/* Tuning model description for AArch64 architecture. Copyright (C) 2009-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_AARCH64_H_NEOVERSEN2 #define GCC_AARCH64_H_NEOVERSEN2 #include "generic.h" static const struct cpu_addrcost_table neoversen2_addrcost_table = { { 1, /* hi */ 0, /* si */ 0, /* di */ 1, /* ti */ }, 0, /* pre_modify */ 0, /* post_modify */ 2, /* post_modify_ld3_st3 */ 2, /* post_modify_ld4_st4 */ 0, /* register_offset */ 0, /* register_sextend */ 0, /* register_zextend */ 0 /* imm_offset */ }; static const struct cpu_regmove_cost neoversen2_regmove_cost = { 1, /* GP2GP */ /* Spilling to int<->fp instead of memory is recommended so set realistic costs compared to memmov_cost. */ 3, /* GP2FP */ 2, /* FP2GP */ 2 /* FP2FP */ }; static const advsimd_vec_cost neoversen2_advsimd_vector_cost = { 2, /* int_stmt_cost */ 2, /* fp_stmt_cost */ 2, /* ld2_st2_permute_cost */ 2, /* ld3_st3_permute_cost */ 3, /* ld4_st4_permute_cost */ 3, /* permute_cost */ 4, /* reduc_i8_cost */ 4, /* reduc_i16_cost */ 2, /* reduc_i32_cost */ 2, /* reduc_i64_cost */ 6, /* reduc_f16_cost */ 4, /* reduc_f32_cost */ 2, /* reduc_f64_cost */ 2, /* store_elt_extra_cost */ /* This value is just inherited from the Cortex-A57 table. */ 8, /* vec_to_scalar_cost */ /* This depends very much on what the scalar value is and where it comes from. E.g. some constants take two dependent instructions or a load, while others might be moved from a GPR. 4 seems to be a reasonable compromise in practice. */ 4, /* scalar_to_vec_cost */ 4, /* align_load_cost */ 4, /* unalign_load_cost */ /* Although stores have a latency of 2 and compete for the vector pipes, in practice it's better not to model that. */ 1, /* unalign_store_cost */ 1 /* store_cost */ }; static const sve_vec_cost neoversen2_sve_vector_cost = { { 2, /* int_stmt_cost */ 2, /* fp_stmt_cost */ 3, /* ld2_st2_permute_cost */ 4, /* ld3_st3_permute_cost */ 4, /* ld4_st4_permute_cost */ 3, /* permute_cost */ /* Theoretically, a reduction involving 15 scalar ADDs could complete in ~5 cycles and would have a cost of 15. [SU]ADDV completes in 11 cycles, so give it a cost of 15 + 6. */ 21, /* reduc_i8_cost */ /* Likewise for 7 scalar ADDs (~3 cycles) vs. 9: 7 + 6. */ 13, /* reduc_i16_cost */ /* Likewise for 3 scalar ADDs (~2 cycles) vs. 8: 3 + 6. */ 9, /* reduc_i32_cost */ /* Likewise for 1 scalar ADD (~1 cycles) vs. 2: 1 + 1. */ 2, /* reduc_i64_cost */ /* Theoretically, a reduction involving 7 scalar FADDs could complete in ~8 cycles and would have a cost of 14. FADDV completes in 6 cycles, so give it a cost of 14 - 2. */ 12, /* reduc_f16_cost */ /* Likewise for 3 scalar FADDs (~4 cycles) vs. 4: 6 - 0. */ 6, /* reduc_f32_cost */ /* Likewise for 1 scalar FADD (~2 cycles) vs. 2: 2 - 0. */ 2, /* reduc_f64_cost */ 2, /* store_elt_extra_cost */ /* This value is just inherited from the Cortex-A57 table. */ 8, /* vec_to_scalar_cost */ /* See the comment above the Advanced SIMD versions. */ 4, /* scalar_to_vec_cost */ 4, /* align_load_cost */ 4, /* unalign_load_cost */ /* Although stores have a latency of 2 and compete for the vector pipes, in practice it's better not to model that. */ 1, /* unalign_store_cost */ 1 /* store_cost */ }, 3, /* clast_cost */ 10, /* fadda_f16_cost */ 6, /* fadda_f32_cost */ 4, /* fadda_f64_cost */ /* A strided Advanced SIMD x64 load would take two parallel FP