/* Control flow graph manipulation code for GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file contains low level functions to manipulate with CFG and analyze it. All other modules should not transform the datastructure directly and use abstraction instead. The file is supposed to be ordered bottom-up and should not contain any code dependent on particular intermediate language (RTL or trees) Available functionality: - Initialization/deallocation init_flow, clear_edges - Low level basic block manipulation alloc_block, expunge_block - Edge manipulation make_edge, make_single_succ_edge, cached_make_edge, remove_edge - Low level edge redirection (without updating instruction chain) redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred - Dumpipng and debugging dump_flow_info, debug_flow_info, dump_edge_info - Allocation of AUX fields for basic blocks alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block */ #include "config.h" #include "system.h" #include "tree.h" #include "rtl.h" #include "hard-reg-set.h" #include "basic-block.h" #include "regs.h" #include "flags.h" #include "output.h" #include "function.h" #include "except.h" #include "toplev.h" #include "tm_p.h" #include "obstack.h" /* The obstack on which the flow graph components are allocated. */ struct obstack flow_obstack; static char *flow_firstobj; /* Number of basic blocks in the current function. */ int n_basic_blocks; /* Number of edges in the current function. */ int n_edges; /* First edge in the deleted edges chain. */ edge first_deleted_edge; static basic_block first_deleted_block; /* The basic block array. */ varray_type basic_block_info; /* The special entry and exit blocks. */ struct basic_block_def entry_exit_blocks[2] = {{NULL, /* head */ NULL, /* end */ NULL, /* head_tree */ NULL, /* end_tree */ NULL, /* pred */ NULL, /* succ */ NULL, /* local_set */ NULL, /* cond_local_set */ NULL, /* global_live_at_start */ NULL, /* global_live_at_end */ NULL, /* aux */ ENTRY_BLOCK, /* index */ 0, /* loop_depth */ 0, /* count */ 0, /* frequency */ 0 /* flags */ }, { NULL, /* head */ NULL, /* end */ NULL, /* head_tree */ NULL, /* end_tree */ NULL, /* pred */ NULL, /* succ */ NULL, /* local_set */ NULL, /* cond_local_set */ NULL, /* global_live_at_start */ NULL, /* global_live_at_end */ NULL, /* aux */ EXIT_BLOCK, /* index */ 0, /* loop_depth */ 0, /* count */ 0, /* frequency */ 0 /* flags */ } }; void debug_flow_info PARAMS ((void)); static void free_edge PARAMS ((edge)); /* Called once at intialization time. */ void init_flow () { static int initialized; first_deleted_edge = 0; first_deleted_block = 0; n_edges = 0; if (!initialized) { gcc_obstack_init (&flow_obstack); flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0); initialized = 1; } else { obstack_free (&flow_obstack, flow_firstobj); flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0); } } /* Helper function for remove_edge and clear_edges. Frees edge structure without actually unlinking it from the pred/succ lists. */ static void free_edge (e) edge e; { n_edges--; memset (e, 0, sizeof (*e)); e->succ_next = first_deleted_edge; first_deleted_edge = e; } /* Free the memory associated with the edge structures. */ void clear_edges () { int i; edge e; for (i = 0; i < n_basic_blocks; ++i) { basic_block bb = BASIC_BLOCK (i); edge e = bb->succ; while (e) { edge next = e->succ_next; free_edge (e); e = next; } bb->succ = NULL; bb->pred = NULL; } e = ENTRY_BLOCK_PTR->succ; while (e) { edge next = e->succ_next; free_edge (e); e = next; } EXIT_BLOCK_PTR->pred = NULL; ENTRY_BLOCK_PTR->succ = NULL; if (n_edges) abort (); } /* Allocate memory for basic_block. */ basic_block alloc_block () { basic_block bb; if (first_deleted_block) { bb = first_deleted_block; first_deleted_block = (basic_block) bb->succ; bb->succ = NULL; } else { bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb)); memset (bb, 0, sizeof (*bb)); } return bb; } /* Remove block B from the basic block array and compact behind it. */ void expunge_block (b) basic_block b; { int i, n = n_basic_blocks; for (i = b->index; i + 1 < n; ++i) { basic_block x = BASIC_BLOCK (i + 1); BASIC_BLOCK (i) = x; x->index = i; } /* Invalidate data to make bughunting easier. */ memset (b, 0, sizeof (*b)); b->index = -3; basic_block_info->num_elements--; n_basic_blocks--; b->succ = (edge) first_deleted_block; first_deleted_block = (basic_block) b; } /* Create an edge connecting SRC and DST with FLAGS optionally using edge cache CACHE. Return the new edge, NULL if already exist. */ edge cached_make_edge (edge_cache, src, dst, flags) sbitmap *edge_cache; basic_block src, dst; int flags; { int use_edge_cache; edge e; /* Don't bother with edge cache for ENTRY or EXIT; there aren't that many edges to them, and we didn't allocate memory for it. */ use_edge_cache = (edge_cache && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR); /* Make sure we don't add duplicate edges. */ switch (use_edge_cache) { default: /* Quick test for non-existence of the edge. */ if (! TEST_BIT (edge_cache[src->index], dst->index)) break; /* The edge exists; early exit if no work to do. */ if (flags == 0) return NULL; /* FALLTHRU */ case 0: for (e = src->succ; e; e = e->succ_next) if (e->dest == dst) { e->flags |= flags; return NULL; } break; } if (first_deleted_edge) { e = first_deleted_edge; first_deleted_edge = e->succ_next; } else { e = (edge) obstack_alloc (&flow_obstack, sizeof (*e)); memset (e, 0, sizeof (*e)); } n_edges++; e->succ_next = src->succ; e->pred_next = dst->pred; e->src = src; e->dest = dst; e->flags = flags; src->succ = e; dst->pred = e; if (use_edge_cache) SET_BIT (edge_cache[src->index], dst->index); return e; } /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly created edge or NULL if already exist. */ edge make_edge (src, dest, flags) basic_block src, dest; int flags; { return cached_make_edge (NULL, src, dest, flags); } /* Create an edge connecting SRC to DEST and set probability by knowling that it is the single edge leaving SRC. */ edge make_single_succ_edge (src, dest, flags) basic_block src, dest; int flags; { edge e = make_edge (src, dest, flags); e->probability = REG_BR_PROB_BASE; e->count = src->count; return e; } /* This function will remove an edge from the flow graph. */ void remove_edge (e) edge e; { edge last_pred = NULL; edge last_succ = NULL; edge tmp; basic_block src, dest; src = e->src; dest = e->dest; for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next) last_succ = tmp; if (!tmp) abort (); if (last_succ) last_succ->succ_next = e->succ_next; else src->succ = e->succ_next; for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next) last_pred = tmp; if (!tmp) abort (); if (last_pred) last_pred->pred_next = e->pred_next; else dest->pred = e->pred_next; free_edge (e); } /* Redirect an edge's successor from one block to another. */ void redirect_edge_succ (e, new_succ) edge e; basic_block new_succ; { edge *pe; /* Disconnect the edge from the old successor block. */ for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next) continue; *pe = (*pe)->pred_next; /* Reconnect the edge to the new successor block. */ e->pred_next = new_succ->pred; new_succ->pred = e; e->dest = new_succ; } /* Like previous