range" "*,*,*,*,1018,*,4094,*,*,*") (set_attr "neg_pool_range" "*,*,*,*,1008,*,0,*,*,*") (set_attr "arch" "any,any,any,neon,any,any,any,any,any,any")] ) ;; Conditional move patterns (define_insn "*movsfcc_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t,t,t,t,t,t,?r,?r,?r") (if_then_else:SF (match_operator 3 "arm_comparison_operator" [(match_operand 4 "cc_register" "") (const_int 0)]) (match_operand:SF 1 "s_register_operand" "0,t,t,0,?r,?r,0,t,t") (match_operand:SF 2 "s_register_operand" "t,0,t,?r,0,?r,t,0,t")))] "TARGET_ARM && TARGET_HARD_FLOAT" "@ vmov%D3.f32\\t%0, %2 vmov%d3.f32\\t%0, %1 vmov%D3.f32\\t%0, %2\;vmov%d3.f32\\t%0, %1 vmov%D3\\t%0, %2 vmov%d3\\t%0, %1 vmov%D3\\t%0, %2\;vmov%d3\\t%0, %1 vmov%D3\\t%0, %2 vmov%d3\\t%0, %1 vmov%D3\\t%0, %2\;vmov%d3\\t%0, %1" [(set_attr "conds" "use") (set_attr "length" "4,4,8,4,4,8,4,4,8") (set_attr "type" "fmov,fmov,fmov,f_mcr,f_mcr,f_mcr,f_mrc,f_mrc,f_mrc")] ) (define_insn "*thumb2_movsfcc_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t,t,t,t,t,t,?r,?r,?r") (if_then_else:SF (match_operator 3 "arm_comparison_operator" [(match_operand 4 "cc_register" "") (const_int 0)]) (match_operand:SF 1 "s_register_operand" "0,t,t,0,?r,?r,0,t,t") (match_operand:SF 2 "s_register_operand" "t,0,t,?r,0,?r,t,0,t")))] "TARGET_THUMB2 && TARGET_VFP_BASE && !arm_restrict_it" "@ it\\t%D3\;vmov%D3.f32\\t%0, %2 it\\t%d3\;vmov%d3.f32\\t%0, %1 ite\\t%D3\;vmov%D3.f32\\t%0, %2\;vmov%d3.f32\\t%0, %1 it\\t%D3\;vmov%D3\\t%0, %2 it\\t%d3\;vmov%d3\\t%0, %1 ite\\t%D3\;vmov%D3\\t%0, %2\;vmov%d3\\t%0, %1 it\\t%D3\;vmov%D3\\t%0, %2 it\\t%d3\;vmov%d3\\t%0, %1 ite\\t%D3\;vmov%D3\\t%0, %2\;vmov%d3\\t%0, %1" [(set_attr "conds" "use") (set_attr "length" "6,6,10,6,6,10,6,6,10") (set_attr "type" "fmov,fmov,fmov,f_mcr,f_mcr,f_mcr,f_mrc,f_mrc,f_mrc")] ) (define_insn "*movdfcc_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w,w,w,w,w,w,?r,?r,?r") (if_then_else:DF (match_operator 3 "arm_comparison_operator" [(match_operand 4 "cc_register" "") (const_int 0)]) (match_operand:DF 1 "s_register_operand" "0,w,w,0,?r,?r,0,w,w") (match_operand:DF 2 "s_register_operand" "w,0,w,?r,0,?r,w,0,w")))] "TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "@ vmov%D3.f64\\t%P0, %P2 vmov%d3.f64\\t%P0, %P1 vmov%D3.f64\\t%P0, %P2\;vmov%d3.f64\\t%P0, %P1 vmov%D3\\t%P0, %Q2, %R2 vmov%d3\\t%P0, %Q1, %R1 vmov%D3\\t%P0, %Q2, %R2\;vmov%d3\\t%P0, %Q1, %R1 vmov%D3\\t%Q0, %R0, %P2 vmov%d3\\t%Q0, %R0, %P1 vmov%D3\\t%Q0, %R0, %P2\;vmov%d3\\t%Q0, %R0, %P1" [(set_attr "conds" "use") (set_attr "length" "4,4,8,4,4,8,4,4,8") (set_attr "type" "ffarithd,ffarithd,ffarithd,f_mcr,f_mcr,f_mcr,f_mrrc,f_mrrc,f_mrrc")] ) (define_insn "*thumb2_movdfcc_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w,w,w,w,w,w,?r,?r,?r") (if_then_else:DF (match_operator 3 "arm_comparison_operator" [(match_operand 4 "cc_register" "") (const_int 0)]) (match_operand:DF 1 "s_register_operand" "0,w,w,0,?r,?r,0,w,w") (match_operand:DF 2 "s_register_operand" "w,0,w,?r,0,?r,w,0,w")))] "TARGET_THUMB2 && TARGET_VFP_BASE && TARGET_VFP_DOUBLE && !arm_restrict_it" "@ it\\t%D3\;vmov%D3.f64\\t%P0, %P2 it\\t%d3\;vmov%d3.f64\\t%P0, %P1 ite\\t%D3\;vmov%D3.f64\\t%P0, %P2\;vmov%d3.f64\\t%P0, %P1 it\t%D3\;vmov%D3\\t%P0, %Q2, %R2 it\t%d3\;vmov%d3\\t%P0, %Q1, %R1 ite\\t%D3\;vmov%D3\\t%P0, %Q2, %R2\;vmov%d3\\t%P0, %Q1, %R1 it\t%D3\;vmov%D3\\t%Q0, %R0, %P2 it\t%d3\;vmov%d3\\t%Q0, %R0, %P1 ite\\t%D3\;vmov%D3\\t%Q0, %R0, %P2\;vmov%d3\\t%Q0, %R0, %P1" [(set_attr "conds" "use") (set_attr "length" "6,6,10,6,6,10,6,6,10") (set_attr "type" "ffarithd,ffarithd,ffarithd,f_mcr,f_mcr,f_mcrr,f_mrrc,f_mrrc,f_mrrc")] ) ;; Sign manipulation functions (define_insn "*abssf2_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (abs:SF (match_operand:SF 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vabs%?.f32\\t%0, %1" [(set_attr "predicable" "yes") (set_attr "type" "ffariths")] ) (define_insn "*absdf2_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (abs:DF (match_operand:DF 1 "s_register_operand" "w")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vabs%?.f64\\t%P0, %P1" [(set_attr "predicable" "yes") (set_attr "type" "ffarithd")] ) (define_insn "*negsf2_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t,?r") (neg:SF (match_operand:SF 1 "s_register_operand" "t,r")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "@ vneg%?.f32\\t%0, %1 eor%?\\t%0, %1, #-2147483648" [(set_attr "predicable" "yes") (set_attr "type" "ffariths")] ) (define_insn_and_split "*negdf2_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w,?r,?r") (neg:DF (match_operand:DF 1 "s_register_operand" "w,0,r")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "@ vneg%?.f64\\t%P0, %P1 # #" "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE && reload_completed && arm_general_register_operand (operands[0], DFmode)" [(set (match_dup 0) (match_dup 1))] " if (REGNO (operands[0]) == REGNO (operands[1])) { operands[0] = gen_highpart (SImode, operands[0]); operands[1] = gen_rtx_XOR (SImode, operands[0], gen_int_mode (0x80000000, SImode)); } else { rtx in_hi, in_lo, out_hi, out_lo; in_hi = gen_rtx_XOR (SImode, gen_highpart (SImode, operands[1]), gen_int_mode (0x80000000, SImode)); in_lo = gen_lowpart (SImode, operands[1]); out_hi = gen_highpart (SImode, operands[0]); out_lo = gen_lowpart (SImode, operands[0]); if (REGNO (in_lo) == REGNO (out_hi)) { emit_insn (gen_rtx_SET (out_lo, in_lo)); operands[0] = out_hi; operands[1] = in_hi; } else { emit_insn (gen_rtx_SET (out_hi, in_hi)); operands[0] = out_lo; operands[1] = in_lo; } } " [(set_attr "predicable" "yes") (set_attr "length" "4,4,8") (set_attr "type" "ffarithd")] ) ;; ABS and NEG for FP16. (define_insn "hf2" [(set (match_operand:HF 0 "s_register_operand" "=w") (ABSNEG:HF (match_operand:HF 1 "s_register_operand" "w")))] "TARGET_VFP_FP16INST" "v.f16\t%0, %1" [(set_attr "conds" "unconditional") (set_attr "type" "ffariths")] ) (define_expand "neon_vabshf" [(set (match_operand:HF 0 "s_register_operand") (abs:HF (match_operand:HF 1 "s_register_operand")))] "TARGET_VFP_FP16INST" { emit_insn (gen_abshf2 (operands[0], operands[1])); DONE; }) ;; VRND for FP16. (define_insn "neon_vhf" [(set (match_operand:HF 0 "s_register_operand" "=w") (unspec:HF [(match_operand:HF 1 "s_register_operand" "w")] FP16_RND))] "TARGET_VFP_FP16INST" ".f16\t%0, %1" [(set_attr "conds" "unconditional") (set_attr "type" "neon_fp_round_s")] ) (define_insn "neon_vrndihf" [(set (match_operand:HF 0 "s_register_operand" "=w") (unspec:HF [(match_operand:HF 1 "s_register_operand" "w")] UNSPEC_VRNDI))] "TARGET_VFP_FP16INST" "vrintr.f16\t%0, %1" [(set_attr "conds" "unconditional") (set_attr "type" "neon_fp_round_s")] ) ;; Arithmetic insns (define_insn "addhf3" [(set (match_operand:HF 0 "s_register_operand" "=w") (plus:HF (match_operand:HF 1 "s_register_operand" "w") (match_operand:HF 2 "s_register_operand" "w")))] "TARGET_VFP_FP16INST" "vadd.f16\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "fadds")] ) (define_insn "*addsf3_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (plus:SF (match_operand:SF 1 "s_register_operand" "t") (match_operand:SF 2 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vadd%?.f32\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "fadds")] ) (define_insn "*adddf3_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (plus:DF (match_operand:DF 1 "s_register_operand" "w") (match_operand:DF 2 "s_register_operand" "w")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vadd%?.f64\\t%P0, %P1, %P2" [(set_attr "predicable" "yes") (set_attr "type" "faddd")] ) (define_insn "subhf3" [(set (match_operand:HF 0 "s_register_operand" "=w") (minus:HF (match_operand:HF 1 "s_register_operand" "w") (match_operand:HF 2 "s_register_operand" "w")))] "TARGET_VFP_FP16INST" "vsub.f16\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "fadds")] ) (define_insn "*subsf3_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (minus:SF (match_operand:SF 1 "s_register_operand" "t") (match_operand:SF 2 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vsub%?.f32\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "fadds")] ) (define_insn "*subdf3_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (minus:DF (match_operand:DF 1 "s_register_operand" "w") (match_operand:DF 2 "s_register_operand" "w")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vsub%?.f64\\t%P0, %P1, %P2" [(set_attr "predicable" "yes") (set_attr "type" "faddd")] ) ;; Division insns ;; FP16 Division. (define_insn "divhf3" [(set (match_operand:HF 0 "s_register_operand" "=w") (div:HF (match_operand:HF 1 "s_register_operand" "w") (match_operand:HF 2 "s_register_operand" "w")))] "TARGET_VFP_FP16INST" "vdiv.f16\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "fdivs")] ) ; VFP9 Erratum 760019: It's potentially unsafe to overwrite the input ; operands, so mark the output as early clobber for VFPv2 on ARMv5 or ; earlier. (define_insn "*divsf3_vfp" [(set (match_operand:SF 0 "s_register_operand" "=&t,t") (div:SF (match_operand:SF 1 "s_register_operand" "t,t") (match_operand:SF 2 "s_register_operand" "t,t")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vdiv%?.f32\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "arch" "*,armv6_or_vfpv3") (set_attr "type" "fdivs")] ) (define_insn "*divdf3_vfp" [(set (match_operand:DF 0 "s_register_operand" "=&w,w") (div:DF (match_operand:DF 1 "s_register_operand" "w,w") (match_operand:DF 2 "s_register_operand" "w,w")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vdiv%?.f64\\t%P0, %P1, %P2" [(set_attr "predicable" "yes") (set_attr "arch" "*,armv6_or_vfpv3") (set_attr "type" "fdivd")] ) ;; Multiplication insns (define_insn "mulhf3" [(set (match_operand:HF 0 "s_register_operand" "=w") (mult:HF (match_operand:HF 1 "s_register_operand" "w") (match_operand:HF 2 "s_register_operand" "w")))] "TARGET_VFP_FP16INST" "vmul.f16\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "fmuls")] ) (define_insn "*mulsf3_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (mult:SF (match_operand:SF 1 "s_register_operand" "t") (match_operand:SF 2 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vmul%?.f32\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "fmuls")] ) (define_insn "*muldf3_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (mult:DF (match_operand:DF 1 "s_register_operand" "w") (match_operand:DF 2 "s_register_operand" "w")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vmul%?.f64\\t%P0, %P1, %P2" [(set_attr "predicable" "yes") (set_attr "type" "fmuld")] ) (define_insn "*mulsf3neghf_vfp" [(set (match_operand:HF 0 "s_register_operand" "=t") (mult:HF (neg:HF (match_operand:HF 1 "s_register_operand" "t")) (match_operand:HF 2 "s_register_operand" "t")))] "TARGET_VFP_FP16INST && !flag_rounding_math" "vnmul.f16\\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "fmuls")] ) (define_insn "*negmulhf3_vfp" [(set (match_operand:HF 0 "s_register_operand" "=t") (neg:HF (mult:HF (match_operand:HF 1 "s_register_operand" "t") (match_operand:HF 2 "s_register_operand" "t"))))] "TARGET_VFP_FP16INST" "vnmul.f16\\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "fmuls")] ) (define_insn "*mulsf3negsf_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (mult:SF (neg:SF (match_operand:SF 1 "s_register_operand" "t")) (match_operand:SF 2 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT && !flag_rounding_math" "vnmul%?.f32\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "fmuls")] ) (define_insn "*negmulsf3_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (neg:SF (mult:SF (match_operand:SF 1 "s_register_operand" "t") (match_operand:SF 2 "s_register_operand" "t"))))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vnmul%?.f32\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "fmuls")] ) (define_insn "*muldf3negdf_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (mult:DF (neg:DF (match_operand:DF 1 "s_register_operand" "w")) (match_operand:DF 2 "s_register_operand" "w")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE && !flag_rounding_math" "vnmul%?.f64\\t%P0, %P1, %P2" [(set_attr "predicable" "yes") (set_attr "type" "fmuld")] ) (define_insn "*negmuldf3_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (neg:DF (mult:DF (match_operand:DF 1 "s_register_operand" "w") (match_operand:DF 2 "s_register_operand" "w"))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vnmul%?.f64\\t%P0, %P1, %P2" [(set_attr "predicable" "yes") (set_attr "type" "fmuld")] ) ;; Multiply-accumulate insns ;; 0 = 1 * 2 + 0 (define_insn "*mulsf3addhf_vfp" [(set (match_operand:HF 0 "s_register_operand" "=t") (plus:HF (mult:HF (match_operand:HF 2 "s_register_operand" "t") (match_operand:HF 3 "s_register_operand" "t")) (match_operand:HF 1 "s_register_operand" "0")))] "TARGET_VFP_FP16INST" "vmla.f16\\t%0, %2, %3" [(set_attr "conds" "unconditional") (set_attr "type" "fmacs")] ) (define_insn "*mulsf3addsf_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (plus:SF (mult:SF (match_operand:SF 2 "s_register_operand" "t") (match_operand:SF 3 "s_register_operand" "t")) (match_operand:SF 1 "s_register_operand" "0")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vmla%?.f32\\t%0, %2, %3" [(set_attr "predicable" "yes") (set_attr "type" "fmacs")] ) (define_insn "*muldf3adddf_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (plus:DF (mult:DF (match_operand:DF 2 "s_register_operand" "w") (match_operand:DF 3 "s_register_operand" "w")) (match_operand:DF 1 "s_register_operand" "0")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vmla%?.f64\\t%P0, %P2, %P3" [(set_attr "predicable" "yes") (set_attr "type" "fmacd")] ) ;; 0 = 1 * 2 - 0 (define_insn "*mulhf3subhf_vfp" [(set (match_operand:HF 0 "s_register_operand" "=t") (minus:HF (mult:HF (match_operand:HF 2 "s_register_operand" "t") (match_operand:HF 3 "s_register_operand" "t")) (match_operand:HF 1 "s_register_operand" "0")))] "TARGET_VFP_FP16INST" "vnmls.f16\\t%0, %2, %3" [(set_attr "conds" "unconditional") (set_attr "type" "fmacs")] ) (define_insn "*mulsf3subsf_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (minus:SF (mult:SF (match_operand:SF 2 "s_register_operand" "t") (match_operand:SF 3 "s_register_operand" "t")) (match_operand:SF 1 "s_register_operand" "0")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vnmls%?.f32\\t%0, %2, %3" [(set_attr "predicable" "yes") (set_attr "type" "fmacs")] ) (define_insn "*muldf3subdf_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (minus:DF (mult:DF (match_operand:DF 2 "s_register_operand" "w") (match_operand:DF 3 "s_register_operand" "w")) (match_operand:DF 1 "s_register_operand" "0")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vnmls%?.f64\\t%P0, %P2, %P3" [(set_attr "predicable" "yes") (set_attr "type" "fmacd")] ) ;; 0 = -(1 * 2) + 0 (define_insn "*mulhf3neghfaddhf_vfp" [(set (match_operand:HF 0 "s_register_operand" "=t") (minus:HF (match_operand:HF 1 "s_register_operand" "0") (mult:HF (match_operand:HF 2 "s_register_operand" "t") (match_operand:HF 3 "s_register_operand" "t"))))] "TARGET_VFP_FP16INST" "vmls.f16\\t%0, %2, %3" [(set_attr "conds" "unconditional") (set_attr "type" "fmacs")] ) (define_insn "*mulsf3negsfaddsf_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (minus:SF (match_operand:SF 1 "s_register_operand" "0") (mult:SF (match_operand:SF 2 "s_register_operand" "t") (match_operand:SF 3 "s_register_operand" "t"))))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vmls%?.f32\\t%0, %2, %3" [(set_attr "predicable" "yes") (set_attr "type" "fmacs")] ) (define_insn "*fmuldf3negdfadddf_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (minus:DF (match_operand:DF 1 "s_register_operand" "0") (mult:DF (match_operand:DF 2 "s_register_operand" "w") (match_operand:DF 3 "s_register_operand" "w"))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vmls%?.f64\\t%P0, %P2, %P3" [(set_attr "predicable" "yes") (set_attr "type" "fmacd")] ) ;; 0 = -(1 * 2) - 0 (define_insn "*mulhf3neghfsubhf_vfp" [(set (match_operand:HF 0 "s_register_operand" "=t") (minus:HF (mult:HF (neg:HF (match_operand:HF 2 "s_register_operand" "t")) (match_operand:HF 3 "s_register_operand" "t")) (match_operand:HF 1 "s_register_operand" "0")))] "TARGET_VFP_FP16INST" "vnmla.f16\\t%0, %2, %3" [(set_attr "conds" "unconditional") (set_attr "type" "fmacs")] ) (define_insn "*mulsf3negsfsubsf_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (minus:SF (mult:SF (neg:SF (match_operand:SF 2 "s_register_operand" "t")) (match_operand:SF 3 "s_register_operand" "t")) (match_operand:SF 1 "s_register_operand" "0")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vnmla%?.f32\\t%0, %2, %3" [(set_attr "predicable" "yes") (set_attr "type" "fmacs")] ) (define_insn "*muldf3negdfsubdf_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (minus:DF (mult:DF (neg:DF (match_operand:DF 2 "s_register_operand" "w")) (match_operand:DF 3 "s_register_operand" "w")) (match_operand:DF 1 "s_register_operand" "0")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vnmla%?.f64\\t%P0, %P2, %P3" [(set_attr "predicable" "yes") (set_attr "type" "fmacd")] ) ;; Fused-multiply-accumulate (define_insn "fmahf4" [(set (match_operand:HF 0 "register_operand" "=w") (fma:HF (match_operand:HF 1 "register_operand" "w") (match_operand:HF 2 "register_operand" "w") (match_operand:HF 3 "register_operand" "0")))] "TARGET_VFP_FP16INST" "vfma.f16\\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "ffmas")] ) (define_expand "neon_vfmahf" [(match_operand:HF 0 "s_register_operand") (match_operand:HF 1 "s_register_operand") (match_operand:HF 2 "s_register_operand") (match_operand:HF 3 "s_register_operand")] "TARGET_VFP_FP16INST" { emit_insn (gen_fmahf4 (operands[0], operands[2], operands[3], operands[1])); DONE; }) (define_insn "fma4" [(set (match_operand:SDF 0 "register_operand" "=") (fma:SDF (match_operand:SDF 1 "register_operand" "") (match_operand:SDF 2 "register_operand" "") (match_operand:SDF 3 "register_operand" "0")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA " "vfma%?.\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "ffma")] ) (define_insn "fmsubhf4_fp16" [(set (match_operand:HF 0 "register_operand" "=w") (fma:HF (neg:HF (match_operand:HF 1 "register_operand" "w")) (match_operand:HF 2 "register_operand" "w") (match_operand:HF 3 "register_operand" "0")))] "TARGET_VFP_FP16INST" "vfms.f16\\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "ffmas")] ) (define_expand "neon_vfmshf" [(match_operand:HF 0 "s_register_operand") (match_operand:HF 1 "s_register_operand") (match_operand:HF 2 "s_register_operand") (match_operand:HF 3 "s_register_operand")] "TARGET_VFP_FP16INST" { emit_insn (gen_fmsubhf4_fp16 (operands[0], operands[2], operands[3], operands[1])); DONE; }) (define_insn "*fmsub4" [(set (match_operand:SDF 0 "register_operand" "=") (fma:SDF (neg:SDF (match_operand:SDF 1 "register_operand" "")) (match_operand:SDF 2 "register_operand" "") (match_operand:SDF 3 "register_operand" "0")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA " "vfms%?.\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "ffma")] ) (define_insn "*fnmsubhf4" [(set (match_operand:HF 0 "register_operand" "=w") (fma:HF (match_operand:HF 1 "register_operand" "w") (match_operand:HF 2 "register_operand" "w") (neg:HF (match_operand:HF 3 "register_operand" "0"))))] "TARGET_VFP_FP16INST" "vfnms.f16\\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "ffmas")] ) (define_insn "*fnmsub4" [(set (match_operand:SDF 0 "register_operand" "=") (fma:SDF (match_operand:SDF 1 "register_operand" "") (match_operand:SDF 2 "register_operand" "") (neg:SDF (match_operand:SDF 3 "register_operand" "0"))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA " "vfnms%?.\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "ffma")] ) (define_insn "*fnmaddhf4" [(set (match_operand:HF 0 "register_operand" "=w") (fma:HF (neg:HF (match_operand:HF 1 "register_operand" "w")) (match_operand:HF 2 "register_operand" "w") (neg:HF (match_operand:HF 3 "register_operand" "0"))))] "TARGET_VFP_FP16INST" "vfnma.f16\\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "ffmas")] ) (define_insn "*fnmadd4" [(set (match_operand:SDF 0 "register_operand" "=") (fma:SDF (neg:SDF (match_operand:SDF 1 "register_operand" "")) (match_operand:SDF 2 "register_operand" "") (neg:SDF (match_operand:SDF 3 "register_operand" "0"))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA " "vfnma%?.\\t%0, %1, %2" [(set_attr "predicable" "yes") (set_attr "type" "ffma")] ) ;; Conversion routines (define_insn "*extendsfdf2_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (float_extend:DF (match_operand:SF 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vcvt%?.f64.f32\\t%P0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvt")] ) (define_insn "*truncdfsf2_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (float_truncate:SF (match_operand:DF 1 "s_register_operand" "w")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vcvt%?.f32.f64\\t%0, %P1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvt")] ) (define_insn "extendhfsf2" [(set (match_operand:SF 0 "s_register_operand" "=t") (float_extend:SF (match_operand:HF 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT && (TARGET_FP16 || TARGET_VFP_FP16INST)" "vcvtb%?.f32.f16\\t%0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvt")] ) (define_insn "*truncdfhf2" [(set (match_operand:HF 0 "s_register_operand" "=t") (float_truncate:HF (match_operand:DF 1 "s_register_operand" "w")))] "TARGET_32BIT && TARGET_FP16_TO_DOUBLE" "vcvtb%?.f16.f64\\t%0, %P1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvt")] ) (define_insn "*extendhfdf2" [(set (match_operand:DF 0 "s_register_operand" "=w") (float_extend:DF (match_operand:HF 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_FP16_TO_DOUBLE" "vcvtb%?.f64.f16\\t%P0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvt")] ) (define_insn "truncsfhf2" [(set (match_operand:HF 0 "s_register_operand" "=t") (float_truncate:HF (match_operand:SF 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT && (TARGET_FP16 || TARGET_VFP_FP16INST)" "vcvtb%?.f16.f32\\t%0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvt")] ) (define_insn "*truncsisf2_vfp" [(set (match_operand:SI 0 "s_register_operand" "=t") (fix:SI (fix:SF (match_operand:SF 1 "s_register_operand" "t"))))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vcvt%?.s32.f32\\t%0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvtf2i")] ) (define_insn "*truncsidf2_vfp" [(set (match_operand:SI 0 "s_register_operand" "=t") (fix:SI (fix:DF (match_operand:DF 1 "s_register_operand" "w"))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vcvt%?.s32.f64\\t%0, %P1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvtf2i")] ) (define_insn "fixuns_truncsfsi2" [(set (match_operand:SI 0 "s_register_operand" "=t") (unsigned_fix:SI (fix:SF (match_operand:SF 1 "s_register_operand" "t"))))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vcvt%?.u32.f32\\t%0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvtf2i")] ) (define_insn "fixuns_truncdfsi2" [(set (match_operand:SI 0 "s_register_operand" "=t") (unsigned_fix:SI (fix:DF (match_operand:DF 1 "s_register_operand" "t"))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vcvt%?.u32.f64\\t%0, %P1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvtf2i")] ) (define_insn "*floatsisf2_vfp" [(set (match_operand:SF 0 "s_register_operand" "=t") (float:SF (match_operand:SI 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vcvt%?.f32.s32\\t%0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvti2f")] ) (define_insn "*floatsidf2_vfp" [(set (match_operand:DF 0 "s_register_operand" "=w") (float:DF (match_operand:SI 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vcvt%?.f64.s32\\t%P0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvti2f")] ) (define_insn "floatunssisf2" [(set (match_operand:SF 0 "s_register_operand" "=t") (unsigned_float:SF (match_operand:SI 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vcvt%?.f32.u32\\t%0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvti2f")] ) (define_insn "floatunssidf2" [(set (match_operand:DF 0 "s_register_operand" "=w") (unsigned_float:DF (match_operand:SI 1 "s_register_operand" "t")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vcvt%?.f64.u32\\t%P0, %1" [(set_attr "predicable" "yes") (set_attr "type" "f_cvti2f")] ) ;; Sqrt insns. (define_insn "neon_vsqrthf" [(set (match_operand:HF 0 "s_register_operand" "=w") (sqrt:HF (match_operand:HF 1 "s_register_operand" "w")))] "TARGET_VFP_FP16INST" "vsqrt.f16\t%0, %1" [(set_attr "conds" "unconditional") (set_attr "type" "fsqrts")] ) (define_insn "neon_vrsqrtshf" [(set (match_operand:HF 0 "s_register_operand" "=w") (unspec:HF [(match_operand:HF 1 "s_register_operand" "w") (match_operand:HF 2 "s_register_operand" "w")] UNSPEC_VRSQRTS))] "TARGET_VFP_FP16INST" "vrsqrts.f16\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "fsqrts")] ) ; VFP9 Erratum 760019: It's potentially unsafe to overwrite the input ; operands, so mark the output as early clobber for VFPv2 on ARMv5 or ; earlier. (define_insn "*sqrtsf2_vfp" [(set (match_operand:SF 0 "s_register_operand" "=&t,t") (sqrt:SF (match_operand:SF 1 "s_register_operand" "t,t")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vsqrt%?.f32\\t%0, %1" [(set_attr "predicable" "yes") (set_attr "arch" "*,armv6_or_vfpv3") (set_attr "type" "fsqrts")] ) (define_insn "*sqrtdf2_vfp" [(set (match_operand:DF 0 "s_register_operand" "=&w,w") (sqrt:DF (match_operand:DF 1 "s_register_operand" "w,w")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "vsqrt%?.f64\\t%P0, %P1" [(set_attr "predicable" "yes") (set_attr "arch" "*,armv6_or_vfpv3") (set_attr "type" "fsqrtd")] ) ;; Patterns to split/copy vfp condition flags. (define_insn "*movcc_vfp" [(set (reg CC_REGNUM) (reg VFPCC_REGNUM))] "TARGET_32BIT && TARGET_HARD_FLOAT" "vmrs%?\\tAPSR_nzcv, FPSCR" [(set_attr "conds" "set") (set_attr "type" "f_flag")] ) (define_insn "push_fpsysreg_insn" [(set (mem:SI (post_dec:SI (match_operand:SI 0 "s_register_operand" "+&rk"))) (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "n")] VUNSPEC_VSTR_VLDR))] "TARGET_HAVE_FPCXT_CMSE && use_cmse" { static char buf[32]; int fp_sysreg_enum = INTVAL (operands[1]); gcc_assert (IN_RANGE (fp_sysreg_enum, 0, NB_FP_SYSREGS - 1)); snprintf (buf, sizeof (buf), \"vstr%%?\\t%s, [%%0, #-4]!\", fp_sysreg_names[fp_sysreg_enum]); return buf; } [(set_attr "predicable" "yes") (set_attr "type" "store_4")] ) (define_insn "pop_fpsysreg_insn" [(set (mem:SI (post_inc:SI (match_operand:SI 0 "s_register_operand" "+&rk"))) (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "n")] VUNSPEC_VSTR_VLDR))] "TARGET_HAVE_FPCXT_CMSE && use_cmse" { static char buf[32]; int fp_sysreg_enum = INTVAL (operands[1]); gcc_assert (IN_RANGE (fp_sysreg_enum, 0, NB_FP_SYSREGS - 1)); snprintf (buf, sizeof (buf), \"vldr%%?\\t%s, [%%0], #4\", fp_sysreg_names[fp_sysreg_enum]); return buf; } [(set_attr "predicable" "yes") (set_attr "type" "load_4")] ) ;; The operands are validated through the clear_multiple_operation ;; match_parallel predicate rather than through constraints so enable it only ;; after reload. (define_insn "*clear_vfp_multiple" [(match_parallel 0 "clear_vfp_multiple_operation" [(unspec_volatile [(const_int 0)] VUNSPEC_VSCCLRM_VPR)])] "TARGET_HAVE_FPCXT_CMSE && use_cmse && reload_completed" { int num_regs = XVECLEN (operands[0], 0); char pattern[30]; rtx reg; strcpy (pattern, \"vscclrm%?