loads (8 cycles) plus an insertion (2 cycles). Assume a 64-bit SVE gather is 1 cycle more. The Advanced SIMD version is costed as 2 scalar loads (cost 8) and a vec_construct (cost 2). Add a full vector operation (cost 2) to that, to avoid the difference being lost in rounding. There is no easy comparison between a strided Advanced SIMD x32 load and an SVE 32-bit gather, but cost an SVE 32-bit gather as 1 vector operation more than a 64-bit gather. */ 14, /* gather_load_x32_cost */ 12, /* gather_load_x64_cost */ 3 /* scatter_store_elt_cost */ }; static const aarch64_scalar_vec_issue_info neoversen2_scalar_issue_info = { 3, /* loads_stores_per_cycle */ 2, /* stores_per_cycle */ 4, /* general_ops_per_cycle */ 0, /* fp_simd_load_general_ops */ 1 /* fp_simd_store_general_ops */ }; static const aarch64_advsimd_vec_issue_info neoversen2_advsimd_issue_info = { { 3, /* loads_stores_per_cycle */ 2, /* stores_per_cycle */ 2, /* general_ops_per_cycle */ 0, /* fp_simd_load_general_ops */ 1 /* fp_simd_store_general_ops */ }, 2, /* ld2_st2_general_ops */ 2, /* ld3_st3_general_ops */ 3 /* ld4_st4_general_ops */ }; static const aarch64_sve_vec_issue_info neoversen2_sve_issue_info = { { { 3, /* loads_per_cycle */ 2, /* stores_per_cycle */ 2, /* general_ops_per_cycle */ 0, /* fp_simd_load_general_ops */ 1 /* fp_simd_store_general_ops */ }, 2, /* ld2_st2_general_ops */ 3, /* ld3_st3_general_ops */ 3 /* ld4_st4_general_ops */ }, 2, /* pred_ops_per_cycle */ 2, /* while_pred_ops */ 2, /* int_cmp_pred_ops */ 1, /* fp_cmp_pred_ops */ 1, /* gather_scatter_pair_general_ops */ 1 /* gather_scatter_pair_pred_ops */ }; static const aarch64_vec_issue_info neoversen2_vec_issue_info = { &neoversen2_scalar_issue_info, &neoversen2_advsimd_issue_info, &neoversen2_sve_issue_info }; /* Neoverse N2 costs for vector insn classes. */ static const struct cpu_vector_cost neoversen2_vector_cost = { 1, /* scalar_int_stmt_cost */ 2, /* scalar_fp_stmt_cost */ 4, /* scalar_load_cost */ 1, /* scalar_store_cost */ 1, /* cond_taken_branch_cost */ 1, /* cond_not_taken_branch_cost */ &neoversen2_advsimd_vector_cost, /* advsimd */ &neoversen2_sve_vector_cost, /* sve */ &neoversen2_vec_issue_info /* issue_info */ }; static const struct tune_params neoversen2_tunings = { &cortexa76_extra_costs, &neoversen2_addrcost_table, &neoversen2_regmove_cost, &neoversen2_vector_cost, &generic_branch_cost, &generic_approx_modes, SVE_128, /* sve_width */ { 4, /* load_int. */ 1, /* store_int. */ 6, /* load_fp. */ 2, /* store_fp. */ 6, /* load_pred. */ 1 /* store_pred. */ }, /* memmov_cost. */ 3, /* issue_rate */ (AARCH64_FUSE_AES_AESMC | AARCH64_FUSE_CMP_BRANCH), /* fusible_ops */ "32:16", /* function_align. */ "4", /* jump_align. */ "32:16", /* loop_align. */ 2, /* int_reassoc_width. */ 4, /* fp_reassoc_width. */ 1, /* fma_reassoc_width. */ 2, /* vec_reassoc_width. */ 2, /* min_div_recip_mul_sf. */ 2, /* min_div_recip_mul_df. */ 0, /* max_case_values. */ tune_params::AUTOPREFETCHER_WEAK, /* autoprefetcher_model. */ (AARCH64_EXTRA_TUNE_CHEAP_SHIFT_EXTEND | AARCH64_EXTRA_TUNE_CSE_SVE_VL_CONSTANTS | AARCH64_EXTRA_TUNE_USE_NEW_VECTOR_COSTS | AARCH64_EXTRA_TUNE_MATCHED_VECTOR_THROUGHPUT), /* tune_flags. */ &generic_prefetch_tune, AARCH64_LDP_STP_POLICY_ALWAYS, /* ldp_policy_model. */ AARCH64_LDP_STP_POLICY_ALWAYS /* stp_policy_model. */ }; #endif /* GCC_AARCH64_H_NEOVERSEN2. */