but avoid possible dupplicate edge. */ edge redirect_edge_succ_nodup (e, new_succ) edge e; basic_block new_succ; { edge s; /* Check whether the edge is already present. */ for (s = e->src->succ; s; s = s->succ_next) if (s->dest == new_succ && s != e) break; if (s) { s->flags |= e->flags; s->probability += e->probability; s->count += e->count; remove_edge (e); e = s; } else redirect_edge_succ (e, new_succ); return e; } /* Redirect an edge's predecessor from one block to another. */ void redirect_edge_pred (e, new_pred) edge e; basic_block new_pred; { edge *pe; /* Disconnect the edge from the old predecessor block. */ for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next) continue; *pe = (*pe)->succ_next; /* Reconnect the edge to the new predecessor block. */ e->succ_next = new_pred->succ; new_pred->succ = e; e->src = new_pred; } void dump_flow_info (file) FILE *file; { int i; static const char * const reg_class_names[] = REG_CLASS_NAMES; fprintf (file, "%d registers.\n", max_regno); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (REG_N_REFS (i)) { enum reg_class class, altclass; fprintf (file, "\nRegister %d used %d times across %d insns", i, REG_N_REFS (i), REG_LIVE_LENGTH (i)); if (REG_BASIC_BLOCK (i) >= 0) fprintf (file, " in block %d", REG_BASIC_BLOCK (i)); if (REG_N_SETS (i)) fprintf (file, "; set %d time%s", REG_N_SETS (i), (REG_N_SETS (i) == 1) ? "" : "s"); if (REG_USERVAR_P (regno_reg_rtx[i])) fprintf (file, "; user var"); if (REG_N_DEATHS (i) != 1) fprintf (file, "; dies in %d places", REG_N_DEATHS (i)); if (REG_N_CALLS_CROSSED (i) == 1) fprintf (file, "; crosses 1 call"); else if (REG_N_CALLS_CROSSED (i)) fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i)); if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD) fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i)); class = reg_preferred_class (i); altclass = reg_alternate_class (i); if (class != GENERAL_REGS || altclass != ALL_REGS) { if (altclass == ALL_REGS || class == ALL_REGS) fprintf (file, "; pref %s", reg_class_names[(int) class]); else if (altclass == NO_REGS) fprintf (file, "; %s or none", reg_class_names[(int) class]); else fprintf (file, "; pref %s, else %s", reg_class_names[(int) class], reg_class_names[(int) altclass]); } if (REG_POINTER (regno_reg_rtx[i])) fprintf (file, "; pointer"); fprintf (file, ".\n"); } fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges); for (i = 0; i < n_basic_blocks; i++) { basic_block bb = BASIC_BLOCK (i); edge e; fprintf (file, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count ", i, INSN_UID (bb->head), INSN_UID (bb->end), bb->loop_depth); fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count); fprintf (file, ", freq %i.\n", bb->frequency); fprintf (file, "Predecessors: "); for (e = bb->pred; e; e = e->pred_next) dump_edge_info (file, e, 0); fprintf (file, "\nSuccessors: "); for (e = bb->succ; e; e = e->succ_next) dump_edge_info (file, e, 1); fprintf (file, "\nRegisters live at start:"); dump_regset (bb->global_live_at_start, file); fprintf (file, "\nRegisters live at end:"); dump_regset (bb->global_live_at_end, file); putc ('\n', file); } putc ('\n', file); } void debug_flow_info () { dump_flow_info (stderr); } void dump_edge_info (file, e, do_succ) FILE *file; edge e; int do_succ; { basic_block side = (do_succ ? e->dest : e->src); if (side == ENTRY_BLOCK_PTR) fputs (" ENTRY", file); else if (side == EXIT_BLOCK_PTR) fputs (" EXIT", file); else fprintf (file, " %d", side->index); if (e->probability) fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE); if (e->count) { fprintf (file, " count:"); fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) e->count); } if (e->flags) { static const char * const bitnames[] = { "fallthru", "ab", "abcall", "eh", "fake", "dfs_back" }; int comma = 0; int i, flags = e->flags; fputc (' ', file); fputc ('(', file); for (i = 0; flags; i++) if (flags & (1 << i)) { flags &= ~(1 << i); if (comma) fputc (',', file); if (i < (int) ARRAY_SIZE (bitnames)) fputs (bitnames[i], file); else fprintf (file, "%d", i); comma = 1; } fputc (')', file); } } /* Simple routines to easily allocate AUX fields of basic blocks. */ static struct obstack block_aux_obstack; static void *first_block_aux_obj = 0; static struct obstack edge_aux_obstack; static void *first_edge_aux_obj = 0; /* Allocate an memory block of SIZE as BB->aux. The obstack must be first initialized by alloc_aux_for_blocks. */ inline void alloc_aux_for_block (bb, size) basic_block bb; int size; { /* Verify that aux field is clear. */ if (bb->aux || !first_block_aux_obj) abort (); bb->aux = obstack_alloc (&block_aux_obstack, size); memset (bb->aux, 0, size); } /* Initialize the block_aux_obstack and if SIZE is nonzero, call alloc_aux_for_block for each basic block. */ void alloc_aux_for_blocks (size) int size; { static int initialized; if (!initialized) { gcc_obstack_init (&block_aux_obstack); initialized = 1; } /* Check whether AUX data are still allocated. */ else if (first_block_aux_obj) abort (); first_block_aux_obj = (char *) obstack_alloc (&block_aux_obstack, 0); if (size) { int i; for (i = 0; i < n_basic_blocks; i++) alloc_aux_for_block (BASIC_BLOCK (i), size); alloc_aux_for_block (ENTRY_BLOCK_PTR, size); alloc_aux_for_block (EXIT_BLOCK_PTR, size); } } /* Clear AUX pointers of all blocks. */ void clear_aux_for_blocks () { int i; for (i = 0; i < n_basic_blocks; i++) BASIC_BLOCK (i)->aux = NULL; ENTRY_BLOCK_PTR->aux = NULL; EXIT_BLOCK_PTR->aux = NULL; } /* Free data allocated in block_aux_obstack and clear AUX pointers of all blocks. */ void free_aux_for_blocks () { if (!first_block_aux_obj) abort (); obstack_free (&block_aux_obstack, first_block_aux_obj); first_block_aux_obj = NULL; clear_aux_for_blocks (); } /* Allocate an memory edge of SIZE as BB->aux. The obstack must be first initialized by alloc_aux_for_edges. */ inline void alloc_aux_for_edge (e, size) edge e; int size; { /* Verify that aux field is clear. */ if (e->aux || !first_edge_aux_obj) abort (); e->aux = obstack_alloc (&edge_aux_obstack, size); memset (e->aux, 0, size); } /* Initialize the edge_aux_obstack and if SIZE is nonzero, call alloc_aux_for_edge for each basic edge. */ void alloc_aux_for_edges (size) int size; { static int initialized; if (!initialized) { gcc_obstack_init (&edge_aux_obstack); initialized = 1; } /* Check whether AUX data are still allocated. */ else if (first_edge_aux_obj) abort (); first_edge_aux_obj = (char *) obstack_alloc (&edge_aux_obstack, 0); if (size) { int i; for (i = -1; i < n_basic_blocks; i++) { basic_block bb; edge e; if (i >= 0) bb = BASIC_BLOCK (i); else bb = ENTRY_BLOCK_PTR; for (e = bb->succ; e; e = e->succ_next) alloc_aux_for_edge (e, size); } } } /* Clear AUX pointers of all edges. */ void clear_aux_for_edges () { int i; for (i = -1; i < n_basic_blocks; i++) { basic_block bb; edge e; if (i >= 0) bb = BASIC_BLOCK (i); else bb = ENTRY_BLOCK_PTR; for (e = bb->succ; e; e = e->succ_next) e->aux = NULL; } } /* Free data allocated in edge_aux_obstack and clear AUX pointers of all edges. */ void free_aux_for_edges () { if (!first_edge_aux_obj) abort (); obstack_free (&edge_aux_obstack, first_edge_aux_obj); first_edge_aux_obj = NULL; clear_aux_for_edges (); }