/* Parser for C and Objective-C. Copyright (C) 1987-2019 Free Software Foundation, Inc. Parser actions based on the old Bison parser; structure somewhat influenced by and fragments based on the C++ parser. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* TODO: Make sure all relevant comments, and all relevant code from all actions, brought over from old parser. Verify exact correspondence of syntax accepted. Add testcases covering every input symbol in every state in old and new parsers. Include full syntax for GNU C, including erroneous cases accepted with error messages, in syntax productions in comments. Make more diagnostics in the front end generally take an explicit location rather than implicitly using input_location. */ #include "config.h" #define INCLUDE_UNIQUE_PTR #include "system.h" #include "coretypes.h" #include "target.h" #include "function.h" #include "c-tree.h" #include "timevar.h" #include "stringpool.h" #include "cgraph.h" #include "attribs.h" #include "stor-layout.h" #include "varasm.h" #include "trans-mem.h" #include "c-family/c-pragma.h" #include "c-lang.h" #include "c-family/c-objc.h" #include "plugin.h" #include "omp-general.h" #include "omp-offload.h" #include "builtins.h" #include "gomp-constants.h" #include "c-family/c-indentation.h" #include "gimple-expr.h" #include "context.h" #include "gcc-rich-location.h" #include "c-parser.h" #include "gimple-parser.h" #include "read-rtl-function.h" #include "run-rtl-passes.h" #include "intl.h" #include "c-family/name-hint.h" #include "tree-iterator.h" #include "memmodel.h" /* We need to walk over decls with incomplete struct/union/enum types after parsing the whole translation unit. In finish_decl(), if the decl is static, has incomplete struct/union/enum type, it is appeneded to incomplete_record_decls. In c_parser_translation_unit(), we iterate over incomplete_record_decls and report error if any of the decls are still incomplete. */ vec incomplete_record_decls; void set_c_expr_source_range (c_expr *expr, location_t start, location_t finish) { expr->src_range.m_start = start; expr->src_range.m_finish = finish; if (expr->value) set_source_range (expr->value, start, finish); } void set_c_expr_source_range (c_expr *expr, source_range src_range) { expr->src_range = src_range; if (expr->value) set_source_range (expr->value, src_range); } /* Initialization routine for this file. */ void c_parse_init (void) { /* The only initialization required is of the reserved word identifiers. */ unsigned int i; tree id; int mask = 0; /* Make sure RID_MAX hasn't grown past the 8 bits used to hold the keyword in the c_token structure. */ gcc_assert (RID_MAX <= 255); mask |= D_CXXONLY; if (!flag_isoc99) mask |= D_C99; if (flag_no_asm) { mask |= D_ASM | D_EXT; if (!flag_isoc99) mask |= D_EXT89; } if (!c_dialect_objc ()) mask |= D_OBJC | D_CXX_OBJC; ridpointers = ggc_cleared_vec_alloc ((int) RID_MAX); for (i = 0; i < num_c_common_reswords; i++) { /* If a keyword is disabled, do not enter it into the table and so create a canonical spelling that isn't a keyword. */ if (c_common_reswords[i].disable & mask) { if (warn_cxx_compat && (c_common_reswords[i].disable & D_CXXWARN)) { id = get_identifier (c_common_reswords[i].word); C_SET_RID_CODE (id, RID_CXX_COMPAT_WARN); C_IS_RESERVED_WORD (id) = 1; } continue; } id = get_identifier (c_common_reswords[i].word); C_SET_RID_CODE (id, c_common_reswords[i].rid); C_IS_RESERVED_WORD (id) = 1; ridpointers [(int) c_common_reswords[i].rid] = id; } for (i = 0; i < NUM_INT_N_ENTS; i++) { /* We always create the symbols but they aren't always supported. */ char name[50]; sprintf (name, "__int%d", int_n_data[i].bitsize); id = get_identifier (name); C_SET_RID_CODE (id, RID_FIRST_INT_N + i); C_IS_RESERVED_WORD (id) = 1; } } /* A parser structure recording information about the state and context of parsing. Includes lexer information with up to two tokens of look-ahead; more are not needed for C. */ struct GTY(()) c_parser { /* The look-ahead tokens. */ c_token * GTY((skip)) tokens; /* Buffer for look-ahead tokens. */ c_token tokens_buf[4]; /* How many look-ahead tokens are available (0 - 4, or more if parsing from pre-lexed tokens). */ unsigned int tokens_avail; /* True if a syntax error is being recovered from; false otherwise. c_parser_error sets this flag. It should clear this flag when enough tokens have been consumed to recover from the error. */ BOOL_BITFIELD error : 1; /* True if we're processing a pragma, and shouldn't automatically consume CPP_PRAGMA_EOL. */ BOOL_BITFIELD in_pragma : 1; /* True if we're parsing the outermost block of an if statement. */ BOOL_BITFIELD in_if_block : 1; /* True if we want to lex an untranslated string. */ BOOL_BITFIELD lex_untranslated_string : 1; /* Objective-C specific parser/lexer information. */ /* True if we are in a context where the Objective-C "PQ" keywords are considered keywords. */ BOOL_BITFIELD objc_pq_context : 1; /* True if we are parsing a (potential) Objective-C foreach statement. This is set to true after we parsed 'for (' and while we wait for 'in' or ';' to decide if it's a standard C for loop or an Objective-C foreach loop. */ BOOL_BITFIELD objc_could_be_foreach_context : 1; /* The following flag is needed to contextualize Objective-C lexical analysis. In some cases (e.g., 'int NSObject;'), it is undesirable to bind an identifier to an Objective-C class, even if a class with that name exists. */ BOOL_BITFIELD objc_need_raw_identifier : 1; /* Nonzero if we're processing a __transaction statement. The value is 1 | TM_STMT_ATTR_*. */ unsigned int in_transaction : 4; /* True if we are in a context where the Objective-C "Property attribute" keywords are valid. */ BOOL_BITFIELD objc_property_attr_context : 1; /* Location of the last consumed token. */ location_t last_token_location; }; /* Return a pointer to the Nth token in PARSERs tokens_buf. */ c_token * c_parser_tokens_buf (c_parser *parser, unsigned n) { return &parser->tokens_buf[n]; } /* Return the error state of PARSER. */ bool c_parser_error (c_parser *parser) { return parser->error; } /* Set the error state of PARSER to ERR. */ void c_parser_set_error (c_parser *parser, bool err) { parser->error = err; } /* The actual parser and external interface. ??? Does this need to be garbage-collected? */ static GTY (()) c_parser *the_parser; /* Read in and lex a single token, storing it in *TOKEN. */ static void c_lex_one_token (c_parser *parser, c_token *token) { timevar_push (TV_LEX); token->type = c_lex_with_flags (&token->value, &token->location, &token->flags, (parser->lex_untranslated_string ? C_LEX_STRING_NO_TRANSLATE : 0)); token->id_kind = C_ID_NONE; token->keyword = RID_MAX; token->pragma_kind = PRAGMA_NONE; switch (token->type) { case CPP_NAME: { tree decl; bool objc_force_identifier = parser->objc_need_raw_identifier; if (c_dialect_objc ()) parser->objc_need_raw_identifier = false; if (C_IS_RESERVED_WORD (token->value)) { enum rid rid_code = C_RID_CODE (token->value); if (rid_code == RID_CXX_COMPAT_WARN) { warning_at (token->location, OPT_Wc___compat, "identifier %qE conflicts with C++ keyword", token->value); } else if (rid_code >= RID_FIRST_ADDR_SPACE && rid_code <= RID_LAST_ADDR_SPACE) { addr_space_t as; as = (addr_space_t) (rid_code - RID_FIRST_ADDR_SPACE); targetm.addr_space.diagnose_usage (as, token->location); token->id_kind = C_ID_ADDRSPACE; token->keyword = rid_code; break; } else if (c_dialect_objc () && OBJC_IS_PQ_KEYWORD (rid_code)) { /* We found an Objective-C "pq" keyword (in, out, inout, bycopy, byref, oneway). They need special care because the interpretation depends on the context. */ if (parser->objc_pq_context) { token->type = CPP_KEYWORD; token->keyword = rid_code; break; } else if (parser->objc_could_be_foreach_context && rid_code == RID_IN) { /* We are in Objective-C, inside a (potential) foreach context (which means after having parsed 'for (', but before having parsed ';'), and we found 'in'. We consider it the keyword which terminates the declaration at the beginning of a foreach-statement. Note that this means you can't use 'in' for anything else in that context; in particular, in Objective-C you can't use 'in' as the name of the running variable in a C for loop. We could potentially try to add code here to disambiguate, but it seems a reasonable limitation. */ token->type = CPP_KEYWORD; token->keyword = rid_code; break; } /* Else, "pq" keywords outside of the "pq" context are not keywords, and we fall through to the code for normal tokens. */ } else if (c_dialect_objc () && OBJC_IS_PATTR_KEYWORD (rid_code)) { /* We found an Objective-C "property attribute" keyword (getter, setter, readonly, etc). These are only valid in the property context. */ if (parser->objc_property_attr_context) { token->type = CPP_KEYWORD; token->keyword = rid_code; break; } /* Else they are not special keywords. */ } else if (c_dialect_objc () && (OBJC_IS_AT_KEYWORD (rid_code) || OBJC_IS_CXX_KEYWORD (rid_code))) { /* We found one of the Objective-C "@" keywords (defs, selector, synchronized, etc) or one of the Objective-C "cxx" keywords (class, private, protected, public, try, catch, throw) without a preceding '@' sign. Do nothing and fall through to the code for normal tokens (in C++ we would still consider the CXX ones keywords, but not in C). */ ; } else { token->type = CPP_KEYWORD; token->keyword = rid_code; break; } } decl = lookup_name (token->value); if (decl) { if (TREE_CODE (decl) == TYPE_DECL) { token->id_kind = C_ID_TYPENAME; break; } } else if (c_dialect_objc ()) { tree objc_interface_decl = objc_is_class_name (token->value); /* Objective-C class names are in the same namespace as variables and typedefs, and hence are shadowed by local declarations. */ if (objc_interface_decl && (!objc_force_identifier || global_bindings_p ())) { token->value = objc_interface_decl; token->id_kind = C_ID_CLASSNAME; break; } } token->id_kind = C_ID_ID; } break; case CPP_AT_NAME: /* This only happens in Objective-C; it must be a keyword. */ token->type = CPP_KEYWORD; switch (C_RID_CODE (token->value)) { /* Replace 'class' with '@class', 'private' with '@private', etc. This prevents confusion with the C++ keyword 'class', and makes the tokens consistent with other Objective-C 'AT' keywords. For example '@class' is reported as RID_AT_CLASS which is consistent with '@synchronized', which is reported as RID_AT_SYNCHRONIZED. */ case RID_CLASS: token->keyword = RID_AT_CLASS; break; case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break; case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break; case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break; case RID_THROW: token->keyword = RID_AT_THROW; break; case RID_TRY: token->keyword = RID_AT_TRY; break; case RID_CATCH: token->keyword = RID_AT_CATCH; break; case RID_SYNCHRONIZED: token->keyword = RID_AT_SYNCHRONIZED; break; default: token->keyword = C_RID_CODE (token->value); } break; case CPP_COLON: case CPP_COMMA: case CPP_CLOSE_PAREN: case CPP_SEMICOLON: /* These tokens may affect the interpretation of any identifiers following, if doing Objective-C. */ if (c_dialect_objc ()) parser->objc_need_raw_identifier = false; break; case CPP_PRAGMA: /* We smuggled the cpp_token->u.pragma value in an INTEGER_CST. */ token->pragma_kind = (enum pragma_kind) TREE_INT_CST_LOW (token->value); token->value = NULL; break; default: break; } timevar_pop (TV_LEX); } /* Return a pointer to the next token from PARSER, reading it in if necessary. */ c_token * c_parser_peek_token (c_parser *parser) { if (parser->tokens_avail == 0) { c_lex_one_token (parser, &parser->tokens[0]); parser->tokens_avail = 1; } return &parser->tokens[0]; } /* Return a pointer to the next-but-one token from PARSER, reading it in if necessary. The next token is already read in. */ c_token * c_parser_peek_2nd_token (c_parser *parser) { if (parser->tokens_avail >= 2) return &parser->tokens[1]; gcc_assert (parser->tokens_avail == 1); gcc_assert (parser->tokens[0].type != CPP_EOF); gcc_assert (parser->tokens[0].type != CPP_PRAGMA_EOL); c_lex_one_token (parser, &parser->tokens[1]); parser->tokens_avail = 2; return &parser->tokens[1]; } /* Return a pointer to the Nth token from PARSER, reading it in if necessary. The N-1th token is already read in. */ c_token * c_parser_peek_nth_token (c_parser *parser, unsigned int n) { /* N is 1-based, not zero-based. */ gcc_assert (n > 0); if (parser->tokens_avail >= n) return &parser->tokens[n - 1]; gcc_assert (parser->tokens_avail == n - 1); c_lex_one_token (parser, &parser->tokens[n - 1]); parser->tokens_avail = n; return &parser->tokens[n - 1]; } bool c_keyword_starts_typename (enum rid keyword) { switch (keyword) { case RID_UNSIGNED: case RID_LONG: case RID_SHORT: case RID_SIGNED: case RID_COMPLEX: case RID_INT: case RID_CHAR: case RID_FLOAT: case RID_DOUBLE: case RID_VOID: case RID_DFLOAT32: case RID_DFLOAT64: case RID_DFLOAT128: CASE_RID_FLOATN_NX: case RID_BOOL: case RID_ENUM: case RID_STRUCT: case RID_UNION: case RID_TYPEOF: case RID_CONST: case RID_ATOMIC: case RID_VOLATILE: case RID_RESTRICT: case RID_ATTRIBUTE: case RID_FRACT: case RID_ACCUM: case RID_SAT: case RID_AUTO_TYPE: case RID_ALIGNAS: return true; default: if (keyword >= RID_FIRST_INT_N && keyword < RID_FIRST_INT_N + NUM_INT_N_ENTS && int_n_enabled_p[keyword - RID_FIRST_INT_N]) return true; return false; } } /* Return true if TOKEN can start a type name, false otherwise. */ bool c_token_starts_typename (c_token *token) { switch (token->type) { case CPP_NAME: switch (token->id_kind) { case C_ID_ID: return false; case C_ID_ADDRSPACE: return true; case C_ID_TYPENAME: return true; case C_ID_CLASSNAME: gcc_assert (c_dialect_objc ()); return true; default: gcc_unreachable (); } case CPP_KEYWORD: return c_keyword_starts_typename (token->keyword); case CPP_LESS: if (c_dialect_objc ()) return true; return false; default: return false; } } /* Return true if the next token from PARSER can start a type name, false otherwise. LA specifies how to do lookahead in order to detect unknown type names. If unsure, pick CLA_PREFER_ID. */ static inline bool c_parser_next_tokens_start_typename (c_parser *parser, enum c_lookahead_kind la) { c_token *token = c_parser_peek_token (parser); if (c_token_starts_typename (token)) return true; /* Try a bit harder to detect an unknown typename. */ if (la != cla_prefer_id && token->type == CPP_NAME && token->id_kind == C_ID_ID /* Do not try too hard when we could have "object in array". */ && !parser->objc_could_be_foreach_context && (la == cla_prefer_type || c_parser_peek_2nd_token (parser)->type == CPP_NAME || c_parser_peek_2nd_token (parser)->type == CPP_MULT) /* Only unknown identifiers. */ && !lookup_name (token->value)) return true; return false; } /* Return true if TOKEN is a type qualifier, false otherwise. */ static bool c_token_is_qualifier (c_token *token) { switch (token->type) { case CPP_NAME: switch (token->id_kind) { case C_ID_ADDRSPACE: return true; default: return false; } case CPP_KEYWORD: switch (token->keyword) { case RID_CONST: case RID_VOLATILE: case RID_RESTRICT: case RID_ATTRIBUTE: case RID_ATOMIC: return true; default: return false; } case CPP_LESS: return false; default: gcc_unreachable (); } } /* Return true if the next token from PARSER is a type qualifier, false otherwise. */ static inline bool c_parser_next_token_is_qualifier (c_parser *parser) { c_token *token = c_parser_peek_token (parser); return c_token_is_qualifier (token); } /* Return true if TOKEN can start declaration specifiers, false otherwise. */ static bool c_token_starts_declspecs (c_token *token) { switch (token->type) { case CPP_NAME: switch (token->id_kind) { case C_ID_ID: return false; case C_ID_ADDRSPACE: return true; case C_ID_TYPENAME: return true; case C_ID_CLASSNAME: gcc_assert (c_dialect_objc ()); return true; default: gcc_unreachable (); } case CPP_KEYWORD: switch (token->keyword) { case RID_STATIC: case RID_EXTERN: case RID_REGISTER: case RID_TYPEDEF: case RID_INLINE: case RID_NORETURN: case RID_AUTO: case RID_THREAD: case RID_UNSIGNED: case RID_LONG: case RID_SHORT: case RID_SIGNED: case RID_COMPLEX: case RID_INT: case RID_CHAR: case RID_FLOAT: case RID_DOUBLE: case RID_VOID: case RID_DFLOAT32: case RID_DFLOAT64: case RID_DFLOAT128: CASE_RID_FLOATN_NX: case RID_BOOL: case RID_ENUM: case RID_STRUCT: case RID_UNION: case RID_TYPEOF: case RID_CONST: case RID_VOLATILE: case RID_RESTRICT: case RID_ATTRIBUTE: case RID_FRACT: case RID_ACCUM: case RID_SAT: case RID_ALIGNAS: case RID_ATOMIC: case RID_AUTO_TYPE: return true; default: if (token->keyword >= RID_FIRST_INT_N && token->keyword < RID_FIRST_INT_N + NUM_INT_N_ENTS && int_n_enabled_p[token->keyword - RID_FIRST_INT_N]) return true; return false; } case CPP_LESS: if (c_dialect_objc ()) return true; return false; default: return false; } } /* Return true if TOKEN can start declaration specifiers or a static assertion, false otherwise. */ static bool c_token_starts_declaration (c_token *token) { if (c_token_starts_declspecs (token) || token->keyword == RID_STATIC_ASSERT) return true; else return false; } /* Return true if the next token from PARSER can start declaration specifiers, false otherwise. */ bool c_parser_next_token_starts_declspecs (c_parser *parser) { c_token *token = c_parser_peek_token (parser); /* In Objective-C, a classname normally starts a declspecs unless it is immediately followed by a dot. In that case, it is the Objective-C 2.0 "dot-syntax" for class objects, ie, calls the setter/getter on the class. c_token_starts_declspecs() can't differentiate between the two cases because it only checks the current token, so we have a special check here. */ if (c_dialect_objc () && token->type == CPP_NAME && token->id_kind == C_ID_CLASSNAME && c_parser_peek_2nd_token (parser)->type == CPP_DOT) return false; return c_token_starts_declspecs (token); } /* Return true if the next tokens from PARSER can start declaration specifiers or a static assertion, false otherwise. */ bool c_parser_next_tokens_start_declaration (c_parser *parser) { c_token *token = c_parser_peek_token (parser); /* Same as above. */ if (c_dialect_objc () && token->type == CPP_NAME && token->id_kind == C_ID_CLASSNAME && c_parser_peek_2nd_token (parser)->type == CPP_DOT) return false; /* Labels do not start declarations. */ if (token->type == CPP_NAME && c_parser_peek_2nd_token (parser)->type == CPP_COLON) return false; if (c_token_starts_declaration (token)) return true; if (c_parser_next_tokens_start_typename (parser, cla_nonabstract_decl)) return true; return false; } /* Consume the next token from PARSER. */ void c_parser_consume_token (c_parser *parser) { gcc_assert (parser->tokens_avail >= 1); gcc_assert (parser->tokens[0].type != CPP_EOF); gcc_assert (!parser->in_pragma || parser->tokens[0].type != CPP_PRAGMA_EOL); gcc_assert (parser->error || parser->tokens[0].type != CPP_PRAGMA); parser->last_token_location = parser->tokens[0].location; if (parser->tokens != &parser->tokens_buf[0]) parser->tokens++; else if (parser->tokens_avail == 2) parser->tokens[0] = parser->tokens[1]; parser->tokens_avail--; } /* Expect the current token to be a #pragma. Consume it and remember that we've begun parsing a pragma. */ static void c_parser_consume_pragma (c_parser *parser) { gcc_assert (!parser->in_pragma); gcc_assert (parser->tokens_avail >= 1); gcc_assert (parser->tokens[0].type == CPP_PRAGMA); if (parser->tokens != &parser->tokens_buf[0]) parser->tokens++; else if (parser->tokens_avail == 2) parser->tokens[0] = parser->tokens[1]; parser->tokens_avail--; parser->in_pragma = true; } /* Update the global input_location from TOKEN. */ static inline void c_parser_set_source_position_from_token (c_token *token) { if (token->type != CPP_EOF) { input_location = token->location; } } /* Helper function for c_parser_error. Having peeked a token of kind TOK1_KIND that might signify a conflict marker, peek successor tokens to determine if we actually do have a conflict marker. Specifically, we consider a run of 7 '<', '=' or '>' characters at the start of a line as a conflict marker. These come through the lexer as three pairs and a single, e.g. three CPP_LSHIFT ("<<") and a CPP_LESS ('<'). If it returns true, *OUT_LOC is written to with the location/range of the marker. */ static bool c_parser_peek_conflict_marker (c_parser *parser, enum cpp_ttype tok1_kind, location_t *out_loc) { c_token *token2 = c_parser_peek_2nd_token (parser); if (token2->type != tok1_kind) return false; c_token *token3 = c_parser_peek_nth_token (parser, 3); if (token3->type != tok1_kind) return false; c_token *token4 = c_parser_peek_nth_token (parser, 4); if (token4->type != conflict_marker_get_final_tok_kind (tok1_kind)) return false; /* It must be at the start of the line. */ location_t start_loc = c_parser_peek_token (parser)->location; if (LOCATION_COLUMN (start_loc) != 1) return false; /* We have a conflict marker. Construct a location of the form: <<<<<<< ^~~~~~~ with start == caret, finishing at the end of the marker. */ location_t finish_loc = get_finish (token4->location); *out_loc = make_location (start_loc, start_loc, finish_loc); return true; } /* Issue a diagnostic of the form FILE:LINE: MESSAGE before TOKEN where TOKEN is the next token in the input stream of PARSER. MESSAGE (specified by the caller) is usually of the form "expected OTHER-TOKEN". Use RICHLOC as the location of the diagnostic. Do not issue a diagnostic if still recovering from an error. Return true iff an error was actually emitted. ??? This is taken from the C++ parser, but building up messages in this way is not i18n-friendly and some other approach should be used. */ static bool c_parser_error_richloc (c_parser *parser, const char *gmsgid, rich_location *richloc) { c_token *token = c_parser_peek_token (parser); if (parser->error) return false; parser->error = true; if (!gmsgid) return false; /* If this is actually a conflict marker, report it as such. */ if (token->type == CPP_LSHIFT || token->type == CPP_RSHIFT || token->type == CPP_EQ_EQ) { location_t loc; if (c_parser_peek_conflict_marker (parser, token->type, &loc)) { error_at (loc, "version control conflict marker in file"); return true; } } c_parse_error (gmsgid, /* Because c_parse_error does not understand CPP_KEYWORD, keywords are treated like identifiers. */ (token->type == CPP_KEYWORD ? CPP_NAME : token->type), /* ??? The C parser does not save the cpp flags of a token, we need to pass 0 here and we will not get the source spelling of some tokens but rather the canonical spelling. */ token->value, /*flags=*/0, richloc); return true; } /* As c_parser_error_richloc, but issue the message at the location of PARSER's next token, or at input_location if the next token is EOF. */ bool c_parser_error (c_parser *parser, const char *gmsgid) { c_token *token = c_parser_peek_token (parser); c_parser_set_source_position_from_token (token); rich_location richloc (line_table, input_location); return c_parser_error_richloc (parser, gmsgid, &richloc); } /* Some tokens naturally come in pairs e.g.'(' and ')'. This class is for tracking such a matching pair of symbols. In particular, it tracks the location of the first token, so that if the second token is missing, we can highlight the location of the first token when notifying the user about the problem. */ template class token_pair { public: /* token_pair's ctor. */ token_pair () : m_open_loc (UNKNOWN_LOCATION) {} /* If the next token is the opening symbol for this pair, consume it and return true. Otherwise, issue an error and return false. In either case, record the location of the opening token. */ bool require_open (c_parser *parser) { c_token *token = c_parser_peek_token (parser); if (token) m_open_loc = token->location; return c_parser_require (parser, traits_t::open_token_type, traits_t::open_gmsgid); } /* Consume the next token from PARSER, recording its location as that of the opening token within the pair. */ void consume_open (c_parser *parser) { c_token *token = c_parser_peek_token (parser); gcc_assert (token->type == traits_t::open_token_type); m_open_loc = token->location; c_parser_consume_token (parser); } /* If the next token is the closing symbol for this pair, consume it and return true. Otherwise, issue an error, highlighting the location of the corresponding opening token, and return false. */ bool require_close (c_parser *parser) const { return c_parser_require (parser, traits_t::close_token_type, traits_t::close_gmsgid, m_open_loc); } /* Like token_pair::require_close, except that tokens will be skipped until the desired token is found. An error message is still produced if the next token is not as expected. */ void skip_until_found_close (c_parser *parser) const { c_parser_skip_until_found (parser, traits_t::close_token_type, traits_t::close_gmsgid, m_open_loc); } private: location_t m_open_loc; }; /* Traits for token_pair for tracking matching pairs of parentheses. */ struct matching_paren_traits { static const enum cpp_ttype open_token_type = CPP_OPEN_PAREN; static const char * const open_gmsgid; static const enum cpp_ttype close_token_type = CPP_CLOSE_PAREN; static const char * const close_gmsgid; }; const char * const matching_paren_traits::open_gmsgid = "expected %<(%>"; const char * const matching_paren_traits::close_gmsgid = "expected %<)%>"; /* "matching_parens" is a token_pair class for tracking matching pairs of parentheses. */ typedef token_pair matching_parens; /* Traits for token_pair for tracking matching pairs of braces. */ struct matching_brace_traits { static const enum cpp_ttype open_token_type = CPP_OPEN_BRACE; static const char * const open_gmsgid; static const enum cpp_ttype close_token_type = CPP_CLOSE_BRACE; static const char * const close_gmsgid; }; const char * const matching_brace_traits::open_gmsgid = "expected %<{%>"; const char * const matching_brace_traits::close_gmsgid = "expected %<}%>"; /* "matching_braces" is a token_pair class for tracking matching pairs of braces. */ typedef token_pair matching_braces; /* Get a description of the matching symbol to TYPE e.g. "(" for CPP_CLOSE_PAREN. */ static const char * get_matching_symbol (enum cpp_ttype type) { switch (type) { default: gcc_unreachable (); return ""; case CPP_CLOSE_PAREN: return "("; case CPP_CLOSE_BRACE: return "{"; } } /* If the next token is of the indicated TYPE, consume it. Otherwise, issue the error MSGID. If MSGID is NULL then a message has already been produced and no message will be produced this time. Returns true if found, false otherwise. If MATCHING_LOCATION is not UNKNOWN_LOCATION, then highlight it within any error as the location of an "opening" token matching the close token TYPE (e.g. the location of the '(' when TYPE is CPP_CLOSE_PAREN). If TYPE_IS_UNIQUE is true (the default) then msgid describes exactly one type (e.g. "expected %<)%>") and thus it may be reasonable to attempt to generate a fix-it hint for the problem. Otherwise msgid describes multiple token types (e.g. "expected %<;%>, %<,%> or %<)%>"), and thus we shouldn't attempt to generate a fix-it hint. */ bool c_parser_require (c_parser *parser, enum cpp_ttype type, const char *msgid, location_t matching_location, bool type_is_unique) { if (c_parser_next_token_is (parser, type)) { c_parser_consume_token (parser); return true; } else { location_t next_token_loc = c_parser_peek_token (parser)->location; gcc_rich_location richloc (next_token_loc); /* Potentially supply a fix-it hint, suggesting to add the missing token immediately after the *previous* token. This may move the primary location within richloc. */ if (!parser->error && type_is_unique) maybe_suggest_missing_token_insertion (&richloc, type, parser->last_token_location); /* If matching_location != UNKNOWN_LOCATION, highlight it. Attempt to consolidate diagnostics by printing it as a secondary range within the main diagnostic. */ bool added_matching_location = false; if (matching_location != UNKNOWN_LOCATION) added_matching_location = richloc.add_location_if_nearby (matching_location); if (c_parser_error_richloc (parser, msgid, &richloc)) /* If we weren't able to consolidate matching_location, then print it as a secondary diagnostic. */ if (matching_location != UNKNOWN_LOCATION && !added_matching_location) inform (matching_location, "to match this %qs", get_matching_symbol (type)); return false; } } /* If the next token is the indicated keyword, consume it. Otherwise, issue the error MSGID. Returns true if found, false otherwise. */ static bool c_parser_require_keyword (c_parser *parser, enum rid keyword, const char *msgid) { if (c_parser_next_token_is_keyword (parser, keyword)) { c_parser_consume_token (parser); return true; } else { c_parser_error (parser, msgid); return false; } } /* Like c_parser_require, except that tokens will be skipped until the desired token is found. An error message is still produced if the next token is not as expected. If MSGID is NULL then a message has already been produced and no message will be produced this time. If MATCHING_LOCATION is not UNKNOWN_LOCATION, then highlight it within any error as the location of an "opening" token matching the close token TYPE (e.g. the location of the '(' when TYPE is CPP_CLOSE_PAREN). */ void c_parser_skip_until_found (c_parser *parser, enum cpp_ttype type, const char *msgid, location_t matching_location) { unsigned nesting_depth = 0; if (c_parser_require (parser, type, msgid, matching_location)) return; /* Skip tokens until the desired token is found. */ while (true) { /* Peek at the next token. */ c_token *token = c_parser_peek_token (parser); /* If we've reached the token we want, consume it and stop. */ if (token->type == type && !nesting_depth) { c_parser_consume_token (parser); break; } /* If we've run out of tokens, stop. */ if (token->type == CPP_EOF) return; if (token->type == CPP_PRAGMA_EOL && parser->in_pragma) return; if (token->type == CPP_OPEN_BRACE || token->type == CPP_OPEN_PAREN || token->type == CPP_OPEN_SQUARE) ++nesting_depth; else if (token->type == CPP_CLOSE_BRACE || token->type == CPP_CLOSE_PAREN || token->type == CPP_CLOSE_SQUARE) { if (nesting_depth-- == 0) break; } /* Consume this token. */ c_parser_consume_token (parser); } parser->error = false; } /* Skip tokens until the end of a parameter is found, but do not consume the comma, semicolon or closing delimiter. */ static void c_parser_skip_to_end_of_parameter (c_parser *parser) { unsigned nesting_depth = 0; while (true) { c_token *token = c_parser_peek_token (parser); if ((token->type == CPP_COMMA || token->type == CPP_SEMICOLON) && !nesting_depth) break; /* If we've run out of tokens, stop. */ if (token->type == CPP_EOF) return; if (token->type == CPP_PRAGMA_EOL && parser->in_pragma) return; if (token->type == CPP_OPEN_BRACE || token->type == CPP_OPEN_PAREN || token->type == CPP_OPEN_SQUARE) ++nesting_depth; else if (token->type == CPP_CLOSE_BRACE || token->type == CPP_CLOSE_PAREN || token->type == CPP_CLOSE_SQUARE) { if (nesting_depth-- == 0) break; } /* Consume this token. */ c_parser_consume_token (parser); } parser->error = false; } /* Expect to be at the end of the pragma directive and consume an end of line marker. */ static void c_parser_skip_to_pragma_eol (c_parser *parser, bool error_if_not_eol = true) { gcc_assert (parser->in_pragma); parser->in_pragma = false; if (error_if_not_eol && c_parser_peek_token (parser)->type != CPP_PRAGMA_EOL) c_parser_error (parser, "expected end of line"); cpp_ttype token_type; do { c_token *token = c_parser_peek_token (parser); token_type = token->type; if (token_type == CPP_EOF) break; c_parser_consume_token (parser); } while (token_type != CPP_PRAGMA_EOL); parser->error = false; } /* Skip tokens until we have consumed an entire block, or until we have consumed a non-nested ';'. */ static void c_parser_skip_to_end_of_block_or_statement (c_parser *parser) { unsigned nesting_depth = 0; bool save_error = parser->error; while (true) { c_token *token; /* Peek at the next token. */ token = c_parser_peek_token (parser); switch (token->type) { case CPP_EOF: return; case CPP_PRAGMA_EOL: if (parser->in_pragma) return; break; case CPP_SEMICOLON: /* If the next token is a ';', we have reached the end of the statement. */ if (!nesting_depth) { /* Consume the ';'. */ c_parser_consume_token (parser); goto finished; } break; case CPP_CLOSE_BRACE: /* If the next token is a non-nested '}', then we have reached the end of the current block. */ if (nesting_depth == 0 || --nesting_depth == 0) { c_parser_consume_token (parser); goto finished; } break; case CPP_OPEN_BRACE: /* If it the next token is a '{', then we are entering a new block. Consume the entire block. */ ++nesting_depth; break; case CPP_PRAGMA: /* If we see a pragma, consume the whole thing at once. We have some safeguards against consuming pragmas willy-nilly. Normally, we'd expect to be here with parser->error set, which disables these safeguards. But it's possible to get here for secondary error recovery, after parser->error has been cleared. */ c_parser_consume_pragma (parser); c_parser_skip_to_pragma_eol (parser); parser->error = save_error; continue; default: break; } c_parser_consume_token (parser); } finished: parser->error = false; } /* CPP's options (initialized by c-opts.c). */ extern cpp_options *cpp_opts; /* Save the warning flags which are controlled by __extension__. */ static inline int disable_extension_diagnostics (void) { int ret = (pedantic | (warn_pointer_arith << 1) | (warn_traditional << 2) | (flag_iso << 3) | (warn_long_long << 4) | (warn_cxx_compat << 5) | (warn_overlength_strings << 6) /* warn_c90_c99_compat has three states: -1/0/1, so we must play tricks to properly restore it. */ | ((warn_c90_c99_compat == 1) << 7) | ((warn_c90_c99_compat == -1) << 8) /* Similarly for warn_c99_c11_compat. */ | ((warn_c99_c11_compat == 1) << 9) | ((warn_c99_c11_compat == -1) << 10) /* Similarly for warn_c11_c2x_compat. */ | ((warn_c11_c2x_compat == 1) << 11) | ((warn_c11_c2x_compat == -1) << 12) ); cpp_opts->cpp_pedantic = pedantic = 0; warn_pointer_arith = 0; cpp_opts->cpp_warn_traditional = warn_traditional = 0; flag_iso = 0; cpp_opts->cpp_warn_long_long = warn_long_long = 0; warn_cxx_compat = 0; warn_overlength_strings = 0; warn_c90_c99_compat = 0; warn_c99_c11_compat = 0; warn_c11_c2x_compat = 0; return ret; } /* Restore the warning flags which are controlled by __extension__. FLAGS is the return value from disable_extension_diagnostics. */ static inline void restore_extension_diagnostics (int flags) { cpp_opts->cpp_pedantic = pedantic = flags & 1; warn_pointer_arith = (flags >> 1) & 1; cpp_opts->cpp_warn_traditional = warn_traditional = (flags >> 2) & 1; flag_iso = (flags >> 3) & 1; cpp_opts->cpp_warn_long_long = warn_long_long = (flags >> 4) & 1; warn_cxx_compat = (flags >> 5) & 1; warn_overlength_strings = (flags >> 6) & 1; /* See above for why is this needed. */ warn_c90_c99_compat = (flags >> 7) & 1 ? 