/* Control flow graph building code for GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* find_basic_blocks divides the current function's rtl into basic blocks and constructs the CFG. The blocks are recorded in the basic_block_info array; the CFG exists in the edge structures referenced by the blocks. find_basic_blocks also finds any unreachable loops and deletes them. Available functionality: - CFG construction find_basic_blocks - Local CFG construction find_sub_basic_blocks */ #include "config.h" #include "system.h" #include "tree.h" #include "rtl.h" #include "hard-reg-set.h" #include "basic-block.h" #include "regs.h" #include "flags.h" #include "output.h" #include "function.h" #include "except.h" #include "toplev.h" #include "timevar.h" #include "obstack.h" static int count_basic_blocks PARAMS ((rtx)); static void find_basic_blocks_1 PARAMS ((rtx)); static rtx find_label_refs PARAMS ((rtx, rtx)); static void make_edges PARAMS ((rtx, int, int, int)); static void make_label_edge PARAMS ((sbitmap *, basic_block, rtx, int)); static void make_eh_edge PARAMS ((sbitmap *, basic_block, rtx)); static void find_bb_boundaries PARAMS ((basic_block)); static void compute_outgoing_frequencies PARAMS ((basic_block)); static bool inside_basic_block_p PARAMS ((rtx)); static bool control_flow_insn_p PARAMS ((rtx)); /* Return true if insn is something that should be contained inside basic block. */ static bool inside_basic_block_p (insn) rtx insn; { switch (GET_CODE (insn)) { case CODE_LABEL: /* Avoid creating of basic block for jumptables. */ if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC)) return false; return true; case JUMP_INSN: if (GET_CODE (PATTERN (insn)) == ADDR_VEC || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) return false; return true; case CALL_INSN: case INSN: return true; case BARRIER: case NOTE: return false; default: abort (); } } /* Return true if INSN may cause control flow transfer, so it should be last in the basic block. */ static bool control_flow_insn_p (insn) rtx insn; { rtx note; switch (GET_CODE (insn)) { case NOTE: case CODE_LABEL: return false; case JUMP_INSN: /* Jump insn always causes control transfer except for tablejumps. */ if (GET_CODE (PATTERN (insn)) == ADDR_VEC || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) return false; return true; case CALL_INSN: /* Call insn may return to the nonlocal goto handler. */ if (nonlocal_goto_handler_labels && ((note = find_reg_note (insn, REG_EH_REGION, NULL_RTX)) == 0 || INTVAL (XEXP (note, 0)) >= 0)) return true; /* Or may trap. */ return can_throw_internal (insn); case INSN: return (flag_non_call_exceptions && can_throw_internal (insn)); case BARRIER: /* It is nonsence to reach barrier when looking for the end of basic block, but before dead code is eliminated this may happen. */ return false; default: abort (); } } /* Count the basic blocks of the function. */ static int count_basic_blocks (f) rtx f; { int count = 0; bool saw_insn = false; rtx insn; for (insn = f; insn; insn = NEXT_INSN (insn)) { /* Code labels and barriers causes curent basic block to be terminated at previous real insn. */ if ((GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == BARRIER) && saw_insn) count++, saw_insn = false; /* Start basic block if needed. */ if (!saw_insn && inside_basic_block_p (insn)) saw_insn = true; /* Control flow insn causes current basic block to be terminated. */ if (saw_insn && control_flow_insn_p (insn)) count++, saw_insn = false; } if (saw_insn) count++; /* The rest of the compiler works a bit smoother when we don't have to check for the edge case of do-nothing functions with no basic blocks. */ if (count == 0) { emit_insn (gen_rtx_USE (VOIDmode, const0_rtx)); count = 1; } return count; } /* Scan a list of insns for labels referred to other than by jumps. This is used to scan the alternatives of a call placeholder. */ static rtx find_label_refs (f, lvl) rtx f; rtx lvl; { rtx insn; for (insn = f; insn; insn = NEXT_INSN (insn)) if (INSN_P (insn) && GET_CODE (insn) != JUMP_INSN) { rtx note; /* Make a list of all labels referred to other than by jumps (which just don't have the REG_LABEL notes). Make a special exception for labels followed by an ADDR*VEC, as this would be a part of the tablejump setup code. Make a special exception to registers loaded with label values just before jump insns that use them. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_LABEL) { rtx lab = XEXP (note, 0), next; if ((next = next_nonnote_insn (lab)) != NULL && GET_CODE (next) == JUMP_INSN && (GET_CODE (PATTERN (next)) == ADDR_VEC || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)) ; else if (GET_CODE (lab) == NOTE) ; else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab)) ; else lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl); } } return lvl; } /* Create an edge between two basic blocks. FLAGS are auxiliary information about the edge that is accumulated between calls. */ /* Create an edge from a basic block to a label. */ static void make_label_edge (edge_cache, src, label, flags) sbitmap *edge_cache; basic_block src; rtx label; int flags; { if (GET_CODE (label) != CODE_LABEL) abort (); /* If the label was never emitted, this insn is junk, but avoid a crash trying to refer to BLOCK_FOR_INSN (label). This can happen as a result of a syntax error and a diagnostic has already been printed. */ if (INSN_UID (label) == 0) return; cached_make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags); } /* Create the edges generated by INSN in REGION. */ static void make_eh_edge (edge_cache, src, insn) sbitmap *edge_cache; basic_block src; rtx insn; { int is_call = (GET_CODE (insn) == CALL_INSN ? EDGE_ABNORMAL_CALL : 0); rtx handlers, i; handlers = reachable_handlers (insn); for (i = handlers; i; i = XEXP (i, 1)) make_label_edge (edge_cache, src, XEXP (i, 0), EDGE_ABNORMAL | EDGE_EH | is_call); free_INSN_LIST_list (&handlers); } /* Identify the edges between basic blocks MIN to MAX. NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks that are otherwise unreachable may be reachable with a non-local goto. BB_EH_END is an array indexed by basic block number in which we record the list of exception regions active at the end of the basic block. */ static void make_edges (label_value_list, min, max, update_p) rtx label_value_list; int min, max, update_p; { int i; sbitmap *edge_cache = NULL; /* Assume no computed jump; revise as we create edges. */ current_function_has_computed_jump = 0; /* Heavy use of computed goto in machine-generated code can lead to nearly fully-connected CFGs. In that case we spend a significant amount of time searching the edge lists for duplicates. */ if (forced_labels || label_value_list) { edge_cache = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks); sbitmap_vector_zero (edge_cache, n_basic_blocks); if (update_p) for (i = min; i <= max; ++i) { edge e; for (e = BASIC_BLOCK (i)->succ; e ; e = e->succ_next) if (e->dest != EXIT_BLOCK_PTR) SET_BIT (edge_cache[i], e->dest->index); } } /* By nature of the way these get numbered, block 0 is always the entry. */ if (min == 0) cached_make_edge (edge_cache, ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU); for (i = min; i <= max; ++i) { basic_block bb = BASIC_BLOCK (i); rtx insn, x; enum rtx_code code; int force_fallthru = 0; if (GET_CODE (bb->head) == CODE_LABEL && LABEL_ALTERNATE_NAME (bb->head)) cached_make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0); /* Examine the last instruction of the block, and discover the ways we can leave the block. */ insn = bb->end; code = GET_CODE (insn); /* A branch. */ if (code == JUMP_INSN) { rtx tmp; /* Recognize exception handling placeholders. */ if (GET_CODE (PATTERN (insn)) == RESX) make_eh_edge (edge_cache, bb, insn); /* Recognize a non-local goto as a branch outside the current function. */ else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX)) ; /* ??? Recognize a tablejump and do the right thing. */ else if ((tmp = JUMP_LABEL (insn)) != NULL_RTX && (tmp = NEXT_INSN (tmp)) != NULL_RTX && GET_CODE (tmp) == JUMP_INSN && (GET_CODE (PATTERN (tmp)) == ADDR_VEC || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC)) { rtvec vec; int j; if (GET_CODE (PATTERN (tmp)) == ADDR_VEC) vec = XVEC (PATTERN (tmp), 0); else vec = XVEC (PATTERN (tmp), 1); for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j) make_label_edge (edge_cache, bb, XEXP (RTVEC_ELT (vec, j), 0), 0); /* Some targets (eg, ARM) emit a conditional jump that also contains the out-of-range target. Scan for these and add an edge if necessary. */ if ((tmp = single_set (insn)) != NULL && SET_DEST (tmp) == pc_rtx && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF) make_label_edge (edge_cache, bb, XEXP (XEXP (SET_SRC (tmp), 2), 0), 0); #ifdef CASE_DROPS_THROUGH /* Silly VAXen. The ADDR_VEC is going to be in the way of us naturally detecting fallthru into the next block. */ force_fallthru = 1; #endif } /* If this is a computed jump, then mark it as reaching everything on the label_value_list and forced_labels list. */ else if (computed_jump_p (insn)) { current_function_has_computed_jump = 1; for (x = label_value_list; x; x = XEXP (x, 1)) make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL); for (x = forced_labels; x; x = XEXP (x, 1)) make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL); } /* Returns create an exit out. */ else if (returnjump_p (insn)) cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0); /* Otherwise, we have a plain conditional or unconditional jump. */ else { if (! JUMP_LABEL (insn)) abort (); make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0); } } /* If this is a sibling call insn, then this is in effect a combined call and return, and so we need an edge to the exit block. No need to worry about EH edges, since we wouldn't have created the sibling call in the first place. */ if (code == CALL_INSN && SIBLING_CALL_P (insn)) cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_ABNORMAL | EDGE_ABNORMAL_CALL); /* If this is a CALL_INSN, then mark it as reaching the active EH handler for this CALL_INSN. If we're handling non-call exceptions then any insn can reach any of the active handlers. Also mark the CALL_INSN as reaching any nonlocal goto handler. */ else if (code == CALL_INSN || flag_non_call_exceptions) { /* Add any appropriate EH edges. */ make_eh_edge (edge_cache, bb, insn); if (code == CALL_INSN && nonlocal_goto_handler_labels) { /* ??? This could be made smarter: in some cases it's possible to tell that certain calls will not do a nonlocal goto. For example, if the nested functions that do the nonlocal gotos do not have their addresses taken, then only calls to those functions or to other nested functions that use them could possibly do nonlocal gotos. */ /* We do know that a REG_EH_REGION note with a value less than 0 is guaranteed not to perform a non-local goto. */ rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX); if (!note || INTVAL (XEXP (note, 0)) >= 0) for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1)) make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL | EDGE_ABNORMAL_CALL); } } /* Find out if we can drop through to the next block. */ insn = next_nonnote_insn (insn); if (!insn || (i + 1 == n_basic_blocks && force_fallthru)) cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU); else if (i + 1 < n_basic_blocks) { rtx tmp = BLOCK_HEAD (i + 1); if (GET_CODE (tmp) == NOTE) tmp = next_nonnote_insn (tmp); if (force_fallthru || insn == tmp) cached_make_edge (edge_cache, bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU); } } if (edge_cache) sbitmap_vector_free (edge_cache); } /* Find all basic blocks of the function whose first insn is F. Collect and return a list of labels whose addresses are taken. This will be used in make_edges for use with computed gotos. */ static void find_basic_blocks_1 (f) rtx f; { rtx insn, next; int i = 0; rtx bb_note = NULL_RTX; rtx lvl = NULL_RTX; rtx trll = NULL_RTX; rtx head = NULL_RTX; rtx end = NULL_RTX; /* We process the instructions in a slightly different way than we did previously. This is so that we see a NOTE_BASIC_BLOCK after we have closed out the previous block, so that it gets attached at the proper place. Since this form should be equivalent to the previous, count_basic_blocks continues to use the old form as a check. */ for (insn = f; insn; insn = next) { enum rtx_code code = GET_CODE (insn); next = NEXT_INSN (insn); if ((GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == BARRIER) && head) { create_basic_block_structure (i++, head, end, bb_note); head = end = NULL_RTX; bb_note = NULL_RTX; } if (inside_basic_block_p (insn)) { if (head == NULL_RTX) head = insn; end = insn; } if (head && control_flow_insn_p (insn)) { create_basic_block_structure (i++, head, end, bb_note); head = end = NULL_RTX; bb_note = NULL_RTX; } switch (code) { case NOTE: { int kind = NOTE_LINE_NUMBER (insn); /* Look for basic block notes