\\t{%|\"); if (num_regs > 1) { reg = XEXP (XVECEXP (operands[0], 0, 1), 0); strcat (pattern, reg_names[REGNO (reg)]); if (num_regs > 2) { strcat (pattern, \"-%|\"); reg = XEXP (XVECEXP (operands[0], 0, num_regs - 1), 0); strcat (pattern, reg_names[REGNO (reg)]); } strcat (pattern, \", \"); } strcat (pattern, \"VPR}\"); output_asm_insn (pattern, operands); return \"\"; } [(set_attr "predicable" "yes") (set_attr "type" "mov_reg")] ) ;; Both this and the next instruction are treated by GCC in the same ;; way as a blockage pattern. That's perhaps stronger than it needs ;; to be, but we do not want accesses to the VFP register bank to be ;; moved across either instruction. (define_insn "lazy_store_multiple_insn" [(unspec_volatile [(mem:BLK (match_operand:SI 0 "s_register_operand" "rk"))] VUNSPEC_VLSTM)] "use_cmse && reload_completed" "vlstm%?\\t%0" [(set_attr "predicable" "yes") (set_attr "type" "store_4")] ) (define_insn "lazy_load_multiple_insn" [(unspec_volatile [(mem:BLK (match_operand:SI 0 "s_register_operand" "rk,rk"))] VUNSPEC_VLLDM)] "use_cmse && reload_completed" "@ vscclrm\\t{vpr}\;vlldm\\t%0 vlldm\\t%0" [(set_attr "arch" "fix_vlldm,*") (set_attr "predicable" "no") (set_attr "length" "8,4") (set_attr "type" "load_4")] ) (define_insn_and_split "*cmpsf_split_vfp" [(set (reg:CCFP CC_REGNUM) (compare:CCFP (match_operand:SF 0 "s_register_operand" "t") (match_operand:SF 1 "vfp_compare_operand" "tG")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "#" "TARGET_32BIT && TARGET_HARD_FLOAT" [(set (reg:CCFP VFPCC_REGNUM) (compare:CCFP (match_dup 0) (match_dup 1))) (set (reg:CCFP CC_REGNUM) (reg:CCFP VFPCC_REGNUM))] "" ) (define_insn_and_split "*cmpsf_trap_split_vfp" [(set (reg:CCFPE CC_REGNUM) (compare:CCFPE (match_operand:SF 0 "s_register_operand" "t") (match_operand:SF 1 "vfp_compare_operand" "tG")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "#" "TARGET_32BIT && TARGET_HARD_FLOAT" [(set (reg:CCFPE VFPCC_REGNUM) (compare:CCFPE (match_dup 0) (match_dup 1))) (set (reg:CCFPE CC_REGNUM) (reg:CCFPE VFPCC_REGNUM))] "" ) (define_insn_and_split "*cmpdf_split_vfp" [(set (reg:CCFP CC_REGNUM) (compare:CCFP (match_operand:DF 0 "s_register_operand" "w") (match_operand:DF 1 "vfp_compare_operand" "wG")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "#" "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" [(set (reg:CCFP VFPCC_REGNUM) (compare:CCFP (match_dup 0) (match_dup 1))) (set (reg:CCFP CC_REGNUM) (reg:CCFP VFPCC_REGNUM))] "" ) (define_insn_and_split "*cmpdf_trap_split_vfp" [(set (reg:CCFPE CC_REGNUM) (compare:CCFPE (match_operand:DF 0 "s_register_operand" "w") (match_operand:DF 1 "vfp_compare_operand" "wG")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "#" "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" [(set (reg:CCFPE VFPCC_REGNUM) (compare:CCFPE (match_dup 0) (match_dup 1))) (set (reg:CCFPE CC_REGNUM) (reg:CCFPE VFPCC_REGNUM))] "" ) ;; Comparison patterns ;; In the compare with FP zero case the ARM Architecture Reference Manual ;; specifies the immediate to be #0.0. However, some buggy assemblers only ;; accept #0. We don't want to autodetect broken assemblers, so output #0. (define_insn "*cmpsf_vfp" [(set (reg:CCFP VFPCC_REGNUM) (compare:CCFP (match_operand:SF 0 "s_register_operand" "t,t") (match_operand:SF 1 "vfp_compare_operand" "t,G")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "@ vcmp%?.f32\\t%0, %1 vcmp%?.f32\\t%0, #0" [(set_attr "predicable" "yes") (set_attr "type" "fcmps")] ) (define_insn "*cmpsf_trap_vfp" [(set (reg:CCFPE VFPCC_REGNUM) (compare:CCFPE (match_operand:SF 0 "s_register_operand" "t,t") (match_operand:SF 1 "vfp_compare_operand" "t,G")))] "TARGET_32BIT && TARGET_HARD_FLOAT" "@ vcmpe%?.f32\\t%0, %1 vcmpe%?.f32\\t%0, #0" [(set_attr "predicable" "yes") (set_attr "type" "fcmps")] ) (define_insn "*cmpdf_vfp" [(set (reg:CCFP VFPCC_REGNUM) (compare:CCFP (match_operand:DF 0 "s_register_operand" "w,w") (match_operand:DF 1 "vfp_compare_operand" "w,G")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "@ vcmp%?.f64\\t%P0, %P1 vcmp%?.f64\\t%P0, #0" [(set_attr "predicable" "yes") (set_attr "type" "fcmpd")] ) (define_insn "*cmpdf_trap_vfp" [(set (reg:CCFPE VFPCC_REGNUM) (compare:CCFPE (match_operand:DF 0 "s_register_operand" "w,w") (match_operand:DF 1 "vfp_compare_operand" "w,G")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "@ vcmpe%?.f64\\t%P0, %P1 vcmpe%?.f64\\t%P0, #0" [(set_attr "predicable" "yes") (set_attr "type" "fcmpd")] ) ;; Fixed point to floating point conversions. (define_insn "*combine_vcvt_f32_" [(set (match_operand:SF 0 "s_register_operand" "=t") (mult:SF (FCVT:SF (match_operand:SI 1 "s_register_operand" "0")) (match_operand 2 "const_double_vcvt_power_of_two_reciprocal" "Dt")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math" "vcvt%?.f32.\\t%0, %1, %v2" [(set_attr "predicable" "yes") (set_attr "type" "f_cvti2f")] ) ;; Not the ideal way of implementing this. Ideally we would be able to split ;; this into a move to a DP register and then a vcvt.f64.i32 (define_insn "*combine_vcvt_f64_" [(set (match_operand:DF 0 "s_register_operand" "=x,x,w") (mult:DF (FCVT:DF (match_operand:SI 1 "s_register_operand" "r,t,r")) (match_operand 2 "const_double_vcvt_power_of_two_reciprocal" "Dt,Dt,Dt")))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math && !TARGET_VFP_SINGLE" "@ vmov%?.f32\\t%0, %1\;vcvt%?.f64.\\t%P0, %P0, %v2 vmov%?.f32\\t%0, %1\;vcvt%?.f64.\\t%P0, %P0, %v2 vmov%?.f64\\t%P0, %1, %1\;vcvt%?.f64.