/* Parser for C and Objective-C.
Copyright (C) 1987-2024 Free Software Foundation, Inc.
Parser actions based on the old Bison parser; structure somewhat
influenced by and fragments based on the C++ parser.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* TODO:
Make sure all relevant comments, and all relevant code from all
actions, brought over from old parser. Verify exact correspondence
of syntax accepted.
Add testcases covering every input symbol in every state in old and
new parsers.
Include full syntax for GNU C, including erroneous cases accepted
with error messages, in syntax productions in comments.
Make more diagnostics in the front end generally take an explicit
location rather than implicitly using input_location. */
#include "config.h"
#define INCLUDE_STRING
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "c-tree.h"
#include "timevar.h"
#include "stringpool.h"
#include "cgraph.h"
#include "attribs.h"
#include "stor-layout.h"
#include "varasm.h"
#include "trans-mem.h"
#include "c-family/c-pragma.h"
#include "c-lang.h"
#include "c-family/c-objc.h"
#include "plugin.h"
#include "omp-general.h"
#include "omp-offload.h"
#include "builtins.h"
#include "gomp-constants.h"
#include "c-family/c-indentation.h"
#include "gimple-expr.h"
#include "context.h"
#include "gcc-rich-location.h"
#include "c-parser.h"
#include "gimple-parser.h"
#include "read-rtl-function.h"
#include "run-rtl-passes.h"
#include "intl.h"
#include "c-family/name-hint.h"
#include "tree-iterator.h"
#include "tree-pretty-print.h"
#include "memmodel.h"
#include "c-family/known-headers.h"
#include "bitmap.h"
#include "analyzer/analyzer-language.h"
#include "toplev.h"
#include "asan.h"
#include "c-family/c-ubsan.h"
/* We need to walk over decls with incomplete struct/union/enum types
after parsing the whole translation unit.
In finish_decl(), if the decl is static, has incomplete
struct/union/enum type, it is appended to incomplete_record_decls.
In c_parser_translation_unit(), we iterate over incomplete_record_decls
and report error if any of the decls are still incomplete. */
vec incomplete_record_decls;
void
set_c_expr_source_range (c_expr *expr,
location_t start, location_t finish)
{
expr->src_range.m_start = start;
expr->src_range.m_finish = finish;
if (expr->value)
set_source_range (expr->value, start, finish);
}
void
set_c_expr_source_range (c_expr *expr,
source_range src_range)
{
expr->src_range = src_range;
if (expr->value)
set_source_range (expr->value, src_range);
}
/* Initialization routine for this file. */
void
c_parse_init (void)
{
/* The only initialization required is of the reserved word
identifiers. */
unsigned int i;
tree id;
int mask = 0;
/* Make sure RID_MAX hasn't grown past the 8 bits used to hold the keyword in
the c_token structure. */
gcc_assert (RID_MAX <= 255);
mask |= D_CXXONLY;
if (!flag_isoc99)
mask |= D_C99;
if (!flag_isoc23)
mask |= D_C23;
if (flag_no_asm)
{
mask |= D_ASM | D_EXT;
if (!flag_isoc99)
mask |= D_EXT89;
if (!flag_isoc23)
mask |= D_EXT11;
}
if (!c_dialect_objc ())
mask |= D_OBJC | D_CXX_OBJC;
ridpointers = ggc_cleared_vec_alloc ((int) RID_MAX);
for (i = 0; i < num_c_common_reswords; i++)
{
/* If a keyword is disabled, do not enter it into the table
and so create a canonical spelling that isn't a keyword. */
if (c_common_reswords[i].disable & mask)
{
if (warn_cxx_compat
&& (c_common_reswords[i].disable & D_CXXWARN))
{
id = get_identifier (c_common_reswords[i].word);
C_SET_RID_CODE (id, RID_CXX_COMPAT_WARN);
C_IS_RESERVED_WORD (id) = 1;
}
continue;
}
id = get_identifier (c_common_reswords[i].word);
C_SET_RID_CODE (id, c_common_reswords[i].rid);
C_IS_RESERVED_WORD (id) = 1;
ridpointers [(int) c_common_reswords[i].rid] = id;
}
for (i = 0; i < NUM_INT_N_ENTS; i++)
{
/* We always create the symbols but they aren't always supported. */
char name[50];
sprintf (name, "__int%d", int_n_data[i].bitsize);
id = get_identifier (name);
C_SET_RID_CODE (id, RID_FIRST_INT_N + i);
C_IS_RESERVED_WORD (id) = 1;
sprintf (name, "__int%d__", int_n_data[i].bitsize);
id = get_identifier (name);
C_SET_RID_CODE (id, RID_FIRST_INT_N + i);
C_IS_RESERVED_WORD (id) = 1;
}
if (flag_openmp)
{
id = get_identifier ("omp_all_memory");
C_SET_RID_CODE (id, RID_OMP_ALL_MEMORY);
C_IS_RESERVED_WORD (id) = 1;
ridpointers [RID_OMP_ALL_MEMORY] = id;
}
}
/* A parser structure recording information about the state and
context of parsing. Includes lexer information with up to two
tokens of look-ahead; more are not needed for C. */
struct GTY(()) c_parser {
/* The look-ahead tokens. */
c_token * GTY((skip)) tokens;
/* Buffer for look-ahead tokens. */
c_token tokens_buf[4];
/* How many look-ahead tokens are available (0 - 4, or
more if parsing from pre-lexed tokens). */
unsigned int tokens_avail;
/* Raw look-ahead tokens, used only for checking in Objective-C
whether '[[' starts attributes. */
vec *raw_tokens;
/* The number of raw look-ahead tokens that have since been fully
lexed. */
unsigned int raw_tokens_used;
/* True if a syntax error is being recovered from; false otherwise.
c_parser_error sets this flag. It should clear this flag when
enough tokens have been consumed to recover from the error. */
BOOL_BITFIELD error : 1;
/* True if we're processing a pragma, and shouldn't automatically
consume CPP_PRAGMA_EOL. */
BOOL_BITFIELD in_pragma : 1;
/* True if we're parsing the outermost block of an if statement. */
BOOL_BITFIELD in_if_block : 1;
/* True if we want to lex a translated, joined string (for an
initial #pragma pch_preprocess). Otherwise the parser is
responsible for concatenating strings and translating to the
execution character set as needed. */
BOOL_BITFIELD lex_joined_string : 1;
/* True if, when the parser is concatenating string literals, it
should translate them to the execution character set (false
inside attributes). */
BOOL_BITFIELD translate_strings_p : 1;
/* Objective-C specific parser/lexer information. */
/* True if we are in a context where the Objective-C "PQ" keywords
are considered keywords. */
BOOL_BITFIELD objc_pq_context : 1;
/* True if we are parsing a (potential) Objective-C foreach
statement. This is set to true after we parsed 'for (' and while
we wait for 'in' or ';' to decide if it's a standard C for loop or an
Objective-C foreach loop. */
BOOL_BITFIELD objc_could_be_foreach_context : 1;
/* The following flag is needed to contextualize Objective-C lexical
analysis. In some cases (e.g., 'int NSObject;'), it is
undesirable to bind an identifier to an Objective-C class, even
if a class with that name exists. */
BOOL_BITFIELD objc_need_raw_identifier : 1;
/* Nonzero if we're processing a __transaction statement. The value
is 1 | TM_STMT_ATTR_*. */
unsigned int in_transaction : 4;
/* True if we are in a context where the Objective-C "Property attribute"
keywords are valid. */
BOOL_BITFIELD objc_property_attr_context : 1;
/* Whether we have just seen/constructed a string-literal. Set when
returning a string-literal from c_parser_string_literal. Reset
in consume_token. Useful when we get a parse error and see an
unknown token, which could have been a string-literal constant
macro. */
BOOL_BITFIELD seen_string_literal : 1;
/* TRUE if omp::directive, omp::decl or omp::sequence attributes may not
appear. */
BOOL_BITFIELD omp_attrs_forbidden_p : 1;
/* Location of the last consumed token. */
location_t last_token_location;
/* Holds state for parsing collapsed OMP_FOR loops. Managed by
c_parser_omp_for_loop. */
struct omp_for_parse_data * GTY((skip)) omp_for_parse_state;
/* If we're in the context of OpenMP directives written as C23
attributes turned into pragma, vector of tokens created from that,
otherwise NULL. */
vec *in_omp_attribute_pragma;
/* Set for omp::decl attribute parsing to the decl to which it
appertains. */
tree in_omp_decl_attribute;
};
/* Return a pointer to the Nth token in PARSERs tokens_buf. */
c_token *
c_parser_tokens_buf (c_parser *parser, unsigned n)
{
return &parser->tokens_buf[n];
}
/* Return the error state of PARSER. */
bool
c_parser_error (c_parser *parser)
{
return parser->error;
}
/* Set the error state of PARSER to ERR. */
void
c_parser_set_error (c_parser *parser, bool err)
{
parser->error = err;
}
/* The actual parser and external interface. ??? Does this need to be
garbage-collected? */
static GTY (()) c_parser *the_parser;
/* Read in and lex a single token, storing it in *TOKEN. If RAW,
context-sensitive postprocessing of the token is not done. */
static void
c_lex_one_token (c_parser *parser, c_token *token, bool raw = false)
{
timevar_push (TV_LEX);
if (raw || vec_safe_length (parser->raw_tokens) == 0)
{
token->type = c_lex_with_flags (&token->value, &token->location,
&token->flags,
(parser->lex_joined_string
? 0 : C_LEX_STRING_NO_JOIN));
token->id_kind = C_ID_NONE;
token->keyword = RID_MAX;
token->pragma_kind = PRAGMA_NONE;
}
else
{
/* Use a token previously lexed as a raw look-ahead token, and
complete the processing on it. */
*token = (*parser->raw_tokens)[parser->raw_tokens_used];
++parser->raw_tokens_used;
if (parser->raw_tokens_used == vec_safe_length (parser->raw_tokens))
{
vec_free (parser->raw_tokens);
parser->raw_tokens_used = 0;
}
}
if (raw)
goto out;
switch (token->type)
{
case CPP_NAME:
{
tree decl;
bool objc_force_identifier = parser->objc_need_raw_identifier;
if (c_dialect_objc ())
parser->objc_need_raw_identifier = false;
if (C_IS_RESERVED_WORD (token->value))
{
enum rid rid_code = C_RID_CODE (token->value);
if (rid_code == RID_CXX_COMPAT_WARN)
{
warning_at (token->location,
OPT_Wc___compat,
"identifier %qE conflicts with C++ keyword",
token->value);
}
else if (rid_code >= RID_FIRST_ADDR_SPACE
&& rid_code <= RID_LAST_ADDR_SPACE)
{
addr_space_t as;
as = (addr_space_t) (rid_code - RID_FIRST_ADDR_SPACE);
targetm.addr_space.diagnose_usage (as, token->location);
token->id_kind = C_ID_ADDRSPACE;
token->keyword = rid_code;
break;
}
else if (c_dialect_objc () && OBJC_IS_PQ_KEYWORD (rid_code))
{
/* We found an Objective-C "pq" keyword (in, out,
inout, bycopy, byref, oneway). They need special
care because the interpretation depends on the
context. */
if (parser->objc_pq_context)
{
token->type = CPP_KEYWORD;
token->keyword = rid_code;
break;
}
else if (parser->objc_could_be_foreach_context
&& rid_code == RID_IN)
{
/* We are in Objective-C, inside a (potential)
foreach context (which means after having
parsed 'for (', but before having parsed ';'),
and we found 'in'. We consider it the keyword
which terminates the declaration at the
beginning of a foreach-statement. Note that
this means you can't use 'in' for anything else
in that context; in particular, in Objective-C
you can't use 'in' as the name of the running
variable in a C for loop. We could potentially
try to add code here to disambiguate, but it
seems a reasonable limitation. */
token->type = CPP_KEYWORD;
token->keyword = rid_code;
break;
}
/* Else, "pq" keywords outside of the "pq" context are
not keywords, and we fall through to the code for
normal tokens. */
}
else if (c_dialect_objc () && OBJC_IS_PATTR_KEYWORD (rid_code))
{
/* We found an Objective-C "property attribute"
keyword (getter, setter, readonly, etc). These are
only valid in the property context. */
if (parser->objc_property_attr_context)
{
token->type = CPP_KEYWORD;
token->keyword = rid_code;
break;
}
/* Else they are not special keywords.
*/
}
else if (c_dialect_objc ()
&& (OBJC_IS_AT_KEYWORD (rid_code)
|| OBJC_IS_CXX_KEYWORD (rid_code)))
{
/* We found one of the Objective-C "@" keywords (defs,
selector, synchronized, etc) or one of the
Objective-C "cxx" keywords (class, private,
protected, public, try, catch, throw) without a
preceding '@' sign. Do nothing and fall through to
the code for normal tokens (in C++ we would still
consider the CXX ones keywords, but not in C). */
;
}
else
{
token->type = CPP_KEYWORD;
token->keyword = rid_code;
break;
}
}
decl = lookup_name (token->value);
if (decl)
{
if (TREE_CODE (decl) == TYPE_DECL)
{
token->id_kind = C_ID_TYPENAME;
break;
}
}
else if (c_dialect_objc ())
{
tree objc_interface_decl = objc_is_class_name (token->value);
/* Objective-C class names are in the same namespace as
variables and typedefs, and hence are shadowed by local
declarations. */
if (objc_interface_decl
&& (!objc_force_identifier || global_bindings_p ()))
{
token->value = objc_interface_decl;
token->id_kind = C_ID_CLASSNAME;
break;
}
}
token->id_kind = C_ID_ID;
}
break;
case CPP_AT_NAME:
/* This only happens in Objective-C; it must be a keyword. */
token->type = CPP_KEYWORD;
switch (C_RID_CODE (token->value))
{
/* Replace 'class' with '@class', 'private' with '@private',
etc. This prevents confusion with the C++ keyword
'class', and makes the tokens consistent with other
Objective-C 'AT' keywords. For example '@class' is
reported as RID_AT_CLASS which is consistent with
'@synchronized', which is reported as
RID_AT_SYNCHRONIZED.
*/
case RID_CLASS: token->keyword = RID_AT_CLASS; break;
case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break;
case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break;
case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break;
case RID_THROW: token->keyword = RID_AT_THROW; break;
case RID_TRY: token->keyword = RID_AT_TRY; break;
case RID_CATCH: token->keyword = RID_AT_CATCH; break;
case RID_SYNCHRONIZED: token->keyword = RID_AT_SYNCHRONIZED; break;
default: token->keyword = C_RID_CODE (token->value);
}
break;
case CPP_COLON:
case CPP_COMMA:
case CPP_CLOSE_PAREN:
case CPP_SEMICOLON:
/* These tokens may affect the interpretation of any identifiers
following, if doing Objective-C. */
if (c_dialect_objc ())
parser->objc_need_raw_identifier = false;
break;
case CPP_PRAGMA:
/* We smuggled the cpp_token->u.pragma value in an INTEGER_CST. */
token->pragma_kind = (enum pragma_kind) TREE_INT_CST_LOW (token->value);
token->value = NULL;
break;
default:
break;
}
out:
timevar_pop (TV_LEX);
}
/* Return a pointer to the next token from PARSER, reading it in if
necessary. */
c_token *
c_parser_peek_token (c_parser *parser)
{
if (parser->tokens_avail == 0)
{
c_lex_one_token (parser, &parser->tokens[0]);
parser->tokens_avail = 1;
}
return &parser->tokens[0];
}
/* Return a pointer to the next-but-one token from PARSER, reading it
in if necessary. The next token is already read in. */
c_token *
c_parser_peek_2nd_token (c_parser *parser)
{
if (parser->tokens_avail >= 2)
return &parser->tokens[1];
gcc_assert (parser->tokens_avail == 1);
gcc_assert (parser->tokens[0].type != CPP_EOF);
gcc_assert (parser->tokens[0].type != CPP_PRAGMA_EOL);
c_lex_one_token (parser, &parser->tokens[1]);
parser->tokens_avail = 2;
return &parser->tokens[1];
}
/* Return a pointer to the Nth token from PARSER, reading it
in if necessary. The N-1th token is already read in. */
c_token *
c_parser_peek_nth_token (c_parser *parser, unsigned int n)
{
/* N is 1-based, not zero-based. */
gcc_assert (n > 0);
if (parser->tokens_avail >= n)
return &parser->tokens[n - 1];
gcc_assert (parser->tokens_avail == n - 1);
c_lex_one_token (parser, &parser->tokens[n - 1]);
parser->tokens_avail = n;
return &parser->tokens[n - 1];
}
/* Return a pointer to the Nth token from PARSER, reading it in as a
raw look-ahead token if necessary. The N-1th token is already read
in. Raw look-ahead tokens remain available for when the non-raw
functions above are called. */
c_token *
c_parser_peek_nth_token_raw (c_parser *parser, unsigned int n)
{
/* N is 1-based, not zero-based. */
gcc_assert (n > 0);
if (parser->tokens_avail >= n)
return &parser->tokens[n - 1];
unsigned int raw_len = vec_safe_length (parser->raw_tokens);
unsigned int raw_avail
= parser->tokens_avail + raw_len - parser->raw_tokens_used;
gcc_assert (raw_avail >= n - 1);
if (raw_avail >= n)
return &(*parser->raw_tokens)[parser->raw_tokens_used
+ n - 1 - parser->tokens_avail];
vec_safe_reserve (parser->raw_tokens, 1);
parser->raw_tokens->quick_grow (raw_len + 1);
c_lex_one_token (parser, &(*parser->raw_tokens)[raw_len], true);
return &(*parser->raw_tokens)[raw_len];
}
bool
c_keyword_starts_typename (enum rid keyword)
{
switch (keyword)
{
case RID_UNSIGNED:
case RID_LONG:
case RID_SHORT:
case RID_SIGNED:
case RID_COMPLEX:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_DFLOAT64X:
CASE_RID_FLOATN_NX:
case RID_BOOL:
case RID_BITINT:
case RID_ENUM:
case RID_STRUCT:
case RID_UNION:
case RID_TYPEOF:
case RID_TYPEOF_UNQUAL:
case RID_CONST:
case RID_ATOMIC:
case RID_VOLATILE:
case RID_RESTRICT:
case RID_ATTRIBUTE:
case RID_FRACT:
case RID_ACCUM:
case RID_SAT:
case RID_AUTO_TYPE:
case RID_ALIGNAS:
return true;
default:
if (keyword >= RID_FIRST_INT_N
&& keyword < RID_FIRST_INT_N + NUM_INT_N_ENTS
&& int_n_enabled_p[keyword - RID_FIRST_INT_N])
return true;
return false;
}
}
/* Return true if TOKEN can start a type name,
false otherwise. */
bool
c_token_starts_typename (c_token *token)
{
switch (token->type)
{
case CPP_NAME:
switch (token->id_kind)
{
case C_ID_ID:
return false;
case C_ID_ADDRSPACE:
return true;
case C_ID_TYPENAME:
return true;
case C_ID_CLASSNAME:
gcc_assert (c_dialect_objc ());
return true;
default:
gcc_unreachable ();
}
case CPP_KEYWORD:
return c_keyword_starts_typename (token->keyword);
case CPP_LESS:
if (c_dialect_objc ())
return true;
return false;
default:
return false;
}
}
/* Return true if the next token from PARSER can start a type name,
false otherwise. LA specifies how to do lookahead in order to
detect unknown type names. If unsure, pick CLA_PREFER_ID. */
static inline bool
c_parser_next_tokens_start_typename (c_parser *parser, enum c_lookahead_kind la)
{
c_token *token = c_parser_peek_token (parser);
if (c_token_starts_typename (token))
return true;
/* Try a bit harder to detect an unknown typename. */
if (la != cla_prefer_id
&& token->type == CPP_NAME
&& token->id_kind == C_ID_ID
/* Do not try too hard when we could have "object in array". */
&& !parser->objc_could_be_foreach_context
&& (la == cla_prefer_type
|| c_parser_peek_2nd_token (parser)->type == CPP_NAME
|| c_parser_peek_2nd_token (parser)->type == CPP_MULT)
/* Only unknown identifiers. */
&& !lookup_name (token->value))
return true;
return false;
}
/* Return true if TOKEN, after an open parenthesis, can start a
compound literal (either a storage class specifier allowed in that
context, or a type name), false otherwise. */
static bool
c_token_starts_compound_literal (c_token *token)
{
switch (token->type)
{
case CPP_KEYWORD:
switch (token->keyword)
{
case RID_CONSTEXPR:
case RID_REGISTER:
case RID_STATIC:
case RID_THREAD:
return true;
default:
break;
}
/* Fall through. */
default:
return c_token_starts_typename (token);
}
}
/* Return true if TOKEN is a type qualifier, false otherwise. */
static bool
c_token_is_qualifier (c_token *token)
{
switch (token->type)
{
case CPP_NAME:
switch (token->id_kind)
{
case C_ID_ADDRSPACE:
return true;
default:
return false;
}
case CPP_KEYWORD:
switch (token->keyword)
{
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
case RID_ATTRIBUTE:
case RID_ATOMIC:
return true;
default:
return false;
}
case CPP_LESS:
return false;
default:
gcc_unreachable ();
}
}
/* Return true if the next token from PARSER is a type qualifier,
false otherwise. */
static inline bool
c_parser_next_token_is_qualifier (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
return c_token_is_qualifier (token);
}
/* Return true if TOKEN can start declaration specifiers (not
including standard attributes), false otherwise. */
static bool
c_token_starts_declspecs (c_token *token)
{
switch (token->type)
{
case CPP_NAME:
switch (token->id_kind)
{
case C_ID_ID:
return false;
case C_ID_ADDRSPACE:
return true;
case C_ID_TYPENAME:
return true;
case C_ID_CLASSNAME:
gcc_assert (c_dialect_objc ());
return true;
default:
gcc_unreachable ();
}
case CPP_KEYWORD:
switch (token->keyword)
{
case RID_STATIC:
case RID_EXTERN:
case RID_REGISTER:
case RID_TYPEDEF:
case RID_INLINE:
case RID_NORETURN:
case RID_AUTO:
case RID_THREAD:
case RID_UNSIGNED:
case RID_LONG:
case RID_SHORT:
case RID_SIGNED:
case RID_COMPLEX:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_DFLOAT64X:
CASE_RID_FLOATN_NX:
case RID_BOOL:
case RID_BITINT:
case RID_ENUM:
case RID_STRUCT:
case RID_UNION:
case RID_TYPEOF:
case RID_TYPEOF_UNQUAL:
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
case RID_ATTRIBUTE:
case RID_FRACT:
case RID_ACCUM:
case RID_SAT:
case RID_ALIGNAS:
case RID_ATOMIC:
case RID_AUTO_TYPE:
case RID_CONSTEXPR:
return true;
default:
if (token->keyword >= RID_FIRST_INT_N
&& token->keyword < RID_FIRST_INT_N + NUM_INT_N_ENTS
&& int_n_enabled_p[token->keyword - RID_FIRST_INT_N])
return true;
return false;
}
case CPP_LESS:
if (c_dialect_objc ())
return true;
return false;
default:
return false;
}
}
/* Return true if TOKEN can start declaration specifiers (not
including standard attributes) or a static assertion, false
otherwise. */
static bool
c_token_starts_declaration (c_token *token)
{
if (c_token_starts_declspecs (token)
|| token->keyword == RID_STATIC_ASSERT)
return true;
else
return false;
}
/* Return true if the next token from PARSER can start declaration
specifiers (not including standard attributes), false
otherwise. */
bool
c_parser_next_token_starts_declspecs (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
/* In Objective-C, a classname normally starts a declspecs unless it
is immediately followed by a dot. In that case, it is the
Objective-C 2.0 "dot-syntax" for class objects, ie, calls the
setter/getter on the class. c_token_starts_declspecs() can't
differentiate between the two cases because it only checks the
current token, so we have a special check here. */
if (c_dialect_objc ()
&& token->type == CPP_NAME
&& token->id_kind == C_ID_CLASSNAME
&& c_parser_peek_2nd_token (parser)->type == CPP_DOT)
return false;
return c_token_starts_declspecs (token);
}
/* Return true if the next tokens from PARSER can start declaration
specifiers (not including standard attributes) or a static
assertion, false otherwise. */
bool
c_parser_next_tokens_start_declaration (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
/* Same as above. */
if (c_dialect_objc ()
&& token->type == CPP_NAME
&& token->id_kind == C_ID_CLASSNAME
&& c_parser_peek_2nd_token (parser)->type == CPP_DOT)
return false;
/* Labels do not start declarations. */
if (token->type == CPP_NAME
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON)
return false;
if (c_token_starts_declaration (token))
return true;
if (c_parser_next_tokens_start_typename (parser, cla_nonabstract_decl))
return true;
return false;
}
/* Consume the next token from PARSER. */
void
c_parser_consume_token (c_parser *parser)
{
gcc_assert (parser->tokens_avail >= 1);
gcc_assert (parser->tokens[0].type != CPP_EOF);
gcc_assert (!parser->in_pragma || parser->tokens[0].type != CPP_PRAGMA_EOL);
gcc_assert (parser->error || parser->tokens[0].type != CPP_PRAGMA);
parser->last_token_location = parser->tokens[0].location;
if (parser->tokens != &parser->tokens_buf[0])
parser->tokens++;
else if (parser->tokens_avail >= 2)
{
parser->tokens[0] = parser->tokens[1];
if (parser->tokens_avail >= 3)
{
parser->tokens[1] = parser->tokens[2];
if (parser->tokens_avail >= 4)
parser->tokens[2] = parser->tokens[3];
}
}
parser->tokens_avail--;
parser->seen_string_literal = false;
}
/* Expect the current token to be a #pragma. Consume it and remember
that we've begun parsing a pragma. */
static void
c_parser_consume_pragma (c_parser *parser)
{
gcc_assert (!parser->in_pragma);
gcc_assert (parser->tokens_avail >= 1);
gcc_assert (parser->tokens[0].type == CPP_PRAGMA);
if (parser->tokens != &parser->tokens_buf[0])
parser->tokens++;
else if (parser->tokens_avail >= 2)
{
parser->tokens[0] = parser->tokens[1];
if (parser->tokens_avail >= 3)
parser->tokens[1] = parser->tokens[2];
}
parser->tokens_avail--;
parser->in_pragma = true;
}
/* Update the global input_location from TOKEN. */
static inline void
c_parser_set_source_position_from_token (c_token *token)
{
if (token->type != CPP_EOF)
{
input_location = token->location;
}
}
/* Helper function for c_parser_error.
Having peeked a token of kind TOK1_KIND that might signify
a conflict marker, peek successor tokens to determine
if we actually do have a conflict marker.
Specifically, we consider a run of 7 '<', '=' or '>' characters
at the start of a line as a conflict marker.
These come through the lexer as three pairs and a single,
e.g. three CPP_LSHIFT ("<<") and a CPP_LESS ('<').
If it returns true, *OUT_LOC is written to with the location/range
of the marker. */
static bool
c_parser_peek_conflict_marker (c_parser *parser, enum cpp_ttype tok1_kind,
location_t *out_loc)
{
c_token *token2 = c_parser_peek_2nd_token (parser);
if (token2->type != tok1_kind)
return false;
c_token *token3 = c_parser_peek_nth_token (parser, 3);
if (token3->type != tok1_kind)
return false;
c_token *token4 = c_parser_peek_nth_token (parser, 4);
if (token4->type != conflict_marker_get_final_tok_kind (tok1_kind))
return false;
/* It must be at the start of the line. */
location_t start_loc = c_parser_peek_token (parser)->location;
if (LOCATION_COLUMN (start_loc) != 1)
return false;
/* We have a conflict marker. Construct a location of the form:
<<<<<<<
^~~~~~~
with start == caret, finishing at the end of the marker. */
location_t finish_loc = get_finish (token4->location);
*out_loc = make_location (start_loc, start_loc, finish_loc);
return true;
}
/* Issue a diagnostic of the form
FILE:LINE: MESSAGE before TOKEN
where TOKEN is the next token in the input stream of PARSER.
MESSAGE (specified by the caller) is usually of the form "expected
OTHER-TOKEN".
Use RICHLOC as the location of the diagnostic.
Do not issue a diagnostic if still recovering from an error.
Return true iff an error was actually emitted.
??? This is taken from the C++ parser, but building up messages in
this way is not i18n-friendly and some other approach should be
used. */
static bool
c_parser_error_richloc (c_parser *parser, const char *gmsgid,
rich_location *richloc)
{
c_token *token = c_parser_peek_token (parser);
if (parser->error)
return false;
parser->error = true;
if (!gmsgid)
return false;
/* If this is actually a conflict marker, report it as such. */
if (token->type == CPP_LSHIFT
|| token->type == CPP_RSHIFT
|| token->type == CPP_EQ_EQ)
{
location_t loc;
if (c_parser_peek_conflict_marker (parser, token->type, &loc))
{
error_at (loc, "version control conflict marker in file");
return true;
}
}
/* If we were parsing a string-literal and there is an unknown name
token right after, then check to see if that could also have been
a literal string by checking the name against a list of known
standard string literal constants defined in header files. If
there is one, then add that as an hint to the error message. */
auto_diagnostic_group d;
name_hint h;
if (parser->seen_string_literal && token->type == CPP_NAME)
{
tree name = token->value;
const char *token_name = IDENTIFIER_POINTER (name);
const char *header_hint
= get_c_stdlib_header_for_string_macro_name (token_name);
if (header_hint != NULL)
h = name_hint (NULL, new suggest_missing_header (token->location,
token_name,
header_hint));
}
c_parse_error (gmsgid,
/* Because c_parse_error does not understand
CPP_KEYWORD, keywords are treated like
identifiers. */
(token->type == CPP_KEYWORD ? CPP_NAME : token->type),
/* ??? The C parser does not save the cpp flags of a
token, we need to pass 0 here and we will not get
the source spelling of some tokens but rather the
canonical spelling. */
token->value, /*flags=*/0, richloc);
return true;
}
/* As c_parser_error_richloc, but issue the message at the
location of PARSER's next token, or at input_location
if the next token is EOF. */
bool
c_parser_error (c_parser *parser, const char *gmsgid)
{
c_token *token = c_parser_peek_token (parser);
c_parser_set_source_position_from_token (token);
rich_location richloc (line_table, input_location);
return c_parser_error_richloc (parser, gmsgid, &richloc);
}
/* Some tokens naturally come in pairs e.g.'(' and ')'.
This class is for tracking such a matching pair of symbols.
In particular, it tracks the location of the first token,
so that if the second token is missing, we can highlight the
location of the first token when notifying the user about the
problem. */
template
class token_pair
{
public:
/* token_pair's ctor. */
token_pair () : m_open_loc (UNKNOWN_LOCATION) {}
/* If the next token is the opening symbol for this pair, consume it and
return true.
Otherwise, issue an error and return false.
In either case, record the location of the opening token. */
bool require_open (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
if (token)
m_open_loc = token->location;
return c_parser_require (parser, traits_t::open_token_type,
traits_t::open_gmsgid);
}
/* Consume the next token from PARSER, recording its location as
that of the opening token within the pair. */
void consume_open (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
gcc_assert (token->type == traits_t::open_token_type);
m_open_loc = token->location;
c_parser_consume_token (parser);
}
/* If the next token is the closing symbol for this pair, consume it
and return true.
Otherwise, issue an error, highlighting the location of the
corresponding opening token, and return false. */
bool require_close (c_parser *parser) const
{
return c_parser_require (parser, traits_t::close_token_type,
traits_t::close_gmsgid, m_open_loc);
}
/* Like token_pair::require_close, except that tokens will be skipped
until the desired token is found. An error message is still produced
if the next token is not as expected. */
void skip_until_found_close (c_parser *parser) const
{
c_parser_skip_until_found (parser, traits_t::close_token_type,
traits_t::close_gmsgid, m_open_loc);
}
private:
location_t m_open_loc;
};
/* Traits for token_pair for tracking matching pairs of parentheses. */
struct matching_paren_traits
{
static const enum cpp_ttype open_token_type = CPP_OPEN_PAREN;
static const char * const open_gmsgid;
static const enum cpp_ttype close_token_type = CPP_CLOSE_PAREN;
static const char * const close_gmsgid;
};
const char * const matching_paren_traits::open_gmsgid = "expected %<(%>";
const char * const matching_paren_traits::close_gmsgid = "expected %<)%>";
/* "matching_parens" is a token_pair class for tracking matching
pairs of parentheses. */
typedef token_pair matching_parens;
/* Traits for token_pair for tracking matching pairs of braces. */
struct matching_brace_traits
{
static const enum cpp_ttype open_token_type = CPP_OPEN_BRACE;
static const char * const open_gmsgid;
static const enum cpp_ttype close_token_type = CPP_CLOSE_BRACE;
static const char * const close_gmsgid;
};
const char * const matching_brace_traits::open_gmsgid = "expected %<{%>";
const char * const matching_brace_traits::close_gmsgid = "expected %<}%>";
/* "matching_braces" is a token_pair class for tracking matching
pairs of braces. */
typedef token_pair matching_braces;
/* Get a description of the matching symbol to TYPE e.g. "(" for
CPP_CLOSE_PAREN. */
static const char *
get_matching_symbol (enum cpp_ttype type)
{
switch (type)
{
default:
gcc_unreachable ();
case CPP_CLOSE_PAREN:
return "(";
case CPP_CLOSE_BRACE:
return "{";
}
}
/* If the next token is of the indicated TYPE, consume it. Otherwise,
issue the error MSGID. If MSGID is NULL then a message has already
been produced and no message will be produced this time. Returns
true if found, false otherwise.
If MATCHING_LOCATION is not UNKNOWN_LOCATION, then highlight it
within any error as the location of an "opening" token matching
the close token TYPE (e.g. the location of the '(' when TYPE is
CPP_CLOSE_PAREN).
If TYPE_IS_UNIQUE is true (the default) then msgid describes exactly
one type (e.g. "expected %<)%>") and thus it may be reasonable to
attempt to generate a fix-it hint for the problem.
Otherwise msgid describes multiple token types (e.g.
"expected %<;%>, %<,%> or %<)%>"), and thus we shouldn't attempt to
generate a fix-it hint. */
bool
c_parser_require (c_parser *parser,
enum cpp_ttype type,
const char *msgid,
location_t matching_location,
bool type_is_unique)
{
if (c_parser_next_token_is (parser, type))
{
c_parser_consume_token (parser);
return true;
}
else
{
location_t next_token_loc = c_parser_peek_token (parser)->location;
gcc_rich_location richloc (next_token_loc);
/* Potentially supply a fix-it hint, suggesting to add the
missing token immediately after the *previous* token.
This may move the primary location within richloc. */
if (!parser->error && type_is_unique)
maybe_suggest_missing_token_insertion (&richloc, type,
parser->last_token_location);
/* If matching_location != UNKNOWN_LOCATION, highlight it.
Attempt to consolidate diagnostics by printing it as a
secondary range within the main diagnostic. */
bool added_matching_location = false;
if (matching_location != UNKNOWN_LOCATION)
added_matching_location
= richloc.add_location_if_nearby (*global_dc, matching_location);
if (c_parser_error_richloc (parser, msgid, &richloc))
/* If we weren't able to consolidate matching_location, then
print it as a secondary diagnostic. */
if (matching_location != UNKNOWN_LOCATION && !added_matching_location)
inform (matching_location, "to match this %qs",
get_matching_symbol (type));
return false;
}
}
/* If the next token is the indicated keyword, consume it. Otherwise,
issue the error MSGID. Returns true if found, false otherwise. */
static bool
c_parser_require_keyword (c_parser *parser,
enum rid keyword,
const char *msgid)
{
if (c_parser_next_token_is_keyword (parser, keyword))
{
c_parser_consume_token (parser);
return true;
}
else
{
c_parser_error (parser, msgid);
return false;
}
}
/* Like c_parser_require, except that tokens will be skipped until the
desired token is found. An error message is still produced if the
next token is not as expected. If MSGID is NULL then a message has
already been produced and no message will be produced this
time.
If MATCHING_LOCATION is not UNKNOWN_LOCATION, then highlight it
within any error as the location of an "opening" token matching
the close token TYPE (e.g. the location of the '(' when TYPE is
CPP_CLOSE_PAREN). */
void
c_parser_skip_until_found (c_parser *parser,
enum cpp_ttype type,
const char *msgid,
location_t matching_location)
{
unsigned nesting_depth = 0;
if (c_parser_require (parser, type, msgid, matching_location))
{
if (UNLIKELY (type == CPP_PRAGMA_EOL) && parser->in_omp_attribute_pragma)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_EOF)
{
parser->tokens = &parser->tokens_buf[0];
parser->tokens_avail = token->flags;
parser->in_omp_attribute_pragma = NULL;
}
}
return;
}
/* Skip tokens until the desired token is found. */
while (true)
{
/* Peek at the next token. */
c_token *token = c_parser_peek_token (parser);
/* If we've reached the token we want, consume it and stop. */
if (token->type == type && !nesting_depth)
{
c_parser_consume_token (parser);
if (UNLIKELY (type == CPP_PRAGMA_EOL)
&& parser->in_omp_attribute_pragma)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_EOF)
{
parser->tokens = &parser->tokens_buf[0];
parser->tokens_avail = token->flags;
parser->in_omp_attribute_pragma = NULL;
}
}
break;
}
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
return;
if (token->type == CPP_PRAGMA_EOL && parser->in_pragma)
return;
if (token->type == CPP_OPEN_BRACE
|| token->type == CPP_OPEN_PAREN
|| token->type == CPP_OPEN_SQUARE)
++nesting_depth;
else if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_SQUARE)
{
if (nesting_depth-- == 0)
break;
}
/* Consume this token. */
c_parser_consume_token (parser);
}
parser->error = false;
}
/* Skip tokens until the end of a parameter is found, but do not
consume the comma, semicolon or closing delimiter. */
static void
c_parser_skip_to_end_of_parameter (c_parser *parser)
{
unsigned nesting_depth = 0;
while (true)
{
c_token *token = c_parser_peek_token (parser);
if ((token->type == CPP_COMMA || token->type == CPP_SEMICOLON)
&& !nesting_depth)
break;
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
return;
if (token->type == CPP_PRAGMA_EOL && parser->in_pragma)
return;
if (token->type == CPP_OPEN_BRACE
|| token->type == CPP_OPEN_PAREN
|| token->type == CPP_OPEN_SQUARE)
++nesting_depth;
else if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_SQUARE)
{
if (nesting_depth-- == 0)
break;
}
/* Consume this token. */
c_parser_consume_token (parser);
}
parser->error = false;
}
/* Expect to be at the end of the pragma directive and consume an
end of line marker. */
static void
c_parser_skip_to_pragma_eol (c_parser *parser, bool error_if_not_eol = true)
{
gcc_assert (parser->in_pragma);
parser->in_pragma = false;
if (error_if_not_eol && c_parser_peek_token (parser)->type != CPP_PRAGMA_EOL)
c_parser_error (parser, "expected end of line");
cpp_ttype token_type;
do
{
c_token *token = c_parser_peek_token (parser);
token_type = token->type;
if (token_type == CPP_EOF)
break;
c_parser_consume_token (parser);
}
while (token_type != CPP_PRAGMA_EOL);
if (parser->in_omp_attribute_pragma)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_EOF)
{
parser->tokens = &parser->tokens_buf[0];
parser->tokens_avail = token->flags;
parser->in_omp_attribute_pragma = NULL;
}
}
parser->error = false;
}
/* Skip tokens until we have consumed an entire block, or until we
have consumed a non-nested ';'. */
static void
c_parser_skip_to_end_of_block_or_statement (c_parser *parser)
{
unsigned nesting_depth = 0;
bool save_error = parser->error;
while (true)
{
c_token *token;
/* Peek at the next token. */
token = c_parser_peek_token (parser);
switch (token->type)
{
case CPP_EOF:
return;
case CPP_PRAGMA_EOL:
if (parser->in_pragma)
return;
break;
case CPP_SEMICOLON:
/* If the next token is a ';', we have reached the
end of the statement. */
if (!nesting_depth)
{
/* Consume the ';'. */
c_parser_consume_token (parser);
goto finished;
}
break;
case CPP_CLOSE_BRACE:
/* If the next token is a non-nested '}', then we have
reached the end of the current block. */
if (nesting_depth == 0 || --nesting_depth == 0)
{
c_parser_consume_token (parser);
goto finished;
}
break;
case CPP_OPEN_BRACE:
/* If it the next token is a '{', then we are entering a new
block. Consume the entire block. */
++nesting_depth;
break;
case CPP_PRAGMA:
/* If we see a pragma, consume the whole thing at once. We
have some safeguards against consuming pragmas willy-nilly.
Normally, we'd expect to be here with parser->error set,
which disables these safeguards. But it's possible to get
here for secondary error recovery, after parser->error has
been cleared. */
c_parser_consume_pragma (parser);
c_parser_skip_to_pragma_eol (parser);
parser->error = save_error;
continue;
default:
break;
}
c_parser_consume_token (parser);
}
finished:
parser->error = false;
}
/* CPP's options (initialized by c-opts.cc). */
extern cpp_options *cpp_opts;
/* Save the warning flags which are controlled by __extension__. */
static inline int
disable_extension_diagnostics (void)
{
int ret = (pedantic
| (warn_pointer_arith << 1)
| (warn_traditional << 2)
| (flag_iso << 3)
| (warn_long_long << 4)
| (warn_cxx_compat << 5)
| (warn_overlength_strings << 6)
/* warn_c90_c99_compat has three states: -1/0/1, so we must
play tricks to properly restore it. */
| ((warn_c90_c99_compat == 1) << 7)
| ((warn_c90_c99_compat == -1) << 8)
/* Similarly for warn_c99_c11_compat. */
| ((warn_c99_c11_compat == 1) << 9)
| ((warn_c99_c11_compat == -1) << 10)
/* Similarly for warn_c11_c23_compat. */
| ((warn_c11_c23_compat == 1) << 11)
| ((warn_c11_c23_compat == -1) << 12)
/* Similarly for warn_c23_c2y_compat. */
| ((warn_c23_c2y_compat == 1) << 13)
| ((warn_c23_c2y_compat == -1) << 14)
);
cpp_opts->cpp_pedantic = pedantic = 0;
warn_pointer_arith = 0;
cpp_opts->cpp_warn_traditional = warn_traditional = 0;
flag_iso = 0;
cpp_opts->cpp_warn_long_long = warn_long_long = 0;
warn_cxx_compat = 0;
warn_overlength_strings = 0;
warn_c90_c99_compat = 0;
warn_c99_c11_compat = 0;
warn_c11_c23_compat = 0;
warn_c23_c2y_compat = 0;
return ret;
}
/* Restore the warning flags which are controlled by __extension__.
FLAGS is the return value from disable_extension_diagnostics. */
static inline void
restore_extension_diagnostics (int flags)
{
cpp_opts->cpp_pedantic = pedantic = flags & 1;
warn_pointer_arith = (flags >> 1) & 1;
cpp_opts->cpp_warn_traditional = warn_traditional = (flags >> 2) & 1;
flag_iso = (flags >> 3) & 1;
cpp_opts->cpp_warn_long_long = warn_long_long = (flags >> 4) & 1;
warn_cxx_compat = (flags >> 5) & 1;
warn_overlength_strings = (flags >> 6) & 1;
/* See above for why is this needed. */
warn_c90_c99_compat = (flags >> 7) & 1 ? 1 : ((flags >> 8) & 1 ? -1 : 0);
warn_c99_c11_compat = (flags >> 9) & 1 ? 1 : ((flags >> 10) & 1 ? -1 : 0);
warn_c11_c23_compat = (flags >> 11) & 1 ? 1 : ((flags >> 12) & 1 ? -1 : 0);
warn_c23_c2y_compat = (flags >> 13) & 1 ? 1 : ((flags >> 14) & 1 ? -1 : 0);
}
/* Helper data structure for parsing #pragma acc routine. */
struct oacc_routine_data {
bool error_seen; /* Set if error has been reported. */
bool fndecl_seen; /* Set if one fn decl/definition has been seen already. */
tree clauses;
location_t loc;
};
/* Used for parsing objc foreach statements. */
static tree objc_foreach_break_label, objc_foreach_continue_label;
/* Used for parsing OMP for loops.
Some notes on flags used for context:
parser->omp_for_parse_state is non-null anywhere inside the OMP FOR
construct, except for the final-loop-body.
The want_nested_loop flag is true if inside a {} sequence where
a loop-nest (or another {} sequence containing a loop-nest) is expected,
but has not yet been seen. It's false when parsing intervening code
statements or their substatements that cannot contain a loop-nest.
The in_intervening_code flag is true when parsing any intervening code,
including substatements, and whether or not want_nested_loop is true.
And, about error handling:
The saw_intervening_code flag is set if the loop is not perfectly
nested, even in the usual case where this is not an error.
perfect_nesting_fail is set if an error has been diagnosed because an
imperfectly-nested loop was found where a perfectly-nested one is
required (we diagnose this only once).
fail is set if any kind of structural error in the loop nest
has been found and diagnosed.
*/
struct omp_for_parse_data {
enum tree_code code;
tree declv, condv, incrv, initv;
tree pre_body;
tree bindings;
int count; /* Expected nesting depth. */
int depth; /* Current nesting depth. */
location_t for_loc;
bool ordered : 1;
bool inscan : 1;
bool want_nested_loop : 1;
bool in_intervening_code : 1;
bool saw_intervening_code: 1;
bool perfect_nesting_fail : 1;
bool fail : 1;
};
struct attr_state
{
/* True if we parsed a musttail attribute for return. */
bool musttail_p;
};
static bool c_parser_nth_token_starts_std_attributes (c_parser *,
unsigned int);
static tree c_parser_std_attribute_specifier_sequence (c_parser *);
static void c_parser_external_declaration (c_parser *);
static void c_parser_asm_definition (c_parser *);
static tree c_parser_declaration_or_fndef (c_parser *, bool, bool, bool,
bool, bool, bool, tree * = NULL,
vec * = NULL,
bool have_attrs = false,
tree attrs = NULL,
struct oacc_routine_data * = NULL,
bool * = NULL);
static bool c_parser_handle_statement_omp_attributes (c_parser *, tree &,
bool *);
static void c_parser_static_assert_declaration_no_semi (c_parser *);
static void c_parser_static_assert_declaration (c_parser *);
static struct c_typespec c_parser_enum_specifier (c_parser *);
static struct c_typespec c_parser_struct_or_union_specifier (c_parser *);
static tree c_parser_struct_declaration (c_parser *, tree *);
static struct c_typespec c_parser_typeof_specifier (c_parser *);
static tree c_parser_alignas_specifier (c_parser *);
static struct c_declarator *c_parser_direct_declarator (c_parser *, bool,
c_dtr_syn, bool *);
static struct c_declarator *c_parser_direct_declarator_inner (c_parser *,
bool,
struct c_declarator *);
static struct c_arg_info *c_parser_parms_declarator (c_parser *, bool, tree,
bool);
static struct c_arg_info *c_parser_parms_list_declarator (c_parser *, tree,
tree, bool);
static struct c_parm *c_parser_parameter_declaration (c_parser *, tree, bool);
static tree c_parser_asm_string_literal (c_parser *);
static tree c_parser_simple_asm_expr (c_parser *);
static tree c_parser_gnu_attributes (c_parser *);
static struct c_expr c_parser_initializer (c_parser *, tree);
static struct c_expr c_parser_braced_init (c_parser *, tree, bool,
struct obstack *, tree);
static void c_parser_initelt (c_parser *, struct obstack *);
static void c_parser_initval (c_parser *, struct c_expr *,
struct obstack *);
static tree c_parser_compound_statement (c_parser *, location_t * = NULL);
static location_t c_parser_compound_statement_nostart (c_parser *);
static void c_parser_label (c_parser *, tree);
static void c_parser_statement (c_parser *, bool *, location_t * = NULL);
static void c_parser_statement_after_labels (c_parser *, bool *, tree,
vec * = NULL,
attr_state = {});
static tree c_parser_c99_block_statement (c_parser *, bool *,
location_t * = NULL);
static void c_parser_if_statement (c_parser *, bool *, vec *);
static void c_parser_switch_statement (c_parser *, bool *, tree);
static void c_parser_while_statement (c_parser *, bool, unsigned short, bool,
bool *, tree);
static void c_parser_do_statement (c_parser *, bool, unsigned short, bool,
tree);
static void c_parser_for_statement (c_parser *, bool, unsigned short, bool,
bool *, tree);
static tree c_parser_asm_statement (c_parser *);
static tree c_parser_asm_operands (c_parser *);
static tree c_parser_asm_goto_operands (c_parser *);
static tree c_parser_asm_clobbers (c_parser *);
static struct c_expr c_parser_expr_no_commas (c_parser *, struct c_expr *,
tree = NULL_TREE);
static struct c_expr c_parser_conditional_expression (c_parser *,
struct c_expr *, tree);
static struct c_expr c_parser_binary_expression (c_parser *, struct c_expr *,
tree);
static struct c_expr c_parser_cast_expression (c_parser *, struct c_expr *);
static struct c_expr c_parser_unary_expression (c_parser *);
static struct c_expr c_parser_sizeof_expression (c_parser *);
static struct c_expr c_parser_alignof_expression (c_parser *);
static struct c_expr c_parser_postfix_expression (c_parser *);
static struct c_expr c_parser_postfix_expression_after_paren_type (c_parser *,
struct c_declspecs *,
struct c_type_name *,
location_t);
static struct c_expr c_parser_postfix_expression_after_primary (c_parser *,
location_t loc,
struct c_expr);
static tree c_parser_transaction (c_parser *, enum rid);
static struct c_expr c_parser_transaction_expression (c_parser *, enum rid);
static tree c_parser_transaction_cancel (c_parser *);
static struct c_expr c_parser_expression (c_parser *);
static struct c_expr c_parser_expression_conv (c_parser *);
static vec *c_parser_expr_list (c_parser *, bool, bool,
vec **, location_t *,
tree *, vec *,
unsigned int * = NULL);
static struct c_expr c_parser_has_attribute_expression (c_parser *);
static void c_parser_oacc_declare (c_parser *);
static void c_parser_oacc_enter_exit_data (c_parser *, bool);
static void c_parser_oacc_update (c_parser *);
static void c_parser_omp_construct (c_parser *, bool *);
static void c_parser_omp_threadprivate (c_parser *);
static void c_parser_omp_barrier (c_parser *);
static void c_parser_omp_depobj (c_parser *);
static void c_parser_omp_flush (c_parser *);
static bool c_parser_omp_next_tokens_can_be_canon_loop (c_parser *,
enum tree_code, bool);
static tree c_parser_omp_loop_nest (c_parser *, bool *);
static tree c_parser_omp_for_loop (location_t, c_parser *, enum tree_code,
tree, tree *, bool *);
static void c_parser_omp_taskwait (c_parser *);
static void c_parser_omp_taskyield (c_parser *);
static void c_parser_omp_cancel (c_parser *);
static void c_parser_omp_nothing (c_parser *);
enum pragma_context { pragma_external, pragma_struct, pragma_param,
pragma_stmt, pragma_compound };
static bool c_parser_pragma (c_parser *, enum pragma_context, bool *, tree);
static bool c_parser_omp_cancellation_point (c_parser *, enum pragma_context);
static bool c_parser_omp_target (c_parser *, enum pragma_context, bool *);
static void c_parser_omp_begin (c_parser *);
static void c_parser_omp_end (c_parser *);
static bool c_parser_omp_declare (c_parser *, enum pragma_context);
static void c_parser_omp_requires (c_parser *);
static bool c_parser_omp_error (c_parser *, enum pragma_context);
static void c_parser_omp_assumption_clauses (c_parser *, bool);
static void c_parser_omp_allocate (c_parser *);
static void c_parser_omp_assumes (c_parser *);
static bool c_parser_omp_ordered (c_parser *, enum pragma_context, bool *);
static tree c_parser_omp_dispatch (location_t, c_parser *);
static void c_parser_omp_interop (c_parser *);
static void c_parser_oacc_routine (c_parser *, enum pragma_context);
/* These Objective-C parser functions are only ever called when
compiling Objective-C. */
static void c_parser_objc_class_definition (c_parser *, tree);
static void c_parser_objc_class_instance_variables (c_parser *);
static void c_parser_objc_class_declaration (c_parser *);
static void c_parser_objc_alias_declaration (c_parser *);
static void c_parser_objc_protocol_definition (c_parser *, tree);
static bool c_parser_objc_method_type (c_parser *);
static void c_parser_objc_method_definition (c_parser *);
static void c_parser_objc_methodprotolist (c_parser *);
static void c_parser_objc_methodproto (c_parser *);
static tree c_parser_objc_method_decl (c_parser *, bool, tree *, tree *);
static tree c_parser_objc_type_name (c_parser *);
static tree c_parser_objc_protocol_refs (c_parser *);
static void c_parser_objc_try_catch_finally_statement (c_parser *);
static void c_parser_objc_synchronized_statement (c_parser *);
static tree c_parser_objc_selector (c_parser *);
static tree c_parser_objc_selector_arg (c_parser *);
static tree c_parser_objc_receiver (c_parser *);
static tree c_parser_objc_message_args (c_parser *);
static tree c_parser_objc_keywordexpr (c_parser *);
static void c_parser_objc_at_property_declaration (c_parser *);
static void c_parser_objc_at_synthesize_declaration (c_parser *);
static void c_parser_objc_at_dynamic_declaration (c_parser *);
static bool c_parser_objc_diagnose_bad_element_prefix
(c_parser *, struct c_declspecs *);
static location_t c_parser_parse_rtl_body (c_parser *, char *);
#if ENABLE_ANALYZER
namespace ana {
/* Concrete implementation of ana::translation_unit for the C frontend. */
class c_translation_unit : public translation_unit
{
public:
/* Implementation of translation_unit::lookup_constant_by_id for use by the
analyzer to look up named constants in the user's source code. */
tree lookup_constant_by_id (tree id) const final override
{
/* Consider decls. */
if (tree decl = lookup_name (id))
if (TREE_CODE (decl) == CONST_DECL)
if (tree value = DECL_INITIAL (decl))
if (TREE_CODE (value) == INTEGER_CST)
return value;
/* Consider macros. */
cpp_hashnode *hashnode = C_CPP_HASHNODE (id);
if (cpp_macro_p (hashnode))
if (tree value = consider_macro (hashnode->value.macro))
return value;
return NULL_TREE;
}
tree
lookup_type_by_id (tree id) const final override
{
if (tree type_decl = lookup_name (id))
if (TREE_CODE (type_decl) == TYPE_DECL)
{
tree record_type = TREE_TYPE (type_decl);
if (TREE_CODE (record_type) == RECORD_TYPE)
return record_type;
}
return NULL_TREE;
}
tree
lookup_global_var_by_id (tree id) const final override
{
if (tree var_decl = lookup_name (id))
if (TREE_CODE (var_decl) == VAR_DECL)
return var_decl;
return NULL_TREE;
}
private:
/* Attempt to get an INTEGER_CST from MACRO.
Only handle the simplest cases: where MACRO's definition is a single
token containing a number, by lexing the number again.
This will handle e.g.
#define NAME 42
and other bases but not negative numbers, parentheses or e.g.
#define NAME 1 << 7
as doing so would require a parser. */
tree consider_macro (cpp_macro *macro) const
{
if (macro->paramc > 0)
return NULL_TREE;
if (macro->kind != cmk_macro)
return NULL_TREE;
if (macro->count != 1)
return NULL_TREE;
const cpp_token &tok = macro->exp.tokens[0];
if (tok.type != CPP_NUMBER)
return NULL_TREE;
cpp_reader *old_parse_in = parse_in;
parse_in = cpp_create_reader (CLK_GNUC89, NULL, line_table);
pretty_printer pp;
pp_string (&pp, (const char *) tok.val.str.text);
pp_newline (&pp);
cpp_push_buffer (parse_in,
(const unsigned char *) pp_formatted_text (&pp),
strlen (pp_formatted_text (&pp)),
0);
tree value;
location_t loc;
unsigned char cpp_flags;
c_lex_with_flags (&value, &loc, &cpp_flags, 0);
cpp_destroy (parse_in);
parse_in = old_parse_in;
if (value && TREE_CODE (value) == INTEGER_CST)
return value;
return NULL_TREE;
}
};
} // namespace ana
#endif /* #if ENABLE_ANALYZER */
/* Parse a translation unit (C90 6.7, C99 6.9, C11 6.9).
translation-unit:
external-declarations
external-declarations:
external-declaration
external-declarations external-declaration
GNU extensions:
translation-unit:
empty
*/
static void
c_parser_translation_unit (c_parser *parser)
{
if (c_parser_next_token_is (parser, CPP_EOF))
{
pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic,
"ISO C forbids an empty translation unit");
}
else
{
void *obstack_position = obstack_alloc (&parser_obstack, 0);
mark_valid_location_for_stdc_pragma (false);
do
{
ggc_collect ();
c_parser_external_declaration (parser);
obstack_free (&parser_obstack, obstack_position);
}
while (c_parser_next_token_is_not (parser, CPP_EOF));
}
unsigned int i;
tree decl;
FOR_EACH_VEC_ELT (incomplete_record_decls, i, decl)
if (DECL_SIZE (decl) == NULL_TREE && TREE_TYPE (decl) != error_mark_node)
error ("storage size of %q+D isn%'t known", decl);
if (vec_safe_length (current_omp_declare_target_attribute))
{
c_omp_declare_target_attr
a = current_omp_declare_target_attribute->pop ();
if (!errorcount)
error ("%qs without corresponding %qs",
a.device_type >= 0 ? "#pragma omp begin declare target"
: "#pragma omp declare target",
"#pragma omp end declare target");
vec_safe_truncate (current_omp_declare_target_attribute, 0);
}
if (vec_safe_length (current_omp_begin_assumes))
{
if (!errorcount)
error ("%qs without corresponding %qs",
"#pragma omp begin assumes", "#pragma omp end assumes");
vec_safe_truncate (current_omp_begin_assumes, 0);
}
#if ENABLE_ANALYZER
if (flag_analyzer)
{
ana::c_translation_unit tu;
ana::on_finish_translation_unit (tu);
}
#endif
}
/* Parse an external declaration (C90 6.7, C99 6.9, C11 6.9).
external-declaration:
function-definition
declaration
GNU extensions:
external-declaration:
asm-definition
;
__extension__ external-declaration
Objective-C:
external-declaration:
objc-class-definition
objc-class-declaration
objc-alias-declaration
objc-protocol-definition
objc-method-definition
@end
*/
static void
c_parser_external_declaration (c_parser *parser)
{
int ext;
switch (c_parser_peek_token (parser)->type)
{
case CPP_KEYWORD:
switch (c_parser_peek_token (parser)->keyword)
{
case RID_EXTENSION:
ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
c_parser_external_declaration (parser);
restore_extension_diagnostics (ext);
break;
case RID_ASM:
c_parser_asm_definition (parser);
break;
case RID_AT_INTERFACE:
case RID_AT_IMPLEMENTATION:
gcc_assert (c_dialect_objc ());
c_parser_objc_class_definition (parser, NULL_TREE);
break;
case RID_AT_CLASS:
gcc_assert (c_dialect_objc ());
c_parser_objc_class_declaration (parser);
break;
case RID_AT_ALIAS:
gcc_assert (c_dialect_objc ());
c_parser_objc_alias_declaration (parser);
break;
case RID_AT_PROTOCOL:
gcc_assert (c_dialect_objc ());
c_parser_objc_protocol_definition (parser, NULL_TREE);
break;
case RID_AT_PROPERTY:
gcc_assert (c_dialect_objc ());
c_parser_objc_at_property_declaration (parser);
break;
case RID_AT_SYNTHESIZE:
gcc_assert (c_dialect_objc ());
c_parser_objc_at_synthesize_declaration (parser);
break;
case RID_AT_DYNAMIC:
gcc_assert (c_dialect_objc ());
c_parser_objc_at_dynamic_declaration (parser);
break;
case RID_AT_END:
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
objc_finish_implementation ();
break;
default:
goto decl_or_fndef;
}
break;
case CPP_SEMICOLON:
pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic,
"ISO C does not allow extra %<;%> outside of a function");
c_parser_consume_token (parser);
break;
case CPP_PRAGMA:
mark_valid_location_for_stdc_pragma (true);
c_parser_pragma (parser, pragma_external, NULL, NULL_TREE);
mark_valid_location_for_stdc_pragma (false);
break;
case CPP_PLUS:
case CPP_MINUS:
if (c_dialect_objc ())
{
c_parser_objc_method_definition (parser);
break;
}
/* Else fall through, and yield a syntax error trying to parse
as a declaration or function definition. */
/* FALLTHRU */
default:
decl_or_fndef:
/* A declaration or a function definition (or, in Objective-C,
an @interface or @protocol with prefix attributes). We can
only tell which after parsing the declaration specifiers, if
any, and the first declarator. */
c_parser_declaration_or_fndef (parser, true, true, true, false, true,
false);
break;
}
}
static void c_parser_handle_directive_omp_attributes (tree &, vec *&,
vec *);
static void c_finish_omp_declare_simd (c_parser *, tree, tree, vec *);
static void c_finish_oacc_routine (struct oacc_routine_data *, tree, bool);
/* Build and add a DEBUG_BEGIN_STMT statement with location LOC. */
static void
add_debug_begin_stmt (location_t loc)
{
/* Don't add DEBUG_BEGIN_STMTs outside of functions, see PR84721. */
if (!MAY_HAVE_DEBUG_MARKER_STMTS || !building_stmt_list_p ())
return;
tree stmt = build0 (DEBUG_BEGIN_STMT, void_type_node);
SET_EXPR_LOCATION (stmt, loc);
add_stmt (stmt);
}
/* Helper function for c_parser_declaration_or_fndef and
Handle assume attribute(s). */
static tree
handle_assume_attribute (location_t here, tree attrs, bool nested)
{
if (nested)
for (tree attr = lookup_attribute ("gnu", "assume", attrs); attr;
attr = lookup_attribute ("gnu", "assume", TREE_CHAIN (attr)))
{
tree args = TREE_VALUE (attr);
int nargs = list_length (args);
if (nargs != 1)
{
error_at (here, "wrong number of arguments specified "
"for %qE attribute",
get_attribute_name (attr));
inform (here, "expected %i, found %i", 1, nargs);
}
else
{
tree arg = TREE_VALUE (args);
arg = c_objc_common_truthvalue_conversion (here, arg);
arg = c_fully_fold (arg, false, NULL);
if (arg != error_mark_node)
{
tree fn = build_call_expr_internal_loc (here, IFN_ASSUME,
void_type_node, 1,
arg);
add_stmt (fn);
}
}
}
else
pedwarn (here, OPT_Wattributes,
"% attribute at top level");
return remove_attribute ("gnu", "assume", attrs);
}
/* We might need to reclassify any previously-lexed identifier, e.g.
when we've left a for loop with an if-statement without else in the
body - we might have used a wrong scope for the token. See PR67784. */
static void
c_parser_maybe_reclassify_token (c_parser *parser)
{
if (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *token = c_parser_peek_token (parser);
if (token->id_kind != C_ID_CLASSNAME)
{
tree decl = lookup_name (token->value);
token->id_kind = C_ID_ID;
if (decl)
{
if (TREE_CODE (decl) == TYPE_DECL)
token->id_kind = C_ID_TYPENAME;
}
else if (c_dialect_objc ())
{
tree objc_interface_decl = objc_is_class_name (token->value);
/* Objective-C class names are in the same namespace as
variables and typedefs, and hence are shadowed by local
declarations. */
if (objc_interface_decl)
{
token->value = objc_interface_decl;
token->id_kind = C_ID_CLASSNAME;
}
}
}
}
}
/* Parse a declaration or function definition (C90 6.5, 6.7.1, C99
6.7, 6.9.1, C11 6.7, 6.9.1). If FNDEF_OK is true, a function definition
is accepted; otherwise (old-style parameter declarations) only other
declarations are accepted. If STATIC_ASSERT_OK is true, a static
assertion is accepted; otherwise (old-style parameter declarations)
it is not. If NESTED is true, we are inside a function or parsing
old-style parameter declarations; any functions encountered are
nested functions and declaration specifiers are required; otherwise
we are at top level and functions are normal functions and
declaration specifiers may be optional. If EMPTY_OK is true, empty
declarations are OK (subject to all other constraints); otherwise
(old-style parameter declarations) they are diagnosed. If
START_ATTR_OK is true, the declaration specifiers may start with
attributes (GNU or standard); otherwise they may not.
OBJC_FOREACH_OBJECT_DECLARATION can be used to get back the parsed
declaration when parsing an Objective-C foreach statement.
FALLTHRU_ATTR_P is used to signal whether this function parsed
"__attribute__((fallthrough));". ATTRS are any standard attributes
parsed in the caller (in contexts where such attributes had to be
parsed to determine whether what follows is a declaration or a
statement); HAVE_ATTRS says whether there were any such attributes
(even empty). If SIMPLE_OK, the construct can be a simple-declaration;
in that case, the ';' is not consumed (left to the caller so that it
can figure out if there was a simple-declaration or not), there must
be an initializer, and only one object may be declared. When SIMPLE_OK
is true we are called from c_parser_selection_header.
Returns the resulting declaration, if there was any with an initializer.
declaration:
declaration-specifiers init-declarator-list[opt] ;
static_assert-declaration
function-definition:
declaration-specifiers[opt] declarator declaration-list[opt]
compound-statement
declaration-list:
declaration
declaration-list declaration
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator simple-asm-expr[opt] gnu-attributes[opt]
declarator simple-asm-expr[opt] gnu-attributes[opt] = initializer
simple-declaration:
attribute-specifier-sequence[opt] declaration-specifiers declarator
= initializer
GNU extensions:
nested-function-definition:
declaration-specifiers declarator declaration-list[opt]
compound-statement
attribute ;
Objective-C:
gnu-attributes objc-class-definition
gnu-attributes objc-category-definition
gnu-attributes objc-protocol-definition
The simple-asm-expr and gnu-attributes are GNU extensions.
This function does not handle __extension__; that is handled in its
callers. ??? Following the old parser, __extension__ may start
external declarations, declarations in functions and declarations
at the start of "for" loops, but not old-style parameter
declarations.
C99 requires declaration specifiers in a function definition; the
absence is diagnosed through the diagnosis of implicit int. In GNU
C we also allow but diagnose declarations without declaration
specifiers, but only at top level (elsewhere they conflict with
other syntax).
In Objective-C, declarations of the looping variable in a foreach
statement are exceptionally terminated by 'in' (for example, 'for
(NSObject *object in array) { ... }').
OpenMP:
declaration:
threadprivate-directive
GIMPLE:
gimple-function-definition:
declaration-specifiers[opt] __GIMPLE (gimple-or-rtl-pass-list) declarator
declaration-list[opt] compound-statement
rtl-function-definition:
declaration-specifiers[opt] __RTL (gimple-or-rtl-pass-list) declarator
declaration-list[opt] compound-statement */
static tree
c_parser_declaration_or_fndef (c_parser *parser, bool fndef_ok,
bool static_assert_ok, bool empty_ok,
bool nested, bool start_attr_ok,
bool simple_ok,
tree *objc_foreach_object_declaration
/* = NULL */,
vec *omp_declare_simd_clauses
/* = NULL */,
bool have_attrs /* = false */,
tree attrs /* = NULL_TREE */,
struct oacc_routine_data *oacc_routine_data
/* = NULL */,
bool *fallthru_attr_p /* = NULL */)
{
struct c_declspecs *specs;
tree prefix_attrs;
tree all_prefix_attrs;
bool diagnosed_no_specs = false;
location_t here = c_parser_peek_token (parser)->location;
tree result = NULL_TREE;
add_debug_begin_stmt (c_parser_peek_token (parser)->location);
if (static_assert_ok
&& c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT))
{
c_parser_static_assert_declaration (parser);
return result;
}
specs = build_null_declspecs ();
/* Handle any standard attributes parsed in the caller. */
if (have_attrs)
{
declspecs_add_attrs (here, specs, attrs);
specs->non_std_attrs_seen_p = false;
}
/* Try to detect an unknown type name when we have "A B" or "A *B". */
if (c_parser_peek_token (parser)->type == CPP_NAME
&& c_parser_peek_token (parser)->id_kind == C_ID_ID
&& (c_parser_peek_2nd_token (parser)->type == CPP_NAME
|| c_parser_peek_2nd_token (parser)->type == CPP_MULT)
&& (!nested || !lookup_name (c_parser_peek_token (parser)->value)))
{
tree name = c_parser_peek_token (parser)->value;
/* Issue a warning about NAME being an unknown type name, perhaps
with some kind of hint.