1 : ((flags >> 8) & 1 ? -1 : 0); warn_c99_c11_compat = (flags >> 9) & 1 ? 1 : ((flags >> 10) & 1 ? -1 : 0); warn_c11_c2x_compat = (flags >> 11) & 1 ? 1 : ((flags >> 12) & 1 ? -1 : 0); } /* Helper data structure for parsing #pragma acc routine. */ struct oacc_routine_data { bool error_seen; /* Set if error has been reported. */ bool fndecl_seen; /* Set if one fn decl/definition has been seen already. */ tree clauses; location_t loc; }; static void c_parser_external_declaration (c_parser *); static void c_parser_asm_definition (c_parser *); static void c_parser_declaration_or_fndef (c_parser *, bool, bool, bool, bool, bool, tree *, vec, struct oacc_routine_data * = NULL, bool * = NULL); static void c_parser_static_assert_declaration_no_semi (c_parser *); static void c_parser_static_assert_declaration (c_parser *); static struct c_typespec c_parser_enum_specifier (c_parser *); static struct c_typespec c_parser_struct_or_union_specifier (c_parser *); static tree c_parser_struct_declaration (c_parser *); static struct c_typespec c_parser_typeof_specifier (c_parser *); static tree c_parser_alignas_specifier (c_parser *); static struct c_declarator *c_parser_direct_declarator (c_parser *, bool, c_dtr_syn, bool *); static struct c_declarator *c_parser_direct_declarator_inner (c_parser *, bool, struct c_declarator *); static struct c_arg_info *c_parser_parms_declarator (c_parser *, bool, tree); static struct c_arg_info *c_parser_parms_list_declarator (c_parser *, tree, tree); static struct c_parm *c_parser_parameter_declaration (c_parser *, tree); static tree c_parser_simple_asm_expr (c_parser *); static tree c_parser_attributes (c_parser *); static struct c_expr c_parser_initializer (c_parser *); static struct c_expr c_parser_braced_init (c_parser *, tree, bool, struct obstack *); static void c_parser_initelt (c_parser *, struct obstack *); static void c_parser_initval (c_parser *, struct c_expr *, struct obstack *); static tree c_parser_compound_statement (c_parser *); static void c_parser_compound_statement_nostart (c_parser *); static void c_parser_label (c_parser *); static void c_parser_statement (c_parser *, bool *, location_t * = NULL); static void c_parser_statement_after_labels (c_parser *, bool *, vec * = NULL); static tree c_parser_c99_block_statement (c_parser *, bool *, location_t * = NULL); static void c_parser_if_statement (c_parser *, bool *, vec *); static void c_parser_switch_statement (c_parser *, bool *); static void c_parser_while_statement (c_parser *, bool, unsigned short, bool *); static void c_parser_do_statement (c_parser *, bool, unsigned short); static void c_parser_for_statement (c_parser *, bool, unsigned short, bool *); static tree c_parser_asm_statement (c_parser *); static tree c_parser_asm_operands (c_parser *); static tree c_parser_asm_goto_operands (c_parser *); static tree c_parser_asm_clobbers (c_parser *); static struct c_expr c_parser_expr_no_commas (c_parser *, struct c_expr *, tree = NULL_TREE); static struct c_expr c_parser_conditional_expression (c_parser *, struct c_expr *, tree); static struct c_expr c_parser_binary_expression (c_parser *, struct c_expr *, tree); static struct c_expr c_parser_cast_expression (c_parser *, struct c_expr *); static struct c_expr c_parser_unary_expression (c_parser *); static struct c_expr c_parser_sizeof_expression (c_parser *); static struct c_expr c_parser_alignof_expression (c_parser *); static struct c_expr c_parser_postfix_expression (c_parser *); static struct c_expr c_parser_postfix_expression_after_paren_type (c_parser *, struct c_type_name *, location_t); static struct c_expr c_parser_postfix_expression_after_primary (c_parser *, location_t loc, struct c_expr); static tree c_parser_transaction (c_parser *, enum rid); static struct c_expr c_parser_transaction_expression (c_parser *, enum rid); static tree c_parser_transaction_cancel (c_parser *); static struct c_expr c_parser_expression (c_parser *); static struct c_expr c_parser_expression_conv (c_parser *); static vec *c_parser_expr_list (c_parser *, bool, bool, vec **, location_t *, tree *, vec *, unsigned int * = NULL); static struct c_expr c_parser_has_attribute_expression (c_parser *); static void c_parser_oacc_declare (c_parser *); static void c_parser_oacc_enter_exit_data (c_parser *, bool); static void c_parser_oacc_update (c_parser *); static void c_parser_omp_construct (c_parser *, bool *); static void c_parser_omp_threadprivate (c_parser *); static void c_parser_omp_barrier (c_parser *); static void c_parser_omp_depobj (c_parser *); static void c_parser_omp_flush (c_parser *); static tree c_parser_omp_for_loop (location_t, c_parser *, enum tree_code, tree, tree *, bool *); static void c_parser_omp_taskwait (c_parser *); static void c_parser_omp_taskyield (c_parser *); static void c_parser_omp_cancel (c_parser *); enum pragma_context { pragma_external, pragma_struct, pragma_param, pragma_stmt, pragma_compound }; static bool c_parser_pragma (c_parser *, enum pragma_context, bool *); static void c_parser_omp_cancellation_point (c_parser *, enum pragma_context); static bool c_parser_omp_target (c_parser *, enum pragma_context, bool *); static void c_parser_omp_end_declare_target (c_parser *); static void c_parser_omp_declare (c_parser *, enum pragma_context); static void c_parser_omp_requires (c_parser *); static bool c_parser_omp_ordered (c_parser *, enum pragma_context, bool *); static void c_parser_oacc_routine (c_parser *, enum pragma_context); /* These Objective-C parser functions are only ever called when compiling Objective-C. */ static void c_parser_objc_class_definition (c_parser *, tree); static void c_parser_objc_class_instance_variables (c_parser *); static void c_parser_objc_class_declaration (c_parser *); static void c_parser_objc_alias_declaration (c_parser *); static void c_parser_objc_protocol_definition (c_parser *, tree); static bool c_parser_objc_method_type (c_parser *); static void c_parser_objc_method_definition (c_parser *); static void c_parser_objc_methodprotolist (c_parser *); static void c_parser_objc_methodproto (c_parser *); static tree c_parser_objc_method_decl (c_parser *, bool, tree *, tree *); static tree c_parser_objc_type_name (c_parser *); static tree c_parser_objc_protocol_refs (c_parser *); static void c_parser_objc_try_catch_finally_statement (c_parser *); static void c_parser_objc_synchronized_statement (c_parser *); static tree c_parser_objc_selector (c_parser *); static tree c_parser_objc_selector_arg (c_parser *); static tree c_parser_objc_receiver (c_parser *); static tree c_parser_objc_message_args (c_parser *); static tree c_parser_objc_keywordexpr (c_parser *); static void c_parser_objc_at_property_declaration (c_parser *); static void c_parser_objc_at_synthesize_declaration (c_parser *); static void c_parser_objc_at_dynamic_declaration (c_parser *); static bool c_parser_objc_diagnose_bad_element_prefix (c_parser *, struct c_declspecs *); static void c_parser_parse_rtl_body (c_parser *parser, char *start_with_pass); /* Parse a translation unit (C90 6.7, C99 6.9, C11 6.9). translation-unit: external-declarations external-declarations: external-declaration external-declarations external-declaration GNU extensions: translation-unit: empty */ static void c_parser_translation_unit (c_parser *parser) { if (c_parser_next_token_is (parser, CPP_EOF)) { pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic, "ISO C forbids an empty translation unit"); } else { void *obstack_position = obstack_alloc (&parser_obstack, 0); mark_valid_location_for_stdc_pragma (false); do { ggc_collect (); c_parser_external_declaration (parser); obstack_free (&parser_obstack, obstack_position); } while (c_parser_next_token_is_not (parser, CPP_EOF)); } unsigned int i; tree decl; FOR_EACH_VEC_ELT (incomplete_record_decls, i, decl) if (DECL_SIZE (decl) == NULL_TREE && TREE_TYPE (decl) != error_mark_node) error ("storage size of %q+D isn%'t known", decl); } /* Parse an external declaration (C90 6.7, C99 6.9, C11 6.9). external-declaration: function-definition declaration GNU extensions: external-declaration: asm-definition ; __extension__ external-declaration Objective-C: external-declaration: objc-class-definition objc-class-declaration objc-alias-declaration objc-protocol-definition objc-method-definition @end */ static void c_parser_external_declaration (c_parser *parser) { int ext; switch (c_parser_peek_token (parser)->type) { case CPP_KEYWORD: switch (c_parser_peek_token (parser)->keyword) { case RID_EXTENSION: ext = disable_extension_diagnostics (); c_parser_consume_token (parser); c_parser_external_declaration (parser); restore_extension_diagnostics (ext); break; case RID_ASM: c_parser_asm_definition (parser); break; case RID_AT_INTERFACE: case RID_AT_IMPLEMENTATION: gcc_assert (c_dialect_objc ()); c_parser_objc_class_definition (parser, NULL_TREE); break; case RID_AT_CLASS: gcc_assert (c_dialect_objc ()); c_parser_objc_class_declaration (parser); break; case RID_AT_ALIAS: gcc_assert (c_dialect_objc ()); c_parser_objc_alias_declaration (parser); break; case RID_AT_PROTOCOL: gcc_assert (c_dialect_objc ()); c_parser_objc_protocol_definition (parser, NULL_TREE); break; case RID_AT_PROPERTY: gcc_assert (c_dialect_objc ()); c_parser_objc_at_property_declaration (parser); break; case RID_AT_SYNTHESIZE: gcc_assert (c_dialect_objc ()); c_parser_objc_at_synthesize_declaration (parser); break; case RID_AT_DYNAMIC: gcc_assert (c_dialect_objc ()); c_parser_objc_at_dynamic_declaration (parser); break; case RID_AT_END: gcc_assert (c_dialect_objc ()); c_parser_consume_token (parser); objc_finish_implementation (); break; default: goto decl_or_fndef; } break; case CPP_SEMICOLON: pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic, "ISO C does not allow extra %<;%> outside of a function"); c_parser_consume_token (parser); break; case CPP_PRAGMA: mark_valid_location_for_stdc_pragma (true); c_parser_pragma (parser, pragma_external, NULL); mark_valid_location_for_stdc_pragma (false); break; case CPP_PLUS: case CPP_MINUS: if (c_dialect_objc ()) { c_parser_objc_method_definition (parser); break; } /* Else fall through, and yield a syntax error trying to parse as a declaration or function definition. */ /* FALLTHRU */ default: decl_or_fndef: /* A declaration or a function definition (or, in Objective-C, an @interface or @protocol with prefix attributes). We can only tell which after parsing the declaration specifiers, if any, and the first declarator. */ c_parser_declaration_or_fndef (parser, true, true, true, false, true, NULL, vNULL); break; } } static void c_finish_omp_declare_simd (c_parser *, tree, tree, vec); static void c_finish_oacc_routine (struct oacc_routine_data *, tree, bool); /* Build and add a DEBUG_BEGIN_STMT statement with location LOC. */ static void add_debug_begin_stmt (location_t loc) { /* Don't add DEBUG_BEGIN_STMTs outside of functions, see PR84721. */ if (!MAY_HAVE_DEBUG_MARKER_STMTS || !building_stmt_list_p ()) return; tree stmt = build0 (DEBUG_BEGIN_STMT, void_type_node); SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); } /* Parse a declaration or function definition (C90 6.5, 6.7.1, C99 6.7, 6.9.1, C11 6.7, 6.9.1). If FNDEF_OK is true, a function definition is accepted; otherwise (old-style parameter declarations) only other declarations are accepted. If STATIC_ASSERT_OK is true, a static assertion is accepted; otherwise (old-style parameter declarations) it is not. If NESTED is true, we are inside a function or parsing old-style parameter declarations; any functions encountered are nested functions and declaration specifiers are required; otherwise we are at top level and functions are normal functions and declaration specifiers may be optional. If EMPTY_OK is true, empty declarations are OK (subject to all other constraints); otherwise (old-style parameter declarations) they are diagnosed. If START_ATTR_OK is true, the declaration specifiers may start with attributes; otherwise they may not. OBJC_FOREACH_OBJECT_DECLARATION can be used to get back the parsed declaration when parsing an Objective-C foreach statement. FALLTHRU_ATTR_P is used to signal whether this function parsed "__attribute__((fallthrough));". declaration: declaration-specifiers init-declarator-list[opt] ; static_assert-declaration function-definition: declaration-specifiers[opt] declarator declaration-list[opt] compound-statement declaration-list: declaration declaration-list declaration init-declarator-list: init-declarator init-declarator-list , init-declarator init-declarator: declarator simple-asm-expr[opt] attributes[opt] declarator simple-asm-expr[opt] attributes[opt] = initializer GNU extensions: nested-function-definition: declaration-specifiers declarator declaration-list[opt] compound-statement attribute ; Objective-C: attributes objc-class-definition attributes objc-category-definition attributes objc-protocol-definition The simple-asm-expr and attributes are GNU extensions. This function does not handle __extension__; that is handled in its callers. ??? Following the old parser, __extension__ may start external declarations, declarations in functions and declarations at the start of "for" loops, but not old-style parameter declarations. C99 requires declaration specifiers in a function definition; the absence is diagnosed through the diagnosis of implicit int. In GNU C we also allow but diagnose declarations without declaration specifiers, but only at top level (elsewhere they conflict with other syntax). In Objective-C, declarations of the looping variable in a foreach statement are exceptionally terminated by 'in' (for example, 'for (NSObject *object in array) { ... }'). OpenMP: declaration: threadprivate-directive GIMPLE: gimple-function-definition: declaration-specifiers[opt] __GIMPLE (gimple-or-rtl-pass-list) declarator declaration-list[opt] compound-statement rtl-function-definition: declaration-specifiers[opt] __RTL (gimple-or-rtl-pass-list) declarator declaration-list[opt] compound-statement */ static void c_parser_declaration_or_fndef (c_parser *parser, bool fndef_ok, bool static_assert_ok, bool empty_ok, bool nested, bool start_attr_ok, tree *objc_foreach_object_declaration, vec omp_declare_simd_clauses, struct oacc_routine_data *oacc_routine_data, bool *fallthru_attr_p) { struct c_declspecs *specs; tree prefix_attrs; tree all_prefix_attrs; bool diagnosed_no_specs = false; location_t here = c_parser_peek_token (parser)->location; add_debug_begin_stmt (c_parser_peek_token (parser)->location); if (static_assert_ok && c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT)) { c_parser_static_assert_declaration (parser); return; } specs = build_null_declspecs (); /* Try to detect an unknown type name when we have "A B" or "A *B". */ if (c_parser_peek_token (parser)->type == CPP_NAME && c_parser_peek_token (parser)->id_kind == C_ID_ID && (c_parser_peek_2nd_token (parser)->type == CPP_NAME || c_parser_peek_2nd_token (parser)->type == CPP_MULT) && (!nested || !lookup_name (c_parser_peek_token (parser)->value))) { tree name = c_parser_peek_token (parser)->value; /* Issue a warning about NAME being an unknown type name, perhaps with some kind of hint. If the user forgot a "struct" etc, suggest inserting it. Otherwise, attempt to look for misspellings. */ gcc_rich_location richloc (here); if (tag_exists_p (RECORD_TYPE, name)) { /* This is not C++ with its implicit typedef. */ richloc.add_fixit_insert_before ("struct "); error_at (&richloc, "unknown type name %qE;" " use % keyword to refer to the type", name); } else if (tag_exists_p (UNION_TYPE, name)) { richloc.add_fixit_insert_before ("union "); error_at (&richloc, "unknown type name %qE;" " use % keyword to refer to the type", name); } else if (tag_exists_p (ENUMERAL_TYPE, name)) { richloc.add_fixit_insert_before ("enum "); error_at (&richloc, "unknown type name %qE;" " use % keyword to refer to the type", name); } else { auto_diagnostic_group d; name_hint hint = lookup_name_fuzzy (name, FUZZY_LOOKUP_TYPENAME, here); if (const char *suggestion = hint.suggestion ()) { richloc.add_fixit_replace (suggestion); error_at (&richloc, "unknown type name %qE; did you mean %qs?", name, suggestion); } else error_at (here, "unknown type name %qE", name); } /* Parse declspecs normally to get a correct pointer type, but avoid a further "fails to be a type name" error. Refuse nested functions since it is not how the user likely wants us to recover. */ c_parser_peek_token (parser)->type = CPP_KEYWORD; c_parser_peek_token (parser)->keyword = RID_VOID; c_parser_peek_token (parser)->value = error_mark_node; fndef_ok = !nested; } c_parser_declspecs (parser, specs, true, true, start_attr_ok, true, true, cla_nonabstract_decl); if (parser->error) { c_parser_skip_to_end_of_block_or_statement (parser); return; } if (nested && !specs->declspecs_seen_p) { c_parser_error (parser, "expected declaration specifiers"); c_parser_skip_to_end_of_block_or_statement (parser); return; } finish_declspecs (specs); bool auto_type_p = specs->typespec_word == cts_auto_type; if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { if (auto_type_p) error_at (here, "%<__auto_type%> in empty declaration"); else if (specs->typespec_kind == ctsk_none && attribute_fallthrough_p (specs->attrs)) { if (fallthru_attr_p != NULL) *fallthru_attr_p = true; tree fn = build_call_expr_internal_loc (here, IFN_FALLTHROUGH, void_type_node, 0); add_stmt (fn); } else if (empty_ok) shadow_tag (specs); else { shadow_tag_warned (specs, 1); pedwarn (here, 0, "empty declaration"); } c_parser_consume_token (parser); if (oacc_routine_data) c_finish_oacc_routine (oacc_routine_data, NULL_TREE, false); return; } /* Provide better error recovery. Note that a type name here is usually better diagnosed as a redeclaration. */ if (empty_ok && specs->typespec_kind == ctsk_tagdef && c_parser_next_token_starts_declspecs (parser) && !c_parser_next_token_is (parser, CPP_NAME)) { c_parser_error (parser, "expected %<;%>, identifier or %<(%>"); parser->error = false; shadow_tag_warned (specs, 1); return; } else if (c_dialect_objc () && !auto_type_p) { /* Prefix attributes are an error on method decls. */ switch (c_parser_peek_token (parser)->type) { case CPP_PLUS: case CPP_MINUS: if (c_parser_objc_diagnose_bad_element_prefix (parser, specs)) return; if (specs->attrs) { warning_at (c_parser_peek_token (parser)->location, OPT_Wattributes, "prefix attributes are ignored for methods"); specs->attrs = NULL_TREE; } if (fndef_ok) c_parser_objc_method_definition (parser); else c_parser_objc_methodproto (parser); return; break; default: break; } /* This is where we parse 'attributes @interface ...', 'attributes @implementation ...', 'attributes @protocol ...' (where attributes could be, for example, __attribute__ ((deprecated)). */ switch (c_parser_peek_token (parser)->keyword) { case RID_AT_INTERFACE: { if (c_parser_objc_diagnose_bad_element_prefix (parser, specs)) return; c_parser_objc_class_definition (parser, specs->attrs); return; } break; case RID_AT_IMPLEMENTATION: { if (c_parser_objc_diagnose_bad_element_prefix (parser, specs)) return; if (specs->attrs) { warning_at (c_parser_peek_token (parser)->location, OPT_Wattributes, "prefix attributes are ignored for implementations"); specs->attrs = NULL_TREE; } c_parser_objc_class_definition (parser, NULL_TREE); return; } break; case RID_AT_PROTOCOL: { if (c_parser_objc_diagnose_bad_element_prefix (parser, specs)) return; c_parser_objc_protocol_definition (parser, specs->attrs); return; } break; case RID_AT_ALIAS: case RID_AT_CLASS: case RID_AT_END: case RID_AT_PROPERTY: if (specs->attrs) { c_parser_error (parser, "unexpected attribute"); specs->attrs = NULL; } break; default: break; } } else if (attribute_fallthrough_p (specs->attrs)) warning_at (here, OPT_Wattributes, "% attribute not followed by %<;%>"); pending_xref_error (); prefix_attrs = specs->attrs; all_prefix_attrs = prefix_attrs; specs->attrs = NULL_TREE; while (true) { struct c_declarator *declarator; bool dummy = false; timevar_id_t tv; tree fnbody = NULL_TREE; /* Declaring either one or more declarators (in which case we should diagnose if there were no declaration specifiers) or a function definition (in which case the diagnostic for implicit int suffices). */ declarator = c_parser_declarator (parser, specs->typespec_kind != ctsk_none, C_DTR_NORMAL, &dummy); if (declarator == NULL) { if (omp_declare_simd_clauses.exists ()) c_finish_omp_declare_simd (parser, NULL_TREE, NULL_TREE, omp_declare_simd_clauses); if (oacc_routine_data) c_finish_oacc_routine (oacc_routine_data, NULL_TREE, false); c_parser_skip_to_end_of_block_or_statement (parser); return; } if (auto_type_p && declarator->kind != cdk_id) { error_at (here, "%<__auto_type%> requires a plain identifier" " as declarator"); c_parser_skip_to_end_of_block_or_statement (parser); return; } if (c_parser_next_token_is (parser, CPP_EQ) || c_parser_next_token_is (parser, CPP_COMMA) || c_parser_next_token_is (parser, CPP_SEMICOLON) || c_parser_next_token_is_keyword (parser, RID_ASM) || c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE) || c_parser_next_token_is_keyword (parser, RID_IN)) { tree asm_name = NULL_TREE; tree postfix_attrs = NULL_TREE; if (!diagnosed_no_specs && !specs->declspecs_seen_p) { diagnosed_no_specs = true; pedwarn (here, 0, "data definition has no type or storage class"); } /* Having seen a data definition, there cannot now be a function definition. */ fndef_ok = false; if (c_parser_next_token_is_keyword (parser, RID_ASM)) asm_name = c_parser_simple_asm_expr (parser); if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) { postfix_attrs = c_parser_attributes (parser); if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) { /* This means there is an attribute specifier after the declarator in a function definition. Provide some more information for the user. */ error_at (here, "attributes should be specified before the " "declarator in a function definition"); c_parser_skip_to_end_of_block_or_statement (parser); return; } } if (c_parser_next_token_is (parser, CPP_EQ)) { tree d; struct c_expr init; location_t init_loc; c_parser_consume_token (parser); if (auto_type_p) { init_loc = c_parser_peek_token (parser)->location; rich_location richloc (line_table, init_loc); start_init (NULL_TREE, asm_name, global_bindings_p (), &richloc); /* A parameter is initialized, which is invalid. Don't attempt to instrument the initializer. */ int flag_sanitize_save = flag_sanitize; if (nested && !empty_ok) flag_sanitize = 0; init = c_parser_expr_no_commas (parser, NULL); flag_sanitize = flag_sanitize_save; if (TREE_CODE (init.value) == COMPONENT_REF && DECL_C_BIT_FIELD (TREE_OPERAND (init.value, 1))) error_at (here, "%<__auto_type%> used with a bit-field" " initializer"); init = convert_lvalue_to_rvalue (init_loc, init, true, true); tree init_type = TREE_TYPE (init.value); /* As with typeof, remove all qualifiers from atomic types. */ if (init_type != error_mark_node && TYPE_ATOMIC (init_type)) init_type = c_build_qualified_type (init_type, TYPE_UNQUALIFIED); bool vm_type = variably_modified_type_p (init_type, NULL_TREE); if (vm_type) init.value = save_expr (init.value); finish_init (); specs->typespec_kind = ctsk_typeof; specs->locations[cdw_typedef] = init_loc; specs->typedef_p = true; specs->type = init_type; if (vm_type) { bool maybe_const = true; tree type_expr = c_fully_fold (init.value, false, &maybe_const); specs->expr_const_operands &= maybe_const; if (specs->expr) specs->expr = build2 (COMPOUND_EXPR, TREE_TYPE (type_expr), specs->expr, type_expr); else specs->expr = type_expr; } d = start_decl (declarator, specs, true, chainon (postfix_attrs, all_prefix_attrs)); if (!d) d = error_mark_node; if (omp_declare_simd_clauses.exists ()) c_finish_omp_declare_simd (parser, d, NULL_TREE, omp_declare_simd_clauses); } else { /* The declaration of the variable is in effect while its initializer is parsed. */ d = start_decl (declarator, specs, true, chainon (postfix_attrs, all_prefix_attrs)); if (!d) d = error_mark_node; if (omp_declare_simd_clauses.exists ()) c_finish_omp_declare_simd (parser, d, NULL_TREE, omp_declare_simd_clauses); init_loc = c_parser_peek_token (parser)->location; rich_location richloc (line_table, init_loc); start_init (d, asm_name, global_bindings_p (), &richloc); /* A parameter is initialized, which is invalid. Don't attempt to instrument the initializer. */ int flag_sanitize_save = flag_sanitize; if (TREE_CODE (d) == PARM_DECL) flag_sanitize = 0; init = c_parser_initializer (parser); flag_sanitize = flag_sanitize_save; finish_init (); } if (oacc_routine_data) c_finish_oacc_routine (oacc_routine_data, d, false); if (d != error_mark_node) { maybe_warn_string_init (init_loc, TREE_TYPE (d), init); finish_decl (d, init_loc, init.value, init.original_type, asm_name); } } else { if (auto_type_p) { error_at (here, "%<__auto_type%> requires an initialized " "data declaration"); c_parser_skip_to_end_of_block_or_statement (parser); return; } tree d = start_decl (declarator, specs, false, chainon (postfix_attrs, all_prefix_attrs)); if (d && TREE_CODE (d) == FUNCTION_DECL && declarator->kind == cdk_function && DECL_ARGUMENTS (d) == NULL_TREE && DECL_INITIAL (d) == NULL_TREE) DECL_ARGUMENTS (d) = declarator->u.arg_info->parms; if (omp_declare_simd_clauses.exists ()) { tree parms = NULL_TREE; if (d && TREE_CODE (d) == FUNCTION_DECL) { struct c_declarator *ce = declarator; while (ce != NULL) if (ce->kind == cdk_function) { parms = ce->u.arg_info->parms; break; } else ce = ce->declarator; } if (parms) temp_store_parm_decls (d, parms); c_finish_omp_declare_simd (parser, d, parms, omp_declare_simd_clauses); if (parms) temp_pop_parm_decls (); } if (oacc_routine_data) c_finish_oacc_routine (oacc_routine_data, d, false); if (d) finish_decl (d, UNKNOWN_LOCATION, NULL_TREE, NULL_TREE, asm_name); if (c_parser_next_token_is_keyword (parser, RID_IN)) { if (d) *objc_foreach_object_declaration = d; else *objc_foreach_object_declaration = error_mark_node; } } if (c_parser_next_token_is (parser, CPP_COMMA)) { if (auto_type_p) { error_at (here, "%<__auto_type%> may only be used with" " a single declarator"); c_parser_skip_to_end_of_block_or_statement (parser); return; } c_parser_consume_token (parser); if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) all_prefix_attrs = chainon (c_parser_attributes (parser), prefix_attrs); else all_prefix_attrs = prefix_attrs; continue; } else if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { c_parser_consume_token (parser); return; } else if (c_parser_next_token_is_keyword (parser, RID_IN)) { /* This can only happen in Objective-C: we found the 'in' that terminates the declaration inside an Objective-C foreach statement. Do not consume the token, so that the caller can use it to determine that this indeed is a foreach context. */ return; } else { c_parser_error (parser, "expected %<,%> or %<;%>"); c_parser_skip_to_end_of_block_or_statement (parser); return; } } else if (auto_type_p) { error_at (here, "%<__auto_type%> requires an initialized data declaration"); c_parser_skip_to_end_of_block_or_statement (parser); return; } else if (!fndef_ok) { c_parser_error (parser, "expected %<=%>, %<,%>, %<;%>, " "% or %<__attribute__%>"); c_parser_skip_to_end_of_block_or_statement (parser); return; } /* Function definition (nested or otherwise). */ if (nested) { pedwarn (here, OPT_Wpedantic, "ISO C forbids nested functions"); c_push_function_context (); } if (!start_function (specs, declarator, all_prefix_attrs)) { /* At this point we've consumed: declaration-specifiers declarator and the next token isn't CPP_EQ, CPP_COMMA, CPP_SEMICOLON, RID_ASM, RID_ATTRIBUTE, or RID_IN, but the declaration-specifiers declarator aren't grokkable as a function definition, so we have an error. */ gcc_assert (!c_parser_next_token_is (parser, CPP_SEMICOLON)); if (c_parser_next_token_starts_declspecs (parser)) { /* If we have declaration-specifiers declarator decl-specs then assume we have a missing semicolon, which would give us: declaration-specifiers declarator decl-specs ^ ; <~~~~~~~~~ declaration ~~~~~~~~~~> Use c_parser_require to get an error with a fix-it hint. */ c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>"); parser->error = false; } else { /* This can appear in many cases looking nothing like a function definition, so we don't give a more specific error suggesting there was one. */ c_parser_error (parser, "expected %<=%>, %<,%>, %<;%>, % " "or %<__attribute__%>"); } if (nested) c_pop_function_context (); break; } if (DECL_DECLARED_INLINE_P (current_function_decl)) tv = TV_PARSE_INLINE; else tv = TV_PARSE_FUNC; auto_timevar at (g_timer, tv); /* Parse old-style parameter declarations. ??? Attributes are not allowed to start declaration specifiers here because of a syntax conflict between a function declaration with attribute suffix and a function definition with an attribute prefix on first old-style parameter declaration. Following the old parser, they are not accepted on subsequent old-style parameter declarations either. However, there is no ambiguity after the first declaration, nor indeed on the first as long as we don't allow postfix attributes after a declarator with a nonempty identifier list in a definition; and postfix attributes have never been accepted here in function definitions either. */ while (c_parser_next_token_is_not (parser, CPP_EOF) && c_parser_next_token_is_not (parser, CPP_OPEN_BRACE)) c_parser_declaration_or_fndef (parser, false, false, false, true, false, NULL, vNULL); store_parm_decls (); if (omp_declare_simd_clauses.exists ()) c_finish_omp_declare_simd (parser, current_function_decl, NULL_TREE, omp_declare_simd_clauses); if (oacc_routine_data) c_finish_oacc_routine (oacc_routine_data, current_function_decl, true); DECL_STRUCT_FUNCTION (current_function_decl)->function_start_locus = c_parser_peek_token (parser)->location; /* If the definition was marked with __RTL, use the RTL parser now, consuming the function body. */ if (specs->declspec_il == cdil_rtl) { c_parser_parse_rtl_body (parser, specs->gimple_or_rtl_pass); /* Normally, store_parm_decls sets next_is_function_body, anticipating a function body. We need a push_scope/pop_scope pair to flush out this state, or subsequent function parsing will go wrong. */ push_scope (); pop_scope (); finish_function (); return; } /* If the definition was marked with __GIMPLE then parse the function body as GIMPLE. */ else if (specs->declspec_il != cdil_none) { bool saved = in_late_binary_op; in_late_binary_op = true; c_parser_parse_gimple_body (parser, specs->gimple_or_rtl_pass, specs->declspec_il); in_late_binary_op = saved; } else fnbody = c_parser_compound_statement (parser); tree fndecl = current_function_decl; if (nested) { tree decl = current_function_decl; /* Mark nested functions as needing static-chain initially. lower_nested_functions will recompute it but the DECL_STATIC_CHAIN flag is also used before that happens, by initializer_constant_valid_p. See gcc.dg/nested-fn-2.c. */ DECL_STATIC_CHAIN (decl) = 1; add_stmt (fnbody); finish_function (); c_pop_function_context (); add_stmt (build_stmt (DECL_SOURCE_LOCATION (decl), DECL_EXPR, decl)); } else { if (fnbody) add_stmt (fnbody); finish_function (); } /* Get rid of the empty stmt list for GIMPLE/RTL. */ if (specs->declspec_il != cdil_none) DECL_SAVED_TREE (fndecl) = NULL_TREE; break; } } /* Parse an asm-definition (asm() outside a function body). This is a GNU extension. asm-definition: simple-asm-expr ; */ static void c_parser_asm_definition (c_parser *parser) { tree asm_str = c_parser_simple_asm_expr (parser); if (asm_str) symtab->finalize_toplevel_asm (asm_str); c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } /* Parse a static assertion (C11 6.7.10). static_assert-declaration: static_assert-declaration-no-semi ; */ static void c_parser_static_assert_declaration (c_parser *parser) { c_parser_static_assert_declaration_no_semi (parser); if (parser->error || !c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>")) c_parser_skip_to_end_of_block_or_statement (parser); } /* Parse a static assertion (C11 6.7.10), without the trailing semicolon. static_assert-declaration-no-semi: _Static_assert ( constant-expression , string-literal ) C2X: static_assert-declaration-no-semi: _Static_assert ( constant-expression ) */ static void c_parser_static_assert_declaration_no_semi (c_parser *parser) { location_t assert_loc, value_loc; tree value; tree string = NULL_TREE; gcc_assert (c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT)); assert_loc = c_parser_peek_token (parser)->location; if (flag_isoc99) pedwarn_c99 (assert_loc, OPT_Wpedantic, "ISO C99 does not support %<_Static_assert%>"); else pedwarn_c99 (assert_loc, OPT_Wpedantic, "ISO C90 does not support %<_Static_assert%>"); c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) return; location_t value_tok_loc = c_parser_peek_token (parser)->location; value = c_parser_expr_no_commas (parser, NULL).value; value_loc = EXPR_LOC_OR_LOC (value, value_tok_loc); parser->lex_untranslated_string = true; if (c_parser_next_token_is (parser, CPP_COMMA)) { c_parser_consume_token (parser); switch (c_parser_peek_token (parser)->type) { case CPP_STRING: case CPP_STRING16: case CPP_STRING32: case CPP_WSTRING: case CPP_UTF8STRING: string = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); parser->lex_untranslated_string = false; break; default: c_parser_error (parser, "expected string literal"); parser->lex_untranslated_string = false; return; } } else if (flag_isoc11) /* If pedantic for pre-C11, the use of _Static_assert itself will have been diagnosed, so do not also diagnose the use of this new C2X feature of _Static_assert. */ pedwarn_c11 (assert_loc, OPT_Wpedantic, "ISO C11 does not support omitting the string in " "%<_Static_assert%>"); parens.require_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (value))) { error_at (value_loc, "expression in static assertion is not an integer"); return; } if (TREE_CODE (value) != INTEGER_CST) { value = c_fully_fold (value, false, NULL); /* Strip no-op conversions. */ STRIP_TYPE_NOPS (value); if (TREE_CODE (value) == INTEGER_CST) pedwarn (value_loc, OPT_Wpedantic, "expression in static assertion " "is not an integer constant expression"); } if (TREE_CODE (value) != INTEGER_CST) { error_at (value_loc, "expression in static assertion is not constant"); return; } constant_expression_warning (value); if (integer_zerop (value)) { if (string) error_at (assert_loc, "static assertion failed: %E", string); else error_at (assert_loc, "static assertion failed"); } } /* Parse some declaration specifiers (possibly none) (C90 6.5, C99 6.7, C11 6.7), adding them to SPECS (which may already include some). Storage class specifiers are accepted iff SCSPEC_OK; type specifiers are accepted iff TYPESPEC_OK; alignment specifiers are accepted iff ALIGNSPEC_OK; attributes are accepted at the start iff START_ATTR_OK; __auto_type is accepted iff AUTO_TYPE_OK. declaration-specifiers: storage-class-specifier declaration-specifiers[opt] type-specifier declaration-specifiers[opt] type-qualifier declaration-specifiers[opt] function-specifier declaration-specifiers[opt] alignment-specifier declaration-specifiers[opt] Function specifiers (inline) are from C99, and are currently handled as storage class specifiers, as is __thread. Alignment specifiers are from C11. C90 6.5.1, C99 6.7.1, C11 6.7.1: storage-class-specifier: typedef extern static auto register _Thread_local (_Thread_local is new in C11.) C99 6.7.4, C11 6.7.4: function-specifier: inline _Noreturn (_Noreturn is new in C11.) C90 6.5.2, C99 6.7.2, C11 6.7.2: type-specifier: void char short int long float double signed unsigned _Bool _Complex [_Imaginary removed in C99 TC2] struct-or-union-specifier enum-specifier typedef-name atomic-type-specifier (_Bool and _Complex are new in C99.) (atomic-type-specifier is new in C11.) C90 6.5.3, C99 6.7.3, C11 6.7.3: type-qualifier: const restrict volatile address-space-qualifier _Atomic (restrict is new in C99.) (_Atomic is new in C11.) GNU extensions: declaration-specifiers: attributes declaration-specifiers[opt] type-qualifier: address-space address-space: identifier recognized by the target storage-class-specifier: __thread type-specifier: typeof-specifier __auto_type __intN _Decimal32 _Decimal64 _Decimal128 _Fract _Accum _Sat (_Fract, _Accum, and _Sat are new from ISO/IEC DTR 18037: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf) atomic-type-specifier _Atomic ( type-name ) Objective-C: type-specifier: class-name objc-protocol-refs[opt] typedef-name objc-protocol-refs objc-protocol-refs */ void c_parser_declspecs (c_parser *parser, struct c_declspecs *specs, bool scspec_ok, bool typespec_ok, bool start_attr_ok, bool alignspec_ok, bool auto_type_ok, enum c_lookahead_kind la) { bool attrs_ok = start_attr_ok; bool seen_type = specs->typespec_kind != ctsk_none; if (!typespec_ok) gcc_assert (la == cla_prefer_id); while (c_parser_next_token_is (parser, CPP_NAME) || c_parser_next_token_is (parser, CPP_KEYWORD) || (c_dialect_objc () && c_parser_next_token_is (parser, CPP_LESS))) { struct c_typespec t; tree attrs; tree align; location_t loc = c_parser_peek_token (parser)->location; /* If we cannot accept a type, exit if the next token must start one. Also, if we already have seen a tagged definition, a typename would be an error anyway and likely the user has simply forgotten a semicolon, so we exit. */ if ((!typespec_ok || specs->typespec_kind == ctsk_tagdef) && c_parser_next_tokens_start_typename (parser, la) && !c_parser_next_token_is_qualifier (parser) && !c_parser_next_token_is_keyword (parser, RID_ALIGNAS)) break; if (c_parser_next_token_is (parser, CPP_NAME)) { c_token *name_token = c_parser_peek_token (parser); tree value = name_token->value; c_id_kind kind = name_token->id_kind; if (kind == C_ID_ADDRSPACE) { addr_space_t as = name_token->keyword - RID_FIRST_ADDR_SPACE; declspecs_add_addrspace (name_token->location, specs, as); c_parser_consume_token (parser); attrs_ok = true; continue; } gcc_assert (!c_parser_next_token_is_qualifier (parser)); /* If we cannot accept a type, and the next token must start one, exit. Do the same if we already have seen a tagged definition, since it would be an error anyway and likely the user has simply forgotten a semicolon. */ if (seen_type || !c_parser_next_tokens_start_typename (parser, la)) break; /* Now at an unknown typename (C_ID_ID), a C_ID_TYPENAME or a C_ID_CLASSNAME. */ c_parser_consume_token (parser); seen_type = true; attrs_ok = true; if (kind == C_ID_ID) { error_at (loc, "unknown type name %qE", value); t.kind = ctsk_typedef; t.spec = error_mark_node; } else if (kind == C_ID_TYPENAME && (!c_dialect_objc () || c_parser_next_token_is_not (parser, CPP_LESS))) { t.kind = ctsk_typedef; /* For a typedef name, record the meaning, not the name. In case of 'foo foo, bar;'. */ t.spec = lookup_name (value); } else { tree proto = NULL_TREE; gcc_assert (c_dialect_objc ()); t.kind = ctsk_objc; if (c_parser_next_token_is (parser, CPP_LESS)) proto = c_parser_objc_protocol_refs (parser); t.spec = objc_get_protocol_qualified_type (value, proto); } t.expr = NULL_TREE; t.expr_const_operands = true; declspecs_add_type (name_token->location, specs, t); continue; } if (c_parser_next_token_is (parser, CPP_LESS)) { /* Make "" equivalent to "id " - nisse@lysator.liu.se. */ tree proto; gcc_assert (c_dialect_objc ()); if (!typespec_ok || seen_type) break; proto = c_parser_objc_protocol_refs (parser); t.kind = ctsk_objc; t.spec = objc_get_protocol_qualified_type (NULL_TREE, proto); t.expr = NULL_TREE; t.expr_const_operands = true; declspecs_add_type (loc, specs, t); continue; } gcc_assert (c_parser_next_token_is (parser, CPP_KEYWORD)); switch (c_parser_peek_token (parser)->keyword) { case RID_STATIC: case RID_EXTERN: case RID_REGISTER: case RID_TYPEDEF: case RID_INLINE: case RID_NORETURN: case RID_AUTO: case RID_THREAD: if (!scspec_ok) goto out; attrs_ok = true; /* TODO: Distinguish between function specifiers (inline, noreturn) and storage class specifiers, either here or in declspecs_add_scspec. */ declspecs_add_scspec (loc, specs, c_parser_peek_token (parser)->value); c_parser_consume_token (parser); break; case RID_AUTO_TYPE: if (!auto_type_ok) goto out; /* Fall through. */ case RID_UNSIGNED: case RID_LONG: case RID_SHORT: case RID_SIGNED: case RID_COMPLEX: case RID_INT: case RID_CHAR: case RID_FLOAT: case RID_DOUBLE: case RID_VOID: case RID_DFLOAT32: case RID_DFLOAT64: case RID_DFLOAT128: CASE_RID_FLOATN_NX: case RID_BOOL: case RID_FRACT: case RID_ACCUM: case RID_SAT: case RID_INT_N_0: case RID_INT_N_1: case RID_INT_N_2: case RID_INT_N_3: if (!typespec_ok) goto out; attrs_ok = true; seen_type = true; if (c_dialect_objc ()) parser->objc_need_raw_identifier = true; t.kind = ctsk_resword; t.spec = c_parser_peek_token (parser)->value; t.expr = NULL_TREE; t.expr_const_operands = true; declspecs_add_type (loc, specs, t); c_parser_consume_token (parser); break; case RID_ENUM: if (!typespec_ok) goto out; attrs_ok = true; seen_type = true; t = c_parser_enum_specifier (parser); invoke_plugin_callbacks (PLUGIN_FINISH_TYPE, t.spec); declspecs_add_type (loc, specs, t); break; case RID_STRUCT: case RID_UNION: if (!typespec_ok) goto out; attrs_ok = true; seen_type = true; t = c_parser_struct_or_union_specifier (parser); invoke_plugin_callbacks (PLUGIN_FINISH_TYPE, t.spec); declspecs_add_type (loc, specs, t); break; case RID_TYPEOF: /* ??? The old parser rejected typeof after other type specifiers, but is a syntax error the best way of handling this? */ if (!typespec_ok || seen_type) goto out; attrs_ok = true; seen_type = true; t = c_parser_typeof_specifier (parser); declspecs_add_type (loc, specs, t); break; case RID_ATOMIC: /* C parser handling of Objective-C constructs needs checking for correct lvalue-to-rvalue conversions, and the code in build_modify_expr handling various Objective-C cases, and that in build_unary_op handling Objective-C cases for increment / decrement, also needs updating; uses of TYPE_MAIN_VARIANT in objc_compare_types and objc_types_are_equivalent may also need updates. */ if (c_dialect_objc ()) sorry ("%<_Atomic%> in Objective-C"); if (flag_isoc99) pedwarn_c99 (loc, OPT_Wpedantic, "ISO C99 does not support the %<_Atomic%> qualifier"); else pedwarn_c99 (loc, OPT_Wpedantic, "ISO C90 does not support the %<_Atomic%> qualifier"); attrs_ok = true; tree value; value = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); if (typespec_ok && c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { /* _Atomic ( type-name ). */ seen_type = true; c_parser_consume_token (parser); struct c_type_name *type = c_parser_type_name (parser); t.kind = ctsk_typeof; t.spec = error_mark_node; t.expr = NULL_TREE; t.expr_const_operands = true; if (type != NULL) t.spec = groktypename (type, &t.expr, &t.expr_const_operands); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); if (t.spec != error_mark_node) { if (TREE_CODE (t.spec) == ARRAY_TYPE) error_at (loc, "%<_Atomic%>-qualified array type"); else if (TREE_CODE (t.spec) == FUNCTION_TYPE) error_at (loc, "%<_Atomic%>-qualified function type"); else if (TYPE_QUALS (t.spec) != TYPE_UNQUALIFIED) error_at (loc, "%<_Atomic%> applied to a qualified type"); else t.spec = c_build_qualified_type (t.spec, TYPE_QUAL_ATOMIC); } declspecs_add_type (loc, specs, t); } else declspecs_add_qual (loc, specs, value); break; case RID_CONST: case RID_VOLATILE: case RID_RESTRICT: attrs_ok = true; declspecs_add_qual (loc, specs, c_parser_peek_token (parser)->value); c_parser_consume_token (parser); break; case RID_ATTRIBUTE: if (!attrs_ok) goto out; attrs = c_parser_attributes (parser); declspecs_add_attrs (loc, specs, attrs); break; case RID_ALIGNAS: if (!alignspec_ok) goto out; align = c_parser_alignas_specifier (parser); declspecs_add_alignas (loc, specs, align); break; case RID_GIMPLE: if (! flag_gimple) error_at (loc, "%<__GIMPLE%> only valid with %<-fgimple%>"); c_parser_consume_token (parser); specs->declspec_il = cdil_gimple; specs->locations[cdw_gimple] = loc; c_parser_gimple_or_rtl_pass_list (parser, specs); break; case RID_RTL: c_parser_consume_token (parser); specs->declspec_il = cdil_rtl; specs->locations[cdw_rtl] = loc; c_parser_gimple_or_rtl_pass_list (parser, specs); break; default: goto out; } } out: ; } /* Parse an enum specifier (C90 6.5.2.2, C99 6.7.2.2, C11 6.7.2.2). enum-specifier: enum attributes[opt] identifier[opt] { enumerator-list } attributes[opt] enum attributes[opt] identifier[opt] { enumerator-list , } attributes[opt] enum attributes[opt] identifier The form with trailing comma is new in C99. The forms with attributes are GNU extensions. In GNU C, we accept any expression without commas in the syntax (assignment expressions, not just conditional expressions); assignment expressions will be diagnosed as non-constant. enumerator-list: enumerator enumerator-list , enumerator enumerator: enumeration-constant enumeration-constant = constant-expression GNU Extensions: enumerator: enumeration-constant attributes[opt] enumeration-constant attributes[opt] = constant-expression */ static struct c_typespec c_parser_enum_specifier (c_parser *parser) { struct c_typespec ret; tree attrs; tree ident = NULL_TREE; location_t enum_loc; location_t ident_loc = UNKNOWN_LOCATION; /* Quiet warning. */ gcc_assert (c_parser_next_token_is_keyword (parser, RID_ENUM)); c_parser_consume_token (parser); attrs = c_parser_attributes (parser); enum_loc = c_parser_peek_token (parser)->location; /* Set the location in case we create a decl now. */ c_parser_set_source_position_from_token (c_parser_peek_token (parser)); if (c_parser_next_token_is (parser, CPP_NAME)) { ident = c_parser_peek_token (parser)->value; ident_loc = c_parser_peek_token (parser)->location; enum_loc = ident_loc; c_parser_consume_token (parser); } if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) { /* Parse an enum definition. */ struct c_enum_contents the_enum; tree type; tree postfix_attrs; /* We chain the enumerators in reverse order, then put them in forward order at the end. */ tree values; timevar_push (TV_PARSE_ENUM); type = start_enum (enum_loc, &the_enum, ident); values = NULL_TREE; c_parser_consume_token (parser); while (true) { tree enum_id; tree enum_value; tree enum_decl; bool seen_comma; c_token *token; location_t comma_loc = UNKNOWN_LOCATION; /* Quiet warning. */ location_t decl_loc, value_loc; if (c_parser_next_token_is_not (parser, CPP_NAME)) { /* Give a nicer error for "enum {}". */ if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE) && !parser->error) { error_at (c_parser_peek_token (parser)->location, "empty enum is invalid"); parser->error = true; } else c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL); values = error_mark_node; break; } token = c_parser_peek_token (parser); enum_id = token->value; /* Set the location in case we create a decl now. */ c_parser_set_source_position_from_token (token); decl_loc = value_loc = token->location; c_parser_consume_token (parser); /* Parse any specified attributes. */ tree enum_attrs = c_parser_attributes (parser); if (c_parser_next_token_is (parser, CPP_EQ)) { c_parser_consume_token (parser); value_loc = c_parser_peek_token (parser)->location; enum_value = c_parser_expr_no_commas (parser, NULL).value; } else enum_value = NULL_TREE; enum_decl = build_enumerator (decl_loc, value_loc, &the_enum, enum_id, enum_value); if (enum_attrs) decl_attributes (&TREE_PURPOSE (enum_decl), enum_attrs, 0); TREE_CHAIN (enum_decl) = values; values = enum_decl; seen_comma = false; if (c_parser_next_token_is (parser, CPP_COMMA)) { comma_loc = c_parser_peek_token (parser)->location; seen_comma = true; c_parser_consume_token (parser); } if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { if (seen_comma) pedwarn_c90 (comma_loc, OPT_Wpedantic, "comma at end of enumerator list"); c_parser_consume_token (parser); break; } if (!seen_comma) { c_parser_error (parser, "expected %<,%> or %<}%>"); c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL); values = error_mark_node; break; } } postfix_attrs = c_parser_attributes (parser); ret.spec = finish_enum (type, nreverse (values), chainon (attrs, postfix_attrs)); ret.kind = ctsk_tagdef; ret.expr = NULL_TREE; ret.expr_const_operands = true; timevar_pop (TV_PARSE_ENUM); return ret; } else if (!ident) { c_parser_error (parser, "expected %<{%>"); ret.spec = error_mark_node; ret.kind = ctsk_tagref; ret.expr = NULL_TREE; ret.expr_const_operands = true; return ret; } ret = parser_xref_tag (ident_loc, ENUMERAL_TYPE, ident); /* In ISO C, enumerated types can be referred to only if already defined. */ if (pedantic && !COMPLETE_TYPE_P (ret.spec)) { gcc_assert (ident); pedwarn (enum_loc, OPT_Wpedantic, "ISO C forbids forward references to % types"); } return ret; } /* Parse a struct or union specifier (C90 6.5.2.1, C99 6.7.2.1, C11 6.7.2.1). struct-or-union-specifier: struct-or-union attributes[opt] identifier[opt] { struct-contents } attributes[opt] struct-or-union attributes[opt] identifier struct-contents: struct-declaration-list struct-declaration-list: struct-declaration ; struct-declaration-list struct-declaration ; GNU extensions: struct-contents: empty struct-declaration struct-declaration-list struct-declaration struct-declaration-list: struct-declaration-list ; ; (Note that in the syntax here, unlike that in ISO C, the semicolons are included here rather than in struct-declaration, in order to describe the syntax with extra semicolons and missing semicolon at end.) Objective-C: struct-declaration-list: @defs ( class-name ) (Note this does not include a trailing semicolon, but can be followed by further declarations, and gets a pedwarn-if-pedantic when followed by a semicolon.) */ static struct c_typespec c_parser_struct_or_union_specifier (c_parser *parser) { struct c_typespec ret; tree attrs; tree ident = NULL_TREE; location_t struct_loc; location_t ident_loc = UNKNOWN_LOCATION; enum tree_code code; switch (c_parser_peek_token (parser)->keyword) { case RID_STRUCT: code = RECORD_TYPE; break; case RID_UNION: code = UNION_TYPE; break; default: gcc_unreachable (); } struct_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); attrs = c_parser_attributes (parser); /* Set the location in case we create a decl now. */ c_parser_set_source_position_from_token (c_parser_peek_token (parser)); if (c_parser_next_token_is (parser, CPP_NAME)) { ident = c_parser_peek_token (parser)->value; ident_loc = c_parser_peek_token (parser)->location; struct_loc = ident_loc; c_parser_consume_token (parser); } if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) { /* Parse a struct or union definition. Start the scope of the tag before parsing components. */ struct c_struct_parse_info *struct_info; tree type = start_struct (struct_loc, code, ident, &struct_info); tree postfix_attrs; /* We chain the components in reverse order, then put them in forward order at the end. Each struct-declaration may declare multiple components (comma-separated), so we must use chainon to join them, although when parsing each struct-declaration we can use TREE_CHAIN directly. The theory behind all this is that there will be more semicolon separated fields than comma separated fields, and so we'll be minimizing the number of node traversals required by chainon. */ tree contents; timevar_push (TV_PARSE_STRUCT); contents = NULL_TREE; c_parser_consume_token (parser); /* Handle the Objective-C @defs construct, e.g. foo(sizeof(struct{ @defs(ClassName) }));. */ if (c_parser_next_token_is_keyword (parser, RID_AT_DEFS)) { tree name; gcc_assert (c_dialect_objc ()); c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) goto end_at_defs; if (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME) { name = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); } else { c_parser_error (parser, "expected class name"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); goto end_at_defs; } parens.skip_until_found_close (parser); contents = nreverse (objc_get_class_ivars (name)); } end_at_defs: /* Parse the struct-declarations and semicolons. Problems with semicolons are diagnosed here; empty structures are diagnosed elsewhere. */ while (true) { tree decls; /* Parse any stray semicolon. */ if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { location_t semicolon_loc = c_parser_peek_token (parser)->location; gcc_rich_location richloc (semicolon_loc); richloc.add_fixit_remove (); pedwarn (&richloc, OPT_Wpedantic, "extra semicolon in struct or union specified"); c_parser_consume_token (parser); continue; } /* Stop if at the end of the struct or union contents. */ if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { c_parser_consume_token (parser); break; } /* Accept #pragmas at struct scope. */ if (c_parser_next_token_is (parser, CPP_PRAGMA)) { c_parser_pragma (parser, pragma_struct, NULL); continue; } /* Parse some comma-separated declarations, but not the trailing semicolon if any. */ decls = c_parser_struct_declaration (parser); contents = chainon (decls, contents); /* If no semicolon follows, either we have a parse error or are at the end of the struct or union and should pedwarn. */ if (c_parser_next_token_is (parser, CPP_SEMICOLON)) c_parser_consume_token (parser); else { if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) pedwarn (c_parser_peek_token (parser)->location, 0, "no semicolon at end of struct or union"); else if (parser->error || !c_parser_next_token_starts_declspecs (parser)) { c_parser_error (parser, "expected %<;%>"); c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL); break; } /* If we come here, we have already emitted an error for an expected `;', identifier or `(', and we also recovered already. Go on with the next field. */ } } postfix_attrs = c_parser_attributes (parser); ret.spec = finish_struct (struct_loc, type, nreverse (contents), chainon (attrs, postfix_attrs), struct_info); ret.kind = ctsk_tagdef; ret.expr = NULL_TREE; ret.expr_const_operands = true; timevar_pop (TV_PARSE_STRUCT); return ret; } else if (!ident) { c_parser_error (parser, "expected %<{%>"); ret.spec = error_mark_node; ret.kind = ctsk_tagref; ret.expr = NULL_TREE; ret.expr_const_operands = true; return ret; } ret = parser_xref_tag (ident_loc, code, ident); return ret; } /* Parse a struct-declaration (C90 6.5.2.1, C99 6.7.2.1, C11 6.7.2.1), *without* the trailing semicolon. struct-declaration: specifier-qualifier-list struct-declarator-list static_assert-declaration-no-semi specifier-qualifier-list: type-specifier specifier-qualifier-list[opt] type-qualifier specifier-qualifier-list[opt] alignment-specifier specifier-qualifier-list[opt] attributes specifier-qualifier-list[opt] struct-declarator-list: struct-declarator struct-declarator-list , attributes[opt] struct-declarator struct-declarator: declarator attributes[opt] declarator[opt] : constant-expression attributes[opt] GNU extensions: struct-declaration: __extension__ struct-declaration specifier-qualifier-list Unlike the ISO C syntax, semicolons are handled elsewhere. The use of attributes where shown is a GNU extension. In GNU C, we accept any expression without commas in the syntax (assignment expressions, not just conditional expressions); assignment expressions will be diagnosed as non-constant. */ static tree c_parser_struct_declaration (c_parser *parser) { struct c_declspecs *specs; tree prefix_attrs; tree all_prefix_attrs; tree decls; location_t decl_loc; if (c_parser_next_token_is_keyword (parser, RID_EXTENSION)) { int ext; tree decl; ext = disable_extension_diagnostics (); c_parser_consume_token (parser); decl = c_parser_struct_declaration (parser); restore_extension_diagnostics (ext); return decl; } if (c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT)) { c_parser_static_assert_declaration_no_semi (parser); return NULL_TREE; } specs = build_null_declspecs (); decl_loc = c_parser_peek_token (parser)->location; /* Strictly by the standard, we shouldn't allow _Alignas here, but it appears to have been intended to allow it there, so we're keeping it as it is until WG14 reaches a conclusion of N1731. */ c_parser_declspecs (parser, specs, false, true, true, true, false, cla_nonabstract_decl); if (parser->error) return NULL_TREE; if (!specs->declspecs_seen_p) { c_parser_error (parser, "expected specifier-qualifier-list"); return NULL_TREE; } finish_declspecs (specs); if (c_parser_next_token_is (parser, CPP_SEMICOLON) || c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { tree ret; if (specs->typespec_kind == ctsk_none) { pedwarn (decl_loc, OPT_Wpedantic, "ISO C forbids member declarations with no members"); shadow_tag_warned (specs, pedantic); ret = NULL_TREE; } else { /* Support for unnamed structs or unions as members of structs or unions (which is [a] useful and [b] supports MS P-SDK). */ tree attrs = NULL; ret = grokfield (c_parser_peek_token (parser)->location, build_id_declarator (NULL_TREE), specs, NULL_TREE, &attrs); if (ret) decl_attributes (&ret, attrs, 0); } return ret; } /* Provide better error recovery. Note that a type name here is valid, and will be treated as a field name. */ if (specs->typespec_kind == ctsk_tagdef && TREE_CODE (specs->type) != ENUMERAL_TYPE && c_parser_next_token_starts_declspecs (parser) && !c_parser_next_token_is (parser, CPP_NAME)) { c_parser_error (parser, "expected %<;%>, identifier or %<(%>"); parser->error = false; return NULL_TREE; } pending_xref_error (); prefix_attrs = specs->attrs; all_prefix_attrs = prefix_attrs; specs->attrs = NULL_TREE; decls = NULL_TREE; while (true) { /* Declaring one or more declarators or un-named bit-fields. */ struct c_declarator *declarator; bool dummy = false; if (c_parser_next_token_is (parser, CPP_COLON)) declarator = build_id_declarator (NULL_TREE); else declarator = c_parser_declarator (parser, specs->typespec_kind != ctsk_none, C_DTR_NORMAL, &dummy); if (declarator == NULL) { c_parser_skip_to_end_of_block_or_statement (parser); break; } if (c_parser_next_token_is (parser, CPP_COLON) || c_parser_next_token_is (parser, CPP_COMMA) || c_parser_next_token_is (parser, CPP_SEMICOLON) || c_parser_next_token_is (parser, CPP_CLOSE_BRACE) || c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) { tree postfix_attrs = NULL_TREE; tree width = NULL_TREE; tree d; if (c_parser_next_token_is (parser, CPP_COLON)) { c_parser_consume_token (parser); width = c_parser_expr_no_commas (parser, NULL).value; } if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) postfix_attrs = c_parser_attributes (parser); d = grokfield (c_parser_peek_token (parser)->location, declarator, specs, width, &all_prefix_attrs); decl_attributes (&d, chainon (postfix_attrs, all_prefix_attrs), 0); DECL_CHAIN (d) = decls; decls = d; if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) all_prefix_attrs = chainon (c_parser_attributes (parser), prefix_attrs); else all_prefix_attrs = prefix_attrs; if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else if (c_parser_next_token_is (parser, CPP_SEMICOLON) || c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { /* Semicolon consumed in caller. */ break; } else { c_parser_error (parser, "expected %<,%>, %<;%> or %<}%>"); break; } } else { c_parser_error (parser, "expected %<:%>, %<,%>, %<;%>, %<}%> or " "%<__attribute__%>"); break; } } return decls; } /* Parse a typeof specifier (a GNU extension). typeof-specifier: typeof ( expression ) typeof ( type-name ) */ static struct c_typespec c_parser_typeof_specifier (c_parser *parser) { struct c_typespec