\\t%P0, %P0, %v2" [(set_attr "predicable" "yes") (set_attr "ce_count" "2") (set_attr "type" "f_cvti2f") (set_attr "length" "8")] ) (define_insn "*combine_vcvtf2i" [(set (match_operand:SI 0 "s_register_operand" "=t") (fix:SI (fix:SF (mult:SF (match_operand:SF 1 "s_register_operand" "0") (match_operand 2 "const_double_vcvt_power_of_two" "Dp")))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math" "vcvt%?.s32.f32\\t%0, %1, %v2" [(set_attr "predicable" "yes") (set_attr "type" "f_cvtf2i")] ) ;; FP16 conversions. (define_insn "neon_vcvthhf" [(set (match_operand:HF 0 "s_register_operand" "=w") (unspec:HF [(match_operand:SI 1 "s_register_operand" "w")] VCVTH_US))] "TARGET_VFP_FP16INST" "vcvt.f16.%#32\t%0, %1" [(set_attr "conds" "unconditional") (set_attr "type" "f_cvti2f")] ) (define_insn "neon_vcvthsi" [(set (match_operand:SI 0 "s_register_operand" "=w") (unspec:SI [(match_operand:HF 1 "s_register_operand" "w")] VCVTH_US))] "TARGET_VFP_FP16INST" "vcvt.%#32.f16\t%0, %1" [(set_attr "conds" "unconditional") (set_attr "type" "f_cvtf2i")] ) ;; The neon_vcvth_nhf patterns are used to generate the instruction for the ;; vcvth_n_f16_32 arm_fp16 intrinsics. They are complicated by the ;; hardware requirement that the source and destination registers are the same ;; despite having different machine modes. The approach is to use a temporary ;; register for the conversion and move that to the correct destination. ;; Generate an unspec pattern for the intrinsic. (define_insn "neon_vcvth_nhf_unspec" [(set (match_operand:SI 0 "s_register_operand" "=w") (unspec:SI [(match_operand:SI 1 "s_register_operand" "0") (match_operand:SI 2 "immediate_operand" "i")] VCVT_HF_US_N)) (set (match_operand:HF 3 "s_register_operand" "=w") (float_truncate:HF (float:SF (match_dup 0))))] "TARGET_VFP_FP16INST" { arm_const_bounds (operands[2], 1, 33); return "vcvt.f16.32\t%0, %0, %2\;vmov.f32\t%3, %0"; } [(set_attr "conds" "unconditional") (set_attr "type" "f_cvti2f")] ) ;; Generate the instruction patterns needed for vcvth_n_f16_s32 neon intrinsics. (define_expand "neon_vcvth_nhf" [(match_operand:HF 0 "s_register_operand") (unspec:HF [(match_operand:SI 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] VCVT_HF_US_N)] "TARGET_VFP_FP16INST" { rtx op1 = gen_reg_rtx (SImode); arm_const_bounds (operands[2], 1, 33); emit_move_insn (op1, operands[1]); emit_insn (gen_neon_vcvth_nhf_unspec (op1, op1, operands[2], operands[0])); DONE; }) ;; The neon_vcvth_nsi patterns are used to generate the instruction for the ;; vcvth_n_32_f16 arm_fp16 intrinsics. They have the same restrictions and ;; are implemented in the same way as the neon_vcvth_nhf patterns. ;; Generate an unspec pattern, constraining the registers. (define_insn "neon_vcvth_nsi_unspec" [(set (match_operand:SI 0 "s_register_operand" "=w") (unspec:SI [(fix:SI (fix:SF (float_extend:SF (match_operand:HF 1 "s_register_operand" "w")))) (match_operand:SI 2 "immediate_operand" "i")] VCVT_SI_US_N))] "TARGET_VFP_FP16INST" { arm_const_bounds (operands[2], 1, 33); return "vmov.f32\t%0, %1\;vcvt.%#32.f16\t%0, %0, %2"; } [(set_attr "conds" "unconditional") (set_attr "type" "f_cvtf2i")] ) ;; Generate the instruction patterns needed for vcvth_n_f16_s32 neon intrinsics. (define_expand "neon_vcvth_nsi" [(match_operand:SI 0 "s_register_operand") (unspec:SI [(match_operand:HF 1 "s_register_operand") (match_operand:SI 2 "immediate_operand")] VCVT_SI_US_N)] "TARGET_VFP_FP16INST" { rtx op1 = gen_reg_rtx (SImode); arm_const_bounds (operands[2], 1, 33); emit_insn (gen_neon_vcvth_nsi_unspec (op1, operands[1], operands[2])); emit_move_insn (operands[0], op1); DONE; }) (define_insn "neon_vcvthsi" [(set (match_operand:SI 0 "s_register_operand" "=w") (unspec:SI [(match_operand:HF 1 "s_register_operand" "w")] VCVT_HF_US))] "TARGET_VFP_FP16INST" "vcvt.%#32.f16\t%0, %1" [(set_attr "conds" "unconditional") (set_attr "type" "f_cvtf2i")] ) ;; Store multiple insn used in function prologue. (define_insn "*push_multi_vfp" [(match_parallel 2 "multi_register_push" [(set (match_operand:BLK 0 "memory_operand" "=m") (unspec:BLK [(match_operand:DF 1 "vfp_register_operand" "")] UNSPEC_PUSH_MULT))])] "TARGET_32BIT && TARGET_VFP_BASE" "* return vfp_output_vstmd (operands);" [(set_attr "type" "f_stored")] ) ;; VRINT round to integral instructions. ;; Invoked for the patterns: btruncsf2, btruncdf2, ceilsf2, ceildf2, ;; roundsf2, rounddf2, floorsf2, floordf2, nearbyintsf2, nearbyintdf2, ;; rintsf2, rintdf2. (define_insn "2" [(set (match_operand:SDF 0 "register_operand" "=") (unspec:SDF [(match_operand:SDF 1 "register_operand" "")] VRINT))] "TARGET_HARD_FLOAT && TARGET_VFP5 " "vrint%?.\\t%0, %1" [(set_attr "predicable" "") (set_attr "type" "f_rint") (set_attr "conds" "")] ) ;; Implements the lround, lfloor and lceil optabs. (define_insn "lsi2" [(set (match_operand:SI 0 "register_operand" "=t") (FIXUORS:SI (unspec:SDF [(match_operand:SDF 1 "register_operand" "")] VCVT)))] "TARGET_HARD_FLOAT && TARGET_VFP5 " "vcvt.32.\\t%0, %1" [(set_attr "conds" "unconditional") (set_attr "type" "f_cvtf2i")] ) ;; MIN_EXPR and MAX_EXPR eventually map to 'smin' and 'smax' in RTL. ;; The 'smax' and 'smin' RTL standard pattern names do not specify which ;; operand will be returned when both operands are zero (i.e. they may not ;; honour signed zeroes), or when either operand is NaN. Therefore GCC ;; only introduces MIN_EXPR/MAX_EXPR in fast math mode or when not honouring ;; NaNs. (define_insn "smax3" [(set (match_operand:SDF 0 "register_operand" "=") (smax:SDF (match_operand:SDF 1 "register_operand" "") (match_operand:SDF 2 "register_operand" "")))] "TARGET_HARD_FLOAT && TARGET_VFP5 " "vmaxnm.\\t%0, %1, %2" [(set_attr "type" "f_minmax") (set_attr "conds" "unconditional")] ) (define_insn "smin3" [(set (match_operand:SDF 0 "register_operand" "=") (smin:SDF (match_operand:SDF 1 "register_operand" "") (match_operand:SDF 2 "register_operand" "")))] "TARGET_HARD_FLOAT && TARGET_VFP5 " "vminnm.