If the user forgot a "struct" etc, suggest inserting
it. Otherwise, attempt to look for misspellings. */
gcc_rich_location richloc (here);
if (tag_exists_p (RECORD_TYPE, name))
{
/* This is not C++ with its implicit typedef. */
richloc.add_fixit_insert_before ("struct ");
error_at (&richloc,
"unknown type name %qE;"
" use % keyword to refer to the type",
name);
}
else if (tag_exists_p (UNION_TYPE, name))
{
richloc.add_fixit_insert_before ("union ");
error_at (&richloc,
"unknown type name %qE;"
" use % keyword to refer to the type",
name);
}
else if (tag_exists_p (ENUMERAL_TYPE, name))
{
richloc.add_fixit_insert_before ("enum ");
error_at (&richloc,
"unknown type name %qE;"
" use % keyword to refer to the type",
name);
}
else
{
auto_diagnostic_group d;
name_hint hint = lookup_name_fuzzy (name, FUZZY_LOOKUP_TYPENAME,
here);
if (const char *suggestion = hint.suggestion ())
{
richloc.add_fixit_replace (suggestion);
error_at (&richloc,
"unknown type name %qE; did you mean %qs?",
name, suggestion);
}
else
error_at (here, "unknown type name %qE", name);
}
/* Parse declspecs normally to get a correct pointer type, but avoid
a further "fails to be a type name" error. Refuse nested functions
since it is not how the user likely wants us to recover. */
c_parser_peek_token (parser)->type = CPP_KEYWORD;
c_parser_peek_token (parser)->keyword = RID_VOID;
c_parser_peek_token (parser)->value = error_mark_node;
fndef_ok = !nested;
}
/* When there are standard attributes at the start of the
declaration (to apply to the entity being declared), an
init-declarator-list or function definition must be present. */
if (c_parser_nth_token_starts_std_attributes (parser, 1))
have_attrs = true;
c_parser_declspecs (parser, specs, true, true, start_attr_ok,
true, true, start_attr_ok, true, cla_nonabstract_decl);
if (parser->error)
{
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
if (nested && !specs->declspecs_seen_p)
{
c_parser_error (parser, "expected declaration specifiers");
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
finish_declspecs (specs);
bool gnu_auto_type_p = specs->typespec_word == cts_auto_type;
bool std_auto_type_p = specs->c23_auto_p;
bool any_auto_type_p = gnu_auto_type_p || std_auto_type_p;
gcc_assert (!(gnu_auto_type_p && std_auto_type_p));
const char *auto_type_keyword = gnu_auto_type_p ? "__auto_type" : "auto";
if (specs->constexpr_p)
{
/* An underspecified declaration may not declare tags or members
or structures or unions; it is undefined behavior to declare
the members of an enumeration. Where the structure, union or
enumeration type is declared within an initializer, this is
diagnosed elsewhere. Diagnose here the case of declaring
such a type in the type specifiers of a constexpr
declaration. */
switch (specs->typespec_kind)
{
case ctsk_tagfirstref:
case ctsk_tagfirstref_attrs:
error_at (here, "%qT declared in underspecified object declaration",
specs->type);
break;
case ctsk_tagdef:
error_at (here, "%qT defined in underspecified object declaration",
specs->type);
break;
default:
break;
}
}
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
bool handled_assume = false;
if (specs->attrs
&& !nested
&& specs->typespec_kind == ctsk_none
&& c_parser_handle_statement_omp_attributes (parser, specs->attrs,
NULL))
{
if (specs->attrs)
c_warn_unused_attributes (specs->attrs);
while (parser->in_omp_attribute_pragma)
{
gcc_assert (c_parser_next_token_is (parser, CPP_PRAGMA));
c_parser_pragma (parser, pragma_external, NULL, NULL_TREE);
}
c_parser_consume_token (parser);
return result;
}
if (specs->typespec_kind == ctsk_none
&& lookup_attribute ("gnu", "assume", specs->attrs))
{
handled_assume = true;
specs->attrs
= handle_assume_attribute (here, specs->attrs, nested);
}
if (any_auto_type_p)
error_at (here, "%qs in empty declaration", auto_type_keyword);
else if (specs->typespec_kind == ctsk_none
&& attribute_fallthrough_p (specs->attrs))
{
if (fallthru_attr_p != NULL)
*fallthru_attr_p = true;
if (nested)
{
tree fn = build_call_expr_internal_loc (here, IFN_FALLTHROUGH,
void_type_node, 0);
add_stmt (fn);
}
else
pedwarn (here, OPT_Wattributes,
"% attribute at top level");
}
else if (empty_ok
&& !(have_attrs && specs->non_std_attrs_seen_p)
&& !handled_assume)
shadow_tag (specs);
else
{
shadow_tag_warned (specs, 1);
if (!handled_assume)
pedwarn (here, 0, "empty declaration");
}
/* We still have to evaluate size expressions. */
if (specs->expr)
add_stmt (fold_convert (void_type_node, specs->expr));
c_parser_consume_token (parser);
if (oacc_routine_data)
c_finish_oacc_routine (oacc_routine_data, NULL_TREE, false);
return result;
}
/* Provide better error recovery. Note that a type name here is usually
better diagnosed as a redeclaration. */
if (empty_ok
&& specs->typespec_kind == ctsk_tagdef
&& c_parser_next_token_starts_declspecs (parser)
&& !c_parser_next_token_is (parser, CPP_NAME))
{
c_parser_error (parser, "expected %<;%>, identifier or %<(%>");
parser->error = false;
shadow_tag_warned (specs, 1);
return result;
}
else if (c_dialect_objc () && !any_auto_type_p)
{
/* Prefix attributes are an error on method decls. */
switch (c_parser_peek_token (parser)->type)
{
case CPP_PLUS:
case CPP_MINUS:
if (c_parser_objc_diagnose_bad_element_prefix (parser, specs))
return result;
if (specs->attrs)
{
warning_at (c_parser_peek_token (parser)->location,
OPT_Wattributes,
"prefix attributes are ignored for methods");
specs->attrs = NULL_TREE;
}
if (fndef_ok)
c_parser_objc_method_definition (parser);
else
c_parser_objc_methodproto (parser);
return result;
break;
default:
break;
}
/* This is where we parse 'attributes @interface ...',
'attributes @implementation ...', 'attributes @protocol ...'
(where attributes could be, for example, __attribute__
((deprecated)).
*/
switch (c_parser_peek_token (parser)->keyword)
{
case RID_AT_INTERFACE:
{
if (c_parser_objc_diagnose_bad_element_prefix (parser, specs))
return result;
c_parser_objc_class_definition (parser, specs->attrs);
return result;
}
break;
case RID_AT_IMPLEMENTATION:
{
if (c_parser_objc_diagnose_bad_element_prefix (parser, specs))
return result;
if (specs->attrs)
{
warning_at (c_parser_peek_token (parser)->location,
OPT_Wattributes,
"prefix attributes are ignored for implementations");
specs->attrs = NULL_TREE;
}
c_parser_objc_class_definition (parser, NULL_TREE);
return result;
}
break;
case RID_AT_PROTOCOL:
{
if (c_parser_objc_diagnose_bad_element_prefix (parser, specs))
return result;
c_parser_objc_protocol_definition (parser, specs->attrs);
return result;
}
break;
case RID_AT_ALIAS:
case RID_AT_CLASS:
case RID_AT_END:
case RID_AT_PROPERTY:
if (specs->attrs)
{
c_parser_error (parser, "unexpected attribute");
specs->attrs = NULL;
}
break;
default:
break;
}
}
else if (attribute_fallthrough_p (specs->attrs))
warning_at (here, OPT_Wattributes,
"% attribute not followed by %<;%>");
else if (lookup_attribute ("gnu", "assume", specs->attrs))
warning_at (here, OPT_Wattributes,
"% attribute not followed by %<;%>");
auto_vec omp_declare_simd_attr_clauses;
c_parser_handle_directive_omp_attributes (specs->attrs,
omp_declare_simd_clauses,
&omp_declare_simd_attr_clauses);
pending_xref_error ();
prefix_attrs = specs->attrs;
all_prefix_attrs = prefix_attrs;
specs->attrs = NULL_TREE;
bool more_than_one_decl = false;
while (true)
{
struct c_declarator *declarator;
bool dummy = false;
timevar_id_t tv;
tree fnbody = NULL_TREE;
tree underspec_name = NULL_TREE;
auto_vec omp_dsimd_idattr_clauses;
/* Declaring either one or more declarators (in which case we
should diagnose if there were no declaration specifiers) or a
function definition (in which case the diagnostic for
implicit int suffices). */
declarator = c_parser_declarator (parser,
specs->typespec_kind != ctsk_none,
C_DTR_NORMAL, &dummy);
if (declarator == NULL)
{
if (omp_declare_simd_clauses)
c_finish_omp_declare_simd (parser, NULL_TREE, NULL_TREE,
omp_declare_simd_clauses);
if (oacc_routine_data)
c_finish_oacc_routine (oacc_routine_data, NULL_TREE, false);
/* This check is here purely to improve the diagnostic. */
if (!simple_ok)
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
if (flag_openmp || flag_openmp_simd)
{
struct c_declarator *d = declarator;
while (d->kind != cdk_id)
d = d->declarator;
vec *dummy = NULL;
c_parser_handle_directive_omp_attributes (d->u.id.attrs, dummy,
&omp_dsimd_idattr_clauses);
}
if (gnu_auto_type_p && declarator->kind != cdk_id)
{
error_at (here,
"%<__auto_type%> requires a plain identifier"
" as declarator");
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
if (std_auto_type_p)
{
struct c_declarator *d = declarator;
while (d->kind == cdk_attrs)
d = d->declarator;
if (d->kind != cdk_id)
{
error_at (here,
"% requires a plain identifier, possibly with"
" attributes, as declarator");
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
underspec_name = d->u.id.id;
}
else if (specs->constexpr_p)
{
struct c_declarator *d = declarator;
while (d->kind != cdk_id)
d = d->declarator;
underspec_name = d->u.id.id;
}
if (c_parser_next_token_is (parser, CPP_EQ)
|| c_parser_next_token_is (parser, CPP_COMMA)
|| c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is_keyword (parser, RID_ASM)
|| c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)
|| c_parser_next_token_is_keyword (parser, RID_IN))
{
tree asm_name = NULL_TREE;
tree postfix_attrs = NULL_TREE;
if (!diagnosed_no_specs && !specs->declspecs_seen_p)
{
diagnosed_no_specs = true;
pedwarn (here, 0, "data definition has no type or storage class");
}
/* Having seen a data definition, there cannot now be a
function definition. */
fndef_ok = false;
if (c_parser_next_token_is_keyword (parser, RID_ASM))
asm_name = c_parser_simple_asm_expr (parser);
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
{
postfix_attrs = c_parser_gnu_attributes (parser);
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
/* This means there is an attribute specifier after
the declarator in a function definition. Provide
some more information for the user. */
error_at (here, "attributes should be specified before the "
"declarator in a function definition");
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
}
if (c_parser_next_token_is (parser, CPP_EQ))
{
tree d;
struct c_expr init;
location_t init_loc;
c_parser_consume_token (parser);
if (any_auto_type_p)
{
init_loc = c_parser_peek_token (parser)->location;
rich_location richloc (line_table, init_loc);
unsigned int underspec_state = 0;
if (std_auto_type_p)
underspec_state =
start_underspecified_init (init_loc, underspec_name);
start_init (NULL_TREE, asm_name,
(global_bindings_p ()
|| specs->storage_class == csc_static
|| specs->constexpr_p),
specs->constexpr_p, &richloc);
/* A parameter is initialized, which is invalid. Don't
attempt to instrument the initializer. */
int flag_sanitize_save = flag_sanitize;
if (nested && !empty_ok)
flag_sanitize = 0;
init = c_parser_expr_no_commas (parser, NULL);
if (std_auto_type_p)
finish_underspecified_init (underspec_name,
underspec_state);
flag_sanitize = flag_sanitize_save;
if (gnu_auto_type_p
&& TREE_CODE (init.value) == COMPONENT_REF
&& DECL_C_BIT_FIELD (TREE_OPERAND (init.value, 1)))
error_at (here,
"%<__auto_type%> used with a bit-field"
" initializer");
init = convert_lvalue_to_rvalue (init_loc, init, true, true,
true);
tree init_type = TREE_TYPE (init.value);
bool vm_type = c_type_variably_modified_p (init_type);
if (vm_type)
init.value = save_expr (init.value);
finish_init ();
specs->typespec_kind = ctsk_typeof;
specs->locations[cdw_typedef] = init_loc;
specs->typedef_p = true;
specs->type = init_type;
if (specs->postfix_attrs)
{
/* Postfix [[]] attributes are valid with C23
auto, although not with __auto_type, and
modify the type given by the initializer. */
specs->postfix_attrs
= c_warn_type_attributes (specs->type,
specs->postfix_attrs);
decl_attributes (&specs->type, specs->postfix_attrs, 0);
specs->postfix_attrs = NULL_TREE;
}
if (vm_type)
{
bool maybe_const = true;
tree type_expr = c_fully_fold (init.value, false,
&maybe_const);
specs->expr_const_operands &= maybe_const;
if (specs->expr)
specs->expr = build2 (COMPOUND_EXPR,
TREE_TYPE (type_expr),
specs->expr, type_expr);
else
specs->expr = type_expr;
}
d = start_decl (declarator, specs, true,
chainon (postfix_attrs, all_prefix_attrs));
if (!d)
d = error_mark_node;
if (omp_declare_simd_clauses)
c_finish_omp_declare_simd (parser, d, NULL_TREE,
omp_declare_simd_clauses);
if (!omp_dsimd_idattr_clauses.is_empty ())
c_finish_omp_declare_simd (parser, d, NULL_TREE,
&omp_dsimd_idattr_clauses);
}
else
{
/* The declaration of the variable is in effect while
its initializer is parsed, except for a constexpr
variable. */
init_loc = c_parser_peek_token (parser)->location;
rich_location richloc (line_table, init_loc);
unsigned int underspec_state = 0;
if (specs->constexpr_p)
underspec_state =
start_underspecified_init (init_loc, underspec_name);
d = start_decl (declarator, specs, true,
chainon (postfix_attrs,
all_prefix_attrs),
!specs->constexpr_p);
if (!d)
d = error_mark_node;
if (!specs->constexpr_p && omp_declare_simd_clauses)
c_finish_omp_declare_simd (parser, d, NULL_TREE,
omp_declare_simd_clauses);
if (!specs->constexpr_p
&& !omp_dsimd_idattr_clauses.is_empty ())
c_finish_omp_declare_simd (parser, d, NULL_TREE,
&omp_dsimd_idattr_clauses);
start_init (d, asm_name,
TREE_STATIC (d) || specs->constexpr_p,
specs->constexpr_p, &richloc);
/* A parameter is initialized, which is invalid. Don't
attempt to instrument the initializer. */
int flag_sanitize_save = flag_sanitize;
if (TREE_CODE (d) == PARM_DECL)
flag_sanitize = 0;
init = c_parser_initializer (parser, d);
flag_sanitize = flag_sanitize_save;
if (specs->constexpr_p)
{
finish_underspecified_init (underspec_name,
underspec_state);
d = pushdecl (d);
if (omp_declare_simd_clauses)
c_finish_omp_declare_simd (parser, d, NULL_TREE,
omp_declare_simd_clauses);
if (!specs->constexpr_p
&& !omp_dsimd_idattr_clauses.is_empty ())
c_finish_omp_declare_simd (parser, d, NULL_TREE,
&omp_dsimd_idattr_clauses);
}
finish_init ();
}
if (oacc_routine_data)
c_finish_oacc_routine (oacc_routine_data, d, false);
if (d != error_mark_node)
{
maybe_warn_string_init (init_loc, TREE_TYPE (d), init);
finish_decl (d, init_loc, init.value,
init.original_type, asm_name);
result = d;
}
}
else
{
if (any_auto_type_p || specs->constexpr_p)
{
error_at (here,
"%qs requires an initialized data declaration",
any_auto_type_p ? auto_type_keyword : "constexpr");
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
location_t lastloc = UNKNOWN_LOCATION;
tree attrs = chainon (postfix_attrs, all_prefix_attrs);
tree d = start_decl (declarator, specs, false, attrs, true,
&lastloc);
if (d && TREE_CODE (d) == FUNCTION_DECL)
{
/* Find the innermost declarator that is neither cdk_id
nor cdk_attrs. */
const struct c_declarator *decl = declarator;
const struct c_declarator *last_non_id_attrs = NULL;
while (decl)
switch (decl->kind)
{
case cdk_array:
case cdk_function:
case cdk_pointer:
last_non_id_attrs = decl;
decl = decl->declarator;
break;
case cdk_attrs:
decl = decl->declarator;
break;
case cdk_id:
decl = 0;
break;
default:
gcc_unreachable ();
}
/* If it exists and is cdk_function declaration whose
arguments have not been set yet, use its arguments. */
if (last_non_id_attrs
&& last_non_id_attrs->kind == cdk_function)
{
tree parms = last_non_id_attrs->u.arg_info->parms;
if (DECL_ARGUMENTS (d) == NULL_TREE
&& DECL_INITIAL (d) == NULL_TREE)
DECL_ARGUMENTS (d) = parms;
warn_parm_array_mismatch (lastloc, d, parms);
}
}
if (omp_declare_simd_clauses
|| !omp_dsimd_idattr_clauses.is_empty ())
{
tree parms = NULL_TREE;
if (d && TREE_CODE (d) == FUNCTION_DECL)
{
struct c_declarator *ce = declarator;
while (ce != NULL)
if (ce->kind == cdk_function)
{
parms = ce->u.arg_info->parms;
break;
}
else
ce = ce->declarator;
}
if (parms)
temp_store_parm_decls (d, parms);
if (omp_declare_simd_clauses)
c_finish_omp_declare_simd (parser, d, parms,
omp_declare_simd_clauses);
if (!specs->constexpr_p
&& !omp_dsimd_idattr_clauses.is_empty ())
c_finish_omp_declare_simd (parser, d, parms,
&omp_dsimd_idattr_clauses);
if (parms)
temp_pop_parm_decls ();
}
if (oacc_routine_data)
c_finish_oacc_routine (oacc_routine_data, d, false);
if (d)
finish_decl (d, UNKNOWN_LOCATION, NULL_TREE,
NULL_TREE, asm_name);
if (c_parser_next_token_is_keyword (parser, RID_IN))
{
if (d)
*objc_foreach_object_declaration = d;
else
*objc_foreach_object_declaration = error_mark_node;
}
}
if (c_parser_next_token_is (parser, CPP_COMMA))
{
more_than_one_decl = true;
if (any_auto_type_p || specs->constexpr_p)
{
error_at (here,
"%qs may only be used with a single declarator",
any_auto_type_p ? auto_type_keyword : "constexpr");
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
c_parser_consume_token (parser);
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
all_prefix_attrs = chainon (c_parser_gnu_attributes (parser),
prefix_attrs);
else
all_prefix_attrs = prefix_attrs;
continue;
}
else if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
if (!simple_ok)
c_parser_consume_token (parser);
return result;
}
else if (c_parser_next_token_is_keyword (parser, RID_IN))
{
/* This can only happen in Objective-C: we found the
'in' that terminates the declaration inside an
Objective-C foreach statement. Do not consume the
token, so that the caller can use it to determine
that this indeed is a foreach context. */
return result;
}
else
{
if (!simple_ok)
{
c_parser_error (parser, "expected %<,%> or %<;%>");
c_parser_skip_to_end_of_block_or_statement (parser);
}
/* It's not valid to use if (int i = 2, j = 3). */
else if (more_than_one_decl)
error_at (here, "declaration in condition can only declare "
"a single object");
return result;
}
}
else if (any_auto_type_p || specs->constexpr_p)
{
error_at (here,
"%qs requires an initialized data declaration",
any_auto_type_p ? auto_type_keyword : "constexpr");
c_parser_skip_to_end_of_block_or_statement (parser);
return result;
}
else if (!fndef_ok)
{
if (simple_ok && c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
/* Let c_parser_selection_header emit the error. */;
else
{
c_parser_error (parser, "expected %<=%>, %<,%>, %<;%>, "
"% or %<__attribute__%>");
c_parser_skip_to_end_of_block_or_statement (parser);
}
return result;
}
/* Function definition (nested or otherwise). */
if (nested)
{
pedwarn (here, OPT_Wpedantic, "ISO C forbids nested functions");
c_push_function_context ();
}
if (!start_function (specs, declarator, all_prefix_attrs))
{
/* At this point we've consumed:
declaration-specifiers declarator
and the next token isn't CPP_EQ, CPP_COMMA, CPP_SEMICOLON,
RID_ASM, RID_ATTRIBUTE, or RID_IN,
but the
declaration-specifiers declarator
aren't grokkable as a function definition, so we have
an error. */
gcc_assert (!c_parser_next_token_is (parser, CPP_SEMICOLON));
if (c_parser_next_token_starts_declspecs (parser))
{
/* If we have
declaration-specifiers declarator decl-specs
then assume we have a missing semicolon, which would
give us:
declaration-specifiers declarator decl-specs
^
;
<~~~~~~~~~ declaration ~~~~~~~~~~>
Use c_parser_require to get an error with a fix-it hint. */
c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>");
parser->error = false;
}
else
{
/* This can appear in many cases looking nothing like a
function definition, so we don't give a more specific
error suggesting there was one. */
c_parser_error (parser, "expected %<=%>, %<,%>, %<;%>, % "
"or %<__attribute__%>");
}
if (nested)
c_pop_function_context ();
break;
}
if (DECL_DECLARED_INLINE_P (current_function_decl))
tv = TV_PARSE_INLINE;
else
tv = TV_PARSE_FUNC;
auto_timevar at (g_timer, tv);
/* Parse old-style parameter declarations. ??? Attributes are
not allowed to start declaration specifiers here because of a
syntax conflict between a function declaration with attribute
suffix and a function definition with an attribute prefix on
first old-style parameter declaration. Following the old
parser, they are not accepted on subsequent old-style
parameter declarations either. However, there is no
ambiguity after the first declaration, nor indeed on the
first as long as we don't allow postfix attributes after a
declarator with a nonempty identifier list in a definition;
and postfix attributes have never been accepted here in
function definitions either. */
int save_debug_nonbind_markers_p = debug_nonbind_markers_p;
debug_nonbind_markers_p = 0;
c_parser_maybe_reclassify_token (parser);
while (c_parser_next_token_is_not (parser, CPP_EOF)
&& c_parser_next_token_is_not (parser, CPP_OPEN_BRACE))
c_parser_declaration_or_fndef (parser, false, false, false,
true, false, false);
debug_nonbind_markers_p = save_debug_nonbind_markers_p;
store_parm_decls ();
if (omp_declare_simd_clauses)
c_finish_omp_declare_simd (parser, current_function_decl, NULL_TREE,
omp_declare_simd_clauses);
if (!omp_dsimd_idattr_clauses.is_empty ())
c_finish_omp_declare_simd (parser, current_function_decl, NULL_TREE,
&omp_dsimd_idattr_clauses);
if (oacc_routine_data)
c_finish_oacc_routine (oacc_routine_data, current_function_decl, true);
location_t startloc = c_parser_peek_token (parser)->location;
DECL_STRUCT_FUNCTION (current_function_decl)->function_start_locus
= startloc;
location_t endloc = startloc;
/* If the definition was marked with __RTL, use the RTL parser now,
consuming the function body. */
if (specs->declspec_il == cdil_rtl)
{
endloc = c_parser_parse_rtl_body (parser, specs->gimple_or_rtl_pass);
/* Normally, store_parm_decls sets next_is_function_body,
anticipating a function body. We need a push_scope/pop_scope
pair to flush out this state, or subsequent function parsing
will go wrong. */
push_scope ();
pop_scope ();
finish_function (endloc);
return result;
}
/* If the definition was marked with __GIMPLE then parse the
function body as GIMPLE. */
else if (specs->declspec_il != cdil_none)
{
bool saved = in_late_binary_op;
in_late_binary_op = true;
c_parser_parse_gimple_body (parser, specs->gimple_or_rtl_pass,
specs->declspec_il,
specs->entry_bb_count);
in_late_binary_op = saved;
}
else
fnbody = c_parser_compound_statement (parser, &endloc);
tree fndecl = current_function_decl;
if (nested)
{
tree decl = current_function_decl;
/* Mark nested functions as needing static-chain initially.
lower_nested_functions will recompute it but the
DECL_STATIC_CHAIN flag is also used before that happens,
by initializer_constant_valid_p. See gcc.dg/nested-fn-2.c. */
DECL_STATIC_CHAIN (decl) = 1;
add_stmt (fnbody);
finish_function (endloc);
c_pop_function_context ();
add_stmt (build_stmt (DECL_SOURCE_LOCATION (decl), DECL_EXPR, decl));
}
else
{
if (fnbody)
add_stmt (fnbody);
finish_function (endloc);
}
/* Get rid of the empty stmt list for GIMPLE/RTL. */
if (specs->declspec_il != cdil_none)
DECL_SAVED_TREE (fndecl) = NULL_TREE;
break;
}
return result;
}
/* Parse an asm-definition (asm() outside a function body). This is a
GNU extension.
asm-definition:
simple-asm-expr ;
asm ( toplevel-asm-argument ) ;
toplevel-asm-argument:
asm-string-literal
asm-string-literal : asm-operands[opt]
asm-string-literal : asm-operands[opt] : asm-operands[opt]
The :: token is considered equivalent to two consecutive : tokens. */
static void
c_parser_asm_definition (c_parser *parser)
{
location_t asm_loc = c_parser_peek_token (parser)->location;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ASM));
c_parser_consume_token (parser);
matching_parens parens;
tree asm_str = NULL_TREE;
tree outputs = NULL_TREE, inputs = NULL_TREE;
if (!parens.require_open (parser))
goto done;
asm_str = c_parser_asm_string_literal (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
parens.require_close (parser);
goto done;
}
for (int section = 0; section < 2; ++section)
{
if (c_parser_next_token_is (parser, CPP_SCOPE))
{
++section;
if (section == 2)
{
c_parser_error (parser, "expected %<)%>");
error_close_paren:
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
asm_str = NULL_TREE;
goto done;
}
c_parser_consume_token (parser);
}
else if (!c_parser_require (parser, CPP_COLON,
"expected %<:%> or %<)%>",
UNKNOWN_LOCATION, false))
goto error_close_paren;
if (!c_parser_next_token_is (parser, CPP_COLON)
&& !c_parser_next_token_is (parser, CPP_SCOPE)
&& !c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
if (section)
inputs = c_parser_asm_operands (parser);
else
outputs = c_parser_asm_operands (parser);
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
break;
}
if (!parens.require_close (parser))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
asm_str = NULL_TREE;
}
if (asm_str)
asm_str = build_asm_expr (asm_loc, asm_str, outputs, inputs,
NULL_TREE, NULL_TREE, false, false);
done:
if (asm_str)
symtab->finalize_toplevel_asm (asm_str);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
/* Parse a static assertion (C11 6.7.10).
static_assert-declaration:
static_assert-declaration-no-semi ;
*/
static void
c_parser_static_assert_declaration (c_parser *parser)
{
c_parser_static_assert_declaration_no_semi (parser);
if (parser->error
|| !c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>"))
c_parser_skip_to_end_of_block_or_statement (parser);
}
/* Parse a static assertion (C11 6.7.10), without the trailing
semicolon.
static_assert-declaration-no-semi:
_Static_assert ( constant-expression , string-literal )
C23:
static_assert-declaration-no-semi:
_Static_assert ( constant-expression )
*/
static void
c_parser_static_assert_declaration_no_semi (c_parser *parser)
{
location_t assert_loc, value_loc;
tree value;
tree string = NULL_TREE;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT));
tree spelling = c_parser_peek_token (parser)->value;
assert_loc = c_parser_peek_token (parser)->location;
if (flag_isoc99)
pedwarn_c99 (assert_loc, OPT_Wpedantic,
"ISO C99 does not support %qE", spelling);
else
pedwarn_c99 (assert_loc, OPT_Wpedantic,
"ISO C90 does not support %qE", spelling);
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
return;
location_t value_tok_loc = c_parser_peek_token (parser)->location;
value = convert_lvalue_to_rvalue (value_tok_loc,
c_parser_expr_no_commas (parser, NULL),
true, true).value;
value_loc = EXPR_LOC_OR_LOC (value, value_tok_loc);
if (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
switch (c_parser_peek_token (parser)->type)
{
case CPP_STRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_WSTRING:
case CPP_UTF8STRING:
string = c_parser_string_literal (parser, false, true).value;
break;
default:
c_parser_error (parser, "expected string literal");
return;
}
}
else if (flag_isoc11)
/* If pedantic for pre-C11, the use of _Static_assert itself will
have been diagnosed, so do not also diagnose the use of this
new C23 feature of _Static_assert. */
pedwarn_c11 (assert_loc, OPT_Wpedantic,
"ISO C11 does not support omitting the string in "
"%qE", spelling);
parens.require_close (parser);
if (!INTEGRAL_TYPE_P (TREE_TYPE (value)))
{
error_at (value_loc, "expression in static assertion is not an integer");
return;
}
if (TREE_CODE (value) != INTEGER_CST)
{
value = c_fully_fold (value, false, NULL);
/* Strip no-op conversions. */
STRIP_TYPE_NOPS (value);
if (TREE_CODE (value) == INTEGER_CST)
pedwarn (value_loc, OPT_Wpedantic, "expression in static assertion "
"is not an integer constant expression");
}
if (TREE_CODE (value) != INTEGER_CST)
{
error_at (value_loc, "expression in static assertion is not constant");
return;
}
constant_expression_warning (value);
if (integer_zerop (value))
{
if (string)
error_at (assert_loc, "static assertion failed: %E", string);
else
error_at (assert_loc, "static assertion failed");
}
}
/* Parse some declaration specifiers (possibly none) (C90 6.5, C99
6.7, C11 6.7), adding them to SPECS (which may already include some).
Storage class specifiers are accepted iff SCSPEC_OK; type
specifiers are accepted iff TYPESPEC_OK; alignment specifiers are
accepted iff ALIGNSPEC_OK; gnu-attributes are accepted at the start
iff START_ATTR_OK; __auto_type is accepted iff AUTO_TYPE_OK. In
addition to the syntax shown, standard attributes are accepted at
the start iff START_STD_ATTR_OK and at the end iff END_STD_ATTR_OK;
unlike gnu-attributes, they are not accepted in the middle of the
list. (This combines various different syntax productions in the C
standard, and in some cases gnu-attributes and standard attributes
at the start may already have been parsed before this function is
called.)
declaration-specifiers:
storage-class-specifier declaration-specifiers[opt]
type-specifier declaration-specifiers[opt]
type-qualifier declaration-specifiers[opt]
function-specifier declaration-specifiers[opt]
alignment-specifier declaration-specifiers[opt]
Function specifiers (inline) are from C99, and are currently
handled as storage class specifiers, as is __thread. Alignment
specifiers are from C11.
C90 6.5.1, C99 6.7.1, C11 6.7.1:
storage-class-specifier:
typedef
extern
static
auto
register
_Thread_local
(_Thread_local is new in C11.)
C99 6.7.4, C11 6.7.4:
function-specifier:
inline
_Noreturn
(_Noreturn is new in C11.)
C90 6.5.2, C99 6.7.2, C11 6.7.2:
type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
[_Imaginary removed in C99 TC2]
_BitInt ( constant-expression )
struct-or-union-specifier
enum-specifier
typedef-name
atomic-type-specifier
(_Bool and _Complex are new in C99.)
(atomic-type-specifier is new in C11.)
(_BitInt is new in C23.)
C90 6.5.3, C99 6.7.3, C11 6.7.3:
type-qualifier:
const
restrict
volatile
address-space-qualifier
_Atomic
(restrict is new in C99.)
(_Atomic is new in C11.)
GNU extensions:
declaration-specifiers:
gnu-attributes declaration-specifiers[opt]
type-qualifier:
address-space
address-space:
identifier recognized by the target
storage-class-specifier:
__thread
type-specifier:
typeof-specifier
__auto_type
__intN
_Decimal32
_Decimal64
_Decimal128
_Fract
_Accum
_Sat
(_Fract, _Accum, and _Sat are new from ISO/IEC DTR 18037:
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf)
atomic-type-specifier
_Atomic ( type-name )
Objective-C:
type-specifier:
class-name objc-protocol-refs[opt]
typedef-name objc-protocol-refs
objc-protocol-refs
*/
void
c_parser_declspecs (c_parser *parser, struct c_declspecs *specs,
bool scspec_ok, bool typespec_ok, bool start_attr_ok,
bool alignspec_ok, bool auto_type_ok,
bool start_std_attr_ok, bool end_std_attr_ok,
enum c_lookahead_kind la)
{
bool attrs_ok = start_attr_ok;
bool seen_type = specs->typespec_kind != ctsk_none;
if (!typespec_ok)
gcc_assert (la == cla_prefer_id);
if (start_std_attr_ok
&& c_parser_nth_token_starts_std_attributes (parser, 1))
{
gcc_assert (!specs->non_std_attrs_seen_p);
location_t loc = c_parser_peek_token (parser)->location;
tree attrs = c_parser_std_attribute_specifier_sequence (parser);
declspecs_add_attrs (loc, specs, attrs);
specs->non_std_attrs_seen_p = false;
}
while (c_parser_next_token_is (parser, CPP_NAME)
|| c_parser_next_token_is (parser, CPP_KEYWORD)
|| (c_dialect_objc () && c_parser_next_token_is (parser, CPP_LESS)))
{
struct c_typespec t;
tree attrs;
tree align;
location_t loc = c_parser_peek_token (parser)->location;
/* If we cannot accept a type, exit if the next token must start
one. Also, if we already have seen a tagged definition,
a typename would be an error anyway and likely the user
has simply forgotten a semicolon, so we exit. */
if ((!typespec_ok || specs->typespec_kind == ctsk_tagdef)
&& c_parser_next_tokens_start_typename (parser, la)
&& !c_parser_next_token_is_qualifier (parser)
&& !c_parser_next_token_is_keyword (parser, RID_ALIGNAS))
break;
if (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *name_token = c_parser_peek_token (parser);
tree value = name_token->value;
c_id_kind kind = name_token->id_kind;
if (kind == C_ID_ADDRSPACE)
{
addr_space_t as
= name_token->keyword - RID_FIRST_ADDR_SPACE;
declspecs_add_addrspace (name_token->location, specs, as);
c_parser_consume_token (parser);
attrs_ok = true;
continue;
}
gcc_assert (!c_parser_next_token_is_qualifier (parser));
/* If we cannot accept a type, and the next token must start one,
exit. Do the same if we already have seen a tagged definition,
since it would be an error anyway and likely the user has simply
forgotten a semicolon. */
if (seen_type || !c_parser_next_tokens_start_typename (parser, la))
break;
/* Now at an unknown typename (C_ID_ID), a C_ID_TYPENAME or
a C_ID_CLASSNAME. */
c_parser_consume_token (parser);
seen_type = true;
attrs_ok = true;
if (kind == C_ID_ID)
{
auto_diagnostic_group d;
name_hint hint = lookup_name_fuzzy (value, FUZZY_LOOKUP_TYPENAME,
loc);
if (const char *suggestion = hint.suggestion ())
{
gcc_rich_location richloc (loc);
richloc.add_fixit_replace (suggestion);
error_at (&richloc,
"unknown type name %qE; did you mean %qs?",
value, suggestion);
}
else
error_at (loc, "unknown type name %qE", value);
t.kind = ctsk_typedef;
t.spec = error_mark_node;
}
else if (kind == C_ID_TYPENAME
&& (!c_dialect_objc ()
|| c_parser_next_token_is_not (parser, CPP_LESS)))
{
t.kind = ctsk_typedef;
/* For a typedef name, record the meaning, not the name.
In case of 'foo foo, bar;'. */
t.spec = lookup_name (value);
}
else
{
tree proto = NULL_TREE;
gcc_assert (c_dialect_objc ());
t.kind = ctsk_objc;
if (c_parser_next_token_is (parser, CPP_LESS))
proto = c_parser_objc_protocol_refs (parser);
t.spec = objc_get_protocol_qualified_type (value, proto);
}
t.expr = NULL_TREE;
t.expr_const_operands = true;
t.has_enum_type_specifier = false;
declspecs_add_type (name_token->location, specs, t);
continue;
}
if (c_parser_next_token_is (parser, CPP_LESS))
{
/* Make "" equivalent to "id " -
nisse@lysator.liu.se. */
tree proto;
gcc_assert (c_dialect_objc ());
if (!typespec_ok || seen_type)
break;
proto = c_parser_objc_protocol_refs (parser);
t.kind = ctsk_objc;
t.spec = objc_get_protocol_qualified_type (NULL_TREE, proto);
t.expr = NULL_TREE;
t.expr_const_operands = true;
t.has_enum_type_specifier = false;
declspecs_add_type (loc, specs, t);
continue;
}
gcc_assert (c_parser_next_token_is (parser, CPP_KEYWORD));
switch (c_parser_peek_token (parser)->keyword)
{
case RID_STATIC:
case RID_EXTERN:
case RID_REGISTER:
case RID_TYPEDEF:
case RID_INLINE:
case RID_NORETURN:
case RID_AUTO:
case RID_THREAD:
case RID_CONSTEXPR:
if (!scspec_ok)
goto out;
attrs_ok = true;
/* TODO: Distinguish between function specifiers (inline, noreturn)
and storage class specifiers, either here or in
declspecs_add_scspec. */
declspecs_add_scspec (loc, specs,
c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
break;
case RID_AUTO_TYPE:
if (!auto_type_ok)
goto out;
/* Fall through. */
case RID_UNSIGNED:
case RID_LONG:
case RID_SHORT:
case RID_SIGNED:
case RID_COMPLEX:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_DFLOAT64X:
CASE_RID_FLOATN_NX:
case RID_BOOL:
case RID_FRACT:
case RID_ACCUM:
case RID_SAT:
case RID_INT_N_0:
case RID_INT_N_1:
case RID_INT_N_2:
case RID_INT_N_3:
if (!typespec_ok)
goto out;
attrs_ok = true;
seen_type = true;
if (c_dialect_objc ())
parser->objc_need_raw_identifier = true;
t.kind = ctsk_resword;
t.spec = c_parser_peek_token (parser)->value;
t.expr = NULL_TREE;
t.expr_const_operands = true;
t.has_enum_type_specifier = false;
declspecs_add_type (loc, specs, t);
c_parser_consume_token (parser);
break;
case RID_ENUM:
if (!typespec_ok)
goto out;
attrs_ok = true;
seen_type = true;
t = c_parser_enum_specifier (parser);
invoke_plugin_callbacks (PLUGIN_FINISH_TYPE, t.spec);
declspecs_add_type (loc, specs, t);
break;
case RID_STRUCT:
case RID_UNION:
if (!typespec_ok)
goto out;
attrs_ok = true;
seen_type = true;
t = c_parser_struct_or_union_specifier (parser);
invoke_plugin_callbacks (PLUGIN_FINISH_TYPE, t.spec);
declspecs_add_type (loc, specs, t);
break;
case RID_TYPEOF:
case RID_TYPEOF_UNQUAL:
/* ??? The old parser rejected typeof after other type
specifiers, but is a syntax error the best way of
handling this? */
if (!typespec_ok || seen_type)
goto out;
attrs_ok = true;
seen_type = true;
t = c_parser_typeof_specifier (parser);
declspecs_add_type (loc, specs, t);
break;
case RID_BITINT:
if (!typespec_ok)
goto out;
else
{
attrs_ok = true;
seen_type = true;
t.kind = ctsk_resword;
t.spec = c_parser_peek_token (parser)->value;
t.expr = error_mark_node;
t.expr_const_operands = true;
t.has_enum_type_specifier = false;
c_parser_consume_token (parser);
matching_parens parens;
if (parens.require_open (parser))
{
c_expr expr = c_parser_expr_no_commas (parser, NULL);
t.expr = convert_lvalue_to_rvalue (loc, expr, true,
true).value;
parens.skip_until_found_close (parser);
}
declspecs_add_type (loc, specs, t);
}
break;
case RID_ATOMIC:
/* C parser handling of Objective-C constructs needs
checking for correct lvalue-to-rvalue conversions, and
the code in build_modify_expr handling various
Objective-C cases, and that in build_unary_op handling
Objective-C cases for increment / decrement, also needs
updating; uses of TYPE_MAIN_VARIANT in objc_compare_types
and objc_types_are_equivalent may also need updates. */
if (c_dialect_objc ())
sorry ("%<_Atomic%> in Objective-C");
if (flag_isoc99)
pedwarn_c99 (loc, OPT_Wpedantic,
"ISO C99 does not support the %<_Atomic%> qualifier");
else
pedwarn_c99 (loc, OPT_Wpedantic,
"ISO C90 does not support the %<_Atomic%> qualifier");
attrs_ok = true;
tree value;
value = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (typespec_ok && c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
/* _Atomic ( type-name ). */
seen_type = true;
c_parser_consume_token (parser);
struct c_type_name *type = c_parser_type_name (parser);
t.kind = ctsk_typeof;
t.spec = error_mark_node;
t.expr = NULL_TREE;
t.expr_const_operands = true;
t.has_enum_type_specifier = false;
if (type != NULL)
t.spec = groktypename (type, &t.expr,
&t.expr_const_operands);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
if (t.spec != error_mark_node)
{
if (TREE_CODE (t.spec) == ARRAY_TYPE)
error_at (loc, "%<_Atomic%>-qualified array type");
else if (TREE_CODE (t.spec) == FUNCTION_TYPE)
error_at (loc, "%<_Atomic%>-qualified function type");
else if (TYPE_QUALS (t.spec) != TYPE_UNQUALIFIED)
error_at (loc, "%<_Atomic%> applied to a qualified type");
else
t.spec = c_build_qualified_type (t.spec, TYPE_QUAL_ATOMIC);
}
declspecs_add_type (loc, specs, t);
}
else
declspecs_add_qual (loc, specs, value);
break;
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
attrs_ok = true;
declspecs_add_qual (loc, specs, c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
break;
case RID_ATTRIBUTE:
if (!attrs_ok)
goto out;
attrs = c_parser_gnu_attributes (parser);
declspecs_add_attrs (loc, specs, attrs);
break;
case RID_ALIGNAS:
if (!alignspec_ok)
goto out;
align = c_parser_alignas_specifier (parser);
declspecs_add_alignas (loc, specs, align);
break;
case RID_GIMPLE:
if (! flag_gimple)
error_at (loc, "%<__GIMPLE%> only valid with %<-fgimple%>");
c_parser_consume_token (parser);
specs->declspec_il = cdil_gimple;
specs->locations[cdw_gimple] = loc;
c_parser_gimple_or_rtl_pass_list (parser, specs);
break;
case RID_RTL:
c_parser_consume_token (parser);
specs->declspec_il = cdil_rtl;
specs->locations[cdw_rtl] = loc;
c_parser_gimple_or_rtl_pass_list (parser, specs);
break;
default:
goto out;
}
}
out:
if (end_std_attr_ok
&& c_parser_nth_token_starts_std_attributes (parser, 1))
specs->postfix_attrs = c_parser_std_attribute_specifier_sequence (parser);
}
/* Parse an enum specifier (C90 6.5.2.2, C99 6.7.2.2, C11 6.7.2.2).
enum-specifier:
enum gnu-attributes[opt] identifier[opt] enum-type-specifier[opt]
{ enumerator-list } gnu-attributes[opt]
enum gnu-attributes[opt] identifier[opt] enum-type-specifier[opt]
{ enumerator-list , } gnu-attributes[opt] enum-type-specifier[opt]
enum gnu-attributes[opt] identifier
The form with trailing comma is new in C99; enum-type-specifiers
are new in C23. The forms with gnu-attributes are GNU extensions.
In GNU C, we accept any expression without commas in the syntax
(assignment expressions, not just conditional expressions);
assignment expressions will be diagnosed as non-constant.
enum-type-specifier:
: specifier-qualifier-list
enumerator-list:
enumerator
enumerator-list , enumerator
enumerator:
enumeration-constant attribute-specifier-sequence[opt]
enumeration-constant attribute-specifier-sequence[opt]
= constant-expression
GNU Extensions:
enumerator:
enumeration-constant attribute-specifier-sequence[opt] gnu-attributes[opt]
enumeration-constant attribute-specifier-sequence[opt] gnu-attributes[opt]
= constant-expression
*/
static struct c_typespec
c_parser_enum_specifier (c_parser *parser)
{
struct c_typespec ret;
bool have_std_attrs;
bool potential_nesting_p = false;
tree std_attrs = NULL_TREE;
tree attrs;
tree ident = NULL_TREE;
tree fixed_underlying_type = NULL_TREE;
location_t enum_loc;
location_t ident_loc = UNKNOWN_LOCATION; /* Quiet warning. */
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ENUM));
c_parser_consume_token (parser);
have_std_attrs = c_parser_nth_token_starts_std_attributes (parser, 1);
if (have_std_attrs)
std_attrs = c_parser_std_attribute_specifier_sequence (parser);
attrs = c_parser_gnu_attributes (parser);
enum_loc = c_parser_peek_token (parser)->location;
/* Set the location in case we create a decl now. */
c_parser_set_source_position_from_token (c_parser_peek_token (parser));
if (c_parser_next_token_is (parser, CPP_NAME))
{
ident = c_parser_peek_token (parser)->value;
ident_loc = c_parser_peek_token (parser)->location;
enum_loc = ident_loc;
c_parser_consume_token (parser);
}
if (c_parser_next_token_is (parser, CPP_COLON)
/* Distinguish an enum-type-specifier from a bit-field
declaration of the form "enum e : constant-expression;". */
&& c_token_starts_typename (c_parser_peek_2nd_token (parser)))
{
pedwarn_c11 (enum_loc, OPT_Wpedantic,
"ISO C does not support specifying % underlying "
"types before C23");
if (ident)
{
/* The tag is in scope during the enum-type-specifier (which
may refer to the tag inside typeof). */
ret = parser_xref_tag (ident_loc, ENUMERAL_TYPE, ident,
have_std_attrs, std_attrs, true);
if (!ENUM_FIXED_UNDERLYING_TYPE_P (ret.spec))
error_at (enum_loc, "% declared both with and without "
"fixed underlying type");
potential_nesting_p = NULL_TREE == TYPE_VALUES (ret.spec);
}
else
{
/* There must be an enum definition, so this initialization
(to avoid possible warnings about uninitialized data)
will be replaced later (either with the results of that
definition, or with the results of error handling for the
case of no tag and no definition). */
ret.spec = NULL_TREE;
ret.kind = ctsk_tagdef;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
ret.has_enum_type_specifier = true;
}
c_parser_consume_token (parser);
struct c_declspecs *specs = build_null_declspecs ();
c_parser_declspecs (parser, specs, false, true, false, false, false,
false, true, cla_prefer_id);
finish_declspecs (specs);
if (specs->default_int_p)
error_at (enum_loc, "no % underlying type specified");
else if (TREE_CODE (specs->type) != INTEGER_TYPE
&& TREE_CODE (specs->type) != BOOLEAN_TYPE)
{
error_at (enum_loc, "invalid % underlying type");
specs->type = integer_type_node;
}
else if (specs->restrict_p)
error_at (enum_loc, "invalid use of %");
fixed_underlying_type = TYPE_MAIN_VARIANT (specs->type);
if (ident)
{
/* The type specified must be consistent with any previously
specified underlying type. If this is a newly declared
type, it is now a complete type. */
if (ENUM_FIXED_UNDERLYING_TYPE_P (ret.spec)
&& ENUM_UNDERLYING_TYPE (ret.spec) == NULL_TREE)
{
TYPE_MIN_VALUE (ret.spec) =
TYPE_MIN_VALUE (fixed_underlying_type);
TYPE_MAX_VALUE (ret.spec) =
TYPE_MAX_VALUE (fixed_underlying_type);
TYPE_UNSIGNED (ret.spec) = TYPE_UNSIGNED (fixed_underlying_type);
SET_TYPE_ALIGN (ret.spec, TYPE_ALIGN (fixed_underlying_type));
TYPE_SIZE (ret.spec) = NULL_TREE;
TYPE_PRECISION (ret.spec) =
TYPE_PRECISION (fixed_underlying_type);
ENUM_UNDERLYING_TYPE (ret.spec) = fixed_underlying_type;
layout_type (ret.spec);
}
else if (ENUM_FIXED_UNDERLYING_TYPE_P (ret.spec)
&& !comptypes (fixed_underlying_type,
ENUM_UNDERLYING_TYPE (ret.spec)))
{
error_at (enum_loc, "% underlying type incompatible with "
"previous declaration");
fixed_underlying_type = ENUM_UNDERLYING_TYPE (ret.spec);
}
}
}
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
/* Parse an enum definition. */
struct c_enum_contents the_enum;
tree type;
tree postfix_attrs;
/* We chain the enumerators in reverse order, then put them in
forward order at the end. */
tree values;
timevar_push (TV_PARSE_ENUM);
type = start_enum (enum_loc, &the_enum, ident, fixed_underlying_type,
potential_nesting_p);
values = NULL_TREE;
c_parser_consume_token (parser);
while (true)
{
tree enum_id;
tree enum_value;
tree enum_decl;
bool seen_comma;
c_token *token;
location_t comma_loc = UNKNOWN_LOCATION; /* Quiet warning. */
location_t decl_loc, value_loc;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
/* Give a nicer error for "enum {}". */
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)
&& !parser->error)
{
error_at (c_parser_peek_token (parser)->location,
"empty enum is invalid");
parser->error = true;
}
else
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL);
values = error_mark_node;
break;
}
token = c_parser_peek_token (parser);
enum_id = token->value;
/* Set the location in case we create a decl now. */
c_parser_set_source_position_from_token (token);
decl_loc = value_loc = token->location;
c_parser_consume_token (parser);
/* Parse any specified attributes. */
tree std_attrs = NULL_TREE;
if (c_parser_nth_token_starts_std_attributes (parser, 1))
std_attrs = c_parser_std_attribute_specifier_sequence (parser);
tree enum_attrs = chainon (std_attrs,
c_parser_gnu_attributes (parser));
if (c_parser_next_token_is (parser, CPP_EQ))
{
c_parser_consume_token (parser);
value_loc = c_parser_peek_token (parser)->location;
enum_value = convert_lvalue_to_rvalue (value_loc,
(c_parser_expr_no_commas
(parser, NULL)),
true, true).value;
}
else
enum_value = NULL_TREE;
enum_decl = build_enumerator (decl_loc, value_loc,
&the_enum, enum_id, enum_value);
if (enum_attrs)
decl_attributes (&TREE_PURPOSE (enum_decl), enum_attrs, 0);
TREE_CHAIN (enum_decl) = values;
values = enum_decl;
seen_comma = false;
if (c_parser_next_token_is (parser, CPP_COMMA))
{
comma_loc = c_parser_peek_token (parser)->location;
seen_comma = true;
c_parser_consume_token (parser);
}
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
if (seen_comma)
pedwarn_c90 (comma_loc, OPT_Wpedantic,
"comma at end of enumerator list");
c_parser_consume_token (parser);
break;
}
if (!seen_comma)
{
c_parser_error (parser, "expected %<,%> or %<}%>");
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL);
values = error_mark_node;
break;
}
}
postfix_attrs = c_parser_gnu_attributes (parser);
ret.spec = finish_enum (type, nreverse (values),
chainon (std_attrs,
chainon (attrs, postfix_attrs)));
ret.kind = ctsk_tagdef;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
ret.has_enum_type_specifier = fixed_underlying_type != NULL_TREE;
timevar_pop (TV_PARSE_ENUM);
return ret;
}
else if (!ident)
{
c_parser_error (parser, "expected %<{%>");
ret.spec = error_mark_node;
ret.kind = ctsk_tagref;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
ret.has_enum_type_specifier = false;
return ret;
}
/* Attributes may only appear when the members are defined or in
certain forward declarations (treat enum forward declarations in
GNU C analogously to struct and union forward declarations in
standard C). */
if (have_std_attrs && c_parser_next_token_is_not (parser, CPP_SEMICOLON))
c_parser_error (parser, "expected %<;%>");
if (fixed_underlying_type == NULL_TREE)
{
ret = parser_xref_tag (ident_loc, ENUMERAL_TYPE, ident, have_std_attrs,
std_attrs, false);
/* In ISO C, enumerated types without a fixed underlying type
can be referred to only if already defined. */
if (pedantic && !COMPLETE_TYPE_P (ret.spec))
{
gcc_assert (ident);
pedwarn (enum_loc, OPT_Wpedantic,
"ISO C forbids forward references to % types");
}
}
return ret;
}
/* Parse a struct or union specifier (C90 6.5.2.1, C99 6.7.2.1, C11 6.7.2.1).
struct-or-union-specifier:
struct-or-union attribute-specifier-sequence[opt] gnu-attributes[opt]
identifier[opt] { struct-contents } gnu-attributes[opt]
struct-or-union attribute-specifier-sequence[opt] gnu-attributes[opt]
identifier
struct-contents:
struct-declaration-list
struct-declaration-list:
struct-declaration ;
struct-declaration-list struct-declaration ;
GNU extensions:
struct-contents:
empty
struct-declaration
struct-declaration-list struct-declaration
struct-declaration-list:
struct-declaration-list ;
;
(Note that in the syntax here, unlike that in ISO C, the semicolons
are included here rather than in struct-declaration, in order to
describe the syntax with extra semicolons and missing semicolon at
end.)
Objective-C:
struct-declaration-list:
@defs ( class-name )
(Note this does not include a trailing semicolon, but can be
followed by further declarations, and gets a pedwarn-if-pedantic
when followed by a semicolon.) */
static struct c_typespec
c_parser_struct_or_union_specifier (c_parser *parser)
{
struct c_typespec ret;
bool have_std_attrs;
tree std_attrs = NULL_TREE;
tree attrs;
tree ident = NULL_TREE;
location_t struct_loc;
location_t ident_loc = UNKNOWN_LOCATION;
enum tree_code code;
switch (c_parser_peek_token (parser)->keyword)
{
case RID_STRUCT:
code = RECORD_TYPE;
break;
case RID_UNION:
code = UNION_TYPE;
break;
default:
gcc_unreachable ();
}
struct_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
have_std_attrs = c_parser_nth_token_starts_std_attributes (parser, 1);
if (have_std_attrs)
std_attrs = c_parser_std_attribute_specifier_sequence (parser);
attrs = c_parser_gnu_attributes (parser);
/* Set the location in case we create a decl now. */
c_parser_set_source_position_from_token (c_parser_peek_token (parser));
if (c_parser_next_token_is (parser, CPP_NAME))
{
ident = c_parser_peek_token (parser)->value;
ident_loc = c_parser_peek_token (parser)->location;
struct_loc = ident_loc;
c_parser_consume_token (parser);
}
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
/* Parse a struct or union definition. Start the scope of the
tag before parsing components. */
class c_struct_parse_info *struct_info;
tree type = start_struct (struct_loc, code, ident, &struct_info);
tree postfix_attrs;
/* We chain the components in reverse order, then put them in
forward order at the end. Each struct-declaration may
declare multiple components (comma-separated), so we must use
chainon to join them, although when parsing each
struct-declaration we can use TREE_CHAIN directly.
The theory behind all this is that there will be more
semicolon separated fields than comma separated fields, and
so we'll be minimizing the number of node traversals required
by chainon. */
tree contents;
tree expr = NULL;
timevar_push (TV_PARSE_STRUCT);
contents = NULL_TREE;
c_parser_consume_token (parser);
/* Handle the Objective-C @defs construct,
e.g. foo(sizeof(struct{ @defs(ClassName) }));. */
if (c_parser_next_token_is_keyword (parser, RID_AT_DEFS))
{
tree name;
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
goto end_at_defs;
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME)
{
name = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else
{
c_parser_error (parser, "expected class name");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
goto end_at_defs;
}
parens.skip_until_found_close (parser);
contents = nreverse (objc_get_class_ivars (name));
}
end_at_defs:
/* Parse the struct-declarations and semicolons. Problems with
semicolons are diagnosed here; empty structures are diagnosed
elsewhere. */
while (true)
{
tree decls;
/* Parse any stray semicolon. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
location_t semicolon_loc
= c_parser_peek_token (parser)->location;
gcc_rich_location richloc (semicolon_loc);
richloc.add_fixit_remove ();
pedwarn (&richloc, OPT_Wpedantic,
"extra semicolon in struct or union specified");
c_parser_consume_token (parser);
continue;
}
/* Stop if at the end of the struct or union contents. */
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
c_parser_consume_token (parser);
break;
}
/* Accept #pragmas at struct scope. */
if (c_parser_next_token_is (parser, CPP_PRAGMA))
{
c_parser_pragma (parser, pragma_struct, NULL, NULL_TREE);
continue;
}
/* Parse some comma-separated declarations, but not the
trailing semicolon if any. */
decls = c_parser_struct_declaration (parser, &expr);
contents = chainon (decls, contents);
/* If no semicolon follows, either we have a parse error or
are at the end of the struct or union and should
pedwarn. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
c_parser_consume_token (parser);
else
{
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
pedwarn (c_parser_peek_token (parser)->location, 0,
"no semicolon at end of struct or union");
else if (parser->error
|| !c_parser_next_token_starts_declspecs (parser))
{
c_parser_error (parser, "expected %<;%>");
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL);
break;
}
/* If we come here, we have already emitted an error
for an expected `;', identifier or `(', and we also
recovered already. Go on with the next field. */
}
}
postfix_attrs = c_parser_gnu_attributes (parser);
ret.spec = finish_struct (struct_loc, type, nreverse (contents),
chainon (std_attrs,
chainon (attrs, postfix_attrs)),
struct_info, &expr);
ret.kind = ctsk_tagdef;
ret.expr = expr;
ret.expr_const_operands = true;
ret.has_enum_type_specifier = false;
timevar_pop (TV_PARSE_STRUCT);
return ret;
}
else if (!ident)
{
c_parser_error (parser, "expected %<{%>");
ret.spec = error_mark_node;
ret.kind = ctsk_tagref;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
ret.has_enum_type_specifier = false;
return ret;
}
/* Attributes may only appear when the members are defined or in
certain forward declarations. */
if (have_std_attrs && c_parser_next_token_is_not (parser, CPP_SEMICOLON))
c_parser_error (parser, "expected %<;%>");
/* ??? Existing practice is that GNU attributes are ignored after
the struct or union keyword when not defining the members. */
ret = parser_xref_tag (ident_loc, code, ident, have_std_attrs, std_attrs,
false);
return ret;
}
/* Parse a struct-declaration (C90 6.5.2.1, C99 6.7.2.1, C11 6.7.2.1),
*without* the trailing semicolon.
struct-declaration:
attribute-specifier-sequence[opt] specifier-qualifier-list
attribute-specifier-sequence[opt] struct-declarator-list
static_assert-declaration-no-semi
specifier-qualifier-list:
type-specifier specifier-qualifier-list[opt]
type-qualifier specifier-qualifier-list[opt]
alignment-specifier specifier-qualifier-list[opt]
gnu-attributes specifier-qualifier-list[opt]
struct-declarator-list:
struct-declarator
struct-declarator-list , gnu-attributes[opt] struct-declarator
struct-declarator:
declarator gnu-attributes[opt]
declarator[opt] : constant-expression gnu-attributes[opt]
GNU extensions:
struct-declaration:
__extension__ struct-declaration
specifier-qualifier-list
Unlike the ISO C syntax, semicolons are handled elsewhere. The use
of gnu-attributes where shown is a GNU extension. In GNU C, we accept
any expression without commas in the syntax (assignment
expressions, not just conditional expressions); assignment
expressions will be diagnosed as non-constant. */
static tree
c_parser_struct_declaration (c_parser *parser, tree *expr)
{
struct c_declspecs *specs;
tree prefix_attrs;
tree all_prefix_attrs;
tree decls;
location_t decl_loc;
if (c_parser_next_token_is_keyword (parser, RID_EXTENSION))
{
int ext;
tree decl;
ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
decl = c_parser_struct_declaration (parser, expr);
restore_extension_diagnostics (ext);
return decl;
}
if (c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT))
{
c_parser_static_assert_declaration_no_semi (parser);
return NULL_TREE;
}
specs = build_null_declspecs ();
decl_loc = c_parser_peek_token (parser)->location;
/* Strictly by the standard, we shouldn't allow _Alignas here,
but it appears to have been intended to allow it there, so
we're keeping it as it is until WG14 reaches a conclusion
of N1731.
*/
c_parser_declspecs (parser, specs, false, true, true,
true, false, true, true, cla_nonabstract_decl);
if (parser->error)
return NULL_TREE;
if (!specs->declspecs_seen_p)
{
c_parser_error (parser, "expected specifier-qualifier-list");
return NULL_TREE;
}
finish_declspecs (specs);
if (c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
tree ret;
if (specs->typespec_kind == ctsk_none)
{
pedwarn (decl_loc, OPT_Wpedantic,
"ISO C forbids member declarations with no members");
shadow_tag_warned (specs, pedantic);
ret = NULL_TREE;
}
else
{
/* Support for unnamed structs or unions as members of
structs or unions (which is [a] useful and [b] supports
MS P-SDK). */
tree attrs = NULL;
ret = grokfield (c_parser_peek_token (parser)->location,
build_id_declarator (NULL_TREE), specs,
NULL_TREE, &attrs, expr);
if (ret)
decl_attributes (&ret, attrs, 0);
}
return ret;
}
/* Provide better error recovery. Note that a type name here is valid,
and will be treated as a field name. */
if (specs->typespec_kind == ctsk_tagdef
&& TREE_CODE (specs->type) != ENUMERAL_TYPE
&& c_parser_next_token_starts_declspecs (parser)
&& !c_parser_next_token_is (parser, CPP_NAME))
{
c_parser_error (parser, "expected %<;%>, identifier or %<(%>");
parser->error = false;
return NULL_TREE;
}
pending_xref_error ();
prefix_attrs = specs->attrs;
all_prefix_attrs = prefix_attrs;
specs->attrs = NULL_TREE;
decls = NULL_TREE;
while (true)
{
/* Declaring one or more declarators or un-named bit-fields. */
struct c_declarator *declarator;
bool dummy = false;
if (c_parser_next_token_is (parser, CPP_COLON))
declarator = build_id_declarator (NULL_TREE);
else
declarator = c_parser_declarator (parser,
specs->typespec_kind != ctsk_none,
C_DTR_NORMAL, &dummy);
if (declarator == NULL)
{
c_parser_skip_to_end_of_block_or_statement (parser);
break;
}
if (c_parser_next_token_is (parser, CPP_COLON)
|| c_parser_next_token_is (parser, CPP_COMMA)
|| c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is (parser, CPP_CLOSE_BRACE)
|| c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
{
tree postfix_attrs = NULL_TREE;
tree width = NULL_TREE;
tree d;
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
location_t loc = c_parser_peek_token (parser)->location;
width = convert_lvalue_to_rvalue (loc,
(c_parser_expr_no_commas
(parser, NULL)),
true, true).value;
}
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
postfix_attrs = c_parser_gnu_attributes (parser);
d = grokfield (c_parser_peek_token (parser)->location,
declarator, specs, width, &all_prefix_attrs, expr);
decl_attributes (&d, chainon (postfix_attrs,
all_prefix_attrs), 0);
DECL_CHAIN (d) = decls;
decls = d;
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
all_prefix_attrs = chainon (c_parser_gnu_attributes (parser),
prefix_attrs);
else
all_prefix_attrs = prefix_attrs;
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else if (c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
/* Semicolon consumed in caller. */
break;
}
else
{
c_parser_error (parser, "expected %<,%>, %<;%> or %<}%>");
break;
}
}
else
{
c_parser_error (parser,
"expected %<:%>, %<,%>, %<;%>, %<}%> or "
"%<__attribute__%>");
break;
}
}
return decls;
}
/* Parse a typeof specifier (a GNU extension adopted in C23).
typeof-specifier:
typeof ( expression )
typeof ( type-name )
typeof_unqual ( expression )
typeof_unqual ( type-name )
*/
static struct c_typespec
c_parser_typeof_specifier (c_parser *parser)
{
bool is_unqual;
bool is_std;
struct c_typespec ret;
ret.kind = ctsk_typeof;
ret.spec = error_mark_node;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
ret.has_enum_type_specifier = false;
if (c_parser_next_token_is_keyword (parser, RID_TYPEOF))
{
is_unqual = false;
tree spelling = c_parser_peek_token (parser)->value;
is_std = (flag_isoc23
&& strcmp (IDENTIFIER_POINTER (spelling), "typeof") == 0);
}
else
{
gcc_assert (c_parser_next_token_is_keyword (parser, RID_TYPEOF_UNQUAL));
is_unqual = true;
tree spelling = c_parser_peek_token (parser)->value;
is_std = strcmp (IDENTIFIER_POINTER (spelling), "typeof_unqual") == 0;
}
c_parser_consume_token (parser);
c_inhibit_evaluation_warnings++;
in_typeof++;
matching_parens parens;
if (!parens.require_open (parser))
{
c_inhibit_evaluation_warnings--;
in_typeof--;
return ret;
}
if (c_parser_next_tokens_start_typename (parser, cla_prefer_id))
{
struct c_type_name *type = c_parser_type_name (parser);
c_inhibit_evaluation_warnings--;
in_typeof--;
if (type != NULL)
{
ret.spec = groktypename (type, &ret.expr, &ret.expr_const_operands);
pop_maybe_used (c_type_variably_modified_p (ret.spec));
}
}
else
{
bool was_vm;
location_t here = c_parser_peek_token (parser)->location;
struct c_expr expr = c_parser_expression (parser);
c_inhibit_evaluation_warnings--;
in_typeof--;
if (TREE_CODE (expr.value) == COMPONENT_REF
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr.value, 1)))
error_at (here, "% applied to a bit-field");
mark_exp_read (expr.value);
ret.spec = TREE_TYPE (expr.value);
was_vm = c_type_variably_modified_p (ret.spec);
/* This is returned with the type so that when the type is
evaluated, this can be evaluated. */
if (was_vm)
ret.expr = c_fully_fold (expr.value, false, &ret.expr_const_operands);
pop_maybe_used (was_vm);
}
parens.skip_until_found_close (parser);
if (ret.spec != error_mark_node)
{
if (is_unqual)
{
bool is_array = TREE_CODE (ret.spec) == ARRAY_TYPE;
int quals = TYPE_QUALS (strip_array_types (ret.spec));
if ((is_array ? quals & ~TYPE_QUAL_ATOMIC : quals)
!= TYPE_UNQUALIFIED)
{
ret.spec = TYPE_MAIN_VARIANT (ret.spec);
if (quals & TYPE_QUAL_ATOMIC && is_array)
ret.spec = c_build_qualified_type (ret.spec,
TYPE_QUAL_ATOMIC);
}
}
if (is_std)
{
/* In ISO C terms, _Noreturn is not part of the type of
expressions such as &abort, but in GCC it is represented
internally as a type qualifier. */
if (TREE_CODE (ret.spec) == FUNCTION_TYPE
&& TYPE_QUALS (ret.spec) != TYPE_UNQUALIFIED)
ret.spec = TYPE_MAIN_VARIANT (ret.spec);
else if (FUNCTION_POINTER_TYPE_P (ret.spec)
&& TYPE_QUALS (TREE_TYPE (ret.spec)) != TYPE_UNQUALIFIED)
ret.spec
= c_build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (ret.spec)));
}
}
return ret;
}
/* Parse an alignment-specifier.
C11 6.7.5:
alignment-specifier:
_Alignas ( type-name )
_Alignas ( constant-expression )
*/
static tree
c_parser_alignas_specifier (c_parser * parser)
{
tree ret = error_mark_node;
location_t loc = c_parser_peek_token (parser)->location;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ALIGNAS));
tree spelling = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (flag_isoc99)
pedwarn_c99 (loc, OPT_Wpedantic,
"ISO C99 does not support %qE", spelling);
else
pedwarn_c99 (loc, OPT_Wpedantic,
"ISO C90 does not support %qE", spelling);
matching_parens parens;
if (!parens.require_open (parser))
return ret;
if (c_parser_next_tokens_start_typename (parser, cla_prefer_id))
{
struct c_type_name *type = c_parser_type_name (parser);
if (type != NULL)
ret = c_sizeof_or_alignof_type (loc, groktypename (type, NULL, NULL),
false, true, 1);
}
else
ret = convert_lvalue_to_rvalue (loc,
c_parser_expr_no_commas (parser, NULL),
true, true).value;
parens.skip_until_found_close (parser);
return ret;
}
/* Parse a declarator, possibly an abstract declarator (C90 6.5.4,
6.5.5, C99 6.7.5, 6.7.6, C11 6.7.6, 6.7.7). If TYPE_SEEN_P then
a typedef name may be redeclared; otherwise it may not. KIND
indicates which kind of declarator is wanted. Returns a valid
declarator except in the case of a syntax error in which case NULL is
returned. *SEEN_ID is set to true if an identifier being declared is
seen; this is used to diagnose bad forms of abstract array declarators
and to determine whether an identifier list is syntactically permitted.
declarator:
pointer[opt] direct-declarator
direct-declarator:
identifier
( gnu-attributes[opt] declarator )
direct-declarator array-declarator
direct-declarator ( parameter-type-list )
direct-declarator ( identifier-list[opt] )
pointer:
* type-qualifier-list[opt]
* type-qualifier-list[opt] pointer
type-qualifier-list:
type-qualifier
gnu-attributes
type-qualifier-list type-qualifier
type-qualifier-list gnu-attributes
array-declarator:
[ type-qualifier-list[opt] assignment-expression[opt] ]
[ static type-qualifier-list[opt] assignment-expression ]
[ type-qualifier-list static assignment-expression ]
[ type-qualifier-list[opt] * ]
parameter-type-list:
parameter-list
parameter-list , ...
parameter-list:
parameter-declaration
parameter-list , parameter-declaration
parameter-declaration:
declaration-specifiers declarator gnu-attributes[opt]
declaration-specifiers abstract-declarator[opt] gnu-attributes[opt]
identifier-list:
identifier
identifier-list , identifier
abstract-declarator:
pointer
pointer[opt] direct-abstract-declarator
direct-abstract-declarator:
( gnu-attributes[opt] abstract-declarator )
direct-abstract-declarator[opt] array-declarator
direct-abstract-declarator[opt] ( parameter-type-list[opt] )
GNU extensions:
direct-declarator:
direct-declarator ( parameter-forward-declarations
parameter-type-list[opt] )
direct-abstract-declarator:
direct-abstract-declarator[opt] ( parameter-forward-declarations
parameter-type-list[opt] )
parameter-forward-declarations:
parameter-list ;
parameter-forward-declarations parameter-list ;
The uses of gnu-attributes shown above are GNU extensions.