ret; ret.kind = ctsk_typeof; ret.spec = error_mark_node; ret.expr = NULL_TREE; ret.expr_const_operands = true; gcc_assert (c_parser_next_token_is_keyword (parser, RID_TYPEOF)); c_parser_consume_token (parser); c_inhibit_evaluation_warnings++; in_typeof++; matching_parens parens; if (!parens.require_open (parser)) { c_inhibit_evaluation_warnings--; in_typeof--; return ret; } if (c_parser_next_tokens_start_typename (parser, cla_prefer_id)) { struct c_type_name *type = c_parser_type_name (parser); c_inhibit_evaluation_warnings--; in_typeof--; if (type != NULL) { ret.spec = groktypename (type, &ret.expr, &ret.expr_const_operands); pop_maybe_used (variably_modified_type_p (ret.spec, NULL_TREE)); } } else { bool was_vm; location_t here = c_parser_peek_token (parser)->location; struct c_expr expr = c_parser_expression (parser); c_inhibit_evaluation_warnings--; in_typeof--; if (TREE_CODE (expr.value) == COMPONENT_REF && DECL_C_BIT_FIELD (TREE_OPERAND (expr.value, 1))) error_at (here, "% applied to a bit-field"); mark_exp_read (expr.value); ret.spec = TREE_TYPE (expr.value); was_vm = variably_modified_type_p (ret.spec, NULL_TREE); /* This is returned with the type so that when the type is evaluated, this can be evaluated. */ if (was_vm) ret.expr = c_fully_fold (expr.value, false, &ret.expr_const_operands); pop_maybe_used (was_vm); /* For use in macros such as those in , remove all qualifiers from atomic types. (const can be an issue for more macros using typeof than just the ones.) */ if (ret.spec != error_mark_node && TYPE_ATOMIC (ret.spec)) ret.spec = c_build_qualified_type (ret.spec, TYPE_UNQUALIFIED); } parens.skip_until_found_close (parser); return ret; } /* Parse an alignment-specifier. C11 6.7.5: alignment-specifier: _Alignas ( type-name ) _Alignas ( constant-expression ) */ static tree c_parser_alignas_specifier (c_parser * parser) { tree ret = error_mark_node; location_t loc = c_parser_peek_token (parser)->location; gcc_assert (c_parser_next_token_is_keyword (parser, RID_ALIGNAS)); c_parser_consume_token (parser); if (flag_isoc99) pedwarn_c99 (loc, OPT_Wpedantic, "ISO C99 does not support %<_Alignas%>"); else pedwarn_c99 (loc, OPT_Wpedantic, "ISO C90 does not support %<_Alignas%>"); matching_parens parens; if (!parens.require_open (parser)) return ret; if (c_parser_next_tokens_start_typename (parser, cla_prefer_id)) { struct c_type_name *type = c_parser_type_name (parser); if (type != NULL) ret = c_sizeof_or_alignof_type (loc, groktypename (type, NULL, NULL), false, true, 1); } else ret = c_parser_expr_no_commas (parser, NULL).value; parens.skip_until_found_close (parser); return ret; } /* Parse a declarator, possibly an abstract declarator (C90 6.5.4, 6.5.5, C99 6.7.5, 6.7.6, C11 6.7.6, 6.7.7). If TYPE_SEEN_P then a typedef name may be redeclared; otherwise it may not. KIND indicates which kind of declarator is wanted. Returns a valid declarator except in the case of a syntax error in which case NULL is returned. *SEEN_ID is set to true if an identifier being declared is seen; this is used to diagnose bad forms of abstract array declarators and to determine whether an identifier list is syntactically permitted. declarator: pointer[opt] direct-declarator direct-declarator: identifier ( attributes[opt] declarator ) direct-declarator array-declarator direct-declarator ( parameter-type-list ) direct-declarator ( identifier-list[opt] ) pointer: * type-qualifier-list[opt] * type-qualifier-list[opt] pointer type-qualifier-list: type-qualifier attributes type-qualifier-list type-qualifier type-qualifier-list attributes array-declarator: [ type-qualifier-list[opt] assignment-expression[opt] ] [ static type-qualifier-list[opt] assignment-expression ] [ type-qualifier-list static assignment-expression ] [ type-qualifier-list[opt] * ] parameter-type-list: parameter-list parameter-list , ... parameter-list: parameter-declaration parameter-list , parameter-declaration parameter-declaration: declaration-specifiers declarator attributes[opt] declaration-specifiers abstract-declarator[opt] attributes[opt] identifier-list: identifier identifier-list , identifier abstract-declarator: pointer pointer[opt] direct-abstract-declarator direct-abstract-declarator: ( attributes[opt] abstract-declarator ) direct-abstract-declarator[opt] array-declarator direct-abstract-declarator[opt] ( parameter-type-list[opt] ) GNU extensions: direct-declarator: direct-declarator ( parameter-forward-declarations parameter-type-list[opt] ) direct-abstract-declarator: direct-abstract-declarator[opt] ( parameter-forward-declarations parameter-type-list[opt] ) parameter-forward-declarations: parameter-list ; parameter-forward-declarations parameter-list ; The uses of attributes shown above are GNU extensions. Some forms of array declarator are not included in C99 in the syntax for abstract declarators; these are disallowed elsewhere. This may be a defect (DR#289). This function also accepts an omitted abstract declarator as being an abstract declarator, although not part of the formal syntax. */ struct c_declarator * c_parser_declarator (c_parser *parser, bool type_seen_p, c_dtr_syn kind, bool *seen_id) { /* Parse any initial pointer part. */ if (c_parser_next_token_is (parser, CPP_MULT)) { struct c_declspecs *quals_attrs = build_null_declspecs (); struct c_declarator *inner; c_parser_consume_token (parser); c_parser_declspecs (parser, quals_attrs, false, false, true, false, false, cla_prefer_id); inner = c_parser_declarator (parser, type_seen_p, kind, seen_id); if (inner == NULL) return NULL; else return make_pointer_declarator (quals_attrs, inner); } /* Now we have a direct declarator, direct abstract declarator or nothing (which counts as a direct abstract declarator here). */ return c_parser_direct_declarator (parser, type_seen_p, kind, seen_id); } /* Parse a direct declarator or direct abstract declarator; arguments as c_parser_declarator. */ static struct c_declarator * c_parser_direct_declarator (c_parser *parser, bool type_seen_p, c_dtr_syn kind, bool *seen_id) { /* The direct declarator must start with an identifier (possibly omitted) or a parenthesized declarator (possibly abstract). In an ordinary declarator, initial parentheses must start a parenthesized declarator. In an abstract declarator or parameter declarator, they could start a parenthesized declarator or a parameter list. To tell which, the open parenthesis and any following attributes must be read. If a declaration specifier follows, then it is a parameter list; if the specifier is a typedef name, there might be an ambiguity about redeclaring it, which is resolved in the direction of treating it as a typedef name. If a close parenthesis follows, it is also an empty parameter list, as the syntax does not permit empty abstract declarators. Otherwise, it is a parenthesized declarator (in which case the analysis may be repeated inside it, recursively). ??? There is an ambiguity in a parameter declaration "int (__attribute__((foo)) x)", where x is not a typedef name: it could be an abstract declarator for a function, or declare x with parentheses. The proper resolution of this ambiguity needs documenting. At present we follow an accident of the old parser's implementation, whereby the first parameter must have some declaration specifiers other than just attributes. Thus as a parameter declaration it is treated as a parenthesized parameter named x, and as an abstract declarator it is rejected. ??? Also following the old parser, attributes inside an empty parameter list are ignored, making it a list not yielding a prototype, rather than giving an error or making it have one parameter with implicit type int. ??? Also following the old parser, typedef names may be redeclared in declarators, but not Objective-C class names. */ if (kind != C_DTR_ABSTRACT && c_parser_next_token_is (parser, CPP_NAME) && ((type_seen_p && (c_parser_peek_token (parser)->id_kind == C_ID_TYPENAME || c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME)) || c_parser_peek_token (parser)->id_kind == C_ID_ID)) { struct c_declarator *inner = build_id_declarator (c_parser_peek_token (parser)->value); *seen_id = true; inner->id_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); return c_parser_direct_declarator_inner (parser, *seen_id, inner); } if (kind != C_DTR_NORMAL && c_parser_next_token_is (parser, CPP_OPEN_SQUARE)) { struct c_declarator *inner = build_id_declarator (NULL_TREE); inner->id_loc = c_parser_peek_token (parser)->location; return c_parser_direct_declarator_inner (parser, *seen_id, inner); } /* Either we are at the end of an abstract declarator, or we have parentheses. */ if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { tree attrs; struct c_declarator *inner; c_parser_consume_token (parser); attrs = c_parser_attributes (parser); if (kind != C_DTR_NORMAL && (c_parser_next_token_starts_declspecs (parser) || c_parser_next_token_is (parser, CPP_CLOSE_PAREN))) { struct c_arg_info *args = c_parser_parms_declarator (parser, kind == C_DTR_NORMAL, attrs); if (args == NULL) return NULL; else { inner = build_function_declarator (args, build_id_declarator (NULL_TREE)); return c_parser_direct_declarator_inner (parser, *seen_id, inner); } } /* A parenthesized declarator. */ inner = c_parser_declarator (parser, type_seen_p, kind, seen_id); if (inner != NULL && attrs != NULL) inner = build_attrs_declarator (attrs, inner); if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { c_parser_consume_token (parser); if (inner == NULL) return NULL; else return c_parser_direct_declarator_inner (parser, *seen_id, inner); } else { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return NULL; } } else { if (kind == C_DTR_NORMAL) { c_parser_error (parser, "expected identifier or %<(%>"); return NULL; } else return build_id_declarator (NULL_TREE); } } /* Parse part of a direct declarator or direct abstract declarator, given that some (in INNER) has already been parsed; ID_PRESENT is true if an identifier is present, false for an abstract declarator. */ static struct c_declarator * c_parser_direct_declarator_inner (c_parser *parser, bool id_present, struct c_declarator *inner) { /* Parse a sequence of array declarators and parameter lists. */ if (c_parser_next_token_is (parser, CPP_OPEN_SQUARE)) { location_t brace_loc = c_parser_peek_token (parser)->location; struct c_declarator *declarator; struct c_declspecs *quals_attrs = build_null_declspecs (); bool static_seen; bool star_seen; struct c_expr dimen; dimen.value = NULL_TREE; dimen.original_code = ERROR_MARK; dimen.original_type = NULL_TREE; c_parser_consume_token (parser); c_parser_declspecs (parser, quals_attrs, false, false, true, false, false, cla_prefer_id); static_seen = c_parser_next_token_is_keyword (parser, RID_STATIC); if (static_seen) c_parser_consume_token (parser); if (static_seen && !quals_attrs->declspecs_seen_p) c_parser_declspecs (parser, quals_attrs, false, false, true, false, false, cla_prefer_id); if (!quals_attrs->declspecs_seen_p) quals_attrs = NULL; /* If "static" is present, there must be an array dimension. Otherwise, there may be a dimension, "*", or no dimension. */ if (static_seen) { star_seen = false; dimen = c_parser_expr_no_commas (parser, NULL); } else { if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE)) { dimen.value = NULL_TREE; star_seen = false; } else if (c_parser_next_token_is (parser, CPP_MULT)) { if (c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_SQUARE) { dimen.value = NULL_TREE; star_seen = true; c_parser_consume_token (parser); } else { star_seen = false; dimen = c_parser_expr_no_commas (parser, NULL); } } else { star_seen = false; dimen = c_parser_expr_no_commas (parser, NULL); } } if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE)) c_parser_consume_token (parser); else { c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); return NULL; } if (dimen.value) dimen = convert_lvalue_to_rvalue (brace_loc, dimen, true, true); declarator = build_array_declarator (brace_loc, dimen.value, quals_attrs, static_seen, star_seen); if (declarator == NULL) return NULL; inner = set_array_declarator_inner (declarator, inner); return c_parser_direct_declarator_inner (parser, id_present, inner); } else if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { tree attrs; struct c_arg_info *args; c_parser_consume_token (parser); attrs = c_parser_attributes (parser); args = c_parser_parms_declarator (parser, id_present, attrs); if (args == NULL) return NULL; else { inner = build_function_declarator (args, inner); return c_parser_direct_declarator_inner (parser, id_present, inner); } } return inner; } /* Parse a parameter list or identifier list, including the closing parenthesis but not the opening one. ATTRS are the attributes at the start of the list. ID_LIST_OK is true if an identifier list is acceptable; such a list must not have attributes at the start. */ static struct c_arg_info * c_parser_parms_declarator (c_parser *parser, bool id_list_ok, tree attrs) { push_scope (); declare_parm_level (); /* If the list starts with an identifier, it is an identifier list. Otherwise, it is either a prototype list or an empty list. */ if (id_list_ok && !attrs && c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_token (parser)->id_kind == C_ID_ID /* Look ahead to detect typos in type names. */ && c_parser_peek_2nd_token (parser)->type != CPP_NAME && c_parser_peek_2nd_token (parser)->type != CPP_MULT && c_parser_peek_2nd_token (parser)->type != CPP_OPEN_PAREN && c_parser_peek_2nd_token (parser)->type != CPP_OPEN_SQUARE && c_parser_peek_2nd_token (parser)->type != CPP_KEYWORD) { tree list = NULL_TREE, *nextp = &list; while (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_token (parser)->id_kind == C_ID_ID) { *nextp = build_tree_list (NULL_TREE, c_parser_peek_token (parser)->value); nextp = & TREE_CHAIN (*nextp); c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_COMMA)) break; c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { c_parser_error (parser, "expected identifier"); break; } } if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { struct c_arg_info *ret = build_arg_info (); ret->types = list; c_parser_consume_token (parser); pop_scope (); return ret; } else { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); pop_scope (); return NULL; } } else { struct c_arg_info *ret = c_parser_parms_list_declarator (parser, attrs, NULL); pop_scope (); return ret; } } /* Parse a parameter list (possibly empty), including the closing parenthesis but not the opening one. ATTRS are the attributes at the start of the list. EXPR is NULL or an expression that needs to be evaluated for the side effects of array size expressions in the parameters. */ static struct c_arg_info * c_parser_parms_list_declarator (c_parser *parser, tree attrs, tree expr) { bool bad_parm = false; /* ??? Following the old parser, forward parameter declarations may use abstract declarators, and if no real parameter declarations follow the forward declarations then this is not diagnosed. Also note as above that attributes are ignored as the only contents of the parentheses, or as the only contents after forward declarations. */ if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { struct c_arg_info *ret = build_arg_info (); c_parser_consume_token (parser); return ret; } if (c_parser_next_token_is (parser, CPP_ELLIPSIS)) { struct c_arg_info *ret = build_arg_info (); if (flag_allow_parameterless_variadic_functions) { /* F (...) is allowed. */ ret->types = NULL_TREE; } else { /* Suppress -Wold-style-definition for this case. */ ret->types = error_mark_node; error_at (c_parser_peek_token (parser)->location, "ISO C requires a named argument before %<...%>"); } c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { c_parser_consume_token (parser); return ret; } else { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return NULL; } } /* Nonempty list of parameters, either terminated with semicolon (forward declarations; recurse) or with close parenthesis (normal function) or with ", ... )" (variadic function). */ while (true) { /* Parse a parameter. */ struct c_parm *parm = c_parser_parameter_declaration (parser, attrs); attrs = NULL_TREE; if (parm == NULL) bad_parm = true; else push_parm_decl (parm, &expr); if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { tree new_attrs; c_parser_consume_token (parser); mark_forward_parm_decls (); new_attrs = c_parser_attributes (parser); return c_parser_parms_list_declarator (parser, new_attrs, expr); } if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { c_parser_consume_token (parser); if (bad_parm) return NULL; else return get_parm_info (false, expr); } if (!c_parser_require (parser, CPP_COMMA, "expected %<;%>, %<,%> or %<)%>", UNKNOWN_LOCATION, false)) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return NULL; } if (c_parser_next_token_is (parser, CPP_ELLIPSIS)) { c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { c_parser_consume_token (parser); if (bad_parm) return NULL; else return get_parm_info (true, expr); } else { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return NULL; } } } } /* Parse a parameter declaration. ATTRS are the attributes at the start of the declaration if it is the first parameter. */ static struct c_parm * c_parser_parameter_declaration (c_parser *parser, tree attrs) { struct c_declspecs *specs; struct c_declarator *declarator; tree prefix_attrs; tree postfix_attrs = NULL_TREE; bool dummy = false; /* Accept #pragmas between parameter declarations. */ while (c_parser_next_token_is (parser, CPP_PRAGMA)) c_parser_pragma (parser, pragma_param, NULL); if (!c_parser_next_token_starts_declspecs (parser)) { c_token *token = c_parser_peek_token (parser); if (parser->error) return NULL; c_parser_set_source_position_from_token (token); if (c_parser_next_tokens_start_typename (parser, cla_prefer_type)) { auto_diagnostic_group d; name_hint hint = lookup_name_fuzzy (token->value, FUZZY_LOOKUP_TYPENAME, token->location); if (const char *suggestion = hint.suggestion ()) { gcc_rich_location richloc (token->location); richloc.add_fixit_replace (suggestion); error_at (&richloc, "unknown type name %qE; did you mean %qs?", token->value, suggestion); } else error_at (token->location, "unknown type name %qE", token->value); parser->error = true; } /* ??? In some Objective-C cases '...' isn't applicable so there should be a different message. */ else c_parser_error (parser, "expected declaration specifiers or %<...%>"); c_parser_skip_to_end_of_parameter (parser); return NULL; } location_t start_loc = c_parser_peek_token (parser)->location; specs = build_null_declspecs (); if (attrs) { declspecs_add_attrs (input_location, specs, attrs); attrs = NULL_TREE; } c_parser_declspecs (parser, specs, true, true, true, true, false, cla_nonabstract_decl); finish_declspecs (specs); pending_xref_error (); prefix_attrs = specs->attrs; specs->attrs = NULL_TREE; declarator = c_parser_declarator (parser, specs->typespec_kind != ctsk_none, C_DTR_PARM, &dummy); if (declarator == NULL) { c_parser_skip_until_found (parser, CPP_COMMA, NULL); return NULL; } if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) postfix_attrs = c_parser_attributes (parser); /* Generate a location for the parameter, ranging from the start of the initial token to the end of the final token. If we have a identifier, then use it for the caret location, e.g. extern int callee (int one, int (*two)(int, int), float three); ~~~~~~^~~~~~~~~~~~~~ otherwise, reuse the start location for the caret location e.g.: extern int callee (int one, int (*)(int, int), float three); ^~~~~~~~~~~~~~~~~ */ location_t end_loc = parser->last_token_location; /* Find any cdk_id declarator; determine if we have an identifier. */ c_declarator *id_declarator = declarator; while (id_declarator && id_declarator->kind != cdk_id) id_declarator = id_declarator->declarator; location_t caret_loc = (id_declarator->u.id ? id_declarator->id_loc : start_loc); location_t param_loc = make_location (caret_loc, start_loc, end_loc); return build_c_parm (specs, chainon (postfix_attrs, prefix_attrs), declarator, param_loc); } /* Parse a string literal in an asm expression. It should not be translated, and wide string literals are an error although permitted by the syntax. This is a GNU extension. asm-string-literal: string-literal ??? At present, following the old parser, the caller needs to have set lex_untranslated_string to 1. It would be better to follow the C++ parser rather than using this kludge. */ static tree c_parser_asm_string_literal (c_parser *parser) { tree str; int save_flag = warn_overlength_strings; warn_overlength_strings = 0; if (c_parser_next_token_is (parser, CPP_STRING)) { str = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); } else if (c_parser_next_token_is (parser, CPP_WSTRING)) { error_at (c_parser_peek_token (parser)->location, "wide string literal in %"); str = build_string (1, ""); c_parser_consume_token (parser); } else { c_parser_error (parser, "expected string literal"); str = NULL_TREE; } warn_overlength_strings = save_flag; return str; } /* Parse a simple asm expression. This is used in restricted contexts, where a full expression with inputs and outputs does not make sense. This is a GNU extension. simple-asm-expr: asm ( asm-string-literal ) */ static tree c_parser_simple_asm_expr (c_parser *parser) { tree str; gcc_assert (c_parser_next_token_is_keyword (parser, RID_ASM)); /* ??? Follow the C++ parser rather than using the lex_untranslated_string kludge. */ parser->lex_untranslated_string = true; c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) { parser->lex_untranslated_string = false; return NULL_TREE; } str = c_parser_asm_string_literal (parser); parser->lex_untranslated_string = false; if (!parens.require_close (parser)) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return NULL_TREE; } return str; } static tree c_parser_attribute_any_word (c_parser *parser) { tree attr_name = NULL_TREE; if (c_parser_next_token_is (parser, CPP_KEYWORD)) { /* ??? See comment above about what keywords are accepted here. */ bool ok; switch (c_parser_peek_token (parser)->keyword) { case RID_STATIC: case RID_UNSIGNED: case RID_LONG: case RID_CONST: case RID_EXTERN: case RID_REGISTER: case RID_TYPEDEF: case RID_SHORT: case RID_INLINE: case RID_NORETURN: case RID_VOLATILE: case RID_SIGNED: case RID_AUTO: case RID_RESTRICT: case RID_COMPLEX: case RID_THREAD: case RID_INT: case RID_CHAR: case RID_FLOAT: case RID_DOUBLE: case RID_VOID: case RID_DFLOAT32: case RID_DFLOAT64: case RID_DFLOAT128: CASE_RID_FLOATN_NX: case RID_BOOL: case RID_FRACT: case RID_ACCUM: case RID_SAT: case RID_TRANSACTION_ATOMIC: case RID_TRANSACTION_CANCEL: case RID_ATOMIC: case RID_AUTO_TYPE: case RID_INT_N_0: case RID_INT_N_1: case RID_INT_N_2: case RID_INT_N_3: ok = true; break; default: ok = false; break; } if (!ok) return NULL_TREE; /* Accept __attribute__((__const)) as __attribute__((const)) etc. */ attr_name = ridpointers[(int) c_parser_peek_token (parser)->keyword]; } else if (c_parser_next_token_is (parser, CPP_NAME)) attr_name = c_parser_peek_token (parser)->value; return attr_name; } /* Parse (possibly empty) attributes. This is a GNU extension. attributes: empty attributes attribute attribute: __attribute__ ( ( attribute-list ) ) attribute-list: attrib attribute_list , attrib attrib: empty any-word any-word ( identifier ) any-word ( identifier , nonempty-expr-list ) any-word ( expr-list ) where the "identifier" must not be declared as a type, and "any-word" may be any identifier (including one declared as a type), a reserved word storage class specifier, type specifier or type qualifier. ??? This still leaves out most reserved keywords (following the old parser), shouldn't we include them, and why not allow identifiers declared as types to start the arguments? When EXPECT_COMMA is true, expect the attribute to be preceded by a comma and fail if it isn't. When EMPTY_OK is true, allow and consume any number of consecutive commas with no attributes in between. */ static tree c_parser_attribute (c_parser *parser, tree attrs, bool expect_comma = false, bool empty_ok = true) { bool comma_first = c_parser_next_token_is (parser, CPP_COMMA); if (!comma_first && !c_parser_next_token_is (parser, CPP_NAME) && !c_parser_next_token_is (parser, CPP_KEYWORD)) return NULL_TREE; while (c_parser_next_token_is (parser, CPP_COMMA)) { c_parser_consume_token (parser); if (!empty_ok) return attrs; } tree attr_name = c_parser_attribute_any_word (parser); if (attr_name == NULL_TREE) return NULL_TREE; attr_name = canonicalize_attr_name (attr_name); c_parser_consume_token (parser); tree attr; if (c_parser_next_token_is_not (parser, CPP_OPEN_PAREN)) { if (expect_comma && !comma_first) { /* A comma is missing between the last attribute on the chain and this one. */ c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return error_mark_node; } attr = build_tree_list (attr_name, NULL_TREE); /* Add this attribute to the list. */ attrs = chainon (attrs, attr); return attrs; } c_parser_consume_token (parser); vec *expr_list; tree attr_args; /* Parse the attribute contents. If they start with an identifier which is followed by a comma or close parenthesis, then the arguments start with that identifier; otherwise they are an expression list. In objective-c the identifier may be a classname. */ if (c_parser_next_token_is (parser, CPP_NAME) && (c_parser_peek_token (parser)->id_kind == C_ID_ID || (c_dialect_objc () && c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME)) && ((c_parser_peek_2nd_token (parser)->type == CPP_COMMA) || (c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_PAREN)) && (attribute_takes_identifier_p (attr_name) || (c_dialect_objc () && c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME))) { tree arg1 = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) attr_args = build_tree_list (NULL_TREE, arg1); else { tree tree_list; c_parser_consume_token (parser); expr_list = c_parser_expr_list (parser, false, true, NULL, NULL, NULL, NULL); tree_list = build_tree_list_vec (expr_list); attr_args = tree_cons (NULL_TREE, arg1, tree_list); release_tree_vector (expr_list); } } else { if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) attr_args = NULL_TREE; else { expr_list = c_parser_expr_list (parser, false, true, NULL, NULL, NULL, NULL); attr_args = build_tree_list_vec (expr_list); release_tree_vector (expr_list); } } attr = build_tree_list (attr_name, attr_args); if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) c_parser_consume_token (parser); else { parser->lex_untranslated_string = false; c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return error_mark_node; } if (expect_comma && !comma_first) { /* A comma is missing between the last attribute on the chain and this one. */ c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return error_mark_node; } /* Add this attribute to the list. */ attrs = chainon (attrs, attr); return attrs; } static tree c_parser_attributes (c_parser *parser) { tree attrs = NULL_TREE; while (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) { /* ??? Follow the C++ parser rather than using the lex_untranslated_string kludge. */ parser->lex_untranslated_string = true; /* Consume the `__attribute__' keyword. */ c_parser_consume_token (parser); /* Look for the two `(' tokens. */ if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>")) { parser->lex_untranslated_string = false; return attrs; } if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>")) { parser->lex_untranslated_string = false; c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return attrs; } /* Parse the attribute list. Require a comma between successive (possibly empty) attributes. */ for (bool expect_comma = false; ; expect_comma = true) { /* Parse a single attribute. */ tree attr = c_parser_attribute (parser, attrs, expect_comma); if (attr == error_mark_node) return attrs; if (!attr) break; attrs = attr; } /* Look for the two `)' tokens. */ if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) c_parser_consume_token (parser); else { parser->lex_untranslated_string = false; c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return attrs; } if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) c_parser_consume_token (parser); else { parser->lex_untranslated_string = false; c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return attrs; } parser->lex_untranslated_string = false; } return attrs; } /* Parse a type name (C90 6.5.5, C99 6.7.6, C11 6.7.7). ALIGNAS_OK says whether alignment specifiers are OK (only in cases that might be the type name of a compound literal). type-name: specifier-qualifier-list abstract-declarator[opt] */ struct c_type_name * c_parser_type_name (c_parser *parser, bool alignas_ok) { struct c_declspecs *specs = build_null_declspecs (); struct c_declarator *declarator; struct c_type_name *ret; bool dummy = false; c_parser_declspecs (parser, specs, false, true, true, alignas_ok, false, cla_prefer_type); if (!specs->declspecs_seen_p) { c_parser_error (parser, "expected specifier-qualifier-list"); return NULL; } if (specs->type != error_mark_node) { pending_xref_error (); finish_declspecs (specs); } declarator = c_parser_declarator (parser, specs->typespec_kind != ctsk_none, C_DTR_ABSTRACT, &dummy); if (declarator == NULL) return NULL; ret = XOBNEW (&parser_obstack, struct c_type_name); ret->specs = specs; ret->declarator = declarator; return ret; } /* Parse an initializer (C90 6.5.7, C99 6.7.8, C11 6.7.9). initializer: assignment-expression { initializer-list } { initializer-list , } initializer-list: designation[opt] initializer initializer-list , designation[opt] initializer designation: designator-list = designator-list: designator designator-list designator designator: array-designator . identifier array-designator: [ constant-expression ] GNU extensions: initializer: { } designation: array-designator identifier : array-designator: [ constant-expression ... constant-expression ] Any expression without commas is accepted in the syntax for the constant-expressions, with non-constant expressions rejected later. This function is only used for top-level initializers; for nested ones, see c_parser_initval. */ static struct c_expr c_parser_initializer (c_parser *parser) { if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) return c_parser_braced_init (parser, NULL_TREE, false, NULL); else { struct c_expr ret; location_t loc = c_parser_peek_token (parser)->location; ret = c_parser_expr_no_commas (parser, NULL); if (TREE_CODE (ret.value) != STRING_CST && TREE_CODE (ret.value) != COMPOUND_LITERAL_EXPR) ret = convert_lvalue_to_rvalue (loc, ret, true, true); return ret; } } /* The location of the last comma within the current initializer list, or UNKNOWN_LOCATION if not within one. */ location_t last_init_list_comma; /* Parse a braced initializer list. TYPE is the type specified for a compound literal, and NULL_TREE for other initializers and for nested braced lists. NESTED_P is true for nested braced lists, false for the list of a compound literal or the list that is the top-level initializer in a declaration. */ static struct c_expr c_parser_braced_init (c_parser *parser, tree type, bool nested_p, struct obstack *outer_obstack) { struct c_expr ret; struct obstack braced_init_obstack; location_t brace_loc = c_parser_peek_token (parser)->location; gcc_obstack_init (&braced_init_obstack); gcc_assert (c_parser_next_token_is (parser, CPP_OPEN_BRACE)); matching_braces braces; braces.consume_open (parser); if (nested_p) { finish_implicit_inits (brace_loc, outer_obstack); push_init_level (brace_loc, 0, &braced_init_obstack); } else really_start_incremental_init (type); if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { pedwarn (brace_loc, OPT_Wpedantic, "ISO C forbids empty initializer braces"); } else { /* Parse a non-empty initializer list, possibly with a trailing comma. */ while (true) { c_parser_initelt (parser, &braced_init_obstack); if (parser->error) break; if (c_parser_next_token_is (parser, CPP_COMMA)) { last_init_list_comma = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); } else break; if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) break; } } c_token *next_tok = c_parser_peek_token (parser); if (next_tok->type != CPP_CLOSE_BRACE) { ret.set_error (); ret.original_code = ERROR_MARK; ret.original_type = NULL; braces.skip_until_found_close (parser); pop_init_level (brace_loc, 0, &braced_init_obstack, last_init_list_comma); obstack_free (&braced_init_obstack, NULL); return ret; } location_t close_loc = next_tok->location; c_parser_consume_token (parser); ret = pop_init_level (brace_loc, 0, &braced_init_obstack, close_loc); obstack_free (&braced_init_obstack, NULL); set_c_expr_source_range (&ret, brace_loc, close_loc); return ret; } /* Parse a nested initializer, including designators. */ static void c_parser_initelt (c_parser *parser, struct obstack * braced_init_obstack) { /* Parse any designator or designator list. A single array designator may have the subsequent "=" omitted in GNU C, but a longer list or a structure member designator may not. */ if (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_2nd_token (parser)->type == CPP_COLON) { /* Old-style structure member designator. */ set_init_label (c_parser_peek_token (parser)->location, c_parser_peek_token (parser)->value, c_parser_peek_token (parser)->location, braced_init_obstack); /* Use the colon as the error location. */ pedwarn (c_parser_peek_2nd_token (parser)->location, OPT_Wpedantic, "obsolete use of designated initializer with %<:%>"); c_parser_consume_token (parser); c_parser_consume_token (parser); } else { /* des_seen is 0 if there have been no designators, 1 if there has been a single array designator and 2 otherwise. */ int des_seen = 0; /* Location of a designator. */ location_t des_loc = UNKNOWN_LOCATION; /* Quiet warning. */ while (c_parser_next_token_is (parser, CPP_OPEN_SQUARE) || c_parser_next_token_is (parser, CPP_DOT)) { int des_prev = des_seen; if (!des_seen) des_loc = c_parser_peek_token (parser)->location; if (des_seen < 2) des_seen++; if (c_parser_next_token_is (parser, CPP_DOT)) { des_seen = 2; c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_NAME)) { set_init_label (des_loc, c_parser_peek_token (parser)->value, c_parser_peek_token (parser)->location, braced_init_obstack); c_parser_consume_token (parser); } else { struct c_expr init; init.set_error (); init.original_code = ERROR_MARK; init.original_type = NULL; c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_COMMA, NULL); process_init_element (input_location, init, false, braced_init_obstack); return; } } else { tree first, second; location_t ellipsis_loc = UNKNOWN_LOCATION; /* Quiet warning. */ location_t array_index_loc = UNKNOWN_LOCATION; /* ??? Following the old parser, [ objc-receiver objc-message-args ] is accepted as an initializer, being distinguished from a designator by what follows the first assignment expression inside the square brackets, but after a first array designator a subsequent square bracket is for Objective-C taken to start an expression, using the obsolete form of designated initializer without '=', rather than possibly being a second level of designation: in LALR terms, the '[' is shifted rather than reducing designator to designator-list. */ if (des_prev == 1 && c_dialect_objc ()) { des_seen = des_prev; break; } if (des_prev == 0 && c_dialect_objc ()) { /* This might be an array designator or an Objective-C message expression. If the former, continue parsing here; if the latter, parse the remainder of the initializer given the starting primary-expression. ??? It might make sense to distinguish when des_prev == 1 as well; see previous comment. */ tree rec, args; struct c_expr mexpr; c_parser_consume_token (parser); if (c_parser_peek_token (parser)->type == CPP_NAME && ((c_parser_peek_token (parser)->id_kind == C_ID_TYPENAME) || (c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME))) { /* Type name receiver. */ tree id = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); rec = objc_get_class_reference (id); goto parse_message_args; } first = c_parser_expr_no_commas (parser, NULL).value; mark_exp_read (first); if (c_parser_next_token_is (parser, CPP_ELLIPSIS) || c_parser_next_token_is (parser, CPP_CLOSE_SQUARE)) goto array_desig_after_first; /* Expression receiver. So far only one part without commas has been parsed; there might be more of the expression. */ rec = first; while (c_parser_next_token_is (parser, CPP_COMMA)) { struct c_expr next; location_t comma_loc, exp_loc; comma_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; next = c_parser_expr_no_commas (parser, NULL); next = convert_lvalue_to_rvalue (exp_loc, next, true, true); rec = build_compound_expr (comma_loc, rec, next.value); } parse_message_args: /* Now parse the objc-message-args. */ args = c_parser_objc_message_args (parser); c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); mexpr.value = objc_build_message_expr (rec, args); mexpr.original_code = ERROR_MARK; mexpr.original_type = NULL; /* Now parse and process the remainder of the initializer, starting with this message expression as a primary-expression. */ c_parser_initval (parser, &mexpr, braced_init_obstack); return; } c_parser_consume_token (parser); array_index_loc = c_parser_peek_token (parser)->location; first = c_parser_expr_no_commas (parser, NULL).value; mark_exp_read (first); array_desig_after_first: if (c_parser_next_token_is (parser, CPP_ELLIPSIS)) { ellipsis_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); second = c_parser_expr_no_commas (parser, NULL).value; mark_exp_read (second); } else second = NULL_TREE; if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE)) { c_parser_consume_token (parser); set_init_index (array_index_loc, first, second, braced_init_obstack); if (second) pedwarn (ellipsis_loc, OPT_Wpedantic, "ISO C forbids specifying range of elements to initialize"); } else c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); } } if (des_seen >= 1) { if (c_parser_next_token_is (parser, CPP_EQ)) { pedwarn_c90 (des_loc, OPT_Wpedantic, "ISO C90 forbids specifying subobject " "to initialize"); c_parser_consume_token (parser); } else { if (des_seen == 1) pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic, "obsolete use of designated initializer without %<=%>"); else { struct c_expr init; init.set_error (); init.original_code = ERROR_MARK; init.original_type = NULL; c_parser_error (parser, "expected %<=%>"); c_parser_skip_until_found (parser, CPP_COMMA, NULL); process_init_element (input_location, init, false, braced_init_obstack); return; } } } } c_parser_initval (parser, NULL, braced_init_obstack); } /* Parse a nested initializer; as c_parser_initializer but parses initializers within braced lists, after any designators have been applied. If AFTER is not NULL then it is an Objective-C message expression which is the primary-expression starting the initializer. */ static void c_parser_initval (c_parser *parser, struct c_expr *after, struct obstack * braced_init_obstack) { struct c_expr init; gcc_assert (!after || c_dialect_objc ()); location_t loc = c_parser_peek_token (parser)->location; if (c_parser_next_token_is (parser, CPP_OPEN_BRACE) && !after) init = c_parser_braced_init (parser, NULL_TREE, true, braced_init_obstack); else { init = c_parser_expr_no_commas (parser, after); if (init.value != NULL_TREE && TREE_CODE (init.value) != STRING_CST && TREE_CODE (init.value) != COMPOUND_LITERAL_EXPR) init = convert_lvalue_to_rvalue (loc, init, true, true); } process_init_element (loc, init, false, braced_init_obstack); } /* Parse a compound statement (possibly a function body) (C90 6.6.2, C99 6.8.2, C11 6.8.2). compound-statement: { block-item-list[opt] } { label-declarations block-item-list } block-item-list: block-item block-item-list block-item block-item: nested-declaration statement nested-declaration: declaration GNU extensions: compound-statement: { label-declarations block-item-list } nested-declaration: __extension__ nested-declaration nested-function-definition label-declarations: label-declaration label-declarations label-declaration label-declaration: __label__ identifier-list ; Allowing the mixing of declarations and code is new in C99. The GNU syntax also permits (not shown above) labels at the end of compound statements, which yield an error. We don't allow labels on declarations; this might seem like a natural extension, but there would be a conflict between attributes on the label and prefix attributes on the declaration. ??? The syntax follows the old parser in requiring something after label declarations. Although they are erroneous if the labels declared aren't defined, is it useful for the syntax to be this way? OpenACC: block-item: openacc-directive openacc-directive: update-directive OpenMP: block-item: openmp-directive openmp-directive: barrier-directive flush-directive taskwait-directive taskyield-directive cancel-directive cancellation-point-directive */ static tree c_parser_compound_statement (c_parser *parser) { tree stmt; location_t brace_loc; brace_loc = c_parser_peek_token (parser)->location; if (!c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>")) { /* Ensure a scope is entered and left anyway to avoid confusion if we have just prepared to enter a function body. */ stmt = c_begin_compound_stmt (true); c_end_compound_stmt (brace_loc, stmt, true); return error_mark_node; } stmt = c_begin_compound_stmt (true); c_parser_compound_statement_nostart (parser); return c_end_compound_stmt (brace_loc, stmt, true); } /* Parse a compound statement except for the opening brace. This is used for parsing both compound statements and statement expressions (which follow different paths to handling the opening). */ static void c_parser_compound_statement_nostart (c_parser *parser) { bool last_stmt = false; bool last_label = false; bool save_valid_for_pragma = valid_location_for_stdc_pragma_p (); location_t label_loc = UNKNOWN_LOCATION; /* Quiet warning. */ if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { add_debug_begin_stmt (c_parser_peek_token (parser)->location); c_parser_consume_token (parser); return; } mark_valid_location_for_stdc_pragma (true); if (c_parser_next_token_is_keyword (parser, RID_LABEL)) { /* Read zero or more forward-declarations for labels that nested functions can jump to. */ mark_valid_location_for_stdc_pragma (false); while (c_parser_next_token_is_keyword (parser, RID_LABEL)) { label_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); /* Any identifiers, including those declared as type names, are OK here. */ while (true) { tree label; if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); break; } label = declare_label (c_parser_peek_token (parser)->value); C_DECLARED_LABEL_FLAG (label) = 1; add_stmt (build_stmt (label_loc, DECL_EXPR, label)); c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } pedwarn (label_loc, OPT_Wpedantic, "ISO C forbids label declarations"); } /* We must now have at least one statement, label or declaration. */ if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { mark_valid_location_for_stdc_pragma (save_valid_for_pragma); c_parser_error (parser, "expected declaration or statement"); c_parser_consume_token (parser); return; } while (c_parser_next_token_is_not (parser, CPP_CLOSE_BRACE)) { location_t loc = c_parser_peek_token (parser)->location; loc = expansion_point_location_if_in_system_header (loc); if (c_parser_next_token_is_keyword (parser, RID_CASE) || c_parser_next_token_is_keyword (parser, RID_DEFAULT) || (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_2nd_token (parser)->type == CPP_COLON)) { if (c_parser_next_token_is_keyword (parser, RID_CASE)) label_loc = c_parser_peek_2nd_token (parser)->location; else label_loc = c_parser_peek_token (parser)->location; last_label = true; last_stmt = false; mark_valid_location_for_stdc_pragma (false); c_parser_label (parser); } else if (!last_label && c_parser_next_tokens_start_declaration (parser)) { last_label = false; mark_valid_location_for_stdc_pragma (false); bool fallthru_attr_p = false; c_parser_declaration_or_fndef (parser, true, true, true, true, true, NULL, vNULL, NULL, &fallthru_attr_p); if (last_stmt && !fallthru_attr_p) pedwarn_c90 (loc, OPT_Wdeclaration_after_statement, "ISO C90 forbids mixed declarations and code"); last_stmt = fallthru_attr_p; } else if (!last_label && c_parser_next_token_is_keyword (parser, RID_EXTENSION)) { /* __extension__ can start a declaration, but is also an unary operator that can start an expression. Consume all but the last of a possible series of __extension__ to determine which. */ while (c_parser_peek_2nd_token (parser)->type == CPP_KEYWORD && (c_parser_peek_2nd_token (parser)->keyword == RID_EXTENSION)) c_parser_consume_token (parser); if (c_token_starts_declaration (c_parser_peek_2nd_token (parser))) { int ext; ext = disable_extension_diagnostics (); c_parser_consume_token (parser); last_label = false; mark_valid_location_for_stdc_pragma (false); c_parser_declaration_or_fndef (parser, true, true, true, true, true, NULL, vNULL); /* Following the old parser, __extension__ does not disable this diagnostic. */ restore_extension_diagnostics (ext); if (last_stmt) pedwarn_c90 (loc, OPT_Wdeclaration_after_statement, "ISO C90 forbids mixed declarations and code"); last_stmt = false; } else goto statement; } else if (c_parser_next_token_is (parser, CPP_PRAGMA)) { /* External pragmas, and some omp pragmas, are not associated with regular c code, and so are not to be considered statements syntactically. This ensures that the user doesn't put them places that would turn into syntax errors if the directive were ignored. */ if (c_parser_pragma (parser, last_label ? pragma_stmt : pragma_compound, NULL)) last_label = false, last_stmt = true; } else if (c_parser_next_token_is (parser, CPP_EOF)) { mark_valid_location_for_stdc_pragma (save_valid_for_pragma); c_parser_error (parser, "expected declaration or statement"); return; } else if (c_parser_next_token_is_keyword (parser, RID_ELSE)) { if (parser->in_if_block) { mark_valid_location_for_stdc_pragma (save_valid_for_pragma); error_at (loc, "expected %<}%> before %"); return; } else { error_at (loc, "% without a previous %"); c_parser_consume_token (parser); continue; } } else { statement: last_label = false; last_stmt = true; mark_valid_location_for_stdc_pragma (false); c_parser_statement_after_labels (parser, NULL); } parser->error = false; } if (last_label) error_at (label_loc, "label at end of compound statement"); c_parser_consume_token (parser); /* Restore the value we started with. */ mark_valid_location_for_stdc_pragma (save_valid_for_pragma); } /* Parse all consecutive labels. */ static void c_parser_all_labels (c_parser *parser) { while (c_parser_next_token_is_keyword (parser, RID_CASE) || c_parser_next_token_is_keyword (parser, RID_DEFAULT) || (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_2nd_token (parser)->type == CPP_COLON)) c_parser_label (parser); } /* Parse a label (C90 6.6.1, C99 6.8.1, C11 6.8.1). label: identifier : attributes[opt] case constant-expression : default : GNU extensions: label: case constant-expression ... constant-expression : The use of attributes on labels is a GNU extension. The syntax in GNU C accepts any expressions without commas, non-constant expressions being rejected later. */ static void c_parser_label (c_parser *parser) { location_t loc1 = c_parser_peek_token (parser)->location; tree label = NULL_TREE; /* Remember whether this case or a user-defined label is allowed to fall through to. */ bool fallthrough_p = c_parser_peek_token (parser)->flags & PREV_FALLTHROUGH; if (c_parser_next_token_is_keyword (parser, RID_CASE)) { tree exp1, exp2; c_parser_consume_token (parser); exp1 = c_parser_expr_no_commas (parser, NULL).value; if (c_parser_next_token_is (parser, CPP_COLON)) { c_parser_consume_token (parser); label = do_case (loc1, exp1, NULL_TREE); } else if (c_parser_next_token_is (parser, CPP_ELLIPSIS)) { c_parser_consume_token (parser); exp2 = c_parser_expr_no_commas (parser, NULL).value; if (c_parser_require (parser, CPP_COLON, "expected %<:%>")) label = do_case (loc1, exp1, exp2); } else c_parser_error (parser, "expected %<:%> or %<...%>"); } else if (c_parser_next_token_is_keyword (parser, RID_DEFAULT)) { c_parser_consume_token (parser); if (c_parser_require (parser, CPP_COLON, "expected %<:%>")) label = do_case (loc1, NULL_TREE, NULL_TREE); } else { tree name = c_parser_peek_token (parser)->value; tree tlab; tree attrs; location_t loc2 = c_parser_peek_token (parser)->location; gcc_assert (c_parser_next_token_is (parser, CPP_NAME)); c_parser_consume_token (parser); gcc_assert (c_parser_next_token_is (parser, CPP_COLON)); c_parser_consume_token (parser); attrs = c_parser_attributes (parser); tlab = define_label (loc2, name); if (tlab) { decl_attributes (&tlab, attrs, 0); label = add_stmt (build_stmt (loc1, LABEL_EXPR, tlab)); } } if (label) { if (TREE_CODE (label) == LABEL_EXPR) FALLTHROUGH_LABEL_P (LABEL_EXPR_LABEL (label)) = fallthrough_p; else FALLTHROUGH_LABEL_P (CASE_LABEL (label)) = fallthrough_p; /* Allow '__attribute__((fallthrough));'. */ if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) { location_t loc = c_parser_peek_token (parser)->location; tree attrs = c_parser_attributes (parser); if (attribute_fallthrough_p (attrs)) { if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { tree fn = build_call_expr_internal_loc (loc, IFN_FALLTHROUGH, void_type_node, 0); add_stmt (fn); } else warning_at (loc, OPT_Wattributes, "% attribute " "not followed by %<;%>"); } else if (attrs != NULL_TREE) warning_at (loc, OPT_Wattributes, "only attribute %" " can be applied to a null statement"); } if (c_parser_next_tokens_start_declaration (parser)) { error_at (c_parser_peek_token (parser)->location, "a label can only be part of a statement and " "a declaration is not a statement"); c_parser_declaration_or_fndef (parser, /*fndef_ok*/ false, /*static_assert_ok*/ true, /*empty_ok*/ true, /*nested*/ true, /*start_attr_ok*/ true, NULL, vNULL); } } } /* Parse a statement (C90 6.6, C99 6.8, C11 6.8). statement: labeled-statement compound-statement expression-statement selection-statement iteration-statement jump-statement labeled-statement: label statement expression-statement: expression[opt] ; selection-statement: if-statement switch-statement iteration-statement: while-statement do-statement for-statement jump-statement: goto identifier ; continue ; break ; return expression[opt] ; GNU extensions: statement: asm-statement jump-statement: goto * expression ; expression-statement: attributes ; Objective-C: statement: objc-throw-statement objc-try-catch-statement objc-synchronized-statement objc-throw-statement: @throw expression ; @throw ; OpenACC: statement: openacc-construct openacc-construct: parallel-construct kernels-construct data-construct loop-construct parallel-construct: parallel-directive structured-block kernels-construct: kernels-directive structured-block data-construct: data-directive structured-block loop-construct: loop-directive structured-block OpenMP: statement: openmp-construct openmp-construct: parallel-construct for-construct simd-construct for-simd-construct sections-construct single-construct parallel-for-construct parallel-for-simd-construct parallel-sections-construct master-construct critical-construct atomic-construct ordered-construct parallel-construct: parallel-directive structured-block for-construct: for-directive iteration-statement simd-construct: simd-directive iteration-statements for-simd-construct: for-simd-directive iteration-statements sections-construct: sections-directive section-scope single-construct: single-directive structured-block parallel-for-construct: parallel-for-directive iteration-statement parallel-for-simd-construct: parallel-for-simd-directive iteration-statement parallel-sections-construct: parallel-sections-directive section-scope master-construct: master-directive structured-block critical-construct: critical-directive structured-block atomic-construct: atomic-directive expression-statement ordered-construct: ordered-directive structured-block Transactional Memory: statement: transaction-statement transaction-cancel-statement IF_P is used to track whether there's a (possibly labeled) if statement which is not enclosed in braces and has an else clause. This is used to implement -Wparentheses. */ static void c_parser_statement (c_parser *parser, bool *if_p, location_t *loc_after_labels) { c_parser_all_labels (parser); if (loc_after_labels) *loc_after_labels = c_parser_peek_token (parser)->location; c_parser_statement_after_labels (parser, if_p, NULL); } /* Parse a statement, other than a labeled statement. CHAIN is a vector of if-else-if conditions. IF_P is used to track whether there's a (possibly labeled) if statement which is not enclosed in braces and has an else clause. This is used to implement -Wparentheses. */ static void c_parser_statement_after_labels (c_parser *parser, bool *if_p, vec *chain) { location_t loc = c_parser_peek_token (parser)->location; tree stmt = NULL_TREE; bool in_if_block = parser->in_if_block; parser->in_if_block = false; if (if_p != NULL) *if_p = false; if (c_parser_peek_token (parser)->type != CPP_OPEN_BRACE) add_debug_begin_stmt (loc); switch (c_parser_peek_token (parser)->type) { case CPP_OPEN_BRACE: add_stmt (c_parser_compound_statement (parser)); break; case CPP_KEYWORD: switch (c_parser_peek_token (parser)->keyword) { case RID_IF: c_parser_if_statement (parser, if_p, chain); break; case RID_SWITCH: c_parser_switch_statement (parser, if_p); break; case RID_WHILE: c_parser_while_statement (parser, false, 0, if_p); break; case RID_DO: c_parser_do_statement (parser, 0, false); break; case RID_FOR: c_parser_for_statement (parser, false, 0, if_p); break; case RID_GOTO: c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_NAME)) { stmt = c_finish_goto_label (loc, c_parser_peek_token (parser)->value); c_parser_consume_token (parser); } else if (c_parser_next_token_is (parser, CPP_MULT)) { struct c_expr val; c_parser_consume_token (parser); val = c_parser_expression (parser); val = convert_lvalue_to_rvalue (loc, val, false, true); stmt = c_finish_goto_ptr (loc, val.value); } else c_parser_error (parser, "expected identifier or %<*%>"); goto expect_semicolon; case RID_CONTINUE: c_parser_consume_token (parser); stmt = c_finish_bc_stmt (loc, &c_cont_label, false); goto expect_semicolon; case RID_BREAK: c_parser_consume_token (parser); stmt = c_finish_bc_stmt (loc, &c_break_label, true); goto expect_semicolon; case RID_RETURN: c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { stmt = c_finish_return (loc, NULL_TREE, NULL_TREE); c_parser_consume_token (parser); } else { location_t xloc = c_parser_peek_token (parser)->location; struct c_expr expr = c_parser_expression_conv (parser); mark_exp_read (expr.value); stmt = c_finish_return (EXPR_LOC_OR_LOC (expr.value, xloc), expr.value, expr.original_type); goto expect_semicolon; } break; case RID_ASM: stmt = c_parser_asm_statement (parser); break; case RID_TRANSACTION_ATOMIC: case RID_TRANSACTION_RELAXED: stmt = c_parser_transaction (parser, c_parser_peek_token (parser)->keyword); break; case RID_TRANSACTION_CANCEL: stmt = c_parser_transaction_cancel (parser); goto expect_semicolon; case RID_AT_THROW: gcc_assert (c_dialect_objc ()); c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { stmt = objc_build_throw_stmt (loc, NULL_TREE); c_parser_consume_token (parser); } else { struct c_expr expr = c_parser_expression (parser); expr = convert_lvalue_to_rvalue (loc, expr, false, false); expr.value = c_fully_fold (expr.value, false, NULL); stmt = objc_build_throw_stmt (loc, expr.value); goto expect_semicolon; } break; case RID_AT_TRY: gcc_assert (c_dialect_objc ()); c_parser_objc_try_catch_finally_statement (parser); break; case RID_AT_SYNCHRONIZED: gcc_assert (c_dialect_objc ()); c_parser_objc_synchronized_statement (parser); break; case RID_ATTRIBUTE: { /* Allow '__attribute__((fallthrough));'. */ tree attrs = c_parser_attributes (parser); if (attribute_fallthrough_p (attrs)) { if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { tree fn = build_call_expr_internal_loc (loc, IFN_FALLTHROUGH, void_type_node, 0); add_stmt (fn); /* Eat the ';'. */ c_parser_consume_token (parser); } else warning_at (loc, OPT_Wattributes, "% attribute not followed " "by %<;%>"); } else if (attrs != NULL_TREE) warning_at (loc, OPT_Wattributes, "only attribute %" " can be applied to a null statement"); break; } default: goto expr_stmt; } break; case CPP_SEMICOLON: c_parser_consume_token (parser); break; case CPP_CLOSE_PAREN: case CPP_CLOSE_SQUARE: /* Avoid infinite loop in error recovery: c_parser_skip_until_found stops at a closing nesting delimiter without consuming it, but here we need to consume it to proceed further. */ c_parser_error (parser, "expected statement"); c_parser_consume_token (parser); break; case CPP_PRAGMA: c_parser_pragma (parser, pragma_stmt, if_p); break; default: expr_stmt: stmt = c_finish_expr_stmt (loc, c_parser_expression_conv (parser).value); expect_semicolon: c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); break; } /* Two cases cannot and do not have line numbers associated: If stmt is degenerate, such as "2;", then stmt is an INTEGER_CST, which cannot hold line numbers. But that's OK because the statement will either be changed to a MODIFY_EXPR during gimplification of the statement expr, or discarded. If stmt was compound, but without new variables, we will have skipped the creation of a BIND and will have a bare STATEMENT_LIST. But that's OK because (recursively) all of the component statements should already have line numbers assigned. ??? Can we discard no-op statements earlier? */ if (EXPR_LOCATION (stmt) == UNKNOWN_LOCATION) protected_set_expr_location (stmt, loc); parser->in_if_block = in_if_block; } /* Parse the condition from an if, do, while or for statements. */ static tree c_parser_condition (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; tree cond; cond = c_parser_expression_conv (parser).value; cond = c_objc_common_truthvalue_conversion (loc, cond); cond = c_fully_fold (cond, false, NULL); if (warn_sequence_point) verify_sequence_points (cond); return cond; } /* Parse a parenthesized condition from an if, do or while statement. condition: ( expression ) */ static tree c_parser_paren_condition (c_parser *parser) { tree cond; matching_parens parens; if (!parens.require_open (parser)) return error_mark_node; cond = c_parser_condition (parser); parens.skip_until_found_close (parser); return cond; } /* Parse a statement which is a block in C99. IF_P is used to track whether there's a (possibly labeled) if statement which is not enclosed in braces and has an else clause. This is used to implement -Wparentheses. */ static tree c_parser_c99_block_statement (c_parser *parser, bool *if_p, location_t *loc_after_labels) { tree block = c_begin_compound_stmt (flag_isoc99); location_t loc = c_parser_peek_token (parser)->location; c_parser_statement (parser, if_p, loc_after_labels); return c_end_compound_stmt (loc, block, flag_isoc99); } /* Parse the body of an if statement. This is just parsing a statement but (a) it is a block in C99, (b) we track whether the body is an if statement for the sake of -Wparentheses warnings, (c) we handle an empty body specially for the sake of -Wempty-body warnings, and (d) we call parser_compound_statement directly because c_parser_statement_after_labels resets parser->in_if_block. IF_P is used to track whether there's a (possibly labeled) if statement which is not enclosed in braces and has an else clause. This is used to implement -Wparentheses. */ static tree c_parser_if_body (c_parser *parser, bool *if_p, const token_indent_info &if_tinfo) { tree block = c_begin_compound_stmt (flag_isoc99); location_t body_loc = c_parser_peek_token (parser)->location; location_t body_loc_after_labels = UNKNOWN_LOCATION; token_indent_info body_tinfo = get_token_indent_info (c_parser_peek_token (parser)); c_parser_all_labels (parser); if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { location_t loc = c_parser_peek_token (parser)->location; add_stmt (build_empty_stmt (loc)); c_parser_consume_token (parser); if (!c_parser_next_token_is_keyword (parser, RID_ELSE)) warning_at (loc, OPT_Wempty_body, "suggest braces around empty body in an % statement"); } else if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) add_stmt (c_parser_compound_statement (parser)); else { body_loc_after_labels = c_parser_peek_token (parser)->location; c_parser_statement_after_labels (parser, if_p); } token_indent_info next_tinfo = get_token_indent_info (c_parser_peek_token (parser)); warn_for_misleading_indentation (if_tinfo, body_tinfo, next_tinfo); if (body_loc_after_labels != UNKNOWN_LOCATION && next_tinfo.type != CPP_SEMICOLON) warn_for_multistatement_macros (body_loc_after_labels, next_tinfo.location, if_tinfo.location, RID_IF); return c_end_compound_stmt (body_loc, block, flag_isoc99); } /* Parse the else body of an if statement. This is just parsing a statement but (a) it is a block in C99, (b) we handle an empty body specially for the sake of -Wempty-body warnings. CHAIN is a vector of if-else-if conditions. */ static tree c_parser_else_body (c_parser *parser, const token_indent_info &else_tinfo, vec *chain) { location_t body_loc = c_parser_peek_token (parser)->location; tree block = c_begin_compound_stmt (flag_isoc99); token_indent_info body_tinfo = get_token_indent_info (c_parser_peek_token (parser)); location_t body_loc_after_labels = UNKNOWN_LOCATION; c_parser_all_labels (parser); if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { location_t loc = c_parser_peek_token (parser)->location; warning_at (loc, OPT_Wempty_body, "suggest braces around empty body in an % statement"); add_stmt (build_empty_stmt (loc)); c_parser_consume_token (parser); } else { if (!c_parser_next_token_is (parser, CPP_OPEN_BRACE)) body_loc_after_labels = c_parser_peek_token (parser)->location; c_parser_statement_after_labels (parser, NULL, chain); } token_indent_info next_tinfo = get_token_indent_info (c_parser_peek_token (parser)); warn_for_misleading_indentation (else_tinfo, body_tinfo, next_tinfo); if (body_loc_after_labels != UNKNOWN_LOCATION && next_tinfo.type != CPP_SEMICOLON) warn_for_multistatement_macros (body_loc_after_labels, next_tinfo.location, else_tinfo.location, RID_ELSE); return c_end_compound_stmt (body_loc, block, flag_isoc99); } /* We might need to reclassify any previously-lexed identifier, e.g. when we've left a for loop with an if-statement without else in the body - we might have used a wrong scope for the token. See PR67784. */ static void c_parser_maybe_reclassify_token (c_parser *parser) { if (c_parser_next_token_is (parser, CPP_NAME)) { c_token *token = c_parser_peek_token (parser); if (token->id_kind != C_ID_CLASSNAME) { tree decl = lookup_name (token->value); token->id_kind = C_ID_ID; if (decl) { if (TREE_CODE (decl) == TYPE_DECL) token->id_kind = C_ID_TYPENAME; } else if (c_dialect_objc ()) { tree objc_interface_decl = objc_is_class_name (token->value); /* Objective-C class names are in the same namespace as variables and typedefs, and hence are shadowed by local declarations. */ if (objc_interface_decl) { token->value = objc_interface_decl; token->id_kind = C_ID_CLASSNAME; } } } } } /* Parse an if statement (C90 6.6.4, C99 6.8.4, C11 6.8.4). if-statement: if ( expression ) statement if ( expression ) statement else statement CHAIN is a vector of if-else-if conditions. IF_P is used to track whether there's a (possibly labeled) if statement which is not enclosed in braces and has an else clause. This is used to implement -Wparentheses. */ static void c_parser_if_statement (c_parser *parser, bool *if_p, vec *chain) { tree block; location_t loc; tree cond; bool nested_if = false; tree first_body, second_body; bool in_if_block; gcc_assert (c_parser_next_token_is_keyword (parser, RID_IF)); token_indent_info if_tinfo = get_token_indent_info (c_parser_peek_token (parser)); c_parser_consume_token (parser); block = c_begin_compound_stmt (flag_isoc99); loc = c_parser_peek_token (parser)->location; cond = c_parser_paren_condition (parser); in_if_block = parser->in_if_block; parser->in_if_block = true; first_body = c_parser_if_body (parser, &nested_if, if_tinfo); parser->in_if_block = in_if_block; if (warn_duplicated_cond) warn_duplicated_cond_add_or_warn (EXPR_LOCATION (cond), cond, &chain); if (c_parser_next_token_is_keyword (parser, RID_ELSE)) { token_indent_info else_tinfo = get_token_indent_info (c_parser_peek_token (parser)); c_parser_consume_token (parser); if (warn_duplicated_cond) { if (c_parser_next_token_is_keyword (parser, RID_IF) && chain == NULL) { /* We've got "if (COND) else if (COND2)". Start the condition chain and add COND as the first element. */ chain = new vec (); if (!CONSTANT_CLASS_P (cond) && !TREE_SIDE_EFFECTS (cond)) chain->safe_push (cond); } else if (!c_parser_next_token_is_keyword (parser, RID_IF)) { /* This is if-else without subsequent if. Zap the condition chain; we would have already warned at this point. */ delete chain; chain = NULL; } } second_body = c_parser_else_body (parser, else_tinfo, chain); /* Set IF_P to true to indicate that this if statement has an else clause. This may trigger the Wparentheses warning below when we get back up to the parent if statement. */ if (if_p != NULL) *if_p = true; } else { second_body = NULL_TREE; /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */ if (nested_if) warning_at (loc, OPT_Wdangling_else, "suggest explicit braces to avoid ambiguous %"); if (warn_duplicated_cond) { /* This if statement does not have an else clause. We don't need the condition chain anymore. */ delete chain; chain = NULL; } } c_finish_if_stmt (loc, cond, first_body, second_body); add_stmt (c_end_compound_stmt (loc, block, flag_isoc99)); c_parser_maybe_reclassify_token (parser); } /* Parse a switch statement (C90 6.6.4, C99 6.8.4, C11 6.8.4). switch-statement: switch (expression) statement */ static void c_parser_switch_statement (c_parser *parser, bool *if_p) { struct c_expr ce; tree block, expr, body, save_break; location_t switch_loc = c_parser_peek_token (parser)->location; location_t switch_cond_loc; gcc_assert (c_parser_next_token_is_keyword (parser, RID_SWITCH)); c_parser_consume_token (parser); block = c_begin_compound_stmt (flag_isoc99); bool explicit_cast_p = false; matching_parens parens; if (parens.require_open (parser)) { switch_cond_loc = c_parser_peek_token (parser)->location; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN) && c_token_starts_typename (c_parser_peek_2nd_token (parser))) explicit_cast_p = true; ce = c_parser_expression (parser); ce = convert_lvalue_to_rvalue (switch_cond_loc, ce, true, false); expr = ce.value; /* ??? expr has no valid location? */ parens.skip_until_found_close (parser); } else { switch_cond_loc = UNKNOWN_LOCATION; expr = error_mark_node; ce.original_type = error_mark_node; } c_start_case (switch_loc, switch_cond_loc, expr, explicit_cast_p); save_break = c_break_label; c_break_label = NULL_TREE; location_t loc_after_labels; bool open_brace_p = c_parser_peek_token (parser)->type == CPP_OPEN_BRACE; body = c_parser_c99_block_statement (parser, if_p, &loc_after_labels); location_t next_loc = c_parser_peek_token (parser)->location; if (!open_brace_p && c_parser_peek_token (parser)->type != CPP_SEMICOLON) warn_for_multistatement_macros (loc_after_labels, next_loc, switch_loc, RID_SWITCH); if (c_break_label) { location_t here = c_parser_peek_token (parser)->location; tree t = build1 (LABEL_EXPR, void_type_node, c_break_label); SET_EXPR_LOCATION (t, here); SWITCH_BREAK_LABEL_P (c_break_label) = 1; append_to_statement_list_force (t, &body); } c_finish_case (body, ce.original_type); c_break_label = save_break; add_stmt (c_end_compound_stmt (switch_loc, block, flag_isoc99)); c_parser_maybe_reclassify_token (parser); } /* Parse a while statement (C90 6.6.5, C99 6.8.5, C11 6.8.5). while-statement: while (expression) statement IF_P is used to track whether there's a (possibly labeled) if statement which is not enclosed in braces and has an else clause. This is used to implement -Wparentheses. */ static void c_parser_while_statement (c_parser *parser, bool ivdep, unsigned short unroll, bool *if_p) { tree block, cond, body, save_break, save_cont; location_t loc; gcc_assert (c_parser_next_token_is_keyword (parser, RID_WHILE)); token_indent_info while_tinfo = get_token_indent_info (c_parser_peek_token (parser)); c_parser_consume_token (parser); block = c_begin_compound_stmt (flag_isoc99); loc = c_parser_peek_token (parser)->location; cond = c_parser_paren_condition (parser); if (ivdep && cond != error_mark_node) cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond, build_int_cst (integer_type_node, annot_expr_ivdep_kind), integer_zero_node); if (unroll && cond != error_mark_node) cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond, build_int_cst (integer_type_node, annot_expr_unroll_kind), build_int_cst (integer_type_node, unroll)); save_break = c_break_label; c_break_label = NULL_TREE; save_cont = c_cont_label; c_cont_label = NULL_TREE; token_indent_info body_tinfo = get_token_indent_info (c_parser_peek_token (parser)); location_t loc_after_labels; bool open_brace = c_parser_next_token_is (parser, CPP_OPEN_BRACE); body = c_parser_c99_block_statement (parser, if_p, &loc_after_labels); c_finish_loop (loc, cond, NULL, body, c_break_label, c_cont_label, true); add_stmt (c_end_compound_stmt (loc, block, flag_isoc99)); c_parser_maybe_reclassify_token (parser); token_indent_info next_tinfo = get_token_indent_info (c_parser_peek_token (parser)); warn_for_misleading_indentation (while_tinfo, body_tinfo, next_tinfo); if (next_tinfo.type != CPP_SEMICOLON && !open_brace) warn_for_multistatement_macros (loc_after_labels, next_tinfo.location, while_tinfo.location, RID_WHILE); c_break_label = save_break; c_cont_label = save_cont; } /* Parse a do statement (C90 6.6.5, C99 6.8.5, C11 6.8.5). do-statement: do statement while ( expression ) ; */ static void c_parser_do_statement (c_parser *parser, bool ivdep, unsigned short unroll) { tree block, cond, body, save_break, save_cont, new_break, new_cont; location_t loc; gcc_assert (c_parser_next_token_is_keyword (parser, RID_DO)); c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_SEMICOLON)) warning_at (c_parser_peek_token (parser)->location, OPT_Wempty_body, "suggest braces around empty body in % statement"); block = c_begin_compound_stmt (flag_isoc99); loc = c_parser_peek_token (parser)->location; save_break = c_break_label; c_break_label = NULL_TREE; save_cont = c_cont_label; c_cont_label = NULL_TREE; body = c_parser_c99_block_statement (parser, NULL); c_parser_require_keyword (parser, RID_WHILE, "expected %"); new_break = c_break_label; c_break_label = save_break; new_cont = c_cont_label; c_cont_label = save_cont; cond = c_parser_paren_condition (parser); if (ivdep && cond != error_mark_node) cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond, build_int_cst (integer_type_node, annot_expr_ivdep_kind), integer_zero_node); if (unroll && cond != error_mark_node) cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond, build_int_cst (integer_type_node, annot_expr_unroll_kind), build_int_cst (integer_type_node, unroll)); if (!c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>")) c_parser_skip_to_end_of_block_or_statement (parser); c_finish_loop (loc, cond, NULL, body, new_break, new_cont, false); add_stmt (c_end_compound_stmt (loc, block, flag_isoc99)); } /* Parse a for statement (C90 6.6.5, C99 6.8.5, C11 6.8.5). for-statement: for ( expression[opt] ; expression[opt] ; expression[opt] ) statement for ( nested-declaration expression[opt] ; expression[opt] ) statement The form with a declaration is new in C99. ??? In accordance with the old parser, the declaration may be a nested function, which is then rejected in check_for_loop_decls, but does it make any sense for this to be included in the grammar? Note in particular that the nested function does not include a trailing ';', whereas the "declaration" production includes one. Also, can we reject bad declarations earlier and cheaper than check_for_loop_decls? In Objective-C, there are two additional variants: foreach-statement: for ( expression in expresssion ) statement for ( declaration in expression ) statement This is inconsistent with C, because the second variant is allowed even if c99 is not enabled. The rest of the comment documents these Objective-C foreach-statement. Here is the canonical example of the first variant: for (object in array) { do something with object } we call the first expression ("object") the "object_expression" and the second expression ("array") the "collection_expression". object_expression must be an lvalue of type "id" (a generic Objective-C object) because the loop works by assigning to object_expression the various objects from the collection_expression. collection_expression must evaluate to something of type "id" which responds to the method countByEnumeratingWithState:objects:count:. The canonical example of the second variant is: for (id object in array) { do something with object } which is completely equivalent to { id object; for (object in array) { do something with object } } Note that initizializing 'object' in some way (eg, "for ((object = xxx) in array) { do something with object }") is possibly technically valid, but completely pointless as 'object' will be assigned to something else as soon as the loop starts. We should most likely reject it (TODO). The beginning of the Objective-C foreach-statement looks exactly like the beginning of the for-statement, and we can tell it is a foreach-statement only because the initial declaration or expression is terminated by 'in' instead of ';'. IF_P is used to track whether there's a (possibly labeled) if statement which is not enclosed in braces and has an else clause. This is used to implement -Wparentheses. */ static void c_parser_for_statement (c_parser *parser, bool ivdep, unsigned short unroll, bool *if_p) { tree block, cond, incr, save_break, save_cont, body; /* The following are only used when parsing an ObjC foreach statement. */ tree object_expression; /* Silence the bogus uninitialized warning. */ tree collection_expression = NULL; location_t loc = c_parser_peek_token (parser)->location; location_t for_loc = c_parser_peek_token (parser)->location; bool is_foreach_statement = false; gcc_assert (c_parser_next_token_is_keyword (parser, RID_FOR)); token_indent_info for_tinfo = get_token_indent_info (c_parser_peek_token (parser)); c_parser_consume_token (parser); /* Open a compound statement in Objective-C as well, just in case this is as foreach expression. */ block = c_begin_compound_stmt (flag_isoc99 || c_dialect_objc ()); cond = error_mark_node; incr = error_mark_node; matching_parens parens; if (parens.require_open (parser)) { /* Parse the initialization declaration or expression. */ object_expression = error_mark_node; parser->objc_could_be_foreach_context = c_dialect_objc (); if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { parser->objc_could_be_foreach_context = false; c_parser_consume_token (parser); c_finish_expr_stmt (loc, NULL_TREE); } else if (c_parser_next_tokens_start_declaration (parser)) { c_parser_declaration_or_fndef (parser, true, true, true, true, true, &object_expression, vNULL); parser->objc_could_be_foreach_context = false; if (c_parser_next_token_is_keyword (parser, RID_IN)) { c_parser_consume_token (parser); is_foreach_statement = true; if (check_for_loop_decls (for_loc, true) == NULL_TREE) c_parser_error (parser, "multiple iterating variables in fast enumeration"); } else check_for_loop_decls (for_loc, flag_isoc99); } else if (c_parser_next_token_is_keyword (parser, RID_EXTENSION)) { /* __extension__ can start a declaration, but is also an unary operator that can start an expression. Consume all but the last of a possible series of __extension__ to determine which. */ while (c_parser_peek_2nd_token (parser)->type == CPP_KEYWORD && (c_parser_peek_2nd_token (parser)->keyword == RID_EXTENSION)) c_parser_consume_token (parser); if (c_token_starts_declaration (c_parser_peek_2nd_token (parser))) { int ext; ext = disable_extension_diagnostics (); c_parser_consume_token (parser); c_parser_declaration_or_fndef (parser, true, true, true, true, true, &object_expression, vNULL); parser->objc_could_be_foreach_context = false; restore_extension_diagnostics (ext); if (c_parser_next_token_is_keyword (parser, RID_IN)) { c_parser_consume_token (parser); is_foreach_statement = true; if (check_for_loop_decls (for_loc, true) == NULL_TREE) c_parser_error (parser, "multiple iterating variables in fast enumeration"); } else check_for_loop_decls (for_loc, flag_isoc99); } else goto init_expr; } else { init_expr: { struct c_expr ce; tree init_expression; ce = c_parser_expression (parser); init_expression = ce.value; parser->objc_could_be_foreach_context = false; if (c_parser_next_token_is_keyword (parser, RID_IN)) { c_parser_consume_token (parser); is_foreach_statement = true; if (! lvalue_p (init_expression)) c_parser_error (parser, "invalid iterating variable in fast enumeration"); object_expression = c_fully_fold (init_expression, false, NULL); } else { ce = convert_lvalue_to_rvalue (loc, ce, true, false); init_expression = ce.value; c_finish_expr_stmt (loc, init_expression); c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } } } /* Parse the loop condition. In the case of a foreach statement, there is no loop condition. */ gcc_assert (!parser->objc_could_be_foreach_context); if (!is_foreach_statement) { if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { if (ivdep) { c_parser_error (parser, "missing loop condition in loop with " "% pragma"); cond = error_mark_node; } else if (unroll) { c_parser_error (parser, "missing loop condition in loop with " "% pragma"); cond = error_mark_node; } else { c_parser_consume_token (parser); cond = NULL_TREE; } } else { cond = c_parser_condition (parser); c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } if (ivdep && cond != error_mark_node) cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond, build_int_cst (integer_type_node, annot_expr_ivdep_kind), integer_zero_node); if (unroll && cond != error_mark_node) cond = build3 (ANNOTATE_EXPR, TREE_TYPE (cond), cond, build_int_cst (integer_type_node, annot_expr_unroll_kind), build_int_cst (integer_type_node, unroll)); } /* Parse the increment expression (the third expression in a for-statement). In the case of a foreach-statement, this is the expression that follows the 'in'. */ if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { if (is_foreach_statement) { c_parser_error (parser, "missing collection in fast enumeration"); collection_expression = error_mark_node; } else incr = c_process_expr_stmt (loc, NULL_TREE); } else { if (is_foreach_statement) collection_expression = c_fully_fold (c_parser_expression (parser).value, false, NULL); else { struct c_expr ce = c_parser_expression (parser); ce = convert_lvalue_to_rvalue (loc, ce, true, false); incr = c_process_expr_stmt (loc, ce.value); } } parens.skip_until_found_close (parser); } save_break = c_break_label; c_break_label = NULL_TREE; save_cont = c_cont_label; c_cont_label = NULL_TREE; token_indent_info body_tinfo = get_token_indent_info (c_parser_peek_token (parser)); location_t loc_after_labels; bool open_brace = c_parser_next_token_is (parser, CPP_OPEN_BRACE); body = c_parser_c99_block_statement (parser, if_p, &loc_after_labels); if (is_foreach_statement) objc_finish_foreach_loop (loc, object_expression, collection_expression, body, c_break_label, c_cont_label); else c_finish_loop (loc, cond, incr, body, c_break_label, c_cont_label, true); add_stmt (c_end_compound_stmt (loc, block, flag_isoc99 || c_dialect_objc ())); c_parser_maybe_reclassify_token (parser); token_indent_info next_tinfo = get_token_indent_info (c_parser_peek_token (parser)); warn_for_misleading_indentation (for_tinfo, body_tinfo, next_tinfo); if (next_tinfo.type != CPP_SEMICOLON && !open_brace) warn_for_multistatement_macros (loc_after_labels, next_tinfo.location, for_tinfo.location, RID_FOR); c_break_label = save_break; c_cont_label = save_cont; } /* Parse an asm statement, a GNU extension. This is a full-blown asm statement with inputs, outputs, clobbers, and volatile, inline, and goto tags allowed. asm-qualifier: volatile inline goto asm-qualifier-list: asm-qualifier-list asm-qualifier asm-qualifier asm-statement: asm asm-qualifier-list[opt] ( asm-argument ) ; asm-argument: asm-string-literal asm-string-literal : asm-operands[opt] asm-string-literal : asm-operands[opt] : asm-operands[opt] asm-string-literal : asm-operands[opt] : asm-operands[opt] \ : asm-clobbers[opt] asm-string-literal : : asm-operands[opt] : asm-clobbers[opt] \ : asm-goto-operands The form with asm-goto-operands is valid if and only if the asm-qualifier-list contains goto, and is the only allowed form in that case. Duplicate asm-qualifiers are not allowed. */ static tree c_parser_asm_statement (c_parser *parser) { tree str, outputs, inputs, clobbers, labels, ret; bool simple; location_t asm_loc = c_parser_peek_token (parser)->location; int section, nsections; gcc_assert (c_parser_next_token_is_keyword (parser, RID_ASM)); c_parser_consume_token (parser); /* Handle the asm-qualifier-list. */ location_t volatile_loc = UNKNOWN_LOCATION; location_t inline_loc = UNKNOWN_LOCATION; location_t goto_loc = UNKNOWN_LOCATION; for (;;) { c_token *token = c_parser_peek_token (parser); location_t loc = token->location; switch (token->keyword) { case RID_VOLATILE: if (volatile_loc) { error_at (loc, "duplicate asm qualifier %qE", token->value); inform (volatile_loc, "first seen here"); } else volatile_loc = loc; c_parser_consume_token (parser); continue; case RID_INLINE: if (inline_loc) { error_at (loc, "duplicate asm qualifier %qE", token->value); inform (inline_loc, "first seen here"); } else inline_loc = loc; c_parser_consume_token (parser); continue; case RID_GOTO: if (goto_loc) { error_at (loc, "duplicate asm qualifier %qE", token->value); inform (goto_loc, "first seen here"); } else goto_loc = loc; c_parser_consume_token (parser); continue; case RID_CONST: case RID_RESTRICT: error_at (loc, "%qE is not an asm qualifier", token->value); c_parser_consume_token (parser); continue; default: break; } break; } bool is_volatile = (volatile_loc != UNKNOWN_LOCATION); bool is_inline = (inline_loc != UNKNOWN_LOCATION); bool is_goto = (goto_loc != UNKNOWN_LOCATION); /* ??? Follow the C++ parser rather than using the lex_untranslated_string kludge. */ parser->lex_untranslated_string = true; ret = NULL; matching_parens parens; if (!parens.require_open (parser)) goto error; str = c_parser_asm_string_literal (parser); if (str == NULL_TREE) goto error_close_paren; simple = true; outputs = NULL_TREE; inputs = NULL_TREE; clobbers = NULL_TREE; labels = NULL_TREE; if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN) && !is_goto) goto done_asm; /* Parse each colon-delimited section of operands. */ nsections = 3 + is_goto; for (section = 0; section < nsections; ++section) { if (!c_parser_require (parser, CPP_COLON, is_goto ? G_("expected %<:%>") : G_("expected %<:%> or %<)%>"), UNKNOWN_LOCATION, is_goto)) goto error_close_paren; /* Once past any colon, we're no longer a simple asm. */ simple = false; if ((!c_parser_next_token_is (parser, CPP_COLON) && !c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) || section == 3) switch (section) { case 0: /* For asm goto, we don't allow output operands, but reserve the slot for a future extension that does allow them. */ if (!is_goto) outputs = c_parser_asm_operands (parser); break; case 1: inputs = c_parser_asm_operands (parser); break; case 2: clobbers = c_parser_asm_clobbers (parser); break; case 3: labels = c_parser_asm_goto_operands (parser); break; default: gcc_unreachable (); } if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN) && !is_goto) goto done_asm; } done_asm: if (!parens.require_close (parser)) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); goto error; } if (!c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>")) c_parser_skip_to_end_of_block_or_statement (parser); ret = build_asm_stmt (is_volatile, build_asm_expr (asm_loc, str, outputs, inputs, clobbers, labels, simple, is_inline)); error: parser->lex_untranslated_string = false; return ret; error_close_paren: c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); goto error; } /* Parse asm operands, a GNU extension. asm-operands: asm-operand asm-operands , asm-operand asm-operand: asm-string-literal ( expression ) [ identifier ] asm-string-literal ( expression ) */ static tree c_parser_asm_operands (c_parser *parser) { tree list = NULL_TREE; while (true) { tree name, str; struct c_expr expr; if (c_parser_next_token_is (parser, CPP_OPEN_SQUARE)) { c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_NAME)) { tree id = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); name = build_string (IDENTIFIER_LENGTH (id), IDENTIFIER_POINTER (id)); } else { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, NULL); return NULL_TREE; } c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); } else name = NULL_TREE; str = c_parser_asm_string_literal (parser); if (str == NULL_TREE) return NULL_TREE; parser->lex_untranslated_string = false; matching_parens parens; if (!parens.require_open (parser)) { parser->lex_untranslated_string = true; return NULL_TREE; } expr = c_parser_expression (parser); mark_exp_read (expr.value); parser->lex_untranslated_string = true; if (!parens.require_close (parser)) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return NULL_TREE; } list = chainon (list, build_tree_list (build_tree_list (name, str), expr.value)); if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } return list; } /* Parse asm clobbers, a GNU extension. asm-clobbers: asm-string-literal asm-clobbers , asm-string-literal */ static tree c_parser_asm_clobbers (c_parser *parser) { tree list = NULL_TREE; while (true) { tree str = c_parser_asm_string_literal (parser); if (str) list = tree_cons (NULL_TREE, str, list); else return NULL_TREE; if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } return list; } /* Parse asm goto labels, a GNU extension. asm-goto-operands: identifier asm-goto-operands , identifier */ static tree c_parser_asm_goto_operands (c_parser *parser) { tree list = NULL_TREE; while (true) { tree name, label; if (c_parser_next_token_is (parser, CPP_NAME)) { c_token *tok = c_parser_peek_token (parser); name = tok->value; label = lookup_label_for_goto (tok->location, name); c_parser_consume_token (parser); TREE_USED (label) = 1; } else { c_parser_error (parser, "expected identifier"); return NULL_TREE; } name = build_string (IDENTIFIER_LENGTH (name), IDENTIFIER_POINTER (name)); list = tree_cons (name, label, list); if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else return nreverse (list); } } /* Parse an expression other than a compound expression; that is, an assignment expression (C90 6.3.16, C99 6.5.16, C11 6.5.16). If AFTER is not NULL then it is an Objective-C message expression which is the primary-expression starting the expression as an initializer. assignment-expression: conditional-expression unary-expression assignment-operator assignment-expression assignment-operator: one of = *= /= %= += -= <<= >>= &= ^= |= In GNU C we accept any conditional expression on the LHS and diagnose the invalid lvalue rather than producing a syntax error. */ static struct c_expr c_parser_expr_no_commas (c_parser *parser, struct c_expr *after, tree omp_atomic_lhs) { struct c_expr lhs, rhs, ret; enum tree_code code; location_t op_location, exp_location; gcc_assert (!after || c_dialect_objc ()); lhs = c_parser_conditional_expression (parser, after, omp_atomic_lhs); op_location = c_parser_peek_token (parser)->location; switch (c_parser_peek_token (parser)->type) { case CPP_EQ: code = NOP_EXPR; break; case CPP_MULT_EQ: code = MULT_EXPR; break; case CPP_DIV_EQ: code = TRUNC_DIV_EXPR; break; case CPP_MOD_EQ: code = TRUNC_MOD_EXPR; break; case CPP_PLUS_EQ: code = PLUS_EXPR; break; case CPP_MINUS_EQ: code = MINUS_EXPR; break; case CPP_LSHIFT_EQ: code = LSHIFT_EXPR; break; case CPP_RSHIFT_EQ: code = RSHIFT_EXPR; break; case CPP_AND_EQ: code = BIT_AND_EXPR; break; case CPP_XOR_EQ: code = BIT_XOR_EXPR; break; case CPP_OR_EQ: code = BIT_IOR_EXPR; break; default: return lhs; } c_parser_consume_token (parser); exp_location = c_parser_peek_token (parser)->location; rhs = c_parser_expr_no_commas (parser, NULL); rhs = convert_lvalue_to_rvalue (exp_location, rhs, true, true); ret.value = build_modify_expr (op_location, lhs.value, lhs.original_type, code, exp_location, rhs.value, rhs.original_type); set_c_expr_source_range (&ret, lhs.get_start (), rhs.get_finish ()); if (code == NOP_EXPR) ret.original_code = MODIFY_EXPR; else { TREE_NO_WARNING (ret.value) = 1; ret.original_code = ERROR_MARK; } ret.original_type = NULL; return ret; } /* Parse a conditional expression (C90 6.3.15, C99 6.5.15, C11 6.5.15). If AFTER is not NULL then it is an Objective-C message expression which is the primary-expression starting the expression as an initializer. conditional-expression: logical-OR-expression logical-OR-expression ? expression : conditional-expression GNU extensions: conditional-expression: logical-OR-expression ? : conditional-expression */ static struct c_expr c_parser_conditional_expression (c_parser *parser, struct c_expr *after, tree omp_atomic_lhs) { struct c_expr cond, exp1, exp2, ret; location_t start, cond_loc, colon_loc; gcc_assert (!after || c_dialect_objc ()); cond = c_parser_binary_expression (parser, after, omp_atomic_lhs); if (c_parser_next_token_is_not (parser, CPP_QUERY)) return cond; if (cond.value != error_mark_node) start = cond.get_start (); else start = UNKNOWN_LOCATION; cond_loc = c_parser_peek_token (parser)->location; cond = convert_lvalue_to_rvalue (cond_loc, cond, true, true); c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_COLON)) { tree eptype = NULL_TREE; location_t middle_loc = c_parser_peek_token (parser)->location; pedwarn (middle_loc, OPT_Wpedantic, "ISO C forbids omitting the middle term of a ?: expression"); if (TREE_CODE (cond.value) == EXCESS_PRECISION_EXPR) { eptype = TREE_TYPE (cond.value); cond.value = TREE_OPERAND (cond.value, 0); } tree e = cond.value; while (TREE_CODE (e) == COMPOUND_EXPR) e = TREE_OPERAND (e, 1); warn_for_omitted_condop (middle_loc, e); /* Make sure first operand is calculated only once. */ exp1.value = save_expr (default_conversion (cond.value)); if (eptype) exp1.value = build1 (EXCESS_PRECISION_EXPR, eptype, exp1.value); exp1.original_type = NULL; exp1.src_range = cond.src_range; cond.value = c_objc_common_truthvalue_conversion (cond_loc, exp1.value); c_inhibit_evaluation_warnings += cond.value == truthvalue_true_node; } else { cond.value = c_objc_common_truthvalue_conversion (cond_loc, default_conversion (cond.value)); c_inhibit_evaluation_warnings += cond.value == truthvalue_false_node; exp1 = c_parser_expression_conv (parser); mark_exp_read (exp1.value); c_inhibit_evaluation_warnings += ((cond.value == truthvalue_true_node) - (cond.value == truthvalue_false_node)); } colon_loc = c_parser_peek_token (parser)->location; if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) { c_inhibit_evaluation_warnings -= cond.value == truthvalue_true_node; ret.set_error (); ret.original_code = ERROR_MARK; ret.original_type = NULL; return ret; } { location_t exp2_loc = c_parser_peek_token (parser)->location; exp2 = c_parser_conditional_expression (parser, NULL, NULL_TREE); exp2 = convert_lvalue_to_rvalue (exp2_loc, exp2, true, true); } c_inhibit_evaluation_warnings -= cond.value == truthvalue_true_node; location_t loc1 = make_location (exp1.get_start (), exp1.src_range); location_t loc2 = make_location (exp2.get_start (), exp2.src_range); ret.value = build_conditional_expr (colon_loc, cond.value, cond.original_code == C_MAYBE_CONST_EXPR, exp1.value, exp1.original_type, loc1, exp2.value, exp2.original_type, loc2); ret.original_code = ERROR_MARK; if (exp1.value == error_mark_node || exp2.value == error_mark_node) ret.original_type = NULL; else { tree t1, t2; /* If both sides are enum type, the default conversion will have made the type of the result be an integer type. We want to remember the enum types we started with. */ t1 = exp1.original_type ? exp1.original_type : TREE_TYPE (exp1.value); t2 = exp2.original_type ? exp2.original_type : TREE_TYPE (exp2.value); ret.original_type = ((t1 != error_mark_node && t2 != error_mark_node && (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))) ? t1 : NULL); } set_c_expr_source_range (&ret, start, exp2.get_finish ()); return ret; } /* Parse a binary expression; that is, a logical-OR-expression (C90 6.3.5-6.3.14, C99 6.5.5-6.5.14, C11 6.5.5-6.5.14). If AFTER is not NULL then it is an Objective-C message expression which is the primary-expression starting the expression as an initializer. OMP_ATOMIC_LHS is NULL, unless parsing OpenMP #pragma omp atomic, when it should be the unfolded lhs. In a valid OpenMP source, one of the operands of the toplevel binary expression must be equal to it. In that case, just return a build2 created binary operation rather than result of parser_build_binary_op. multiplicative-expression: cast-expression multiplicative-expression * cast-expression multiplicative-expression / cast-expression multiplicative-expression % cast-expression additive-expression: multiplicative-expression additive-expression + multiplicative-expression additive-expression - multiplicative-expression shift-expression: additive-expression shift-expression << additive-expression shift-expression >> additive-expression relational-expression: shift-expression relational-expression < shift-expression relational-expression > shift-expression relational-expression <= shift-expression relational-expression >= shift-expression equality-expression: relational-expression equality-expression == relational-expression equality-expression != relational-expression AND-expression: equality-expression AND-expression & equality-expression exclusive-OR-expression: AND-expression exclusive-OR-expression ^ AND-expression inclusive-OR-expression: exclusive-OR-expression inclusive-OR-expression | exclusive-OR-expression logical-AND-expression: inclusive-OR-expression logical-AND-expression && inclusive-OR-expression logical-OR-expression: logical-AND-expression logical-OR-expression || logical-AND-expression */ static struct c_expr c_parser_binary_expression (c_parser *parser, struct c_expr *after, tree omp_atomic_lhs) { /* A binary expression is parsed using operator-precedence parsing, with the operands being cast expressions. All the binary operators are left-associative. Thus a binary expression is of form: E0 op1 E1 op2 E2 ... which we represent on a stack. On the stack, the precedence levels are strictly increasing. When a new operator is encountered of higher precedence than that at the top of the stack, it is pushed; its LHS is the top expression, and its RHS is everything parsed until it is popped. When a new operator is encountered with precedence less than or equal to that at the top of the stack, triples E[i-1] op[i] E[i] are popped and replaced by the result of the operation until the operator at the top of the stack has lower precedence than the new operator or there is only one element on the stack; then the top expression is the LHS of the new operator. In the case of logical AND and OR expressions, we also need to adjust c_inhibit_evaluation_warnings as appropriate when the operators are pushed and popped. */ struct { /* The expression at this stack level. */ struct c_expr expr; /* The precedence of the operator on its left, PREC_NONE at the bottom of the stack. */ enum c_parser_prec prec; /* The operation on its left. */ enum tree_code op; /* The source location of this operation. */ location_t loc; /* The sizeof argument if expr.original_code == SIZEOF_EXPR. */ tree sizeof_arg; } stack[NUM_PRECS]; int sp; /* Location of the binary operator. */ location_t binary_loc = UNKNOWN_LOCATION; /* Quiet warning. */ #define POP \ do { \ switch (stack[sp].op) \ { \ case TRUTH_ANDIF_EXPR: \ c_inhibit_evaluation_warnings -= (stack[sp - 1].expr.value \ == truthvalue_false_node); \ break; \ case TRUTH_ORIF_EXPR: \ c_inhibit_evaluation_warnings -= (stack[sp - 1].expr.value \ == truthvalue_true_node); \ break; \ case TRUNC_DIV_EXPR: \ if (stack[sp - 1].expr.original_code == SIZEOF_EXPR \ && stack[sp].expr.original_code == SIZEOF_EXPR) \ { \ tree type0 = stack[sp - 1].sizeof_arg; \ tree type1 = stack[sp].sizeof_arg; \ tree first_arg = type0; \ if (!TYPE_P (type0)) \ type0 = TREE_TYPE (type0); \ if (!TYPE_P (type1)) \ type1 = TREE_TYPE (type1); \ if (POINTER_TYPE_P (type0) \ && comptypes (TREE_TYPE (type0), type1) \ && !