\\t%0, %1, %2" [(set_attr "type" "f_minmax") (set_attr "conds" "unconditional")] ) ;; Scalar forms for the IEEE-754 fmax()/fmin() functions (define_insn "neon_hf" [(set (match_operand:HF 0 "s_register_operand" "=w") (unspec:HF [(match_operand:HF 1 "s_register_operand" "w") (match_operand:HF 2 "s_register_operand" "w")] VMAXMINFNM))] "TARGET_VFP_FP16INST" ".f16\t%0, %1, %2" [(set_attr "conds" "unconditional") (set_attr "type" "f_minmaxs")] ) (define_insn "3" [(set (match_operand:SDF 0 "s_register_operand" "=") (unspec:SDF [(match_operand:SDF 1 "s_register_operand" "") (match_operand:SDF 2 "s_register_operand" "")] VMAXMINFNM))] "TARGET_HARD_FLOAT && TARGET_VFP5 " ".\\t%0, %1, %2" [(set_attr "type" "f_minmax") (set_attr "conds" "unconditional")] ) ;; Write Floating-point Status and Control Register. (define_insn "set_fpscr" [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")] VUNSPEC_SET_FPSCR)] "TARGET_VFP_BASE" "mcr\\tp10, 7, %0, cr1, cr0, 0\\t @SET_FPSCR" [(set_attr "type" "mrs")]) ;; Read Floating-point Status and Control Register. (define_insn "get_fpscr" [(set (match_operand:SI 0 "register_operand" "=r") (unspec_volatile:SI [(const_int 0)] VUNSPEC_GET_FPSCR))] "TARGET_VFP_BASE" "mrc\\tp10, 7, %0, cr1, cr0, 0\\t @GET_FPSCR" [(set_attr "type" "mrs")]) ;; Unimplemented insns: ;; fldm* ;; fstm* ;; fmdhr et al (VFPv1) ;; Support for xD (single precision only) variants. ;; fmrrs, fmsrr ;; Load a DF immediate via GPR (where combinations of MOV and MOVT can be used) ;; and then move it into a VFP register. (define_insn_and_split "no_literal_pool_df_immediate" [(set (match_operand:DF 0 "s_register_operand" "=w") (match_operand:DF 1 "const_double_operand" "F")) (clobber (match_operand:DF 2 "s_register_operand" "=r"))] "arm_disable_literal_pool && TARGET_VFP_BASE && !arm_const_double_rtx (operands[1]) && !(TARGET_VFP_DOUBLE && vfp3_const_double_rtx (operands[1]))" "#" "&& 1" [(const_int 0)] { long buf[2]; int order = BYTES_BIG_ENDIAN ? 1 : 0; real_to_target (buf, CONST_DOUBLE_REAL_VALUE (operands[1]), DFmode); unsigned HOST_WIDE_INT ival = zext_hwi (buf[order], 32); ival |= (zext_hwi (buf[1 - order], 32) << 32); rtx cst = gen_int_mode (ival, DImode); emit_move_insn (simplify_gen_subreg (DImode, operands[2], DFmode, 0), cst); emit_move_insn (operands[0], operands[2]); DONE; } ) ;; Load a SF immediate via GPR (where combinations of MOV and MOVT can be used) ;; and then move it into a VFP register. (define_insn_and_split "no_literal_pool_sf_immediate" [(set (match_operand:SF 0 "s_register_operand" "=t") (match_operand:SF 1 "const_double_operand" "E")) (clobber (match_operand:SF 2 "s_register_operand" "=r"))] "arm_disable_literal_pool && TARGET_VFP_BASE && !vfp3_const_double_rtx (operands[1])" "#" "&& 1" [(const_int 0)] { long buf; real_to_target (&buf, CONST_DOUBLE_REAL_VALUE (operands[1]), SFmode); rtx cst = gen_int_mode (buf, SImode); emit_move_insn (simplify_gen_subreg (SImode, operands[2], SFmode, 0), cst); emit_move_insn (operands[0], operands[2]); DONE; } ) ;; CDE instructions using FPU/MVE S/D registers (define_insn "arm_vcx1" [(set (match_operand:SIDI 0 "register_operand" "=t") (unspec:SIDI [(match_operand:SI 1 "const_int_coproc_operand" "i") (match_operand:SI 2 "const_int_vcde1_operand" "i")] UNSPEC_VCDE))] "TARGET_CDE && (TARGET_ARM_FP || TARGET_HAVE_MVE)" "vcx1\\tp%c1, %0, #%c2" [(set_attr "type" "coproc")] ) (define_insn "arm_vcx1a" [(set (match_operand:SIDI 0 "register_operand" "=t") (unspec:SIDI [(match_operand:SI 1 "const_int_coproc_operand" "i") (match_operand:SIDI 2 "register_operand" "0") (match_operand:SI 3 "const_int_vcde1_operand" "i")] UNSPEC_VCDEA))] "TARGET_CDE && (TARGET_ARM_FP || TARGET_HAVE_MVE)" "vcx1a\\tp%c1, %0, #%c3" [(set_attr "type" "coproc")] ) (define_insn "arm_vcx2" [(set (match_operand:SIDI 0 "register_operand" "=t") (unspec:SIDI [(match_operand:SI 1 "const_int_coproc_operand" "i") (match_operand:SIDI 2 "register_operand" "t") (match_operand:SI 3 "const_int_vcde2_operand" "i")] UNSPEC_VCDE))] "TARGET_CDE && (TARGET_ARM_FP || TARGET_HAVE_MVE)" "vcx2\\tp%c1, %0, %2, #%c3" [(set_attr "type" "coproc")] ) (define_insn "arm_vcx2a" [(set (match_operand:SIDI 0 "register_operand" "=t") (unspec:SIDI [(match_operand:SI 1 "const_int_coproc_operand" "i") (match_operand:SIDI 2 "register_operand" "0") (match_operand:SIDI 3 "register_operand" "t") (match_operand:SI 4 "const_int_vcde2_operand" "i")] UNSPEC_VCDEA))] "TARGET_CDE && (TARGET_ARM_FP || TARGET_HAVE_MVE)" "vcx2a\\tp%c1, %0, %3, #%c4" [(set_attr "type" "coproc")] ) (define_insn "arm_vcx3" [(set (match_operand:SIDI 0 "register_operand" "=t") (unspec:SIDI [(match_operand:SI 1 "const_int_coproc_operand" "i") (match_operand:SIDI 2 "register_operand" "t") (match_operand:SIDI 3 "register_operand" "t") (match_operand:SI 4 "const_int_vcde3_operand" "i")] UNSPEC_VCDE))] "TARGET_CDE && (TARGET_ARM_FP || TARGET_HAVE_MVE)" "vcx3\\tp%c1, %0, %2, %3, #%c4" [(set_attr "type" "coproc")] ) (define_insn "arm_vcx3a" [(set (match_operand:SIDI 0 "register_operand" "=t") (unspec:SIDI [(match_operand:SI 1 "const_int_coproc_operand" "i") (match_operand:SIDI 2 "register_operand" "0") (match_operand:SIDI 3 "register_operand" "t") (match_operand:SIDI 4 "register_operand" "t") (match_operand:SI 5 "const_int_vcde3_operand" "i")] UNSPEC_VCDEA))] "TARGET_CDE && (TARGET_ARM_FP || TARGET_HAVE_MVE)" "vcx3a\\tp%c1, %0, %3, %4, #%c5" [(set_attr "type" "coproc")] )