Some forms of array declarator are not included in C99 in the
syntax for abstract declarators; these are disallowed elsewhere.
This may be a defect (DR#289).
This function also accepts an omitted abstract declarator as being
an abstract declarator, although not part of the formal syntax. */
struct c_declarator *
c_parser_declarator (c_parser *parser, bool type_seen_p, c_dtr_syn kind,
bool *seen_id)
{
/* Parse any initial pointer part. */
if (c_parser_next_token_is (parser, CPP_MULT))
{
struct c_declspecs *quals_attrs = build_null_declspecs ();
struct c_declarator *inner;
c_parser_consume_token (parser);
c_parser_declspecs (parser, quals_attrs, false, false, true,
false, false, true, false, cla_prefer_id);
inner = c_parser_declarator (parser, type_seen_p, kind, seen_id);
if (inner == NULL)
return NULL;
else
return make_pointer_declarator (quals_attrs, inner);
}
/* Now we have a direct declarator, direct abstract declarator or
nothing (which counts as a direct abstract declarator here). */
return c_parser_direct_declarator (parser, type_seen_p, kind, seen_id);
}
/* Parse a direct declarator or direct abstract declarator; arguments
as c_parser_declarator. */
static struct c_declarator *
c_parser_direct_declarator (c_parser *parser, bool type_seen_p, c_dtr_syn kind,
bool *seen_id)
{
/* The direct declarator must start with an identifier (possibly
omitted) or a parenthesized declarator (possibly abstract). In
an ordinary declarator, initial parentheses must start a
parenthesized declarator. In an abstract declarator or parameter
declarator, they could start a parenthesized declarator or a
parameter list. To tell which, the open parenthesis and any
following gnu-attributes must be read. If a declaration
specifier or standard attributes follow, then it is a parameter
list; if the specifier is a typedef name, there might be an
ambiguity about redeclaring it, which is resolved in the
direction of treating it as a typedef name. If a close
parenthesis follows, it is also an empty parameter list, as the
syntax does not permit empty abstract declarators. Otherwise, it
is a parenthesized declarator (in which case the analysis may be
repeated inside it, recursively).
??? There is an ambiguity in a parameter declaration "int
(__attribute__((foo)) x)", where x is not a typedef name: it
could be an abstract declarator for a function, or declare x with
parentheses. The proper resolution of this ambiguity needs
documenting. At present we follow an accident of the old
parser's implementation, whereby the first parameter must have
some declaration specifiers other than just gnu-attributes. Thus as
a parameter declaration it is treated as a parenthesized
parameter named x, and as an abstract declarator it is
rejected.
??? Also following the old parser, gnu-attributes inside an empty
parameter list are ignored, making it a list not yielding a
prototype, rather than giving an error or making it have one
parameter with implicit type int.
??? Also following the old parser, typedef names may be
redeclared in declarators, but not Objective-C class names. */
if (kind != C_DTR_ABSTRACT
&& c_parser_next_token_is (parser, CPP_NAME)
&& ((type_seen_p
&& (c_parser_peek_token (parser)->id_kind == C_ID_TYPENAME
|| c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME))
|| c_parser_peek_token (parser)->id_kind == C_ID_ID))
{
struct c_declarator *inner
= build_id_declarator (c_parser_peek_token (parser)->value);
*seen_id = true;
inner->id_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
if (c_parser_nth_token_starts_std_attributes (parser, 1))
inner->u.id.attrs = c_parser_std_attribute_specifier_sequence (parser);
return c_parser_direct_declarator_inner (parser, *seen_id, inner);
}
if (kind != C_DTR_NORMAL
&& c_parser_next_token_is (parser, CPP_OPEN_SQUARE)
&& !c_parser_nth_token_starts_std_attributes (parser, 1))
{
struct c_declarator *inner = build_id_declarator (NULL_TREE);
inner->id_loc = c_parser_peek_token (parser)->location;
return c_parser_direct_declarator_inner (parser, *seen_id, inner);
}
/* Either we are at the end of an abstract declarator, or we have
parentheses. */
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
tree attrs;
struct c_declarator *inner;
c_parser_consume_token (parser);
bool have_gnu_attrs = c_parser_next_token_is_keyword (parser,
RID_ATTRIBUTE);
attrs = c_parser_gnu_attributes (parser);
if (kind != C_DTR_NORMAL
&& (c_parser_next_token_starts_declspecs (parser)
|| (!have_gnu_attrs
&& (c_parser_nth_token_starts_std_attributes (parser, 1)
|| c_parser_next_token_is (parser, CPP_ELLIPSIS)))
|| c_parser_next_token_is (parser, CPP_CLOSE_PAREN)))
{
struct c_arg_info *args
= c_parser_parms_declarator (parser, kind == C_DTR_NORMAL,
attrs, have_gnu_attrs);
if (args == NULL)
return NULL;
else
{
inner = build_id_declarator (NULL_TREE);
if (!(args->types
&& args->types != error_mark_node
&& TREE_CODE (TREE_VALUE (args->types)) == IDENTIFIER_NODE)
&& c_parser_nth_token_starts_std_attributes (parser, 1))
{
tree std_attrs
= c_parser_std_attribute_specifier_sequence (parser);
if (std_attrs)
inner = build_attrs_declarator (std_attrs, inner);
}
inner = build_function_declarator (args, inner);
return c_parser_direct_declarator_inner (parser, *seen_id,
inner);
}
}
/* A parenthesized declarator. */
inner = c_parser_declarator (parser, type_seen_p, kind, seen_id);
if (inner != NULL && attrs != NULL)
inner = build_attrs_declarator (attrs, inner);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
if (inner == NULL)
return NULL;
else
return c_parser_direct_declarator_inner (parser, *seen_id, inner);
}
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return NULL;
}
}
else
{
if (kind == C_DTR_NORMAL)
{
c_parser_error (parser, "expected identifier or %<(%>");
return NULL;
}
else
return build_id_declarator (NULL_TREE);
}
}
/* Parse part of a direct declarator or direct abstract declarator,
given that some (in INNER) has already been parsed; ID_PRESENT is
true if an identifier is present, false for an abstract
declarator. */
static struct c_declarator *
c_parser_direct_declarator_inner (c_parser *parser, bool id_present,
struct c_declarator *inner)
{
/* Parse a sequence of array declarators and parameter lists. */
if (c_parser_next_token_is (parser, CPP_OPEN_SQUARE)
&& !c_parser_nth_token_starts_std_attributes (parser, 1))
{
location_t brace_loc = c_parser_peek_token (parser)->location;
struct c_declarator *declarator;
struct c_declspecs *quals_attrs = build_null_declspecs ();
struct c_expr dimen;
dimen.value = NULL_TREE;
dimen.original_code = ERROR_MARK;
dimen.original_type = NULL_TREE;
c_parser_consume_token (parser);
c_parser_declspecs (parser, quals_attrs, false, false, true,
false, false, false, false, cla_prefer_id);
location_t static_loc = UNKNOWN_LOCATION;
if (c_parser_next_token_is_keyword (parser, RID_STATIC))
{
static_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
if (!quals_attrs->declspecs_seen_p)
c_parser_declspecs (parser, quals_attrs, false, false, true,
false, false, false, false, cla_prefer_id);
}
if (!quals_attrs->declspecs_seen_p)
quals_attrs = NULL;
/* If "static" is present, there must be an array dimension.
Otherwise, there may be a dimension, "*", or no
dimension. */
const bool static_seen = (static_loc != UNKNOWN_LOCATION);
bool star_seen = false;
if (c_parser_next_token_is (parser, CPP_MULT)
&& c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_SQUARE)
{
star_seen = true;
c_parser_consume_token (parser);
}
else if (!c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
dimen = c_parser_expr_no_commas (parser, NULL);
if (static_seen)
{
if (star_seen)
{
error_at (static_loc,
"% may not be used with an unspecified "
"variable length array size");
/* Prevent further errors. */
star_seen = false;
dimen.value = error_mark_node;
}
else if (!dimen.value)
error_at (static_loc,
"% may not be used without an array size");
}
if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
c_parser_consume_token (parser);
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
return NULL;
}
if (dimen.value)
dimen = convert_lvalue_to_rvalue (brace_loc, dimen, true, true);
declarator = build_array_declarator (brace_loc, dimen.value, quals_attrs,
static_seen, star_seen);
if (declarator == NULL)
return NULL;
if (c_parser_nth_token_starts_std_attributes (parser, 1))
{
tree std_attrs
= c_parser_std_attribute_specifier_sequence (parser);
if (std_attrs)
inner = build_attrs_declarator (std_attrs, inner);
}
inner = set_array_declarator_inner (declarator, inner);
return c_parser_direct_declarator_inner (parser, id_present, inner);
}
else if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
tree attrs;
struct c_arg_info *args;
c_parser_consume_token (parser);
bool have_gnu_attrs = c_parser_next_token_is_keyword (parser,
RID_ATTRIBUTE);
attrs = c_parser_gnu_attributes (parser);
args = c_parser_parms_declarator (parser, id_present, attrs,
have_gnu_attrs);
if (args == NULL)
return NULL;
else
{
if (!(args->types
&& args->types != error_mark_node
&& TREE_CODE (TREE_VALUE (args->types)) == IDENTIFIER_NODE)
&& c_parser_nth_token_starts_std_attributes (parser, 1))
{
tree std_attrs
= c_parser_std_attribute_specifier_sequence (parser);
if (std_attrs)
inner = build_attrs_declarator (std_attrs, inner);
}
inner = build_function_declarator (args, inner);
return c_parser_direct_declarator_inner (parser, id_present, inner);
}
}
return inner;
}
/* Parse a parameter list or identifier list, including the closing
parenthesis but not the opening one. ATTRS are the gnu-attributes
at the start of the list. ID_LIST_OK is true if an identifier list
is acceptable; such a list must not have attributes at the start.
HAVE_GNU_ATTRS says whether any gnu-attributes (including empty
attributes) were present (in which case standard attributes cannot
occur). */
static struct c_arg_info *
c_parser_parms_declarator (c_parser *parser, bool id_list_ok, tree attrs,
bool have_gnu_attrs)
{
push_scope ();
declare_parm_level ();
/* If the list starts with an identifier, it is an identifier list.
Otherwise, it is either a prototype list or an empty list. */
if (id_list_ok
&& !attrs
&& c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_ID
/* Look ahead to detect typos in type names. */
&& c_parser_peek_2nd_token (parser)->type != CPP_NAME
&& c_parser_peek_2nd_token (parser)->type != CPP_MULT
&& c_parser_peek_2nd_token (parser)->type != CPP_OPEN_PAREN
&& c_parser_peek_2nd_token (parser)->type != CPP_OPEN_SQUARE
&& c_parser_peek_2nd_token (parser)->type != CPP_KEYWORD)
{
tree list = NULL_TREE, *nextp = &list;
while (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_ID)
{
*nextp = build_tree_list (NULL_TREE,
c_parser_peek_token (parser)->value);
nextp = & TREE_CHAIN (*nextp);
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_error (parser, "expected identifier");
break;
}
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
struct c_arg_info *ret = build_arg_info ();
ret->types = list;
c_parser_consume_token (parser);
pop_scope ();
return ret;
}
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
pop_scope ();
return NULL;
}
}
else
{
struct c_arg_info *ret
= c_parser_parms_list_declarator (parser, attrs, NULL, have_gnu_attrs);
pop_scope ();
return ret;
}
}
/* Parse a parameter list (possibly empty), including the closing
parenthesis but not the opening one. ATTRS are the gnu-attributes
at the start of the list; if HAVE_GNU_ATTRS, there were some such
attributes (possibly empty, in which case ATTRS is NULL_TREE),
which means standard attributes cannot start the list. EXPR is
NULL or an expression that needs to be evaluated for the side
effects of array size expressions in the parameters. */
static struct c_arg_info *
c_parser_parms_list_declarator (c_parser *parser, tree attrs, tree expr,
bool have_gnu_attrs)
{
bool bad_parm = false;
/* ??? Following the old parser, forward parameter declarations may
use abstract declarators, and if no real parameter declarations
follow the forward declarations then this is not diagnosed. Also
note as above that gnu-attributes are ignored as the only contents of
the parentheses, or as the only contents after forward
declarations. */
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
struct c_arg_info *ret = build_arg_info ();
c_parser_consume_token (parser);
return ret;
}
if (c_parser_next_token_is (parser, CPP_ELLIPSIS) && !have_gnu_attrs)
{
struct c_arg_info *ret = build_arg_info ();
ret->types = NULL_TREE;
pedwarn_c11 (c_parser_peek_token (parser)->location, OPT_Wpedantic,
"ISO C requires a named argument before %<...%> "
"before C23");
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
ret->no_named_args_stdarg_p = true;
c_parser_consume_token (parser);
return ret;
}
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return NULL;
}
}
/* Nonempty list of parameters, either terminated with semicolon
(forward declarations; recurse) or with close parenthesis (normal
function) or with ", ... )" (variadic function). */
while (true)
{
/* Parse a parameter. */
struct c_parm *parm = c_parser_parameter_declaration (parser, attrs,
have_gnu_attrs);
attrs = NULL_TREE;
have_gnu_attrs = false;
if (parm == NULL)
bad_parm = true;
else
push_parm_decl (parm, &expr);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
tree new_attrs;
c_parser_consume_token (parser);
mark_forward_parm_decls ();
bool new_have_gnu_attrs
= c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE);
new_attrs = c_parser_gnu_attributes (parser);
return c_parser_parms_list_declarator (parser, new_attrs, expr,
new_have_gnu_attrs);
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
if (bad_parm)
return NULL;
else
return get_parm_info (false, expr);
}
if (!c_parser_require (parser, CPP_COMMA,
"expected %<;%>, %<,%> or %<)%>",
UNKNOWN_LOCATION, false))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return NULL;
}
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
if (bad_parm)
return NULL;
else
return get_parm_info (true, expr);
}
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return NULL;
}
}
}
}
/* Parse a parameter declaration. ATTRS are the gnu-attributes at the
start of the declaration if it is the first parameter;
HAVE_GNU_ATTRS is true if there were any gnu-attributes there (even
empty) there. */
static struct c_parm *
c_parser_parameter_declaration (c_parser *parser, tree attrs,
bool have_gnu_attrs)
{
struct c_declspecs *specs;
struct c_declarator *declarator;
tree prefix_attrs;
tree postfix_attrs = NULL_TREE;
bool dummy = false;
/* Accept #pragmas between parameter declarations. */
while (c_parser_next_token_is (parser, CPP_PRAGMA))
c_parser_pragma (parser, pragma_param, NULL, NULL_TREE);
if (!c_parser_next_token_starts_declspecs (parser)
&& !c_parser_nth_token_starts_std_attributes (parser, 1))
{
c_token *token = c_parser_peek_token (parser);
if (parser->error)
return NULL;
c_parser_set_source_position_from_token (token);
if (c_parser_next_tokens_start_typename (parser, cla_prefer_type))
{
auto_diagnostic_group d;
name_hint hint = lookup_name_fuzzy (token->value,
FUZZY_LOOKUP_TYPENAME,
token->location);
if (const char *suggestion = hint.suggestion ())
{
gcc_rich_location richloc (token->location);
richloc.add_fixit_replace (suggestion);
error_at (&richloc,
"unknown type name %qE; did you mean %qs?",
token->value, suggestion);
}
else
error_at (token->location, "unknown type name %qE", token->value);
parser->error = true;
}
/* ??? In some Objective-C cases '...' isn't applicable so there
should be a different message. */
else
c_parser_error (parser,
"expected declaration specifiers or %<...%>");
c_parser_skip_to_end_of_parameter (parser);
return NULL;
}
location_t start_loc = c_parser_peek_token (parser)->location;
specs = build_null_declspecs ();
if (attrs)
{
declspecs_add_attrs (input_location, specs, attrs);
attrs = NULL_TREE;
}
c_parser_declspecs (parser, specs, true, true, true, true, false,
!have_gnu_attrs, true, cla_nonabstract_decl);
finish_declspecs (specs);
pending_xref_error ();
prefix_attrs = specs->attrs;
specs->attrs = NULL_TREE;
declarator = c_parser_declarator (parser,
specs->typespec_kind != ctsk_none,
C_DTR_PARM, &dummy);
if (declarator == NULL)
{
c_parser_skip_until_found (parser, CPP_COMMA, NULL);
return NULL;
}
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
postfix_attrs = c_parser_gnu_attributes (parser);
/* Generate a location for the parameter, ranging from the start of the
initial token to the end of the final token.
If we have a identifier, then use it for the caret location, e.g.
extern int callee (int one, int (*two)(int, int), float three);
~~~~~~^~~~~~~~~~~~~~
otherwise, reuse the start location for the caret location e.g.:
extern int callee (int one, int (*)(int, int), float three);
^~~~~~~~~~~~~~~~~
*/
location_t end_loc = parser->last_token_location;
/* Find any cdk_id declarator; determine if we have an identifier. */
c_declarator *id_declarator = declarator;
while (id_declarator && id_declarator->kind != cdk_id)
id_declarator = id_declarator->declarator;
location_t caret_loc = (id_declarator->u.id.id
? id_declarator->id_loc
: start_loc);
location_t param_loc = make_location (caret_loc, start_loc, end_loc);
return build_c_parm (specs, chainon (postfix_attrs, prefix_attrs),
declarator, param_loc);
}
/* Parse a string literal in an asm expression. It should not be
translated, and wide string literals are an error although
permitted by the syntax. This is a GNU extension.
asm-string-literal:
string-literal
*/
static tree
c_parser_asm_string_literal (c_parser *parser)
{
tree str;
int save_flag = warn_overlength_strings;
warn_overlength_strings = 0;
str = c_parser_string_literal (parser, false, false).value;
warn_overlength_strings = save_flag;
return str;
}
/* Parse a simple asm expression. This is used in restricted
contexts, where a full expression with inputs and outputs does not
make sense. This is a GNU extension.
simple-asm-expr:
asm ( asm-string-literal )
*/
static tree
c_parser_simple_asm_expr (c_parser *parser)
{
tree str;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ASM));
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
return NULL_TREE;
str = c_parser_asm_string_literal (parser);
if (!parens.require_close (parser))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return NULL_TREE;
}
return str;
}
static tree
c_parser_gnu_attribute_any_word (c_parser *parser)
{
tree attr_name = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_KEYWORD))
{
/* ??? See comment above about what keywords are accepted here. */
bool ok;
switch (c_parser_peek_token (parser)->keyword)
{
case RID_STATIC:
case RID_UNSIGNED:
case RID_LONG:
case RID_CONST:
case RID_EXTERN:
case RID_REGISTER:
case RID_TYPEDEF:
case RID_SHORT:
case RID_INLINE:
case RID_NORETURN:
case RID_VOLATILE:
case RID_SIGNED:
case RID_AUTO:
case RID_RESTRICT:
case RID_COMPLEX:
case RID_THREAD:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_DFLOAT64X:
CASE_RID_FLOATN_NX:
case RID_BOOL:
case RID_BITINT:
case RID_FRACT:
case RID_ACCUM:
case RID_SAT:
case RID_TRANSACTION_ATOMIC:
case RID_TRANSACTION_CANCEL:
case RID_ATOMIC:
case RID_AUTO_TYPE:
case RID_CONSTEXPR:
case RID_INT_N_0:
case RID_INT_N_1:
case RID_INT_N_2:
case RID_INT_N_3:
ok = true;
break;
default:
ok = false;
break;
}
if (!ok)
return NULL_TREE;
/* Accept __attribute__((__const)) as __attribute__((const)) etc. */
attr_name = ridpointers[(int) c_parser_peek_token (parser)->keyword];
}
else if (c_parser_next_token_is (parser, CPP_NAME))
attr_name = c_parser_peek_token (parser)->value;
return attr_name;
}
/* Parse attribute arguments. This is a common form of syntax
covering all currently valid GNU and standard attributes.
gnu-attribute-arguments:
identifier
identifier , nonempty-expr-list
expr-list
where the "identifier" must not be declared as a type. ??? Why not
allow identifiers declared as types to start the arguments? */
static tree
c_parser_attribute_arguments (c_parser *parser, bool takes_identifier,
bool require_string, bool assume_attr,
bool allow_empty_args)
{
vec *expr_list;
tree attr_args;
/* Parse the attribute contents. If they start with an
identifier which is followed by a comma or close
parenthesis, then the arguments start with that
identifier; otherwise they are an expression list.
In objective-c the identifier may be a classname. */
if (c_parser_next_token_is (parser, CPP_NAME)
&& (c_parser_peek_token (parser)->id_kind == C_ID_ID
|| (c_dialect_objc ()
&& c_parser_peek_token (parser)->id_kind
== C_ID_CLASSNAME))
&& ((c_parser_peek_2nd_token (parser)->type == CPP_COMMA)
|| (c_parser_peek_2nd_token (parser)->type
== CPP_CLOSE_PAREN))
&& (takes_identifier
|| (c_dialect_objc ()
&& !assume_attr
&& c_parser_peek_token (parser)->id_kind
== C_ID_CLASSNAME)))
{
tree arg1 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
attr_args = build_tree_list (NULL_TREE, arg1);
else
{
tree tree_list;
c_parser_consume_token (parser);
expr_list = c_parser_expr_list (parser, false, true,
NULL, NULL, NULL, NULL);
tree_list = build_tree_list_vec (expr_list);
attr_args = tree_cons (NULL_TREE, arg1, tree_list);
release_tree_vector (expr_list);
}
}
else
{
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
if (!allow_empty_args)
error_at (c_parser_peek_token (parser)->location,
"parentheses must be omitted if "
"attribute argument list is empty");
attr_args = NULL_TREE;
}
else if (require_string)
{
/* The only valid argument for this attribute is a string
literal. Handle this specially here to avoid accepting
string literals with excess parentheses. */
tree string = c_parser_string_literal (parser, false, true).value;
attr_args = build_tree_list (NULL_TREE, string);
}
else if (assume_attr)
{
tree cond
= c_parser_conditional_expression (parser, NULL, NULL_TREE).value;
if (!c_parser_next_token_is (parser, CPP_COMMA))
attr_args = build_tree_list (NULL_TREE, cond);
else
{
tree tree_list;
c_parser_consume_token (parser);
expr_list = c_parser_expr_list (parser, false, true,
NULL, NULL, NULL, NULL);
tree_list = build_tree_list_vec (expr_list);
attr_args = tree_cons (NULL_TREE, cond, tree_list);
release_tree_vector (expr_list);
}
}
else
{
expr_list = c_parser_expr_list (parser, false, true,
NULL, NULL, NULL, NULL);
attr_args = build_tree_list_vec (expr_list);
release_tree_vector (expr_list);
}
}
return attr_args;
}
/* Parse (possibly empty) gnu-attributes. This is a GNU extension.
gnu-attributes:
empty
gnu-attributes gnu-attribute
gnu-attribute:
__attribute__ ( ( gnu-attribute-list ) )
gnu-attribute-list:
gnu-attrib
gnu-attribute_list , gnu-attrib
gnu-attrib:
empty
any-word
any-word ( gnu-attribute-arguments )
where "any-word" may be any identifier (including one declared as a
type), a reserved word storage class specifier, type specifier or
type qualifier. ??? This still leaves out most reserved keywords
(following the old parser), shouldn't we include them?
When EXPECT_COMMA is true, expect the attribute to be preceded
by a comma and fail if it isn't.
When EMPTY_OK is true, allow and consume any number of consecutive
commas with no attributes in between. */
static tree
c_parser_gnu_attribute (c_parser *parser, tree attrs,
bool expect_comma = false, bool empty_ok = true)
{
bool comma_first = c_parser_next_token_is (parser, CPP_COMMA);
if (!comma_first
&& !c_parser_next_token_is (parser, CPP_NAME)
&& !c_parser_next_token_is (parser, CPP_KEYWORD))
return NULL_TREE;
while (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
if (!empty_ok)
return attrs;
}
tree attr_name = c_parser_gnu_attribute_any_word (parser);
if (attr_name == NULL_TREE)
return NULL_TREE;
attr_name = canonicalize_attr_name (attr_name);
c_parser_consume_token (parser);
tree attr;
if (c_parser_next_token_is_not (parser, CPP_OPEN_PAREN))
{
if (expect_comma && !comma_first)
{
/* A comma is missing between the last attribute on the chain
and this one. */
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return error_mark_node;
}
attr = build_tree_list (attr_name, NULL_TREE);
/* Add this attribute to the list. */
attrs = chainon (attrs, attr);
return attrs;
}
c_parser_consume_token (parser);
tree attr_args
= c_parser_attribute_arguments (parser,
attribute_takes_identifier_p (attr_name),
false,
is_attribute_p ("assume", attr_name),
true);
attr = build_tree_list (attr_name, attr_args);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return error_mark_node;
}
if (expect_comma && !comma_first)
{
/* A comma is missing between the last attribute on the chain
and this one. */
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return error_mark_node;
}
/* Add this attribute to the list. */
attrs = chainon (attrs, attr);
return attrs;
}
static tree
c_parser_gnu_attributes (c_parser *parser)
{
tree attrs = NULL_TREE;
while (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
{
bool save_translate_strings_p = parser->translate_strings_p;
parser->translate_strings_p = false;
/* Consume the `__attribute__' keyword. */
c_parser_consume_token (parser);
/* Look for the two `(' tokens. */
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
parser->translate_strings_p = save_translate_strings_p;
return attrs;
}
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
parser->translate_strings_p = save_translate_strings_p;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return attrs;
}
/* Parse the attribute list. Require a comma between successive
(possibly empty) attributes. */
for (bool expect_comma = false; ; expect_comma = true)
{
/* Parse a single attribute. */
tree attr = c_parser_gnu_attribute (parser, attrs, expect_comma);
if (attr == error_mark_node)
return attrs;
if (!attr)
break;
attrs = attr;
}
/* Look for the two `)' tokens. */
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
else
{
parser->translate_strings_p = save_translate_strings_p;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return attrs;
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
else
{
parser->translate_strings_p = save_translate_strings_p;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return attrs;
}
parser->translate_strings_p = save_translate_strings_p;
}
return attrs;
}
/* Parse an optional balanced token sequence.
balanced-token-sequence:
balanced-token
balanced-token-sequence balanced-token
balanced-token:
( balanced-token-sequence[opt] )
[ balanced-token-sequence[opt] ]
{ balanced-token-sequence[opt] }
any token other than ()[]{}
*/
static void
c_parser_balanced_token_sequence (c_parser *parser)
{
while (true)
{
c_token *token = c_parser_peek_token (parser);
switch (token->type)
{
case CPP_OPEN_BRACE:
{
matching_braces braces;
braces.consume_open (parser);
c_parser_balanced_token_sequence (parser);
braces.require_close (parser);
break;
}
case CPP_OPEN_PAREN:
{
matching_parens parens;
parens.consume_open (parser);
c_parser_balanced_token_sequence (parser);
parens.require_close (parser);
break;
}
case CPP_OPEN_SQUARE:
c_parser_consume_token (parser);
c_parser_balanced_token_sequence (parser);
c_parser_require (parser, CPP_CLOSE_SQUARE, "expected %<]%>");
break;
case CPP_CLOSE_BRACE:
case CPP_CLOSE_PAREN:
case CPP_CLOSE_SQUARE:
case CPP_EOF:
return;
case CPP_PRAGMA:
c_parser_consume_pragma (parser);
c_parser_skip_to_pragma_eol (parser, false);
break;
default:
c_parser_consume_token (parser);
break;
}
}
}
static bool c_parser_check_balanced_raw_token_sequence (c_parser *,
unsigned int *);
/* Parse arguments of omp::directive or omp::decl attribute.
directive-name ,[opt] clause-list[opt]
For directive just remember the tokens in a vector for subsequent
parsing. */
static void
c_parser_omp_directive_args (c_parser *parser, tree attribute, bool decl_p)
{
unsigned int n = 1;
c_token *first = c_parser_peek_token (parser);
if (!c_parser_check_balanced_raw_token_sequence (parser, &n)
|| (c_parser_peek_nth_token_raw (parser, n)->type
!= CPP_CLOSE_PAREN))
{
c_parser_balanced_token_sequence (parser);
TREE_VALUE (attribute) = NULL_TREE;
return;
}
if (n == 1)
{
error_at (first->location, "expected OpenMP directive name");
TREE_VALUE (attribute) = NULL_TREE;
return;
}
vec *v;
vec_alloc (v, n - 1);
for (--n; n; --n)
{
c_token *tok = c_parser_peek_token (parser);
v->quick_push (*tok);
c_parser_consume_token (parser);
}
tree arg = make_node (C_TOKEN_VEC);
C_TOKEN_VEC_TOKENS (arg) = v;
if (decl_p)
TREE_PUBLIC (arg) = 1;
TREE_VALUE (attribute) = tree_cons (NULL_TREE, arg, TREE_VALUE (attribute));
}
/* Parse arguments of omp::sequence attribute.
omp::[opt] directive-attr [ , omp::[opt] directive-attr ]... */
static void
c_parser_omp_sequence_args (c_parser *parser, tree attribute)
{
do
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_NAME
&& strcmp (IDENTIFIER_POINTER (token->value), "omp") == 0
&& c_parser_peek_2nd_token (parser)->type == CPP_SCOPE)
{
c_parser_consume_token (parser);
c_parser_consume_token (parser);
token = c_parser_peek_token (parser);
}
bool directive = false;
const char *p;
if (token->type != CPP_NAME)
p = "";
else
p = IDENTIFIER_POINTER (token->value);
if (strcmp (p, "directive") == 0)
directive = true;
else if (strcmp (p, "sequence") != 0)
{
error_at (token->location, "expected % or %");
unsigned nesting_depth = 0;
while (true)
{
/* Peek at the next token. */
token = c_parser_peek_token (parser);
/* If we've reached the token we want, consume it and stop. */
if ((token->type == CPP_CLOSE_PAREN || token->type == CPP_COMMA)
&& !nesting_depth)
break;
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
break;
if (token->type == CPP_PRAGMA_EOL && parser->in_pragma)
break;
if (token->type == CPP_OPEN_BRACE
|| token->type == CPP_OPEN_PAREN
|| token->type == CPP_OPEN_SQUARE)
++nesting_depth;
else if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_SQUARE)
{
if (nesting_depth-- == 0)
break;
}
/* Consume this token. */
c_parser_consume_token (parser);
}
if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
c_parser_consume_token (parser);
continue;
}
c_parser_consume_token (parser);
matching_parens parens;
if (parens.require_open (parser))
{
if (directive)
c_parser_omp_directive_args (parser, attribute, false);
else
c_parser_omp_sequence_args (parser, attribute);
parens.skip_until_found_close (parser);
if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
else
c_parser_consume_token (parser);
}
while (1);
}
/* Parse standard (C23) attributes (including GNU attributes in the
gnu:: namespace).
attribute-specifier-sequence:
attribute-specifier-sequence[opt] attribute-specifier
attribute-specifier:
[ [ attribute-list ] ]
attribute-list:
attribute[opt]
attribute-list, attribute[opt]
attribute:
attribute-token attribute-argument-clause[opt]
attribute-token:
standard-attribute
attribute-prefixed-token
standard-attribute:
identifier
attribute-prefixed-token:
attribute-prefix :: identifier
attribute-prefix:
identifier
attribute-argument-clause:
( balanced-token-sequence[opt] )
Keywords are accepted as identifiers for this purpose.
As an extension, we permit an attribute-specifier to be:
[ [ __extension__ attribute-list ] ]
Two colons are then accepted as a synonym for ::. No attempt is made
to check whether the colons are immediately adjacent. LOOSE_SCOPE_P
indicates whether this relaxation is in effect. */
static tree
c_parser_std_attribute (c_parser *parser, bool for_tm)
{
c_token *token = c_parser_peek_token (parser);
tree ns, name, attribute;
/* Parse the attribute-token. */
if (token->type != CPP_NAME && token->type != CPP_KEYWORD)
{
c_parser_error (parser, "expected identifier");
return error_mark_node;
}
name = canonicalize_attr_name (token->value);
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_SCOPE)
|| (c_parser_next_token_is (parser, CPP_COLON)
&& (c_parser_peek_token (parser)->flags & COLON_SCOPE) != 0
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON))
{
ns = name;
if (c_parser_next_token_is (parser, CPP_COLON))
c_parser_consume_token (parser);
c_parser_consume_token (parser);
token = c_parser_peek_token (parser);
if (token->type != CPP_NAME && token->type != CPP_KEYWORD)
{
c_parser_error (parser, "expected identifier");
return error_mark_node;
}
name = canonicalize_attr_name (token->value);
c_parser_consume_token (parser);
}
else
ns = NULL_TREE;
attribute = build_tree_list (build_tree_list (ns, name), NULL_TREE);
/* Parse the arguments, if any. */
const attribute_spec *as = lookup_attribute_spec (TREE_PURPOSE (attribute));
if (c_parser_next_token_is_not (parser, CPP_OPEN_PAREN))
{
if ((flag_openmp || flag_openmp_simd)
&& ns
&& is_attribute_p ("omp", ns)
&& (is_attribute_p ("directive", name)
|| is_attribute_p ("sequence", name)
|| is_attribute_p ("decl", name)))
{
error ("% attribute requires argument", name);
return error_mark_node;
}
goto out;
}
{
location_t open_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
parens.consume_open (parser);
if ((as && as->max_length == 0)
/* Special-case the transactional-memory attribute "outer",
which is specially handled but not registered as an
attribute, to avoid allowing arbitrary balanced token
sequences as arguments. */
|| is_attribute_p ("outer", name))
{
error_at (open_loc, "%qE attribute does not take any arguments", name);
parens.skip_until_found_close (parser);
return error_mark_node;
}
/* If this is a fake attribute created to handle -Wno-attributes,
we must skip parsing the arguments. */
if (as && !attribute_ignored_p (as))
{
bool takes_identifier
= (ns != NULL_TREE
&& strcmp (IDENTIFIER_POINTER (ns), "gnu") == 0
&& attribute_takes_identifier_p (name));
bool require_string
= (ns == NULL_TREE
&& (strcmp (IDENTIFIER_POINTER (name), "deprecated") == 0
|| strcmp (IDENTIFIER_POINTER (name), "nodiscard") == 0));
bool assume_attr
= (ns != NULL_TREE
&& strcmp (IDENTIFIER_POINTER (ns), "gnu") == 0
&& strcmp (IDENTIFIER_POINTER (name), "assume") == 0);
TREE_VALUE (attribute)
= c_parser_attribute_arguments (parser, takes_identifier,
require_string, assume_attr, false);
}
else
{
if ((flag_openmp || flag_openmp_simd)
&& ns
&& is_attribute_p ("omp", ns))
{
if (is_attribute_p ("directive", name))
{
c_parser_omp_directive_args (parser, attribute, false);
parens.skip_until_found_close (parser);
return attribute;
}
else if (is_attribute_p ("decl", name))
{
TREE_VALUE (TREE_PURPOSE (attribute))
= get_identifier ("directive");
c_parser_omp_directive_args (parser, attribute, true);
parens.skip_until_found_close (parser);
return attribute;
}
else if (is_attribute_p ("sequence", name))
{
TREE_VALUE (TREE_PURPOSE (attribute))
= get_identifier ("directive");
c_parser_omp_sequence_args (parser, attribute);
parens.skip_until_found_close (parser);
TREE_VALUE (attribute) = nreverse (TREE_VALUE (attribute));
return attribute;
}
}
c_parser_balanced_token_sequence (parser);
}
parens.require_close (parser);
}
out:
if (ns == NULL_TREE && !for_tm && !as)
{
/* An attribute with standard syntax and no namespace specified
is a constraint violation if it is not one of the known
standard attributes. Diagnose it here with a pedwarn and
then discard it to prevent a duplicate warning later. */
pedwarn (input_location, OPT_Wattributes, "%qE attribute ignored",
name);
return error_mark_node;
}
return attribute;
}
static tree
c_parser_std_attribute_list (c_parser *parser, bool for_tm)
{
tree attributes = NULL_TREE;
while (true)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_CLOSE_SQUARE)
break;
if (token->type == CPP_COMMA)
{
c_parser_consume_token (parser);
continue;
}
tree attribute = c_parser_std_attribute (parser, for_tm);
if (attribute != error_mark_node)
{
TREE_CHAIN (attribute) = attributes;
attributes = attribute;
}
if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
}
return attributes;
}
static tree
c_parser_std_attribute_specifier (c_parser *parser, bool for_tm)
{
location_t loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_OPEN_SQUARE, "expected %<[%>"))
return NULL_TREE;
if (!c_parser_require (parser, CPP_OPEN_SQUARE, "expected %<[%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>");
return NULL_TREE;
}
tree attributes;
if (c_parser_next_token_is_keyword (parser, RID_EXTENSION))
{
auto ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
attributes = c_parser_std_attribute_list (parser, for_tm);
restore_extension_diagnostics (ext);
}
else
{
if (!for_tm)
pedwarn_c11 (loc, OPT_Wpedantic,
"ISO C does not support %<[[]]%> attributes before C23");
attributes = c_parser_std_attribute_list (parser, for_tm);
}
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>");
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>");
return nreverse (attributes);
}
/* Look past an optional balanced token sequence of raw look-ahead
tokens starting with the *Nth token. *N is updated to point to the
following token. Return true if such a sequence was found, false
if the tokens parsed were not balanced. */
static bool
c_parser_check_balanced_raw_token_sequence (c_parser *parser, unsigned int *n)
{
while (true)
{
c_token *token = c_parser_peek_nth_token_raw (parser, *n);
switch (token->type)
{
case CPP_OPEN_BRACE:
{
++*n;
if (c_parser_check_balanced_raw_token_sequence (parser, n))
{
token = c_parser_peek_nth_token_raw (parser, *n);
if (token->type == CPP_CLOSE_BRACE)
++*n;
else
return false;
}
else
return false;
break;
}
case CPP_OPEN_PAREN:
{
++*n;
if (c_parser_check_balanced_raw_token_sequence (parser, n))
{
token = c_parser_peek_nth_token_raw (parser, *n);
if (token->type == CPP_CLOSE_PAREN)
++*n;
else
return false;
}
else
return false;
break;
}
case CPP_OPEN_SQUARE:
{
++*n;
if (c_parser_check_balanced_raw_token_sequence (parser, n))
{
token = c_parser_peek_nth_token_raw (parser, *n);
if (token->type == CPP_CLOSE_SQUARE)
++*n;
else
return false;
}
else
return false;
break;
}
case CPP_CLOSE_BRACE:
case CPP_CLOSE_PAREN:
case CPP_CLOSE_SQUARE:
case CPP_EOF:
return true;
default:
++*n;
break;
}
}
}
/* Return whether standard attributes start with the Nth token. */
static bool
c_parser_nth_token_starts_std_attributes (c_parser *parser, unsigned int n)
{
if (!(c_parser_peek_nth_token (parser, n)->type == CPP_OPEN_SQUARE
&& c_parser_peek_nth_token (parser, n + 1)->type == CPP_OPEN_SQUARE))
return false;
/* In C, '[[' must start attributes. In Objective-C, we need to
check whether '[[' is matched by ']]'. */
if (!c_dialect_objc ())
return true;
n += 2;
if (!c_parser_check_balanced_raw_token_sequence (parser, &n))
return false;
c_token *token = c_parser_peek_nth_token_raw (parser, n);
if (token->type != CPP_CLOSE_SQUARE)
return false;
token = c_parser_peek_nth_token_raw (parser, n + 1);
return token->type == CPP_CLOSE_SQUARE;
}
/* Skip standard attribute tokens starting at Nth token (with 1 as the
next token), return index of the first token after the standard
attribute tokens, or N on failure. */
static size_t
c_parser_skip_std_attribute_spec_seq (c_parser *parser, size_t n)
{
size_t orig_n = n;
while (true)
{
if (c_parser_peek_nth_token_raw (parser, n)->type == CPP_OPEN_SQUARE
&& (c_parser_peek_nth_token_raw (parser, n + 1)->type
== CPP_OPEN_SQUARE))
{
unsigned int m = n + 2;
if (!c_parser_check_balanced_raw_token_sequence (parser, &m))
return orig_n;
c_token *token = c_parser_peek_nth_token_raw (parser, m);
if (token->type != CPP_CLOSE_SQUARE)
return orig_n;
token = c_parser_peek_nth_token_raw (parser, m + 1);
if (token->type != CPP_CLOSE_SQUARE)
return orig_n;
n = m + 2;
}
else
break;
}
return n;
}
static tree
c_parser_std_attribute_specifier_sequence (c_parser *parser)
{
tree attributes = NULL_TREE;
do
{
tree attrs = c_parser_std_attribute_specifier (parser, false);
attributes = chainon (attributes, attrs);
}
while (c_parser_nth_token_starts_std_attributes (parser, 1));
return attributes;
}
/* Parse a type name (C90 6.5.5, C99 6.7.6, C11 6.7.7). ALIGNAS_OK
says whether alignment specifiers are OK (only in cases that might
be the type name of a compound literal).
type-name:
specifier-qualifier-list abstract-declarator[opt]
*/
struct c_type_name *
c_parser_type_name (c_parser *parser, bool alignas_ok)
{
struct c_declspecs *specs = build_null_declspecs ();
struct c_declarator *declarator;
struct c_type_name *ret;
bool dummy = false;
c_parser_declspecs (parser, specs, false, true, true, alignas_ok, false,
false, true, cla_prefer_type);
if (!specs->declspecs_seen_p)
{
c_parser_error (parser, "expected specifier-qualifier-list");
return NULL;
}
if (specs->type != error_mark_node)
{
pending_xref_error ();
finish_declspecs (specs);
}
declarator = c_parser_declarator (parser,
specs->typespec_kind != ctsk_none,
C_DTR_ABSTRACT, &dummy);
if (declarator == NULL)
return NULL;
ret = XOBNEW (&parser_obstack, struct c_type_name);
ret->specs = specs;
ret->declarator = declarator;
return ret;
}
/* Parse an initializer (C90 6.5.7, C99 6.7.8, C11 6.7.9).
initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }
initializer-list:
designation[opt] initializer
initializer-list , designation[opt] initializer
designation:
designator-list =
designator-list:
designator
designator-list designator
designator:
array-designator
. identifier
array-designator:
[ constant-expression ]
GNU extensions:
initializer:
{ }
designation:
array-designator
identifier :
array-designator:
[ constant-expression ... constant-expression ]
Any expression without commas is accepted in the syntax for the
constant-expressions, with non-constant expressions rejected later.
DECL is the declaration we're parsing this initializer for.
This function is only used for top-level initializers; for nested
ones, see c_parser_initval. */
static struct c_expr
c_parser_initializer (c_parser *parser, tree decl)
{
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
return c_parser_braced_init (parser, NULL_TREE, false, NULL, decl);
else
{
struct c_expr ret;
location_t loc = c_parser_peek_token (parser)->location;
ret = c_parser_expr_no_commas (parser, NULL);
if (decl != error_mark_node && C_DECL_VARIABLE_SIZE (decl))
{
error_at (loc,
"variable-sized object may not be initialized except "
"with an empty initializer");
ret.set_error ();
}
/* This is handled mostly by gimplify.cc, but we have to deal with
not warning about int x = x; as it is a GCC extension to turn off
this warning but only if warn_init_self is zero. */
if (VAR_P (decl)
&& !DECL_EXTERNAL (decl)
&& !TREE_STATIC (decl)
&& ret.value == decl
&& !warning_enabled_at (DECL_SOURCE_LOCATION (decl), OPT_Winit_self))
suppress_warning (decl, OPT_Winit_self);
if (TREE_CODE (ret.value) != STRING_CST
&& (TREE_CODE (ret.value) != COMPOUND_LITERAL_EXPR
|| C_DECL_DECLARED_CONSTEXPR (COMPOUND_LITERAL_EXPR_DECL
(ret.value))))
ret = convert_lvalue_to_rvalue (loc, ret, true, true, true);
return ret;
}
}
/* The location of the last comma within the current initializer list,
or UNKNOWN_LOCATION if not within one. */
location_t last_init_list_comma;
/* Parse a braced initializer list. TYPE is the type specified for a
compound literal, and NULL_TREE for other initializers and for
nested braced lists. NESTED_P is true for nested braced lists,
false for the list of a compound literal or the list that is the
top-level initializer in a declaration. DECL is the declaration for
the top-level initializer for a declaration, otherwise NULL_TREE. */
static struct c_expr
c_parser_braced_init (c_parser *parser, tree type, bool nested_p,
struct obstack *outer_obstack, tree decl)
{
struct c_expr ret;
struct obstack braced_init_obstack;
location_t brace_loc = c_parser_peek_token (parser)->location;
gcc_obstack_init (&braced_init_obstack);
gcc_assert (c_parser_next_token_is (parser, CPP_OPEN_BRACE));
bool save_c_omp_array_section_p = c_omp_array_section_p;
c_omp_array_section_p = false;
bool zero_init_padding_bits = false;
matching_braces braces;
braces.consume_open (parser);
if (nested_p)
{
finish_implicit_inits (brace_loc, outer_obstack);
push_init_level (brace_loc, 0, &braced_init_obstack);
}
else
really_start_incremental_init (type);
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
pedwarn_c11 (brace_loc, OPT_Wpedantic,
"ISO C forbids empty initializer braces before C23");
if (flag_isoc23)
zero_init_padding_bits = true;
}
else
{
if (decl && decl != error_mark_node && C_DECL_VARIABLE_SIZE (decl))
error_at (brace_loc,
"variable-sized object may not be initialized except "
"with an empty initializer");
/* Parse a non-empty initializer list, possibly with a trailing
comma. */
while (true)
{
c_parser_initelt (parser, &braced_init_obstack);
if (parser->error)
break;
if (c_parser_next_token_is (parser, CPP_COMMA))
{
last_init_list_comma = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
/* CPP_EMBED should be always in between two CPP_COMMA
tokens. */
while (c_parser_next_token_is (parser, CPP_EMBED))
{
c_token *embed = c_parser_peek_token (parser);
c_parser_consume_token (parser);
c_expr embed_val;
embed_val.value = embed->value;
embed_val.original_code = RAW_DATA_CST;
embed_val.original_type = integer_type_node;
set_c_expr_source_range (&embed_val, embed->get_range ());
embed_val.m_decimal = 0;
process_init_element (embed->location, embed_val, false,
&braced_init_obstack);
gcc_checking_assert (c_parser_next_token_is (parser,
CPP_COMMA));
last_init_list_comma = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
}
}
else
break;
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
break;
}
}
c_omp_array_section_p = save_c_omp_array_section_p;
c_token *next_tok = c_parser_peek_token (parser);
if (next_tok->type != CPP_CLOSE_BRACE)
{
ret.set_error ();
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
braces.skip_until_found_close (parser);
pop_init_level (brace_loc, 0, &braced_init_obstack, last_init_list_comma);
obstack_free (&braced_init_obstack, NULL);
return ret;
}
location_t close_loc = next_tok->location;
c_parser_consume_token (parser);
ret = pop_init_level (brace_loc, 0, &braced_init_obstack, close_loc);
if (zero_init_padding_bits
&& ret.value
&& TREE_CODE (ret.value) == CONSTRUCTOR)
CONSTRUCTOR_ZERO_PADDING_BITS (ret.value) = 1;
obstack_free (&braced_init_obstack, NULL);
set_c_expr_source_range (&ret, brace_loc, close_loc);
return ret;
}
/* Parse a nested initializer, including designators. */
static void
c_parser_initelt (c_parser *parser, struct obstack * braced_init_obstack)
{
/* Parse any designator or designator list. A single array
designator may have the subsequent "=" omitted in GNU C, but a
longer list or a structure member designator may not. */
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON)
{
/* Old-style structure member designator. */
set_init_label (c_parser_peek_token (parser)->location,
c_parser_peek_token (parser)->value,
c_parser_peek_token (parser)->location,
braced_init_obstack);
/* Use the colon as the error location. */
pedwarn (c_parser_peek_2nd_token (parser)->location, OPT_Wpedantic,
"obsolete use of designated initializer with %<:%>");
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
else
{
/* des_seen is 0 if there have been no designators, 1 if there
has been a single array designator and 2 otherwise. */
int des_seen = 0;
/* Location of a designator. */
location_t des_loc = UNKNOWN_LOCATION; /* Quiet warning. */
while (c_parser_next_token_is (parser, CPP_OPEN_SQUARE)
|| c_parser_next_token_is (parser, CPP_DOT))
{
int des_prev = des_seen;
if (!des_seen)
des_loc = c_parser_peek_token (parser)->location;
if (des_seen < 2)
des_seen++;
if (c_parser_next_token_is (parser, CPP_DOT))
{
des_seen = 2;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
set_init_label (des_loc, c_parser_peek_token (parser)->value,
c_parser_peek_token (parser)->location,
braced_init_obstack);
c_parser_consume_token (parser);
}
else
{
struct c_expr init;
init.set_error ();
init.original_code = ERROR_MARK;
init.original_type = NULL;
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_COMMA, NULL);
process_init_element (input_location, init, false,
braced_init_obstack);
return;
}
}
else
{
struct c_expr first_expr;
tree first, second;
location_t ellipsis_loc = UNKNOWN_LOCATION; /* Quiet warning. */
location_t array_index_loc = UNKNOWN_LOCATION;
/* ??? Following the old parser, [ objc-receiver
objc-message-args ] is accepted as an initializer,
being distinguished from a designator by what follows
the first assignment expression inside the square
brackets, but after a first array designator a
subsequent square bracket is for Objective-C taken to
start an expression, using the obsolete form of
designated initializer without '=', rather than
possibly being a second level of designation: in LALR
terms, the '[' is shifted rather than reducing
designator to designator-list. */
if (des_prev == 1 && c_dialect_objc ())
{
des_seen = des_prev;
break;
}
if (des_prev == 0 && c_dialect_objc ())
{
/* This might be an array designator or an
Objective-C message expression. If the former,
continue parsing here; if the latter, parse the
remainder of the initializer given the starting
primary-expression. ??? It might make sense to
distinguish when des_prev == 1 as well; see
previous comment. */
tree rec, args;
struct c_expr mexpr;
c_parser_consume_token (parser);
if (c_parser_peek_token (parser)->type == CPP_NAME
&& ((c_parser_peek_token (parser)->id_kind
== C_ID_TYPENAME)
|| (c_parser_peek_token (parser)->id_kind
== C_ID_CLASSNAME)))
{
/* Type name receiver. */
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
rec = objc_get_class_reference (id);
goto parse_message_args;
}
array_index_loc = c_parser_peek_token (parser)->location;
first_expr = c_parser_expr_no_commas (parser, NULL);
mark_exp_read (first_expr.value);
if (c_parser_next_token_is (parser, CPP_ELLIPSIS)
|| c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
goto array_desig_after_first;
first = first_expr.value;
/* Expression receiver. So far only one part
without commas has been parsed; there might be
more of the expression. */
rec = first;
while (c_parser_next_token_is (parser, CPP_COMMA))
{
struct c_expr next;
location_t comma_loc, exp_loc;
comma_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
next = c_parser_expr_no_commas (parser, NULL);
next = convert_lvalue_to_rvalue (exp_loc, next,
true, true);
rec = build_compound_expr (comma_loc, rec, next.value);
}
parse_message_args:
/* Now parse the objc-message-args. */
args = c_parser_objc_message_args (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
mexpr.value
= objc_build_message_expr (rec, args);
mexpr.original_code = ERROR_MARK;
mexpr.original_type = NULL;
mexpr.m_decimal = 0;
/* Now parse and process the remainder of the
initializer, starting with this message
expression as a primary-expression. */
c_parser_initval (parser, &mexpr, braced_init_obstack);
return;
}
c_parser_consume_token (parser);
array_index_loc = c_parser_peek_token (parser)->location;
first_expr = c_parser_expr_no_commas (parser, NULL);
mark_exp_read (first_expr.value);
array_desig_after_first:
first_expr = convert_lvalue_to_rvalue (array_index_loc,
first_expr,
true, true);
first = first_expr.value;
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
ellipsis_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
second = convert_lvalue_to_rvalue (ellipsis_loc,
(c_parser_expr_no_commas
(parser, NULL)),
true, true).value;
mark_exp_read (second);
}
else
second = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
{
c_parser_consume_token (parser);
set_init_index (array_index_loc, first, second,
braced_init_obstack);
if (second)
pedwarn (ellipsis_loc, OPT_Wpedantic,
"ISO C forbids specifying range of elements to initialize");
}
else
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
}
}
if (des_seen >= 1)
{
if (c_parser_next_token_is (parser, CPP_EQ))
{
pedwarn_c90 (des_loc, OPT_Wpedantic,
"ISO C90 forbids specifying subobject "
"to initialize");
c_parser_consume_token (parser);
}
else
{
if (des_seen == 1)
pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic,
"obsolete use of designated initializer without %<=%>");
else
{
struct c_expr init;
init.set_error ();
init.original_code = ERROR_MARK;
init.original_type = NULL;
c_parser_error (parser, "expected %<=%>");
c_parser_skip_until_found (parser, CPP_COMMA, NULL);
process_init_element (input_location, init, false,
braced_init_obstack);
return;
}
}
}
}
c_parser_initval (parser, NULL, braced_init_obstack);
}
/* Parse a nested initializer; as c_parser_initializer but parses
initializers within braced lists, after any designators have been
applied. If AFTER is not NULL then it is an Objective-C message
expression which is the primary-expression starting the
initializer. */
static void
c_parser_initval (c_parser *parser, struct c_expr *after,
struct obstack * braced_init_obstack)
{
struct c_expr init;
gcc_assert (!after || c_dialect_objc ());
location_t loc = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE) && !after)
init = c_parser_braced_init (parser, NULL_TREE, true,
braced_init_obstack, NULL_TREE);
else
{
init = c_parser_expr_no_commas (parser, after);
if (init.value != NULL_TREE
&& TREE_CODE (init.value) != STRING_CST
&& (TREE_CODE (init.value) != COMPOUND_LITERAL_EXPR
|| C_DECL_DECLARED_CONSTEXPR (COMPOUND_LITERAL_EXPR_DECL
(init.value))))
init = convert_lvalue_to_rvalue (loc, init, true, true, true);
}
tree val = init.value;
process_init_element (loc, init, false, braced_init_obstack);
/* Attempt to optimize large char array initializers into RAW_DATA_CST
to save compile time and memory even when not using #embed. */
static unsigned vals_to_ignore;
if (vals_to_ignore)
/* If earlier call determined there is certain number of CPP_COMMA
CPP_NUMBER tokens with 0-255 int values, but not enough for
RAW_DATA_CST to be beneficial, don't try to check it again until
they are all parsed. */
--vals_to_ignore;
else if (val
&& TREE_CODE (val) == INTEGER_CST
&& TREE_TYPE (val) == integer_type_node
&& c_parser_next_token_is (parser, CPP_COMMA))
if (unsigned int len = c_maybe_optimize_large_byte_initializer ())
{
char buf1[64];
unsigned int i;
gcc_checking_assert (len >= 64);
location_t last_loc = UNKNOWN_LOCATION;
for (i = 0; i < 64; ++i)
{
c_token *tok = c_parser_peek_nth_token_raw (parser, 1 + 2 * i);
if (tok->type != CPP_COMMA)
break;
tok = c_parser_peek_nth_token_raw (parser, 2 + 2 * i);
if (tok->type != CPP_NUMBER
|| TREE_CODE (tok->value) != INTEGER_CST
|| TREE_TYPE (tok->value) != integer_type_node
|| wi::neg_p (wi::to_wide (tok->value))
|| wi::to_widest (tok->value) > UCHAR_MAX)
break;
buf1[i] = (char) tree_to_uhwi (tok->value);
if (i == 0)
loc = tok->location;
last_loc = tok->location;
}
if (i < 64)
{
vals_to_ignore = i;
return;
}
c_token *tok = c_parser_peek_nth_token_raw (parser, 1 + 2 * i);
/* If 64 CPP_COMMA CPP_NUMBER pairs are followed by CPP_CLOSE_BRACE,
punt if len is INT_MAX as that can mean this is a flexible array
member and in that case we need one CPP_NUMBER afterwards
(as guaranteed for CPP_EMBED). */
if (tok->type == CPP_CLOSE_BRACE && len != INT_MAX)
len = i;
else if (tok->type != CPP_COMMA
|| (c_parser_peek_nth_token_raw (parser, 2 + 2 * i)->type
!= CPP_NUMBER))
{
vals_to_ignore = i;
return;
}
/* Ensure the STRING_CST fits into 128K. */
unsigned int max_len = 131072 - offsetof (struct tree_string, str) - 1;
unsigned int orig_len = len;
unsigned int off = 0, last = 0;
if (!wi::neg_p (wi::to_wide (val)) && wi::to_widest (val) <= UCHAR_MAX)
off = 1;
len = MIN (len, max_len - off);
char *buf2 = XNEWVEC (char, len + off);
if (off)
buf2[0] = (char) tree_to_uhwi (val);
memcpy (buf2 + off, buf1, i);
for (unsigned int j = 0; j < i; ++j)
{
c_parser_peek_token (parser);
c_parser_consume_token (parser);
c_parser_peek_token (parser);
c_parser_consume_token (parser);
}
for (; i < len; ++i)
{
if (!c_parser_next_token_is (parser, CPP_COMMA))
break;
tok = c_parser_peek_2nd_token (parser);
if (tok->type != CPP_NUMBER
|| TREE_CODE (tok->value) != INTEGER_CST
|| TREE_TYPE (tok->value) != integer_type_node
|| wi::neg_p (wi::to_wide (tok->value))
|| wi::to_widest (tok->value) > UCHAR_MAX)
break;
c_token *tok2 = c_parser_peek_nth_token (parser, 3);
if (tok2->type != CPP_COMMA && tok2->type != CPP_CLOSE_BRACE)
break;
buf2[i + off] = (char) tree_to_uhwi (tok->value);
/* If orig_len is INT_MAX, this can be flexible array member and
in that case we need to ensure another element which
for CPP_EMBED is normally guaranteed after it. Include
that byte in the RAW_DATA_OWNER though, so it can be optimized
later. */
if (orig_len == INT_MAX
&& (tok2->type == CPP_CLOSE_BRACE
|| (c_parser_peek_nth_token (parser, 4)->type
!= CPP_NUMBER)))
{
last = 1;
break;
}
last_loc = tok->location;
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
val = make_node (RAW_DATA_CST);
TREE_TYPE (val) = integer_type_node;
RAW_DATA_LENGTH (val) = i;
tree owner = build_string (i + off + last, buf2);
XDELETEVEC (buf2);
TREE_TYPE (owner) = build_array_type_nelts (unsigned_char_type_node,
i + off + last);
RAW_DATA_OWNER (val) = owner;
RAW_DATA_POINTER (val) = TREE_STRING_POINTER (owner) + off;
init.value = val;
set_c_expr_source_range (&init, loc, last_loc);
init.original_code = RAW_DATA_CST;
init.original_type = integer_type_node;
init.m_decimal = 0;
process_init_element (loc, init, false, braced_init_obstack);
}
}
/* Parse a compound statement (possibly a function body) (C90 6.6.2,
C99 6.8.2, C11 6.8.2, C23 6.8.2).
compound-statement:
{ block-item-list[opt] }
{ label-declarations block-item-list }
block-item-list:
block-item
block-item-list block-item
block-item:
label
nested-declaration
statement
nested-declaration:
declaration
GNU extensions:
compound-statement:
{ label-declarations block-item-list }
nested-declaration:
__extension__ nested-declaration
nested-function-definition
label-declarations:
label-declaration
label-declarations label-declaration
label-declaration:
__label__ identifier-list ;
Allowing the mixing of declarations and code is new in C99. The
GNU syntax also permits (not shown above) labels at the end of
compound statements, which yield an error. We don't allow labels
on declarations; this might seem like a natural extension, but
there would be a conflict between gnu-attributes on the label and
prefix gnu-attributes on the declaration. ??? The syntax follows the
old parser in requiring something after label declarations.
Although they are erroneous if the labels declared aren't defined,
is it useful for the syntax to be this way?
OpenACC:
block-item:
openacc-directive
openacc-directive:
update-directive
OpenMP:
block-item:
openmp-directive
openmp-directive:
barrier-directive
flush-directive
taskwait-directive
taskyield-directive
cancel-directive
cancellation-point-directive */
static tree
c_parser_compound_statement (c_parser *parser, location_t *endlocp)
{
tree stmt;
location_t brace_loc;
brace_loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>"))
{
/* Ensure a scope is entered and left anyway to avoid confusion
if we have just prepared to enter a function body. */
stmt = c_begin_compound_stmt (true);
c_end_compound_stmt (brace_loc, stmt, true);
return error_mark_node;
}
stmt = c_begin_compound_stmt (true);
location_t end_loc = c_parser_compound_statement_nostart (parser);
if (endlocp)
*endlocp = end_loc;
return c_end_compound_stmt (brace_loc, stmt, true);
}
/* Diagnose errors related to imperfectly nested loops in an OMP
loop construct. This function is called when such code is seen.
Only issue one such diagnostic no matter how much invalid
intervening code there is in the loop.
FIXME: maybe the location associated with the diagnostic should
be the current parser token instead of the location of the outer loop
nest. */
static void
check_omp_intervening_code (c_parser *parser)
{
struct omp_for_parse_data *omp_for_parse_state = parser->omp_for_parse_state;
gcc_assert (omp_for_parse_state);
if (!omp_for_parse_state->in_intervening_code)
return;
omp_for_parse_state->saw_intervening_code = true;
/* Only diagnose errors related to perfect nesting once. */
if (!omp_for_parse_state->perfect_nesting_fail)
{
/* OpenACC does not (yet) permit intervening code, in
addition to situations forbidden by the OpenMP spec. */
if (omp_for_parse_state->code == OACC_LOOP)
{
error_at (omp_for_parse_state->for_loc,
"inner loops must be perfectly nested in "
"%<#pragma acc loop%>");
omp_for_parse_state->perfect_nesting_fail = true;
}
else if (omp_for_parse_state->ordered)
{
error_at (omp_for_parse_state->for_loc,
"inner loops must be perfectly nested with "
"% clause");
omp_for_parse_state->perfect_nesting_fail = true;
}
else if (omp_for_parse_state->inscan)
{
error_at (omp_for_parse_state->for_loc,
"inner loops must be perfectly nested with "
"% % clause");
omp_for_parse_state->perfect_nesting_fail = true;
}
else if (omp_for_parse_state->code == OMP_TILE)
{
error_at (omp_for_parse_state->for_loc,
"inner loops must be perfectly nested in "
"%");
omp_for_parse_state->perfect_nesting_fail = true;
}
if (omp_for_parse_state->perfect_nesting_fail)
omp_for_parse_state->fail = true;
}
}
/* Helper function for below: wrap an OMP_STRUCTURED_BLOCK around SL
and add the statement to the current list. If SL is an empty statement
list, do nothing. */
static void
add_structured_block_stmt (tree sl)
{
if (TREE_CODE (sl) != STATEMENT_LIST
|| !tsi_end_p (tsi_start (sl)))
add_stmt (build1 (OMP_STRUCTURED_BLOCK, void_type_node, sl));
}
struct c_omp_attribute_data
{
vec *tokens;
const c_omp_directive *dir;
c_omp_directive_kind kind;
};
/* Handle omp::directive and omp::sequence attributes in ATTRS
(if any) at the start of a statement or in attribute-declaration. */
static bool
c_parser_handle_statement_omp_attributes (c_parser *parser, tree &attrs,
bool *have_std_attrs)
{
if (!flag_openmp && !flag_openmp_simd)
return false;
auto_vec vd;
int cnt = 0;
int tokens = 0;
bool bad = false;
for (tree *pa = &attrs; *pa; )
if (is_attribute_namespace_p ("omp", *pa)
&& is_attribute_p ("directive", get_attribute_name (*pa)))
{
cnt++;
for (tree a = TREE_VALUE (*pa); a; a = TREE_CHAIN (a))
{
tree d = TREE_VALUE (a);
gcc_assert (TREE_CODE (d) == C_TOKEN_VEC);
vec *toks = C_TOKEN_VEC_TOKENS (d);
c_token *first = toks->address ();
c_token *last = first + toks->length ();
if (parser->omp_attrs_forbidden_p)
{
error_at (first->location,
"mixing OpenMP directives with attribute and pragma "
"syntax on the same statement");
parser->omp_attrs_forbidden_p = false;
bad = true;
}
else if (TREE_PUBLIC (d))
{
error_at (first->location,
"OpenMP % attribute on a statement");
bad = true;
}
const char *directive[3] = {};
for (int i = 0; i < 3; i++)
{
tree id = NULL_TREE;
if (first + i == last)
break;
if (first[i].type == CPP_NAME)
id = first[i].value;
else if (first[i].type == CPP_KEYWORD)
id = ridpointers[(int) first[i].keyword];
else
break;
directive[i] = IDENTIFIER_POINTER (id);
}
const c_omp_directive *dir = NULL;
if (directive[0])
dir = c_omp_categorize_directive (directive[0], directive[1],
directive[2]);
if (dir == NULL)
{
error_at (first->location,
"unknown OpenMP directive name in %qs attribute "
"argument",
TREE_PUBLIC (d) ? "omp::decl" : "omp::directive");
continue;
}
c_omp_directive_kind kind = dir->kind;
if (dir->id == PRAGMA_OMP_ORDERED)
{
/* ordered is C_OMP_DIR_CONSTRUCT only if it doesn't contain
depend/doacross clause. */
if (directive[1]
&& (strcmp (directive[1], "depend") == 0
|| strcmp (directive[1], "doacross") == 0))
kind = C_OMP_DIR_STANDALONE;
else if (first + 2 < last
&& first[1].type == CPP_COMMA
&& first[2].type == CPP_NAME
&& (strcmp (IDENTIFIER_POINTER (first[2].value),
"depend") == 0
|| strcmp (IDENTIFIER_POINTER (first[2].value),
"doacross") == 0))
kind = C_OMP_DIR_STANDALONE;
}
else if (dir->id == PRAGMA_OMP_ERROR)
{
/* error with at(execution) clause is C_OMP_DIR_STANDALONE. */
int paren_depth = 0;
for (int i = 1; first + i < last; i++)
if (first[i].type == CPP_OPEN_PAREN)
paren_depth++;
else if (first[i].type == CPP_CLOSE_PAREN)
paren_depth--;
else if (paren_depth == 0
&& first + i + 2 < last
&& first[i].type == CPP_NAME
&& first[i + 1].type == CPP_OPEN_PAREN
&& first[i + 2].type == CPP_NAME
&& !strcmp (IDENTIFIER_POINTER (first[i].value),
"at")
&& !strcmp (IDENTIFIER_POINTER (first[i
+ 2].value),
"execution"))
{
kind = C_OMP_DIR_STANDALONE;
break;
}
}
c_omp_attribute_data v = { toks, dir, kind };
vd.safe_push (v);
if (flag_openmp || dir->simd)
tokens += (last - first) + 1;
}
c_omp_attribute_data v = {};
vd.safe_push (v);
*pa = TREE_CHAIN (*pa);
}
else
pa = &TREE_CHAIN (*pa);
if (bad)
{
fail:
if (have_std_attrs && attrs == NULL)
*have_std_attrs = false;
return false;
}
unsigned int i;
c_omp_attribute_data *v;
c_omp_attribute_data *construct_seen = nullptr;
c_omp_attribute_data *standalone_seen = nullptr;
c_omp_attribute_data *prev_standalone_seen = nullptr;
FOR_EACH_VEC_ELT (vd, i, v)
if (v->tokens)
{
if (v->kind == C_OMP_DIR_CONSTRUCT && !construct_seen)
construct_seen = v;
else if (v->kind == C_OMP_DIR_STANDALONE && !standalone_seen)
standalone_seen = v;
}
else
{
if (standalone_seen && !prev_standalone_seen)
{
prev_standalone_seen = standalone_seen;
standalone_seen = nullptr;
}
}
if (cnt > 1 && construct_seen)
{
error_at ((*construct_seen->tokens)[0].location,
"OpenMP construct among % attributes"
" requires all % attributes on the"
" same statement to be in the same %");
goto fail;
}
if (cnt > 1 && standalone_seen && prev_standalone_seen)
{
error_at ((*standalone_seen->tokens)[0].location,
"multiple OpenMP standalone directives among"
" % attributes must be all within the"
" same %");
goto fail;
}
if (prev_standalone_seen)
standalone_seen = prev_standalone_seen;
if (standalone_seen
&& !c_parser_next_token_is (parser, CPP_SEMICOLON))
{
error_at (standalone_seen->tokens->address ()->location,
"standalone OpenMP directives in % attribute"
" can only appear on an empty statement");
goto fail;
}
if (cnt && c_parser_next_token_is (parser, CPP_PRAGMA))
{
c_token *token = c_parser_peek_token (parser);
enum pragma_kind kind = token->pragma_kind;
if (kind >= PRAGMA_OMP__START_ && kind <= PRAGMA_OMP__LAST_)
{
error_at (token->location,
"mixing OpenMP directives with attribute and pragma "
"syntax on the same statement");
goto fail;
}
}
if (!tokens)
return false;
unsigned int tokens_avail = parser->tokens_avail;
gcc_assert (parser->tokens == &parser->tokens_buf[0]);
tokens++;
vec *toks = NULL;
vec_safe_reserve (toks, tokens, true);
FOR_EACH_VEC_ELT (vd, i, v)
{
if (!v->tokens)
continue;
if (!flag_openmp && !v->dir->simd)
continue;
c_token *first = v->tokens->address ();
c_token *last = first + v->tokens->length ();
c_token tok = {};
tok.type = CPP_PRAGMA;
tok.keyword = RID_MAX;
tok.pragma_kind = pragma_kind (v->dir->id);
tok.location = first->location;
toks->quick_push (tok);
while (++first < last)
toks->quick_push (*first);
tok = {};
tok.type = CPP_PRAGMA_EOL;
tok.keyword = RID_MAX;
tok.location = last[-1].location;
toks->quick_push (tok);
}
c_token tok = {};
tok.type = CPP_EOF;
tok.keyword = RID_MAX;
tok.location = toks->last ().location;
tok.flags = tokens_avail;
toks->quick_push (tok);
parser->tokens = toks->address ();
parser->tokens_avail = tokens;
parser->in_omp_attribute_pragma = toks;
return true;
}
/* Handle omp::directive and omp::sequence attributes in ATTRS
(if any) at the start or after declaration-id of a declaration. */
static void
c_parser_handle_directive_omp_attributes (tree &attrs,
vec *&pragma_clauses,
vec *attr_clauses)
{
if (!flag_openmp && !flag_openmp_simd)
return;
for (tree *pa = &attrs; *pa; )
if (is_attribute_namespace_p ("omp", *pa)
&& is_attribute_p ("directive", get_attribute_name (*pa)))
{
int cnt = 0;
for (tree *pa2 = &TREE_VALUE (*pa); *pa2; )
{
tree a = *pa2;
tree d = TREE_VALUE (a);
gcc_assert (TREE_CODE (d) == C_TOKEN_VEC);
vec *toks = C_TOKEN_VEC_TOKENS (d);
c_token *first = toks->address ();
c_token *last = first + toks->length ();
const char *directive[3] = {};
for (int i = 0; i < 3; i++)
{
tree id = NULL_TREE;
if (first + i == last)
break;
if (first[i].type == CPP_NAME)
id = first[i].value;
else if (first[i].type == CPP_KEYWORD)
id = ridpointers[(int) first[i].keyword];
else
break;
directive[i] = IDENTIFIER_POINTER (id);
}
const c_omp_directive *dir = NULL;
if (directive[0])
dir = c_omp_categorize_directive (directive[0], directive[1],
directive[2]);
if (dir == NULL)
{
error_at (first->location,
"unknown OpenMP directive name in "
"%qs attribute argument",
TREE_PUBLIC (d) ? "omp::decl" : "omp::directive");
*pa2 = TREE_CHAIN (a);
}
else if (dir->id == PRAGMA_OMP_DECLARE
&& (strcmp (directive[1], "simd") == 0
|| strcmp (directive[1], "variant") == 0))
{
if (pragma_clauses)
{
error_at (first->location,
"mixing OpenMP directives with attribute and "
"pragma syntax on the same declaration");
for (pa = &attrs; *pa; )
if (is_attribute_namespace_p ("omp", *pa)
&& is_attribute_p ("directive",
get_attribute_name (*pa)))
*pa = TREE_CHAIN (*pa);
else
pa = &TREE_CHAIN (*pa);
return;
}
++cnt;
attr_clauses->reserve (attr_clauses->length ()
+ toks->length () + 2);
for (++first; first < last; ++first)
attr_clauses->quick_push (*first);
c_token tok = {};
tok.type = CPP_PRAGMA_EOL;
tok.keyword = RID_MAX;
tok.location = last[-1].location;
attr_clauses->quick_push (tok);
*pa2 = TREE_CHAIN (a);
}
else
pa2 = &TREE_CHAIN (a);
}
if (cnt && TREE_VALUE (*pa) == NULL_TREE)
*pa = TREE_CHAIN (*pa);
else
pa = &TREE_CHAIN (*pa);
}
else
pa = &TREE_CHAIN (*pa);
if (attr_clauses->length ())
{
c_token tok = {};
tok.type = CPP_EOF;
tok.keyword = RID_MAX;
tok.location = attr_clauses->last ().location;
attr_clauses->quick_push (tok);
attr_clauses->quick_push (tok);
pragma_clauses = attr_clauses;
}
}
/* Check if STD_ATTR contains a musttail attribute and remove if it
precedes a return. PARSER is the parser and ATTR is the output
attr_state. */
static tree
c_parser_handle_musttail (c_parser *parser, tree std_attrs, attr_state &attr)
{
if (c_parser_next_token_is_keyword (parser, RID_RETURN))
{
if (lookup_attribute ("gnu", "musttail", std_attrs))
{
std_attrs = remove_attribute ("gnu", "musttail", std_attrs);
attr.musttail_p = true;
}
if (lookup_attribute ("clang", "musttail", std_attrs))
{
std_attrs = remove_attribute ("clang", "musttail", std_attrs);
attr.musttail_p = true;
}
}
return std_attrs;
}
/* Return a statement before optional series of LABEL_EXPR/CASE_LABEL_EXPRs.