(TREE_CODE (first_arg) == PARM_DECL \ && C_ARRAY_PARAMETER (first_arg) \ && warn_sizeof_array_argument)) \ { \ auto_diagnostic_group d; \ if (warning_at (stack[sp].loc, OPT_Wsizeof_pointer_div, \ "division % " \ "does not compute the number of array " \ "elements", \ type0, type1)) \ if (DECL_P (first_arg)) \ inform (DECL_SOURCE_LOCATION (first_arg), \ "first % operand was declared here"); \ } \ } \ break; \ default: \ break; \ } \ stack[sp - 1].expr \ = convert_lvalue_to_rvalue (stack[sp - 1].loc, \ stack[sp - 1].expr, true, true); \ stack[sp].expr \ = convert_lvalue_to_rvalue (stack[sp].loc, \ stack[sp].expr, true, true); \ if (__builtin_expect (omp_atomic_lhs != NULL_TREE, 0) && sp == 1 \ && c_parser_peek_token (parser)->type == CPP_SEMICOLON \ && ((1 << stack[sp].prec) \ & ((1 << PREC_BITOR) | (1 << PREC_BITXOR) | (1 << PREC_BITAND) \ | (1 << PREC_SHIFT) | (1 << PREC_ADD) | (1 << PREC_MULT))) \ && stack[sp].op != TRUNC_MOD_EXPR \ && stack[0].expr.value != error_mark_node \ && stack[1].expr.value != error_mark_node \ && (c_tree_equal (stack[0].expr.value, omp_atomic_lhs) \ || c_tree_equal (stack[1].expr.value, omp_atomic_lhs))) \ stack[0].expr.value \ = build2 (stack[1].op, TREE_TYPE (stack[0].expr.value), \ stack[0].expr.value, stack[1].expr.value); \ else \ stack[sp - 1].expr = parser_build_binary_op (stack[sp].loc, \ stack[sp].op, \ stack[sp - 1].expr, \ stack[sp].expr); \ sp--; \ } while (0) gcc_assert (!after || c_dialect_objc ()); stack[0].loc = c_parser_peek_token (parser)->location; stack[0].expr = c_parser_cast_expression (parser, after); stack[0].prec = PREC_NONE; stack[0].sizeof_arg = c_last_sizeof_arg; sp = 0; while (true) { enum c_parser_prec oprec; enum tree_code ocode; source_range src_range; if (parser->error) goto out; switch (c_parser_peek_token (parser)->type) { case CPP_MULT: oprec = PREC_MULT; ocode = MULT_EXPR; break; case CPP_DIV: oprec = PREC_MULT; ocode = TRUNC_DIV_EXPR; break; case CPP_MOD: oprec = PREC_MULT; ocode = TRUNC_MOD_EXPR; break; case CPP_PLUS: oprec = PREC_ADD; ocode = PLUS_EXPR; break; case CPP_MINUS: oprec = PREC_ADD; ocode = MINUS_EXPR; break; case CPP_LSHIFT: oprec = PREC_SHIFT; ocode = LSHIFT_EXPR; break; case CPP_RSHIFT: oprec = PREC_SHIFT; ocode = RSHIFT_EXPR; break; case CPP_LESS: oprec = PREC_REL; ocode = LT_EXPR; break; case CPP_GREATER: oprec = PREC_REL; ocode = GT_EXPR; break; case CPP_LESS_EQ: oprec = PREC_REL; ocode = LE_EXPR; break; case CPP_GREATER_EQ: oprec = PREC_REL; ocode = GE_EXPR; break; case CPP_EQ_EQ: oprec = PREC_EQ; ocode = EQ_EXPR; break; case CPP_NOT_EQ: oprec = PREC_EQ; ocode = NE_EXPR; break; case CPP_AND: oprec = PREC_BITAND; ocode = BIT_AND_EXPR; break; case CPP_XOR: oprec = PREC_BITXOR; ocode = BIT_XOR_EXPR; break; case CPP_OR: oprec = PREC_BITOR; ocode = BIT_IOR_EXPR; break; case CPP_AND_AND: oprec = PREC_LOGAND; ocode = TRUTH_ANDIF_EXPR; break; case CPP_OR_OR: oprec = PREC_LOGOR; ocode = TRUTH_ORIF_EXPR; break; default: /* Not a binary operator, so end of the binary expression. */ goto out; } binary_loc = c_parser_peek_token (parser)->location; while (oprec <= stack[sp].prec) POP; c_parser_consume_token (parser); switch (ocode) { case TRUTH_ANDIF_EXPR: src_range = stack[sp].expr.src_range; stack[sp].expr = convert_lvalue_to_rvalue (stack[sp].loc, stack[sp].expr, true, true); stack[sp].expr.value = c_objc_common_truthvalue_conversion (stack[sp].loc, default_conversion (stack[sp].expr.value)); c_inhibit_evaluation_warnings += (stack[sp].expr.value == truthvalue_false_node); set_c_expr_source_range (&stack[sp].expr, src_range); break; case TRUTH_ORIF_EXPR: src_range = stack[sp].expr.src_range; stack[sp].expr = convert_lvalue_to_rvalue (stack[sp].loc, stack[sp].expr, true, true); stack[sp].expr.value = c_objc_common_truthvalue_conversion (stack[sp].loc, default_conversion (stack[sp].expr.value)); c_inhibit_evaluation_warnings += (stack[sp].expr.value == truthvalue_true_node); set_c_expr_source_range (&stack[sp].expr, src_range); break; default: break; } sp++; stack[sp].loc = binary_loc; stack[sp].expr = c_parser_cast_expression (parser, NULL); stack[sp].prec = oprec; stack[sp].op = ocode; stack[sp].sizeof_arg = c_last_sizeof_arg; } out: while (sp > 0) POP; return stack[0].expr; #undef POP } /* Parse a cast expression (C90 6.3.4, C99 6.5.4, C11 6.5.4). If AFTER is not NULL then it is an Objective-C message expression which is the primary-expression starting the expression as an initializer. cast-expression: unary-expression ( type-name ) unary-expression */ static struct c_expr c_parser_cast_expression (c_parser *parser, struct c_expr *after) { location_t cast_loc = c_parser_peek_token (parser)->location; gcc_assert (!after || c_dialect_objc ()); if (after) return c_parser_postfix_expression_after_primary (parser, cast_loc, *after); /* If the expression begins with a parenthesized type name, it may be either a cast or a compound literal; we need to see whether the next character is '{' to tell the difference. If not, it is an unary expression. Full detection of unknown typenames here would require a 3-token lookahead. */ if (c_parser_next_token_is (parser, CPP_OPEN_PAREN) && c_token_starts_typename (c_parser_peek_2nd_token (parser))) { struct c_type_name *type_name; struct c_expr ret; struct c_expr expr; matching_parens parens; parens.consume_open (parser); type_name = c_parser_type_name (parser, true); parens.skip_until_found_close (parser); if (type_name == NULL) { ret.set_error (); ret.original_code = ERROR_MARK; ret.original_type = NULL; return ret; } /* Save casted types in the function's used types hash table. */ used_types_insert (type_name->specs->type); if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) return c_parser_postfix_expression_after_paren_type (parser, type_name, cast_loc); if (type_name->specs->alignas_p) error_at (type_name->specs->locations[cdw_alignas], "alignment specified for type name in cast"); { location_t expr_loc = c_parser_peek_token (parser)->location; expr = c_parser_cast_expression (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, true, true); } ret.value = c_cast_expr (cast_loc, type_name, expr.value); if (ret.value && expr.value) set_c_expr_source_range (&ret, cast_loc, expr.get_finish ()); ret.original_code = ERROR_MARK; ret.original_type = NULL; return ret; } else return c_parser_unary_expression (parser); } /* Parse an unary expression (C90 6.3.3, C99 6.5.3, C11 6.5.3). unary-expression: postfix-expression ++ unary-expression -- unary-expression unary-operator cast-expression sizeof unary-expression sizeof ( type-name ) unary-operator: one of & * + - ~ ! GNU extensions: unary-expression: __alignof__ unary-expression __alignof__ ( type-name ) && identifier (C11 permits _Alignof with type names only.) unary-operator: one of __extension__ __real__ __imag__ Transactional Memory: unary-expression: transaction-expression In addition, the GNU syntax treats ++ and -- as unary operators, so they may be applied to cast expressions with errors for non-lvalues given later. */ static struct c_expr c_parser_unary_expression (c_parser *parser) { int ext; struct c_expr ret, op; location_t op_loc = c_parser_peek_token (parser)->location; location_t exp_loc; location_t finish; ret.original_code = ERROR_MARK; ret.original_type = NULL; switch (c_parser_peek_token (parser)->type) { case CPP_PLUS_PLUS: c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); op = default_function_array_read_conversion (exp_loc, op); return parser_build_unary_op (op_loc, PREINCREMENT_EXPR, op); case CPP_MINUS_MINUS: c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); op = default_function_array_read_conversion (exp_loc, op); return parser_build_unary_op (op_loc, PREDECREMENT_EXPR, op); case CPP_AND: c_parser_consume_token (parser); op = c_parser_cast_expression (parser, NULL); mark_exp_read (op.value); return parser_build_unary_op (op_loc, ADDR_EXPR, op); case CPP_MULT: { c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); finish = op.get_finish (); op = convert_lvalue_to_rvalue (exp_loc, op, true, true); location_t combined_loc = make_location (op_loc, op_loc, finish); ret.value = build_indirect_ref (combined_loc, op.value, RO_UNARY_STAR); ret.src_range.m_start = op_loc; ret.src_range.m_finish = finish; return ret; } case CPP_PLUS: if (!c_dialect_objc () && !in_system_header_at (input_location)) warning_at (op_loc, OPT_Wtraditional, "traditional C rejects the unary plus operator"); c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); op = convert_lvalue_to_rvalue (exp_loc, op, true, true); return parser_build_unary_op (op_loc, CONVERT_EXPR, op); case CPP_MINUS: c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); op = convert_lvalue_to_rvalue (exp_loc, op, true, true); return parser_build_unary_op (op_loc, NEGATE_EXPR, op); case CPP_COMPL: c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); op = convert_lvalue_to_rvalue (exp_loc, op, true, true); return parser_build_unary_op (op_loc, BIT_NOT_EXPR, op); case CPP_NOT: c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); op = convert_lvalue_to_rvalue (exp_loc, op, true, true); return parser_build_unary_op (op_loc, TRUTH_NOT_EXPR, op); case CPP_AND_AND: /* Refer to the address of a label as a pointer. */ c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_NAME)) { ret.value = finish_label_address_expr (c_parser_peek_token (parser)->value, op_loc); set_c_expr_source_range (&ret, op_loc, c_parser_peek_token (parser)->get_finish ()); c_parser_consume_token (parser); } else { c_parser_error (parser, "expected identifier"); ret.set_error (); } return ret; case CPP_KEYWORD: switch (c_parser_peek_token (parser)->keyword) { case RID_SIZEOF: return c_parser_sizeof_expression (parser); case RID_ALIGNOF: return c_parser_alignof_expression (parser); case RID_BUILTIN_HAS_ATTRIBUTE: return c_parser_has_attribute_expression (parser); case RID_EXTENSION: c_parser_consume_token (parser); ext = disable_extension_diagnostics (); ret = c_parser_cast_expression (parser, NULL); restore_extension_diagnostics (ext); return ret; case RID_REALPART: c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); op = default_function_array_conversion (exp_loc, op); return parser_build_unary_op (op_loc, REALPART_EXPR, op); case RID_IMAGPART: c_parser_consume_token (parser); exp_loc = c_parser_peek_token (parser)->location; op = c_parser_cast_expression (parser, NULL); op = default_function_array_conversion (exp_loc, op); return parser_build_unary_op (op_loc, IMAGPART_EXPR, op); case RID_TRANSACTION_ATOMIC: case RID_TRANSACTION_RELAXED: return c_parser_transaction_expression (parser, c_parser_peek_token (parser)->keyword); default: return c_parser_postfix_expression (parser); } default: return c_parser_postfix_expression (parser); } } /* Parse a sizeof expression. */ static struct c_expr c_parser_sizeof_expression (c_parser *parser) { struct c_expr expr; struct c_expr result; location_t expr_loc; gcc_assert (c_parser_next_token_is_keyword (parser, RID_SIZEOF)); location_t start; location_t finish = UNKNOWN_LOCATION; start = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); c_inhibit_evaluation_warnings++; in_sizeof++; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN) && c_token_starts_typename (c_parser_peek_2nd_token (parser))) { /* Either sizeof ( type-name ) or sizeof unary-expression starting with a compound literal. */ struct c_type_name *type_name; matching_parens parens; parens.consume_open (parser); expr_loc = c_parser_peek_token (parser)->location; type_name = c_parser_type_name (parser, true); parens.skip_until_found_close (parser); finish = parser->tokens_buf[0].location; if (type_name == NULL) { struct c_expr ret; c_inhibit_evaluation_warnings--; in_sizeof--; ret.set_error (); ret.original_code = ERROR_MARK; ret.original_type = NULL; return ret; } if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) { expr = c_parser_postfix_expression_after_paren_type (parser, type_name, expr_loc); finish = expr.get_finish (); goto sizeof_expr; } /* sizeof ( type-name ). */ if (type_name->specs->alignas_p) error_at (type_name->specs->locations[cdw_alignas], "alignment specified for type name in %"); c_inhibit_evaluation_warnings--; in_sizeof--; result = c_expr_sizeof_type (expr_loc, type_name); } else { expr_loc = c_parser_peek_token (parser)->location; expr = c_parser_unary_expression (parser); finish = expr.get_finish (); sizeof_expr: c_inhibit_evaluation_warnings--; in_sizeof--; mark_exp_read (expr.value); if (TREE_CODE (expr.value) == COMPONENT_REF && DECL_C_BIT_FIELD (TREE_OPERAND (expr.value, 1))) error_at (expr_loc, "% applied to a bit-field"); result = c_expr_sizeof_expr (expr_loc, expr); } if (finish != UNKNOWN_LOCATION) set_c_expr_source_range (&result, start, finish); return result; } /* Parse an alignof expression. */ static struct c_expr c_parser_alignof_expression (c_parser *parser) { struct c_expr expr; location_t start_loc = c_parser_peek_token (parser)->location; location_t end_loc; tree alignof_spelling = c_parser_peek_token (parser)->value; gcc_assert (c_parser_next_token_is_keyword (parser, RID_ALIGNOF)); bool is_c11_alignof = strcmp (IDENTIFIER_POINTER (alignof_spelling), "_Alignof") == 0; /* A diagnostic is not required for the use of this identifier in the implementation namespace; only diagnose it for the C11 spelling because of existing code using the other spellings. */ if (is_c11_alignof) { if (flag_isoc99) pedwarn_c99 (start_loc, OPT_Wpedantic, "ISO C99 does not support %qE", alignof_spelling); else pedwarn_c99 (start_loc, OPT_Wpedantic, "ISO C90 does not support %qE", alignof_spelling); } c_parser_consume_token (parser); c_inhibit_evaluation_warnings++; in_alignof++; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN) && c_token_starts_typename (c_parser_peek_2nd_token (parser))) { /* Either __alignof__ ( type-name ) or __alignof__ unary-expression starting with a compound literal. */ location_t loc; struct c_type_name *type_name; struct c_expr ret; matching_parens parens; parens.consume_open (parser); loc = c_parser_peek_token (parser)->location; type_name = c_parser_type_name (parser, true); end_loc = c_parser_peek_token (parser)->location; parens.skip_until_found_close (parser); if (type_name == NULL) { struct c_expr ret; c_inhibit_evaluation_warnings--; in_alignof--; ret.set_error (); ret.original_code = ERROR_MARK; ret.original_type = NULL; return ret; } if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) { expr = c_parser_postfix_expression_after_paren_type (parser, type_name, loc); goto alignof_expr; } /* alignof ( type-name ). */ if (type_name->specs->alignas_p) error_at (type_name->specs->locations[cdw_alignas], "alignment specified for type name in %qE", alignof_spelling); c_inhibit_evaluation_warnings--; in_alignof--; ret.value = c_sizeof_or_alignof_type (loc, groktypename (type_name, NULL, NULL), false, is_c11_alignof, 1); ret.original_code = ERROR_MARK; ret.original_type = NULL; set_c_expr_source_range (&ret, start_loc, end_loc); return ret; } else { struct c_expr ret; expr = c_parser_unary_expression (parser); end_loc = expr.src_range.m_finish; alignof_expr: mark_exp_read (expr.value); c_inhibit_evaluation_warnings--; in_alignof--; if (is_c11_alignof) pedwarn (start_loc, OPT_Wpedantic, "ISO C does not allow %<%E (expression)%>", alignof_spelling); ret.value = c_alignof_expr (start_loc, expr.value); ret.original_code = ERROR_MARK; ret.original_type = NULL; set_c_expr_source_range (&ret, start_loc, end_loc); return ret; } } /* Parse the __builtin_has_attribute ([expr|type], attribute-spec) expression. */ static struct c_expr c_parser_has_attribute_expression (c_parser *parser) { gcc_assert (c_parser_next_token_is_keyword (parser, RID_BUILTIN_HAS_ATTRIBUTE)); c_parser_consume_token (parser); c_inhibit_evaluation_warnings++; matching_parens parens; if (!parens.require_open (parser)) { c_inhibit_evaluation_warnings--; in_typeof--; struct c_expr result; result.set_error (); result.original_code = ERROR_MARK; result.original_type = NULL; return result; } /* Treat the type argument the same way as in typeof for the purposes of warnings. FIXME: Generalize this so the warning refers to __builtin_has_attribute rather than typeof. */ in_typeof++; /* The first operand: one of DECL, EXPR, or TYPE. */ tree oper = NULL_TREE; if (c_parser_next_tokens_start_typename (parser, cla_prefer_id)) { struct c_type_name *tname = c_parser_type_name (parser); in_typeof--; if (tname) { oper = groktypename (tname, NULL, NULL); pop_maybe_used (variably_modified_type_p (oper, NULL_TREE)); } } else { struct c_expr cexpr = c_parser_expr_no_commas (parser, NULL); c_inhibit_evaluation_warnings--; in_typeof--; if (cexpr.value != error_mark_node) { mark_exp_read (cexpr.value); oper = cexpr.value; tree etype = TREE_TYPE (oper); bool was_vm = variably_modified_type_p (etype, NULL_TREE); /* This is returned with the type so that when the type is evaluated, this can be evaluated. */ if (was_vm) oper = c_fully_fold (oper, false, NULL); pop_maybe_used (was_vm); } } struct c_expr result; result.original_code = ERROR_MARK; result.original_type = NULL; if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>")) { /* Consume the closing parenthesis if that's the next token in the likely case the built-in was invoked with fewer than two arguments. */ if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) c_parser_consume_token (parser); c_inhibit_evaluation_warnings--; result.set_error (); return result; } parser->lex_untranslated_string = true; location_t atloc = c_parser_peek_token (parser)->location; /* Parse a single attribute. Require no leading comma and do not allow empty attributes. */ tree attr = c_parser_attribute (parser, NULL_TREE, false, false); parser->lex_untranslated_string = false; if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) c_parser_consume_token (parser); else { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); result.set_error (); return result; } if (!attr) { error_at (atloc, "expected identifier"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); result.set_error (); return result; } result.original_code = INTEGER_CST; result.original_type = boolean_type_node; if (has_attribute (atloc, oper, attr, default_conversion)) result.value = boolean_true_node; else result.value = boolean_false_node; return result; } /* Helper function to read arguments of builtins which are interfaces for the middle-end nodes like COMPLEX_EXPR, VEC_PERM_EXPR and others. The name of the builtin is passed using BNAME parameter. Function returns true if there were no errors while parsing and stores the arguments in CEXPR_LIST. If it returns true, *OUT_CLOSE_PAREN_LOC is written to with the location of the closing parenthesis. */ static bool c_parser_get_builtin_args (c_parser *parser, const char *bname, vec **ret_cexpr_list, bool choose_expr_p, location_t *out_close_paren_loc) { location_t loc = c_parser_peek_token (parser)->location; vec *cexpr_list; c_expr_t expr; bool saved_force_folding_builtin_constant_p; *ret_cexpr_list = NULL; if (c_parser_next_token_is_not (parser, CPP_OPEN_PAREN)) { error_at (loc, "cannot take address of %qs", bname); return false; } c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { *out_close_paren_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); return true; } saved_force_folding_builtin_constant_p = force_folding_builtin_constant_p; force_folding_builtin_constant_p |= choose_expr_p; expr = c_parser_expr_no_commas (parser, NULL); force_folding_builtin_constant_p = saved_force_folding_builtin_constant_p; vec_alloc (cexpr_list, 1); vec_safe_push (cexpr_list, expr); while (c_parser_next_token_is (parser, CPP_COMMA)) { c_parser_consume_token (parser); expr = c_parser_expr_no_commas (parser, NULL); vec_safe_push (cexpr_list, expr); } *out_close_paren_loc = c_parser_peek_token (parser)->location; if (!c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>")) return false; *ret_cexpr_list = cexpr_list; return true; } /* This represents a single generic-association. */ struct c_generic_association { /* The location of the starting token of the type. */ location_t type_location; /* The association's type, or NULL_TREE for 'default'. */ tree type; /* The association's expression. */ struct c_expr expression; }; /* Parse a generic-selection. (C11 6.5.1.1). generic-selection: _Generic ( assignment-expression , generic-assoc-list ) generic-assoc-list: generic-association generic-assoc-list , generic-association generic-association: type-name : assignment-expression default : assignment-expression */ static struct c_expr c_parser_generic_selection (c_parser *parser) { struct c_expr selector, error_expr; tree selector_type; struct c_generic_association matched_assoc; bool match_found = false; location_t generic_loc, selector_loc; error_expr.original_code = ERROR_MARK; error_expr.original_type = NULL; error_expr.set_error (); matched_assoc.type_location = UNKNOWN_LOCATION; matched_assoc.type = NULL_TREE; matched_assoc.expression = error_expr; gcc_assert (c_parser_next_token_is_keyword (parser, RID_GENERIC)); generic_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); if (flag_isoc99) pedwarn_c99 (generic_loc, OPT_Wpedantic, "ISO C99 does not support %<_Generic%>"); else pedwarn_c99 (generic_loc, OPT_Wpedantic, "ISO C90 does not support %<_Generic%>"); matching_parens parens; if (!parens.require_open (parser)) return error_expr; c_inhibit_evaluation_warnings++; selector_loc = c_parser_peek_token (parser)->location; selector = c_parser_expr_no_commas (parser, NULL); selector = default_function_array_conversion (selector_loc, selector); c_inhibit_evaluation_warnings--; if (selector.value == error_mark_node) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return selector; } selector_type = TREE_TYPE (selector.value); /* In ISO C terms, rvalues (including the controlling expression of _Generic) do not have qualified types. */ if (TREE_CODE (selector_type) != ARRAY_TYPE) selector_type = TYPE_MAIN_VARIANT (selector_type); /* In ISO C terms, _Noreturn is not part of the type of expressions such as &abort, but in GCC it is represented internally as a type qualifier. */ if (FUNCTION_POINTER_TYPE_P (selector_type) && TYPE_QUALS (TREE_TYPE (selector_type)) != TYPE_UNQUALIFIED) selector_type = build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (selector_type))); if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>")) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return error_expr; } auto_vec associations; while (1) { struct c_generic_association assoc, *iter; unsigned int ix; c_token *token = c_parser_peek_token (parser); assoc.type_location = token->location; if (token->type == CPP_KEYWORD && token->keyword == RID_DEFAULT) { c_parser_consume_token (parser); assoc.type = NULL_TREE; } else { struct c_type_name *type_name; type_name = c_parser_type_name (parser); if (type_name == NULL) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return error_expr; } assoc.type = groktypename (type_name, NULL, NULL); if (assoc.type == error_mark_node) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return error_expr; } if (TREE_CODE (assoc.type) == FUNCTION_TYPE) error_at (assoc.type_location, "%<_Generic%> association has function type"); else if (!COMPLETE_TYPE_P (assoc.type)) error_at (assoc.type_location, "%<_Generic%> association has incomplete type"); if (variably_modified_type_p (assoc.type, NULL_TREE)) error_at (assoc.type_location, "%<_Generic%> association has " "variable length type"); } if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return error_expr; } assoc.expression = c_parser_expr_no_commas (parser, NULL); if (assoc.expression.value == error_mark_node) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return error_expr; } for (ix = 0; associations.iterate (ix, &iter); ++ix) { if (assoc.type == NULL_TREE) { if (iter->type == NULL_TREE) { error_at (assoc.type_location, "duplicate % case in %<_Generic%>"); inform (iter->type_location, "original % is here"); } } else if (iter->type != NULL_TREE) { if (comptypes (assoc.type, iter->type)) { error_at (assoc.type_location, "%<_Generic%> specifies two compatible types"); inform (iter->type_location, "compatible type is here"); } } } if (assoc.type == NULL_TREE) { if (!match_found) { matched_assoc = assoc; match_found = true; } } else if (comptypes (assoc.type, selector_type)) { if (!match_found || matched_assoc.type == NULL_TREE) { matched_assoc = assoc; match_found = true; } else { error_at (assoc.type_location, "%<_Generic%> selector matches multiple associations"); inform (matched_assoc.type_location, "other match is here"); } } associations.safe_push (assoc); if (c_parser_peek_token (parser)->type != CPP_COMMA) break; c_parser_consume_token (parser); } if (!parens.require_close (parser)) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return error_expr; } if (!match_found) { error_at (selector_loc, "%<_Generic%> selector of type %qT is not " "compatible with any association", selector_type); return error_expr; } return matched_assoc.expression; } /* Check the validity of a function pointer argument *EXPR (argument position POS) to __builtin_tgmath. Return the number of function arguments if possibly valid; return 0 having reported an error if not valid. */ static unsigned int check_tgmath_function (c_expr *expr, unsigned int pos) { tree type = TREE_TYPE (expr->value); if (!FUNCTION_POINTER_TYPE_P (type)) { error_at (expr->get_location (), "argument %u of %<__builtin_tgmath%> is not a function pointer", pos); return 0; } type = TREE_TYPE (type); if (!prototype_p (type)) { error_at (expr->get_location (), "argument %u of %<__builtin_tgmath%> is unprototyped", pos); return 0; } if (stdarg_p (type)) { error_at (expr->get_location (), "argument %u of %<__builtin_tgmath%> has variable arguments", pos); return 0; } unsigned int nargs = 0; function_args_iterator iter; tree t; FOREACH_FUNCTION_ARGS (type, t, iter) { if (t == void_type_node) break; nargs++; } if (nargs == 0) { error_at (expr->get_location (), "argument %u of %<__builtin_tgmath%> has no arguments", pos); return 0; } return nargs; } /* Ways in which a parameter or return value of a type-generic macro may vary between the different functions the macro may call. */ enum tgmath_parm_kind { tgmath_fixed, tgmath_real, tgmath_complex }; /* Parse a postfix expression (C90 6.3.1-6.3.2, C99 6.5.1-6.5.2, C11 6.5.1-6.5.2). Compound literals aren't handled here; callers have to call c_parser_postfix_expression_after_paren_type on encountering them. postfix-expression: primary-expression postfix-expression [ expression ] postfix-expression ( argument-expression-list[opt] ) postfix-expression . identifier postfix-expression -> identifier postfix-expression ++ postfix-expression -- ( type-name ) { initializer-list } ( type-name ) { initializer-list , } argument-expression-list: argument-expression argument-expression-list , argument-expression primary-expression: identifier constant string-literal ( expression ) generic-selection GNU extensions: primary-expression: __func__ (treated as a keyword in GNU C) __FUNCTION__ __PRETTY_FUNCTION__ ( compound-statement ) __builtin_va_arg ( assignment-expression , type-name ) __builtin_offsetof ( type-name , offsetof-member-designator ) __builtin_choose_expr ( assignment-expression , assignment-expression , assignment-expression ) __builtin_types_compatible_p ( type-name , type-name ) __builtin_tgmath ( expr-list ) __builtin_complex ( assignment-expression , assignment-expression ) __builtin_shuffle ( assignment-expression , assignment-expression ) __builtin_shuffle ( assignment-expression , assignment-expression , assignment-expression, ) __builtin_convertvector ( assignment-expression , type-name ) offsetof-member-designator: identifier offsetof-member-designator . identifier offsetof-member-designator [ expression ] Objective-C: primary-expression: [ objc-receiver objc-message-args ] @selector ( objc-selector-arg ) @protocol ( identifier ) @encode ( type-name ) objc-string-literal Classname . identifier */ static struct c_expr c_parser_postfix_expression (c_parser *parser) { struct c_expr expr, e1; struct c_type_name *t1, *t2; location_t loc = c_parser_peek_token (parser)->location; source_range tok_range = c_parser_peek_token (parser)->get_range (); expr.original_code = ERROR_MARK; expr.original_type = NULL; switch (c_parser_peek_token (parser)->type) { case CPP_NUMBER: expr.value = c_parser_peek_token (parser)->value; set_c_expr_source_range (&expr, tok_range); loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); if (TREE_CODE (expr.value) == FIXED_CST && !targetm.fixed_point_supported_p ()) { error_at (loc, "fixed-point types not supported for this target"); expr.set_error (); } break; case CPP_CHAR: case CPP_CHAR16: case CPP_CHAR32: case CPP_WCHAR: expr.value = c_parser_peek_token (parser)->value; /* For the purpose of warning when a pointer is compared with a zero character constant. */ expr.original_type = char_type_node; set_c_expr_source_range (&expr, tok_range); c_parser_consume_token (parser); break; case CPP_STRING: case CPP_STRING16: case CPP_STRING32: case CPP_WSTRING: case CPP_UTF8STRING: expr.value = c_parser_peek_token (parser)->value; set_c_expr_source_range (&expr, tok_range); expr.original_code = STRING_CST; c_parser_consume_token (parser); break; case CPP_OBJC_STRING: gcc_assert (c_dialect_objc ()); expr.value = objc_build_string_object (c_parser_peek_token (parser)->value); set_c_expr_source_range (&expr, tok_range); c_parser_consume_token (parser); break; case CPP_NAME: switch (c_parser_peek_token (parser)->id_kind) { case C_ID_ID: { tree id = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); expr.value = build_external_ref (loc, id, (c_parser_peek_token (parser)->type == CPP_OPEN_PAREN), &expr.original_type); set_c_expr_source_range (&expr, tok_range); break; } case C_ID_CLASSNAME: { /* Here we parse the Objective-C 2.0 Class.name dot syntax. */ tree class_name = c_parser_peek_token (parser)->value; tree component; c_parser_consume_token (parser); gcc_assert (c_dialect_objc ()); if (!c_parser_require (parser, CPP_DOT, "expected %<.