with which to keep the basic_block_info pointers stable. Unthread the note now; we'll put it back at the right place in create_basic_block. Or not at all if we've already found a note in this block. */ if (kind == NOTE_INSN_BASIC_BLOCK) { if (bb_note == NULL_RTX) bb_note = insn; else next = delete_insn (insn); } break; } case CODE_LABEL: case JUMP_INSN: case INSN: case BARRIER: break; case CALL_INSN: if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) { /* Scan each of the alternatives for label refs. */ lvl = find_label_refs (XEXP (PATTERN (insn), 0), lvl); lvl = find_label_refs (XEXP (PATTERN (insn), 1), lvl); lvl = find_label_refs (XEXP (PATTERN (insn), 2), lvl); /* Record its tail recursion label, if any. */ if (XEXP (PATTERN (insn), 3) != NULL_RTX) trll = alloc_EXPR_LIST (0, XEXP (PATTERN (insn), 3), trll); } break; default: abort (); } if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN) { rtx note; /* Make a list of all labels referred to other than by jumps. Make a special exception for labels followed by an ADDR*VEC, as this would be a part of the tablejump setup code. Make a special exception to registers loaded with label values just before jump insns that use them. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_LABEL) { rtx lab = XEXP (note, 0), next; if ((next = next_nonnote_insn (lab)) != NULL && GET_CODE (next) == JUMP_INSN && (GET_CODE (PATTERN (next)) == ADDR_VEC || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)) ; else if (GET_CODE (lab) == NOTE) ; else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab)) ; else lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl); } } } if (head != NULL_RTX) create_basic_block_structure (i++, head, end, bb_note); else if (bb_note) delete_insn (bb_note); if (i != n_basic_blocks) abort (); label_value_list = lvl; tail_recursion_label_list = trll; } /* Find basic blocks of the current function. F is the first insn of the function and NREGS the number of register numbers in use. */ void find_basic_blocks (f, nregs, file) rtx f; int nregs ATTRIBUTE_UNUSED; FILE *file ATTRIBUTE_UNUSED; { int max_uid; timevar_push (TV_CFG); basic_block_for_insn = 0; /* Flush out existing data. */ if (basic_block_info != NULL) { int i; clear_edges (); /* Clear bb->aux on all extant basic blocks. We'll use this as a tag for reuse during create_basic_block, just in case some pass copies around basic block notes improperly. */ for (i = 0; i < n_basic_blocks; ++i) BASIC_BLOCK (i)->aux = NULL; VARRAY_FREE (basic_block_info); } n_basic_blocks = count_basic_blocks (f); /* Size the basic block table. The actual structures will be allocated by find_basic_blocks_1, since we want to keep the structure pointers stable across calls to find_basic_blocks. */ /* ??? This whole issue would be much simpler if we called find_basic_blocks exactly once, and thereafter we don't have a single long chain of instructions at all until close to the end of compilation when we actually lay them out. */ VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info"); find_basic_blocks_1 (f); /* Record the block to which an insn belongs. */ /* ??? This should be done another way, by which (perhaps) a label is tagged directly with the basic block that it starts. It is used for more than that currently, but IMO that is the only valid use. */ max_uid = get_max_uid (); #ifdef AUTO_INC_DEC /* Leave space for insns life_analysis makes in some cases for auto-inc. These cases are rare, so we don't need too much space. */ max_uid += max_uid / 10; #endif compute_bb_for_insn (max_uid); /* Discover the edges of our cfg. */ make_edges (label_value_list, 0, n_basic_blocks - 1, 0); /* Do very simple cleanup now, for the benefit of code that runs between here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */ tidy_fallthru_edges (); #ifdef ENABLE_CHECKING verify_flow_info (); #endif timevar_pop (TV_CFG); } /* State of basic block as seen by find_sub_basic_blocks. */ enum state { BLOCK_NEW = 0, BLOCK_ORIGINAL, BLOCK_TO_SPLIT }; #define STATE(bb) (enum state)(size_t)(bb)->aux #define SET_STATE(bb, state) (bb)->aux = (void *) (size_t) (state) /* Scan basic block BB for possible BB boundaries inside the block and create new basic blocks in the progress. */ static void find_bb_boundaries (bb) basic_block bb; { rtx insn = bb->head; rtx end = bb->end; rtx flow_transfer_insn = NULL_RTX; edge fallthru = NULL; if (insn == bb->end) return; if (GET_CODE (insn) == CODE_LABEL) insn = NEXT_INSN (insn); /* Scan insn chain and try to find new basic block boundaries. */ while (1) { enum rtx_code code = GET_CODE (insn); /* On code label, split current basic block. */ if (code == CODE_LABEL) { fallthru = split_block (bb, PREV_INSN (insn)); if (flow_transfer_insn) bb->end = flow_transfer_insn; bb = fallthru->dest; remove_edge (fallthru); flow_transfer_insn = NULL_RTX; if (LABEL_ALTERNATE_NAME (insn)) make_edge (ENTRY_BLOCK_PTR, bb, 0); } /* In case we've previously seen an insn that effects a control flow transfer, split the block. */ if (flow_transfer_insn && inside_basic_block_p (insn)) { fallthru = split_block (bb, PREV_INSN (insn)); bb->end = flow_transfer_insn; bb = fallthru->dest; remove_edge (fallthru); flow_transfer_insn = NULL_RTX; } if (control_flow_insn_p (insn)) flow_transfer_insn = insn; if (insn == end) break; insn = NEXT_INSN (insn); } /* In case expander replaced normal insn by sequence terminating by return and barrier, or possibly other sequence not behaving like ordinary jump, we need to take care and move basic block boundary. */ if (flow_transfer_insn) bb->end = flow_transfer_insn; /* We've possibly replaced the conditional jump by conditional jump followed by cleanup at fallthru edge, so the outgoing edges may be dead. */ purge_dead_edges (bb); } /* Assume that frequency of basic block B is known. Compute frequencies and probabilities of outgoing edges. */ static void compute_outgoing_frequencies (b) basic_block b; { edge e, f; if (b->succ && b->succ->succ_next && !b->succ->succ_next->succ_next) { rtx note = find_reg_note (b->end, REG_BR_PROB, NULL); int probability; if (!note) return; probability = INTVAL (XEXP (find_reg_note (b->end, REG_BR_PROB, NULL), 0)); e = BRANCH_EDGE (b); e->probability = probability; e->count = ((b->count * probability + REG_BR_PROB_BASE / 2) / REG_BR_PROB_BASE); f = FALLTHRU_EDGE (b); f->probability = REG_BR_PROB_BASE - probability; f->count = b->count - e->count; } if (b->succ && !b->succ->succ_next) { e = b->succ; e->probability = REG_BR_PROB_BASE; e->count = b->count; } } /* Assume that someone emitted code with control flow instructions to the basic block. Update the data structure. */ void find_many_sub_basic_blocks (blocks) sbitmap blocks; { int i; int min, max; for (i = 0; i < n_basic_blocks; i++) SET_STATE (BASIC_BLOCK (i), TEST_BIT (blocks, i) ? BLOCK_TO_SPLIT : BLOCK_ORIGINAL); for (i = 0; i < n_basic_blocks; i++) { basic_block bb = BASIC_BLOCK (i); if (STATE (bb) == BLOCK_TO_SPLIT) find_bb_boundaries (bb); } for (i = 0; i < n_basic_blocks; i++) if (STATE (BASIC_BLOCK (i)) != BLOCK_ORIGINAL) break; min = max = i; for (; i < n_basic_blocks; i++) if (STATE (BASIC_BLOCK (i)) != BLOCK_ORIGINAL) max = i; /* Now re-scan and wire in all edges. This expect simple (conditional) jumps at the end of each new basic blocks. */ make_edges (NULL, min, max, 1); /* Update branch probabilities. Expect only (un)conditional jumps to be created with only the forward edges. */ for (i = min; i <= max; i++) { edge e; basic_block b = BASIC_BLOCK (i); if (STATE (b) == BLOCK_ORIGINAL) continue; if (STATE (b) == BLOCK_NEW) { b->count = 0; b->frequency = 0; for (e = b->pred; e; e=e->pred_next) { b->count += e->count; b->frequency += EDGE_FREQUENCY (e); } } compute_outgoing_frequencies (b); } for (i = 0; i < n_basic_blocks; i++) SET_STATE (BASIC_BLOCK (i), 0); } /* Like above but for single basic block only. */ void find_sub_basic_blocks (bb) basic_block bb; { int i; int min, max; basic_block next = (bb->index == n_basic_blocks - 1 ? NULL : BASIC_BLOCK (bb->index + 1)); min = bb->index; find_bb_boundaries (bb); max = (next ? next->index : n_basic_blocks) - 1; /* Now re-scan and wire in all edges. This expect simple (conditional) jumps at the end of each new basic blocks. */ make_edges (NULL, min, max, 1); /* Update branch probabilities. Expect only (un)conditional jumps to be created with only the forward edges. */ for (i = min; i <= max; i++) { edge e; basic_block b = BASIC_BLOCK (i); if (i != min) { b->count = 0; b->frequency = 0; for (e = b->pred; e; e=e->pred_next) { b->count += e->count; b->frequency += EDGE_FREQUENCY (e); } } compute_outgoing_frequencies (b); } }