Instead of collecting vectors of labels before each stmt just in case
the statement would be iteration or switch statement for named loops,
we just remember last emitted statement and let the iteration/switch
statement search backwards in cur_stmt_list until that stmt for loop
names if any. */
static tree
get_before_labels ()
{
if (!building_stmt_list_p ())
return NULL_TREE;
tree_stmt_iterator tsi = tsi_last (cur_stmt_list);
if (tsi_end_p (tsi))
return NULL_TREE;
return tsi_stmt (tsi);
}
/* Parse a compound statement except for the opening brace. This is
used for parsing both compound statements and statement expressions
(which follow different paths to handling the opening). */
static location_t
c_parser_compound_statement_nostart (c_parser *parser)
{
bool last_stmt = false;
bool last_label = false;
bool save_valid_for_pragma = valid_location_for_stdc_pragma_p ();
location_t label_loc = UNKNOWN_LOCATION; /* Quiet warning. */
struct omp_for_parse_data *omp_for_parse_state
= parser->omp_for_parse_state;
bool in_omp_loop_block
= omp_for_parse_state ? omp_for_parse_state->want_nested_loop : false;
tree sl = NULL_TREE;
attr_state a = {};
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
location_t endloc = c_parser_peek_token (parser)->location;
add_debug_begin_stmt (endloc);
c_parser_consume_token (parser);
return endloc;
}
/* If we're parsing a {} sequence in an OMP_FOR body, start a
statement list for intervening code. */
if (in_omp_loop_block)
sl = push_stmt_list ();
mark_valid_location_for_stdc_pragma (true);
if (c_parser_next_token_is_keyword (parser, RID_LABEL))
{
/* Read zero or more forward-declarations for labels that nested
functions can jump to. */
mark_valid_location_for_stdc_pragma (false);
if (in_omp_loop_block)
check_omp_intervening_code (parser);
while (c_parser_next_token_is_keyword (parser, RID_LABEL))
{
label_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
/* Any identifiers, including those declared as type names,
are OK here. */
while (true)
{
tree label;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
label
= declare_label (c_parser_peek_token (parser)->value);
C_DECLARED_LABEL_FLAG (label) = 1;
add_stmt (build_stmt (label_loc, DECL_EXPR, label));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
pedwarn (label_loc, OPT_Wpedantic, "ISO C forbids label declarations");
}
/* We must now have at least one statement, label or declaration. */
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
mark_valid_location_for_stdc_pragma (save_valid_for_pragma);
c_parser_error (parser, "expected declaration or statement");
location_t endloc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
return endloc;
}
tree before_labels = get_before_labels ();
while (c_parser_next_token_is_not (parser, CPP_CLOSE_BRACE))
{
location_t loc = c_parser_peek_token (parser)->location;
loc = expansion_point_location_if_in_system_header (loc);
bool want_nested_loop = (omp_for_parse_state
? omp_for_parse_state->want_nested_loop
: false);
/* First take care of special cases for OpenMP "canonical loop
nest form", that do not allow standard attributes, labels, or
__extension__ before the nested statement. */
if (in_omp_loop_block && !last_label)
{
tree_code code = omp_for_parse_state->code;
if (want_nested_loop
&& c_parser_omp_next_tokens_can_be_canon_loop (parser, code,
false))
{
/* Found the next nested loop. If there were intervening
code statements collected before now, wrap them in an
OMP_STRUCTURED_BLOCK node, and start a new structured
block to hold statements that may come after the FOR. */
gcc_assert (sl);
add_structured_block_stmt (pop_stmt_list (sl));
omp_for_parse_state->depth++;
add_stmt (c_parser_omp_loop_nest (parser, NULL));
omp_for_parse_state->depth--;
sl = push_stmt_list ();
parser->error = false;
before_labels = get_before_labels ();
continue;
}
else if (want_nested_loop
&& c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
/* If this nested compound statement contains the nested loop,
we need to separate the other statements in the current
statement into separate blocks of intervening code. If
there's no nested loop, it's all part of the same
chunk of intervening code. */
tree pre_sl = pop_stmt_list (sl);
tree nested_sl = push_stmt_list ();
mark_valid_location_for_stdc_pragma (false);
c_parser_statement_after_labels (parser, NULL, NULL_TREE);
nested_sl = pop_stmt_list (nested_sl);
if (omp_for_parse_state->want_nested_loop)
{
/* This block didn't contain a loop-nest, so it's
all part of the same chunk of intervening code. */
check_omp_intervening_code (parser);
sl = push_stmt_list ();
add_stmt (pre_sl);
add_stmt (nested_sl);
}
else
{
/* It contains the nested loop. */
add_structured_block_stmt (pre_sl);
add_stmt (nested_sl);
sl = push_stmt_list ();
}
parser->error = false;
before_labels = get_before_labels ();
continue;
}
else if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
/* Prior to implementing the OpenMP 5.1 syntax for canonical
loop form, GCC used to accept an empty statements that
would now be flagged as intervening code. Continue to
do that, as an extension. */
/* FIXME: Maybe issue a warning or something here? */
c_parser_consume_token (parser);
before_labels = get_before_labels ();
continue;
}
}
/* Standard attributes may start a label, statement or declaration. */
bool have_std_attrs
= c_parser_nth_token_starts_std_attributes (parser, 1);
tree std_attrs = NULL_TREE;
if (have_std_attrs)
{
std_attrs = c_parser_std_attribute_specifier_sequence (parser);
std_attrs = c_parser_handle_musttail (parser, std_attrs, a);
}
if (c_parser_next_token_is_keyword (parser, RID_CASE)
|| c_parser_next_token_is_keyword (parser, RID_DEFAULT)
|| (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON))
{
if (c_parser_next_token_is_keyword (parser, RID_CASE))
label_loc = c_parser_peek_2nd_token (parser)->location;
else
label_loc = c_parser_peek_token (parser)->location;
last_label = true;
last_stmt = false;
mark_valid_location_for_stdc_pragma (false);
if (in_omp_loop_block)
check_omp_intervening_code (parser);
c_parser_label (parser, std_attrs);
}
else if (c_parser_next_tokens_start_declaration (parser)
|| (have_std_attrs
&& !c_parser_handle_statement_omp_attributes
(parser, std_attrs, &have_std_attrs)
&& c_parser_next_token_is (parser, CPP_SEMICOLON)
&& (have_std_attrs = true)))
{
if (last_label)
pedwarn_c11 (c_parser_peek_token (parser)->location, OPT_Wfree_labels,
"a label can only be part of a statement and "
"a declaration is not a statement");
/* It's unlikely we'll see a nested loop in a declaration in
intervening code in an OMP loop, but disallow it anyway. */
if (in_omp_loop_block)
{
check_omp_intervening_code (parser);
omp_for_parse_state->want_nested_loop = false;
}
mark_valid_location_for_stdc_pragma (false);
bool fallthru_attr_p = false;
c_parser_declaration_or_fndef (parser, true, !have_std_attrs,
true, true, true, false, NULL,
NULL, have_std_attrs, std_attrs,
NULL, &fallthru_attr_p);
if (in_omp_loop_block)
omp_for_parse_state->want_nested_loop = want_nested_loop;
if (last_stmt && !fallthru_attr_p)
pedwarn_c90 (loc, OPT_Wdeclaration_after_statement,
"ISO C90 forbids mixed declarations and code");
last_stmt = fallthru_attr_p;
last_label = false;
before_labels = get_before_labels ();
}
else if (c_parser_next_token_is_keyword (parser, RID_EXTENSION))
{
/* __extension__ can start a declaration, but is also an
unary operator that can start an expression. Consume all
but the last of a possible series of __extension__ to
determine which. If standard attributes have already
been seen, it must start a statement, not a declaration,
but standard attributes starting a declaration may appear
after __extension__. */
while (c_parser_peek_2nd_token (parser)->type == CPP_KEYWORD
&& (c_parser_peek_2nd_token (parser)->keyword
== RID_EXTENSION))
c_parser_consume_token (parser);
if (!have_std_attrs
&& (c_token_starts_declaration (c_parser_peek_2nd_token (parser))
|| c_parser_nth_token_starts_std_attributes (parser, 2)))
{
int ext;
ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
last_label = false;
/* It's unlikely we'll see a nested loop in a declaration in
intervening code in an OMP loop, but disallow it anyway. */
if (in_omp_loop_block)
{
check_omp_intervening_code (parser);
omp_for_parse_state->want_nested_loop = false;
}
mark_valid_location_for_stdc_pragma (false);
c_parser_declaration_or_fndef (parser, true, true, true, true,
true, false);
if (in_omp_loop_block)
omp_for_parse_state->want_nested_loop = want_nested_loop;
/* Following the old parser, __extension__ does not
disable this diagnostic. */
restore_extension_diagnostics (ext);
if (last_stmt)
pedwarn_c90 (loc, OPT_Wdeclaration_after_statement,
"ISO C90 forbids mixed declarations and code");
last_stmt = false;
before_labels = get_before_labels ();
}
else
goto statement;
}
else if (c_parser_next_token_is (parser, CPP_PRAGMA))
{
if (have_std_attrs && !parser->in_omp_attribute_pragma)
c_parser_error (parser, "expected declaration or statement");
else if (std_attrs)
c_warn_unused_attributes (std_attrs);
/* External pragmas, and some omp pragmas, are not associated
with regular c code, and so are not to be considered statements
syntactically. This ensures that the user doesn't put them
places that would turn into syntax errors if the directive
were ignored. */
if (omp_for_parse_state)
omp_for_parse_state->want_nested_loop = false;
if (c_parser_pragma (parser,
last_label ? pragma_stmt : pragma_compound,
NULL, before_labels))
{
last_label = false;
last_stmt = true;
if (omp_for_parse_state)
check_omp_intervening_code (parser);
}
if (omp_for_parse_state)
omp_for_parse_state->want_nested_loop = want_nested_loop;
before_labels = get_before_labels ();
}
else if (c_parser_next_token_is (parser, CPP_EOF))
{
mark_valid_location_for_stdc_pragma (save_valid_for_pragma);
c_parser_error (parser, "expected declaration or statement");
return c_parser_peek_token (parser)->location;
}
else if (c_parser_next_token_is_keyword (parser, RID_ELSE))
{
if (parser->in_if_block)
{
mark_valid_location_for_stdc_pragma (save_valid_for_pragma);
error_at (loc, "expected %<}%> before %");
return c_parser_peek_token (parser)->location;
}
else
{
error_at (loc, "% without a previous %");
c_parser_consume_token (parser);
before_labels = get_before_labels ();
continue;
}
}
else
{
statement:
c_warn_unused_attributes (std_attrs);
last_label = false;
last_stmt = true;
mark_valid_location_for_stdc_pragma (false);
if (!omp_for_parse_state)
c_parser_statement_after_labels (parser, NULL, before_labels,
NULL, a);
else
{
/* In canonical loop nest form, nested loops can only appear
directly, or in a directly nested compound statement. We
already took care of those cases above, so now we have
something else. This statement and everything inside
it must be intervening code. */
omp_for_parse_state->want_nested_loop = false;
check_omp_intervening_code (parser);
c_parser_statement_after_labels (parser, NULL, before_labels);
omp_for_parse_state->want_nested_loop = want_nested_loop;
}
before_labels = get_before_labels ();
}
parser->error = false;
}
if (last_label)
pedwarn_c11 (label_loc, OPT_Wfree_labels,
"label at end of compound statement");
location_t endloc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
/* Restore the value we started with. */
mark_valid_location_for_stdc_pragma (save_valid_for_pragma);
/* Package leftover intervening code, or the whole contents of the
compound statement if we were looking for a nested loop in an OMP_FOR
construct and didn't find one. */
if (sl)
{
sl = pop_stmt_list (sl);
if (omp_for_parse_state->want_nested_loop)
add_stmt (sl);
else
add_structured_block_stmt (sl);
}
return endloc;
}
/* Parse all consecutive labels, possibly preceded by standard
attributes. In this context, a statement is required, not a
declaration, so attributes must be followed by a statement that is
not just a semicolon. Returns an attr_state. */
static attr_state
c_parser_all_labels (c_parser *parser)
{
attr_state attr = {};
bool have_std_attrs;
tree std_attrs = NULL;
if ((have_std_attrs = c_parser_nth_token_starts_std_attributes (parser, 1)))
{
std_attrs = c_parser_std_attribute_specifier_sequence (parser);
std_attrs = c_parser_handle_musttail (parser, std_attrs, attr);
}
while (c_parser_next_token_is_keyword (parser, RID_CASE)
|| c_parser_next_token_is_keyword (parser, RID_DEFAULT)
|| (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON))
{
c_parser_label (parser, std_attrs);
std_attrs = NULL;
if ((have_std_attrs = c_parser_nth_token_starts_std_attributes (parser,
1)))
{
std_attrs = c_parser_std_attribute_specifier_sequence (parser);
std_attrs = c_parser_handle_musttail (parser, std_attrs, attr);
}
}
if (std_attrs
&& (!c_parser_handle_statement_omp_attributes (parser, std_attrs, &have_std_attrs)
|| std_attrs))
{
if (have_std_attrs && c_parser_next_token_is (parser, CPP_SEMICOLON))
c_parser_error (parser, "expected statement");
c_warn_unused_attributes (std_attrs);
}
else if (have_std_attrs && c_parser_next_token_is (parser, CPP_SEMICOLON))
c_parser_error (parser, "expected statement");
return attr;
}
/* Parse a label (C90 6.6.1, C99 6.8.1, C11 6.8.1).
label:
identifier : gnu-attributes[opt]
case constant-expression :
default :
GNU extensions:
label:
case constant-expression ... constant-expression :
The use of gnu-attributes on labels is a GNU extension. The syntax in
GNU C accepts any expressions without commas, non-constant
expressions being rejected later. Any standard
attribute-specifier-sequence before the first label has been parsed
in the caller, to distinguish statements from declarations. Any
attribute-specifier-sequence after the label is parsed in this
function. */
static void
c_parser_label (c_parser *parser, tree std_attrs)
{
location_t loc1 = c_parser_peek_token (parser)->location;
tree label = NULL_TREE;
/* Remember whether this case or a user-defined label is allowed to fall
through to. */
bool fallthrough_p = c_parser_peek_token (parser)->flags & PREV_FALLTHROUGH;
if (c_parser_next_token_is_keyword (parser, RID_CASE))
{
tree exp1, exp2;
c_parser_consume_token (parser);
exp1 = convert_lvalue_to_rvalue (loc1,
c_parser_expr_no_commas (parser, NULL),
true, true).value;
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
label = do_case (loc1, exp1, NULL_TREE, std_attrs);
}
else if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
c_parser_consume_token (parser);
exp2 = convert_lvalue_to_rvalue (loc1,
c_parser_expr_no_commas (parser,
NULL),
true, true).value;
if (c_parser_require (parser, CPP_COLON, "expected %<:%>"))
label = do_case (loc1, exp1, exp2, std_attrs);
}
else
c_parser_error (parser, "expected %<:%> or %<...%>");
}
else if (c_parser_next_token_is_keyword (parser, RID_DEFAULT))
{
c_parser_consume_token (parser);
if (c_parser_require (parser, CPP_COLON, "expected %<:%>"))
label = do_case (loc1, NULL_TREE, NULL_TREE, std_attrs);
}
else
{
tree name = c_parser_peek_token (parser)->value;
tree tlab;
tree attrs;
location_t loc2 = c_parser_peek_token (parser)->location;
gcc_assert (c_parser_next_token_is (parser, CPP_NAME));
c_parser_consume_token (parser);
gcc_assert (c_parser_next_token_is (parser, CPP_COLON));
c_parser_consume_token (parser);
attrs = c_parser_gnu_attributes (parser);
tlab = define_label (loc2, name);
if (tlab)
{
decl_attributes (&tlab, attrs, 0);
decl_attributes (&tlab, std_attrs, 0);
label = add_stmt (build_stmt (loc1, LABEL_EXPR, tlab));
}
if (attrs
&& c_parser_next_tokens_start_declaration (parser))
warning_at (loc2, OPT_Wattributes, "GNU-style attribute between"
" label and declaration appertains to the label");
}
if (label)
{
if (TREE_CODE (label) == LABEL_EXPR)
FALLTHROUGH_LABEL_P (LABEL_EXPR_LABEL (label)) = fallthrough_p;
else
FALLTHROUGH_LABEL_P (CASE_LABEL (label)) = fallthrough_p;
}
}
/* Parse a statement (C90 6.6, C99 6.8, C11 6.8).
statement:
labeled-statement
attribute-specifier-sequence[opt] compound-statement
expression-statement
attribute-specifier-sequence[opt] selection-statement
attribute-specifier-sequence[opt] iteration-statement
attribute-specifier-sequence[opt] jump-statement
labeled-statement:
attribute-specifier-sequence[opt] label statement
expression-statement:
expression[opt] ;
attribute-specifier-sequence expression ;
selection-statement:
if-statement
switch-statement
iteration-statement:
while-statement
do-statement
for-statement
jump-statement:
goto identifier ;
continue ;
break ;
return expression[opt] ;
GNU extensions:
statement:
attribute-specifier-sequence[opt] asm-statement
jump-statement:
goto * expression ;
expression-statement:
gnu-attributes ;
Objective-C:
statement:
attribute-specifier-sequence[opt] objc-throw-statement
attribute-specifier-sequence[opt] objc-try-catch-statement
attribute-specifier-sequence[opt] objc-synchronized-statement
objc-throw-statement:
@throw expression ;
@throw ;
OpenACC:
statement:
attribute-specifier-sequence[opt] openacc-construct
openacc-construct:
parallel-construct
kernels-construct
data-construct
loop-construct
parallel-construct:
parallel-directive structured-block
kernels-construct:
kernels-directive structured-block
data-construct:
data-directive structured-block
loop-construct:
loop-directive structured-block
OpenMP:
statement:
attribute-specifier-sequence[opt] openmp-construct
openmp-construct:
parallel-construct
for-construct
simd-construct
for-simd-construct
sections-construct
single-construct
parallel-for-construct
parallel-for-simd-construct
parallel-sections-construct
master-construct
critical-construct
atomic-construct
ordered-construct
parallel-construct:
parallel-directive structured-block
for-construct:
for-directive iteration-statement
simd-construct:
simd-directive iteration-statements
for-simd-construct:
for-simd-directive iteration-statements
sections-construct:
sections-directive section-scope
single-construct:
single-directive structured-block
parallel-for-construct:
parallel-for-directive iteration-statement
parallel-for-simd-construct:
parallel-for-simd-directive iteration-statement
parallel-sections-construct:
parallel-sections-directive section-scope
master-construct:
master-directive structured-block
critical-construct:
critical-directive structured-block
atomic-construct:
atomic-directive expression-statement
ordered-construct:
ordered-directive structured-block
Transactional Memory:
statement:
attribute-specifier-sequence[opt] transaction-statement
attribute-specifier-sequence[opt] transaction-cancel-statement
IF_P is used to track whether there's a (possibly labeled) if statement
which is not enclosed in braces and has an else clause. This is used to
implement -Wparentheses. */
static void
c_parser_statement (c_parser *parser, bool *if_p, location_t *loc_after_labels)
{
tree before_labels = get_before_labels ();
attr_state a = c_parser_all_labels (parser);
if (loc_after_labels)
*loc_after_labels = c_parser_peek_token (parser)->location;
parser->omp_attrs_forbidden_p = false;
c_parser_statement_after_labels (parser, if_p, before_labels, NULL, a);
}
/* Parse and handle optional identifier after break or continue keywords. */
static tree
c_parser_bc_name (c_parser *parser, bool is_break)
{
if (!c_parser_next_token_is (parser, CPP_NAME))
return NULL_TREE;
c_token *tok = c_parser_peek_token (parser);
tree label = c_finish_bc_name (tok->location, tok->value, is_break);
c_parser_consume_token (parser);
return label;
}
/* Parse a statement, other than a labeled statement. CHAIN is a vector
of if-else-if conditions. All labels and standard attributes have
been parsed in the caller.
IF_P is used to track whether there's a (possibly labeled) if statement
which is not enclosed in braces and has an else clause. This is used to
implement -Wparentheses. ASTATE is an earlier parsed attribute state.
BEFORE_LABELS is last statement before possible labels, see
get_before_labels description for details. */
static void
c_parser_statement_after_labels (c_parser *parser, bool *if_p,
tree before_labels,
vec *chain, attr_state astate)
{
location_t loc = c_parser_peek_token (parser)->location;
tree stmt = NULL_TREE;
bool in_if_block = parser->in_if_block;
parser->in_if_block = false;
if (if_p != NULL)
*if_p = false;
if (c_parser_peek_token (parser)->type != CPP_OPEN_BRACE)
add_debug_begin_stmt (loc);
restart:
switch (c_parser_peek_token (parser)->type)
{
case CPP_OPEN_BRACE:
add_stmt (c_parser_compound_statement (parser));
break;
case CPP_KEYWORD:
switch (c_parser_peek_token (parser)->keyword)
{
case RID_IF:
c_parser_if_statement (parser, if_p, chain);
break;
case RID_SWITCH:
c_parser_switch_statement (parser, if_p, before_labels);
break;
case RID_WHILE:
c_parser_while_statement (parser, false, 0, false, if_p, before_labels);
break;
case RID_DO:
c_parser_do_statement (parser, false, 0, false, before_labels);
break;
case RID_FOR:
c_parser_for_statement (parser, false, 0, false, if_p, before_labels);
break;
case RID_GOTO:
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
stmt = c_finish_goto_label (loc,
c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is (parser, CPP_MULT))
{
struct c_expr val;
c_parser_consume_token (parser);
val = c_parser_expression (parser);
val = convert_lvalue_to_rvalue (loc, val, false, true);
stmt = c_finish_goto_ptr (loc, val);
}
else
c_parser_error (parser, "expected identifier or %<*%>");
goto expect_semicolon;
case RID_CONTINUE:
c_parser_consume_token (parser);
stmt = c_finish_bc_stmt (loc, objc_foreach_continue_label, false,
c_parser_bc_name (parser, false));
goto expect_semicolon;
case RID_BREAK:
c_parser_consume_token (parser);
stmt = c_finish_bc_stmt (loc, objc_foreach_break_label, true,
c_parser_bc_name (parser, true));
goto expect_semicolon;
case RID_RETURN:
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
stmt = c_finish_return (loc, NULL_TREE, NULL_TREE,
astate.musttail_p);
c_parser_consume_token (parser);
}
else
{
location_t xloc = c_parser_peek_token (parser)->location;
struct c_expr expr = c_parser_expression_conv (parser);
mark_exp_read (expr.value);
stmt = c_finish_return (EXPR_LOC_OR_LOC (expr.value, xloc),
expr.value, expr.original_type,
astate.musttail_p);
goto expect_semicolon;
}
break;
case RID_ASM:
stmt = c_parser_asm_statement (parser);
break;
case RID_TRANSACTION_ATOMIC:
case RID_TRANSACTION_RELAXED:
stmt = c_parser_transaction (parser,
c_parser_peek_token (parser)->keyword);
break;
case RID_TRANSACTION_CANCEL:
stmt = c_parser_transaction_cancel (parser);
goto expect_semicolon;
case RID_AT_THROW:
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
stmt = objc_build_throw_stmt (loc, NULL_TREE);
c_parser_consume_token (parser);
}
else
{
struct c_expr expr = c_parser_expression (parser);
expr = convert_lvalue_to_rvalue (loc, expr, false, false);
expr.value = c_fully_fold (expr.value, false, NULL);
stmt = objc_build_throw_stmt (loc, expr.value);
goto expect_semicolon;
}
break;
case RID_AT_TRY:
gcc_assert (c_dialect_objc ());
c_parser_objc_try_catch_finally_statement (parser);
break;
case RID_AT_SYNCHRONIZED:
gcc_assert (c_dialect_objc ());
c_parser_objc_synchronized_statement (parser);
break;
case RID_ATTRIBUTE:
{
/* Allow '__attribute__((fallthrough));' or
'__attribute__((assume(cond)));'. */
tree attrs = c_parser_gnu_attributes (parser);
bool has_assume = lookup_attribute ("assume", attrs);
if (has_assume)
{
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
attrs = handle_assume_attribute (loc, attrs, true);
else
{
warning_at (loc, OPT_Wattributes,
"% attribute not followed by %<;%>");
has_assume = false;
}
}
if (attribute_fallthrough_p (attrs))
{
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
tree fn = build_call_expr_internal_loc (loc,
IFN_FALLTHROUGH,
void_type_node, 0);
add_stmt (fn);
/* Eat the ';'. */
c_parser_consume_token (parser);
}
else
warning_at (loc, OPT_Wattributes,
"% attribute not followed "
"by %<;%>");
}
else if (has_assume)
/* Eat the ';'. */
c_parser_consume_token (parser);
else if (attrs != NULL_TREE)
warning_at (loc, OPT_Wattributes,
"only attribute % or % can "
"be applied to a null statement");
break;
}
default:
goto expr_stmt;
}
break;
case CPP_SEMICOLON:
c_parser_consume_token (parser);
break;
case CPP_CLOSE_PAREN:
case CPP_CLOSE_SQUARE:
/* Avoid infinite loop in error recovery:
c_parser_skip_until_found stops at a closing nesting
delimiter without consuming it, but here we need to consume
it to proceed further. */
c_parser_error (parser, "expected statement");
c_parser_consume_token (parser);
break;
case CPP_PRAGMA:
if (!c_parser_pragma (parser, pragma_stmt, if_p, before_labels))
goto restart;
break;
default:
expr_stmt:
stmt = c_finish_expr_stmt (loc, c_parser_expression_conv (parser).value);
expect_semicolon:
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
break;
}
/* Two cases cannot and do not have line numbers associated: If stmt
is degenerate, such as "2;", then stmt is an INTEGER_CST, which
cannot hold line numbers. But that's OK because the statement
will either be changed to a MODIFY_EXPR during gimplification of
the statement expr, or discarded. If stmt was compound, but
without new variables, we will have skipped the creation of a
BIND and will have a bare STATEMENT_LIST. But that's OK because
(recursively) all of the component statements should already have
line numbers assigned. ??? Can we discard no-op statements
earlier? */
if (EXPR_LOCATION (stmt) == UNKNOWN_LOCATION)
protected_set_expr_location (stmt, loc);
parser->in_if_block = in_if_block;
}
/* Parse the condition from an if, do, while or for statements. */
static tree
c_parser_condition (c_parser *parser)
{
location_t loc = c_parser_peek_token (parser)->location;
tree cond;
cond = c_parser_expression_conv (parser).value;
cond = c_objc_common_truthvalue_conversion (loc, cond);
cond = c_fully_fold (cond, false, NULL);
if (warn_sequence_point)
verify_sequence_points (cond);
return cond;
}
/* Parse a parenthesized condition from a do or while statement.
condition:
( expression )
*/
static tree
c_parser_paren_condition (c_parser *parser)
{
tree cond;
matching_parens parens;
if (!parens.require_open (parser))
return error_mark_node;
cond = c_parser_condition (parser);
parens.skip_until_found_close (parser);
return cond;
}
/* Parse a selection-header:
selection-header:
expression
declaration expression
simple-declaration
simple-declaration:
attribute-specifier-sequence[opt] declaration-specifiers declarator
= initializer
SWITCH_P is true if we are called from c_parser_switch_statement; in
that case, don't perform the truthvalue conversion. */
static c_expr
c_parser_selection_header (c_parser *parser, bool switch_p)
{
location_t loc = c_parser_peek_token (parser)->location;
c_expr expr;
bool parse_expr = true;
tree std_attrs;
bool have_std_attrs = c_parser_nth_token_starts_std_attributes (parser, 1);
if (have_std_attrs)
std_attrs = c_parser_std_attribute_specifier_sequence (parser);
else
std_attrs = NULL_TREE;
if (c_parser_next_tokens_start_declaration (parser))
{
pedwarn_c23 (loc, OPT_Wpedantic,
"ISO C does not support if declarations before C2Y");
expr.value
= c_parser_declaration_or_fndef (parser,
/*fndef_ok=*/false,
/*static_assert_ok=*/false,
/*empty_ok=*/false,
/*nested=*/true,
/*start_attr_ok=*/true,
/*simple_ok=*/true,
/*objc_foreach_object_decl=*/nullptr,
/*omp_declare_simd_clauses=*/nullptr,
have_std_attrs,
std_attrs);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
c_parser_consume_token (parser);
else
{
/* A simple-declaration is a declaration that can appear in
place of the controlling expression of a selection statement.
In that case, there shall be an initializer. */
if (!expr.value)
{
error_at (loc, "declaration in the controlling expression must "
"have an initializer");
expr.original_type = error_mark_node;
expr.set_error ();
return expr;
}
parse_expr = false;
}
if (expr.value)
{
expr.original_type = TREE_TYPE (expr.value);
expr = convert_lvalue_to_rvalue (loc, expr, /*convert_p=*/true,
/*read_p=*/true);
}
}
else if (have_std_attrs)
{
c_parser_error (parser, "expected declaration");
expr.original_type = error_mark_node;
expr.set_error ();
return expr;
}
if (parse_expr)
expr = c_parser_expression_conv (parser);
if (!switch_p)
{
expr.value = c_objc_common_truthvalue_conversion (loc, expr.value);
expr.value = c_fully_fold (expr.value, false, NULL);
if (warn_sequence_point)
verify_sequence_points (expr.value);
}
return expr;
}
/* Parse a selection-header enclosed in parentheses:
( selection-header )
*/
static tree
c_parser_paren_selection_header (c_parser *parser)
{
matching_parens parens;
if (!parens.require_open (parser))
return error_mark_node;
tree cond = c_parser_selection_header (parser, /*switch_p=*/false).value;
parens.skip_until_found_close (parser);
return cond;
}
/* Parse a statement which is a block in C99.
IF_P is used to track whether there's a (possibly labeled) if statement
which is not enclosed in braces and has an else clause. This is used to
implement -Wparentheses. */
static tree
c_parser_c99_block_statement (c_parser *parser, bool *if_p,
location_t *loc_after_labels)
{
tree block = c_begin_compound_stmt (flag_isoc99);
location_t loc = c_parser_peek_token (parser)->location;
c_parser_statement (parser, if_p, loc_after_labels);
return c_end_compound_stmt (loc, block, flag_isoc99);
}
/* Parse the body of an if statement. This is just parsing a
statement but (a) it is a block in C99, (b) we track whether the
body is an if statement for the sake of -Wparentheses warnings, (c)
we handle an empty body specially for the sake of -Wempty-body
warnings, and (d) we call parser_compound_statement directly
because c_parser_statement_after_labels resets
parser->in_if_block.
IF_P is used to track whether there's a (possibly labeled) if statement
which is not enclosed in braces and has an else clause. This is used to
implement -Wparentheses. */
static tree
c_parser_if_body (c_parser *parser, bool *if_p,
const token_indent_info &if_tinfo)
{
tree block = c_begin_compound_stmt (flag_isoc99);
location_t body_loc = c_parser_peek_token (parser)->location;
location_t body_loc_after_labels = UNKNOWN_LOCATION;
token_indent_info body_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
tree before_labels = get_before_labels ();
c_parser_all_labels (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
location_t loc = c_parser_peek_token (parser)->location;
add_stmt (build_empty_stmt (loc));
c_parser_consume_token (parser);
if (!c_parser_next_token_is_keyword (parser, RID_ELSE))
warning_at (loc, OPT_Wempty_body,
"suggest braces around empty body in an % statement");
}
else if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
add_stmt (c_parser_compound_statement (parser));
else
{
body_loc_after_labels = c_parser_peek_token (parser)->location;
c_parser_statement_after_labels (parser, if_p, before_labels);
}
token_indent_info next_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
warn_for_misleading_indentation (if_tinfo, body_tinfo, next_tinfo);
if (body_loc_after_labels != UNKNOWN_LOCATION
&& next_tinfo.type != CPP_SEMICOLON)
warn_for_multistatement_macros (body_loc_after_labels, next_tinfo.location,
if_tinfo.location, RID_IF);
return c_end_compound_stmt (body_loc, block, flag_isoc99);
}
/* Parse the else body of an if statement. This is just parsing a
statement but (a) it is a block in C99, (b) we handle an empty body
specially for the sake of -Wempty-body warnings. CHAIN is a vector
of if-else-if conditions. */
static tree
c_parser_else_body (c_parser *parser, const token_indent_info &else_tinfo,
vec *chain)
{
location_t body_loc = c_parser_peek_token (parser)->location;
tree block = c_begin_compound_stmt (flag_isoc99);
token_indent_info body_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
location_t body_loc_after_labels = UNKNOWN_LOCATION;
tree before_labels = get_before_labels ();
c_parser_all_labels (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
location_t loc = c_parser_peek_token (parser)->location;
warning_at (loc,
OPT_Wempty_body,
"suggest braces around empty body in an % statement");
add_stmt (build_empty_stmt (loc));
c_parser_consume_token (parser);
}
else
{
if (!c_parser_next_token_is (parser, CPP_OPEN_BRACE))
body_loc_after_labels = c_parser_peek_token (parser)->location;
c_parser_statement_after_labels (parser, NULL, before_labels, chain);
}
token_indent_info next_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
warn_for_misleading_indentation (else_tinfo, body_tinfo, next_tinfo);
if (body_loc_after_labels != UNKNOWN_LOCATION
&& next_tinfo.type != CPP_SEMICOLON)
warn_for_multistatement_macros (body_loc_after_labels, next_tinfo.location,
else_tinfo.location, RID_ELSE);
return c_end_compound_stmt (body_loc, block, flag_isoc99);
}
/* Parse an if statement (C90 6.6.4, C99 6.8.4, C11 6.8.4).
if-statement:
if ( selection-header ) statement
if ( selection-header ) statement else statement
CHAIN is a vector of if-else-if conditions.
IF_P is used to track whether there's a (possibly labeled) if statement
which is not enclosed in braces and has an else clause. This is used to
implement -Wparentheses. */
static void
c_parser_if_statement (c_parser *parser, bool *if_p, vec *chain)
{
tree block;
location_t loc;
tree cond;
bool nested_if = false;
tree first_body, second_body;
bool in_if_block;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_IF));
token_indent_info if_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
c_parser_consume_token (parser);
block = c_begin_compound_stmt (flag_isoc99);
loc = c_parser_peek_token (parser)->location;
cond = c_parser_paren_selection_header (parser);
in_if_block = parser->in_if_block;
parser->in_if_block = true;
first_body = c_parser_if_body (parser, &nested_if, if_tinfo);
parser->in_if_block = in_if_block;
if (warn_duplicated_cond)
warn_duplicated_cond_add_or_warn (EXPR_LOCATION (cond), cond, &chain);
if (c_parser_next_token_is_keyword (parser, RID_ELSE))
{
token_indent_info else_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
c_parser_consume_token (parser);
if (warn_duplicated_cond)
{
if (c_parser_next_token_is_keyword (parser, RID_IF)
&& chain == NULL)
{
/* We've got "if (COND) else if (COND2)". Start the
condition chain and add COND as the first element. */
chain = new vec ();
if (!CONSTANT_CLASS_P (cond) && !TREE_SIDE_EFFECTS (cond))
chain->safe_push (cond);
}
else if (!c_parser_next_token_is_keyword (parser, RID_IF))
/* This is if-else without subsequent if. Zap the condition
chain; we would have already warned at this point. */
vec_free (chain);
}
second_body = c_parser_else_body (parser, else_tinfo, chain);
/* Set IF_P to true to indicate that this if statement has an
else clause. This may trigger the Wparentheses warning
below when we get back up to the parent if statement. */
if (if_p != NULL)
*if_p = true;
}
else
{
second_body = NULL_TREE;
/* Diagnose an ambiguous else if if-then-else is nested inside
if-then. */
if (nested_if)
warning_at (loc, OPT_Wdangling_else,
"suggest explicit braces to avoid ambiguous %");
if (warn_duplicated_cond)
/* This if statement does not have an else clause. We don't
need the condition chain anymore. */
vec_free (chain);
}
c_finish_if_stmt (loc, cond, first_body, second_body);
add_stmt (c_end_compound_stmt (loc, block, flag_isoc99));
c_parser_maybe_reclassify_token (parser);
}
/* Parse a switch statement (C90 6.6.4, C99 6.8.4, C11 6.8.4).
switch-statement:
switch (expression) statement
BEFORE_LABELS is last statement before possible labels, see
get_before_labels description for details. */
static void
c_parser_switch_statement (c_parser *parser, bool *if_p, tree before_labels)
{
struct c_expr ce;
tree block, expr, body;
unsigned char save_in_statement;
location_t switch_loc = c_parser_peek_token (parser)->location;
location_t switch_cond_loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_SWITCH));
c_parser_consume_token (parser);
tree switch_name;
int num_names = c_get_loop_names (before_labels, true, &switch_name);
block = c_begin_compound_stmt (flag_isoc99);
bool explicit_cast_p = false;
matching_parens parens;
if (parens.require_open (parser))
{
switch_cond_loc = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)
&& c_token_starts_typename (c_parser_peek_2nd_token (parser)))
explicit_cast_p = true;
ce = c_parser_selection_header (parser, /*switch_p=*/true);
/* The call above already performed convert_lvalue_to_rvalue, but
if it parsed an expression, read_p was false. Make sure we mark
the expression as read. */
ce = convert_lvalue_to_rvalue (switch_cond_loc, ce, true, true);
expr = ce.value;
/* ??? expr has no valid location? */
parens.skip_until_found_close (parser);
}
else
{
switch_cond_loc = UNKNOWN_LOCATION;
expr = error_mark_node;
ce.original_type = error_mark_node;
}
tree stmt
= c_start_switch (switch_loc, switch_cond_loc, expr, explicit_cast_p,
switch_name);
save_in_statement = in_statement;
in_statement |= IN_SWITCH_STMT;
if (switch_name)
{
C_DECL_LOOP_SWITCH_NAME_VALID (switch_name) = 1;
in_statement |= IN_NAMED_STMT;
}
else
in_statement &= ~IN_NAMED_STMT;
location_t loc_after_labels;
bool open_brace_p = c_parser_peek_token (parser)->type == CPP_OPEN_BRACE;
body = c_parser_c99_block_statement (parser, if_p, &loc_after_labels);
location_t next_loc = c_parser_peek_token (parser)->location;
if (!open_brace_p && c_parser_peek_token (parser)->type != CPP_SEMICOLON)
warn_for_multistatement_macros (loc_after_labels, next_loc, switch_loc,
RID_SWITCH);
c_finish_switch (body, ce.original_type);
in_statement = save_in_statement;
if (num_names)
{
if (!C_DECL_LOOP_SWITCH_NAME_USED (switch_name))
SWITCH_STMT_NAME (stmt) = NULL_TREE;
else
SWITCH_STMT_NO_BREAK_P (stmt) = 0;
c_release_loop_names (num_names);
}
add_stmt (c_end_compound_stmt (switch_loc, block, flag_isoc99));
c_parser_maybe_reclassify_token (parser);
}
/* Parse a while statement (C90 6.6.5, C99 6.8.5, C11 6.8.5).
while-statement:
while (expression) statement
IF_P is used to track whether there's a (possibly labeled) if statement
which is not enclosed in braces and has an else clause. This is used to
implement -Wparentheses.
BEFORE_LABELS is last statement before possible labels, see
get_before_labels description for details. */
static void
c_parser_while_statement (c_parser *parser, bool ivdep, unsigned short unroll,
bool novector, bool *if_p, tree before_labels)
{
tree block, cond, body;
unsigned char save_in_statement;
location_t loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_WHILE));
token_indent_info while_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
tree loop_name;
int num_names = c_get_loop_names (before_labels, false, &loop_name);
if (parser->omp_for_parse_state)
{
error_at (c_parser_peek_token (parser)->location,
"loop not permitted in intervening code in OpenMP loop body");
parser->omp_for_parse_state->fail = true;
}
c_parser_consume_token (parser);
block = c_begin_compound_stmt (flag_isoc99);
loc = c_parser_peek_token (parser)->location;
cond = c_parser_paren_condition (parser);
if (ivdep && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_ivdep_kind),
integer_zero_node);
if (unroll && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_unroll_kind),
build_int_cst (integer_type_node, unroll));
if (novector && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_no_vector_kind),
integer_zero_node);
save_in_statement = in_statement;
in_statement = IN_ITERATION_STMT;
if (loop_name)
{
C_DECL_LOOP_SWITCH_NAME_VALID (loop_name) = 1;
in_statement |= IN_NAMED_STMT;
}
token_indent_info body_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
location_t loc_after_labels;
bool open_brace = c_parser_next_token_is (parser, CPP_OPEN_BRACE);
body = c_parser_c99_block_statement (parser, if_p, &loc_after_labels);
if (loop_name && !C_DECL_LOOP_SWITCH_NAME_USED (loop_name))
loop_name = NULL_TREE;
add_stmt (build_stmt (loc, WHILE_STMT, cond, body, loop_name));
add_stmt (c_end_compound_stmt (loc, block, flag_isoc99));
c_parser_maybe_reclassify_token (parser);
if (num_names)
c_release_loop_names (num_names);
token_indent_info next_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
warn_for_misleading_indentation (while_tinfo, body_tinfo, next_tinfo);
if (next_tinfo.type != CPP_SEMICOLON && !open_brace)
warn_for_multistatement_macros (loc_after_labels, next_tinfo.location,
while_tinfo.location, RID_WHILE);
in_statement = save_in_statement;
}
/* Parse a do statement (C90 6.6.5, C99 6.8.5, C11 6.8.5).
do-statement:
do statement while ( expression ) ;
BEFORE_LABELS is last statement before possible labels, see
get_before_labels description for details. */
static void
c_parser_do_statement (c_parser *parser, bool ivdep, unsigned short unroll,
bool novector, tree before_labels)
{
tree block, cond, body;
unsigned char save_in_statement;
location_t loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_DO));
tree loop_name;
int num_names = c_get_loop_names (before_labels, false, &loop_name);
if (parser->omp_for_parse_state)
{
error_at (c_parser_peek_token (parser)->location,
"loop not permitted in intervening code in OpenMP loop body");
parser->omp_for_parse_state->fail = true;
}
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
warning_at (c_parser_peek_token (parser)->location,
OPT_Wempty_body,
"suggest braces around empty body in % statement");
block = c_begin_compound_stmt (flag_isoc99);
loc = c_parser_peek_token (parser)->location;
save_in_statement = in_statement;
in_statement = IN_ITERATION_STMT;
if (loop_name)
{
C_DECL_LOOP_SWITCH_NAME_VALID (loop_name) = 1;
in_statement |= IN_NAMED_STMT;
}
body = c_parser_c99_block_statement (parser, NULL);
c_parser_require_keyword (parser, RID_WHILE, "expected %");
in_statement = save_in_statement;
if (num_names)
{
if (!C_DECL_LOOP_SWITCH_NAME_USED (loop_name))
loop_name = NULL_TREE;
c_release_loop_names (num_names);
}
cond = c_parser_paren_condition (parser);
if (ivdep && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_ivdep_kind),
integer_zero_node);
if (unroll && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_unroll_kind),
build_int_cst (integer_type_node, unroll));
if (novector && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_no_vector_kind),
integer_zero_node);
if (!c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>"))
c_parser_skip_to_end_of_block_or_statement (parser);
add_stmt (build_stmt (loc, DO_STMT, cond, body, loop_name));
add_stmt (c_end_compound_stmt (loc, block, flag_isoc99));
}
/* Parse a for statement (C90 6.6.5, C99 6.8.5, C11 6.8.5).
for-statement:
for ( expression[opt] ; expression[opt] ; expression[opt] ) statement
for ( nested-declaration expression[opt] ; expression[opt] ) statement
The form with a declaration is new in C99.
??? In accordance with the old parser, the declaration may be a
nested function, which is then rejected in check_for_loop_decls,
but does it make any sense for this to be included in the grammar?
Note in particular that the nested function does not include a
trailing ';', whereas the "declaration" production includes one.
Also, can we reject bad declarations earlier and cheaper than
check_for_loop_decls?
In Objective-C, there are two additional variants:
foreach-statement:
for ( expression in expresssion ) statement
for ( declaration in expression ) statement
This is inconsistent with C, because the second variant is allowed
even if c99 is not enabled.
The rest of the comment documents these Objective-C foreach-statement.
Here is the canonical example of the first variant:
for (object in array) { do something with object }
we call the first expression ("object") the "object_expression" and
the second expression ("array") the "collection_expression".
object_expression must be an lvalue of type "id" (a generic Objective-C
object) because the loop works by assigning to object_expression the
various objects from the collection_expression. collection_expression
must evaluate to something of type "id" which responds to the method
countByEnumeratingWithState:objects:count:.
The canonical example of the second variant is:
for (id object in array) { do something with object }
which is completely equivalent to
{
id object;
for (object in array) { do something with object }
}
Note that initizializing 'object' in some way (eg, "for ((object =
xxx) in array) { do something with object }") is possibly
technically valid, but completely pointless as 'object' will be
assigned to something else as soon as the loop starts. We should
most likely reject it (TODO).
The beginning of the Objective-C foreach-statement looks exactly
like the beginning of the for-statement, and we can tell it is a
foreach-statement only because the initial declaration or
expression is terminated by 'in' instead of ';'.
IF_P is used to track whether there's a (possibly labeled) if statement
which is not enclosed in braces and has an else clause. This is used to
implement -Wparentheses.
BEFORE_LABELS is last statement before possible labels, see
get_before_labels description for details. */
static void
c_parser_for_statement (c_parser *parser, bool ivdep, unsigned short unroll,
bool novector, bool *if_p, tree before_labels)
{
tree block, cond, incr, body;
unsigned char save_in_statement;
tree save_objc_foreach_break_label, save_objc_foreach_continue_label;
/* The following are only used when parsing an ObjC foreach statement. */
tree object_expression;
/* Silence the bogus uninitialized warning. */
tree collection_expression = NULL;
location_t loc = c_parser_peek_token (parser)->location;
location_t for_loc = loc;
bool is_foreach_statement = false;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_FOR));
token_indent_info for_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
tree loop_name;
int num_names = c_get_loop_names (before_labels, false, &loop_name);
if (parser->omp_for_parse_state)
{
error_at (for_loc,
"loop not permitted in intervening code in OpenMP loop body");
parser->omp_for_parse_state->fail = true;
}
c_parser_consume_token (parser);
/* Open a compound statement in Objective-C as well, just in case this is
as foreach expression. */
block = c_begin_compound_stmt (flag_isoc99 || c_dialect_objc ());
cond = error_mark_node;
incr = error_mark_node;
matching_parens parens;
if (parens.require_open (parser))
{
/* Parse the initialization declaration or expression. */
object_expression = error_mark_node;
parser->objc_could_be_foreach_context = c_dialect_objc ();
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
parser->objc_could_be_foreach_context = false;
c_parser_consume_token (parser);
c_finish_expr_stmt (loc, NULL_TREE);
}
else if (c_parser_next_tokens_start_declaration (parser)
|| c_parser_nth_token_starts_std_attributes (parser, 1))
{
c_parser_declaration_or_fndef (parser, true, true, true, true, true,
false, &object_expression);
parser->objc_could_be_foreach_context = false;
if (c_parser_next_token_is_keyword (parser, RID_IN))
{
c_parser_consume_token (parser);
is_foreach_statement = true;
if (check_for_loop_decls (for_loc, true) == NULL_TREE)
c_parser_error (parser, "multiple iterating variables in "
"fast enumeration");
}
else
check_for_loop_decls (for_loc, flag_isoc99);
}
else if (c_parser_next_token_is_keyword (parser, RID_EXTENSION))
{
/* __extension__ can start a declaration, but is also an
unary operator that can start an expression. Consume all
but the last of a possible series of __extension__ to
determine which. */
while (c_parser_peek_2nd_token (parser)->type == CPP_KEYWORD
&& (c_parser_peek_2nd_token (parser)->keyword
== RID_EXTENSION))
c_parser_consume_token (parser);
if (c_token_starts_declaration (c_parser_peek_2nd_token (parser))
|| c_parser_nth_token_starts_std_attributes (parser, 2))
{
int ext;
ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
c_parser_declaration_or_fndef (parser, true, true, true, true,
true, false, &object_expression);
parser->objc_could_be_foreach_context = false;
restore_extension_diagnostics (ext);
if (c_parser_next_token_is_keyword (parser, RID_IN))
{
c_parser_consume_token (parser);
is_foreach_statement = true;
if (check_for_loop_decls (for_loc, true) == NULL_TREE)
c_parser_error (parser, "multiple iterating variables in "
"fast enumeration");
}
else
check_for_loop_decls (for_loc, flag_isoc99);
}
else
goto init_expr;
}
else
{
init_expr:
{
struct c_expr ce;
tree init_expression;
ce = c_parser_expression (parser);
init_expression = ce.value;
parser->objc_could_be_foreach_context = false;
if (c_parser_next_token_is_keyword (parser, RID_IN))
{
c_parser_consume_token (parser);
is_foreach_statement = true;
if (! lvalue_p (init_expression))
c_parser_error (parser, "invalid iterating variable in "
"fast enumeration");
object_expression
= c_fully_fold (init_expression, false, NULL);
}
else
{
ce = convert_lvalue_to_rvalue (loc, ce, true, false);
init_expression = ce.value;
c_finish_expr_stmt (loc, init_expression);
c_parser_skip_until_found (parser, CPP_SEMICOLON,
"expected %<;%>");
}
}
}
/* Parse the loop condition. In the case of a foreach
statement, there is no loop condition. */
gcc_assert (!parser->objc_could_be_foreach_context);
if (!is_foreach_statement)
{
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
if (ivdep)
{
c_parser_error (parser, "missing loop condition in loop "
"with % pragma");
cond = error_mark_node;
}
else if (unroll)
{
c_parser_error (parser, "missing loop condition in loop "
"with % pragma");
cond = error_mark_node;
}
else
{
c_parser_consume_token (parser);
cond = NULL_TREE;
}
}
else
{
cond = c_parser_condition (parser);
c_parser_skip_until_found (parser, CPP_SEMICOLON,
"expected %<;%>");
}
if (ivdep && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_ivdep_kind),
integer_zero_node);
if (unroll && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_unroll_kind),
build_int_cst (integer_type_node, unroll));
if (novector && cond && cond != error_mark_node)
cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond,
build_int_cst (integer_type_node,
annot_expr_no_vector_kind),
integer_zero_node);
}
/* Parse the increment expression (the third expression in a
for-statement). In the case of a foreach-statement, this is
the expression that follows the 'in'. */
loc = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
if (is_foreach_statement)
{
c_parser_error (parser,
"missing collection in fast enumeration");
collection_expression = error_mark_node;
}
else
incr = c_process_expr_stmt (loc, NULL_TREE);
}
else
{
if (is_foreach_statement)
collection_expression
= c_fully_fold (c_parser_expression (parser).value, false, NULL);
else
{
struct c_expr ce = c_parser_expression (parser);
ce = convert_lvalue_to_rvalue (loc, ce, true, false);
incr = c_process_expr_stmt (loc, ce.value);
}
}
parens.skip_until_found_close (parser);
}
save_in_statement = in_statement;
if (is_foreach_statement)
{
in_statement = IN_OBJC_FOREACH;
save_objc_foreach_break_label = objc_foreach_break_label;
save_objc_foreach_continue_label = objc_foreach_continue_label;
objc_foreach_break_label = create_artificial_label (loc);
objc_foreach_continue_label = create_artificial_label (loc);
if (loop_name)
{
gcc_checking_assert (!DECL_CHAIN (loop_name)
&& !DECL_CHAIN (objc_foreach_break_label));
C_DECL_SWITCH_NAME (loop_name) = 1;
DECL_CHAIN (loop_name) = objc_foreach_break_label;
DECL_CHAIN (objc_foreach_break_label) = objc_foreach_continue_label;
}
}
else
in_statement = IN_ITERATION_STMT;
if (loop_name)
{
C_DECL_LOOP_SWITCH_NAME_VALID (loop_name) = 1;
in_statement |= IN_NAMED_STMT;
}
token_indent_info body_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
location_t loc_after_labels;
bool open_brace = c_parser_next_token_is (parser, CPP_OPEN_BRACE);
body = c_parser_c99_block_statement (parser, if_p, &loc_after_labels);
if (loop_name && is_foreach_statement)
{
gcc_checking_assert (DECL_CHAIN (loop_name) == objc_foreach_break_label
&& (DECL_CHAIN (objc_foreach_break_label)
== objc_foreach_continue_label));
C_DECL_SWITCH_NAME (loop_name) = 0;
DECL_CHAIN (loop_name) = NULL_TREE;
DECL_CHAIN (objc_foreach_break_label) = NULL_TREE;
}
if (is_foreach_statement)
objc_finish_foreach_loop (for_loc, object_expression,
collection_expression, body,
objc_foreach_break_label,
objc_foreach_continue_label);
else
add_stmt (build_stmt (for_loc, FOR_STMT, NULL_TREE, cond, incr,
body, NULL_TREE,
loop_name && C_DECL_LOOP_SWITCH_NAME_USED (loop_name)
? loop_name : NULL_TREE));
add_stmt (c_end_compound_stmt (for_loc, block,
flag_isoc99 || c_dialect_objc ()));
c_parser_maybe_reclassify_token (parser);
token_indent_info next_tinfo
= get_token_indent_info (c_parser_peek_token (parser));
warn_for_misleading_indentation (for_tinfo, body_tinfo, next_tinfo);
if (next_tinfo.type != CPP_SEMICOLON && !open_brace)
warn_for_multistatement_macros (loc_after_labels, next_tinfo.location,
for_tinfo.location, RID_FOR);
in_statement = save_in_statement;
if (num_names)
c_release_loop_names (num_names);
if (is_foreach_statement)
{
objc_foreach_break_label = save_objc_foreach_break_label;
objc_foreach_continue_label = save_objc_foreach_continue_label;
}
}
/* Parse an asm statement, a GNU extension. This is a full-blown asm
statement with inputs, outputs, clobbers, and volatile, inline, and goto
tags allowed.
asm-qualifier:
volatile
inline
goto
asm-qualifier-list:
asm-qualifier-list asm-qualifier
asm-qualifier
asm-statement:
asm asm-qualifier-list[opt] ( asm-argument ) ;
asm-argument:
asm-string-literal
asm-string-literal : asm-operands[opt]
asm-string-literal : asm-operands[opt] : asm-operands[opt]
asm-string-literal : asm-operands[opt] : asm-operands[opt] \
: asm-clobbers[opt]
asm-string-literal : : asm-operands[opt] : asm-clobbers[opt] \
: asm-goto-operands
The form with asm-goto-operands is valid if and only if the
asm-qualifier-list contains goto, and is the only allowed form in that case.
Duplicate asm-qualifiers are not allowed.
The :: token is considered equivalent to two consecutive : tokens. */
static tree
c_parser_asm_statement (c_parser *parser)
{
tree str, outputs, inputs, clobbers, labels, ret;
bool simple;
location_t asm_loc = c_parser_peek_token (parser)->location;
int section, nsections;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ASM));
c_parser_consume_token (parser);
/* Handle the asm-qualifier-list. */
location_t volatile_loc = UNKNOWN_LOCATION;
location_t inline_loc = UNKNOWN_LOCATION;
location_t goto_loc = UNKNOWN_LOCATION;
for (;;)
{
c_token *token = c_parser_peek_token (parser);
location_t loc = token->location;
switch (token->keyword)
{
case RID_VOLATILE:
if (volatile_loc)
{
error_at (loc, "duplicate % qualifier %qE", token->value);
inform (volatile_loc, "first seen here");
}
else
volatile_loc = loc;
c_parser_consume_token (parser);
continue;
case RID_INLINE:
if (inline_loc)
{
error_at (loc, "duplicate % qualifier %qE", token->value);
inform (inline_loc, "first seen here");
}
else
inline_loc = loc;
c_parser_consume_token (parser);
continue;
case RID_GOTO:
if (goto_loc)
{
error_at (loc, "duplicate % qualifier %qE", token->value);
inform (goto_loc, "first seen here");
}
else
goto_loc = loc;
c_parser_consume_token (parser);
continue;
case RID_CONST:
case RID_RESTRICT:
error_at (loc, "%qE is not a valid % qualifier", token->value);
c_parser_consume_token (parser);
continue;
default:
break;
}
break;
}
bool is_volatile = (volatile_loc != UNKNOWN_LOCATION);
bool is_inline = (inline_loc != UNKNOWN_LOCATION);
bool is_goto = (goto_loc != UNKNOWN_LOCATION);
ret = NULL;
matching_parens parens;
if (!parens.require_open (parser))
goto error;
str = c_parser_asm_string_literal (parser);
if (str == NULL_TREE)
goto error_close_paren;
simple = true;
outputs = NULL_TREE;
inputs = NULL_TREE;
clobbers = NULL_TREE;
labels = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN) && !is_goto)
goto done_asm;
/* Parse each colon-delimited section of operands. */
nsections = 3 + is_goto;
for (section = 0; section < nsections; ++section)
{
if (c_parser_next_token_is (parser, CPP_SCOPE))
{
++section;
if (section == nsections)
{
c_parser_error (parser, "expected %<)%>");
goto error_close_paren;
}
c_parser_consume_token (parser);
}
else if (!c_parser_require (parser, CPP_COLON,
is_goto
? G_("expected %<:%>")
: G_("expected %<:%> or %<)%>"),
UNKNOWN_LOCATION, is_goto))
goto error_close_paren;
/* Once past any colon, we're no longer a simple asm. */
simple = false;
if ((!c_parser_next_token_is (parser, CPP_COLON)
&& !c_parser_next_token_is (parser, CPP_SCOPE)
&& !c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
|| section == 3)
switch (section)
{
case 0:
outputs = c_parser_asm_operands (parser);
break;
case 1:
inputs = c_parser_asm_operands (parser);
break;
case 2:
clobbers = c_parser_asm_clobbers (parser);
break;
case 3:
labels = c_parser_asm_goto_operands (parser);
break;
default:
gcc_unreachable ();
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN) && !is_goto)
goto done_asm;
}
done_asm:
if (!parens.require_close (parser))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
goto error;
}
if (!c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>"))
c_parser_skip_to_end_of_block_or_statement (parser);
ret = build_asm_stmt (is_volatile,
build_asm_expr (asm_loc, str, outputs, inputs,
clobbers, labels, simple, is_inline));
error:
return ret;
error_close_paren:
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
goto error;
}
/* Parse asm operands, a GNU extension.
asm-operands:
asm-operand
asm-operands , asm-operand
asm-operand:
asm-string-literal ( expression )
[ identifier ] asm-string-literal ( expression )
*/
static tree
c_parser_asm_operands (c_parser *parser)
{
tree list = NULL_TREE;
while (true)
{
tree name, str;
struct c_expr expr;
if (c_parser_next_token_is (parser, CPP_OPEN_SQUARE))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
name = build_string (IDENTIFIER_LENGTH (id),
IDENTIFIER_POINTER (id));
}
else
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, NULL);
return NULL_TREE;
}
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
}
else
name = NULL_TREE;
str = c_parser_asm_string_literal (parser);
if (str == NULL_TREE)
return NULL_TREE;
matching_parens parens;
if (!parens.require_open (parser))
return NULL_TREE;
expr = c_parser_expression (parser);
mark_exp_read (expr.value);
if (!parens.require_close (parser))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return NULL_TREE;
}
list = chainon (list, build_tree_list (build_tree_list (name, str),
expr.value));
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
return list;
}
/* Parse asm clobbers, a GNU extension.
asm-clobbers:
asm-string-literal
asm-clobbers , asm-string-literal
*/
static tree
c_parser_asm_clobbers (c_parser *parser)
{
tree list = NULL_TREE;
while (true)
{
tree str = c_parser_asm_string_literal (parser);
if (str)
list = tree_cons (NULL_TREE, str, list);
else
return NULL_TREE;
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
return list;
}
/* Parse asm goto labels, a GNU extension.
asm-goto-operands:
identifier
asm-goto-operands , identifier
*/
static tree
c_parser_asm_goto_operands (c_parser *parser)
{
tree list = NULL_TREE;
while (true)
{
tree name, label;
if (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *tok = c_parser_peek_token (parser);
name = tok->value;
label = lookup_label_for_goto (tok->location, name);
c_parser_consume_token (parser);
TREE_USED (label) = 1;
}
else
{
c_parser_error (parser, "expected identifier");
return NULL_TREE;
}
name = build_string (IDENTIFIER_LENGTH (name),
IDENTIFIER_POINTER (name));
list = tree_cons (name, label, list);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
return nreverse (list);
}
}
/* Parse a possibly concatenated sequence of string literals.
TRANSLATE says whether to translate them to the execution character
set; WIDE_OK says whether any kind of prefixed string literal is
permitted in this context. This code is based on that in
lex_string. */
struct c_expr
c_parser_string_literal (c_parser *parser, bool translate, bool wide_ok)
{
struct c_expr ret;
size_t count;
struct obstack str_ob;
struct obstack loc_ob;
cpp_string str, istr, *strs;
c_token *tok;
location_t loc, last_tok_loc;
enum cpp_ttype type;
tree value, string_tree;
tok = c_parser_peek_token (parser);
loc = tok->location;
last_tok_loc = linemap_resolve_location (line_table, loc,
LRK_MACRO_DEFINITION_LOCATION,
NULL);
type = tok->type;
switch (type)
{
case CPP_STRING:
case CPP_WSTRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_UTF8STRING:
string_tree = tok->value;
break;
default:
c_parser_error (parser, "expected string literal");
ret.set_error ();
ret.value = NULL_TREE;
ret.original_code = ERROR_MARK;
ret.original_type = NULL_TREE;
return ret;
}
/* Try to avoid the overhead of creating and destroying an obstack
for the common case of just one string. */
switch (c_parser_peek_2nd_token (parser)->type)
{
default:
c_parser_consume_token (parser);
str.text = (const unsigned char *) TREE_STRING_POINTER (string_tree);
str.len = TREE_STRING_LENGTH (string_tree);
count = 1;
strs = &str;
break;
case CPP_STRING:
case CPP_WSTRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_UTF8STRING:
gcc_obstack_init (&str_ob);
gcc_obstack_init (&loc_ob);
count = 0;
do
{
c_parser_consume_token (parser);
count++;
str.text = (const unsigned char *) TREE_STRING_POINTER (string_tree);
str.len = TREE_STRING_LENGTH (string_tree);
if (type != tok->type)
{
if (type == CPP_STRING)
type = tok->type;
else if (tok->type != CPP_STRING)
error ("unsupported non-standard concatenation "
"of string literals");
}
obstack_grow (&str_ob, &str, sizeof (cpp_string));
obstack_grow (&loc_ob, &last_tok_loc, sizeof (location_t));
tok = c_parser_peek_token (parser);
string_tree = tok->value;
last_tok_loc
= linemap_resolve_location (line_table, tok->location,
LRK_MACRO_DEFINITION_LOCATION, NULL);
}
while (tok->type == CPP_STRING
|| tok->type == CPP_WSTRING
|| tok->type == CPP_STRING16
|| tok->type == CPP_STRING32
|| tok->type == CPP_UTF8STRING);
strs = (cpp_string *) obstack_finish (&str_ob);
}
if (count > 1 && !in_system_header_at (input_location))
warning (OPT_Wtraditional,
"traditional C rejects string constant concatenation");
if ((type == CPP_STRING || wide_ok)
&& ((translate
? cpp_interpret_string : cpp_interpret_string_notranslate)
(parse_in, strs, count, &istr, type)))
{
value = build_string (istr.len, (const char *) istr.text);
free (CONST_CAST (unsigned char *, istr.text));
if (count > 1)
{
location_t *locs = (location_t *) obstack_finish (&loc_ob);
gcc_assert (g_string_concat_db);
g_string_concat_db->record_string_concatenation (count, locs);
}
}
else
{
if (type != CPP_STRING && !wide_ok)
{
error_at (loc, "a wide string is invalid in this context");
type = CPP_STRING;
}
/* Callers cannot generally handle error_mark_node in this
context, so return the empty string instead. An error has
been issued, either above or from cpp_interpret_string. */
switch (type)
{
default:
case CPP_STRING:
case CPP_UTF8STRING:
if (type == CPP_UTF8STRING && flag_char8_t)
{
value = build_string (TYPE_PRECISION (char8_type_node)
/ TYPE_PRECISION (char_type_node),
""); /* char8_t is 8 bits */
}
else
value = build_string (1, "");
break;
case CPP_STRING16:
value = build_string (TYPE_PRECISION (char16_type_node)
/ TYPE_PRECISION (char_type_node),
"\0"); /* char16_t is 16 bits */
break;
case CPP_STRING32:
value = build_string (TYPE_PRECISION (char32_type_node)
/ TYPE_PRECISION (char_type_node),
"\0\0\0"); /* char32_t is 32 bits */
break;
case CPP_WSTRING:
value = build_string (TYPE_PRECISION (wchar_type_node)
/ TYPE_PRECISION (char_type_node),
"\0\0\0"); /* widest supported wchar_t
is 32 bits */
break;
}
}
switch (type)
{
default:
case CPP_STRING:
TREE_TYPE (value) = char_array_type_node;
break;
case CPP_UTF8STRING:
if (flag_char8_t)
TREE_TYPE (value) = char8_array_type_node;
else
TREE_TYPE (value) = char_array_type_node;
break;
case CPP_STRING16:
TREE_TYPE (value) = char16_array_type_node;
break;
case CPP_STRING32:
TREE_TYPE (value) = char32_array_type_node;
break;
case CPP_WSTRING:
TREE_TYPE (value) = wchar_array_type_node;
}
value = fix_string_type (value);
if (count > 1)
{
obstack_free (&str_ob, 0);
obstack_free (&loc_ob, 0);
}
ret.value = value;
ret.original_code = STRING_CST;
ret.original_type = NULL_TREE;
set_c_expr_source_range (&ret, get_range_from_loc (line_table, loc));
ret.m_decimal = 0;
parser->seen_string_literal = true;
return ret;
}
/* Parse an expression other than a compound expression; that is, an
assignment expression (C90 6.3.16, C99 6.5.16, C11 6.5.16). If
AFTER is not NULL then it is an Objective-C message expression which
is the primary-expression starting the expression as an initializer.
assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=
In GNU C we accept any conditional expression on the LHS and
diagnose the invalid lvalue rather than producing a syntax
error. */
static struct c_expr
c_parser_expr_no_commas (c_parser *parser, struct c_expr *after,
tree omp_atomic_lhs)
{
struct c_expr lhs, rhs, ret;
enum tree_code code;
location_t op_location, exp_location;
bool save_in_omp_for = c_in_omp_for;
c_in_omp_for = false;
gcc_assert (!after || c_dialect_objc ());
lhs = c_parser_conditional_expression (parser, after, omp_atomic_lhs);
op_location = c_parser_peek_token (parser)->location;
switch (c_parser_peek_token (parser)->type)
{
case CPP_EQ:
code = NOP_EXPR;
break;
case CPP_MULT_EQ:
code = MULT_EXPR;
break;
case CPP_DIV_EQ:
code = TRUNC_DIV_EXPR;
break;
case CPP_MOD_EQ:
code = TRUNC_MOD_EXPR;
break;
case CPP_PLUS_EQ:
code = PLUS_EXPR;
break;
case CPP_MINUS_EQ:
code = MINUS_EXPR;
break;
case CPP_LSHIFT_EQ:
code = LSHIFT_EXPR;
break;
case CPP_RSHIFT_EQ:
code = RSHIFT_EXPR;
break;
case CPP_AND_EQ:
code = BIT_AND_EXPR;
break;
case CPP_XOR_EQ:
code = BIT_XOR_EXPR;
break;
case CPP_OR_EQ:
code = BIT_IOR_EXPR;
break;
default:
c_in_omp_for = save_in_omp_for;
return lhs;
}
c_parser_consume_token (parser);
exp_location = c_parser_peek_token (parser)->location;
rhs = c_parser_expr_no_commas (parser, NULL);
rhs = convert_lvalue_to_rvalue (exp_location, rhs, true, true);
ret.value = build_modify_expr (op_location, lhs.value, lhs.original_type,
code, exp_location, rhs.value,
rhs.original_type);
ret.m_decimal = 0;
set_c_expr_source_range (&ret, lhs.get_start (), rhs.get_finish ());
if (code == NOP_EXPR)
ret.original_code = MODIFY_EXPR;
else
{
suppress_warning (ret.value, OPT_Wparentheses);
ret.original_code = ERROR_MARK;
}
ret.original_type = NULL;
c_in_omp_for = save_in_omp_for;
return ret;
}
/* Parse a conditional expression (C90 6.3.15, C99 6.5.15, C11 6.5.15). If
AFTER is not NULL then it is an Objective-C message expression which is
the primary-expression starting the expression as an initializer.
conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression
GNU extensions:
conditional-expression:
logical-OR-expression ? : conditional-expression
*/
static struct c_expr
c_parser_conditional_expression (c_parser *parser, struct c_expr *after,
tree omp_atomic_lhs)
{
struct c_expr cond, exp1, exp2, ret;
location_t start, cond_loc, colon_loc;
bool save_c_omp_array_section_p = c_omp_array_section_p;
gcc_assert (!after || c_dialect_objc ());
cond = c_parser_binary_expression (parser, after, omp_atomic_lhs);
if (c_parser_next_token_is_not (parser, CPP_QUERY))
return cond;
c_omp_array_section_p = false;
if (cond.value != error_mark_node)
start = cond.get_start ();
else
start = UNKNOWN_LOCATION;
cond_loc = c_parser_peek_token (parser)->location;
cond = convert_lvalue_to_rvalue (cond_loc, cond, true, true);
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COLON))
{
tree eptype = NULL_TREE;
location_t middle_loc = c_parser_peek_token (parser)->location;
pedwarn (middle_loc, OPT_Wpedantic,
"ISO C forbids omitting the middle term of a % expression");
if (TREE_CODE (cond.value) == EXCESS_PRECISION_EXPR)
{
eptype = TREE_TYPE (cond.value);
cond.value = TREE_OPERAND (cond.value, 0);
}
tree e = cond.value;
while (TREE_CODE (e) == COMPOUND_EXPR)
e = TREE_OPERAND (e, 1);
warn_for_omitted_condop (middle_loc, e);
/* Make sure first operand is calculated only once. */
exp1.value = save_expr (default_conversion (cond.value));
if (eptype)
exp1.value = build1 (EXCESS_PRECISION_EXPR, eptype, exp1.value);
exp1.original_type = NULL;
exp1.src_range = cond.src_range;
cond.value = c_objc_common_truthvalue_conversion (cond_loc, exp1.value);
c_inhibit_evaluation_warnings += cond.value == truthvalue_true_node;
}
else
{
cond.value
= c_objc_common_truthvalue_conversion
(cond_loc, default_conversion (cond.value));
c_inhibit_evaluation_warnings += cond.value == truthvalue_false_node;
exp1 = c_parser_expression_conv (parser);
mark_exp_read (exp1.value);
c_inhibit_evaluation_warnings +=
((cond.value == truthvalue_true_node)
- (cond.value == truthvalue_false_node));
}
colon_loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
{
c_inhibit_evaluation_warnings -= cond.value == truthvalue_true_node;
ret.set_error ();
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
c_omp_array_section_p = save_c_omp_array_section_p;
return ret;
}
{
location_t exp2_loc = c_parser_peek_token (parser)->location;
exp2 = c_parser_conditional_expression (parser, NULL, NULL_TREE);
exp2 = convert_lvalue_to_rvalue (exp2_loc, exp2, true, true);
}
c_inhibit_evaluation_warnings -= cond.value == truthvalue_true_node;
location_t loc1 = make_location (exp1.get_start (), exp1.src_range);
location_t loc2 = make_location (exp2.get_start (), exp2.src_range);
if (UNLIKELY (omp_atomic_lhs != NULL)
&& (TREE_CODE (cond.value) == GT_EXPR
|| TREE_CODE (cond.value) == LT_EXPR
|| TREE_CODE (cond.value) == EQ_EXPR)
&& c_tree_equal (exp2.value, omp_atomic_lhs)
&& (c_tree_equal (TREE_OPERAND (cond.value, 0), omp_atomic_lhs)
|| c_tree_equal (TREE_OPERAND (cond.value, 1), omp_atomic_lhs)))
ret.value = build3_loc (colon_loc, COND_EXPR, TREE_TYPE (omp_atomic_lhs),
cond.value, exp1.value, exp2.value);
else
ret.value
= build_conditional_expr (colon_loc, cond.value,
cond.original_code == C_MAYBE_CONST_EXPR,
exp1.value, exp1.original_type, loc1,
exp2.value, exp2.original_type, loc2);
ret.original_code = ERROR_MARK;
if (exp1.value == error_mark_node || exp2.value == error_mark_node)
ret.original_type = NULL;
else
{
tree t1, t2;
/* If both sides are enum type, the default conversion will have
made the type of the result be an integer type. We want to
remember the enum types we started with. */
t1 = exp1.original_type ? exp1.original_type : TREE_TYPE (exp1.value);
t2 = exp2.original_type ? exp2.original_type : TREE_TYPE (exp2.value);
ret.original_type = ((t1 != error_mark_node
&& t2 != error_mark_node
&& (TYPE_MAIN_VARIANT (t1)
== TYPE_MAIN_VARIANT (t2)))
? t1
: NULL);
}
set_c_expr_source_range (&ret, start, exp2.get_finish ());
ret.m_decimal = 0;
c_omp_array_section_p = save_c_omp_array_section_p;
return ret;
}
/* Parse a binary expression; that is, a logical-OR-expression (C90
6.3.5-6.3.14, C99 6.5.5-6.5.14, C11 6.5.5-6.5.14). If AFTER is not
NULL then it is an Objective-C message expression which is the
primary-expression starting the expression as an initializer.
OMP_ATOMIC_LHS is NULL, unless parsing OpenMP #pragma omp atomic,
when it should be the unfolded lhs. In a valid OpenMP source,
one of the operands of the toplevel binary expression must be equal
to it. In that case, just return a build2 created binary operation
rather than result of parser_build_binary_op.
multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
AND-expression:
equality-expression
AND-expression & equality-expression
exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression
inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression
logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression
logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression
*/
static struct c_expr
c_parser_binary_expression (c_parser *parser, struct c_expr *after,
tree omp_atomic_lhs)
{
/* A binary expression is parsed using operator-precedence parsing,
with the operands being cast expressions. All the binary
operators are left-associative. Thus a binary expression is of
form:
E0 op1 E1 op2 E2 ...
which we represent on a stack. On the stack, the precedence
levels are strictly increasing. When a new operator is
encountered of higher precedence than that at the top of the
stack, it is pushed; its LHS is the top expression, and its RHS
is everything parsed until it is popped. When a new operator is
encountered with precedence less than or equal to that at the top
of the stack, triples E[i-1] op[i] E[i] are popped and replaced
by the result of the operation until the operator at the top of
the stack has lower precedence than the new operator or there is
only one element on the stack; then the top expression is the LHS
of the new operator. In the case of logical AND and OR
expressions, we also need to adjust c_inhibit_evaluation_warnings
as appropriate when the operators are pushed and popped. */
struct {
/* The expression at this stack level. */
struct c_expr expr;
/* The precedence of the operator on its left, PREC_NONE at the
bottom of the stack. */
enum c_parser_prec prec;
/* The operation on its left. */
enum tree_code op;
/* The source location of this operation. */
location_t loc;
/* The sizeof argument if expr.original_code == {PAREN_,}SIZEOF_EXPR. */
tree sizeof_arg;
} stack[NUM_PRECS];
int sp;
/* Location of the binary operator. */
location_t binary_loc = UNKNOWN_LOCATION; /* Quiet warning. */
#define POP \
do { \
switch (stack[sp].op) \
{ \
case TRUTH_ANDIF_EXPR: \
c_inhibit_evaluation_warnings -= (stack[sp - 1].expr.value \
== truthvalue_false_node); \
break; \
case TRUTH_ORIF_EXPR: \
c_inhibit_evaluation_warnings -= (stack[sp - 1].expr.value \
== truthvalue_true_node); \
break; \
case TRUNC_DIV_EXPR: \
if ((stack[sp - 1].expr.original_code == SIZEOF_EXPR \
|| stack[sp - 1].expr.original_code == PAREN_SIZEOF_EXPR) \
&& (stack[sp].expr.original_code == SIZEOF_EXPR \
|| stack[sp].expr.original_code == PAREN_SIZEOF_EXPR)) \
{ \
tree type0 = stack[sp - 1].sizeof_arg; \
tree type1 = stack[sp].sizeof_arg; \
tree first_arg = type0; \
if (!TYPE_P (type0)) \
type0 = TREE_TYPE (type0); \
if (!TYPE_P (type1)) \
type1 = TREE_TYPE (type1); \
if (POINTER_TYPE_P (type0) \
&& comptypes (TREE_TYPE (type0), type1) \
&& !(TREE_CODE (first_arg) == PARM_DECL \
&& C_ARRAY_PARAMETER (first_arg) \
&& warn_sizeof_array_argument)) \
{ \
auto_diagnostic_group d; \
if (warning_at (stack[sp].loc, OPT_Wsizeof_pointer_div, \
"division % " \
"does not compute the number of array " \
"elements", \
type0, type1)) \
if (DECL_P (first_arg)) \
inform (DECL_SOURCE_LOCATION (first_arg), \
"first % operand was declared here"); \
} \
else if (TREE_CODE (type0) == ARRAY_TYPE \
&& !char_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (type0))) \
&& stack[sp].expr.original_code != PAREN_SIZEOF_EXPR) \
maybe_warn_sizeof_array_div (stack[sp].loc, first_arg, type0, \
stack[sp].sizeof_arg, type1); \
} \
break; \
default: \
break; \
} \
stack[sp - 1].expr \
= convert_lvalue_to_rvalue (stack[sp - 1].loc, \
stack[sp - 1].expr, true, true); \
stack[sp].expr \
= convert_lvalue_to_rvalue (stack[sp].loc, \
stack[sp].expr, true, true); \
if (UNLIKELY (omp_atomic_lhs != NULL_TREE) && sp == 1 \
&& ((c_parser_next_token_is (parser, CPP_SEMICOLON) \
&& ((1 << stack[sp].prec) \
& ((1 << PREC_BITOR) | (1 << PREC_BITXOR) \
| (1 << PREC_BITAND) | (1 << PREC_SHIFT) \
| (1 << PREC_ADD) | (1 << PREC_MULT) \
| (1 << PREC_EQ)))) \
|| ((c_parser_next_token_is (parser, CPP_QUERY) \
|| (omp_atomic_lhs == void_list_node \
&& c_parser_next_token_is (parser, CPP_CLOSE_PAREN))) \
&& (stack[sp].prec == PREC_REL || stack[sp].prec == PREC_EQ)))\
&& stack[sp].op != TRUNC_MOD_EXPR \
&& stack[sp].op != GE_EXPR \
&& stack[sp].op != LE_EXPR \
&& stack[sp].op != NE_EXPR \
&& stack[0].expr.value != error_mark_node \
&& stack[1].expr.value != error_mark_node \
&& (omp_atomic_lhs == void_list_node \
|| c_tree_equal (stack[0].expr.value, omp_atomic_lhs) \
|| c_tree_equal (stack[1].expr.value, omp_atomic_lhs) \
|| (stack[sp].op == EQ_EXPR \
&& c_parser_peek_2nd_token (parser)->keyword == RID_IF))) \
{ \
tree t = make_node (stack[1].op); \
TREE_TYPE (t) = TREE_TYPE (stack[0].expr.value); \
TREE_OPERAND (t, 0) = stack[0].expr.value; \
TREE_OPERAND (t, 1) = stack[1].expr.value; \
stack[0].expr.value = t; \
stack[0].expr.m_decimal = 0; \
} \
else \
stack[sp - 1].expr = parser_build_binary_op (stack[sp].loc, \
stack[sp].op, \
stack[sp - 1].expr, \
stack[sp].expr); \
sp--; \
} while (0)
gcc_assert (!after || c_dialect_objc ());
stack[0].loc = c_parser_peek_token (parser)->location;
stack[0].expr = c_parser_cast_expression (parser, after);
stack[0].prec = PREC_NONE;
stack[0].sizeof_arg = c_last_sizeof_arg;
sp = 0;
while (true)
{
enum c_parser_prec oprec;
enum tree_code ocode;
source_range src_range;
if (parser->error)
goto out;
switch (c_parser_peek_token (parser)->type)
{
case CPP_MULT:
oprec = PREC_MULT;
ocode = MULT_EXPR;
break;
case CPP_DIV:
oprec = PREC_MULT;
ocode = TRUNC_DIV_EXPR;
break;
case CPP_MOD:
oprec = PREC_MULT;
ocode = TRUNC_MOD_EXPR;
break;
case CPP_PLUS:
oprec = PREC_ADD;
ocode = PLUS_EXPR;
break;
case CPP_MINUS:
oprec = PREC_ADD;
ocode = MINUS_EXPR;
break;
case CPP_LSHIFT:
oprec = PREC_SHIFT;
ocode = LSHIFT_EXPR;
break;
case CPP_RSHIFT:
oprec = PREC_SHIFT;
ocode = RSHIFT_EXPR;
break;
case CPP_LESS:
oprec = PREC_REL;
ocode = LT_EXPR;
break;
case CPP_GREATER:
oprec = PREC_REL;
ocode = GT_EXPR;
break;
case CPP_LESS_EQ:
oprec = PREC_REL;
ocode = LE_EXPR;
break;
case CPP_GREATER_EQ:
oprec = PREC_REL;
ocode = GE_EXPR;
break;
case CPP_EQ_EQ:
oprec = PREC_EQ;
ocode = EQ_EXPR;
break;
case CPP_NOT_EQ:
oprec = PREC_EQ;
ocode = NE_EXPR;
break;
case CPP_AND:
oprec = PREC_BITAND;
ocode = BIT_AND_EXPR;
break;
case CPP_XOR:
oprec = PREC_BITXOR;
ocode = BIT_XOR_EXPR;
break;
case CPP_OR:
oprec = PREC_BITOR;
ocode = BIT_IOR_EXPR;
break;
case CPP_AND_AND:
oprec = PREC_LOGAND;
ocode = TRUTH_ANDIF_EXPR;
break;
case CPP_OR_OR:
oprec = PREC_LOGOR;
ocode = TRUTH_ORIF_EXPR;
break;
default:
/* Not a binary operator, so end of the binary
expression. */
goto out;
}
binary_loc = c_parser_peek_token (parser)->location;
while (oprec <= stack[sp].prec)
POP;
c_parser_consume_token (parser);
switch (ocode)
{
case TRUTH_ANDIF_EXPR:
src_range = stack[sp].expr.src_range;
stack[sp].expr
= convert_lvalue_to_rvalue (stack[sp].loc,
stack[sp].expr, true, true);
stack[sp].expr.value = c_objc_common_truthvalue_conversion
(stack[sp].loc, default_conversion (stack[sp].expr.value));
c_inhibit_evaluation_warnings += (stack[sp].expr.value
== truthvalue_false_node);
set_c_expr_source_range (&stack[sp].expr, src_range);
break;
case TRUTH_ORIF_EXPR:
src_range = stack[sp].expr.src_range;
stack[sp].expr
= convert_lvalue_to_rvalue (stack[sp].loc,
stack[sp].expr, true, true);
stack[sp].expr.value = c_objc_common_truthvalue_conversion
(stack[sp].loc, default_conversion (stack[sp].expr.value));
c_inhibit_evaluation_warnings += (stack[sp].expr.value
== truthvalue_true_node);
set_c_expr_source_range (&stack[sp].expr, src_range);
break;
default:
break;
}
sp++;
stack[sp].loc = binary_loc;
stack[sp].expr = c_parser_cast_expression (parser, NULL);
stack[sp].prec = oprec;
stack[sp].op = ocode;
stack[sp].sizeof_arg = c_last_sizeof_arg;
}
out:
while (sp > 0)
POP;
return stack[0].expr;
#undef POP
}
/* Parse any storage class specifiers after an open parenthesis in a
context where a compound literal is permitted. */
static struct c_declspecs *
c_parser_compound_literal_scspecs (c_parser *parser)
{
bool seen_scspec = false;
struct c_declspecs *specs = build_null_declspecs ();
while (c_parser_next_token_is (parser, CPP_KEYWORD))
{
switch (c_parser_peek_token (parser)->keyword)
{
case RID_CONSTEXPR:
case RID_REGISTER:
case RID_STATIC:
case RID_THREAD:
seen_scspec = true;
declspecs_add_scspec (c_parser_peek_token (parser)->location,
specs, c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
break;
default:
goto out;
}
}
out:
return seen_scspec ? specs : NULL;
}
/* Parse a cast expression (C90 6.3.4, C99 6.5.4, C11 6.5.4). If AFTER
is not NULL then it is an Objective-C message expression which is the
primary-expression starting the expression as an initializer.
cast-expression:
unary-expression
( type-name ) unary-expression
*/
static struct c_expr
c_parser_cast_expression (c_parser *parser, struct c_expr *after)
{
location_t cast_loc = c_parser_peek_token (parser)->location;
gcc_assert (!after || c_dialect_objc ());
if (after)
return c_parser_postfix_expression_after_primary (parser,
cast_loc, *after);
/* If the expression begins with a parenthesized type name, it may
be either a cast or a compound literal; we need to see whether
the next character is '{' to tell the difference. If not, it is
an unary expression. Full detection of unknown typenames here
would require a 3-token lookahead. */
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)
&& c_token_starts_compound_literal (c_parser_peek_2nd_token (parser)))
{
struct c_declspecs *scspecs;
struct c_type_name *type_name;
struct c_expr ret;
struct c_expr expr;
matching_parens parens;
parens.consume_open (parser);
scspecs = c_parser_compound_literal_scspecs (parser);
type_name = c_parser_type_name (parser, true);
parens.skip_until_found_close (parser);
if (type_name == NULL)
{
ret.set_error ();
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
/* Save casted types in the function's used types hash table. */
used_types_insert (type_name->specs->type);
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
return c_parser_postfix_expression_after_paren_type (parser, scspecs,
type_name,
cast_loc);
if (scspecs)
error_at (cast_loc, "storage class specifier in cast");
if (type_name->specs->alignas_p)
error_at (type_name->specs->locations[cdw_alignas],
"alignment specified for type name in cast");
{
location_t expr_loc = c_parser_peek_token (parser)->location;
expr = c_parser_cast_expression (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, true, true);
}
ret.value = c_cast_expr (cast_loc, type_name, expr.value);
if (ret.value && expr.value)
set_c_expr_source_range (&ret, cast_loc, expr.get_finish ());
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
ret.m_decimal = 0;
return ret;
}
else
return c_parser_unary_expression (parser);
}
/* Parse an unary expression (C90 6.3.3, C99 6.5.3, C11 6.5.3).
unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )
unary-operator: one of
& * + - ~ !
GNU extensions:
unary-expression:
__alignof__ unary-expression
__alignof__ ( type-name )
&& identifier
(C11 permits _Alignof with type names only.)
unary-operator: one of
__extension__ __real__ __imag__
Transactional Memory:
unary-expression:
transaction-expression
In addition, the GNU syntax treats ++ and -- as unary operators, so
they may be applied to cast expressions with errors for non-lvalues
given later. */
static struct c_expr
c_parser_unary_expression (c_parser *parser)
{
int ext;
struct c_expr ret, op;
location_t op_loc = c_parser_peek_token (parser)->location;
location_t exp_loc;
location_t finish;
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
switch (c_parser_peek_token (parser)->type)
{
case CPP_PLUS_PLUS:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, PREINCREMENT_EXPR, op);
case CPP_MINUS_MINUS:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, PREDECREMENT_EXPR, op);
case CPP_AND:
c_parser_consume_token (parser);
op = c_parser_cast_expression (parser, NULL);
mark_exp_read (op.value);
return parser_build_unary_op (op_loc, ADDR_EXPR, op);
case CPP_MULT:
{
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
finish = op.get_finish ();
op = convert_lvalue_to_rvalue (exp_loc, op, true, true);
location_t combined_loc = make_location (op_loc, op_loc, finish);
ret.value = build_indirect_ref (combined_loc, op.value, RO_UNARY_STAR);
ret.src_range.m_start = op_loc;
ret.src_range.m_finish = finish;
ret.m_decimal = 0;
return ret;
}
case CPP_PLUS:
if (!c_dialect_objc () && !in_system_header_at (input_location))
warning_at (op_loc,
OPT_Wtraditional,
"traditional C rejects the unary plus operator");
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = convert_lvalue_to_rvalue (exp_loc, op, true, true);
return parser_build_unary_op (op_loc, CONVERT_EXPR, op);
case CPP_MINUS:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = convert_lvalue_to_rvalue (exp_loc, op, true, true);
return parser_build_unary_op (op_loc, NEGATE_EXPR, op);
case CPP_COMPL:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = convert_lvalue_to_rvalue (exp_loc, op, true, true);
return parser_build_unary_op (op_loc, BIT_NOT_EXPR, op);
case CPP_NOT:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = convert_lvalue_to_rvalue (exp_loc, op, true, true);
return parser_build_unary_op (op_loc, TRUTH_NOT_EXPR, op);
case CPP_AND_AND:
/* Refer to the address of a label as a pointer. */
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
ret.value = finish_label_address_expr
(c_parser_peek_token (parser)->value, op_loc);
set_c_expr_source_range (&ret, op_loc,
c_parser_peek_token (parser)->get_finish ());
c_parser_consume_token (parser);
}
else
{
c_parser_error (parser, "expected identifier");
ret.set_error ();
}
return ret;
case CPP_KEYWORD:
switch (c_parser_peek_token (parser)->keyword)
{
case RID_SIZEOF:
return c_parser_sizeof_expression (parser);
case RID_ALIGNOF:
return c_parser_alignof_expression (parser);
case RID_BUILTIN_HAS_ATTRIBUTE:
return c_parser_has_attribute_expression (parser);
case RID_EXTENSION:
c_parser_consume_token (parser);
ext = disable_extension_diagnostics ();
ret = c_parser_cast_expression (parser, NULL);
restore_extension_diagnostics (ext);
return ret;
case RID_REALPART:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, REALPART_EXPR, op);
case RID_IMAGPART:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, IMAGPART_EXPR, op);
case RID_TRANSACTION_ATOMIC:
case RID_TRANSACTION_RELAXED:
return c_parser_transaction_expression (parser,
c_parser_peek_token (parser)->keyword);
default:
return c_parser_postfix_expression (parser);
}
default:
return c_parser_postfix_expression (parser);
}
}
/* Parse a sizeof expression. */
static struct c_expr
c_parser_sizeof_expression (c_parser *parser)
{
struct c_expr expr;
struct c_expr result;
location_t expr_loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_SIZEOF));
location_t start;
location_t finish = UNKNOWN_LOCATION;
start = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
c_inhibit_evaluation_warnings++;
in_sizeof++;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)
&& c_token_starts_compound_literal (c_parser_peek_2nd_token (parser)))
{
/* Either sizeof ( type-name ) or sizeof unary-expression
starting with a compound literal. */
struct c_declspecs *scspecs;
struct c_type_name *type_name;
matching_parens parens;
parens.consume_open (parser);
expr_loc = c_parser_peek_token (parser)->location;
scspecs = c_parser_compound_literal_scspecs (parser);
type_name = c_parser_type_name (parser, true);
parens.skip_until_found_close (parser);
finish = parser->tokens_buf[0].location;
if (type_name == NULL)
{
/* Let c_expr_sizeof_expr call pop_maybe_used and fill in c_expr
for parsing error; the parsing of the expression could have
called record_maybe_used_decl. */
expr.set_error ();
goto sizeof_expr;
}
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
expr = c_parser_postfix_expression_after_paren_type (parser, scspecs,
type_name,
expr_loc);
finish = expr.get_finish ();
goto sizeof_expr;
}
/* sizeof ( type-name ). */
if (scspecs)
error_at (expr_loc, "storage class specifier in %");
if (type_name->specs->alignas_p)
error_at (type_name->specs->locations[cdw_alignas],
"alignment specified for type name in %");
c_inhibit_evaluation_warnings--;
in_sizeof--;
result = c_expr_sizeof_type (expr_loc, type_name);
}
else
{
expr_loc = c_parser_peek_token (parser)->location;
expr = c_parser_unary_expression (parser);
finish = expr.get_finish ();
sizeof_expr:
c_inhibit_evaluation_warnings--;
in_sizeof--;
mark_exp_read (expr.value);
if (TREE_CODE (expr.value) == COMPONENT_REF
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr.value, 1)))
error_at (expr_loc, "% applied to a bit-field");
result = c_expr_sizeof_expr (expr_loc, expr);
}
if (finish == UNKNOWN_LOCATION)
finish = start;
set_c_expr_source_range (&result, start, finish);
return result;
}
/* Parse an alignof expression. */
static struct c_expr
c_parser_alignof_expression (c_parser *parser)
{
struct c_expr expr;
location_t start_loc = c_parser_peek_token (parser)->location;
location_t end_loc;
tree alignof_spelling = c_parser_peek_token (parser)->value;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ALIGNOF));
bool is_c11_alignof = (strcmp (IDENTIFIER_POINTER (alignof_spelling),
"_Alignof") == 0
|| strcmp (IDENTIFIER_POINTER (alignof_spelling),
"alignof") == 0);
/* A diagnostic is not required for the use of this identifier in
the implementation namespace; only diagnose it for the C11 or C23
spelling because of existing code using the other spellings. */
if (is_c11_alignof)
{
if (flag_isoc99)
pedwarn_c99 (start_loc, OPT_Wpedantic, "ISO C99 does not support %qE",
alignof_spelling);
else
pedwarn_c99 (start_loc, OPT_Wpedantic, "ISO C90 does not support %qE",
alignof_spelling);
}
c_parser_consume_token (parser);
c_inhibit_evaluation_warnings++;
in_alignof++;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)
&& c_token_starts_compound_literal (c_parser_peek_2nd_token (parser)))
{
/* Either __alignof__ ( type-name ) or __alignof__
unary-expression starting with a compound literal. */
location_t loc;
struct c_declspecs *scspecs;
struct c_type_name *type_name;
struct c_expr ret;
matching_parens parens;
parens.consume_open (parser);
loc = c_parser_peek_token (parser)->location;
scspecs = c_parser_compound_literal_scspecs (parser);
type_name = c_parser_type_name (parser, true);
end_loc = c_parser_peek_token (parser)->location;
parens.skip_until_found_close (parser);
if (type_name == NULL)
{
struct c_expr ret;
c_inhibit_evaluation_warnings--;
in_alignof--;
ret.set_error ();
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
expr = c_parser_postfix_expression_after_paren_type (parser, scspecs,
type_name,
loc);
goto alignof_expr;
}
/* alignof ( type-name ). */
if (scspecs)
error_at (loc, "storage class specifier in %qE", alignof_spelling);
if (type_name->specs->alignas_p)
error_at (type_name->specs->locations[cdw_alignas],
"alignment specified for type name in %qE",
alignof_spelling);
c_inhibit_evaluation_warnings--;
in_alignof--;
ret.value = c_sizeof_or_alignof_type (loc, groktypename (type_name,
NULL, NULL),
false, is_c11_alignof, 1);
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
set_c_expr_source_range (&ret, start_loc, end_loc);
ret.m_decimal = 0;
return ret;
}
else
{
struct c_expr ret;
expr = c_parser_unary_expression (parser);
end_loc = expr.src_range.m_finish;
alignof_expr:
mark_exp_read (expr.value);
c_inhibit_evaluation_warnings--;
in_alignof--;
if (is_c11_alignof)
pedwarn (start_loc,
OPT_Wpedantic, "ISO C does not allow %<%E (expression)%>",
alignof_spelling);
ret.value = c_alignof_expr (start_loc, expr.value);
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
set_c_expr_source_range (&ret, start_loc, end_loc);
ret.m_decimal = 0;
return ret;
}
}
/* Parse the __builtin_has_attribute ([expr|type], attribute-spec)
expression. */
static struct c_expr
c_parser_has_attribute_expression (c_parser *parser)
{
gcc_assert (c_parser_next_token_is_keyword (parser,
RID_BUILTIN_HAS_ATTRIBUTE));
location_t start = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
c_inhibit_evaluation_warnings++;
matching_parens parens;
if (!parens.require_open (parser))
{
c_inhibit_evaluation_warnings--;
in_typeof--;
struct c_expr result;
result.set_error ();
result.original_code = ERROR_MARK;
result.original_type = NULL;
return result;
}
/* Treat the type argument the same way as in typeof for the purposes
of warnings. FIXME: Generalize this so the warning refers to
__builtin_has_attribute rather than typeof. */
in_typeof++;
/* The first operand: one of DECL, EXPR, or TYPE. */
tree oper = NULL_TREE;
if (c_parser_next_tokens_start_typename (parser, cla_prefer_id))
{
struct c_type_name *tname = c_parser_type_name (parser);
in_typeof--;
if (tname)
{
oper = groktypename (tname, NULL, NULL);
pop_maybe_used (c_type_variably_modified_p (oper));
}
}
else
{
struct c_expr cexpr = c_parser_expr_no_commas (parser, NULL);
c_inhibit_evaluation_warnings--;
in_typeof--;
if (cexpr.value != error_mark_node)
{
mark_exp_read (cexpr.value);
oper = cexpr.value;
tree etype = TREE_TYPE (oper);
bool was_vm = c_type_variably_modified_p (etype);
/* This is returned with the type so that when the type is
evaluated, this can be evaluated. */
if (was_vm)
oper = c_fully_fold (oper, false, NULL);
pop_maybe_used (was_vm);
}
}
struct c_expr result;
result.original_code = ERROR_MARK;
result.original_type = NULL;
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
/* Consume the closing parenthesis if that's the next token
in the likely case the built-in was invoked with fewer
than two arguments. */
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
c_inhibit_evaluation_warnings--;
result.set_error ();
return result;
}
bool save_translate_strings_p = parser->translate_strings_p;
location_t atloc = c_parser_peek_token (parser)->location;
/* Parse a single attribute. Require no leading comma and do not
allow empty attributes. */
tree attr = c_parser_gnu_attribute (parser, NULL_TREE, false, false);
parser->translate_strings_p = save_translate_strings_p;
location_t finish = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
else
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
result.set_error ();
return result;
}
if (!attr)
{
error_at (atloc, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
result.set_error ();
return result;
}
result.original_code = INTEGER_CST;
result.original_type = boolean_type_node;
if (has_attribute (atloc, oper, attr, default_conversion))
result.value = boolean_true_node;
else
result.value = boolean_false_node;
set_c_expr_source_range (&result, start, finish);
result.m_decimal = 0;
return result;
}
/* Helper function to read arguments of builtins which are interfaces
for the middle-end nodes like COMPLEX_EXPR, VEC_PERM_EXPR and
others. The name of the builtin is passed using BNAME parameter.
Function returns true if there were no errors while parsing and
stores the arguments in CEXPR_LIST. If it returns true,
*OUT_CLOSE_PAREN_LOC is written to with the location of the closing
parenthesis. */
static bool
c_parser_get_builtin_args (c_parser *parser, const char *bname,
vec **ret_cexpr_list,
bool choose_expr_p,
location_t *out_close_paren_loc)
{
location_t loc = c_parser_peek_token (parser)->location;
vec *cexpr_list;
c_expr_t expr;
bool saved_force_folding_builtin_constant_p;
*ret_cexpr_list = NULL;
if (c_parser_next_token_is_not (parser, CPP_OPEN_PAREN))
{
error_at (loc, "cannot take address of %qs", bname);
return false;
}
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
*out_close_paren_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
return true;
}
saved_force_folding_builtin_constant_p
= force_folding_builtin_constant_p;
force_folding_builtin_constant_p |= choose_expr_p;
expr = c_parser_expr_no_commas (parser, NULL);
force_folding_builtin_constant_p
= saved_force_folding_builtin_constant_p;
vec_alloc (cexpr_list, 1);
vec_safe_push (cexpr_list, expr);
while (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_EMBED))
{
c_token *embed = c_parser_peek_token (parser);
tree value = embed->value;
expr.original_code = INTEGER_CST;
expr.original_type = integer_type_node;
expr.value = NULL_TREE;
set_c_expr_source_range (&expr, embed->get_range ());
expr.m_decimal = 0;
for (unsigned int i = 0; i < (unsigned) RAW_DATA_LENGTH (value); i++)
{
expr.value = build_int_cst (integer_type_node,
RAW_DATA_UCHAR_ELT (value, i));
vec_safe_push (cexpr_list, expr);
}
c_parser_consume_token (parser);
continue;
}
expr = c_parser_expr_no_commas (parser, NULL);
vec_safe_push (cexpr_list, expr);
}
*out_close_paren_loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>"))
return false;
*ret_cexpr_list = cexpr_list;
return true;
}
/* This represents a single generic-association. */
struct c_generic_association
{
/* The location of the starting token of the type. */
location_t type_location;
/* The association's type, or NULL_TREE for 'default'. */
tree type;
/* The association's expression. */
struct c_expr expression;
};
/* Parse a generic-selection. (C11 6.5.1.1).
generic-selection:
_Generic ( generic-controlling-operand , generic-assoc-list )
generic-controlling-operand:
assignment-expression
type-name
(The use of a type-name is new in C2Y.)
generic-assoc-list:
generic-association
generic-assoc-list , generic-association
generic-association:
type-name : assignment-expression
default : assignment-expression
*/
static struct c_expr
c_parser_generic_selection (c_parser *parser)
{
struct c_expr selector, error_expr;
tree selector_type;
struct c_generic_association matched_assoc;
int match_found = -1;
location_t generic_loc, selector_loc;
error_expr.original_code = ERROR_MARK;
error_expr.original_type = NULL;
error_expr.set_error ();
matched_assoc.type_location = UNKNOWN_LOCATION;
matched_assoc.type = NULL_TREE;
matched_assoc.expression = error_expr;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_GENERIC));
generic_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
if (flag_isoc99)
pedwarn_c99 (generic_loc, OPT_Wpedantic,
"ISO C99 does not support %<_Generic%>");
else
pedwarn_c99 (generic_loc, OPT_Wpedantic,
"ISO C90 does not support %<_Generic%>");
matching_parens parens;
if (!parens.require_open (parser))
return error_expr;
selector_loc = c_parser_peek_token (parser)->location;
if (c_parser_next_tokens_start_typename (parser, cla_prefer_id))
{
c_inhibit_evaluation_warnings++;
pedwarn_c23 (selector_loc, OPT_Wpedantic,
"ISO C does not support use of type name as %<_Generic%> "
"controlling operand before C2Y");
struct c_type_name *type = c_parser_type_name (parser);
selector_type = groktypename (type, NULL, NULL);
c_inhibit_evaluation_warnings--;
}
else
{
c_inhibit_evaluation_warnings++;
selector = c_parser_expr_no_commas (parser, NULL);
selector = default_function_array_conversion (selector_loc, selector);
c_inhibit_evaluation_warnings--;
if (selector.value == error_mark_node)
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return selector;
}
mark_exp_read (selector.value);
selector_type = TREE_TYPE (selector.value);
/* In ISO C terms, rvalues (including the controlling expression
of _Generic) do not have qualified types. */
if (TREE_CODE (selector_type) != ARRAY_TYPE)
selector_type = TYPE_MAIN_VARIANT (selector_type);
/* In ISO C terms, _Noreturn is not part of the type of expressions
such as &abort, but in GCC it is represented internally as a type
qualifier. */
if (FUNCTION_POINTER_TYPE_P (selector_type)
&& TYPE_QUALS (TREE_TYPE (selector_type)) != TYPE_UNQUALIFIED)
selector_type
= c_build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (selector_type)));
}
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return error_expr;
}
auto_vec associations;
while (1)
{
struct c_generic_association assoc, *iter;
unsigned int ix;
c_token *token = c_parser_peek_token (parser);
assoc.type_location = token->location;
if (token->type == CPP_KEYWORD && token->keyword == RID_DEFAULT)
{
c_parser_consume_token (parser);
assoc.type = NULL_TREE;
}
else
{
struct c_type_name *type_name;
type_name = c_parser_type_name (parser);
if (type_name == NULL)
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return error_expr;
}
assoc.type = groktypename (type_name, NULL, NULL);
if (assoc.type == error_mark_node)
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return error_expr;
}
if (TREE_CODE (assoc.type) == FUNCTION_TYPE)
pedwarn_c23 (assoc.type_location, OPT_Wpedantic,
"ISO C does not support %<_Generic%> association with "
"function type before C2Y");
else if (!COMPLETE_TYPE_P (assoc.type))
pedwarn_c23 (assoc.type_location, OPT_Wpedantic,
"ISO C does not support %<_Generic%> association with "
"incomplete type before C2Y");
if (c_type_variably_modified_p (assoc.type))
error_at (assoc.type_location,
"%<_Generic%> association has "
"variable length type");
}
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return error_expr;
}
bool match = assoc.type == NULL_TREE
|| comptypes (assoc.type, selector_type);
if (!match)
c_inhibit_evaluation_warnings++;
assoc.expression = c_parser_expr_no_commas (parser, NULL);
if (!match)
c_inhibit_evaluation_warnings--;
if (assoc.expression.value == error_mark_node)
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return error_expr;
}
for (ix = 0; associations.iterate (ix, &iter); ++ix)
{
if (assoc.type == NULL_TREE)
{
if (iter->type == NULL_TREE)
{
error_at (assoc.type_location,
"duplicate % case in %<_Generic%>");
inform (iter->type_location, "original % is here");
}
}
else if (iter->type != NULL_TREE)
{
if (comptypes (assoc.type, iter->type))
{
error_at (assoc.type_location,
"%<_Generic%> specifies two compatible types");
inform (iter->type_location, "compatible type is here");
}
}
}
if (assoc.type == NULL_TREE)
{
if (match_found < 0)
{
matched_assoc = assoc;
match_found = associations.length ();
}
}
else if (match)
{
if (match_found < 0 || matched_assoc.type == NULL_TREE)
{
matched_assoc = assoc;
match_found = associations.length ();
}
else
{
error_at (assoc.type_location,
"%<_Generic%> selector matches multiple associations");
inform (matched_assoc.type_location,
"other match is here");
}
}
associations.safe_push (assoc);
if (c_parser_peek_token (parser)->type != CPP_COMMA)
break;
c_parser_consume_token (parser);
}
unsigned int ix;
struct c_generic_association *iter;
FOR_EACH_VEC_ELT (associations, ix, iter)
if (ix != (unsigned) match_found)
mark_exp_read (iter->expression.value);
if (!parens.require_close (parser))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return error_expr;
}
if (match_found < 0)
{
error_at (selector_loc, "%<_Generic%> selector of type %qT is not "
"compatible with any association",
selector_type);
return error_expr;
}
return matched_assoc.expression;
}
/* Check the validity of a function pointer argument *EXPR (argument
position POS) to __builtin_tgmath. Return the number of function
arguments if possibly valid; return 0 having reported an error if
not valid. */
static unsigned int
check_tgmath_function (c_expr *expr, unsigned int pos)
{
tree type = TREE_TYPE (expr->value);
if (!FUNCTION_POINTER_TYPE_P (type))
{
error_at (expr->get_location (),
"argument %u of %<__builtin_tgmath%> is not a function pointer",
pos);
return 0;
}
type = TREE_TYPE (type);
if (!prototype_p (type))
{
error_at (expr->get_location (),
"argument %u of %<__builtin_tgmath%> is unprototyped", pos);
return 0;
}
if (stdarg_p (type))
{
error_at (expr->get_location (),
"argument %u of %<__builtin_tgmath%> has variable arguments",
pos);
return 0;
}
unsigned int nargs = 0;
function_args_iterator iter;
tree t;
FOREACH_FUNCTION_ARGS (type, t, iter)
{
if (t == void_type_node)
break;
nargs++;
}
if (nargs == 0)
{
error_at (expr->get_location (),
"argument %u of %<__builtin_tgmath%> has no arguments", pos);
return 0;
}
return nargs;
}
/* Ways in which a parameter or return value of a type-generic macro
may vary between the different functions the macro may call. */
enum tgmath_parm_kind
{
tgmath_fixed, tgmath_real, tgmath_complex
};
/* Helper function for c_parser_postfix_expression. Parse predefined
identifiers. */
static struct c_expr
c_parser_predefined_identifier (c_parser *parser)
{
location_t loc = c_parser_peek_token (parser)->location;
switch (c_parser_peek_token (parser)->keyword)
{
case RID_FUNCTION_NAME:
pedwarn (loc, OPT_Wpedantic, "ISO C does not support %qs predefined "
"identifier", "__FUNCTION__");
break;
case RID_PRETTY_FUNCTION_NAME:
pedwarn (loc, OPT_Wpedantic, "ISO C does not support %qs predefined "
"identifier", "__PRETTY_FUNCTION__");
break;
case RID_C99_FUNCTION_NAME:
pedwarn_c90 (loc, OPT_Wpedantic, "ISO C90 does not support "
"%<__func__%> predefined identifier");
break;
default:
gcc_unreachable ();
}
struct c_expr expr;
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
expr.value = fname_decl (loc, c_parser_peek_token (parser)->keyword,
c_parser_peek_token (parser)->value);
set_c_expr_source_range (&expr, loc, loc);
expr.m_decimal = 0;
c_parser_consume_token (parser);
return expr;
}
/* Check whether the ARRAY_REF has an counted-by object associated with it
through the "counted_by" attribute. */
static bool
has_counted_by_object (tree array_ref)
{
/* Currently, only when the array_ref is an indirect_ref to a call to the
.ACCESS_WITH_SIZE, return true.
More cases can be included later when the counted_by attribute is
extended to other situations. */
if (TREE_CODE (array_ref) == INDIRECT_REF
&& is_access_with_size_p (TREE_OPERAND (array_ref, 0)))
return true;
return false;
}
/* Get the reference to the counted-by object associated with the ARRAY_REF. */
static tree
get_counted_by_ref (tree array_ref)
{
/* Currently, only when the array_ref is an indirect_ref to a call to the
.ACCESS_WITH_SIZE, get the corresponding counted_by ref.
More cases can be included later when the counted_by attribute is
extended to other situations. */
if (TREE_CODE (array_ref) == INDIRECT_REF
&& is_access_with_size_p (TREE_OPERAND (array_ref, 0)))
return CALL_EXPR_ARG (TREE_OPERAND (array_ref, 0), 1);
return NULL_TREE;
}
/* Parse a postfix expression (C90 6.3.1-6.3.2, C99 6.5.1-6.5.2,
C11 6.5.1-6.5.2). Compound literals aren't handled here; callers have to
call c_parser_postfix_expression_after_paren_type on encountering them.
postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-list[opt] )
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
( storage-class-specifiers[opt] type-name ) { initializer-list[opt] }
( storage-class-specifiers[opt] type-name ) { initializer-list , }
argument-expression-list:
argument-expression
argument-expression-list , argument-expression
primary-expression:
identifier
constant
string-literal
( expression )
generic-selection
GNU extensions:
primary-expression:
__func__
(treated as a keyword in GNU C)
__FUNCTION__
__PRETTY_FUNCTION__
( compound-statement )
__builtin_va_arg ( assignment-expression , type-name )
__builtin_offsetof ( type-name , offsetof-member-designator )
__builtin_choose_expr ( assignment-expression ,
assignment-expression ,
assignment-expression )
__builtin_types_compatible_p ( type-name , type-name )
__builtin_tgmath ( expr-list )
__builtin_complex ( assignment-expression , assignment-expression )
__builtin_shuffle ( assignment-expression , assignment-expression )
__builtin_shuffle ( assignment-expression ,
assignment-expression ,
assignment-expression, )
__builtin_convertvector ( assignment-expression , type-name )
__builtin_assoc_barrier ( assignment-expression )
offsetof-member-designator:
identifier
offsetof-member-designator . identifier
offsetof-member-designator [ expression ]
Objective-C:
primary-expression:
[ objc-receiver objc-message-args ]
@selector ( objc-selector-arg )
@protocol ( identifier )
@encode ( type-name )
objc-string-literal
Classname . identifier
*/
static struct c_expr
c_parser_postfix_expression (c_parser *parser)
{
struct c_expr expr, e1;
struct c_type_name *t1, *t2;
location_t loc = c_parser_peek_token (parser)->location;
source_range tok_range = c_parser_peek_token (parser)->get_range ();
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
expr.m_decimal = 0;
switch (c_parser_peek_token (parser)->type)
{
case CPP_NUMBER:
expr.value = c_parser_peek_token (parser)->value;
set_c_expr_source_range (&expr, tok_range);
loc = c_parser_peek_token (parser)->location;
expr.m_decimal = c_parser_peek_token (parser)->flags & DECIMAL_INT;
c_parser_consume_token (parser);
if (TREE_CODE (expr.value) == FIXED_CST
&& !targetm.fixed_point_supported_p ())
{
error_at (loc, "fixed-point types not supported for this target");
expr.set_error ();
}
break;
case CPP_CHAR:
case CPP_CHAR16:
case CPP_CHAR32:
case CPP_UTF8CHAR:
case CPP_WCHAR:
expr.value = c_parser_peek_token (parser)->value;
/* For the purpose of warning when a pointer is compared with
a zero character constant. */
expr.original_type = char_type_node;
set_c_expr_source_range (&expr, tok_range);
c_parser_consume_token (parser);
break;
case CPP_STRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_WSTRING:
case CPP_UTF8STRING:
expr = c_parser_string_literal (parser, parser->translate_strings_p,
true);
break;
case CPP_OBJC_STRING:
gcc_assert (c_dialect_objc ());
expr.value
= objc_build_string_object (c_parser_peek_token (parser)->value);
set_c_expr_source_range (&expr, tok_range);
c_parser_consume_token (parser);
break;
case CPP_NAME:
switch (c_parser_peek_token (parser)->id_kind)
{
case C_ID_ID:
{
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
expr.value = build_external_ref (loc, id,
(c_parser_peek_token (parser)->type
== CPP_OPEN_PAREN),
&expr.original_type);
set_c_expr_source_range (&expr, tok_range);
break;
}
case C_ID_CLASSNAME:
{
/* Here we parse the Objective-C 2.0 Class.name dot
syntax. */
tree class_name = c_parser_peek_token (parser)->value;
tree component;
c_parser_consume_token (parser);
gcc_assert (c_dialect_objc ());
if (!c_parser_require (parser, CPP_DOT, "expected %<.%>"))
{
expr.set_error ();
break;
}
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
expr.set_error ();
break;
}
c_token *component_tok = c_parser_peek_token (parser);
component = component_tok->value;
location_t end_loc = component_tok->get_finish ();
c_parser_consume_token (parser);
expr.value = objc_build_class_component_ref (class_name,
component);
set_c_expr_source_range (&expr, loc, end_loc);
break;
}
default:
c_parser_error (parser, "expected expression");
expr.set_error ();
break;
}
break;
case CPP_OPEN_PAREN:
/* A parenthesized expression, statement expression or compound
literal. */
if (c_parser_peek_2nd_token (parser)->type == CPP_OPEN_BRACE)
{
/* A statement expression. */
tree stmt;
location_t brace_loc;
bool save_c_omp_array_section_p = c_omp_array_section_p;
c_parser_consume_token (parser);
brace_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
/* If we've not yet started the current function's statement list,
or we're in the parameter scope of an old-style function
declaration, statement expressions are not allowed. */
if (!building_stmt_list_p () || old_style_parameter_scope ())
{
error_at (loc, "braced-group within expression allowed "
"only inside a function");
parser->error = true;
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.set_error ();
break;
}
c_omp_array_section_p = false;
stmt = c_begin_stmt_expr ();
c_parser_compound_statement_nostart (parser);
location_t close_loc = c_parser_peek_token (parser)->location;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
pedwarn (loc, OPT_Wpedantic,
"ISO C forbids braced-groups within expressions");
expr.value = c_finish_stmt_expr (brace_loc, stmt);
set_c_expr_source_range (&expr, loc, close_loc);
mark_exp_read (expr.value);
c_omp_array_section_p = save_c_omp_array_section_p;
}
else
{
/* A parenthesized expression. */
location_t loc_open_paren = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
expr = c_parser_expression (parser);
if (TREE_CODE (expr.value) == MODIFY_EXPR)
suppress_warning (expr.value, OPT_Wparentheses);
if (expr.original_code != C_MAYBE_CONST_EXPR
&& expr.original_code != SIZEOF_EXPR)
expr.original_code = ERROR_MARK;
/* Remember that we saw ( ) around the sizeof. */
if (expr.original_code == SIZEOF_EXPR)
expr.original_code = PAREN_SIZEOF_EXPR;
/* Don't change EXPR.ORIGINAL_TYPE. */
location_t loc_close_paren = c_parser_peek_token (parser)->location;
set_c_expr_source_range (&expr, loc_open_paren, loc_close_paren);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>", loc_open_paren);
}
break;
case CPP_KEYWORD:
switch (c_parser_peek_token (parser)->keyword)
{
case RID_FUNCTION_NAME:
case RID_PRETTY_FUNCTION_NAME:
case RID_C99_FUNCTION_NAME:
expr = c_parser_predefined_identifier (parser);
break;
case RID_VA_ARG:
{
location_t start_loc = loc;
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
e1 = c_parser_expr_no_commas (parser, NULL);
mark_exp_read (e1.value);
e1.value = c_fully_fold (e1.value, false, NULL);
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.set_error ();
break;
}
loc = c_parser_peek_token (parser)->location;
t1 = c_parser_type_name (parser);
location_t end_loc = c_parser_peek_token (parser)->get_finish ();
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
if (t1 == NULL)
{
expr.set_error ();
}
else
{
tree type_expr = NULL_TREE;
expr.value = c_build_va_arg (start_loc, e1.value, loc,
groktypename (t1, &type_expr, NULL));
if (type_expr)
{
expr.value = build2 (C_MAYBE_CONST_EXPR,
TREE_TYPE (expr.value), type_expr,
expr.value);
C_MAYBE_CONST_EXPR_NON_CONST (expr.value) = true;
}
set_c_expr_source_range (&expr, start_loc, end_loc);
}
}
break;
case RID_C23_VA_START:
{
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
e1 = c_parser_expr_no_commas (parser, NULL);
e1 = convert_lvalue_to_rvalue (e1.get_location (), e1, true, true);
if (!c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
location_t cloc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.set_error ();
break;
}
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_ID
&& (c_parser_peek_2nd_token (parser)->type
== CPP_CLOSE_PAREN))
{
tree name = c_parser_peek_token (parser)->value;
location_t nloc = c_parser_peek_token (parser)->location;
tree decl = lookup_name (name);
tree last_parm
= tree_last (DECL_ARGUMENTS (current_function_decl));
if (!last_parm || decl != last_parm)
warning_at (nloc, OPT_Wvarargs,
"optional second parameter of % "
"not last named argument");
else if (DECL_REGISTER (decl))
warning_at (nloc, OPT_Wvarargs,
"undefined behavior when second parameter "
"of % is declared with "
"% storage");
c_parser_consume_token (parser);
}
else
{
unsigned nesting_depth = 0;
location_t sloc = c_parser_peek_token (parser)->location;
location_t eloc = sloc;
/* For va_start (ap,) the ) comes from stdarg.h.
Use location of , in that case, otherwise without
-Wsystem-headers nothing is reported. After all,
the problematic token is the comma in that case. */
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
sloc = eloc = cloc;
while (true)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_CLOSE_PAREN && !nesting_depth)
break;
if (token->type == CPP_EOF)
break;
if (token->type == CPP_OPEN_PAREN)
++nesting_depth;
else if (token->type == CPP_CLOSE_PAREN)
--nesting_depth;
eloc = token->location;
c_parser_consume_token (parser);
}
if (sloc != eloc)
sloc = make_location (sloc, sloc, eloc);
warning_at (sloc, OPT_Wvarargs,
"% macro used with additional "
"arguments other than identifier of the "
"last named argument");
}
}
parens.skip_until_found_close (parser);
tree fndecl = builtin_decl_explicit (BUILT_IN_VA_START);
vec *params;
vec_alloc (params, 2);
params->quick_push (e1.value);
params->quick_push (integer_zero_node);
auto_vec arg_loc (2);
arg_loc.quick_push (e1.get_location ());
arg_loc.quick_push (UNKNOWN_LOCATION);
expr.value = c_build_function_call_vec (loc, arg_loc, fndecl,
params, NULL);
set_c_expr_source_range (&expr, loc,
parser->tokens_buf[0].get_finish ());
expr.m_decimal = 0;
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
release_tree_vector (params);
break;
}
case RID_OFFSETOF:
{
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
t1 = c_parser_type_name (parser);
if (t1 == NULL)
parser->error = true;
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
gcc_assert (parser->error);
if (parser->error)
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.set_error ();
break;
}
tree type = groktypename (t1, NULL, NULL);
tree offsetof_ref;
if (type == error_mark_node)
offsetof_ref = error_mark_node;
else
{
offsetof_ref = build1 (INDIRECT_REF, type, null_pointer_node);
SET_EXPR_LOCATION (offsetof_ref, loc);
}
/* Parse the second argument to __builtin_offsetof. We
must have one identifier, and beyond that we want to
accept sub structure and sub array references. */
if (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *comp_tok = c_parser_peek_token (parser);
/* Ignore the counted_by attribute for reference inside
offsetof since the information is not useful at all. */
offsetof_ref
= build_component_ref (loc, offsetof_ref, comp_tok->value,
comp_tok->location, UNKNOWN_LOCATION,
false);
c_parser_consume_token (parser);
while (c_parser_next_token_is (parser, CPP_DOT)
|| c_parser_next_token_is (parser,
CPP_OPEN_SQUARE)
|| c_parser_next_token_is (parser,
CPP_DEREF))
{
if (c_parser_next_token_is (parser, CPP_DEREF))
{
loc = c_parser_peek_token (parser)->location;
offsetof_ref = build_array_ref (loc,
offsetof_ref,
integer_zero_node);
goto do_dot;
}
else if (c_parser_next_token_is (parser, CPP_DOT))
{
do_dot:
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser,
CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
c_token *comp_tok = c_parser_peek_token (parser);
/* Ignore the counted_by attribute for reference inside
offsetof since the information is not useful. */
offsetof_ref
= build_component_ref (loc, offsetof_ref,
comp_tok->value,
comp_tok->location,
UNKNOWN_LOCATION,
false);
c_parser_consume_token (parser);
}
else
{
struct c_expr ce;
tree idx;
loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
ce = c_parser_expression (parser);
ce = convert_lvalue_to_rvalue (loc, ce, false, false);
idx = ce.value;
idx = c_fully_fold (idx, false, NULL);
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
offsetof_ref = build_array_ref (loc, offsetof_ref, idx);
}
}
}
else
c_parser_error (parser, "expected identifier");
location_t end_loc = c_parser_peek_token (parser)->get_finish ();
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
expr.value = fold_offsetof (offsetof_ref);
set_c_expr_source_range (&expr, loc, end_loc);
}
break;
case RID_CHOOSE_EXPR:
{
vec *cexpr_list;
c_expr_t *e1_p, *e2_p, *e3_p;
tree c;
location_t close_paren_loc;
c_parser_consume_token (parser);
if (!c_parser_get_builtin_args (parser,
"__builtin_choose_expr",
&cexpr_list, true,
&close_paren_loc))
{
expr.set_error ();
break;
}
if (vec_safe_length (cexpr_list) != 3)
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_choose_expr%>");
expr.set_error ();
break;
}
e1_p = &(*cexpr_list)[0];
e2_p = &(*cexpr_list)[1];
e3_p = &(*cexpr_list)[2];
c = e1_p->value;
mark_exp_read (e2_p->value);
mark_exp_read (e3_p->value);
if (TREE_CODE (c) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (c)))
error_at (loc,
"first argument to %<__builtin_choose_expr%> not"
" a constant");
constant_expression_warning (c);
expr = integer_zerop (c) ? *e3_p : *e2_p;
set_c_expr_source_range (&expr, loc, close_paren_loc);
break;
}
case RID_TYPES_COMPATIBLE_P:
{
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
t1 = c_parser_type_name (parser);
if (t1 == NULL)
{
expr.set_error ();
break;
}
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.set_error ();
break;
}
t2 = c_parser_type_name (parser);
if (t2 == NULL)
{
expr.set_error ();
break;
}
location_t close_paren_loc = c_parser_peek_token (parser)->location;
parens.skip_until_found_close (parser);
tree e1, e2;
e1 = groktypename (t1, NULL, NULL);
e2 = groktypename (t2, NULL, NULL);
if (e1 == error_mark_node || e2 == error_mark_node)
{
expr.set_error ();
break;
}
e1 = TYPE_MAIN_VARIANT (e1);
e2 = TYPE_MAIN_VARIANT (e2);
expr.value
= comptypes (e1, e2) ? integer_one_node : integer_zero_node;
set_c_expr_source_range (&expr, loc, close_paren_loc);
}
break;
case RID_BUILTIN_TGMATH:
{
vec *cexpr_list;
location_t close_paren_loc;
c_parser_consume_token (parser);
if (!c_parser_get_builtin_args (parser,
"__builtin_tgmath",
&cexpr_list, false,
&close_paren_loc))
{
expr.set_error ();
break;
}
if (vec_safe_length (cexpr_list) < 3)
{
error_at (loc, "too few arguments to %<__builtin_tgmath%>");
expr.set_error ();
break;
}
unsigned int i;
c_expr_t *p;
FOR_EACH_VEC_ELT (*cexpr_list, i, p)
*p = convert_lvalue_to_rvalue (loc, *p, true, true);
unsigned int nargs = check_tgmath_function (&(*cexpr_list)[0], 1);
if (nargs == 0)
{
expr.set_error ();
break;
}
if (vec_safe_length (cexpr_list) < nargs)
{
error_at (loc, "too few arguments to %<__builtin_tgmath%>");
expr.set_error ();
break;
}
unsigned int num_functions = vec_safe_length (cexpr_list) - nargs;
if (num_functions < 2)
{
error_at (loc, "too few arguments to %<__builtin_tgmath%>");
expr.set_error ();
break;
}
/* The first NUM_FUNCTIONS expressions are the function
pointers. The remaining NARGS expressions are the
arguments that are to be passed to one of those
functions, chosen following rules. */
for (unsigned int j = 1; j < num_functions; j++)
{
unsigned int this_nargs
= check_tgmath_function (&(*cexpr_list)[j], j + 1);
if (this_nargs == 0)
{
expr.set_error ();
goto out;
}
if (this_nargs != nargs)
{
error_at ((*cexpr_list)[j].get_location (),
"argument %u of %<__builtin_tgmath%> has "
"wrong number of arguments", j + 1);
expr.set_error ();
goto out;
}
}
/* The functions all have the same number of arguments.
Determine whether arguments and return types vary in
ways permitted for functions. */
/* The first entry in each of these vectors is for the
return type, subsequent entries for parameter
types. */
auto_vec parm_kind (nargs + 1);
auto_vec parm_first (nargs + 1);
auto_vec parm_complex (nargs + 1);
auto_vec parm_varies (nargs + 1);
tree first_type = TREE_TYPE (TREE_TYPE ((*cexpr_list)[0].value));
tree first_ret = TYPE_MAIN_VARIANT (TREE_TYPE (first_type));
parm_first.quick_push (first_ret);
parm_complex.quick_push (TREE_CODE (first_ret) == COMPLEX_TYPE);
parm_varies.quick_push (false);
function_args_iterator iter;
tree t;
unsigned int argpos;
FOREACH_FUNCTION_ARGS (first_type, t, iter)
{
if (t == void_type_node)
break;
parm_first.quick_push (TYPE_MAIN_VARIANT (t));
parm_complex.quick_push (TREE_CODE (t) == COMPLEX_TYPE);
parm_varies.quick_push (false);
}
for (unsigned int j = 1; j < num_functions; j++)
{
tree type = TREE_TYPE (TREE_TYPE ((*cexpr_list)[j].value));
tree ret = TYPE_MAIN_VARIANT (TREE_TYPE (type));
if (ret != parm_first[0])
{
parm_varies[0] = true;
if (!SCALAR_FLOAT_TYPE_P (parm_first[0])
&& !COMPLEX_FLOAT_TYPE_P (parm_first[0]))
{
error_at ((*cexpr_list)[0].get_location (),
"invalid type-generic return type for "
"argument %u of %<__builtin_tgmath%>",
1);
expr.set_error ();
goto out;
}
if (!SCALAR_FLOAT_TYPE_P (ret)
&& !COMPLEX_FLOAT_TYPE_P (ret))
{
error_at ((*cexpr_list)[j].get_location (),
"invalid type-generic return type for "
"argument %u of %<__builtin_tgmath%>",
j + 1);
expr.set_error ();
goto out;
}
}
if (TREE_CODE (ret) == COMPLEX_TYPE)
parm_complex[0] = true;
argpos = 1;
FOREACH_FUNCTION_ARGS (type, t, iter)
{
if (t == void_type_node)
break;
t = TYPE_MAIN_VARIANT (t);
if (t != parm_first[argpos])
{
parm_varies[argpos] = true;
if (!SCALAR_FLOAT_TYPE_P (parm_first[argpos])
&& !COMPLEX_FLOAT_TYPE_P (parm_first[argpos]))
{
error_at ((*cexpr_list)[0].get_location (),
"invalid type-generic type for "
"argument %u of argument %u of "
"%<__builtin_tgmath%>", argpos, 1);
expr.set_error ();
goto out;
}
if (!SCALAR_FLOAT_TYPE_P (t)
&& !COMPLEX_FLOAT_TYPE_P (t))
{
error_at ((*cexpr_list)[j].get_location (),
"invalid type-generic type for "
"argument %u of argument %u of "
"%<__builtin_tgmath%>", argpos, j + 1);
expr.set_error ();
goto out;
}
}
if (TREE_CODE (t) == COMPLEX_TYPE)
parm_complex[argpos] = true;
argpos++;
}
}
enum tgmath_parm_kind max_variation = tgmath_fixed;
for (unsigned int j = 0; j <= nargs; j++)
{
enum tgmath_parm_kind this_kind;
if (parm_varies[j])
{
if (parm_complex[j])
max_variation = this_kind = tgmath_complex;
else
{
this_kind = tgmath_real;
if (max_variation != tgmath_complex)
max_variation = tgmath_real;
}
}
else
this_kind = tgmath_fixed;
parm_kind.quick_push (this_kind);
}
if (max_variation == tgmath_fixed)
{
error_at (loc, "function arguments of %<__builtin_tgmath%> "
"all have the same type");
expr.set_error ();
break;
}
/* Identify a parameter (not the return type) that varies,
including with complex types if any variation includes
complex types; there must be at least one such
parameter. */
unsigned int tgarg = 0;
for (unsigned int j = 1; j <= nargs; j++)
if (parm_kind[j] == max_variation)
{
tgarg = j;
break;
}
if (tgarg == 0)
{
error_at (loc, "function arguments of %<__builtin_tgmath%> "
"lack type-generic parameter");
expr.set_error ();
break;
}
/* Determine the type of the relevant parameter for each
function. */
auto_vec tg_type (num_functions);
for (unsigned int j = 0; j < num_functions; j++)
{
tree type = TREE_TYPE (TREE_TYPE ((*cexpr_list)[j].value));
argpos = 1;
FOREACH_FUNCTION_ARGS (type, t, iter)
{
if (argpos == tgarg)
{
tg_type.quick_push (TYPE_MAIN_VARIANT (t));
break;
}
argpos++;
}
}
/* Verify that the corresponding types are different for
all the listed functions. Also determine whether all
the types are complex, whether all the types are
standard or binary, and whether all the types are
decimal. */
bool all_complex = true;
bool all_binary = true;
bool all_decimal = true;
hash_set tg_types;
FOR_EACH_VEC_ELT (tg_type, i, t)
{
if (TREE_CODE (t) == COMPLEX_TYPE)
all_decimal = false;
else
{
all_complex = false;
if (DECIMAL_FLOAT_TYPE_P (t))
all_binary = false;
else
all_decimal = false;
}
if (tg_types.add (t))
{
error_at ((*cexpr_list)[i].get_location (),
"duplicate type-generic parameter type for "
"function argument %u of %<__builtin_tgmath%>",
i + 1);
expr.set_error ();
goto out;
}
}
/* Verify that other parameters and the return type whose
types vary have their types varying in the correct
way. */
for (unsigned int j = 0; j < num_functions; j++)
{
tree exp_type = tg_type[j];
tree exp_real_type = exp_type;
if (TREE_CODE (exp_type) == COMPLEX_TYPE)
exp_real_type = TREE_TYPE (exp_type);
tree type = TREE_TYPE (TREE_TYPE ((*cexpr_list)[j].value));
tree ret = TYPE_MAIN_VARIANT (TREE_TYPE (type));
if ((parm_kind[0] == tgmath_complex && ret != exp_type)
|| (parm_kind[0] == tgmath_real && ret != exp_real_type))
{
error_at ((*cexpr_list)[j].get_location (),
"bad return type for function argument %u "
"of %<__builtin_tgmath%>", j + 1);
expr.set_error ();
goto out;
}
argpos = 1;
FOREACH_FUNCTION_ARGS (type, t, iter)
{
if (t == void_type_node)
break;
t = TYPE_MAIN_VARIANT (t);
if ((parm_kind[argpos] == tgmath_complex
&& t != exp_type)
|| (parm_kind[argpos] == tgmath_real
&& t != exp_real_type))
{
error_at ((*cexpr_list)[j].get_location (),
"bad type for argument %u of "
"function argument %u of "
"%<__builtin_tgmath%>", argpos, j + 1);
expr.set_error ();
goto out;
}
argpos++;
}
}
/* The functions listed are a valid set of functions for a
macro to select between. Identify the
matching function, if any. First, the argument types
must be combined following rules. Integer
types are treated as _Decimal64 if any type-generic
argument is decimal, or if the only alternatives for
type-generic arguments are of decimal types, and are
otherwise treated as _Float32x (or _Complex _Float32x
for complex integer types) if any type-generic argument
has _FloatNx type, otherwise as double (or _Complex
double for complex integer types). After that
adjustment, types are combined following the usual
arithmetic conversions. If the function only accepts
complex arguments, a complex type is produced. */
bool arg_complex = all_complex;
bool arg_binary = all_binary;
bool arg_int_decimal = all_decimal;
bool arg_int_floatnx = false;
bool arg_int_decimalx = false;
for (unsigned int j = 1; j <= nargs; j++)
{
if (parm_kind[j] == tgmath_fixed)
continue;
c_expr_t *ce = &(*cexpr_list)[num_functions + j - 1];
tree type = TREE_TYPE (ce->value);
if (!INTEGRAL_TYPE_P (type)
&& !SCALAR_FLOAT_TYPE_P (type)
&& TREE_CODE (type) != COMPLEX_TYPE)
{
error_at (ce->get_location (),
"invalid type of argument %u of type-generic "
"function", j);
expr.set_error ();
goto out;
}
if (DECIMAL_FLOAT_TYPE_P (type))
{
arg_int_decimal = true;
if (all_complex)
{
error_at (ce->get_location (),
"decimal floating-point argument %u to "
"complex-only type-generic function", j);
expr.set_error ();
goto out;
}
else if (all_binary)
{
error_at (ce->get_location (),
"decimal floating-point argument %u to "
"binary-only type-generic function", j);
expr.set_error ();
goto out;
}
else if (arg_complex)
{
error_at (ce->get_location (),
"both complex and decimal floating-point "
"arguments to type-generic function");
expr.set_error ();
goto out;
}
else if (arg_binary)
{
error_at (ce->get_location (),
"both binary and decimal floating-point "
"arguments to type-generic function");
expr.set_error ();
goto out;
}
}
else if (TREE_CODE (type) == COMPLEX_TYPE)
{
arg_complex = true;
if (COMPLEX_FLOAT_TYPE_P (type))
arg_binary = true;
if (all_decimal)
{
error_at (ce->get_location (),
"complex argument %u to "
"decimal-only type-generic function", j);
expr.set_error ();
goto out;
}
else if (arg_int_decimal)
{
error_at (ce->get_location (),
"both complex and decimal floating-point "
"arguments to type-generic function");
expr.set_error ();
goto out;
}
}
else if (SCALAR_FLOAT_TYPE_P (type))
{
arg_binary = true;
if (all_decimal)
{
error_at (ce->get_location (),
"binary argument %u to "
"decimal-only type-generic function", j);
expr.set_error ();
goto out;
}
else if (arg_int_decimal)
{
error_at (ce->get_location (),
"both binary and decimal floating-point "
"arguments to type-generic function");
expr.set_error ();
goto out;
}
}
tree rtype = TYPE_MAIN_VARIANT (type);
if (TREE_CODE (rtype) == COMPLEX_TYPE)
rtype = TREE_TYPE (rtype);
if (SCALAR_FLOAT_TYPE_P (rtype))
for (unsigned int j = 0; j < NUM_FLOATNX_TYPES; j++)
if (rtype == FLOATNX_TYPE_NODE (j))
{
arg_int_floatnx = true;
break;
}
if (rtype == dfloat64x_type_node)
arg_int_decimalx = true;
}
tree arg_real = NULL_TREE;
for (unsigned int j = 1; j <= nargs; j++)
{
if (parm_kind[j] == tgmath_fixed)
continue;
c_expr_t *ce = &(*cexpr_list)[num_functions + j - 1];
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ce->value));
if (TREE_CODE (type) == COMPLEX_TYPE)
type = TREE_TYPE (type);
if (INTEGRAL_TYPE_P (type))
type = (arg_int_decimalx
? dfloat64x_type_node
: arg_int_floatnx
? float32x_type_node
: arg_int_decimal
? dfloat64_type_node
: double_type_node);
if (arg_real == NULL_TREE)
arg_real = type;
else
arg_real = common_type (arg_real, type);
if (arg_real == error_mark_node)
{
expr.set_error ();
goto out;
}
}
tree arg_type = (arg_complex
? build_complex_type (arg_real)
: arg_real);
/* Look for a function to call with type-generic parameter
type ARG_TYPE. */
c_expr_t *fn = NULL;
for (unsigned int j = 0; j < num_functions; j++)
{
if (tg_type[j] == arg_type)
{
fn = &(*cexpr_list)[j];
break;
}
}
if (fn == NULL
&& parm_kind[0] == tgmath_fixed
&& SCALAR_FLOAT_TYPE_P (parm_first[0]))
{
/* Presume this is a macro that rounds its result to a
narrower type, and look for the first function with
at least the range and precision of the argument
type. */
for (unsigned int j = 0; j < num_functions; j++)
{
if (arg_complex
!= (TREE_CODE (tg_type[j]) == COMPLEX_TYPE))
continue;
tree real_tg_type = (arg_complex
? TREE_TYPE (tg_type[j])
: tg_type[j]);
if (DECIMAL_FLOAT_TYPE_P (arg_real)
!= DECIMAL_FLOAT_TYPE_P (real_tg_type))
continue;
scalar_float_mode arg_mode
= SCALAR_FLOAT_TYPE_MODE (arg_real);
scalar_float_mode tg_mode
= SCALAR_FLOAT_TYPE_MODE (real_tg_type);
const real_format *arg_fmt = REAL_MODE_FORMAT (arg_mode);
const real_format *tg_fmt = REAL_MODE_FORMAT (tg_mode);
if (arg_fmt->b == tg_fmt->b
&& arg_fmt->p <= tg_fmt->p
&& arg_fmt->emax <= tg_fmt->emax
&& (arg_fmt->emin - arg_fmt->p
>= tg_fmt->emin - tg_fmt->p))
{
fn = &(*cexpr_list)[j];
break;
}
}
}
if (fn == NULL)
{
error_at (loc, "no matching function for type-generic call");
expr.set_error ();
break;
}
/* Construct a call to FN. */
vec *args;
vec_alloc (args, nargs);
vec *origtypes;
vec_alloc (origtypes, nargs);
auto_vec arg_loc (nargs);
for (unsigned int j = 0; j < nargs; j++)
{
c_expr_t *ce = &(*cexpr_list)[num_functions + j];
args->quick_push (ce->value);
arg_loc.quick_push (ce->get_location ());
origtypes->quick_push (ce->original_type);
}
expr.value = c_build_function_call_vec (loc, arg_loc, fn->value,
args, origtypes);
set_c_expr_source_range (&expr, loc, close_paren_loc);
break;
}
case RID_BUILTIN_CALL_WITH_STATIC_CHAIN:
{
vec *cexpr_list;
c_expr_t *e2_p;
tree chain_value;
location_t close_paren_loc;
c_parser_consume_token (parser);
if (!c_parser_get_builtin_args (parser,
"__builtin_call_with_static_chain",
&cexpr_list, false,
&close_paren_loc))
{
expr.set_error ();
break;
}
if (vec_safe_length (cexpr_list) != 2)
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_call_with_static_chain%>");
expr.set_error ();
break;
}
expr = (*cexpr_list)[0];
e2_p = &(*cexpr_list)[1];
*e2_p = convert_lvalue_to_rvalue (loc, *e2_p, true, true);
chain_value = e2_p->value;
mark_exp_read (chain_value);
if (TREE_CODE (expr.value) != CALL_EXPR)
error_at (loc, "first argument to "
"%<__builtin_call_with_static_chain%> "
"must be a call expression");
else if (TREE_CODE (TREE_TYPE (chain_value)) != POINTER_TYPE)
error_at (loc, "second argument to "
"%<__builtin_call_with_static_chain%> "
"must be a pointer type");
else
CALL_EXPR_STATIC_CHAIN (expr.value) = chain_value;
set_c_expr_source_range (&expr, loc, close_paren_loc);
break;
}
case RID_BUILTIN_COMPLEX:
{
vec *cexpr_list;
c_expr_t *e1_p, *e2_p;
location_t close_paren_loc;
c_parser_consume_token (parser);
if (!c_parser_get_builtin_args (parser,
"__builtin_complex",
&cexpr_list, false,
&close_paren_loc))
{
expr.set_error ();
break;
}
if (vec_safe_length (cexpr_list) != 2)
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_complex%>");
expr.set_error ();
break;
}
e1_p = &(*cexpr_list)[0];
e2_p = &(*cexpr_list)[1];
*e1_p = convert_lvalue_to_rvalue (loc, *e1_p, true, true);
if (TREE_CODE (e1_p->value) == EXCESS_PRECISION_EXPR)
e1_p->value = convert (TREE_TYPE (e1_p->value),
TREE_OPERAND (e1_p->value, 0));
*e2_p = convert_lvalue_to_rvalue (loc, *e2_p, true, true);
if (TREE_CODE (e2_p->value) == EXCESS_PRECISION_EXPR)
e2_p->value = convert (TREE_TYPE (e2_p->value),
TREE_OPERAND (e2_p->value, 0));
if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (e1_p->value))
|| DECIMAL_FLOAT_TYPE_P (TREE_TYPE (e1_p->value))
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE (e2_p->value))
|| DECIMAL_FLOAT_TYPE_P (TREE_TYPE (e2_p->value)))
{
error_at (loc, "%<__builtin_complex%> operand "
"not of real binary floating-point type");
expr.set_error ();
break;
}
if (TYPE_MAIN_VARIANT (TREE_TYPE (e1_p->value))
!= TYPE_MAIN_VARIANT (TREE_TYPE (e2_p->value)))
{
error_at (loc,
"%<__builtin_complex%> operands of different types");
expr.set_error ();
break;
}
pedwarn_c90 (loc, OPT_Wpedantic,
"ISO C90 does not support complex types");
expr.value = build2_loc (loc, COMPLEX_EXPR,
build_complex_type
(TYPE_MAIN_VARIANT
(TREE_TYPE (e1_p->value))),
e1_p->value, e2_p->value);
set_c_expr_source_range (&expr, loc, close_paren_loc);
break;
}
case RID_BUILTIN_COUNTED_BY_REF:
{
vec *cexpr_list;
c_expr_t *e_p;
location_t close_paren_loc;
c_parser_consume_token (parser);
if (!c_parser_get_builtin_args (parser,
"__builtin_counted_by_ref",
&cexpr_list, false,
&close_paren_loc))
{
expr.set_error ();
break;
}
if (vec_safe_length (cexpr_list) != 1)
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_counted_by_ref%>");
expr.set_error ();
break;
}
e_p = &(*cexpr_list)[0];
tree ref = e_p->value;
if (TREE_CODE (TREE_TYPE (ref)) != ARRAY_TYPE)
{
error_at (loc, "the argument to %<__builtin_counted_by_ref%>"
" must be an array");
expr.set_error ();
break;
}
/* If the array ref is inside TYPEOF or ALIGNOF, the call to
.ACCESS_WITH_SIZE was not generated by the routine
build_component_ref by default, we should generate it here. */
if ((in_typeof || in_alignof) && TREE_CODE (ref) == COMPONENT_REF)
ref = handle_counted_by_for_component_ref (loc, ref);
if (has_counted_by_object (ref))
expr.value = get_counted_by_ref (ref);
else
expr.value = null_pointer_node;
set_c_expr_source_range (&expr, loc, close_paren_loc);
break;
}
case RID_BUILTIN_SHUFFLE:
{
vec *cexpr_list;
unsigned int i;
c_expr_t *p;
location_t close_paren_loc;
c_parser_consume_token (parser);
if (!c_parser_get_builtin_args (parser,
"__builtin_shuffle",
&cexpr_list, false,
&close_paren_loc))
{
expr.set_error ();
break;
}
FOR_EACH_VEC_SAFE_ELT (cexpr_list, i, p)
*p = convert_lvalue_to_rvalue (loc, *p, true, true);
if (vec_safe_length (cexpr_list) == 2)
expr.value = c_build_vec_perm_expr (loc, (*cexpr_list)[0].value,
NULL_TREE,
(*cexpr_list)[1].value);
else if (vec_safe_length (cexpr_list) == 3)
expr.value = c_build_vec_perm_expr (loc, (*cexpr_list)[0].value,
(*cexpr_list)[1].value,
(*cexpr_list)[2].value);
else
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_shuffle%>");
expr.set_error ();
}
set_c_expr_source_range (&expr, loc, close_paren_loc);
break;
}
case RID_BUILTIN_SHUFFLEVECTOR:
{
vec *cexpr_list;
unsigned int i;
c_expr_t *p;
location_t close_paren_loc;
c_parser_consume_token (parser);
if (!c_parser_get_builtin_args (parser,
"__builtin_shufflevector",
&cexpr_list, false,
&close_paren_loc))
{
expr.set_error ();
break;
}
FOR_EACH_VEC_SAFE_ELT (cexpr_list, i, p)
*p = convert_lvalue_to_rvalue (loc, *p, true, true);
if (vec_safe_length (cexpr_list) < 3)
{
error_at (loc, "wrong number of arguments to "
"%<__builtin_shuffle%>");
expr.set_error ();
}
else
{
auto_vec mask;
for (i = 2; i < cexpr_list->length (); ++i)
mask.safe_push ((*cexpr_list)[i].value);
expr.value = c_build_shufflevector (loc, (*cexpr_list)[0].value,
(*cexpr_list)[1].value,
mask);
}
set_c_expr_source_range (&expr, loc, close_paren_loc);
break;
}
case RID_BUILTIN_CONVERTVECTOR:
{
location_t start_loc = loc;
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
e1 = c_parser_expr_no_commas (parser, NULL);
mark_exp_read (e1.value);
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.set_error ();
break;
}
loc = c_parser_peek_token (parser)->location;
t1 = c_parser_type_name (parser);
location_t end_loc = c_parser_peek_token (parser)->get_finish ();
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
if (t1 == NULL)
expr.set_error ();
else
{
tree type_expr = NULL_TREE;
expr.value = c_build_vec_convert (start_loc, e1.value, loc,
groktypename (t1, &type_expr,
NULL));
set_c_expr_source_range (&expr, start_loc, end_loc);
}
}
break;
case RID_BUILTIN_ASSOC_BARRIER:
{
location_t start_loc = loc;
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
e1 = c_parser_expr_no_commas (parser, NULL);
mark_exp_read (e1.value);
location_t end_loc = c_parser_peek_token (parser)->get_finish ();
parens.skip_until_found_close (parser);
expr = parser_build_unary_op (loc, PAREN_EXPR, e1);
set_c_expr_source_range (&expr, start_loc, end_loc);
}
break;
case RID_BUILTIN_STDC:
{
vec *cexpr_list;
c_expr_t *arg_p;
location_t close_paren_loc;
enum c_builtin_stdc {
C_BUILTIN_STDC_BIT_CEIL,
C_BUILTIN_STDC_BIT_FLOOR,
C_BUILTIN_STDC_BIT_WIDTH,
C_BUILTIN_STDC_COUNT_ONES,
C_BUILTIN_STDC_COUNT_ZEROS,
C_BUILTIN_STDC_FIRST_LEADING_ONE,
C_BUILTIN_STDC_FIRST_LEADING_ZERO,
C_BUILTIN_STDC_FIRST_TRAILING_ONE,
C_BUILTIN_STDC_FIRST_TRAILING_ZERO,
C_BUILTIN_STDC_HAS_SINGLE_BIT,
C_BUILTIN_STDC_LEADING_ONES,
C_BUILTIN_STDC_LEADING_ZEROS,
C_BUILTIN_STDC_ROTATE_LEFT,
C_BUILTIN_STDC_ROTATE_RIGHT,
C_BUILTIN_STDC_TRAILING_ONES,
C_BUILTIN_STDC_TRAILING_ZEROS,
C_BUILTIN_STDC_MAX
} stdc_rid = C_BUILTIN_STDC_MAX;
const char *name
= IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
unsigned num_args = 1;
switch (name[sizeof ("__builtin_stdc_") - 1])
{
case 'b':
switch (name[sizeof ("__builtin_stdc_bit_") - 1])
{
case 'c':
stdc_rid = C_BUILTIN_STDC_BIT_CEIL;
break;
case 'f':
stdc_rid = C_BUILTIN_STDC_BIT_FLOOR;
break;
default:
stdc_rid = C_BUILTIN_STDC_BIT_WIDTH;
break;
}
break;
case 'c':
if (name[sizeof ("__builtin_stdc_count_") - 1] == 'o')
stdc_rid = C_BUILTIN_STDC_COUNT_ONES;
else
stdc_rid = C_BUILTIN_STDC_COUNT_ZEROS;
break;
case 'f':
switch (name[sizeof ("__builtin_stdc_first_trailing_") - 1])
{
case 'n':
stdc_rid = C_BUILTIN_STDC_FIRST_LEADING_ONE;
break;
case 'e':
stdc_rid = C_BUILTIN_STDC_FIRST_LEADING_ZERO;
break;
case 'o':
stdc_rid = C_BUILTIN_STDC_FIRST_TRAILING_ONE;
break;
default:
stdc_rid = C_BUILTIN_STDC_FIRST_TRAILING_ZERO;
break;
}
break;
case 'h':
stdc_rid = C_BUILTIN_STDC_HAS_SINGLE_BIT;
break;
case 'l':
if (name[sizeof ("__builtin_stdc_leading_") - 1] == 'o')
stdc_rid = C_BUILTIN_STDC_LEADING_ONES;
else
stdc_rid = C_BUILTIN_STDC_LEADING_ZEROS;
break;
case 'r':
if (name[sizeof ("__builtin_stdc_rotate_") - 1] == 'l')
stdc_rid = C_BUILTIN_STDC_ROTATE_LEFT;
else
stdc_rid = C_BUILTIN_STDC_ROTATE_RIGHT;
num_args = 2;
break;
case 't':
if (name[sizeof ("__builtin_stdc_trailing_") - 1] == 'o')
stdc_rid = C_BUILTIN_STDC_TRAILING_ONES;
else
stdc_rid = C_BUILTIN_STDC_TRAILING_ZEROS;
break;
}
gcc_checking_assert (stdc_rid != C_BUILTIN_STDC_MAX);
c_parser_consume_token (parser);
if (!c_parser_get_builtin_args (parser, name,
&cexpr_list, false,
&close_paren_loc))
{
expr.set_error ();
break;
}
if (vec_safe_length (cexpr_list) != num_args)
{
error_at (loc, "wrong number of arguments to %qs", name);
expr.set_error ();
break;
}
arg_p = &(*cexpr_list)[0];
*arg_p = convert_lvalue_to_rvalue (loc, *arg_p, true, true);
if (!INTEGRAL_TYPE_P (TREE_TYPE (arg_p->value)))
{
error_at (loc, "%qs operand not an integral type", name);
expr.set_error ();
break;
}
if (TREE_CODE (TREE_TYPE (arg_p->value)) == ENUMERAL_TYPE)
{
error_at (loc, "argument %u in call to function "
"%qs has enumerated type", 1, name);
expr.set_error ();
break;
}
if (TREE_CODE (TREE_TYPE (arg_p->value)) == BOOLEAN_TYPE)
{
error_at (loc, "argument %u in call to function "
"%qs has boolean type", 1, name);
expr.set_error ();
break;
}
if (!TYPE_UNSIGNED (TREE_TYPE (arg_p->value)))
{
error_at (loc, "argument 1 in call to function "
"%qs has signed type", name);
expr.set_error ();
break;
}
if (TYPE_MAIN_VARIANT (TREE_TYPE (arg_p->value))
== char_type_node)
{
error_at (loc, "argument 1 in call to function "
"%qs has % type", name);
expr.set_error ();
break;
}
tree arg = arg_p->value;
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (arg));
/* Expand:
__builtin_stdc_leading_zeros (arg) as
(unsigned int) __builtin_clzg (arg, prec)
__builtin_stdc_leading_ones (arg) as
(unsigned int) __builtin_clzg ((type) ~arg, prec)
__builtin_stdc_trailing_zeros (arg) as
(unsigned int) __builtin_ctzg (arg, prec)
__builtin_stdc_trailing_ones (arg) as
(unsigned int) __builtin_ctzg ((type) ~arg, prec)
__builtin_stdc_first_leading_zero (arg) as
__builtin_clzg ((type) ~arg, -1) + 1U
__builtin_stdc_first_leading_one (arg) as
__builtin_clzg (arg, -1) + 1U
__builtin_stdc_first_trailing_zero (arg) as
__builtin_ctzg ((type) ~arg, -1) + 1U
__builtin_stdc_first_trailing_one (arg) as
__builtin_ctzg (arg, -1) + 1U
__builtin_stdc_count_zeros (arg) as
(unsigned int) __builtin_popcountg ((type) ~arg)
__builtin_stdc_count_ones (arg) as
(unsigned int) __builtin_popcountg (arg)
__builtin_stdc_has_single_bit (arg) as
(_Bool) (__builtin_popcountg (arg) == 1)
__builtin_stdc_bit_width (arg) as
(unsigned int) (prec - __builtin_clzg (arg, prec))
__builtin_stdc_bit_floor (arg) as
arg == 0 ? (type) 0
: (type) 1 << (prec - 1 - __builtin_clzg (arg))
__builtin_stdc_bit_ceil (arg) as
arg <= 1 ? (type) 1
: (type) 2 << (prec - 1 - __builtin_clzg (arg - 1))
without evaluating arg multiple times, type being
__typeof (arg) and prec __builtin_popcountg ((type) ~0)). */
int prec = TYPE_PRECISION (type);
if (num_args == 2)
{
/* Expand:
__builtin_stdc_rotate_left (arg1, arg2) as
arg1 r<< (arg2 % prec)
__builtin_stdc_rotate_right (arg1, arg2) as
arg1 r>> (arg2 % prec). */
arg_p = &(*cexpr_list)[1];
*arg_p = convert_lvalue_to_rvalue (loc, *arg_p, true, true);
if (!INTEGRAL_TYPE_P (TREE_TYPE (arg_p->value)))
{
error_at (loc, "%qs operand not an integral type", name);
expr.set_error ();
break;
}
if (TREE_CODE (TREE_TYPE (arg_p->value)) == ENUMERAL_TYPE)
{
error_at (loc, "argument %u in call to function "
"%qs has enumerated type", 2, name);
expr.set_error ();
break;
}
tree arg1 = save_expr (arg);
tree arg2 = save_expr (arg_p->value);
tree_code code;
if (stdc_rid == C_BUILTIN_STDC_ROTATE_LEFT)
code = LROTATE_EXPR;
else
code = RROTATE_EXPR;
if (TREE_CODE (arg2) == INTEGER_CST
&& tree_int_cst_sgn (arg2) < 0)
warning_at (loc, OPT_Wshift_count_negative,
"rotate count is negative");
tree instrument_expr = NULL_TREE;
if (sanitize_flags_p (SANITIZE_SHIFT))
instrument_expr = ubsan_instrument_shift (loc, code,
arg1, arg2);
/* Promote arg2 to unsigned just so that we don't
need to deal with arg2 type not being able to represent
prec. In the end gimplification uses unsigned int
for all shifts/rotates anyway. */
if (TYPE_PRECISION (TREE_TYPE (arg2))
< TYPE_PRECISION (integer_type_node))
arg2 = fold_convert (unsigned_type_node, arg2);
if (TYPE_UNSIGNED (TREE_TYPE (arg2)))
arg2 = build2_loc (loc, TRUNC_MOD_EXPR, TREE_TYPE (arg2),
arg2, build_int_cst (TREE_TYPE (arg2),
prec));
else
{
/* When second argument is signed, just do the modulo in
unsigned type, that results in better generated code
(for power of 2 precisions bitwise AND). */
tree utype = c_common_unsigned_type (TREE_TYPE (arg2));
arg2 = build2_loc (loc, TRUNC_MOD_EXPR, utype,
fold_convert (utype, arg2),
build_int_cst (utype, prec));
}
/* The middle-end isn't prepared to handle {L,R}ROTATE_EXPR
on types without mode precision, except for large/huge
_BitInt types. */
if (type_has_mode_precision_p (TREE_TYPE (arg1))
|| (TREE_CODE (TREE_TYPE (arg1)) == BITINT_TYPE
&& prec > MAX_FIXED_MODE_SIZE))
expr.value = build2_loc (loc, code, TREE_TYPE (arg1), arg1,
arg2);
else
{
arg2 = save_expr (arg2);
tree t1 = build2_loc (loc, (code == LROTATE_EXPR
? LSHIFT_EXPR : RSHIFT_EXPR),
TREE_TYPE (arg1), arg1, arg2);
tree t2 = build2_loc (loc, MINUS_EXPR,
TREE_TYPE (arg2),
build_int_cst (TREE_TYPE (arg2),
prec), arg2);
t2 = build2_loc (loc, (code == LROTATE_EXPR
? RSHIFT_EXPR : LSHIFT_EXPR),
TREE_TYPE (arg1), arg1, t2);
suppress_warning (t2, OPT_Wshift_count_overflow);
tree t3 = build2_loc (loc, BIT_IOR_EXPR,
TREE_TYPE (arg1), t1, t2);
tree t4 = build2_loc (loc, NE_EXPR, boolean_type_node,
arg2,
build_zero_cst (TREE_TYPE (arg2)));
t4 = build2_loc (loc, COMPOUND_EXPR, boolean_type_node,
arg1, t4);
expr.value = build3_loc (loc, COND_EXPR,
TREE_TYPE (arg1), t4, t3, arg1);
}
if (instrument_expr)
expr.value = build2_loc (loc, COMPOUND_EXPR,
TREE_TYPE (expr.value),
instrument_expr, expr.value);
break;
}
tree barg1 = arg;
switch (stdc_rid)
{
case C_BUILTIN_STDC_BIT_CEIL:
arg = save_expr (arg);
barg1 = build2_loc (loc, PLUS_EXPR, type, arg,
build_int_cst (type, -1));
break;
case C_BUILTIN_STDC_BIT_FLOOR:
barg1 = arg = save_expr (arg);
break;
case C_BUILTIN_STDC_COUNT_ZEROS:
case C_BUILTIN_STDC_FIRST_LEADING_ZERO:
case C_BUILTIN_STDC_FIRST_TRAILING_ZERO:
case C_BUILTIN_STDC_LEADING_ONES:
case C_BUILTIN_STDC_TRAILING_ONES:
barg1 = build1_loc (loc, BIT_NOT_EXPR, type, arg);
break;
default:
break;
}
tree barg2 = NULL_TREE;
switch (stdc_rid)
{
case C_BUILTIN_STDC_BIT_WIDTH:
case C_BUILTIN_STDC_LEADING_ONES:
case C_BUILTIN_STDC_LEADING_ZEROS:
case C_BUILTIN_STDC_TRAILING_ONES:
case C_BUILTIN_STDC_TRAILING_ZEROS:
barg2 = build_int_cst (integer_type_node, prec);
break;
case C_BUILTIN_STDC_FIRST_LEADING_ONE:
case C_BUILTIN_STDC_FIRST_LEADING_ZERO:
case C_BUILTIN_STDC_FIRST_TRAILING_ONE:
case C_BUILTIN_STDC_FIRST_TRAILING_ZERO:
barg2 = integer_minus_one_node;
break;
default:
break;
}
tree fndecl = NULL_TREE;
switch (stdc_rid)
{
case C_BUILTIN_STDC_BIT_CEIL:
case C_BUILTIN_STDC_BIT_FLOOR:
case C_BUILTIN_STDC_BIT_WIDTH:
case C_BUILTIN_STDC_FIRST_LEADING_ONE:
case C_BUILTIN_STDC_FIRST_LEADING_ZERO:
case C_BUILTIN_STDC_LEADING_ONES:
case C_BUILTIN_STDC_LEADING_ZEROS:
fndecl = builtin_decl_explicit (BUILT_IN_CLZG);
break;
case C_BUILTIN_STDC_FIRST_TRAILING_ONE:
case C_BUILTIN_STDC_FIRST_TRAILING_ZERO:
case C_BUILTIN_STDC_TRAILING_ONES:
case C_BUILTIN_STDC_TRAILING_ZEROS:
fndecl = builtin_decl_explicit (BUILT_IN_CTZG);
break;
case C_BUILTIN_STDC_COUNT_ONES:
case C_BUILTIN_STDC_COUNT_ZEROS:
case C_BUILTIN_STDC_HAS_SINGLE_BIT:
fndecl = builtin_decl_explicit (BUILT_IN_POPCOUNTG);
break;
default:
gcc_unreachable ();
}
/* Construct a call to __builtin_{clz,ctz,popcount}g. */
int nargs = barg2 != NULL_TREE ? 2 : 1;
vec *args;
vec_alloc (args, nargs);
vec *origtypes;
vec_alloc (origtypes, nargs);
auto_vec arg_loc (nargs);
args->quick_push (barg1);
arg_loc.quick_push (arg_p->get_location ());
origtypes->quick_push (arg_p->original_type);
if (nargs == 2)
{
args->quick_push (barg2);
arg_loc.quick_push (loc);
origtypes->quick_push (integer_type_node);
}
expr.value = c_build_function_call_vec (loc, arg_loc, fndecl,
args, origtypes);
set_c_expr_source_range (&expr, loc, close_paren_loc);
if (expr.value == error_mark_node)
break;
switch (stdc_rid)
{
case C_BUILTIN_STDC_BIT_CEIL:
case C_BUILTIN_STDC_BIT_FLOOR:
--prec;
/* FALLTHRU */
case C_BUILTIN_STDC_BIT_WIDTH:
expr.value = build2_loc (loc, MINUS_EXPR, integer_type_node,
build_int_cst (integer_type_node,
prec), expr.value);
break;
case C_BUILTIN_STDC_FIRST_LEADING_ONE:
case C_BUILTIN_STDC_FIRST_LEADING_ZERO:
case C_BUILTIN_STDC_FIRST_TRAILING_ONE:
case C_BUILTIN_STDC_FIRST_TRAILING_ZERO:
expr.value = build2_loc (loc, PLUS_EXPR, integer_type_node,
expr.value, integer_one_node);
break;
case C_BUILTIN_STDC_HAS_SINGLE_BIT:
expr.value = build2_loc (loc, EQ_EXPR, boolean_type_node,
expr.value, integer_one_node);
break;
default:
break;
}
if (stdc_rid != C_BUILTIN_STDC_BIT_CEIL
&& stdc_rid != C_BUILTIN_STDC_BIT_FLOOR)
{
if (stdc_rid != C_BUILTIN_STDC_HAS_SINGLE_BIT)
expr.value = fold_convert_loc (loc, unsigned_type_node,
expr.value);
break;
}
/* For __builtin_stdc_bit_ceil (0U) or __builtin_stdc_bit_ceil (1U)
or __builtin_stdc_bit_floor (0U) avoid bogus -Wshift-count-*
warnings. The LSHIFT_EXPR is in dead code in that case. */
if (integer_zerop (arg)
|| (stdc_rid == C_BUILTIN_STDC_BIT_CEIL && integer_onep (arg)))
expr.value = build_int_cst (type, 0);
else
expr.value
= build2_loc (loc, LSHIFT_EXPR, type,
build_int_cst (type,
(stdc_rid
== C_BUILTIN_STDC_BIT_CEIL
? 2 : 1)), expr.value);
if (stdc_rid == C_BUILTIN_STDC_BIT_CEIL)
expr.value = build3_loc (loc, COND_EXPR, type,
build2_loc (loc, LE_EXPR,
boolean_type_node, arg,
build_int_cst (type, 1)),
build_int_cst (type, 1),
expr.value);
else
expr.value = build3_loc (loc, COND_EXPR, type,
build2_loc (loc, EQ_EXPR,
boolean_type_node, arg,
build_int_cst (type, 0)),
build_int_cst (type, 0),
expr.value);
break;
}
case RID_AT_SELECTOR:
{
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
tree sel = c_parser_objc_selector_arg (parser);
location_t close_loc = c_parser_peek_token (parser)->location;
parens.skip_until_found_close (parser);
expr.value = objc_build_selector_expr (loc, sel);
set_c_expr_source_range (&expr, loc, close_loc);
}
break;
case RID_AT_PROTOCOL:
{
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.set_error ();
break;
}
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
location_t close_loc = c_parser_peek_token (parser)->location;
parens.skip_until_found_close (parser);
expr.value = objc_build_protocol_expr (id);
set_c_expr_source_range (&expr, loc, close_loc);
}
break;
case RID_AT_ENCODE:
{
/* Extension to support C-structures in the archiver. */
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
{
expr.set_error ();
break;
}
t1 = c_parser_type_name (parser);
if (t1 == NULL)
{
expr.set_error ();
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
break;
}
location_t close_loc = c_parser_peek_token (parser)->location;
parens.skip_until_found_close (parser);
tree type = groktypename (t1, NULL, NULL);
expr.value = objc_build_encode_expr (type);
set_c_expr_source_range (&expr, loc, close_loc);
}
break;
case RID_GENERIC:
expr = c_parser_generic_selection (parser);
break;
case RID_OMP_ALL_MEMORY:
gcc_assert (flag_openmp);
c_parser_consume_token (parser);
error_at (loc, "% may only be used in OpenMP "
"% clause");
expr.set_error ();
break;
/* C23 'nullptr' literal. */
case RID_NULLPTR:
c_parser_consume_token (parser);
expr.value = nullptr_node;
set_c_expr_source_range (&expr, tok_range);
pedwarn_c11 (loc, OPT_Wpedantic,
"ISO C does not support %qs before C23", "nullptr");
break;
case RID_TRUE:
c_parser_consume_token (parser);
expr.value = boolean_true_node;
set_c_expr_source_range (&expr, tok_range);
break;
case RID_FALSE:
c_parser_consume_token (parser);
expr.value = boolean_false_node;
set_c_expr_source_range (&expr, tok_range);
break;
default:
c_parser_error (parser, "expected expression");
expr.set_error ();
break;
}
break;
case CPP_OPEN_SQUARE:
if (c_dialect_objc ())
{
tree receiver, args;
c_parser_consume_token (parser);
receiver = c_parser_objc_receiver (parser);
args = c_parser_objc_message_args (parser);
location_t close_loc = c_parser_peek_token (parser)->location;
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
expr.value = objc_build_message_expr (receiver, args);
set_c_expr_source_range (&expr, loc, close_loc);
break;
}
/* Else fall through to report error. */
/* FALLTHRU */
default:
c_parser_error (parser, "expected expression");
expr.set_error ();
break;
}
out:
return c_parser_postfix_expression_after_primary
(parser, EXPR_LOC_OR_LOC (expr.value, loc), expr);
}
/* Parse a postfix expression after a parenthesized type name: the
brace-enclosed initializer of a compound literal, possibly followed
by some postfix operators. This is separate because it is not
possible to tell until after the type name whether a cast
expression has a cast or a compound literal, or whether the operand
of sizeof is a parenthesized type name or starts with a compound
literal. TYPE_LOC is the location where TYPE_NAME starts--the
location of the first token after the parentheses around the type
name. */
static struct c_expr
c_parser_postfix_expression_after_paren_type (c_parser *parser,
struct c_declspecs *scspecs,
struct c_type_name *type_name,
location_t type_loc)
{
tree type;
struct c_expr init;
bool non_const;
struct c_expr expr;
location_t start_loc;
tree type_expr = NULL_TREE;
bool type_expr_const = true;
bool constexpr_p = scspecs ? scspecs->constexpr_p : false;
unsigned int underspec_state = 0;
check_compound_literal_type (type_loc, type_name);
rich_location richloc (line_table, type_loc);
start_loc = c_parser_peek_token (parser)->location;
if (constexpr_p)
{
underspec_state = start_underspecified_init (start_loc, NULL_TREE);
/* A constexpr compound literal is subject to the constraints on
underspecified declarations, which may not declare tags or
members or structures or unions; it is undefined behavior to
declare the members of an enumeration. Where the structure,
union or enumeration type is declared within the compound
literal initializer, this is diagnosed elsewhere as a result
of the above call to start_underspecified_init. Diagnose
here the case of declaring such a type in the type specifiers
of the compound literal. */
switch (type_name->specs->typespec_kind)
{
case ctsk_tagfirstref:
case ctsk_tagfirstref_attrs:
error_at (type_loc, "%qT declared in % compound literal",
type_name->specs->type);
break;
case ctsk_tagdef:
error_at (type_loc, "%qT defined in % compound literal",
type_name->specs->type);
break;
default:
break;
}
}
start_init (NULL_TREE, NULL,
(global_bindings_p ()
|| (scspecs && scspecs->storage_class == csc_static)
|| constexpr_p), constexpr_p, &richloc);
type = groktypename (type_name, &type_expr, &type_expr_const);
if (type != error_mark_node && C_TYPE_VARIABLE_SIZE (type))
{
error_at (type_loc, "compound literal has variable size");
type = error_mark_node;
}
else if (TREE_CODE (type) == FUNCTION_TYPE)
{
error_at (type_loc, "compound literal has function type");
type = error_mark_node;
}
if (constexpr_p && type != error_mark_node)
{
tree type_no_array = strip_array_types (type);
/* The type of a constexpr object must not be variably modified
(which applies to all compound literals), volatile, atomic or
restrict qualified or have a member with such a qualifier.
const qualification is implicitly added. */
if (TYPE_QUALS (type_no_array)
& (TYPE_QUAL_VOLATILE | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC))
error_at (type_loc, "invalid qualifiers for % object");
else if (RECORD_OR_UNION_TYPE_P (type_no_array)
&& C_TYPE_FIELDS_NON_CONSTEXPR (type_no_array))
error_at (type_loc, "invalid qualifiers for field of "
"% object");
type = c_build_qualified_type (type,
(TYPE_QUALS (type_no_array)
| TYPE_QUAL_CONST));
}
init = c_parser_braced_init (parser, type, false, NULL, NULL_TREE);
if (constexpr_p)
finish_underspecified_init (NULL_TREE, underspec_state);
finish_init ();
maybe_warn_string_init (type_loc, type, init);
if (type != error_mark_node
&& !ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type))
&& current_function_decl)
{
error ("compound literal qualified by address-space qualifier");
type = error_mark_node;
}
if (!pedwarn_c90 (start_loc, OPT_Wpedantic,
"ISO C90 forbids compound literals") && scspecs)
pedwarn_c11 (start_loc, OPT_Wpedantic,
"ISO C forbids storage class specifiers in compound literals "
"before C23");
non_const = ((init.value && TREE_CODE (init.value) == CONSTRUCTOR)
? CONSTRUCTOR_NON_CONST (init.value)
: init.original_code == C_MAYBE_CONST_EXPR);
non_const |= !type_expr_const;
unsigned int alignas_align = 0;
if (type != error_mark_node
&& type_name->specs->align_log != -1)
{
alignas_align = 1U << type_name->specs->align_log;
if (alignas_align < min_align_of_type (type))
{
error_at (type_name->specs->locations[cdw_alignas],
"%<_Alignas%> specifiers cannot reduce "
"alignment of compound literal");
alignas_align = 0;
}
}
expr.value = build_compound_literal (start_loc, type, init.value, non_const,
alignas_align, scspecs);
set_c_expr_source_range (&expr, init.src_range);
expr.m_decimal = 0;
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
if (type != error_mark_node
&& expr.value != error_mark_node
&& type_expr)
{
if (TREE_CODE (expr.value) == C_MAYBE_CONST_EXPR)
{
gcc_assert (C_MAYBE_CONST_EXPR_PRE (expr.value) == NULL_TREE);
C_MAYBE_CONST_EXPR_PRE (expr.value) = type_expr;
}
else
{
gcc_assert (!non_const);
expr.value = build2 (C_MAYBE_CONST_EXPR, type,
type_expr, expr.value);
}
}
return c_parser_postfix_expression_after_primary (parser, start_loc, expr);
}
/* Callback function for sizeof_pointer_memaccess_warning to compare
types. */
static bool
sizeof_ptr_memacc_comptypes (tree type1, tree type2)
{
return comptypes (type1, type2) == 1;
}
/* Warn for patterns where abs-like function appears to be used incorrectly,
gracefully ignore any non-abs-like function. The warning location should
be LOC. FNDECL is the declaration of called function, it must be a
BUILT_IN_NORMAL function. ARG is the first and only argument of the
call. */
static void
warn_for_abs (location_t loc, tree fndecl, tree arg)
{
/* Avoid warning in unreachable subexpressions. */
if (c_inhibit_evaluation_warnings)
return;
tree atype = TREE_TYPE (arg);
/* Casts from pointers (and thus arrays and fndecls) will generate
-Wint-conversion warnings. Most other wrong types hopefully lead to type
mismatch errors. TODO: Think about what to do with FIXED_POINT_TYPE_P
types and possibly other exotic types. */
if (!INTEGRAL_TYPE_P (atype)
&& !SCALAR_FLOAT_TYPE_P (atype)
&& TREE_CODE (atype) != COMPLEX_TYPE)
return;
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
switch (fcode)
{
case BUILT_IN_ABS:
case BUILT_IN_LABS:
case BUILT_IN_LLABS:
case BUILT_IN_IMAXABS:
if (!INTEGRAL_TYPE_P (atype))
{
if (SCALAR_FLOAT_TYPE_P (atype))
warning_at (loc, OPT_Wabsolute_value,
"using integer absolute value function %qD when "
"argument is of floating-point type %qT",
fndecl, atype);
else if (TREE_CODE (atype) == COMPLEX_TYPE)
warning_at (loc, OPT_Wabsolute_value,
"using integer absolute value function %qD when "
"argument is of complex type %qT", fndecl, atype);
else
gcc_unreachable ();
return;
}
if (TYPE_UNSIGNED (atype))
warning_at (loc, OPT_Wabsolute_value,
"taking the absolute value of unsigned type %qT "
"has no effect", atype);
break;
CASE_FLT_FN (BUILT_IN_FABS):
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FABS):
if (!SCALAR_FLOAT_TYPE_P (atype)
|| DECIMAL_FLOAT_MODE_P (TYPE_MODE (atype)))
{
if (INTEGRAL_TYPE_P (atype))
warning_at (loc, OPT_Wabsolute_value,
"using floating-point absolute value function %qD "
"when argument is of integer type %qT", fndecl, atype);
else if (DECIMAL_FLOAT_TYPE_P (atype))
warning_at (loc, OPT_Wabsolute_value,
"using floating-point absolute value function %qD "
"when argument is of decimal floating-point type %qT",
fndecl, atype);
else if (TREE_CODE (atype) == COMPLEX_TYPE)
warning_at (loc, OPT_Wabsolute_value,
"using floating-point absolute value function %qD when "
"argument is of complex type %qT", fndecl, atype);
else
gcc_unreachable ();
return;
}
break;
CASE_FLT_FN (BUILT_IN_CABS):
if (TREE_CODE (atype) != COMPLEX_TYPE)
{
if (INTEGRAL_TYPE_P (atype))
warning_at (loc, OPT_Wabsolute_value,
"using complex absolute value function %qD when "
"argument is of integer type %qT", fndecl, atype);
else if (SCALAR_FLOAT_TYPE_P (atype))
warning_at (loc, OPT_Wabsolute_value,
"using complex absolute value function %qD when "
"argument is of floating-point type %qT",
fndecl, atype);
else
gcc_unreachable ();
return;
}
break;
case BUILT_IN_FABSD32:
case BUILT_IN_FABSD64:
case BUILT_IN_FABSD128:
case BUILT_IN_FABSD64X:
if (!DECIMAL_FLOAT_TYPE_P (atype))
{
if (INTEGRAL_TYPE_P (atype))
warning_at (loc, OPT_Wabsolute_value,
"using decimal floating-point absolute value "
"function %qD when argument is of integer type %qT",
fndecl, atype);
else if (SCALAR_FLOAT_TYPE_P (atype))
warning_at (loc, OPT_Wabsolute_value,
"using decimal floating-point absolute value "
"function %qD when argument is of floating-point "
"type %qT", fndecl, atype);
else if (TREE_CODE (atype) == COMPLEX_TYPE)
warning_at (loc, OPT_Wabsolute_value,
"using decimal floating-point absolute value "
"function %qD when argument is of complex type %qT",
fndecl, atype);
else
gcc_unreachable ();
return;
}
break;
default:
return;
}
if (!TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
return;
tree ftype = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
if (TREE_CODE (atype) == COMPLEX_TYPE)
{
gcc_assert (TREE_CODE (ftype) == COMPLEX_TYPE);
atype = TREE_TYPE (atype);
ftype = TREE_TYPE (ftype);
}
if (TYPE_PRECISION (ftype) < TYPE_PRECISION (atype))
warning_at (loc, OPT_Wabsolute_value,
"absolute value function %qD given an argument of type %qT "
"but has parameter of type %qT which may cause truncation "
"of value", fndecl, atype, ftype);
}
/* Parse a postfix expression after the initial primary or compound
literal; that is, parse a series of postfix operators.
EXPR_LOC is the location of the primary expression. */
static struct c_expr
c_parser_postfix_expression_after_primary (c_parser *parser,
location_t expr_loc,
struct c_expr expr)
{
struct c_expr orig_expr;
tree ident, idx, len;
location_t sizeof_arg_loc[6], comp_loc;
tree sizeof_arg[6];
unsigned int literal_zero_mask;
unsigned int i;
vec *exprlist;
vec *origtypes = NULL;
vec arg_loc = vNULL;
location_t start;
location_t finish;
while (true)
{
location_t op_loc = c_parser_peek_token (parser)->location;
switch (c_parser_peek_token (parser)->type)
{
case CPP_OPEN_SQUARE:
/* Array reference. */
c_parser_consume_token (parser);
idx = len = NULL_TREE;
if (!c_omp_array_section_p
|| c_parser_next_token_is_not (parser, CPP_COLON))
idx = c_parser_expression (parser).value;
if (c_omp_array_section_p
&& c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_CLOSE_SQUARE))
len = c_parser_expression (parser).value;
expr.value = build_omp_array_section (op_loc, expr.value, idx,
len);
}
else
expr.value = build_array_ref (op_loc, expr.value, idx);
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
start = expr.get_start ();
finish = parser->tokens_buf[0].location;
set_c_expr_source_range (&expr, start, finish);
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
expr.m_decimal = 0;
break;
case CPP_OPEN_PAREN:
/* Function call. */
{
matching_parens parens;
parens.consume_open (parser);
for (i = 0; i < 6; i++)
{
sizeof_arg[i] = NULL_TREE;
sizeof_arg_loc[i] = UNKNOWN_LOCATION;
}
literal_zero_mask = 0;
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
exprlist = NULL;
else if (TREE_CODE (expr.value) == FUNCTION_DECL
&& fndecl_built_in_p (expr.value, BUILT_IN_CLASSIFY_TYPE)
&& c_parser_next_tokens_start_typename (parser,
cla_prefer_id))
{
/* __builtin_classify_type (type) */
c_inhibit_evaluation_warnings++;
in_alignof++;
struct c_type_name *type = c_parser_type_name (parser);
c_inhibit_evaluation_warnings--;
in_alignof--;
struct c_typespec ret;
ret.expr = NULL_TREE;
ret.spec = error_mark_node;
ret.expr_const_operands = false;
if (type != NULL)
ret.spec = groktypename (type, &ret.expr,
&ret.expr_const_operands);
parens.skip_until_found_close (parser);
expr.value = build_int_cst (integer_type_node,
type_to_class (ret.spec));
break;
}
else
exprlist = c_parser_expr_list (parser, true, false, &origtypes,
sizeof_arg_loc, sizeof_arg,
&arg_loc, &literal_zero_mask);
parens.skip_until_found_close (parser);
}
orig_expr = expr;
mark_exp_read (expr.value);
if (warn_sizeof_pointer_memaccess)
sizeof_pointer_memaccess_warning (sizeof_arg_loc,
expr.value, exprlist,
sizeof_arg,
sizeof_ptr_memacc_comptypes);
if (TREE_CODE (expr.value) == FUNCTION_DECL)
{
if (fndecl_built_in_p (expr.value, BUILT_IN_MEMSET)
&& vec_safe_length (exprlist) == 3)
{
tree arg0 = (*exprlist)[0];
tree arg2 = (*exprlist)[2];
warn_for_memset (expr_loc, arg0, arg2, literal_zero_mask);
}
if (warn_absolute_value
&& fndecl_built_in_p (expr.value, BUILT_IN_NORMAL)
&& vec_safe_length (exprlist) == 1)
warn_for_abs (expr_loc, expr.value, (*exprlist)[0]);
if (parser->omp_for_parse_state
&& parser->omp_for_parse_state->in_intervening_code
&& omp_runtime_api_call (expr.value))
{
error_at (expr_loc, "calls to the OpenMP runtime API are "
"not permitted in intervening code");
parser->omp_for_parse_state->fail = true;
}
if (warn_calloc_transposed_args)
if (tree attr = lookup_attribute ("alloc_size",
TYPE_ATTRIBUTES
(TREE_TYPE (expr.value))))
if (TREE_VALUE (attr) && TREE_CHAIN (TREE_VALUE (attr)))
warn_for_calloc (sizeof_arg_loc, expr.value, exprlist,
sizeof_arg, attr);
}
start = expr.get_start ();
finish = parser->tokens_buf[0].get_finish ();
expr.value
= c_build_function_call_vec (expr_loc, arg_loc, expr.value,
exprlist, origtypes);
set_c_expr_source_range (&expr, start, finish);
expr.m_decimal = 0;
expr.original_code = ERROR_MARK;
if (TREE_CODE (expr.value) == INTEGER_CST
&& TREE_CODE (orig_expr.value) == FUNCTION_DECL
&& fndecl_built_in_p (orig_expr.value, BUILT_IN_CONSTANT_P))
expr.original_code = C_MAYBE_CONST_EXPR;
expr.original_type = NULL;
if (exprlist)
{
release_tree_vector (exprlist);
release_tree_vector (origtypes);
}
arg_loc.release ();
break;
case CPP_DOT:
/* Structure element reference. */
c_parser_consume_token (parser);
expr = default_function_array_conversion (expr_loc, expr);
if (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *comp_tok = c_parser_peek_token (parser);
ident = comp_tok->value;
comp_loc = comp_tok->location;
}
else
{
c_parser_error (parser, "expected identifier");
expr.set_error ();
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
return expr;
}
start = expr.get_start ();
finish = c_parser_peek_token (parser)->get_finish ();
c_parser_consume_token (parser);
expr.value = build_component_ref (op_loc, expr.value, ident,
comp_loc, UNKNOWN_LOCATION);
set_c_expr_source_range (&expr, start, finish);
expr.original_code = ERROR_MARK;
if (TREE_CODE (expr.value) != COMPONENT_REF)
expr.original_type = NULL;
else
{
/* Remember the original type of a bitfield. */
tree field = TREE_OPERAND (expr.value, 1);
if (TREE_CODE (field) != FIELD_DECL)
expr.original_type = NULL;
else
expr.original_type = DECL_BIT_FIELD_TYPE (field);
}
expr.m_decimal = 0;
break;
case CPP_DEREF:
/* Structure element reference. */
c_parser_consume_token (parser);
expr = convert_lvalue_to_rvalue (expr_loc, expr, true, false);
if (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *comp_tok = c_parser_peek_token (parser);
ident = comp_tok->value;
comp_loc = comp_tok->location;
}
else
{
c_parser_error (parser, "expected identifier");
expr.set_error ();
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
return expr;
}
start = expr.get_start ();
finish = c_parser_peek_token (parser)->get_finish ();
c_parser_consume_token (parser);
expr.value = build_component_ref (op_loc,
build_indirect_ref (op_loc,
expr.value,
RO_ARROW),
ident, comp_loc,
expr.get_location ());
set_c_expr_source_range (&expr, start, finish);
expr.original_code = ERROR_MARK;
if (TREE_CODE (expr.value) != COMPONENT_REF)
expr.original_type = NULL;
else
{
/* Remember the original type of a bitfield. */
tree field = TREE_OPERAND (expr.value, 1);
if (TREE_CODE (field) != FIELD_DECL)
expr.original_type = NULL;
else
expr.original_type = DECL_BIT_FIELD_TYPE (field);
}
expr.m_decimal = 0;
break;
case CPP_PLUS_PLUS:
/* Postincrement. */
start = expr.get_start ();
finish = c_parser_peek_token (parser)->get_finish ();
c_parser_consume_token (parser);
expr = default_function_array_read_conversion (expr_loc, expr);
expr.value = build_unary_op (op_loc, POSTINCREMENT_EXPR,
expr.value, false);
set_c_expr_source_range (&expr, start, finish);
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
break;
case CPP_MINUS_MINUS:
/* Postdecrement. */
start = expr.get_start ();
finish = c_parser_peek_token (parser)->get_finish ();
c_parser_consume_token (parser);
expr = default_function_array_read_conversion (expr_loc, expr);
expr.value = build_unary_op (op_loc, POSTDECREMENT_EXPR,
expr.value, false);
set_c_expr_source_range (&expr, start, finish);
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
break;
default:
return expr;
}
}
}
/* Parse an expression (C90 6.3.17, C99 6.5.17, C11 6.5.17).
expression:
assignment-expression
expression , assignment-expression
*/
static struct c_expr
c_parser_expression (c_parser *parser)
{
location_t tloc = c_parser_peek_token (parser)->location;
struct c_expr expr;
expr = c_parser_expr_no_commas (parser, NULL);
if (c_parser_next_token_is (parser, CPP_COMMA))
expr = convert_lvalue_to_rvalue (tloc, expr, true, false);
while (c_parser_next_token_is (parser, CPP_COMMA))
{
struct c_expr next;
tree lhsval;
location_t loc = c_parser_peek_token (parser)->location;
location_t expr_loc;
c_parser_consume_token (parser);
expr_loc = c_parser_peek_token (parser)->location;
lhsval = expr.value;
while (TREE_CODE (lhsval) == COMPOUND_EXPR
|| TREE_CODE (lhsval) == NOP_EXPR)
{
if (TREE_CODE (lhsval) == COMPOUND_EXPR)
lhsval = TREE_OPERAND (lhsval, 1);
else
lhsval = TREE_OPERAND (lhsval, 0);
}
if (DECL_P (lhsval) || handled_component_p (lhsval))
mark_exp_read (lhsval);
if (c_parser_next_token_is (parser, CPP_EMBED))
{
/* Users aren't interested in milions of -Wunused-value
warnings when using #embed inside of a comma expression,
and one CPP_NUMBER plus CPP_COMMA before it and one
CPP_COMMA plus CPP_NUMBER after it is guaranteed by
the preprocessor. Thus, parse the whole CPP_EMBED just
as a single INTEGER_CST, the last byte in it. */
c_token *embed = c_parser_peek_token (parser);
tree val = embed->value;
unsigned last = RAW_DATA_LENGTH (val) - 1;
next.value = build_int_cst (TREE_TYPE (val),
RAW_DATA_UCHAR_ELT (val, last));
next.original_type = integer_type_node;
c_parser_consume_token (parser);
}
else
{
next = c_parser_expr_no_commas (parser, NULL);
next = convert_lvalue_to_rvalue (expr_loc, next, true, false);
}
expr.value = build_compound_expr (loc, expr.value, next.value);
expr.original_code = COMPOUND_EXPR;
expr.original_type = next.original_type;
expr.m_decimal = 0;
}
return expr;
}
/* Parse an expression and convert functions or arrays to pointers and
lvalues to rvalues. */
static struct c_expr
c_parser_expression_conv (c_parser *parser)
{
struct c_expr expr;
location_t loc = c_parser_peek_token (parser)->location;
expr = c_parser_expression (parser);
expr = convert_lvalue_to_rvalue (loc, expr, true, false);
return expr;
}
/* Helper function of c_parser_expr_list. Check if IDXth (0 based)
argument is a literal zero alone and if so, set it in literal_zero_mask. */
static inline void
c_parser_check_literal_zero (c_parser *parser, unsigned *literal_zero_mask,
unsigned int idx)
{
if (idx >= HOST_BITS_PER_INT)
return;
c_token *tok = c_parser_peek_token (parser);
switch (tok->type)
{
case CPP_NUMBER:
case CPP_CHAR:
case CPP_WCHAR:
case CPP_CHAR16:
case CPP_CHAR32:
case CPP_UTF8CHAR:
/* If a parameter is literal zero alone, remember it
for -Wmemset-transposed-args warning. */
if (integer_zerop (tok->value)
&& !TREE_OVERFLOW (tok->value)
&& (c_parser_peek_2nd_token (parser)->type == CPP_COMMA
|| c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_PAREN))
*literal_zero_mask |= 1U << idx;
default:
break;
}
}
/* Parse a non-empty list of expressions. If CONVERT_P, convert
functions and arrays to pointers and lvalues to rvalues. If
FOLD_P, fold the expressions. If LOCATIONS is non-NULL, save the
locations of function arguments into this vector.
nonempty-expr-list:
assignment-expression
nonempty-expr-list , assignment-expression
*/
static vec *
c_parser_expr_list (c_parser *parser, bool convert_p, bool fold_p,
vec **p_orig_types,
location_t *sizeof_arg_loc, tree *sizeof_arg,
vec *locations,
unsigned int *literal_zero_mask)
{
vec *ret;
vec *orig_types;
struct c_expr expr;
unsigned int idx = 0;
bool save_c_omp_array_section_p = c_omp_array_section_p;
c_omp_array_section_p = false;
ret = make_tree_vector ();
if (p_orig_types == NULL)
orig_types = NULL;
else
orig_types = make_tree_vector ();
if (literal_zero_mask)
c_parser_check_literal_zero (parser, literal_zero_mask, 0);
expr = c_parser_expr_no_commas (parser, NULL);
if (convert_p)
expr = convert_lvalue_to_rvalue (expr.get_location (), expr, true, true);
if (fold_p)
expr.value = c_fully_fold (expr.value, false, NULL);
ret->quick_push (expr.value);
if (orig_types)
orig_types->quick_push (expr.original_type);
if (locations)
locations->safe_push (expr.get_location ());
if (sizeof_arg != NULL
&& (expr.original_code == SIZEOF_EXPR
|| expr.original_code == PAREN_SIZEOF_EXPR))
{
sizeof_arg[0] = c_last_sizeof_arg;
sizeof_arg_loc[0] = c_last_sizeof_loc;
}
while (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_EMBED))
{
c_token *embed = c_parser_peek_token (parser);
tree value = embed->value;
expr.original_code = INTEGER_CST;
expr.original_type = integer_type_node;
expr.value = NULL_TREE;
set_c_expr_source_range (&expr, embed->get_range ());
expr.m_decimal = 0;
for (unsigned int i = 0; i < (unsigned) RAW_DATA_LENGTH (value); i++)
{
if (literal_zero_mask
&& idx + 1 < HOST_BITS_PER_INT
&& RAW_DATA_POINTER (value)[i] == 0)
*literal_zero_mask |= 1U << (idx + 1);
expr.value = build_int_cst (integer_type_node,
RAW_DATA_UCHAR_ELT (value, i));
vec_safe_push (ret, expr.value);
if (orig_types)
vec_safe_push (orig_types, expr.original_type);
if (locations)
locations->safe_push (expr.get_location ());
++idx;
}
c_parser_consume_token (parser);
continue;
}
if (literal_zero_mask)
c_parser_check_literal_zero (parser, literal_zero_mask, idx + 1);
expr = c_parser_expr_no_commas (parser, NULL);
if (convert_p)
expr = convert_lvalue_to_rvalue (expr.get_location (), expr, true,
true);
if (fold_p)
expr.value = c_fully_fold (expr.value, false, NULL);
vec_safe_push (ret, expr.value);
if (orig_types)
vec_safe_push (orig_types, expr.original_type);
if (locations)
locations->safe_push (expr.get_location ());
if (++idx < 6
&& sizeof_arg != NULL
&& (expr.original_code == SIZEOF_EXPR
|| expr.original_code == PAREN_SIZEOF_EXPR))
{
sizeof_arg[idx] = c_last_sizeof_arg;
sizeof_arg_loc[idx] = c_last_sizeof_loc;
}
}
if (orig_types)
*p_orig_types = orig_types;
c_omp_array_section_p = save_c_omp_array_section_p;
return ret;
}
/* Parse Objective-C-specific constructs. */
/* Parse an objc-class-definition.
objc-class-definition:
@interface identifier objc-superclass[opt] objc-protocol-refs[opt]
objc-class-instance-variables[opt] objc-methodprotolist @end
@implementation identifier objc-superclass[opt]
objc-class-instance-variables[opt]
@interface identifier ( identifier ) objc-protocol-refs[opt]
objc-methodprotolist @end
@interface identifier ( ) objc-protocol-refs[opt]
objc-methodprotolist @end
@implementation identifier ( identifier )
objc-superclass:
: identifier
"@interface identifier (" must start "@interface identifier (
identifier ) ...": objc-methodprotolist in the first production may
not start with a parenthesized identifier as a declarator of a data
definition with no declaration specifiers if the objc-superclass,
objc-protocol-refs and objc-class-instance-variables are omitted. */
static void
c_parser_objc_class_definition (c_parser *parser, tree attributes)
{
bool iface_p;
tree id1;
tree superclass;
if (c_parser_next_token_is_keyword (parser, RID_AT_INTERFACE))
iface_p = true;
else if (c_parser_next_token_is_keyword (parser, RID_AT_IMPLEMENTATION))
iface_p = false;
else
gcc_unreachable ();
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
return;
}
id1 = c_parser_peek_token (parser)->value;
location_t loc1 = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
/* We have a category or class extension. */
tree id2;
tree proto = NULL_TREE;
matching_parens parens;
parens.consume_open (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
if (iface_p && c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
/* We have a class extension. */
id2 = NULL_TREE;
}
else
{
c_parser_error (parser, "expected identifier or %<)%>");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return;
}
}
else
{
id2 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
parens.skip_until_found_close (parser);
if (!iface_p)
{
objc_start_category_implementation (id1, id2);
return;
}
if (c_parser_next_token_is (parser, CPP_LESS))
proto = c_parser_objc_protocol_refs (parser);
objc_start_category_interface (id1, id2, proto, attributes);
c_parser_objc_methodprotolist (parser);
c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>");
objc_finish_interface ();
return;
}
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
return;
}
superclass = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else
superclass = NULL_TREE;
if (iface_p)
{
tree proto = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_LESS))
proto = c_parser_objc_protocol_refs (parser);
objc_start_class_interface (id1, loc1, superclass, proto, attributes);
}
else
objc_start_class_implementation (id1, superclass);
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
c_parser_objc_class_instance_variables (parser);
if (iface_p)
{
objc_continue_interface ();
c_parser_objc_methodprotolist (parser);
c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>");
objc_finish_interface ();
}
else
{
objc_continue_implementation ();
return;
}
}
/* Parse objc-class-instance-variables.
objc-class-instance-variables:
{ objc-instance-variable-decl-list[opt] }
objc-instance-variable-decl-list:
objc-visibility-spec
objc-instance-variable-decl ;
;
objc-instance-variable-decl-list objc-visibility-spec
objc-instance-variable-decl-list objc-instance-variable-decl ;
objc-instance-variable-decl-list ;
objc-visibility-spec:
@private
@protected
@public
objc-instance-variable-decl:
struct-declaration
*/
static void
c_parser_objc_class_instance_variables (c_parser *parser)
{
gcc_assert (c_parser_next_token_is (parser, CPP_OPEN_BRACE));
c_parser_consume_token (parser);
while (c_parser_next_token_is_not (parser, CPP_EOF))
{
tree decls;
/* Parse any stray semicolon. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic,
"extra semicolon");
c_parser_consume_token (parser);
continue;
}
/* Stop if at the end of the instance variables. */
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
c_parser_consume_token (parser);
break;
}
/* Parse any objc-visibility-spec. */
if (c_parser_next_token_is_keyword (parser, RID_AT_PRIVATE))
{
c_parser_consume_token (parser);
objc_set_visibility (OBJC_IVAR_VIS_PRIVATE);
continue;
}
else if (c_parser_next_token_is_keyword (parser, RID_AT_PROTECTED))
{
c_parser_consume_token (parser);
objc_set_visibility (OBJC_IVAR_VIS_PROTECTED);
continue;
}
else if (c_parser_next_token_is_keyword (parser, RID_AT_PUBLIC))
{
c_parser_consume_token (parser);
objc_set_visibility (OBJC_IVAR_VIS_PUBLIC);
continue;
}
else if (c_parser_next_token_is_keyword (parser, RID_AT_PACKAGE))
{
c_parser_consume_token (parser);
objc_set_visibility (OBJC_IVAR_VIS_PACKAGE);
continue;
}
else if (c_parser_next_token_is (parser, CPP_PRAGMA))
{
c_parser_pragma (parser, pragma_external, NULL, NULL_TREE);
continue;
}
/* Parse some comma-separated declarations. */
decls = c_parser_struct_declaration (parser, NULL);
if (decls == NULL)
{
/* There is a syntax error. We want to skip the offending
tokens up to the next ';' (included) or '}'
(excluded). */
/* First, skip manually a ')' or ']'. This is because they
reduce the nesting level, so c_parser_skip_until_found()
wouldn't be able to skip past them. */
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_CLOSE_PAREN || token->type == CPP_CLOSE_SQUARE)
c_parser_consume_token (parser);
/* Then, do the standard skipping. */
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
/* We hopefully recovered. Start normal parsing again. */
parser->error = false;
continue;
}
else
{
/* Comma-separated instance variables are chained together
in reverse order; add them one by one. */
tree ivar = nreverse (decls);
for (; ivar; ivar = DECL_CHAIN (ivar))
objc_add_instance_variable (copy_node (ivar));
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
}
/* Parse an objc-class-declaration.
objc-class-declaration:
@class identifier-list ;
*/
static void
c_parser_objc_class_declaration (c_parser *parser)
{
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_CLASS));
c_parser_consume_token (parser);
/* Any identifiers, including those declared as type names, are OK
here. */
while (true)
{
tree id;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
parser->error = false;
return;
}
id = c_parser_peek_token (parser)->value;
objc_declare_class (id);
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
/* Parse an objc-alias-declaration.
objc-alias-declaration:
@compatibility_alias identifier identifier ;
*/
static void
c_parser_objc_alias_declaration (c_parser *parser)
{
tree id1, id2;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_ALIAS));
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
return;
}
id1 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
return;
}
id2 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
objc_declare_alias (id1, id2);
}
/* Parse an objc-protocol-definition.
objc-protocol-definition:
@protocol identifier objc-protocol-refs[opt] objc-methodprotolist @end
@protocol identifier-list ;
"@protocol identifier ;" should be resolved as "@protocol
identifier-list ;": objc-methodprotolist may not start with a
semicolon in the first alternative if objc-protocol-refs are
omitted. */
static void
c_parser_objc_protocol_definition (c_parser *parser, tree attributes)
{
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_PROTOCOL));
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
return;
}
if (c_parser_peek_2nd_token (parser)->type == CPP_COMMA
|| c_parser_peek_2nd_token (parser)->type == CPP_SEMICOLON)
{
/* Any identifiers, including those declared as type names, are
OK here. */
while (true)
{
tree id;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
id = c_parser_peek_token (parser)->value;
objc_declare_protocol (id, attributes);
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
else
{
tree id = c_parser_peek_token (parser)->value;
tree proto = NULL_TREE;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_LESS))
proto = c_parser_objc_protocol_refs (parser);
parser->objc_pq_context = true;
objc_start_protocol (id, proto, attributes);
c_parser_objc_methodprotolist (parser);
c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>");
parser->objc_pq_context = false;
objc_finish_interface ();
}
}
/* Parse an objc-method-type.
objc-method-type:
+
-
Return true if it is a class method (+) and false if it is
an instance method (-).
*/
static inline bool
c_parser_objc_method_type (c_parser *parser)
{
switch (c_parser_peek_token (parser)->type)
{
case CPP_PLUS:
c_parser_consume_token (parser);
return true;
case CPP_MINUS:
c_parser_consume_token (parser);
return false;
default:
gcc_unreachable ();
}
}
/* Parse an objc-method-definition.
objc-method-definition:
objc-method-type objc-method-decl ;[opt] compound-statement
*/
static void
c_parser_objc_method_definition (c_parser *parser)
{
bool is_class_method = c_parser_objc_method_type (parser);
tree decl, attributes = NULL_TREE, expr = NULL_TREE;
parser->objc_pq_context = true;
decl = c_parser_objc_method_decl (parser, is_class_method, &attributes,
&expr);
if (decl == error_mark_node)
return; /* Bail here. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
c_parser_consume_token (parser);
pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic,
"extra semicolon in method definition specified");
}
if (!c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
c_parser_error (parser, "expected %<{%>");
return;
}
parser->objc_pq_context = false;
if (objc_start_method_definition (is_class_method, decl, attributes, expr))
{
add_stmt (c_parser_compound_statement (parser));
objc_finish_method_definition (current_function_decl);
}
else
{
/* This code is executed when we find a method definition
outside of an @implementation context (or invalid for other
reasons). Parse the method (to keep going) but do not emit
any code.
*/
c_parser_compound_statement (parser);
}
}
/* Parse an objc-methodprotolist.
objc-methodprotolist:
empty
objc-methodprotolist objc-methodproto
objc-methodprotolist declaration
objc-methodprotolist ;
@optional
@required
The declaration is a data definition, which may be missing
declaration specifiers under the same rules and diagnostics as
other data definitions outside functions, and the stray semicolon
is diagnosed the same way as a stray semicolon outside a
function. */
static void
c_parser_objc_methodprotolist (c_parser *parser)
{
while (true)
{
/* The list is terminated by @end. */
switch (c_parser_peek_token (parser)->type)
{
case CPP_SEMICOLON:
pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic,
"ISO C does not allow extra %<;%> outside of a function");
c_parser_consume_token (parser);
break;
case CPP_PLUS:
case CPP_MINUS:
c_parser_objc_methodproto (parser);
break;
case CPP_PRAGMA:
c_parser_pragma (parser, pragma_external, NULL, NULL_TREE);
break;
case CPP_EOF:
return;
default:
if (c_parser_next_token_is_keyword (parser, RID_AT_END))
return;
else if (c_parser_next_token_is_keyword (parser, RID_AT_PROPERTY))
c_parser_objc_at_property_declaration (parser);
else if (c_parser_next_token_is_keyword (parser, RID_AT_OPTIONAL))
{
objc_set_method_opt (true);
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is_keyword (parser, RID_AT_REQUIRED))
{
objc_set_method_opt (false);
c_parser_consume_token (parser);
}
else
c_parser_declaration_or_fndef (parser, false, false, true,
false, true, false);
break;
}
}
}
/* Parse an objc-methodproto.
objc-methodproto:
objc-method-type objc-method-decl ;
*/
static void
c_parser_objc_methodproto (c_parser *parser)
{
bool is_class_method = c_parser_objc_method_type (parser);
tree decl, attributes = NULL_TREE;
/* Remember protocol qualifiers in prototypes. */
parser->objc_pq_context = true;
decl = c_parser_objc_method_decl (parser, is_class_method, &attributes,
NULL);
/* Forget protocol qualifiers now. */
parser->objc_pq_context = false;
/* Do not allow the presence of attributes to hide an erroneous
method implementation in the interface section. */
if (!c_parser_next_token_is (parser, CPP_SEMICOLON))
{
c_parser_error (parser, "expected %<;%>");
return;
}
if (decl != error_mark_node)
objc_add_method_declaration (is_class_method, decl, attributes);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
/* If we are at a position that method attributes may be present, check that
there are not any parsed already (a syntax error) and then collect any
specified at the current location. Finally, if new attributes were present,
check that the next token is legal ( ';' for decls and '{' for defs). */
static bool
c_parser_objc_maybe_method_attributes (c_parser* parser, tree* attributes)
{
bool bad = false;
if (*attributes)
{
c_parser_error (parser,
"method attributes must be specified at the end only");
*attributes = NULL_TREE;
bad = true;
}
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
*attributes = c_parser_gnu_attributes (parser);
/* If there were no attributes here, just report any earlier error. */
if (*attributes == NULL_TREE || bad)
return bad;
/* If the attributes are followed by a ; or {, then just report any earlier
error. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is (parser, CPP_OPEN_BRACE))
return bad;
/* We've got attributes, but not at the end. */
c_parser_error (parser,
"expected %<;%> or %<{%> after method attribute definition");
return true;
}
/* Parse an objc-method-decl.
objc-method-decl:
( objc-type-name ) objc-selector
objc-selector
( objc-type-name ) objc-keyword-selector objc-optparmlist
objc-keyword-selector objc-optparmlist
gnu-attributes
objc-keyword-selector:
objc-keyword-decl
objc-keyword-selector objc-keyword-decl
objc-keyword-decl:
objc-selector : ( objc-type-name ) identifier
objc-selector : identifier
: ( objc-type-name ) identifier
: identifier
objc-optparmlist:
objc-optparms objc-optellipsis
objc-optparms:
empty
objc-opt-parms , parameter-declaration
objc-optellipsis:
empty
, ...
*/
static tree
c_parser_objc_method_decl (c_parser *parser, bool is_class_method,
tree *attributes, tree *expr)
{
tree type = NULL_TREE;
tree sel;
tree parms = NULL_TREE;
bool ellipsis = false;
bool attr_err = false;
*attributes = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
matching_parens parens;
parens.consume_open (parser);
type = c_parser_objc_type_name (parser);
parens.skip_until_found_close (parser);
}
sel = c_parser_objc_selector (parser);
/* If there is no selector, or a colon follows, we have an
objc-keyword-selector. If there is a selector, and a colon does
not follow, that selector ends the objc-method-decl. */
if (!sel || c_parser_next_token_is (parser, CPP_COLON))
{
tree tsel = sel;
tree list = NULL_TREE;
while (true)
{
tree atype = NULL_TREE, id, keyworddecl;
tree param_attr = NULL_TREE;
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
break;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
c_parser_consume_token (parser);
atype = c_parser_objc_type_name (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
}
/* New ObjC allows attributes on method parameters. */
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
param_attr = c_parser_gnu_attributes (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
return error_mark_node;
}
id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
keyworddecl = objc_build_keyword_decl (tsel, atype, id, param_attr);
list = chainon (list, keyworddecl);
tsel = c_parser_objc_selector (parser);
if (!tsel && c_parser_next_token_is_not (parser, CPP_COLON))
break;
}
attr_err |= c_parser_objc_maybe_method_attributes (parser, attributes) ;
/* Parse the optional parameter list. Optional Objective-C
method parameters follow the C syntax, and may include '...'
to denote a variable number of arguments. */
parms = make_node (TREE_LIST);
while (c_parser_next_token_is (parser, CPP_COMMA))
{
struct c_parm *parm;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
ellipsis = true;
c_parser_consume_token (parser);
attr_err |= c_parser_objc_maybe_method_attributes
(parser, attributes) ;
break;
}
parm = c_parser_parameter_declaration (parser, NULL_TREE, false);
if (parm == NULL)
break;
parms = chainon (parms,
build_tree_list (NULL_TREE, grokparm (parm, expr)));
}
sel = list;
}
else
attr_err |= c_parser_objc_maybe_method_attributes (parser, attributes) ;
if (sel == NULL)
{
c_parser_error (parser, "objective-c method declaration is expected");
return error_mark_node;
}
if (attr_err)
return error_mark_node;
return objc_build_method_signature (is_class_method, type, sel, parms, ellipsis);
}
/* Parse an objc-type-name.
objc-type-name:
objc-type-qualifiers[opt] type-name
objc-type-qualifiers[opt]
objc-type-qualifiers:
objc-type-qualifier
objc-type-qualifiers objc-type-qualifier
objc-type-qualifier: one of
in out inout bycopy byref oneway
*/
static tree
c_parser_objc_type_name (c_parser *parser)
{
tree quals = NULL_TREE;
struct c_type_name *type_name = NULL;
tree type = NULL_TREE;
while (true)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_KEYWORD
&& (token->keyword == RID_IN
|| token->keyword == RID_OUT
|| token->keyword == RID_INOUT
|| token->keyword == RID_BYCOPY
|| token->keyword == RID_BYREF
|| token->keyword == RID_ONEWAY))
{
quals = chainon (build_tree_list (NULL_TREE, token->value), quals);
c_parser_consume_token (parser);
}
else
break;
}
if (c_parser_next_tokens_start_typename (parser, cla_prefer_type))
type_name = c_parser_type_name (parser);
if (type_name)
type = groktypename (type_name, NULL, NULL);
/* If the type is unknown, and error has already been produced and
we need to recover from the error. In that case, use NULL_TREE
for the type, as if no type had been specified; this will use the
default type ('id') which is good for error recovery. */
if (type == error_mark_node)
type = NULL_TREE;
return build_tree_list (quals, type);
}
/* Parse objc-protocol-refs.
objc-protocol-refs:
< identifier-list >
*/
static tree
c_parser_objc_protocol_refs (c_parser *parser)
{
tree list = NULL_TREE;
gcc_assert (c_parser_next_token_is (parser, CPP_LESS));
c_parser_consume_token (parser);
/* Any identifiers, including those declared as type names, are OK
here. */
while (true)
{
tree id;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
id = c_parser_peek_token (parser)->value;
list = chainon (list, build_tree_list (NULL_TREE, id));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_require (parser, CPP_GREATER, "expected %<>%>");
return list;
}
/* Parse an objc-try-catch-finally-statement.
objc-try-catch-finally-statement:
@try compound-statement objc-catch-list[opt]
@try compound-statement objc-catch-list[opt] @finally compound-statement
objc-catch-list:
@catch ( objc-catch-parameter-declaration ) compound-statement
objc-catch-list @catch ( objc-catch-parameter-declaration ) compound-statement
objc-catch-parameter-declaration:
parameter-declaration
'...'
where '...' is to be interpreted literally, that is, it means CPP_ELLIPSIS.
PS: This function is identical to cp_parser_objc_try_catch_finally_statement
for C++. Keep them in sync. */
static void
c_parser_objc_try_catch_finally_statement (c_parser *parser)
{
location_t location;
tree stmt;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_TRY));
c_parser_consume_token (parser);
location = c_parser_peek_token (parser)->location;
objc_maybe_warn_exceptions (location);
stmt = c_parser_compound_statement (parser);
objc_begin_try_stmt (location, stmt);
while (c_parser_next_token_is_keyword (parser, RID_AT_CATCH))
{
struct c_parm *parm;
tree parameter_declaration = error_mark_node;
bool seen_open_paren = false;
c_parser_consume_token (parser);
matching_parens parens;
if (!parens.require_open (parser))
seen_open_paren = true;
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
/* We have "@catch (...)" (where the '...' are literally
what is in the code). Skip the '...'.
parameter_declaration is set to NULL_TREE, and
objc_being_catch_clauses() knows that that means
'...'. */
c_parser_consume_token (parser);
parameter_declaration = NULL_TREE;
}
else
{
/* We have "@catch (NSException *exception)" or something
like that. Parse the parameter declaration. */
parm = c_parser_parameter_declaration (parser, NULL_TREE, false);
if (parm == NULL)
parameter_declaration = error_mark_node;
else
parameter_declaration = grokparm (parm, NULL);
}
if (seen_open_paren)
parens.require_close (parser);
else
{
/* If there was no open parenthesis, we are recovering from
an error, and we are trying to figure out what mistake
the user has made. */
/* If there is an immediate closing parenthesis, the user
probably forgot the opening one (ie, they typed "@catch
NSException *e)". Parse the closing parenthesis and keep
going. */
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
/* If these is no immediate closing parenthesis, the user
probably doesn't know that parenthesis are required at
all (ie, they typed "@catch NSException *e"). So, just
forget about the closing parenthesis and keep going. */
}
objc_begin_catch_clause (parameter_declaration);
if (c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>"))
c_parser_compound_statement_nostart (parser);
objc_finish_catch_clause ();
}
if (c_parser_next_token_is_keyword (parser, RID_AT_FINALLY))
{
c_parser_consume_token (parser);
location = c_parser_peek_token (parser)->location;
stmt = c_parser_compound_statement (parser);
objc_build_finally_clause (location, stmt);
}
objc_finish_try_stmt ();
}
/* Parse an objc-synchronized-statement.
objc-synchronized-statement:
@synchronized ( expression ) compound-statement
*/
static void
c_parser_objc_synchronized_statement (c_parser *parser)
{
location_t loc;
tree expr, stmt;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_SYNCHRONIZED));
c_parser_consume_token (parser);
loc = c_parser_peek_token (parser)->location;
objc_maybe_warn_exceptions (loc);
matching_parens parens;
if (parens.require_open (parser))
{
struct c_expr ce = c_parser_expression (parser);
ce = convert_lvalue_to_rvalue (loc, ce, false, false);
expr = ce.value;
expr = c_fully_fold (expr, false, NULL);
parens.skip_until_found_close (parser);
}
else
expr = error_mark_node;
stmt = c_parser_compound_statement (parser);
objc_build_synchronized (loc, expr, stmt);
}
/* Parse an objc-selector; return NULL_TREE without an error if the
next token is not an objc-selector.
objc-selector:
identifier
one of
enum struct union if else while do for switch case default
break continue return goto asm sizeof typeof typeof_unqual __alignof
unsigned long const short volatile signed restrict _Complex
in out inout bycopy byref oneway int char float double void _Bool
_Atomic
??? Why this selection of keywords but not, for example, storage
class specifiers? */
static tree
c_parser_objc_selector (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
tree value = token->value;
if (token->type == CPP_NAME)
{
c_parser_consume_token (parser);
return value;
}
if (token->type != CPP_KEYWORD)
return NULL_TREE;
switch (token->keyword)
{
case RID_ENUM:
case RID_STRUCT:
case RID_UNION:
case RID_IF:
case RID_ELSE:
case RID_WHILE:
case RID_DO:
case RID_FOR:
case RID_SWITCH:
case RID_CASE:
case RID_DEFAULT:
case RID_BREAK:
case RID_CONTINUE:
case RID_RETURN:
case RID_GOTO:
case RID_ASM:
case RID_SIZEOF:
case RID_TYPEOF:
case RID_TYPEOF_UNQUAL:
case RID_ALIGNOF:
case RID_UNSIGNED:
case RID_LONG:
case RID_CONST:
case RID_SHORT:
case RID_VOLATILE:
case RID_SIGNED:
case RID_RESTRICT:
case RID_COMPLEX:
case RID_IN:
case RID_OUT:
case RID_INOUT:
case RID_BYCOPY:
case RID_BYREF:
case RID_ONEWAY:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
CASE_RID_FLOATN_NX:
case RID_VOID:
case RID_BOOL:
case RID_ATOMIC:
case RID_AUTO_TYPE:
case RID_INT_N_0:
case RID_INT_N_1:
case RID_INT_N_2:
case RID_INT_N_3:
c_parser_consume_token (parser);
return value;
default:
return NULL_TREE;
}
}
/* Parse an objc-selector-arg.
objc-selector-arg:
objc-selector
objc-keywordname-list
objc-keywordname-list:
objc-keywordname
objc-keywordname-list objc-keywordname
objc-keywordname:
objc-selector :
:
*/
static tree
c_parser_objc_selector_arg (c_parser *parser)
{
tree sel = c_parser_objc_selector (parser);
tree list = NULL_TREE;
if (sel
&& c_parser_next_token_is_not (parser, CPP_COLON)
&& c_parser_next_token_is_not (parser, CPP_SCOPE))
return sel;
while (true)
{
if (c_parser_next_token_is (parser, CPP_SCOPE))
{
c_parser_consume_token (parser);
list = chainon (list, build_tree_list (sel, NULL_TREE));
list = chainon (list, build_tree_list (NULL_TREE, NULL_TREE));
}
else
{
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
return list;
list = chainon (list, build_tree_list (sel, NULL_TREE));
}
sel = c_parser_objc_selector (parser);
if (!sel
&& c_parser_next_token_is_not (parser, CPP_COLON)
&& c_parser_next_token_is_not (parser, CPP_SCOPE))
break;
}
return list;
}
/* Parse an objc-receiver.
objc-receiver:
expression
class-name
type-name
*/
static tree
c_parser_objc_receiver (c_parser *parser)
{
location_t loc = c_parser_peek_token (parser)->location;
if (c_parser_peek_token (parser)->type == CPP_NAME
&& (c_parser_peek_token (parser)->id_kind == C_ID_TYPENAME
|| c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME))
{
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
return objc_get_class_reference (id);
}
struct c_expr ce = c_parser_expression (parser);
ce = convert_lvalue_to_rvalue (loc, ce, false, false);
return c_fully_fold (ce.value, false, NULL);
}
/* Parse objc-message-args.
objc-message-args:
objc-selector
objc-keywordarg-list
objc-keywordarg-list:
objc-keywordarg
objc-keywordarg-list objc-keywordarg
objc-keywordarg:
objc-selector : objc-keywordexpr
: objc-keywordexpr
*/
static tree
c_parser_objc_message_args (c_parser *parser)
{
tree sel = c_parser_objc_selector (parser);
tree list = NULL_TREE;
if (sel && c_parser_next_token_is_not (parser, CPP_COLON))
return sel;
while (true)
{
tree keywordexpr;
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
return error_mark_node;
keywordexpr = c_parser_objc_keywordexpr (parser);
list = chainon (list, build_tree_list (sel, keywordexpr));
sel = c_parser_objc_selector (parser);
if (!sel && c_parser_next_token_is_not (parser, CPP_COLON))
break;
}
return list;
}
/* Parse an objc-keywordexpr.
objc-keywordexpr:
nonempty-expr-list
*/
static tree
c_parser_objc_keywordexpr (c_parser *parser)
{
tree ret;
vec *expr_list = c_parser_expr_list (parser, true, true,
NULL, NULL, NULL, NULL);
if (vec_safe_length (expr_list) == 1)
{
/* Just return the expression, remove a level of
indirection. */
ret = (*expr_list)[0];
}
else
{
/* We have a comma expression, we will collapse later. */
ret = build_tree_list_vec (expr_list);
}
release_tree_vector (expr_list);
return ret;
}
/* A check, needed in several places, that ObjC interface, implementation or
method definitions are not prefixed by incorrect items. */
static bool
c_parser_objc_diagnose_bad_element_prefix (c_parser *parser,
struct c_declspecs *specs)
{
if (!specs->declspecs_seen_p || specs->non_sc_seen_p
|| specs->typespec_kind != ctsk_none)
{
c_parser_error (parser,
"no type or storage class may be specified here,");
c_parser_skip_to_end_of_block_or_statement (parser);
return true;
}
return false;
}
/* Parse an Objective-C @property declaration. The syntax is:
objc-property-declaration:
'@property' objc-property-attributes[opt] struct-declaration ;
objc-property-attributes:
'(' objc-property-attribute-list ')'
objc-property-attribute-list:
objc-property-attribute
objc-property-attribute-list, objc-property-attribute
objc-property-attribute
'getter' = identifier
'setter' = identifier
'readonly'
'readwrite'
'assign'
'retain'
'copy'
'nonatomic'
For example:
@property NSString *name;
@property (readonly) id object;
@property (retain, nonatomic, getter=getTheName) id name;
@property int a, b, c;
PS: This function is identical to cp_parser_objc_at_propery_declaration
for C++. Keep them in sync. */
static void
c_parser_objc_at_property_declaration (c_parser *parser)
{
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_PROPERTY));
location_t loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser); /* Eat '@property'. */
/* Parse the optional attribute list.
A list of parsed, but not verified, attributes. */
vec prop_attr_list = vNULL;
bool syntax_error = false;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
matching_parens parens;
location_t attr_start = c_parser_peek_token (parser)->location;
/* Eat the '(' */
parens.consume_open (parser);
/* Property attribute keywords are valid now. */
parser->objc_property_attr_context = true;
/* Allow @property (), with a warning. */
location_t attr_end = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
location_t attr_comb = make_location (attr_end, attr_start, attr_end);
warning_at (attr_comb, OPT_Wattributes,
"empty property attribute list");
}
else
while (true)
{
c_token *token = c_parser_peek_token (parser);
attr_start = token->location;
attr_end = get_finish (token->location);
location_t attr_comb = make_location (attr_start, attr_start,
attr_end);
if (token->type == CPP_CLOSE_PAREN || token->type == CPP_COMMA)
{
warning_at (attr_comb, OPT_Wattributes,
"missing property attribute");
if (token->type == CPP_CLOSE_PAREN)
break;
c_parser_consume_token (parser);
continue;
}
tree attr_name = NULL_TREE;
enum rid keyword = RID_MAX; /* Not a valid property attribute. */
bool add_at = false;
if (token->type == CPP_KEYWORD)
{
keyword = token->keyword;
if (OBJC_IS_AT_KEYWORD (keyword))
{
/* For '@' keywords the token value has the keyword,
prepend the '@' for diagnostics. */
attr_name = token->value;
add_at = true;
}
else
attr_name = ridpointers[(int)keyword];
}
else if (token->type == CPP_NAME)
attr_name = token->value;
c_parser_consume_token (parser);
enum objc_property_attribute_kind prop_kind
= objc_prop_attr_kind_for_rid (keyword);
property_attribute_info *prop
= new property_attribute_info (attr_name, attr_comb, prop_kind);
prop_attr_list.safe_push (prop);
tree meth_name;
switch (prop->prop_kind)
{
default: break;
case OBJC_PROPERTY_ATTR_UNKNOWN:
if (attr_name)
error_at (attr_comb, "unknown property attribute %<%s%s%>",
add_at ? "@" : "", IDENTIFIER_POINTER (attr_name));
else
error_at (attr_comb, "unknown property attribute");
prop->parse_error = syntax_error = true;
break;
case OBJC_PROPERTY_ATTR_GETTER:
case OBJC_PROPERTY_ATTR_SETTER:
if (c_parser_next_token_is_not (parser, CPP_EQ))
{
attr_comb = make_location (attr_end, attr_start, attr_end);
error_at (attr_comb, "expected %<=%> after Objective-C %qE",
attr_name);
prop->parse_error = syntax_error = true;
break;
}
token = c_parser_peek_token (parser);
attr_end = token->location;
c_parser_consume_token (parser); /* eat the = */
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
attr_comb = make_location (attr_end, attr_start, attr_end);
error_at (attr_comb, "expected %qE selector name",
attr_name);
prop->parse_error = syntax_error = true;
break;
}
/* Get the end of the method name, and consume the name. */
token = c_parser_peek_token (parser);
attr_end = get_finish (token->location);
meth_name = token->value;
c_parser_consume_token (parser);
if (prop->prop_kind == OBJC_PROPERTY_ATTR_SETTER)
{
if (c_parser_next_token_is_not (parser, CPP_COLON))
{
attr_comb = make_location (attr_end, attr_start,
attr_end);
error_at (attr_comb, "setter method names must"
" terminate with %<:%>");
prop->parse_error = syntax_error = true;
}
else
{
attr_end = get_finish (c_parser_peek_token
(parser)->location);
c_parser_consume_token (parser);
}
attr_comb = make_location (attr_start, attr_start,
attr_end);
}
else
attr_comb = make_location (attr_start, attr_start,
attr_end);
prop->ident = meth_name;
/* Updated location including all that was successfully
parsed. */
prop->prop_loc = attr_comb;
break;
}
/* If we see a comma here, then keep going - even if we already
saw a syntax error. For simple mistakes e.g. (asign, getter=x)
this makes a more useful output and avoid spurious warnings about
missing attributes that are, in fact, specified after the one with
the syntax error. */
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
parser->objc_property_attr_context = false;
if (syntax_error && c_parser_next_token_is_not (parser, CPP_CLOSE_PAREN))
/* We don't really want to chew the whole of the file looking for a
matching closing parenthesis, so we will try to read the decl and
let the error handling for that close out the statement. */
;
else
syntax_error = false, parens.skip_until_found_close (parser);
}
/* 'properties' is the list of properties that we read. Usually a
single one, but maybe more (eg, in "@property int a, b, c;" there
are three). */
tree properties = c_parser_struct_declaration (parser, NULL);
if (properties == error_mark_node)
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
else
{
if (properties == NULL_TREE)
c_parser_error (parser, "expected identifier");
else
{
/* Comma-separated properties are chained together in reverse order;
add them one by one. */
properties = nreverse (properties);
for (; properties; properties = TREE_CHAIN (properties))
objc_add_property_declaration (loc, copy_node (properties),
prop_attr_list);
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
while (!prop_attr_list.is_empty())
delete prop_attr_list.pop ();
prop_attr_list.release ();
parser->error = false;
}
/* Parse an Objective-C @synthesize declaration. The syntax is:
objc-synthesize-declaration:
@synthesize objc-synthesize-identifier-list ;
objc-synthesize-identifier-list:
objc-synthesize-identifier
objc-synthesize-identifier-list, objc-synthesize-identifier
objc-synthesize-identifier
identifier
identifier = identifier
For example:
@synthesize MyProperty;
@synthesize OneProperty, AnotherProperty=MyIvar, YetAnotherProperty;
PS: This function is identical to cp_parser_objc_at_synthesize_declaration
for C++. Keep them in sync.
*/
static void
c_parser_objc_at_synthesize_declaration (c_parser *parser)
{
tree list = NULL_TREE;
location_t loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_SYNTHESIZE));
loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
while (true)
{
tree property, ivar;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
/* Once we find the semicolon, we can resume normal parsing.
We have to reset parser->error manually because
c_parser_skip_until_found() won't reset it for us if the
next token is precisely a semicolon. */
parser->error = false;
return;
}
property = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_EQ))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
parser->error = false;
return;
}
ivar = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else
ivar = NULL_TREE;
list = chainon (list, build_tree_list (ivar, property));
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
objc_add_synthesize_declaration (loc, list);
}
/* Parse an Objective-C @dynamic declaration. The syntax is:
objc-dynamic-declaration:
@dynamic identifier-list ;
For example:
@dynamic MyProperty;
@dynamic MyProperty, AnotherProperty;
PS: This function is identical to cp_parser_objc_at_dynamic_declaration
for C++. Keep them in sync.
*/
static void
c_parser_objc_at_dynamic_declaration (c_parser *parser)
{
tree list = NULL_TREE;
location_t loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_DYNAMIC));
loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
while (true)
{
tree property;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
parser->error = false;
return;
}
property = c_parser_peek_token (parser)->value;
list = chainon (list, build_tree_list (NULL_TREE, property));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
objc_add_dynamic_declaration (loc, list);
}
/* Parse a pragma GCC ivdep. */
static bool
c_parse_pragma_ivdep (c_parser *parser)
{
c_parser_consume_pragma (parser);
c_parser_skip_to_pragma_eol (parser);
return true;
}
/* Parse a pragma GCC novector. */
static bool
c_parse_pragma_novector (c_parser *parser)
{
c_parser_consume_pragma (parser);
c_parser_skip_to_pragma_eol (parser);
return true;
}
/* Parse a pragma GCC unroll. */
static unsigned short
c_parser_pragma_unroll (c_parser *parser)
{
unsigned short unroll;
c_parser_consume_pragma (parser);
location_t location = c_parser_peek_token (parser)->location;
tree expr = c_parser_expr_no_commas (parser, NULL).value;
mark_exp_read (expr);
expr = c_fully_fold (expr, false, NULL);
HOST_WIDE_INT lunroll = 0;
if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
|| TREE_CODE (expr) != INTEGER_CST
|| (lunroll = tree_to_shwi (expr)) < 0
|| lunroll >= USHRT_MAX)
{
error_at (location, "%<#pragma GCC unroll%> requires an"
" assignment-expression that evaluates to a non-negative"
" integral constant less than %u", USHRT_MAX);
unroll = 0;
}
else
{
unroll = (unsigned short)lunroll;
if (unroll == 0)
unroll = 1;
}
c_parser_skip_to_pragma_eol (parser);
return unroll;
}
/* Handle pragmas. Some OpenMP pragmas are associated with, and therefore
should be considered, statements. ALLOW_STMT is true if we're within
the context of a function and such pragmas are to be allowed. Returns
true if we actually parsed such a pragma. BEFORE_LABELS is last statement
before possible labels, see get_before_labels description for details. */
static bool
c_parser_pragma (c_parser *parser, enum pragma_context context, bool *if_p,
tree before_labels)
{
unsigned int id;
const char *construct = NULL;
input_location = c_parser_peek_token (parser)->location;
id = c_parser_peek_token (parser)->pragma_kind;
gcc_assert (id != PRAGMA_NONE);
if (parser->omp_for_parse_state
&& parser->omp_for_parse_state->in_intervening_code
&& id >= PRAGMA_OMP__START_
&& id <= PRAGMA_OMP__LAST_)
{
error_at (input_location,
"intervening code must not contain OpenMP directives");
parser->omp_for_parse_state->fail = true;
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
}
switch (id)
{
case PRAGMA_OACC_DECLARE:
c_parser_oacc_declare (parser);
return false;
case PRAGMA_OACC_ENTER_DATA:
if (context != pragma_compound)
{
construct = "acc enter data";
in_compound:
if (context == pragma_stmt)
{
error_at (c_parser_peek_token (parser)->location,
"%<#pragma %s%> may only be used in compound "
"statements", construct);
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return true;
}
goto bad_stmt;
}
c_parser_oacc_enter_exit_data (parser, true);
return false;
case PRAGMA_OACC_EXIT_DATA:
if (context != pragma_compound)
{
construct = "acc exit data";
goto in_compound;
}
c_parser_oacc_enter_exit_data (parser, false);
return false;
case PRAGMA_OACC_ROUTINE:
if (context != pragma_external)
{
error_at (c_parser_peek_token (parser)->location,
"%<#pragma acc routine%> must be at file scope");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
}
c_parser_oacc_routine (parser, context);
return false;
case PRAGMA_OACC_UPDATE:
if (context != pragma_compound)
{
construct = "acc update";
goto in_compound;
}
c_parser_oacc_update (parser);
return false;
case PRAGMA_OMP_BARRIER:
if (context != pragma_compound)
{
construct = "omp barrier";
goto in_compound;
}
c_parser_omp_barrier (parser);
return false;
case PRAGMA_OMP_DEPOBJ:
if (context != pragma_compound)
{
construct = "omp depobj";
goto in_compound;
}
c_parser_omp_depobj (parser);
return false;
case PRAGMA_OMP_FLUSH:
if (context != pragma_compound)
{
construct = "omp flush";
goto in_compound;
}
c_parser_omp_flush (parser);
return false;
case PRAGMA_OMP_INTEROP:
if (context != pragma_compound)
{
construct = "omp interop";
goto in_compound;
}
c_parser_omp_interop (parser);
return false;
case PRAGMA_OMP_TASKWAIT:
if (context != pragma_compound)
{
construct = "omp taskwait";
goto in_compound;
}
c_parser_omp_taskwait (parser);
return false;
case PRAGMA_OMP_TASKYIELD:
if (context != pragma_compound)
{
construct = "omp taskyield";
goto in_compound;
}
c_parser_omp_taskyield (parser);
return false;
case PRAGMA_OMP_CANCEL:
if (context != pragma_compound)
{
construct = "omp cancel";
goto in_compound;
}
c_parser_omp_cancel (parser);
return false;
case PRAGMA_OMP_CANCELLATION_POINT:
return c_parser_omp_cancellation_point (parser, context);
case PRAGMA_OMP_THREADPRIVATE:
c_parser_omp_threadprivate (parser);
return false;
case PRAGMA_OMP_TARGET:
return c_parser_omp_target (parser, context, if_p);
case PRAGMA_OMP_BEGIN:
c_parser_omp_begin (parser);
return false;
case PRAGMA_OMP_END:
c_parser_omp_end (parser);
return false;
case PRAGMA_OMP_SCAN:
error_at (c_parser_peek_token (parser)->location,
"%<#pragma omp scan%> may only be used in "
"a loop construct with % % clause");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
case PRAGMA_OMP_SECTION:
error_at (c_parser_peek_token (parser)->location,
"%<#pragma omp section%> may only be used in "
"%<#pragma omp sections%> construct");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
case PRAGMA_OMP_DECLARE:
return c_parser_omp_declare (parser, context);
case PRAGMA_OMP_REQUIRES:
if (context != pragma_external)
{
error_at (c_parser_peek_token (parser)->location,
"%<#pragma %s%> may only be used at file scope",
"omp requires");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
}
c_parser_omp_requires (parser);
return false;
case PRAGMA_OMP_ALLOCATE:
c_parser_omp_allocate (parser);
return false;
case PRAGMA_OMP_ASSUMES:
if (context != pragma_external)
{
error_at (c_parser_peek_token (parser)->location,
"%<#pragma %s%> may only be used at file scope",
"omp assumes");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
}
c_parser_omp_assumes (parser);
return false;
case PRAGMA_OMP_NOTHING:
c_parser_omp_nothing (parser);
return false;
case PRAGMA_OMP_ERROR:
return c_parser_omp_error (parser, context);
case PRAGMA_OMP_ORDERED:
return c_parser_omp_ordered (parser, context, if_p);
case PRAGMA_NOVECTOR:
case PRAGMA_UNROLL:
case PRAGMA_IVDEP:
{
bool novector = false;
unsigned short unroll = 0;
bool ivdep = false;
switch (id)
{
case PRAGMA_NOVECTOR:
novector = c_parse_pragma_novector (parser);
break;
case PRAGMA_UNROLL:
unroll = c_parser_pragma_unroll (parser);
break;
case PRAGMA_IVDEP:
ivdep = c_parse_pragma_ivdep (parser);
break;
default:
gcc_unreachable ();
}
c_token *tok = c_parser_peek_token (parser);
bool has_more = tok->type == CPP_PRAGMA;
while (has_more)
{
switch (tok->pragma_kind)
{
case PRAGMA_IVDEP:
ivdep = c_parse_pragma_ivdep (parser);
break;
case PRAGMA_UNROLL:
unroll = c_parser_pragma_unroll (parser);
break;
case PRAGMA_NOVECTOR:
novector = c_parse_pragma_novector (parser);
break;
default:
has_more = false;
break;
}
tok = c_parser_peek_token (parser);
has_more = has_more && tok->type == CPP_PRAGMA;
}
if (!c_parser_next_token_is_keyword (parser, RID_FOR)
&& !c_parser_next_token_is_keyword (parser, RID_WHILE)
&& !c_parser_next_token_is_keyword (parser, RID_DO))
{
c_parser_error (parser, "for, while or do statement expected");
return false;
}
if (c_parser_next_token_is_keyword (parser, RID_FOR))
c_parser_for_statement (parser, ivdep, unroll, novector, if_p,
before_labels);
else if (c_parser_next_token_is_keyword (parser, RID_WHILE))
c_parser_while_statement (parser, ivdep, unroll, novector, if_p,
before_labels);
else
c_parser_do_statement (parser, ivdep, unroll, novector,
before_labels);
}
return true;
case PRAGMA_GCC_PCH_PREPROCESS:
c_parser_error (parser, "%<#pragma GCC pch_preprocess%> must be first");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
case PRAGMA_OACC_WAIT:
if (context != pragma_compound)
{
construct = "acc wait";
goto in_compound;
}
/* FALL THROUGH. */
default:
if (id < PRAGMA_FIRST_EXTERNAL)
{
if (context != pragma_stmt && context != pragma_compound)
{
bad_stmt:
c_parser_error (parser, "expected declaration specifiers");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
}
c_parser_omp_construct (parser, if_p);
return true;
}
break;
}
c_parser_consume_pragma (parser);
c_invoke_pragma_handler (id);
/* Skip to EOL, but suppress any error message. Those will have been
generated by the handler routine through calling error, as opposed
to calling c_parser_error. */
parser->error = true;
c_parser_skip_to_pragma_eol (parser);
return false;
}
/* The interface the pragma parsers have to the lexer. */
enum cpp_ttype
pragma_lex (tree *value, location_t *loc)
{
c_token *tok = c_parser_peek_token (the_parser);
enum cpp_ttype ret = tok->type;
*value = tok->value;
if (loc)
*loc = tok->location;
if (ret == CPP_PRAGMA_EOL || ret == CPP_EOF)
ret = CPP_EOF;
else if (ret == CPP_STRING)
*value = c_parser_string_literal (the_parser, false, false).value;
else
{
if (ret == CPP_KEYWORD)
ret = CPP_NAME;
c_parser_consume_token (the_parser);
}
return ret;
}
void
pragma_lex_discard_to_eol ()
{
cpp_ttype type;
do
{
type = c_parser_peek_token (the_parser)->type;
gcc_assert (type != CPP_EOF);
c_parser_consume_token (the_parser);
} while (type != CPP_PRAGMA_EOL);
}
static void
c_parser_pragma_pch_preprocess (c_parser *parser)
{
tree name = NULL;
parser->lex_joined_string = true;
c_parser_consume_pragma (parser);
if (c_parser_next_token_is (parser, CPP_STRING))
{
name = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else
c_parser_error (parser, "expected string literal");
c_parser_skip_to_pragma_eol (parser);
parser->lex_joined_string = false;
if (name)
c_common_pch_pragma (parse_in, TREE_STRING_POINTER (name));
}
/* OpenACC and OpenMP parsing routines. */
/* Returns name of the next clause.
If the clause is not recognized PRAGMA_OMP_CLAUSE_NONE is returned and
the token is not consumed. Otherwise appropriate pragma_omp_clause is
returned and the token is consumed. */
static pragma_omp_clause
c_parser_omp_clause_name (c_parser *parser)
{
pragma_omp_clause result = PRAGMA_OMP_CLAUSE_NONE;
if (c_parser_next_token_is_keyword (parser, RID_AUTO))
result = PRAGMA_OACC_CLAUSE_AUTO;
else if (c_parser_next_token_is_keyword (parser, RID_IF))
result = PRAGMA_OMP_CLAUSE_IF;
else if (c_parser_next_token_is_keyword (parser, RID_DEFAULT))
result = PRAGMA_OMP_CLAUSE_DEFAULT;
else if (c_parser_next_token_is_keyword (parser, RID_FOR))
result = PRAGMA_OMP_CLAUSE_FOR;
else if (c_parser_next_token_is (parser, CPP_NAME))
{
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
switch (p[0])
{
case 'a':
if (!strcmp ("affinity", p))
result = PRAGMA_OMP_CLAUSE_AFFINITY;
else if (!strcmp ("aligned", p))
result = PRAGMA_OMP_CLAUSE_ALIGNED;
else if (!strcmp ("allocate", p))
result = PRAGMA_OMP_CLAUSE_ALLOCATE;
else if (!strcmp ("async", p))
result = PRAGMA_OACC_CLAUSE_ASYNC;
else if (!strcmp ("attach", p))
result = PRAGMA_OACC_CLAUSE_ATTACH;
break;
case 'b':
if (!strcmp ("bind", p))
result = PRAGMA_OMP_CLAUSE_BIND;
break;
case 'c':
if (!strcmp ("collapse", p))
result = PRAGMA_OMP_CLAUSE_COLLAPSE;
else if (!strcmp ("copy", p))
result = PRAGMA_OACC_CLAUSE_COPY;
else if (!strcmp ("copyin", p))
result = PRAGMA_OMP_CLAUSE_COPYIN;
else if (!strcmp ("copyout", p))
result = PRAGMA_OACC_CLAUSE_COPYOUT;
else if (!strcmp ("copyprivate", p))
result = PRAGMA_OMP_CLAUSE_COPYPRIVATE;
else if (!strcmp ("create", p))
result = PRAGMA_OACC_CLAUSE_CREATE;
break;
case 'd':
if (!strcmp ("defaultmap", p))
result = PRAGMA_OMP_CLAUSE_DEFAULTMAP;
else if (!strcmp ("delete", p))
result = PRAGMA_OACC_CLAUSE_DELETE;
else if (!strcmp ("depend", p))
result = PRAGMA_OMP_CLAUSE_DEPEND;
else if (!strcmp ("destroy", p))
result = PRAGMA_OMP_CLAUSE_DESTROY;
else if (!strcmp ("detach", p))
result = PRAGMA_OACC_CLAUSE_DETACH;
else if (!strcmp ("device", p))
result = PRAGMA_OMP_CLAUSE_DEVICE;
else if (!strcmp ("deviceptr", p))
result = PRAGMA_OACC_CLAUSE_DEVICEPTR;
else if (!strcmp ("device_resident", p))
result = PRAGMA_OACC_CLAUSE_DEVICE_RESIDENT;
else if (!strcmp ("device_type", p))
result = PRAGMA_OMP_CLAUSE_DEVICE_TYPE;
else if (!strcmp ("dist_schedule", p))
result = PRAGMA_OMP_CLAUSE_DIST_SCHEDULE;
else if (!strcmp ("doacross", p))
result = PRAGMA_OMP_CLAUSE_DOACROSS;
break;
case 'e':
if (!strcmp ("enter", p))
result = PRAGMA_OMP_CLAUSE_ENTER;
break;
case 'f':
if (!strcmp ("filter", p))
result = PRAGMA_OMP_CLAUSE_FILTER;
else if (!strcmp ("final", p))
result = PRAGMA_OMP_CLAUSE_FINAL;
else if (!strcmp ("finalize", p))
result = PRAGMA_OACC_CLAUSE_FINALIZE;
else if (!strcmp ("firstprivate", p))
result = PRAGMA_OMP_CLAUSE_FIRSTPRIVATE;
else if (!strcmp ("from", p))
result = PRAGMA_OMP_CLAUSE_FROM;
else if (!strcmp ("full", p))
result = PRAGMA_OMP_CLAUSE_FULL;
break;
case 'g':
if (!strcmp ("gang", p))
result = PRAGMA_OACC_CLAUSE_GANG;
else if (!strcmp ("grainsize", p))
result = PRAGMA_OMP_CLAUSE_GRAINSIZE;
break;
case 'h':
if (!strcmp ("has_device_addr", p))
result = PRAGMA_OMP_CLAUSE_HAS_DEVICE_ADDR;
else if (!strcmp ("hint", p))
result = PRAGMA_OMP_CLAUSE_HINT;
else if (!strcmp ("host", p))
result = PRAGMA_OACC_CLAUSE_HOST;
break;
case 'i':
if (!strcmp ("if_present", p))
result = PRAGMA_OACC_CLAUSE_IF_PRESENT;
else if (!strcmp ("in_reduction", p))
result = PRAGMA_OMP_CLAUSE_IN_REDUCTION;
else if (!strcmp ("inbranch", p))
result = PRAGMA_OMP_CLAUSE_INBRANCH;
else if (!strcmp ("independent", p))
result = PRAGMA_OACC_CLAUSE_INDEPENDENT;
else if (!strcmp ("indirect", p))
result = PRAGMA_OMP_CLAUSE_INDIRECT;
else if (!strcmp ("init", p))
result = PRAGMA_OMP_CLAUSE_INIT;
else if (!strcmp ("is_device_ptr", p))
result = PRAGMA_OMP_CLAUSE_IS_DEVICE_PTR;
else if (!strcmp ("interop", p))
result = PRAGMA_OMP_CLAUSE_INTEROP;
break;
case 'l':
if (!strcmp ("lastprivate", p))
result = PRAGMA_OMP_CLAUSE_LASTPRIVATE;
else if (!strcmp ("linear", p))
result = PRAGMA_OMP_CLAUSE_LINEAR;
else if (!strcmp ("link", p))
result = PRAGMA_OMP_CLAUSE_LINK;
break;
case 'm':
if (!strcmp ("map", p))
result = PRAGMA_OMP_CLAUSE_MAP;
else if (!strcmp ("mergeable", p))
result = PRAGMA_OMP_CLAUSE_MERGEABLE;
break;
case 'n':
if (!strcmp ("no_create", p))
result = PRAGMA_OACC_CLAUSE_NO_CREATE;
else if (!strcmp ("nocontext", p))
result = PRAGMA_OMP_CLAUSE_NOCONTEXT;
else if (!strcmp ("nogroup", p))
result = PRAGMA_OMP_CLAUSE_NOGROUP;
else if (!strcmp ("nohost", p))
result = PRAGMA_OACC_CLAUSE_NOHOST;
else if (!strcmp ("nontemporal", p))
result = PRAGMA_OMP_CLAUSE_NONTEMPORAL;
else if (!strcmp ("notinbranch", p))
result = PRAGMA_OMP_CLAUSE_NOTINBRANCH;
else if (!strcmp ("novariants", p))
result = PRAGMA_OMP_CLAUSE_NOVARIANTS;
else if (!strcmp ("nowait", p))
result = PRAGMA_OMP_CLAUSE_NOWAIT;
else if (!strcmp ("num_gangs", p))
result = PRAGMA_OACC_CLAUSE_NUM_GANGS;
else if (!strcmp ("num_tasks", p))
result = PRAGMA_OMP_CLAUSE_NUM_TASKS;
else if (!strcmp ("num_teams", p))
result = PRAGMA_OMP_CLAUSE_NUM_TEAMS;
else if (!strcmp ("num_threads", p))
result = PRAGMA_OMP_CLAUSE_NUM_THREADS;
else if (!strcmp ("num_workers", p))
result = PRAGMA_OACC_CLAUSE_NUM_WORKERS;
break;
case 'o':
if (!strcmp ("ordered", p))
result = PRAGMA_OMP_CLAUSE_ORDERED;
else if (!strcmp ("order", p))
result = PRAGMA_OMP_CLAUSE_ORDER;
break;
case 'p':
if (!strcmp ("parallel", p))
result = PRAGMA_OMP_CLAUSE_PARALLEL;
else if (!strcmp ("partial", p))
result = PRAGMA_OMP_CLAUSE_PARTIAL;
else if (!strcmp ("present", p))
result = PRAGMA_OACC_CLAUSE_PRESENT;
/* As of OpenACC 2.5, these are now aliases of the non-present_or
clauses. */
else if (!strcmp ("present_or_copy", p)
|| !strcmp ("pcopy", p))
result = PRAGMA_OACC_CLAUSE_COPY;
else if (!strcmp ("present_or_copyin", p)
|| !strcmp ("pcopyin", p))
result = PRAGMA_OACC_CLAUSE_COPYIN;
else if (!strcmp ("present_or_copyout", p)
|| !strcmp ("pcopyout", p))
result = PRAGMA_OACC_CLAUSE_COPYOUT;
else if (!strcmp ("present_or_create", p)
|| !strcmp ("pcreate", p))
result = PRAGMA_OACC_CLAUSE_CREATE;
else if (!strcmp ("priority", p))
result = PRAGMA_OMP_CLAUSE_PRIORITY;
else if (!strcmp ("private", p))
result = PRAGMA_OMP_CLAUSE_PRIVATE;
else if (!strcmp ("proc_bind", p))
result = PRAGMA_OMP_CLAUSE_PROC_BIND;
break;
case 'r':
if (!strcmp ("reduction", p))
result = PRAGMA_OMP_CLAUSE_REDUCTION;
break;
case 's':
if (!strcmp ("safelen", p))
result = PRAGMA_OMP_CLAUSE_SAFELEN;
else if (!strcmp ("schedule", p))
result = PRAGMA_OMP_CLAUSE_SCHEDULE;
else if (!strcmp ("sections", p))
result = PRAGMA_OMP_CLAUSE_SECTIONS;
else if (!strcmp ("self", p))
result = PRAGMA_OACC_CLAUSE_SELF;
else if (!strcmp ("seq", p))
result = PRAGMA_OACC_CLAUSE_SEQ;
else if (!strcmp ("shared", p))
result = PRAGMA_OMP_CLAUSE_SHARED;
else if (!strcmp ("simd", p))
result = PRAGMA_OMP_CLAUSE_SIMD;
else if (!strcmp ("simdlen", p))
result = PRAGMA_OMP_CLAUSE_SIMDLEN;
break;
case 't':
if (!strcmp ("task_reduction", p))
result = PRAGMA_OMP_CLAUSE_TASK_REDUCTION;
else if (!strcmp ("taskgroup", p))
result = PRAGMA_OMP_CLAUSE_TASKGROUP;
else if (!strcmp ("thread_limit", p))
result = PRAGMA_OMP_CLAUSE_THREAD_LIMIT;
else if (!strcmp ("threads", p))
result = PRAGMA_OMP_CLAUSE_THREADS;
else if (!strcmp ("tile", p))
result = PRAGMA_OACC_CLAUSE_TILE;
else if (!strcmp ("to", p))
result = PRAGMA_OMP_CLAUSE_TO;
break;
case 'u':
if (!strcmp ("uniform", p))
result = PRAGMA_OMP_CLAUSE_UNIFORM;
else if (!strcmp ("untied", p))
result = PRAGMA_OMP_CLAUSE_UNTIED;
else if (!strcmp ("use", p))
result = PRAGMA_OMP_CLAUSE_USE;
else if (!strcmp ("use_device", p))
result = PRAGMA_OACC_CLAUSE_USE_DEVICE;
else if (!strcmp ("use_device_addr", p))
result = PRAGMA_OMP_CLAUSE_USE_DEVICE_ADDR;
else if (!strcmp ("use_device_ptr", p))
result = PRAGMA_OMP_CLAUSE_USE_DEVICE_PTR;
break;
case 'v':
if (!strcmp ("vector", p))
result = PRAGMA_OACC_CLAUSE_VECTOR;
else if (!strcmp ("vector_length", p))
result = PRAGMA_OACC_CLAUSE_VECTOR_LENGTH;
break;
case 'w':
if (!strcmp ("wait", p))
result = PRAGMA_OACC_CLAUSE_WAIT;
else if (!strcmp ("worker", p))
result = PRAGMA_OACC_CLAUSE_WORKER;
break;
}
}
if (result != PRAGMA_OMP_CLAUSE_NONE)
c_parser_consume_token (parser);
return result;
}
/* Validate that a clause of the given type does not already exist. */
static void
check_no_duplicate_clause (tree clauses, enum omp_clause_code code,
const char *name)
{
if (tree c = omp_find_clause (clauses, code))
error_at (OMP_CLAUSE_LOCATION (c), "too many %qs clauses", name);
}
/* OpenACC 2.0
Parse wait clause or wait directive parameters. */
static tree
c_parser_oacc_wait_list (c_parser *parser, location_t clause_loc, tree list)
{
vec *args;
tree t, args_tree;
matching_parens parens;
if (!parens.require_open (parser))
return list;
args = c_parser_expr_list (parser, false, true, NULL, NULL, NULL, NULL);
args_tree = build_tree_list_vec (args);
for (t = args_tree; t; t = TREE_CHAIN (t))
{
tree targ = TREE_VALUE (t);
if (targ != error_mark_node)
{
if (!INTEGRAL_TYPE_P (TREE_TYPE (targ)))
{
c_parser_error (parser, "expression must be integral");
targ = error_mark_node;
}
else
{
tree c = build_omp_clause (clause_loc, OMP_CLAUSE_WAIT);
OMP_CLAUSE_DECL (c) = targ;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
}
}
release_tree_vector (args);
parens.require_close (parser);
return list;
}
/* OpenACC 2.0, OpenMP 2.5:
variable-list:
identifier
variable-list , identifier
If KIND is nonzero, create the appropriate node and install the
decl in OMP_CLAUSE_DECL and add the node to the head of the list.
If KIND is nonzero, CLAUSE_LOC is the location of the clause.
If KIND is zero, create a TREE_LIST with the decl in TREE_PURPOSE;
return the list created.
The optional ALLOW_DEREF argument is true if list items can use the deref
(->) operator. */
struct omp_dim
{
tree low_bound, length;
location_t loc;
bool no_colon;
omp_dim (tree lb, tree len, location_t lo, bool nc)
: low_bound (lb), length (len), loc (lo), no_colon (nc) {}
};
static tree
c_parser_omp_variable_list (c_parser *parser,
location_t clause_loc,
enum omp_clause_code kind, tree list,
bool map_lvalue = false)
{
auto_vec dims;
bool array_section_p;
auto_vec tokens;
unsigned int tokens_avail = 0;
c_token *saved_tokens = NULL;
bool first = true;
while (1)
{
tree t = NULL_TREE;
if (kind == OMP_CLAUSE_DEPEND || kind == OMP_CLAUSE_AFFINITY)
{
if (c_parser_next_token_is_not (parser, CPP_NAME)
|| c_parser_peek_token (parser)->id_kind != C_ID_ID)
{
struct c_expr expr;
if (kind == OMP_CLAUSE_DEPEND
&& c_parser_next_token_is_keyword (parser,
RID_OMP_ALL_MEMORY)
&& (c_parser_peek_2nd_token (parser)->type == CPP_COMMA
|| (c_parser_peek_2nd_token (parser)->type
== CPP_CLOSE_PAREN)))
{
expr.value = ridpointers[RID_OMP_ALL_MEMORY];
c_parser_consume_token (parser);
}
else
expr = c_parser_expr_no_commas (parser, NULL);
if (expr.value != error_mark_node)
{
tree u = build_omp_clause (clause_loc, kind);
OMP_CLAUSE_DECL (u) = expr.value;
OMP_CLAUSE_CHAIN (u) = list;
list = u;
}
if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
c_parser_consume_token (parser);
first = false;
continue;
}
tokens.truncate (0);
unsigned int nesting_depth = 0;
while (1)
{
c_token *token = c_parser_peek_token (parser);
switch (token->type)
{
case CPP_EOF:
case CPP_PRAGMA_EOL:
break;
case CPP_OPEN_BRACE:
case CPP_OPEN_PAREN:
case CPP_OPEN_SQUARE:
++nesting_depth;
goto add;
case CPP_CLOSE_BRACE:
case CPP_CLOSE_PAREN:
case CPP_CLOSE_SQUARE:
if (nesting_depth-- == 0)
break;
goto add;
case CPP_COMMA:
if (nesting_depth == 0)
break;
goto add;
default:
add:
tokens.safe_push (*token);
c_parser_consume_token (parser);
continue;
}
break;
}
/* Make sure nothing tries to read past the end of the tokens. */
c_token eof_token;
memset (&eof_token, 0, sizeof (eof_token));
eof_token.type = CPP_EOF;
tokens.safe_push (eof_token);
tokens.safe_push (eof_token);
saved_tokens = parser->tokens;
tokens_avail = parser->tokens_avail;
parser->tokens = tokens.address ();
parser->tokens_avail = tokens.length ();
}
else if (map_lvalue
&& (kind == OMP_CLAUSE_MAP
|| kind == OMP_CLAUSE_TO
|| kind == OMP_CLAUSE_FROM))
{
location_t loc = c_parser_peek_token (parser)->location;
bool save_c_omp_array_section_p = c_omp_array_section_p;
c_omp_array_section_p = true;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
if (expr.value != error_mark_node)
mark_exp_read (expr.value);
c_omp_array_section_p = save_c_omp_array_section_p;
tree decl = expr.value;
/* This code rewrites a parsed expression containing various tree
codes used to represent array accesses into a more uniform nest of
OMP_ARRAY_SECTION nodes before it is processed by
c-typeck.cc:handle_omp_array_sections_1. It might be more
efficient to move this logic to that function instead, analysing
the parsed expression directly rather than this preprocessed
form. (See also equivalent code in cp/parser.cc,
cp/semantics.cc). */
dims.truncate (0);
if (TREE_CODE (decl) == OMP_ARRAY_SECTION)
{
while (TREE_CODE (decl) == OMP_ARRAY_SECTION)
{
tree low_bound = TREE_OPERAND (decl, 1);
tree length = TREE_OPERAND (decl, 2);
dims.safe_push (omp_dim (low_bound, length, loc, false));
decl = TREE_OPERAND (decl, 0);
}
while (TREE_CODE (decl) == ARRAY_REF
|| TREE_CODE (decl) == INDIRECT_REF
|| TREE_CODE (decl) == COMPOUND_EXPR)
{
if (TREE_CODE (decl) == COMPOUND_EXPR)
{
decl = TREE_OPERAND (decl, 1);
STRIP_NOPS (decl);
}
else if (TREE_CODE (decl) == INDIRECT_REF)
{
dims.safe_push (omp_dim (integer_zero_node,
integer_one_node, loc, true));
decl = TREE_OPERAND (decl, 0);
}
else /* ARRAY_REF. */
{
tree index = TREE_OPERAND (decl, 1);
dims.safe_push (omp_dim (index, integer_one_node, loc,
true));
decl = TREE_OPERAND (decl, 0);
}
}
for (int i = dims.length () - 1; i >= 0; i--)
decl = build_omp_array_section (loc, decl, dims[i].low_bound,
dims[i].length);
}
else if (TREE_CODE (decl) == INDIRECT_REF)
{
/* Turn indirection of a pointer "*foo" into "foo[0:1]". */
decl = TREE_OPERAND (decl, 0);
STRIP_NOPS (decl);
decl = build_omp_array_section (loc, decl, integer_zero_node,
integer_one_node);
}
else if (TREE_CODE (decl) == ARRAY_REF)
{
tree idx = TREE_OPERAND (decl, 1);
decl = TREE_OPERAND (decl, 0);
STRIP_NOPS (decl);
decl = build_omp_array_section (loc, decl, idx, integer_one_node);
}
else if (TREE_CODE (decl) == NON_LVALUE_EXPR
|| CONVERT_EXPR_P (decl))
decl = TREE_OPERAND (decl, 0);
tree u = build_omp_clause (clause_loc, kind);
OMP_CLAUSE_DECL (u) = decl;
OMP_CLAUSE_CHAIN (u) = list;
list = u;
goto next_item;
}
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_ID)
{
t = lookup_name (c_parser_peek_token (parser)->value);
if (t == NULL_TREE)
{
undeclared_variable (c_parser_peek_token (parser)->location,
c_parser_peek_token (parser)->value);
t = error_mark_node;
}
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is (parser, CPP_KEYWORD)
&& (c_parser_peek_token (parser)->keyword == RID_FUNCTION_NAME
|| (c_parser_peek_token (parser)->keyword
== RID_PRETTY_FUNCTION_NAME)
|| (c_parser_peek_token (parser)->keyword
== RID_C99_FUNCTION_NAME)))
t = c_parser_predefined_identifier (parser).value;
else
{
if (first)
c_parser_error (parser, "expected identifier");
break;
}
if (t == error_mark_node)
;
else if (kind != 0)
{
switch (kind)
{
case OMP_CLAUSE__CACHE_:
/* The OpenACC cache directive explicitly only allows "array
elements or subarrays". */
if (c_parser_peek_token (parser)->type != CPP_OPEN_SQUARE)
{
c_parser_error (parser, "expected %<[%>");
t = error_mark_node;
break;
}
/* FALLTHROUGH */
case OMP_CLAUSE_MAP:
case OMP_CLAUSE_FROM:
case OMP_CLAUSE_TO:
start_component_ref:
while (c_parser_next_token_is (parser, CPP_DOT)
|| c_parser_next_token_is (parser, CPP_DEREF))
{
location_t op_loc = c_parser_peek_token (parser)->location;
location_t arrow_loc = UNKNOWN_LOCATION;
if (c_parser_next_token_is (parser, CPP_DEREF))
{
c_expr t_expr;
t_expr.value = t;
t_expr.original_code = ERROR_MARK;
t_expr.original_type = NULL;
set_c_expr_source_range (&t_expr, op_loc, op_loc);
t_expr.m_decimal = 0;
t_expr = convert_lvalue_to_rvalue (op_loc, t_expr,
true, false);
t = build_indirect_ref (op_loc, t_expr.value, RO_ARROW);
arrow_loc = t_expr.get_location ();
}
c_parser_consume_token (parser);
if (!c_parser_next_token_is (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
t = error_mark_node;
break;
}
c_token *comp_tok = c_parser_peek_token (parser);
tree ident = comp_tok->value;
location_t comp_loc = comp_tok->location;
c_parser_consume_token (parser);
t = build_component_ref (op_loc, t, ident, comp_loc,
arrow_loc);
}
/* FALLTHROUGH */
case OMP_CLAUSE_AFFINITY:
case OMP_CLAUSE_DEPEND:
case OMP_CLAUSE_REDUCTION:
case OMP_CLAUSE_IN_REDUCTION:
case OMP_CLAUSE_TASK_REDUCTION:
case OMP_CLAUSE_HAS_DEVICE_ADDR:
array_section_p = false;
dims.truncate (0);
while (c_parser_next_token_is (parser, CPP_OPEN_SQUARE))
{
location_t loc = UNKNOWN_LOCATION;
tree low_bound = NULL_TREE, length = NULL_TREE;
bool no_colon = false;
c_parser_consume_token (parser);
if (!c_parser_next_token_is (parser, CPP_COLON))
{
location_t expr_loc
= c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expression (parser);
expr = convert_lvalue_to_rvalue (expr_loc, expr,
false, true);
low_bound = expr.value;
loc = expr_loc;
}
if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
{
length = integer_one_node;
no_colon = true;
}
else
{
/* Look for `:'. */
if (!c_parser_require (parser, CPP_COLON,
"expected %<:%>"))
{
t = error_mark_node;
break;
}
array_section_p = true;
if (!c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
{
location_t expr_loc
= c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expression (parser);
expr = convert_lvalue_to_rvalue (expr_loc, expr,
false, true);
length = expr.value;
}
}
/* Look for the closing `]'. */
if (!c_parser_require (parser, CPP_CLOSE_SQUARE,
"expected %<]%>"))
{
t = error_mark_node;
break;
}
dims.safe_push (omp_dim (low_bound, length, loc, no_colon));
}
if (t != error_mark_node)
{
if ((kind == OMP_CLAUSE_MAP
|| kind == OMP_CLAUSE_FROM
|| kind == OMP_CLAUSE_TO)
&& !array_section_p
&& (c_parser_next_token_is (parser, CPP_DOT)
|| c_parser_next_token_is (parser, CPP_DEREF)))
{
for (unsigned i = 0; i < dims.length (); i++)
{
gcc_assert (dims[i].length == integer_one_node);
t = build_array_ref (dims[i].loc,
t, dims[i].low_bound);
}
goto start_component_ref;
}
else
for (unsigned i = 0; i < dims.length (); i++)
t = build_omp_array_section (clause_loc, t,
dims[i].low_bound,
dims[i].length);
}
if ((kind == OMP_CLAUSE_DEPEND || kind == OMP_CLAUSE_AFFINITY)
&& t != error_mark_node
&& parser->tokens_avail != 2)
{
if (array_section_p)
{
error_at (c_parser_peek_token (parser)->location,
"expected %<)%> or %<,%>");
t = error_mark_node;
}
else
{
parser->tokens = tokens.address ();
parser->tokens_avail = tokens.length ();
t = c_parser_expr_no_commas (parser, NULL).value;
if (t != error_mark_node && parser->tokens_avail != 2)
{
error_at (c_parser_peek_token (parser)->location,
"expected %<)%> or %<,%>");
t = error_mark_node;
}
}
}
break;
default:
break;
}
if (t != error_mark_node)
{
tree u = build_omp_clause (clause_loc, kind);
OMP_CLAUSE_DECL (u) = t;
OMP_CLAUSE_CHAIN (u) = list;
list = u;
}
}
else
list = tree_cons (t, NULL_TREE, list);
if (kind == OMP_CLAUSE_DEPEND || kind == OMP_CLAUSE_AFFINITY)
{
parser->tokens = saved_tokens;
parser->tokens_avail = tokens_avail;
}
next_item:
if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
c_parser_consume_token (parser);
first = false;
}
return list;
}
/* Similarly, but expect leading and trailing parenthesis. This is a very
common case for OpenACC and OpenMP clauses. The optional ALLOW_DEREF
argument is true if list items can use the deref (->) operator. */
static tree
c_parser_omp_var_list_parens (c_parser *parser, enum omp_clause_code kind,
tree list, bool map_lvalue = false)
{
/* The clauses location. */
location_t loc = c_parser_peek_token (parser)->location;
if (parser->in_omp_decl_attribute)
{
if (kind)
{
tree u = build_omp_clause (loc, kind);
OMP_CLAUSE_DECL (u) = parser->in_omp_decl_attribute;
OMP_CLAUSE_CHAIN (u) = list;
return u;
}
else
return tree_cons (parser->in_omp_decl_attribute, NULL_TREE, list);
}
matching_parens parens;
if (parens.require_open (parser))
{
list = c_parser_omp_variable_list (parser, loc, kind, list, map_lvalue);
parens.skip_until_found_close (parser);
}
return list;
}
/* OpenACC 2.0:
copy ( variable-list )
copyin ( variable-list )
copyout ( variable-list )
create ( variable-list )
delete ( variable-list )
present ( variable-list )
OpenACC 2.6:
no_create ( variable-list )
attach ( variable-list )
detach ( variable-list )
OpenACC 2.7:
copyin (readonly : variable-list )
*/
static tree
c_parser_oacc_data_clause (c_parser *parser, pragma_omp_clause c_kind,
tree list)
{
enum gomp_map_kind kind;
switch (c_kind)
{
case PRAGMA_OACC_CLAUSE_ATTACH:
kind = GOMP_MAP_ATTACH;
break;
case PRAGMA_OACC_CLAUSE_COPY:
kind = GOMP_MAP_TOFROM;
break;
case PRAGMA_OACC_CLAUSE_COPYIN:
kind = GOMP_MAP_TO;
break;
case PRAGMA_OACC_CLAUSE_COPYOUT:
kind = GOMP_MAP_FROM;
break;
case PRAGMA_OACC_CLAUSE_CREATE:
kind = GOMP_MAP_ALLOC;
break;
case PRAGMA_OACC_CLAUSE_DELETE:
kind = GOMP_MAP_RELEASE;
break;
case PRAGMA_OACC_CLAUSE_DETACH:
kind = GOMP_MAP_DETACH;
break;
case PRAGMA_OACC_CLAUSE_DEVICE:
kind = GOMP_MAP_FORCE_TO;
break;
case PRAGMA_OACC_CLAUSE_DEVICE_RESIDENT:
kind = GOMP_MAP_DEVICE_RESIDENT;
break;
case PRAGMA_OACC_CLAUSE_LINK:
kind = GOMP_MAP_LINK;
break;
case PRAGMA_OACC_CLAUSE_NO_CREATE:
kind = GOMP_MAP_IF_PRESENT;
break;
case PRAGMA_OACC_CLAUSE_PRESENT:
kind = GOMP_MAP_FORCE_PRESENT;
break;
case PRAGMA_OACC_CLAUSE_SELF:
/* "The 'host' clause is a synonym for the 'self' clause." */
case PRAGMA_OACC_CLAUSE_HOST:
kind = GOMP_MAP_FORCE_FROM;
break;
default:
gcc_unreachable ();
}
tree nl = list;
bool readonly = false;
location_t open_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
/* Turn on readonly modifier parsing for copyin clause. */
if (c_kind == PRAGMA_OACC_CLAUSE_COPYIN)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_NAME
&& !strcmp (IDENTIFIER_POINTER (token->value), "readonly")
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON)
{
c_parser_consume_token (parser);
c_parser_consume_token (parser);
readonly = true;
}
}
nl = c_parser_omp_variable_list (parser, open_loc, OMP_CLAUSE_MAP, list,
false);
parens.skip_until_found_close (parser);
}
for (tree c = nl; c != list; c = OMP_CLAUSE_CHAIN (c))
{
OMP_CLAUSE_SET_MAP_KIND (c, kind);
if (readonly)
OMP_CLAUSE_MAP_READONLY (c) = 1;
}
return nl;
}
/* OpenACC 2.0:
deviceptr ( variable-list ) */
static tree
c_parser_oacc_data_clause_deviceptr (c_parser *parser, tree list)
{
location_t loc = c_parser_peek_token (parser)->location;
tree vars, t;
/* Can't use OMP_CLAUSE_MAP here (that is, can't use the generic
c_parser_oacc_data_clause), as for PRAGMA_OACC_CLAUSE_DEVICEPTR,
variable-list must only allow for pointer variables. */
vars = c_parser_omp_var_list_parens (parser, OMP_CLAUSE_ERROR, NULL);
for (t = vars; t && t; t = TREE_CHAIN (t))
{
tree v = TREE_PURPOSE (t);
/* FIXME diagnostics: Ideally we should keep individual
locations for all the variables in the var list to make the
following errors more precise. Perhaps
c_parser_omp_var_list_parens() should construct a list of
locations to go along with the var list. */
if (!VAR_P (v) && TREE_CODE (v) != PARM_DECL)
error_at (loc, "%qD is not a variable", v);
else if (TREE_TYPE (v) == error_mark_node)
;
else if (!POINTER_TYPE_P (TREE_TYPE (v)))
error_at (loc, "%qD is not a pointer variable", v);
tree u = build_omp_clause (loc, OMP_CLAUSE_MAP);
OMP_CLAUSE_SET_MAP_KIND (u, GOMP_MAP_FORCE_DEVICEPTR);
OMP_CLAUSE_DECL (u) = v;
OMP_CLAUSE_CHAIN (u) = list;
list = u;
}
return list;
}
/* OpenACC 2.0, OpenMP 3.0:
collapse ( constant-expression ) */
static tree
c_parser_omp_clause_collapse (c_parser *parser, tree list)
{
tree c, num = error_mark_node;
HOST_WIDE_INT n;
location_t loc;
check_no_duplicate_clause (list, OMP_CLAUSE_COLLAPSE, "collapse");
check_no_duplicate_clause (list, OMP_CLAUSE_TILE, "tile");
loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
num = c_parser_expr_no_commas (parser, NULL).value;
parens.skip_until_found_close (parser);
}
if (num == error_mark_node)
return list;
mark_exp_read (num);
num = c_fully_fold (num, false, NULL);
if (!INTEGRAL_TYPE_P (TREE_TYPE (num))
|| !tree_fits_shwi_p (num)
|| (n = tree_to_shwi (num)) <= 0
|| (int) n != n)
{
error_at (loc,
"collapse argument needs positive constant integer expression");
return list;
}
c = build_omp_clause (loc, OMP_CLAUSE_COLLAPSE);
OMP_CLAUSE_COLLAPSE_EXPR (c) = num;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
copyin ( variable-list ) */
static tree
c_parser_omp_clause_copyin (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_COPYIN, list);
}
/* OpenMP 2.5:
copyprivate ( variable-list ) */
static tree
c_parser_omp_clause_copyprivate (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_COPYPRIVATE, list);
}
/* OpenMP 2.5:
default ( none | shared )
OpenMP 5.1:
default ( private | firstprivate )
OpenACC:
default ( none | present ) */
static tree
c_parser_omp_clause_default (c_parser *parser, tree list, bool is_oacc)
{
enum omp_clause_default_kind kind = OMP_CLAUSE_DEFAULT_UNSPECIFIED;
location_t loc = c_parser_peek_token (parser)->location;
tree c;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if (c_parser_next_token_is (parser, CPP_NAME))
{
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
switch (p[0])
{
case 'n':
if (strcmp ("none", p) != 0)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_NONE;
break;
case 'p':
if (is_oacc)
{
if (strcmp ("present", p) != 0)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_PRESENT;
}
else
{
if (strcmp ("private", p) != 0)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_PRIVATE;
}
break;
case 'f':
if (strcmp ("firstprivate", p) != 0 || is_oacc)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_FIRSTPRIVATE;
break;
case 's':
if (strcmp ("shared", p) != 0 || is_oacc)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_SHARED;
break;
default:
goto invalid_kind;
}
c_parser_consume_token (parser);
}
else
{
invalid_kind:
if (is_oacc)
c_parser_error (parser, "expected % or %");
else
c_parser_error (parser, "expected %, %, "
"% or %");
}
parens.skip_until_found_close (parser);
if (kind == OMP_CLAUSE_DEFAULT_UNSPECIFIED)
return list;
check_no_duplicate_clause (list, OMP_CLAUSE_DEFAULT, "default");
c = build_omp_clause (loc, OMP_CLAUSE_DEFAULT);
OMP_CLAUSE_CHAIN (c) = list;
OMP_CLAUSE_DEFAULT_KIND (c) = kind;
return c;
}
/* OpenMP 2.5:
firstprivate ( variable-list ) */
static tree
c_parser_omp_clause_firstprivate (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_FIRSTPRIVATE, list);
}
/* OpenMP 3.1:
final ( expression ) */
static tree
c_parser_omp_clause_final (c_parser *parser, tree list)
{
location_t loc = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
matching_parens parens;
tree t, c;
if (!parens.require_open (parser))
t = error_mark_node;
else
{
location_t eloc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
t = convert_lvalue_to_rvalue (eloc, expr, true, true).value;
t = c_objc_common_truthvalue_conversion (eloc, t);
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
}
check_no_duplicate_clause (list, OMP_CLAUSE_FINAL, "final");
c = build_omp_clause (loc, OMP_CLAUSE_FINAL);
OMP_CLAUSE_FINAL_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
else
c_parser_error (parser, "expected %<(%>");
return list;
}
/* OpenMP 5.1:
indirect [( expression )]
*/
static tree
c_parser_omp_clause_indirect (c_parser *parser, tree list)
{
location_t location = c_parser_peek_token (parser)->location;
tree t;
if (c_parser_peek_token (parser)->type == CPP_OPEN_PAREN)
{
matching_parens parens;
if (!parens.require_open (parser))
return list;
location_t loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (loc, expr, true, true);
t = c_objc_common_truthvalue_conversion (loc, expr.value);
t = c_fully_fold (t, false, NULL);
if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
|| TREE_CODE (t) != INTEGER_CST)
{
c_parser_error (parser, "expected constant logical expression");
return list;
}
parens.skip_until_found_close (parser);
}
else
t = integer_one_node;
check_no_duplicate_clause (list, OMP_CLAUSE_INDIRECT, "indirect");
tree c = build_omp_clause (location, OMP_CLAUSE_INDIRECT);
OMP_CLAUSE_INDIRECT_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenACC, OpenMP 2.5:
if ( expression )
OpenMP 4.5:
if ( directive-name-modifier : expression )
directive-name-modifier:
parallel | task | taskloop | target data | target | target update
| target enter data | target exit data
OpenMP 5.0:
directive-name-modifier:
... | simd | cancel */
static tree
c_parser_omp_clause_if (c_parser *parser, tree list, bool is_omp)
{
location_t location = c_parser_peek_token (parser)->location;
enum tree_code if_modifier = ERROR_MARK;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if (is_omp && c_parser_next_token_is (parser, CPP_NAME))
{
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
int n = 2;
if (strcmp (p, "cancel") == 0)
if_modifier = VOID_CST;
else if (strcmp (p, "parallel") == 0)
if_modifier = OMP_PARALLEL;
else if (strcmp (p, "simd") == 0)
if_modifier = OMP_SIMD;
else if (strcmp (p, "task") == 0)
if_modifier = OMP_TASK;
else if (strcmp (p, "taskloop") == 0)
if_modifier = OMP_TASKLOOP;
else if (strcmp (p, "target") == 0)
{
if_modifier = OMP_TARGET;
if (c_parser_peek_2nd_token (parser)->type == CPP_NAME)
{
p = IDENTIFIER_POINTER (c_parser_peek_2nd_token (parser)->value);
if (strcmp ("data", p) == 0)
if_modifier = OMP_TARGET_DATA;
else if (strcmp ("update", p) == 0)
if_modifier = OMP_TARGET_UPDATE;
else if (strcmp ("enter", p) == 0)
if_modifier = OMP_TARGET_ENTER_DATA;
else if (strcmp ("exit", p) == 0)
if_modifier = OMP_TARGET_EXIT_DATA;
if (if_modifier != OMP_TARGET)
{
n = 3;
c_parser_consume_token (parser);
}
else
{
location_t loc = c_parser_peek_2nd_token (parser)->location;
error_at (loc, "expected %, %, % "
"or %");
if_modifier = ERROR_MARK;
}
if (if_modifier == OMP_TARGET_ENTER_DATA
|| if_modifier == OMP_TARGET_EXIT_DATA)
{
if (c_parser_peek_2nd_token (parser)->type == CPP_NAME)
{
p = IDENTIFIER_POINTER
(c_parser_peek_2nd_token (parser)->value);
if (strcmp ("data", p) == 0)
n = 4;
}
if (n == 4)
c_parser_consume_token (parser);
else
{
location_t loc
= c_parser_peek_2nd_token (parser)->location;
error_at (loc, "expected %");
if_modifier = ERROR_MARK;
}
}
}
}
if (if_modifier != ERROR_MARK)
{
if (c_parser_peek_2nd_token (parser)->type == CPP_COLON)
{
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
else
{
if (n > 2)
{
location_t loc = c_parser_peek_2nd_token (parser)->location;
error_at (loc, "expected %<:%>");
}
if_modifier = ERROR_MARK;
}
}
}
location_t loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (loc, expr, true, true);
tree t = c_objc_common_truthvalue_conversion (loc, expr.value), c;
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
for (c = list; c ; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_IF)
{
if (if_modifier != ERROR_MARK
&& OMP_CLAUSE_IF_MODIFIER (c) == if_modifier)
{
const char *p = NULL;
switch (if_modifier)
{
case VOID_CST: p = "cancel"; break;
case OMP_PARALLEL: p = "parallel"; break;
case OMP_SIMD: p = "simd"; break;
case OMP_TASK: p = "task"; break;
case OMP_TASKLOOP: p = "taskloop"; break;
case OMP_TARGET_DATA: p = "target data"; break;
case OMP_TARGET: p = "target"; break;
case OMP_TARGET_UPDATE: p = "target update"; break;
case OMP_TARGET_ENTER_DATA: p = "target enter data"; break;
case OMP_TARGET_EXIT_DATA: p = "target exit data"; break;
default: gcc_unreachable ();
}
error_at (location, "too many % clauses with %qs modifier",
p);
return list;
}
else if (OMP_CLAUSE_IF_MODIFIER (c) == if_modifier)
{
if (!is_omp)
error_at (location, "too many % clauses");
else
error_at (location, "too many % clauses without modifier");
return list;
}
else if (if_modifier == ERROR_MARK
|| OMP_CLAUSE_IF_MODIFIER (c) == ERROR_MARK)
{
error_at (location, "if any % clause has modifier, then all "
"% clauses have to use modifier");
return list;
}
}
c = build_omp_clause (location, OMP_CLAUSE_IF);
OMP_CLAUSE_IF_MODIFIER (c) = if_modifier;
OMP_CLAUSE_IF_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
lastprivate ( variable-list )
OpenMP 5.0:
lastprivate ( [ lastprivate-modifier : ] variable-list ) */
static tree
c_parser_omp_clause_lastprivate (c_parser *parser, tree list)
{
/* The clauses location. */
location_t loc = c_parser_peek_token (parser)->location;
if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
bool conditional = false;
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON)
{
const char *p
= IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp (p, "conditional") == 0)
{
conditional = true;
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
}
tree nlist = c_parser_omp_variable_list (parser, loc,
OMP_CLAUSE_LASTPRIVATE, list);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (conditional)
for (tree c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c))
OMP_CLAUSE_LASTPRIVATE_CONDITIONAL (c) = 1;
return nlist;
}
return list;
}
/* OpenMP 3.1:
mergeable */
static tree
c_parser_omp_clause_mergeable (c_parser *parser ATTRIBUTE_UNUSED, tree list)
{
tree c;
/* FIXME: Should we allow duplicates? */
check_no_duplicate_clause (list, OMP_CLAUSE_MERGEABLE, "mergeable");
c = build_omp_clause (c_parser_peek_token (parser)->location,
OMP_CLAUSE_MERGEABLE);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
nowait */
static tree
c_parser_omp_clause_nowait (c_parser *parser ATTRIBUTE_UNUSED, tree list)
{
tree c;
location_t loc = c_parser_peek_token (parser)->location;
check_no_duplicate_clause (list, OMP_CLAUSE_NOWAIT, "nowait");
c = build_omp_clause (loc, OMP_CLAUSE_NOWAIT);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
num_threads ( expression ) */
static tree
c_parser_omp_clause_num_threads (c_parser *parser, tree list)
{
location_t num_threads_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree c, t = expr.value;
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
{
c_parser_error (parser, "expected integer expression");
return list;
}
/* Attempt to statically determine when the number isn't positive. */
c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
protected_set_expr_location (c, expr_loc);
if (c == boolean_true_node)
{
warning_at (expr_loc, OPT_Wopenmp,
"% value must be positive");
t = integer_one_node;
}
check_no_duplicate_clause (list, OMP_CLAUSE_NUM_THREADS, "num_threads");
c = build_omp_clause (num_threads_loc, OMP_CLAUSE_NUM_THREADS);
OMP_CLAUSE_NUM_THREADS_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 4.5:
num_tasks ( expression )
OpenMP 5.1:
num_tasks ( strict : expression ) */
static tree
c_parser_omp_clause_num_tasks (c_parser *parser, tree list)
{
location_t num_tasks_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
bool strict = false;
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON
&& strcmp (IDENTIFIER_POINTER (c_parser_peek_token (parser)->value),
"strict") == 0)
{
strict = true;
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree c, t = expr.value;
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
{
c_parser_error (parser, "expected integer expression");
return list;
}
/* Attempt to statically determine when the number isn't positive. */
c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
if (CAN_HAVE_LOCATION_P (c))
SET_EXPR_LOCATION (c, expr_loc);
if (c == boolean_true_node)
{
warning_at (expr_loc, OPT_Wopenmp,
"% value must be positive");
t = integer_one_node;
}
check_no_duplicate_clause (list, OMP_CLAUSE_NUM_TASKS, "num_tasks");
c = build_omp_clause (num_tasks_loc, OMP_CLAUSE_NUM_TASKS);
OMP_CLAUSE_NUM_TASKS_EXPR (c) = t;
OMP_CLAUSE_NUM_TASKS_STRICT (c) = strict;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 4.5:
grainsize ( expression )
OpenMP 5.1:
grainsize ( strict : expression ) */
static tree
c_parser_omp_clause_grainsize (c_parser *parser, tree list)
{
location_t grainsize_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
bool strict = false;
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON
&& strcmp (IDENTIFIER_POINTER (c_parser_peek_token (parser)->value),
"strict") == 0)
{
strict = true;
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree c, t = expr.value;
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
{
c_parser_error (parser, "expected integer expression");
return list;
}
/* Attempt to statically determine when the number isn't positive. */
c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
if (CAN_HAVE_LOCATION_P (c))
SET_EXPR_LOCATION (c, expr_loc);
if (c == boolean_true_node)
{
warning_at (expr_loc, OPT_Wopenmp,
"% value must be positive");
t = integer_one_node;
}
check_no_duplicate_clause (list, OMP_CLAUSE_GRAINSIZE, "grainsize");
c = build_omp_clause (grainsize_loc, OMP_CLAUSE_GRAINSIZE);
OMP_CLAUSE_GRAINSIZE_EXPR (c) = t;
OMP_CLAUSE_GRAINSIZE_STRICT (c) = strict;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 4.5:
priority ( expression ) */
static tree
c_parser_omp_clause_priority (c_parser *parser, tree list)
{
location_t priority_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree c, t = expr.value;
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
{
c_parser_error (parser, "expected integer expression");
return list;
}
/* Attempt to statically determine when the number isn't
non-negative. */
c = fold_build2_loc (expr_loc, LT_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
if (CAN_HAVE_LOCATION_P (c))
SET_EXPR_LOCATION (c, expr_loc);
if (c == boolean_true_node)
{
warning_at (expr_loc, OPT_Wopenmp,
"% value must be non-negative");
t = integer_one_node;
}
check_no_duplicate_clause (list, OMP_CLAUSE_PRIORITY, "priority");
c = build_omp_clause (priority_loc, OMP_CLAUSE_PRIORITY);
OMP_CLAUSE_PRIORITY_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 4.5:
hint ( expression ) */
static tree
c_parser_omp_clause_hint (c_parser *parser, tree list)
{
location_t hint_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree c, t = expr.value;
t = c_fully_fold (t, false, NULL);
if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
|| TREE_CODE (t) != INTEGER_CST
|| tree_int_cst_sgn (t) == -1)
{
c_parser_error (parser, "expected constant integer expression "
"with valid sync-hint value");
return list;
}
parens.skip_until_found_close (parser);
check_no_duplicate_clause (list, OMP_CLAUSE_HINT, "hint");
c = build_omp_clause (hint_loc, OMP_CLAUSE_HINT);
OMP_CLAUSE_HINT_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 5.1:
filter ( integer-expression ) */
static tree
c_parser_omp_clause_filter (c_parser *parser, tree list)
{
location_t hint_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree c, t = expr.value;
t = c_fully_fold (t, false, NULL);
if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
{
c_parser_error (parser, "expected integer expression");
return list;
}
parens.skip_until_found_close (parser);
check_no_duplicate_clause (list, OMP_CLAUSE_FILTER, "filter");
c = build_omp_clause (hint_loc, OMP_CLAUSE_FILTER);
OMP_CLAUSE_FILTER_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 4.5:
defaultmap ( tofrom : scalar )
OpenMP 5.0:
defaultmap ( implicit-behavior [ : variable-category ] ) */
static tree
c_parser_omp_clause_defaultmap (c_parser *parser, tree list)
{
location_t loc = c_parser_peek_token (parser)->location;
tree c;
const char *p;
enum omp_clause_defaultmap_kind behavior = OMP_CLAUSE_DEFAULTMAP_DEFAULT;
enum omp_clause_defaultmap_kind category
= OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if (c_parser_next_token_is_keyword (parser, RID_DEFAULT))
p = "default";
else if (!c_parser_next_token_is (parser, CPP_NAME))
{
invalid_behavior:
c_parser_error (parser, "expected %, %, %, "
"%, %, % "
"or %");
goto out_err;
}
else
p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
switch (p[0])
{
case 'a':
if (strcmp ("alloc", p) == 0)
behavior = OMP_CLAUSE_DEFAULTMAP_ALLOC;
else
goto invalid_behavior;
break;
case 'd':
if (strcmp ("default", p) == 0)
behavior = OMP_CLAUSE_DEFAULTMAP_DEFAULT;
else
goto invalid_behavior;
break;
case 'f':
if (strcmp ("firstprivate", p) == 0)
behavior = OMP_CLAUSE_DEFAULTMAP_FIRSTPRIVATE;
else if (strcmp ("from", p) == 0)
behavior = OMP_CLAUSE_DEFAULTMAP_FROM;
else
goto invalid_behavior;
break;
case 'n':
if (strcmp ("none", p) == 0)
behavior = OMP_CLAUSE_DEFAULTMAP_NONE;
else
goto invalid_behavior;
break;
case 'p':
if (strcmp ("present", p) == 0)
behavior = OMP_CLAUSE_DEFAULTMAP_PRESENT;
else
goto invalid_behavior;
break;
case 't':
if (strcmp ("tofrom", p) == 0)
behavior = OMP_CLAUSE_DEFAULTMAP_TOFROM;
else if (strcmp ("to", p) == 0)
behavior = OMP_CLAUSE_DEFAULTMAP_TO;
else
goto invalid_behavior;
break;
default:
goto invalid_behavior;
}
c_parser_consume_token (parser);
if (!c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
goto out_err;
if (!c_parser_next_token_is (parser, CPP_NAME))
{
invalid_category:
c_parser_error (parser, "expected %, %, "
"% or %");
goto out_err;
}
p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
switch (p[0])
{
case 'a':
if (strcmp ("aggregate", p) == 0)
category = OMP_CLAUSE_DEFAULTMAP_CATEGORY_AGGREGATE;
else if (strcmp ("all", p) == 0)
category = OMP_CLAUSE_DEFAULTMAP_CATEGORY_ALL;
else
goto invalid_category;
break;
case 'p':
if (strcmp ("pointer", p) == 0)
category = OMP_CLAUSE_DEFAULTMAP_CATEGORY_POINTER;
else
goto invalid_category;
break;
case 's':
if (strcmp ("scalar", p) == 0)
category = OMP_CLAUSE_DEFAULTMAP_CATEGORY_SCALAR;
else
goto invalid_category;
break;
default:
goto invalid_category;
}
c_parser_consume_token (parser);
}
parens.skip_until_found_close (parser);
for (c = list; c ; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_DEFAULTMAP
&& (category == OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED
|| category == OMP_CLAUSE_DEFAULTMAP_CATEGORY_ALL
|| OMP_CLAUSE_DEFAULTMAP_CATEGORY (c) == category
|| (OMP_CLAUSE_DEFAULTMAP_CATEGORY (c)
== OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED)
|| (OMP_CLAUSE_DEFAULTMAP_CATEGORY (c)
== OMP_CLAUSE_DEFAULTMAP_CATEGORY_ALL)))
{
enum omp_clause_defaultmap_kind cat = category;
location_t loc = OMP_CLAUSE_LOCATION (c);
if (cat == OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED
|| (cat == OMP_CLAUSE_DEFAULTMAP_CATEGORY_ALL
&& (OMP_CLAUSE_DEFAULTMAP_CATEGORY (c)
!= OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED)))
cat = OMP_CLAUSE_DEFAULTMAP_CATEGORY (c);
p = NULL;
switch (cat)
{
case OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED:
p = NULL;
break;
case OMP_CLAUSE_DEFAULTMAP_CATEGORY_ALL:
p = "all";
break;
case OMP_CLAUSE_DEFAULTMAP_CATEGORY_AGGREGATE:
p = "aggregate";
break;
case OMP_CLAUSE_DEFAULTMAP_CATEGORY_POINTER:
p = "pointer";
break;
case OMP_CLAUSE_DEFAULTMAP_CATEGORY_SCALAR:
p = "scalar";
break;
default:
gcc_unreachable ();
}
if (p)
error_at (loc, "too many % clauses with %qs category",
p);
else
error_at (loc, "too many % clauses with unspecified "
"category");
break;
}
c = build_omp_clause (loc, OMP_CLAUSE_DEFAULTMAP);
OMP_CLAUSE_DEFAULTMAP_SET_KIND (c, behavior, category);
OMP_CLAUSE_CHAIN (c) = list;
return c;
out_err:
parens.skip_until_found_close (parser);
return list;
}
/* OpenACC 2.0:
use_device ( variable-list )
OpenMP 4.5:
use_device_ptr ( variable-list ) */
static tree
c_parser_omp_clause_use_device_ptr (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_USE_DEVICE_PTR,
list);
}
/* OpenMP 5.0:
use_device_addr ( variable-list ) */
static tree
c_parser_omp_clause_use_device_addr (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_USE_DEVICE_ADDR,
list);
}
/* OpenMP 5.1:
has_device_addr ( variable-list ) */
static tree
c_parser_omp_clause_has_device_addr (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_HAS_DEVICE_ADDR,
list);
}
/* OpenMP 4.5:
is_device_ptr ( variable-list ) */
static tree
c_parser_omp_clause_is_device_ptr (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_IS_DEVICE_PTR, list);
}
/* OpenACC:
num_gangs ( expression )
num_workers ( expression )
vector_length ( expression ) */
static tree
c_parser_oacc_single_int_clause (c_parser *parser, omp_clause_code code,
tree list)
{
location_t loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (!parens.require_open (parser))
return list;
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expression (parser);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree c, t = expr.value;
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
if (t == error_mark_node)
return list;
else if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
{
error_at (expr_loc, "%qs expression must be integral",
omp_clause_code_name[code]);
return list;
}
/* Attempt to statically determine when the number isn't positive. */
c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
protected_set_expr_location (c, expr_loc);
if (c == boolean_true_node)
{
warning_at (expr_loc, 0,
"%qs value must be positive",
omp_clause_code_name[code]);
t = integer_one_node;
}
check_no_duplicate_clause (list, code, omp_clause_code_name[code]);
c = build_omp_clause (loc, code);
OMP_CLAUSE_OPERAND (c, 0) = t;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenACC:
gang [( gang-arg-list )]
worker [( [num:] int-expr )]
vector [( [length:] int-expr )]
where gang-arg is one of:
[num:] int-expr
static: size-expr
and size-expr may be:
*
int-expr
*/
static tree
c_parser_oacc_shape_clause (c_parser *parser, location_t loc,
omp_clause_code kind,
const char *str, tree list)
{
const char *id = "num";
tree ops[2] = { NULL_TREE, NULL_TREE }, c;
if (kind == OMP_CLAUSE_VECTOR)
id = "length";
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
c_parser_consume_token (parser);
do
{
c_token *next = c_parser_peek_token (parser);
int idx = 0;
/* Gang static argument. */
if (kind == OMP_CLAUSE_GANG
&& c_parser_next_token_is_keyword (parser, RID_STATIC))
{
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
goto cleanup_error;
idx = 1;
if (ops[idx] != NULL_TREE)
{
c_parser_error (parser, "too many % arguments");
goto cleanup_error;
}
/* Check for the '*' argument. */
if (c_parser_next_token_is (parser, CPP_MULT)
&& (c_parser_peek_2nd_token (parser)->type == CPP_COMMA
|| c_parser_peek_2nd_token (parser)->type
== CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
ops[idx] = integer_minus_one_node;
if (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
continue;
}
else
break;
}
}
/* Worker num: argument and vector length: arguments. */
else if (c_parser_next_token_is (parser, CPP_NAME)
&& strcmp (id, IDENTIFIER_POINTER (next->value)) == 0
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON)
{
c_parser_consume_token (parser); /* id */
c_parser_consume_token (parser); /* ':' */
}
/* Now collect the actual argument. */
if (ops[idx] != NULL_TREE)
{
c_parser_error (parser, "unexpected argument");
goto cleanup_error;
}
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr cexpr = c_parser_expr_no_commas (parser, NULL);
cexpr = convert_lvalue_to_rvalue (expr_loc, cexpr, false, true);
tree expr = cexpr.value;
if (expr == error_mark_node)
goto cleanup_error;
expr = c_fully_fold (expr, false, NULL);
/* Attempt to statically determine when the number isn't a
positive integer. */
if (!INTEGRAL_TYPE_P (TREE_TYPE (expr)))
{
c_parser_error (parser, "expected integer expression");
return list;
}
tree c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, expr,
build_int_cst (TREE_TYPE (expr), 0));
if (c == boolean_true_node)
{
warning_at (loc, 0,
"%qs value must be positive", str);
expr = integer_one_node;
}
ops[idx] = expr;
if (kind == OMP_CLAUSE_GANG
&& c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
continue;
}
break;
}
while (1);
if (!c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>"))
goto cleanup_error;
}
check_no_duplicate_clause (list, kind, str);
c = build_omp_clause (loc, kind);
if (ops[1])
OMP_CLAUSE_OPERAND (c, 1) = ops[1];
OMP_CLAUSE_OPERAND (c, 0) = ops[0];
OMP_CLAUSE_CHAIN (c) = list;
return c;
cleanup_error:
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, 0);
return list;
}
/* OpenACC 2.5:
auto
finalize
independent
nohost
seq */
static tree
c_parser_oacc_simple_clause (location_t loc, enum omp_clause_code code,
tree list)
{
check_no_duplicate_clause (list, code, omp_clause_code_name[code]);
tree c = build_omp_clause (loc, code);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenACC:
async [( int-expr )] */
static tree
c_parser_oacc_clause_async (c_parser *parser, tree list)
{
tree c, t;
location_t loc = c_parser_peek_token (parser)->location;
t = build_int_cst (integer_type_node, GOMP_ASYNC_NOVAL);
if (c_parser_peek_token (parser)->type == CPP_OPEN_PAREN)
{
c_parser_consume_token (parser);
t = c_parser_expr_no_commas (parser, NULL).value;
if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
c_parser_error (parser, "expected integer expression");
else if (t == error_mark_node
|| !c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>"))
return list;
}
else
t = c_fully_fold (t, false, NULL);
check_no_duplicate_clause (list, OMP_CLAUSE_ASYNC, "async");
c = build_omp_clause (loc, OMP_CLAUSE_ASYNC);
OMP_CLAUSE_ASYNC_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
return list;
}
/* OpenACC 2.0:
tile ( size-expr-list ) */
static tree
c_parser_oacc_clause_tile (c_parser *parser, tree list)
{
tree c, expr = error_mark_node;
location_t loc;
tree tile = NULL_TREE;
check_no_duplicate_clause (list, OMP_CLAUSE_TILE, "tile");
check_no_duplicate_clause (list, OMP_CLAUSE_COLLAPSE, "collapse");
loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
return list;
do
{
if (tile && !c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
return list;
if (c_parser_next_token_is (parser, CPP_MULT)
&& (c_parser_peek_2nd_token (parser)->type == CPP_COMMA
|| c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
expr = integer_zero_node;
}
else
{
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr cexpr = c_parser_expr_no_commas (parser, NULL);
cexpr = convert_lvalue_to_rvalue (expr_loc, cexpr, false, true);
expr = cexpr.value;
if (expr == error_mark_node)
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return list;
}
expr = c_fully_fold (expr, false, NULL);
if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
|| !tree_fits_shwi_p (expr)
|| tree_to_shwi (expr) <= 0)
{
error_at (expr_loc, "% argument needs positive"
" integral constant");
expr = integer_zero_node;
}
}
tile = tree_cons (NULL_TREE, expr, tile);
}
while (c_parser_next_token_is_not (parser, CPP_CLOSE_PAREN));
/* Consume the trailing ')'. */
c_parser_consume_token (parser);
c = build_omp_clause (loc, OMP_CLAUSE_TILE);
tile = nreverse (tile);
OMP_CLAUSE_TILE_LIST (c) = tile;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenACC:
wait [( int-expr-list )] */
static tree
c_parser_oacc_clause_wait (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
if (c_parser_peek_token (parser)->type == CPP_OPEN_PAREN)
list = c_parser_oacc_wait_list (parser, clause_loc, list);
else
{
tree c = build_omp_clause (clause_loc, OMP_CLAUSE_WAIT);
OMP_CLAUSE_DECL (c) = build_int_cst (integer_type_node, GOMP_ASYNC_NOVAL);
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenACC 2.7:
self [( expression )] */
static tree
c_parser_oacc_compute_clause_self (c_parser *parser, tree list)
{
tree t;
location_t location = c_parser_peek_token (parser)->location;
if (c_parser_peek_token (parser)->type == CPP_OPEN_PAREN)
{
matching_parens parens;
parens.consume_open (parser);
location_t loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (loc, expr, true, true);
t = c_objc_common_truthvalue_conversion (loc, expr.value);
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
}
else
t = truthvalue_true_node;
for (tree c = list; c; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_SELF)
{
error_at (location, "too many % clauses");
return list;
}
tree c = build_omp_clause (location, OMP_CLAUSE_SELF);
OMP_CLAUSE_SELF_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 5.0:
order ( concurrent )
OpenMP 5.1:
order ( order-modifier : concurrent )
order-modifier:
reproducible
unconstrained */
static tree
c_parser_omp_clause_order (c_parser *parser, tree list)
{
location_t loc = c_parser_peek_token (parser)->location;
tree c;
const char *p;
bool unconstrained = false;
bool reproducible = false;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON)
{
p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp (p, "unconstrained") == 0)
unconstrained = true;
else if (strcmp (p, "reproducible") == 0)
reproducible = true;
else
{
c_parser_error (parser, "expected % or "
"%");
goto out_err;
}
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
if (!c_parser_next_token_is (parser, CPP_NAME))
{
c_parser_error (parser, "expected %");
goto out_err;
}
p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp (p, "concurrent") != 0)
{
c_parser_error (parser, "expected %");
goto out_err;
}
c_parser_consume_token (parser);
parens.skip_until_found_close (parser);
check_no_duplicate_clause (list, OMP_CLAUSE_ORDER, "order");
c = build_omp_clause (loc, OMP_CLAUSE_ORDER);
OMP_CLAUSE_ORDER_UNCONSTRAINED (c) = unconstrained;
OMP_CLAUSE_ORDER_REPRODUCIBLE (c) = reproducible;
OMP_CLAUSE_CHAIN (c) = list;
return c;
out_err:
parens.skip_until_found_close (parser);
return list;
}
/* OpenMP 5.0:
bind ( teams | parallel | thread ) */
static tree
c_parser_omp_clause_bind (c_parser *parser, tree list)
{
location_t loc = c_parser_peek_token (parser)->location;
tree c;
const char *p;
enum omp_clause_bind_kind kind = OMP_CLAUSE_BIND_THREAD;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if (!c_parser_next_token_is (parser, CPP_NAME))
{
invalid:
c_parser_error (parser,
"expected %, % or %");
parens.skip_until_found_close (parser);
return list;
}
p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp (p, "teams") == 0)
kind = OMP_CLAUSE_BIND_TEAMS;
else if (strcmp (p, "parallel") == 0)
kind = OMP_CLAUSE_BIND_PARALLEL;
else if (strcmp (p, "thread") != 0)
goto invalid;
c_parser_consume_token (parser);
parens.skip_until_found_close (parser);
/* check_no_duplicate_clause (list, OMP_CLAUSE_BIND, "bind"); */
c = build_omp_clause (loc, OMP_CLAUSE_BIND);
OMP_CLAUSE_BIND_KIND (c) = kind;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
ordered
OpenMP 4.5:
ordered ( constant-expression ) */
static tree
c_parser_omp_clause_ordered (c_parser *parser, tree list)
{
check_no_duplicate_clause (list, OMP_CLAUSE_ORDERED, "ordered");
tree c, num = NULL_TREE;
HOST_WIDE_INT n;
location_t loc = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
matching_parens parens;
parens.consume_open (parser);
num = c_parser_expr_no_commas (parser, NULL).value;
parens.skip_until_found_close (parser);
}
if (num == error_mark_node)
return list;
if (num)
{
mark_exp_read (num);
num = c_fully_fold (num, false, NULL);
if (!INTEGRAL_TYPE_P (TREE_TYPE (num))
|| !tree_fits_shwi_p (num)
|| (n = tree_to_shwi (num)) <= 0
|| (int) n != n)
{
error_at (loc, "ordered argument needs positive "
"constant integer expression");
return list;
}
}
c = build_omp_clause (loc, OMP_CLAUSE_ORDERED);
OMP_CLAUSE_ORDERED_EXPR (c) = num;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
private ( variable-list ) */
static tree
c_parser_omp_clause_private (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_PRIVATE, list);
}
/* OpenMP 2.5:
reduction ( reduction-operator : variable-list )
reduction-operator:
One of: + * - & ^ | && ||
OpenMP 3.1:
reduction-operator:
One of: + * - & ^ | && || max min
OpenMP 4.0:
reduction-operator:
One of: + * - & ^ | && ||
identifier
OpenMP 5.0:
reduction ( reduction-modifier, reduction-operator : variable-list )
in_reduction ( reduction-operator : variable-list )
task_reduction ( reduction-operator : variable-list ) */
static tree
c_parser_omp_clause_reduction (c_parser *parser, enum omp_clause_code kind,
bool is_omp, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
bool task = false;
bool inscan = false;
enum tree_code code = ERROR_MARK;
tree reduc_id = NULL_TREE;
if (kind == OMP_CLAUSE_REDUCTION && is_omp)
{
if (c_parser_next_token_is_keyword (parser, RID_DEFAULT)
&& c_parser_peek_2nd_token (parser)->type == CPP_COMMA)
{
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COMMA)
{
const char *p
= IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp (p, "task") == 0)
task = true;
else if (strcmp (p, "inscan") == 0)
inscan = true;
if (task || inscan)
{
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
}
}
switch (c_parser_peek_token (parser)->type)
{
case CPP_PLUS:
code = PLUS_EXPR;
break;
case CPP_MULT:
code = MULT_EXPR;
break;
case CPP_MINUS:
code = MINUS_EXPR;
break;
case CPP_AND:
code = BIT_AND_EXPR;
break;
case CPP_XOR:
code = BIT_XOR_EXPR;
break;
case CPP_OR:
code = BIT_IOR_EXPR;
break;
case CPP_AND_AND:
code = TRUTH_ANDIF_EXPR;
break;
case CPP_OR_OR:
code = TRUTH_ORIF_EXPR;
break;
case CPP_NAME:
{
const char *p
= IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp (p, "min") == 0)
{
code = MIN_EXPR;
break;
}
if (strcmp (p, "max") == 0)
{
code = MAX_EXPR;
break;
}
reduc_id = c_parser_peek_token (parser)->value;
break;
}
default:
c_parser_error (parser,
"expected %<+%>, %<*%>, %<-%>, %<&%>, "
"%<^%>, %<|%>, %<&&%>, %<||%> or identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, 0);
return list;
}
c_parser_consume_token (parser);
reduc_id = c_omp_reduction_id (code, reduc_id);
if (c_parser_require (parser, CPP_COLON, "expected %<:%>"))
{
tree nl, c;
nl = c_parser_omp_variable_list (parser, clause_loc, kind, list);
for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c))
{
tree d = OMP_CLAUSE_DECL (c), type;
if (TREE_CODE (d) != OMP_ARRAY_SECTION)
type = TREE_TYPE (d);
else
{
int cnt = 0;
tree t;
for (t = d;
TREE_CODE (t) == OMP_ARRAY_SECTION;
t = TREE_OPERAND (t, 0))
cnt++;
type = TREE_TYPE (t);
while (cnt > 0)
{
if (TREE_CODE (type) != POINTER_TYPE
&& TREE_CODE (type) != ARRAY_TYPE)
break;
type = TREE_TYPE (type);
cnt--;
}
}
while (TREE_CODE (type) == ARRAY_TYPE)
type = TREE_TYPE (type);
OMP_CLAUSE_REDUCTION_CODE (c) = code;
if (task)
OMP_CLAUSE_REDUCTION_TASK (c) = 1;
else if (inscan)
OMP_CLAUSE_REDUCTION_INSCAN (c) = 1;
if (code == ERROR_MARK
|| !(INTEGRAL_TYPE_P (type)
|| SCALAR_FLOAT_TYPE_P (type)
|| TREE_CODE (type) == COMPLEX_TYPE))
OMP_CLAUSE_REDUCTION_PLACEHOLDER (c)
= c_omp_reduction_lookup (reduc_id,
TYPE_MAIN_VARIANT (type));
}
list = nl;
}
parens.skip_until_found_close (parser);
}
return list;
}
/* OpenMP 2.5:
schedule ( schedule-kind )
schedule ( schedule-kind , expression )
schedule-kind:
static | dynamic | guided | runtime | auto
OpenMP 4.5:
schedule ( schedule-modifier : schedule-kind )
schedule ( schedule-modifier [ , schedule-modifier ] : schedule-kind , expression )
schedule-modifier:
simd
monotonic
nonmonotonic */
static tree
c_parser_omp_clause_schedule (c_parser *parser, tree list)
{
tree c, t;
location_t loc = c_parser_peek_token (parser)->location;
int modifiers = 0, nmodifiers = 0;
matching_parens parens;
if (!parens.require_open (parser))
return list;
c = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
location_t comma = UNKNOWN_LOCATION;
while (c_parser_next_token_is (parser, CPP_NAME))
{
tree kind = c_parser_peek_token (parser)->value;
const char *p = IDENTIFIER_POINTER (kind);
if (strcmp ("simd", p) == 0)
OMP_CLAUSE_SCHEDULE_SIMD (c) = 1;
else if (strcmp ("monotonic", p) == 0)
modifiers |= OMP_CLAUSE_SCHEDULE_MONOTONIC;
else if (strcmp ("nonmonotonic", p) == 0)
modifiers |= OMP_CLAUSE_SCHEDULE_NONMONOTONIC;
else
break;
comma = UNKNOWN_LOCATION;
c_parser_consume_token (parser);
if (nmodifiers++ == 0
&& c_parser_next_token_is (parser, CPP_COMMA))
{
comma = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
}
else
{
c_parser_require (parser, CPP_COLON, "expected %<:%>");
break;
}
}
if (comma != UNKNOWN_LOCATION)
error_at (comma, "expected %<:%>");
if ((modifiers & (OMP_CLAUSE_SCHEDULE_MONOTONIC
| OMP_CLAUSE_SCHEDULE_NONMONOTONIC))
== (OMP_CLAUSE_SCHEDULE_MONOTONIC
| OMP_CLAUSE_SCHEDULE_NONMONOTONIC))
{
error_at (loc, "both % and % modifiers "
"specified");
modifiers = 0;
}
if (c_parser_next_token_is (parser, CPP_NAME))
{
tree kind = c_parser_peek_token (parser)->value;
const char *p = IDENTIFIER_POINTER (kind);
switch (p[0])
{
case 'd':
if (strcmp ("dynamic", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
break;
case 'g':
if (strcmp ("guided", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_GUIDED;
break;
case 'r':
if (strcmp ("runtime", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_RUNTIME;
break;
default:
goto invalid_kind;
}
}
else if (c_parser_next_token_is_keyword (parser, RID_STATIC))
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_STATIC;
else if (c_parser_next_token_is_keyword (parser, RID_AUTO))
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_AUTO;
else
goto invalid_kind;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
{
location_t here;
c_parser_consume_token (parser);
here = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (here, expr, false, true);
t = expr.value;
t = c_fully_fold (t, false, NULL);
if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_RUNTIME)
error_at (here, "schedule % does not take "
"a % parameter");
else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_AUTO)
error_at (here,
"schedule % does not take "
"a % parameter");
else if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
|| TREE_CODE (TREE_TYPE (t)) == BITINT_TYPE)
{
/* Attempt to statically determine when the number isn't
positive. */
tree s = fold_build2_loc (loc, LE_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
protected_set_expr_location (s, loc);
if (s == boolean_true_node)
{
warning_at (loc, OPT_Wopenmp,
"chunk size value must be positive");
t = integer_one_node;
}
OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c) = t;
}
else
c_parser_error (parser, "expected integer expression");
parens.skip_until_found_close (parser);
}
else
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<,%> or %<)%>");
OMP_CLAUSE_SCHEDULE_KIND (c)
= (enum omp_clause_schedule_kind)
(OMP_CLAUSE_SCHEDULE_KIND (c) | modifiers);
check_no_duplicate_clause (list, OMP_CLAUSE_SCHEDULE, "schedule");
OMP_CLAUSE_CHAIN (c) = list;
return c;
invalid_kind:
c_parser_error (parser, "invalid schedule kind");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, 0);
return list;
}
/* OpenMP 2.5:
shared ( variable-list ) */
static tree
c_parser_omp_clause_shared (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_SHARED, list);
}
/* OpenMP 3.0:
untied */
static tree
c_parser_omp_clause_untied (c_parser *parser ATTRIBUTE_UNUSED, tree list)
{
tree c;
/* FIXME: Should we allow duplicates? */
check_no_duplicate_clause (list, OMP_CLAUSE_UNTIED, "untied");
c = build_omp_clause (c_parser_peek_token (parser)->location,
OMP_CLAUSE_UNTIED);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 4.0:
inbranch
notinbranch */
static tree
c_parser_omp_clause_branch (c_parser *parser ATTRIBUTE_UNUSED,
enum omp_clause_code code, tree list)
{
check_no_duplicate_clause (list, code, omp_clause_code_name[code]);
tree c = build_omp_clause (c_parser_peek_token (parser)->location, code);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 4.0:
parallel
for
sections
taskgroup */
static tree
c_parser_omp_clause_cancelkind (c_parser *parser ATTRIBUTE_UNUSED,
enum omp_clause_code code, tree list)
{
tree c = build_omp_clause (c_parser_peek_token (parser)->location, code);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 4.5:
nogroup */
static tree
c_parser_omp_clause_nogroup (c_parser *parser ATTRIBUTE_UNUSED, tree list)
{
check_no_duplicate_clause (list, OMP_CLAUSE_NOGROUP, "nogroup");
tree c = build_omp_clause (c_parser_peek_token (parser)->location,
OMP_CLAUSE_NOGROUP);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 4.5:
simd
threads */
static tree
c_parser_omp_clause_orderedkind (c_parser *parser ATTRIBUTE_UNUSED,
enum omp_clause_code code, tree list)
{
check_no_duplicate_clause (list, code, omp_clause_code_name[code]);
tree c = build_omp_clause (c_parser_peek_token (parser)->location, code);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 4.0:
num_teams ( expression )
OpenMP 5.1:
num_teams ( expression : expression ) */
static tree
c_parser_omp_clause_num_teams (c_parser *parser, tree list)
{
location_t num_teams_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
location_t upper_loc = c_parser_peek_token (parser)->location;
location_t lower_loc = UNKNOWN_LOCATION;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (upper_loc, expr, false, true);
tree c, upper = expr.value, lower = NULL_TREE;
upper = c_fully_fold (upper, false, NULL);
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
lower_loc = upper_loc;
lower = upper;
upper_loc = c_parser_peek_token (parser)->location;
expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (upper_loc, expr, false, true);
upper = expr.value;
upper = c_fully_fold (upper, false, NULL);
}
parens.skip_until_found_close (parser);
if (!INTEGRAL_TYPE_P (TREE_TYPE (upper))
|| (lower && !INTEGRAL_TYPE_P (TREE_TYPE (lower))))
{
c_parser_error (parser, "expected integer expression");
return list;
}
/* Attempt to statically determine when the number isn't positive. */
c = fold_build2_loc (upper_loc, LE_EXPR, boolean_type_node, upper,
build_int_cst (TREE_TYPE (upper), 0));
protected_set_expr_location (c, upper_loc);
if (c == boolean_true_node)
{
warning_at (upper_loc, OPT_Wopenmp,
"% value must be positive");
upper = integer_one_node;
}
if (lower)
{
c = fold_build2_loc (lower_loc, LE_EXPR, boolean_type_node, lower,
build_int_cst (TREE_TYPE (lower), 0));
protected_set_expr_location (c, lower_loc);
if (c == boolean_true_node)
{
warning_at (lower_loc, OPT_Wopenmp,
"% value must be positive");
lower = NULL_TREE;
}
else if (TREE_CODE (lower) == INTEGER_CST
&& TREE_CODE (upper) == INTEGER_CST
&& tree_int_cst_lt (upper, lower))
{
warning_at (lower_loc, OPT_Wopenmp,
"% lower bound %qE bigger than upper "
"bound %qE", lower, upper);
lower = NULL_TREE;
}
}
check_no_duplicate_clause (list, OMP_CLAUSE_NUM_TEAMS, "num_teams");
c = build_omp_clause (num_teams_loc, OMP_CLAUSE_NUM_TEAMS);
OMP_CLAUSE_NUM_TEAMS_UPPER_EXPR (c) = upper;
OMP_CLAUSE_NUM_TEAMS_LOWER_EXPR (c) = lower;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 4.0:
thread_limit ( expression ) */
static tree
c_parser_omp_clause_thread_limit (c_parser *parser, tree list)
{
location_t num_thread_limit_loc = c_parser_peek_token (parser)->location;
matching_parens parens;
if (parens.require_open (parser))
{
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree c, t = expr.value;
t = c_fully_fold (t, false, NULL);
parens.skip_until_found_close (parser);
if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
{
c_parser_error (parser, "expected integer expression");
return list;
}
/* Attempt to statically determine when the number isn't positive. */
c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
protected_set_expr_location (c, expr_loc);
if (c == boolean_true_node)
{
warning_at (expr_loc, OPT_Wopenmp,
"% value must be positive");
t = integer_one_node;
}
check_no_duplicate_clause (list, OMP_CLAUSE_THREAD_LIMIT,
"thread_limit");
c = build_omp_clause (num_thread_limit_loc, OMP_CLAUSE_THREAD_LIMIT);
OMP_CLAUSE_THREAD_LIMIT_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 4.0:
aligned ( variable-list )
aligned ( variable-list : constant-expression ) */
static tree
c_parser_omp_clause_aligned (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
tree nl, c;
matching_parens parens;
if (!parens.require_open (parser))
return list;
nl = c_parser_omp_variable_list (parser, clause_loc,
OMP_CLAUSE_ALIGNED, list);
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
tree alignment = expr.value;
alignment = c_fully_fold (alignment, false, NULL);
if (TREE_CODE (alignment) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (alignment))
|| tree_int_cst_sgn (alignment) != 1)
{
error_at (clause_loc, "% clause alignment expression must "
"be positive constant integer expression");
alignment = NULL_TREE;
}
for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c))
OMP_CLAUSE_ALIGNED_ALIGNMENT (c) = alignment;
}
parens.skip_until_found_close (parser);
return nl;
}
/* OpenMP 5.0:
allocate ( variable-list )
allocate ( expression : variable-list )
OpenMP 5.1:
allocate ( allocator-modifier : variable-list )
allocate ( allocator-modifier , allocator-modifier : variable-list )
allocator-modifier:
allocator ( expression )
align ( expression ) */
static tree
c_parser_omp_clause_allocate (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
tree nl, c;
tree allocator = NULL_TREE;
tree align = NULL_TREE;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if ((c_parser_next_token_is_not (parser, CPP_NAME)
&& c_parser_next_token_is_not (parser, CPP_KEYWORD))
|| (c_parser_peek_2nd_token (parser)->type != CPP_COMMA
&& c_parser_peek_2nd_token (parser)->type != CPP_CLOSE_PAREN))
{
bool has_modifiers = false;
tree orig_type = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_OPEN_PAREN)
{
unsigned int n = 3;
const char *p
= IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if ((strcmp (p, "allocator") == 0 || strcmp (p, "align") == 0)
&& c_parser_check_balanced_raw_token_sequence (parser, &n)
&& (c_parser_peek_nth_token_raw (parser, n)->type
== CPP_CLOSE_PAREN))
{
if (c_parser_peek_nth_token_raw (parser, n + 1)->type
== CPP_COLON)
has_modifiers = true;
else if (c_parser_peek_nth_token_raw (parser, n + 1)->type
== CPP_COMMA
&& (c_parser_peek_nth_token_raw (parser, n + 2)->type
== CPP_NAME)
&& (c_parser_peek_nth_token_raw (parser, n + 3)->type
== CPP_OPEN_PAREN))
{
c_token *tok = c_parser_peek_nth_token_raw (parser, n + 2);
const char *q = IDENTIFIER_POINTER (tok->value);
n += 4;
if ((strcmp (q, "allocator") == 0
|| strcmp (q, "align") == 0)
&& c_parser_check_balanced_raw_token_sequence (parser,
&n)
&& (c_parser_peek_nth_token_raw (parser, n)->type
== CPP_CLOSE_PAREN)
&& (c_parser_peek_nth_token_raw (parser, n + 1)->type
== CPP_COLON))
has_modifiers = true;
}
}
if (has_modifiers)
{
c_parser_consume_token (parser);
matching_parens parens2;
parens2.require_open (parser);
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
if (expr.value == error_mark_node)
;
else if (strcmp (p, "allocator") == 0)
{
allocator = expr.value;
allocator = c_fully_fold (allocator, false, NULL);
orig_type = expr.original_type
? expr.original_type : TREE_TYPE (allocator);
orig_type = TYPE_MAIN_VARIANT (orig_type);
}
else
{
align = expr.value;
align = c_fully_fold (align, false, NULL);
}
parens2.skip_until_found_close (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
c_token *tok = c_parser_peek_token (parser);
const char *q = "";
if (c_parser_next_token_is (parser, CPP_NAME))
q = IDENTIFIER_POINTER (tok->value);
if (strcmp (q, "allocator") != 0 && strcmp (q, "align") != 0)
{
c_parser_error (parser, "expected % or "
"%");
parens.skip_until_found_close (parser);
return list;
}
else if (strcmp (p, q) == 0)
{
error_at (tok->location, "duplicate %qs modifier", p);
parens.skip_until_found_close (parser);
return list;
}
c_parser_consume_token (parser);
if (!parens2.require_open (parser))
{
parens.skip_until_found_close (parser);
return list;
}
expr_loc = c_parser_peek_token (parser)->location;
expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false,
true);
if (strcmp (q, "allocator") == 0)
{
allocator = expr.value;
allocator = c_fully_fold (allocator, false, NULL);
orig_type = expr.original_type
? expr.original_type : TREE_TYPE (allocator);
orig_type = TYPE_MAIN_VARIANT (orig_type);
}
else
{
align = expr.value;
align = c_fully_fold (align, false, NULL);
}
parens2.skip_until_found_close (parser);
}
}
}
if (!has_modifiers)
{
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
allocator = expr.value;
allocator = c_fully_fold (allocator, false, NULL);
orig_type = expr.original_type
? expr.original_type : TREE_TYPE (allocator);
orig_type = TYPE_MAIN_VARIANT (orig_type);
}
if (allocator
&& (!INTEGRAL_TYPE_P (TREE_TYPE (allocator))
|| TREE_CODE (orig_type) != ENUMERAL_TYPE
|| (TYPE_NAME (orig_type)
!= get_identifier ("omp_allocator_handle_t"))))
{
error_at (clause_loc, "% clause allocator expression "
"has type %qT rather than "
"%",
TREE_TYPE (allocator));
allocator = NULL_TREE;
}
if (align
&& (!INTEGRAL_TYPE_P (TREE_TYPE (align))
|| !tree_fits_uhwi_p (align)
|| !integer_pow2p (align)))
{
error_at (clause_loc, "% clause % modifier "
"argument needs to be positive constant "
"power of two integer expression");
align = NULL_TREE;
}
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
{
parens.skip_until_found_close (parser);
return list;
}
}
nl = c_parser_omp_variable_list (parser, clause_loc,
OMP_CLAUSE_ALLOCATE, list);
if (allocator || align)
for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c))
{
OMP_CLAUSE_ALLOCATE_ALLOCATOR (c) = allocator;
OMP_CLAUSE_ALLOCATE_ALIGN (c) = align;
}
parens.skip_until_found_close (parser);
return nl;
}
/* OpenMP 4.0:
linear ( variable-list )
linear ( variable-list : expression )
OpenMP 4.5:
linear ( modifier ( variable-list ) )
linear ( modifier ( variable-list ) : expression )
modifier:
val
OpenMP 5.2:
linear ( variable-list : modifiers-list )
modifiers:
val
step ( expression ) */
static tree
c_parser_omp_clause_linear (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
tree nl, c, step;
enum omp_clause_linear_kind kind = OMP_CLAUSE_LINEAR_DEFAULT;
bool old_linear_modifier = false;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *tok = c_parser_peek_token (parser);
const char *p = IDENTIFIER_POINTER (tok->value);
if (strcmp ("val", p) == 0)
kind = OMP_CLAUSE_LINEAR_VAL;
if (c_parser_peek_2nd_token (parser)->type != CPP_OPEN_PAREN)
kind = OMP_CLAUSE_LINEAR_DEFAULT;
if (kind != OMP_CLAUSE_LINEAR_DEFAULT)
{
old_linear_modifier = true;
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
}
nl = c_parser_omp_variable_list (parser, clause_loc,
OMP_CLAUSE_LINEAR, list);
if (kind != OMP_CLAUSE_LINEAR_DEFAULT)
parens.skip_until_found_close (parser);
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
location_t expr_loc = c_parser_peek_token (parser)->location;
bool has_modifiers = false;
if (kind == OMP_CLAUSE_LINEAR_DEFAULT
&& c_parser_next_token_is (parser, CPP_NAME))
{
c_token *tok = c_parser_peek_token (parser);
const char *p = IDENTIFIER_POINTER (tok->value);
unsigned int pos = 0;
if (strcmp ("val", p) == 0)
pos = 2;
else if (strcmp ("step", p) == 0
&& c_parser_peek_2nd_token (parser)->type == CPP_OPEN_PAREN)
{
pos = 3;
if (c_parser_check_balanced_raw_token_sequence (parser, &pos)
&& (c_parser_peek_nth_token_raw (parser, pos)->type
== CPP_CLOSE_PAREN))
++pos;
else
pos = 0;
}
if (pos)
{
tok = c_parser_peek_nth_token_raw (parser, pos);
if (tok->type == CPP_COMMA || tok->type == CPP_CLOSE_PAREN)
has_modifiers = true;
}
}
if (has_modifiers)
{
step = NULL_TREE;
while (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *tok = c_parser_peek_token (parser);
const char *p = IDENTIFIER_POINTER (tok->value);
if (strcmp ("val", p) == 0)
{
if (kind != OMP_CLAUSE_LINEAR_DEFAULT)
error_at (tok->location, "multiple linear modifiers");
kind = OMP_CLAUSE_LINEAR_DEFAULT;
c_parser_consume_token (parser);
}
else if (strcmp ("step", p) == 0)
{
c_parser_consume_token (parser);
matching_parens parens2;
if (parens2.require_open (parser))
{
if (step)
error_at (tok->location,
"multiple % modifiers");
expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false,
true);
step = c_fully_fold (expr.value, false, NULL);
if (!INTEGRAL_TYPE_P (TREE_TYPE (step)))
{
error_at (clause_loc, "% clause step "
"expression must be integral");
step = integer_one_node;
}
parens2.skip_until_found_close (parser);
}
else
break;
}
else
break;
if (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
continue;
}
break;
}
if (!step)
step = integer_one_node;
}
else
{
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
step = c_fully_fold (expr.value, false, NULL);
if (!INTEGRAL_TYPE_P (TREE_TYPE (step)))
{
error_at (clause_loc, "% clause step expression must "
"be integral");
step = integer_one_node;
}
}
}
else
step = integer_one_node;
for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c))
{
OMP_CLAUSE_LINEAR_STEP (c) = step;
OMP_CLAUSE_LINEAR_KIND (c) = kind;
OMP_CLAUSE_LINEAR_OLD_LINEAR_MODIFIER (c) = old_linear_modifier;
}
parens.skip_until_found_close (parser);
return nl;
}
/* OpenMP 5.0:
nontemporal ( variable-list ) */
static tree
c_parser_omp_clause_nontemporal (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_NONTEMPORAL, list);
}
/* OpenMP 4.0:
safelen ( constant-expression ) */
static tree
c_parser_omp_clause_safelen (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
tree c, t;
matching_parens parens;
if (!parens.require_open (parser))
return list;
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
t = expr.value;
t = c_fully_fold (t, false, NULL);
if (TREE_CODE (t) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (t))
|| tree_int_cst_sgn (t) != 1)
{
error_at (clause_loc, "% clause expression must "
"be positive constant integer expression");
t = NULL_TREE;
}
parens.skip_until_found_close (parser);
if (t == NULL_TREE || t == error_mark_node)
return list;
check_no_duplicate_clause (list, OMP_CLAUSE_SAFELEN, "safelen");
c = build_omp_clause (clause_loc, OMP_CLAUSE_SAFELEN);
OMP_CLAUSE_SAFELEN_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 4.0:
simdlen ( constant-expression ) */
static tree
c_parser_omp_clause_simdlen (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
tree c, t;
matching_parens parens;
if (!parens.require_open (parser))
return list;
location_t expr_loc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true);
t = expr.value;
t = c_fully_fold (t, false, NULL);
if (TREE_CODE (t) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (t))
|| tree_int_cst_sgn (t) != 1)
{
error_at (clause_loc, "% clause expression must "
"be positive constant integer expression");
t = NULL_TREE;
}
parens.skip_until_found_close (parser);
if (t == NULL_TREE || t == error_mark_node)
return list;
check_no_duplicate_clause (list, OMP_CLAUSE_SIMDLEN, "simdlen");
c = build_omp_clause (clause_loc, OMP_CLAUSE_SIMDLEN);
OMP_CLAUSE_SIMDLEN_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 4.5:
vec:
identifier [+/- integer]
vec , identifier [+/- integer]
*/
static tree
c_parser_omp_clause_doacross_sink (c_parser *parser, location_t clause_loc,
tree list, bool depend_p)
{
tree vec = NULL;
if (c_parser_next_token_is_not (parser, CPP_NAME)
|| c_parser_peek_token (parser)->id_kind != C_ID_ID)
{
c_parser_error (parser, "expected identifier");
return list;
}
if (!depend_p)
{
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp (p, "omp_cur_iteration") == 0
&& c_parser_peek_2nd_token (parser)->type == CPP_MINUS
&& c_parser_peek_nth_token (parser, 3)->type == CPP_NUMBER
&& c_parser_peek_nth_token (parser, 4)->type == CPP_CLOSE_PAREN)
{
tree val = c_parser_peek_nth_token (parser, 3)->value;
if (integer_onep (val))
{
c_parser_consume_token (parser);
c_parser_consume_token (parser);
c_parser_consume_token (parser);
tree u = build_omp_clause (clause_loc, OMP_CLAUSE_DOACROSS);
OMP_CLAUSE_DOACROSS_KIND (u) = OMP_CLAUSE_DOACROSS_SINK;
OMP_CLAUSE_CHAIN (u) = list;
return u;
}
}
}
while (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_ID)
{
tree t = lookup_name (c_parser_peek_token (parser)->value);
tree addend = NULL;
if (t == NULL_TREE)
{
undeclared_variable (c_parser_peek_token (parser)->location,
c_parser_peek_token (parser)->value);
t = error_mark_node;
}
c_parser_consume_token (parser);
bool neg = false;
if (c_parser_next_token_is (parser, CPP_MINUS))
neg = true;
else if (!c_parser_next_token_is (parser, CPP_PLUS))
{
addend = integer_zero_node;
neg = false;
goto add_to_vector;
}
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NUMBER))
{
c_parser_error (parser, "expected integer");
return list;
}
addend = c_parser_peek_token (parser)->value;
if (TREE_CODE (addend) != INTEGER_CST)
{
c_parser_error (parser, "expected integer");
return list;
}
c_parser_consume_token (parser);
add_to_vector:
if (t != error_mark_node)
{
vec = tree_cons (addend, t, vec);
if (neg)
OMP_CLAUSE_DOACROSS_SINK_NEGATIVE (vec) = 1;
}
if (c_parser_next_token_is_not (parser, CPP_COMMA)
|| c_parser_peek_2nd_token (parser)->type != CPP_NAME
|| c_parser_peek_2nd_token (parser)->id_kind != C_ID_ID)
break;
c_parser_consume_token (parser);
}
if (vec == NULL_TREE)
return list;
tree u = build_omp_clause (clause_loc, OMP_CLAUSE_DOACROSS);
OMP_CLAUSE_DOACROSS_KIND (u) = OMP_CLAUSE_DOACROSS_SINK;
OMP_CLAUSE_DOACROSS_DEPEND (u) = depend_p;
OMP_CLAUSE_DECL (u) = nreverse (vec);
OMP_CLAUSE_CHAIN (u) = list;
return u;
}
/* OpenMP 5.0:
iterators ( iterators-definition )
iterators-definition:
iterator-specifier
iterator-specifier , iterators-definition
iterator-specifier:
identifier = range-specification
iterator-type identifier = range-specification
range-specification:
begin : end
begin : end : step */
static tree
c_parser_omp_iterators (c_parser *parser)
{
tree ret = NULL_TREE, *last = &ret;
c_parser_consume_token (parser);
push_scope ();
matching_parens parens;
if (!parens.require_open (parser))
return error_mark_node;
do
{
tree iter_type = NULL_TREE, type_expr = NULL_TREE;
if (c_parser_next_tokens_start_typename (parser, cla_prefer_id))
{
struct c_type_name *type = c_parser_type_name (parser);
if (type != NULL)
iter_type = groktypename (type, &type_expr, NULL);
}
if (iter_type == NULL_TREE)
iter_type = integer_type_node;
location_t loc = c_parser_peek_token (parser)->location;
if (!c_parser_next_token_is (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_EQ, "expected %<=%>"))
break;
location_t eloc = c_parser_peek_token (parser)->location;
c_expr expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (eloc, expr, true, false);
tree begin = expr.value;
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
break;
eloc = c_parser_peek_token (parser)->location;
expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (eloc, expr, true, false);
tree end = expr.value;
tree step = integer_one_node;
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
eloc = c_parser_peek_token (parser)->location;
expr = c_parser_expr_no_commas (parser, NULL);
expr = convert_lvalue_to_rvalue (eloc, expr, true, false);
step = expr.value;
}
tree iter_var = build_decl (loc, VAR_DECL, id, iter_type);
DECL_ARTIFICIAL (iter_var) = 1;
DECL_CONTEXT (iter_var) = current_function_decl;
pushdecl (iter_var);
*last = make_tree_vec (6);
TREE_VEC_ELT (*last, 0) = iter_var;
TREE_VEC_ELT (*last, 1) = begin;
TREE_VEC_ELT (*last, 2) = end;
TREE_VEC_ELT (*last, 3) = step;
last = &TREE_CHAIN (*last);
if (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
continue;
}
break;
}
while (1);
parens.skip_until_found_close (parser);
return ret ? ret : error_mark_node;
}
/* OpenMP 5.0:
affinity ( [aff-modifier :] variable-list )
aff-modifier:
iterator ( iterators-definition ) */
static tree
c_parser_omp_clause_affinity (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
tree nl, iterators = NULL_TREE;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if (c_parser_next_token_is (parser, CPP_NAME))
{
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
bool parse_iter = ((strcmp ("iterator", p) == 0)
&& (c_parser_peek_2nd_token (parser)->type
== CPP_OPEN_PAREN));
if (parse_iter)
{
unsigned n = 3;
parse_iter = (c_parser_check_balanced_raw_token_sequence (parser, &n)
&& (c_parser_peek_nth_token_raw (parser, n)->type
== CPP_CLOSE_PAREN)
&& (c_parser_peek_nth_token_raw (parser, n + 1)->type
== CPP_COLON));
}
if (parse_iter)
{
iterators = c_parser_omp_iterators (parser);
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
{
if (iterators)
pop_scope ();
parens.skip_until_found_close (parser);
return list;
}
}
}
nl = c_parser_omp_variable_list (parser, clause_loc, OMP_CLAUSE_AFFINITY,
list);
if (iterators)
{
tree block = pop_scope ();
if (iterators != error_mark_node)
{
TREE_VEC_ELT (iterators, 5) = block;
for (tree c = nl; c != list; c = OMP_CLAUSE_CHAIN (c))
OMP_CLAUSE_DECL (c) = build_tree_list (iterators,
OMP_CLAUSE_DECL (c));
}
}
parens.skip_until_found_close (parser);
return nl;
}
/* OpenMP 4.0:
depend ( depend-kind: variable-list )
depend-kind:
in | out | inout
OpenMP 4.5:
depend ( source )
depend ( sink : vec )
OpenMP 5.0:
depend ( depend-modifier , depend-kind: variable-list )
depend-kind:
in | out | inout | mutexinoutset | depobj | inoutset
depend-modifier:
iterator ( iterators-definition ) */
static tree
c_parser_omp_clause_depend (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
enum omp_clause_depend_kind kind = OMP_CLAUSE_DEPEND_LAST;
enum omp_clause_doacross_kind dkind = OMP_CLAUSE_DOACROSS_LAST;
tree nl, c, iterators = NULL_TREE;
matching_parens parens;
if (!parens.require_open (parser))
return list;
do
{
if (c_parser_next_token_is_not (parser, CPP_NAME))
goto invalid_kind;
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp ("iterator", p) == 0 && iterators == NULL_TREE)
{
iterators = c_parser_omp_iterators (parser);
c_parser_require (parser, CPP_COMMA, "expected %<,%>");
continue;
}
if (strcmp ("in", p) == 0)
kind = OMP_CLAUSE_DEPEND_IN;
else if (strcmp ("inout", p) == 0)
kind = OMP_CLAUSE_DEPEND_INOUT;
else if (strcmp ("inoutset", p) == 0)
kind = OMP_CLAUSE_DEPEND_INOUTSET;
else if (strcmp ("mutexinoutset", p) == 0)
kind = OMP_CLAUSE_DEPEND_MUTEXINOUTSET;
else if (strcmp ("out", p) == 0)
kind = OMP_CLAUSE_DEPEND_OUT;
else if (strcmp ("depobj", p) == 0)
kind = OMP_CLAUSE_DEPEND_DEPOBJ;
else if (strcmp ("sink", p) == 0)
dkind = OMP_CLAUSE_DOACROSS_SINK;
else if (strcmp ("source", p) == 0)
dkind = OMP_CLAUSE_DOACROSS_SOURCE;
else
goto invalid_kind;
break;
}
while (1);
c_parser_consume_token (parser);
if (iterators
&& (dkind == OMP_CLAUSE_DOACROSS_SOURCE
|| dkind == OMP_CLAUSE_DOACROSS_SINK))
{
pop_scope ();
error_at (clause_loc, "% modifier incompatible with %qs",
dkind == OMP_CLAUSE_DOACROSS_SOURCE ? "source" : "sink");
iterators = NULL_TREE;
}
if (dkind == OMP_CLAUSE_DOACROSS_SOURCE)
{
c = build_omp_clause (clause_loc, OMP_CLAUSE_DOACROSS);
OMP_CLAUSE_DOACROSS_KIND (c) = dkind;
OMP_CLAUSE_DOACROSS_DEPEND (c) = 1;
OMP_CLAUSE_DECL (c) = NULL_TREE;
OMP_CLAUSE_CHAIN (c) = list;
parens.skip_until_found_close (parser);
return c;
}
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
goto resync_fail;
if (dkind == OMP_CLAUSE_DOACROSS_SINK)
nl = c_parser_omp_clause_doacross_sink (parser, clause_loc, list, true);
else
{
nl = c_parser_omp_variable_list (parser, clause_loc,
OMP_CLAUSE_DEPEND, list);
if (iterators)
{
tree block = pop_scope ();
if (iterators == error_mark_node)
iterators = NULL_TREE;
else
TREE_VEC_ELT (iterators, 5) = block;
}
for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c))
{
OMP_CLAUSE_DEPEND_KIND (c) = kind;
if (iterators)
OMP_CLAUSE_DECL (c)
= build_tree_list (iterators, OMP_CLAUSE_DECL (c));
}
}
parens.skip_until_found_close (parser);
return nl;
invalid_kind:
c_parser_error (parser, "invalid depend kind");
resync_fail:
parens.skip_until_found_close (parser);
if (iterators)
pop_scope ();
return list;
}
/* OpenMP 5.2:
doacross ( source : )
doacross ( source : omp_cur_iteration )
doacross ( sink : vec )
doacross ( sink : omp_cur_iteration - logical_iteration ) */
static tree
c_parser_omp_clause_doacross (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
enum omp_clause_doacross_kind kind = OMP_CLAUSE_DOACROSS_LAST;
tree nl;
const char *p;
matching_parens parens;
if (!parens.require_open (parser))
return list;
if (c_parser_next_token_is_not (parser, CPP_NAME))
goto invalid_kind;
p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp ("sink", p) == 0)
kind = OMP_CLAUSE_DOACROSS_SINK;
else if (strcmp ("source", p) == 0)
kind = OMP_CLAUSE_DOACROSS_SOURCE;
else
goto invalid_kind;
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
goto resync_fail;
if (kind == OMP_CLAUSE_DOACROSS_SOURCE)
{
if (c_parser_next_token_is (parser, CPP_NAME)
&& strcmp (IDENTIFIER_POINTER (c_parser_peek_token (parser)->value),
"omp_cur_iteration") == 0)
c_parser_consume_token (parser);
nl = build_omp_clause (clause_loc, OMP_CLAUSE_DOACROSS);
OMP_CLAUSE_DOACROSS_KIND (nl) = OMP_CLAUSE_DOACROSS_SOURCE;
OMP_CLAUSE_DECL (nl) = NULL_TREE;
OMP_CLAUSE_CHAIN (nl) = list;
}
else
nl = c_parser_omp_clause_doacross_sink (parser, clause_loc, list, false);
parens.skip_until_found_close (parser);
return nl;
invalid_kind:
c_parser_error (parser, "invalid doacross kind");
resync_fail:
parens.skip_until_found_close (parser);
return list;
}
/* OpenMP 4.0:
map ( map-kind: variable-list )
map ( variable-list )
map-kind:
alloc | to | from | tofrom
OpenMP 4.5:
map-kind:
alloc | to | from | tofrom | release | delete
map ( always [,] map-kind: variable-list )
OpenMP 5.0:
map ( [map-type-modifier[,] ...] map-kind: variable-list )
map-type-modifier:
always | close */
static tree
c_parser_omp_clause_map (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
enum gomp_map_kind kind = GOMP_MAP_TOFROM;
tree nl, c;
matching_parens parens;
if (!parens.require_open (parser))
return list;
int pos = 1;
int map_kind_pos = 0;
while (c_parser_peek_nth_token_raw (parser, pos)->type == CPP_NAME)
{
if (c_parser_peek_nth_token_raw (parser, pos + 1)->type == CPP_COLON)
{
map_kind_pos = pos;
break;
}
if (c_parser_peek_nth_token_raw (parser, pos + 1)->type == CPP_COMMA)
pos++;
pos++;
}
int always_modifier = 0;
int close_modifier = 0;
int present_modifier = 0;
for (int pos = 1; pos < map_kind_pos; ++pos)
{
c_token *tok = c_parser_peek_token (parser);
if (tok->type == CPP_COMMA)
{
c_parser_consume_token (parser);
continue;
}
const char *p = IDENTIFIER_POINTER (tok->value);
if (strcmp ("always", p) == 0)
{
if (always_modifier)
{
c_parser_error (parser, "too many % modifiers");
parens.skip_until_found_close (parser);
return list;
}
always_modifier++;
}
else if (strcmp ("close", p) == 0)
{
if (close_modifier)
{
c_parser_error (parser, "too many % modifiers");
parens.skip_until_found_close (parser);
return list;
}
close_modifier++;
}
else if (strcmp ("present", p) == 0)
{
if (present_modifier)
{
c_parser_error (parser, "too many % modifiers");
parens.skip_until_found_close (parser);
return list;
}
present_modifier++;
}
else
{
c_parser_error (parser, "%