%>")) { expr.set_error (); break; } if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); expr.set_error (); break; } c_token *component_tok = c_parser_peek_token (parser); component = component_tok->value; location_t end_loc = component_tok->get_finish (); c_parser_consume_token (parser); expr.value = objc_build_class_component_ref (class_name, component); set_c_expr_source_range (&expr, loc, end_loc); break; } default: c_parser_error (parser, "expected expression"); expr.set_error (); break; } break; case CPP_OPEN_PAREN: /* A parenthesized expression, statement expression or compound literal. */ if (c_parser_peek_2nd_token (parser)->type == CPP_OPEN_BRACE) { /* A statement expression. */ tree stmt; location_t brace_loc; c_parser_consume_token (parser); brace_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); /* If we've not yet started the current function's statement list, or we're in the parameter scope of an old-style function declaration, statement expressions are not allowed. */ if (!building_stmt_list_p () || old_style_parameter_scope ()) { error_at (loc, "braced-group within expression allowed " "only inside a function"); parser->error = true; c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); expr.set_error (); break; } stmt = c_begin_stmt_expr (); c_parser_compound_statement_nostart (parser); location_t close_loc = c_parser_peek_token (parser)->location; c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); pedwarn (loc, OPT_Wpedantic, "ISO C forbids braced-groups within expressions"); expr.value = c_finish_stmt_expr (brace_loc, stmt); set_c_expr_source_range (&expr, loc, close_loc); mark_exp_read (expr.value); } else { /* A parenthesized expression. */ location_t loc_open_paren = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); expr = c_parser_expression (parser); if (TREE_CODE (expr.value) == MODIFY_EXPR) TREE_NO_WARNING (expr.value) = 1; if (expr.original_code != C_MAYBE_CONST_EXPR && expr.original_code != SIZEOF_EXPR) expr.original_code = ERROR_MARK; /* Don't change EXPR.ORIGINAL_TYPE. */ location_t loc_close_paren = c_parser_peek_token (parser)->location; set_c_expr_source_range (&expr, loc_open_paren, loc_close_paren); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>", loc_open_paren); } break; case CPP_KEYWORD: switch (c_parser_peek_token (parser)->keyword) { case RID_FUNCTION_NAME: pedwarn (loc, OPT_Wpedantic, "ISO C does not support " "%<__FUNCTION__%> predefined identifier"); expr.value = fname_decl (loc, c_parser_peek_token (parser)->keyword, c_parser_peek_token (parser)->value); set_c_expr_source_range (&expr, loc, loc); c_parser_consume_token (parser); break; case RID_PRETTY_FUNCTION_NAME: pedwarn (loc, OPT_Wpedantic, "ISO C does not support " "%<__PRETTY_FUNCTION__%> predefined identifier"); expr.value = fname_decl (loc, c_parser_peek_token (parser)->keyword, c_parser_peek_token (parser)->value); set_c_expr_source_range (&expr, loc, loc); c_parser_consume_token (parser); break; case RID_C99_FUNCTION_NAME: pedwarn_c90 (loc, OPT_Wpedantic, "ISO C90 does not support " "%<__func__%> predefined identifier"); expr.value = fname_decl (loc, c_parser_peek_token (parser)->keyword, c_parser_peek_token (parser)->value); set_c_expr_source_range (&expr, loc, loc); c_parser_consume_token (parser); break; case RID_VA_ARG: { location_t start_loc = loc; c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) { expr.set_error (); break; } e1 = c_parser_expr_no_commas (parser, NULL); mark_exp_read (e1.value); e1.value = c_fully_fold (e1.value, false, NULL); if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>")) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); expr.set_error (); break; } loc = c_parser_peek_token (parser)->location; t1 = c_parser_type_name (parser); location_t end_loc = c_parser_peek_token (parser)->get_finish (); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); if (t1 == NULL) { expr.set_error (); } else { tree type_expr = NULL_TREE; expr.value = c_build_va_arg (start_loc, e1.value, loc, groktypename (t1, &type_expr, NULL)); if (type_expr) { expr.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr.value), type_expr, expr.value); C_MAYBE_CONST_EXPR_NON_CONST (expr.value) = true; } set_c_expr_source_range (&expr, start_loc, end_loc); } } break; case RID_OFFSETOF: { c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) { expr.set_error (); break; } t1 = c_parser_type_name (parser); if (t1 == NULL) parser->error = true; if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>")) gcc_assert (parser->error); if (parser->error) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); expr.set_error (); break; } tree type = groktypename (t1, NULL, NULL); tree offsetof_ref; if (type == error_mark_node) offsetof_ref = error_mark_node; else { offsetof_ref = build1 (INDIRECT_REF, type, null_pointer_node); SET_EXPR_LOCATION (offsetof_ref, loc); } /* Parse the second argument to __builtin_offsetof. We must have one identifier, and beyond that we want to accept sub structure and sub array references. */ if (c_parser_next_token_is (parser, CPP_NAME)) { c_token *comp_tok = c_parser_peek_token (parser); offsetof_ref = build_component_ref (loc, offsetof_ref, comp_tok->value, comp_tok->location); c_parser_consume_token (parser); while (c_parser_next_token_is (parser, CPP_DOT) || c_parser_next_token_is (parser, CPP_OPEN_SQUARE) || c_parser_next_token_is (parser, CPP_DEREF)) { if (c_parser_next_token_is (parser, CPP_DEREF)) { loc = c_parser_peek_token (parser)->location; offsetof_ref = build_array_ref (loc, offsetof_ref, integer_zero_node); goto do_dot; } else if (c_parser_next_token_is (parser, CPP_DOT)) { do_dot: c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); break; } c_token *comp_tok = c_parser_peek_token (parser); offsetof_ref = build_component_ref (loc, offsetof_ref, comp_tok->value, comp_tok->location); c_parser_consume_token (parser); } else { struct c_expr ce; tree idx; loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); ce = c_parser_expression (parser); ce = convert_lvalue_to_rvalue (loc, ce, false, false); idx = ce.value; idx = c_fully_fold (idx, false, NULL); c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); offsetof_ref = build_array_ref (loc, offsetof_ref, idx); } } } else c_parser_error (parser, "expected identifier"); location_t end_loc = c_parser_peek_token (parser)->get_finish (); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); expr.value = fold_offsetof (offsetof_ref); set_c_expr_source_range (&expr, loc, end_loc); } break; case RID_CHOOSE_EXPR: { vec *cexpr_list; c_expr_t *e1_p, *e2_p, *e3_p; tree c; location_t close_paren_loc; c_parser_consume_token (parser); if (!c_parser_get_builtin_args (parser, "__builtin_choose_expr", &cexpr_list, true, &close_paren_loc)) { expr.set_error (); break; } if (vec_safe_length (cexpr_list) != 3) { error_at (loc, "wrong number of arguments to " "%<__builtin_choose_expr%>"); expr.set_error (); break; } e1_p = &(*cexpr_list)[0]; e2_p = &(*cexpr_list)[1]; e3_p = &(*cexpr_list)[2]; c = e1_p->value; mark_exp_read (e2_p->value); mark_exp_read (e3_p->value); if (TREE_CODE (c) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (c))) error_at (loc, "first argument to %<__builtin_choose_expr%> not" " a constant"); constant_expression_warning (c); expr = integer_zerop (c) ? *e3_p : *e2_p; set_c_expr_source_range (&expr, loc, close_paren_loc); break; } case RID_TYPES_COMPATIBLE_P: { c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) { expr.set_error (); break; } t1 = c_parser_type_name (parser); if (t1 == NULL) { expr.set_error (); break; } if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>")) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); expr.set_error (); break; } t2 = c_parser_type_name (parser); if (t2 == NULL) { expr.set_error (); break; } location_t close_paren_loc = c_parser_peek_token (parser)->location; parens.skip_until_found_close (parser); tree e1, e2; e1 = groktypename (t1, NULL, NULL); e2 = groktypename (t2, NULL, NULL); if (e1 == error_mark_node || e2 == error_mark_node) { expr.set_error (); break; } e1 = TYPE_MAIN_VARIANT (e1); e2 = TYPE_MAIN_VARIANT (e2); expr.value = comptypes (e1, e2) ? integer_one_node : integer_zero_node; set_c_expr_source_range (&expr, loc, close_paren_loc); } break; case RID_BUILTIN_TGMATH: { vec *cexpr_list; location_t close_paren_loc; c_parser_consume_token (parser); if (!c_parser_get_builtin_args (parser, "__builtin_tgmath", &cexpr_list, false, &close_paren_loc)) { expr.set_error (); break; } if (vec_safe_length (cexpr_list) < 3) { error_at (loc, "too few arguments to %<__builtin_tgmath%>"); expr.set_error (); break; } unsigned int i; c_expr_t *p; FOR_EACH_VEC_ELT (*cexpr_list, i, p) *p = convert_lvalue_to_rvalue (loc, *p, true, true); unsigned int nargs = check_tgmath_function (&(*cexpr_list)[0], 1); if (nargs == 0) { expr.set_error (); break; } if (vec_safe_length (cexpr_list) < nargs) { error_at (loc, "too few arguments to %<__builtin_tgmath%>"); expr.set_error (); break; } unsigned int num_functions = vec_safe_length (cexpr_list) - nargs; if (num_functions < 2) { error_at (loc, "too few arguments to %<__builtin_tgmath%>"); expr.set_error (); break; } /* The first NUM_FUNCTIONS expressions are the function pointers. The remaining NARGS expressions are the arguments that are to be passed to one of those functions, chosen following rules. */ for (unsigned int j = 1; j < num_functions; j++) { unsigned int this_nargs = check_tgmath_function (&(*cexpr_list)[j], j + 1); if (this_nargs == 0) { expr.set_error (); goto out; } if (this_nargs != nargs) { error_at ((*cexpr_list)[j].get_location (), "argument %u of %<__builtin_tgmath%> has " "wrong number of arguments", j + 1); expr.set_error (); goto out; } } /* The functions all have the same number of arguments. Determine whether arguments and return types vary in ways permitted for functions. */ /* The first entry in each of these vectors is for the return type, subsequent entries for parameter types. */ auto_vec parm_kind (nargs + 1); auto_vec parm_first (nargs + 1); auto_vec parm_complex (nargs + 1); auto_vec parm_varies (nargs + 1); tree first_type = TREE_TYPE (TREE_TYPE ((*cexpr_list)[0].value)); tree first_ret = TYPE_MAIN_VARIANT (TREE_TYPE (first_type)); parm_first.quick_push (first_ret); parm_complex.quick_push (TREE_CODE (first_ret) == COMPLEX_TYPE); parm_varies.quick_push (false); function_args_iterator iter; tree t; unsigned int argpos; FOREACH_FUNCTION_ARGS (first_type, t, iter) { if (t == void_type_node) break; parm_first.quick_push (TYPE_MAIN_VARIANT (t)); parm_complex.quick_push (TREE_CODE (t) == COMPLEX_TYPE); parm_varies.quick_push (false); } for (unsigned int j = 1; j < num_functions; j++) { tree type = TREE_TYPE (TREE_TYPE ((*cexpr_list)[j].value)); tree ret = TYPE_MAIN_VARIANT (TREE_TYPE (type)); if (ret != parm_first[0]) { parm_varies[0] = true; if (!SCALAR_FLOAT_TYPE_P (parm_first[0]) && !COMPLEX_FLOAT_TYPE_P (parm_first[0])) { error_at ((*cexpr_list)[0].get_location (), "invalid type-generic return type for " "argument %u of %<__builtin_tgmath%>", 1); expr.set_error (); goto out; } if (!SCALAR_FLOAT_TYPE_P (ret) && !COMPLEX_FLOAT_TYPE_P (ret)) { error_at ((*cexpr_list)[j].get_location (), "invalid type-generic return type for " "argument %u of %<__builtin_tgmath%>", j + 1); expr.set_error (); goto out; } } if (TREE_CODE (ret) == COMPLEX_TYPE) parm_complex[0] = true; argpos = 1; FOREACH_FUNCTION_ARGS (type, t, iter) { if (t == void_type_node) break; t = TYPE_MAIN_VARIANT (t); if (t != parm_first[argpos]) { parm_varies[argpos] = true; if (!SCALAR_FLOAT_TYPE_P (parm_first[argpos]) && !COMPLEX_FLOAT_TYPE_P (parm_first[argpos])) { error_at ((*cexpr_list)[0].get_location (), "invalid type-generic type for " "argument %u of argument %u of " "%<__builtin_tgmath%>", argpos, 1); expr.set_error (); goto out; } if (!SCALAR_FLOAT_TYPE_P (t) && !COMPLEX_FLOAT_TYPE_P (t)) { error_at ((*cexpr_list)[j].get_location (), "invalid type-generic type for " "argument %u of argument %u of " "%<__builtin_tgmath%>", argpos, j + 1); expr.set_error (); goto out; } } if (TREE_CODE (t) == COMPLEX_TYPE) parm_complex[argpos] = true; argpos++; } } enum tgmath_parm_kind max_variation = tgmath_fixed; for (unsigned int j = 0; j <= nargs; j++) { enum tgmath_parm_kind this_kind; if (parm_varies[j]) { if (parm_complex[j]) max_variation = this_kind = tgmath_complex; else { this_kind = tgmath_real; if (max_variation != tgmath_complex) max_variation = tgmath_real; } } else this_kind = tgmath_fixed; parm_kind.quick_push (this_kind); } if (max_variation == tgmath_fixed) { error_at (loc, "function arguments of %<__builtin_tgmath%> " "all have the same type"); expr.set_error (); break; } /* Identify a parameter (not the return type) that varies, including with complex types if any variation includes complex types; there must be at least one such parameter. */ unsigned int tgarg = 0; for (unsigned int j = 1; j <= nargs; j++) if (parm_kind[j] == max_variation) { tgarg = j; break; } if (tgarg == 0) { error_at (loc, "function arguments of %<__builtin_tgmath%> " "lack type-generic parameter"); expr.set_error (); break; } /* Determine the type of the relevant parameter for each function. */ auto_vec tg_type (num_functions); for (unsigned int j = 0; j < num_functions; j++) { tree type = TREE_TYPE (TREE_TYPE ((*cexpr_list)[j].value)); argpos = 1; FOREACH_FUNCTION_ARGS (type, t, iter) { if (argpos == tgarg) { tg_type.quick_push (TYPE_MAIN_VARIANT (t)); break; } argpos++; } } /* Verify that the corresponding types are different for all the listed functions. Also determine whether all the types are complex, whether all the types are standard or binary, and whether all the types are decimal. */ bool all_complex = true; bool all_binary = true; bool all_decimal = true; hash_set tg_types; FOR_EACH_VEC_ELT (tg_type, i, t) { if (TREE_CODE (t) == COMPLEX_TYPE) all_decimal = false; else { all_complex = false; if (DECIMAL_FLOAT_TYPE_P (t)) all_binary = false; else all_decimal = false; } if (tg_types.add (t)) { error_at ((*cexpr_list)[i].get_location (), "duplicate type-generic parameter type for " "function argument %u of %<__builtin_tgmath%>", i + 1); expr.set_error (); goto out; } } /* Verify that other parameters and the return type whose types vary have their types varying in the correct way. */ for (unsigned int j = 0; j < num_functions; j++) { tree exp_type = tg_type[j]; tree exp_real_type = exp_type; if (TREE_CODE (exp_type) == COMPLEX_TYPE) exp_real_type = TREE_TYPE (exp_type); tree type = TREE_TYPE (TREE_TYPE ((*cexpr_list)[j].value)); tree ret = TYPE_MAIN_VARIANT (TREE_TYPE (type)); if ((parm_kind[0] == tgmath_complex && ret != exp_type) || (parm_kind[0] == tgmath_real && ret != exp_real_type)) { error_at ((*cexpr_list)[j].get_location (), "bad return type for function argument %u " "of %<__builtin_tgmath%>", j + 1); expr.set_error (); goto out; } argpos = 1; FOREACH_FUNCTION_ARGS (type, t, iter) { if (t == void_type_node) break; t = TYPE_MAIN_VARIANT (t); if ((parm_kind[argpos] == tgmath_complex && t != exp_type) || (parm_kind[argpos] == tgmath_real && t != exp_real_type)) { error_at ((*cexpr_list)[j].get_location (), "bad type for argument %u of " "function argument %u of " "%<__builtin_tgmath%>", argpos, j + 1); expr.set_error (); goto out; } argpos++; } } /* The functions listed are a valid set of functions for a macro to select between. Identify the matching function, if any. First, the argument types must be combined following rules. Integer types are treated as _Decimal64 if any type-generic argument is decimal, or if the only alternatives for type-generic arguments are of decimal types, and are otherwise treated as double (or _Complex double for complex integer types, or _Float64 or _Complex _Float64 if all the return types are the same _FloatN or _FloatNx type). After that adjustment, types are combined following the usual arithmetic conversions. If the function only accepts complex arguments, a complex type is produced. */ bool arg_complex = all_complex; bool arg_binary = all_binary; bool arg_int_decimal = all_decimal; for (unsigned int j = 1; j <= nargs; j++) { if (parm_kind[j] == tgmath_fixed) continue; c_expr_t *ce = &(*cexpr_list)[num_functions + j - 1]; tree type = TREE_TYPE (ce->value); if (!INTEGRAL_TYPE_P (type) && !SCALAR_FLOAT_TYPE_P (type) && TREE_CODE (type) != COMPLEX_TYPE) { error_at (ce->get_location (), "invalid type of argument %u of type-generic " "function", j); expr.set_error (); goto out; } if (DECIMAL_FLOAT_TYPE_P (type)) { arg_int_decimal = true; if (all_complex) { error_at (ce->get_location (), "decimal floating-point argument %u to " "complex-only type-generic function", j); expr.set_error (); goto out; } else if (all_binary) { error_at (ce->get_location (), "decimal floating-point argument %u to " "binary-only type-generic function", j); expr.set_error (); goto out; } else if (arg_complex) { error_at (ce->get_location (), "both complex and decimal floating-point " "arguments to type-generic function"); expr.set_error (); goto out; } else if (arg_binary) { error_at (ce->get_location (), "both binary and decimal floating-point " "arguments to type-generic function"); expr.set_error (); goto out; } } else if (TREE_CODE (type) == COMPLEX_TYPE) { arg_complex = true; if (COMPLEX_FLOAT_TYPE_P (type)) arg_binary = true; if (all_decimal) { error_at (ce->get_location (), "complex argument %u to " "decimal-only type-generic function", j); expr.set_error (); goto out; } else if (arg_int_decimal) { error_at (ce->get_location (), "both complex and decimal floating-point " "arguments to type-generic function"); expr.set_error (); goto out; } } else if (SCALAR_FLOAT_TYPE_P (type)) { arg_binary = true; if (all_decimal) { error_at (ce->get_location (), "binary argument %u to " "decimal-only type-generic function", j); expr.set_error (); goto out; } else if (arg_int_decimal) { error_at (ce->get_location (), "both binary and decimal floating-point " "arguments to type-generic function"); expr.set_error (); goto out; } } } /* For a macro rounding its result to a narrower type, map integer types to _Float64 not double if the return type is a _FloatN or _FloatNx type. */ bool arg_int_float64 = false; if (parm_kind[0] == tgmath_fixed && SCALAR_FLOAT_TYPE_P (parm_first[0]) && float64_type_node != NULL_TREE) for (unsigned int j = 0; j < NUM_FLOATN_NX_TYPES; j++) if (parm_first[0] == FLOATN_TYPE_NODE (j)) { arg_int_float64 = true; break; } tree arg_real = NULL_TREE; for (unsigned int j = 1; j <= nargs; j++) { if (parm_kind[j] == tgmath_fixed) continue; c_expr_t *ce = &(*cexpr_list)[num_functions + j - 1]; tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ce->value)); if (TREE_CODE (type) == COMPLEX_TYPE) type = TREE_TYPE (type); if (INTEGRAL_TYPE_P (type)) type = (arg_int_decimal ? dfloat64_type_node : arg_int_float64 ? float64_type_node : double_type_node); if (arg_real == NULL_TREE) arg_real = type; else arg_real = common_type (arg_real, type); if (arg_real == error_mark_node) { expr.set_error (); goto out; } } tree arg_type = (arg_complex ? build_complex_type (arg_real) : arg_real); /* Look for a function to call with type-generic parameter type ARG_TYPE. */ c_expr_t *fn = NULL; for (unsigned int j = 0; j < num_functions; j++) { if (tg_type[j] == arg_type) { fn = &(*cexpr_list)[j]; break; } } if (fn == NULL && parm_kind[0] == tgmath_fixed && SCALAR_FLOAT_TYPE_P (parm_first[0])) { /* Presume this is a macro that rounds its result to a narrower type, and look for the first function with at least the range and precision of the argument type. */ for (unsigned int j = 0; j < num_functions; j++) { if (arg_complex != (TREE_CODE (tg_type[j]) == COMPLEX_TYPE)) continue; tree real_tg_type = (arg_complex ? TREE_TYPE (tg_type[j]) : tg_type[j]); if (DECIMAL_FLOAT_TYPE_P (arg_real) != DECIMAL_FLOAT_TYPE_P (real_tg_type)) continue; scalar_float_mode arg_mode = SCALAR_FLOAT_TYPE_MODE (arg_real); scalar_float_mode tg_mode = SCALAR_FLOAT_TYPE_MODE (real_tg_type); const real_format *arg_fmt = REAL_MODE_FORMAT (arg_mode); const real_format *tg_fmt = REAL_MODE_FORMAT (tg_mode); if (arg_fmt->b == tg_fmt->b && arg_fmt->p <= tg_fmt->p && arg_fmt->emax <= tg_fmt->emax && (arg_fmt->emin - arg_fmt->p >= tg_fmt->emin - tg_fmt->p)) { fn = &(*cexpr_list)[j]; break; } } } if (fn == NULL) { error_at (loc, "no matching function for type-generic call"); expr.set_error (); break; } /* Construct a call to FN. */ vec *args; vec_alloc (args, nargs); vec *origtypes; vec_alloc (origtypes, nargs); auto_vec arg_loc (nargs); for (unsigned int j = 0; j < nargs; j++) { c_expr_t *ce = &(*cexpr_list)[num_functions + j]; args->quick_push (ce->value); arg_loc.quick_push (ce->get_location ()); origtypes->quick_push (ce->original_type); } expr.value = c_build_function_call_vec (loc, arg_loc, fn->value, args, origtypes); set_c_expr_source_range (&expr, loc, close_paren_loc); break; } case RID_BUILTIN_CALL_WITH_STATIC_CHAIN: { vec *cexpr_list; c_expr_t *e2_p; tree chain_value; location_t close_paren_loc; c_parser_consume_token (parser); if (!c_parser_get_builtin_args (parser, "__builtin_call_with_static_chain", &cexpr_list, false, &close_paren_loc)) { expr.set_error (); break; } if (vec_safe_length (cexpr_list) != 2) { error_at (loc, "wrong number of arguments to " "%<__builtin_call_with_static_chain%>"); expr.set_error (); break; } expr = (*cexpr_list)[0]; e2_p = &(*cexpr_list)[1]; *e2_p = convert_lvalue_to_rvalue (loc, *e2_p, true, true); chain_value = e2_p->value; mark_exp_read (chain_value); if (TREE_CODE (expr.value) != CALL_EXPR) error_at (loc, "first argument to " "%<__builtin_call_with_static_chain%> " "must be a call expression"); else if (TREE_CODE (TREE_TYPE (chain_value)) != POINTER_TYPE) error_at (loc, "second argument to " "%<__builtin_call_with_static_chain%> " "must be a pointer type"); else CALL_EXPR_STATIC_CHAIN (expr.value) = chain_value; set_c_expr_source_range (&expr, loc, close_paren_loc); break; } case RID_BUILTIN_COMPLEX: { vec *cexpr_list; c_expr_t *e1_p, *e2_p; location_t close_paren_loc; c_parser_consume_token (parser); if (!c_parser_get_builtin_args (parser, "__builtin_complex", &cexpr_list, false, &close_paren_loc)) { expr.set_error (); break; } if (vec_safe_length (cexpr_list) != 2) { error_at (loc, "wrong number of arguments to " "%<__builtin_complex%>"); expr.set_error (); break; } e1_p = &(*cexpr_list)[0]; e2_p = &(*cexpr_list)[1]; *e1_p = convert_lvalue_to_rvalue (loc, *e1_p, true, true); if (TREE_CODE (e1_p->value) == EXCESS_PRECISION_EXPR) e1_p->value = convert (TREE_TYPE (e1_p->value), TREE_OPERAND (e1_p->value, 0)); *e2_p = convert_lvalue_to_rvalue (loc, *e2_p, true, true); if (TREE_CODE (e2_p->value) == EXCESS_PRECISION_EXPR) e2_p->value = convert (TREE_TYPE (e2_p->value), TREE_OPERAND (e2_p->value, 0)); if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (e1_p->value)) || DECIMAL_FLOAT_TYPE_P (TREE_TYPE (e1_p->value)) || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (e2_p->value)) || DECIMAL_FLOAT_TYPE_P (TREE_TYPE (e2_p->value))) { error_at (loc, "%<__builtin_complex%> operand " "not of real binary floating-point type"); expr.set_error (); break; } if (TYPE_MAIN_VARIANT (TREE_TYPE (e1_p->value)) != TYPE_MAIN_VARIANT (TREE_TYPE (e2_p->value))) { error_at (loc, "%<__builtin_complex%> operands of different types"); expr.set_error (); break; } pedwarn_c90 (loc, OPT_Wpedantic, "ISO C90 does not support complex types"); expr.value = build2_loc (loc, COMPLEX_EXPR, build_complex_type (TYPE_MAIN_VARIANT (TREE_TYPE (e1_p->value))), e1_p->value, e2_p->value); set_c_expr_source_range (&expr, loc, close_paren_loc); break; } case RID_BUILTIN_SHUFFLE: { vec *cexpr_list; unsigned int i; c_expr_t *p; location_t close_paren_loc; c_parser_consume_token (parser); if (!c_parser_get_builtin_args (parser, "__builtin_shuffle", &cexpr_list, false, &close_paren_loc)) { expr.set_error (); break; } FOR_EACH_VEC_SAFE_ELT (cexpr_list, i, p) *p = convert_lvalue_to_rvalue (loc, *p, true, true); if (vec_safe_length (cexpr_list) == 2) expr.value = c_build_vec_perm_expr (loc, (*cexpr_list)[0].value, NULL_TREE, (*cexpr_list)[1].value); else if (vec_safe_length (cexpr_list) == 3) expr.value = c_build_vec_perm_expr (loc, (*cexpr_list)[0].value, (*cexpr_list)[1].value, (*cexpr_list)[2].value); else { error_at (loc, "wrong number of arguments to " "%<__builtin_shuffle%>"); expr.set_error (); } set_c_expr_source_range (&expr, loc, close_paren_loc); break; } case RID_BUILTIN_CONVERTVECTOR: { location_t start_loc = loc; c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) { expr.set_error (); break; } e1 = c_parser_expr_no_commas (parser, NULL); mark_exp_read (e1.value); if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>")) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); expr.set_error (); break; } loc = c_parser_peek_token (parser)->location; t1 = c_parser_type_name (parser); location_t end_loc = c_parser_peek_token (parser)->get_finish (); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); if (t1 == NULL) expr.set_error (); else { tree type_expr = NULL_TREE; expr.value = c_build_vec_convert (start_loc, e1.value, loc, groktypename (t1, &type_expr, NULL)); set_c_expr_source_range (&expr, start_loc, end_loc); } } break; case RID_AT_SELECTOR: { gcc_assert (c_dialect_objc ()); c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) { expr.set_error (); break; } tree sel = c_parser_objc_selector_arg (parser); location_t close_loc = c_parser_peek_token (parser)->location; parens.skip_until_found_close (parser); expr.value = objc_build_selector_expr (loc, sel); set_c_expr_source_range (&expr, loc, close_loc); } break; case RID_AT_PROTOCOL: { gcc_assert (c_dialect_objc ()); c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) { expr.set_error (); break; } if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); expr.set_error (); break; } tree id = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); location_t close_loc = c_parser_peek_token (parser)->location; parens.skip_until_found_close (parser); expr.value = objc_build_protocol_expr (id); set_c_expr_source_range (&expr, loc, close_loc); } break; case RID_AT_ENCODE: { /* Extension to support C-structures in the archiver. */ gcc_assert (c_dialect_objc ()); c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) { expr.set_error (); break; } t1 = c_parser_type_name (parser); if (t1 == NULL) { expr.set_error (); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); break; } location_t close_loc = c_parser_peek_token (parser)->location; parens.skip_until_found_close (parser); tree type = groktypename (t1, NULL, NULL); expr.value = objc_build_encode_expr (type); set_c_expr_source_range (&expr, loc, close_loc); } break; case RID_GENERIC: expr = c_parser_generic_selection (parser); break; default: c_parser_error (parser, "expected expression"); expr.set_error (); break; } break; case CPP_OPEN_SQUARE: if (c_dialect_objc ()) { tree receiver, args; c_parser_consume_token (parser); receiver = c_parser_objc_receiver (parser); args = c_parser_objc_message_args (parser); location_t close_loc = c_parser_peek_token (parser)->location; c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); expr.value = objc_build_message_expr (receiver, args); set_c_expr_source_range (&expr, loc, close_loc); break; } /* Else fall through to report error. */ /* FALLTHRU */ default: c_parser_error (parser, "expected expression"); expr.set_error (); break; } out: return c_parser_postfix_expression_after_primary (parser, EXPR_LOC_OR_LOC (expr.value, loc), expr); } /* Parse a postfix expression after a parenthesized type name: the brace-enclosed initializer of a compound literal, possibly followed by some postfix operators. This is separate because it is not possible to tell until after the type name whether a cast expression has a cast or a compound literal, or whether the operand of sizeof is a parenthesized type name or starts with a compound literal. TYPE_LOC is the location where TYPE_NAME starts--the location of the first token after the parentheses around the type name. */ static struct c_expr c_parser_postfix_expression_after_paren_type (c_parser *parser, struct c_type_name *type_name, location_t type_loc) { tree type; struct c_expr init; bool non_const; struct c_expr expr; location_t start_loc; tree type_expr = NULL_TREE; bool type_expr_const = true; check_compound_literal_type (type_loc, type_name); rich_location richloc (line_table, type_loc); start_init (NULL_TREE, NULL, 0, &richloc); type = groktypename (type_name, &type_expr, &type_expr_const); start_loc = c_parser_peek_token (parser)->location; if (type != error_mark_node && C_TYPE_VARIABLE_SIZE (type)) { error_at (type_loc, "compound literal has variable size"); type = error_mark_node; } init = c_parser_braced_init (parser, type, false, NULL); finish_init (); maybe_warn_string_init (type_loc, type, init); if (type != error_mark_node && !ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)) && current_function_decl) { error ("compound literal qualified by address-space qualifier"); type = error_mark_node; } pedwarn_c90 (start_loc, OPT_Wpedantic, "ISO C90 forbids compound literals"); non_const = ((init.value && TREE_CODE (init.value) == CONSTRUCTOR) ? CONSTRUCTOR_NON_CONST (init.value) : init.original_code == C_MAYBE_CONST_EXPR); non_const |= !type_expr_const; unsigned int alignas_align = 0; if (type != error_mark_node && type_name->specs->align_log != -1) { alignas_align = 1U << type_name->specs->align_log; if (alignas_align < min_align_of_type (type)) { error_at (type_name->specs->locations[cdw_alignas], "%<_Alignas%> specifiers cannot reduce " "alignment of compound literal"); alignas_align = 0; } } expr.value = build_compound_literal (start_loc, type, init.value, non_const, alignas_align); set_c_expr_source_range (&expr, init.src_range); expr.original_code = ERROR_MARK; expr.original_type = NULL; if (type != error_mark_node && expr.value != error_mark_node && type_expr) { if (TREE_CODE (expr.value) == C_MAYBE_CONST_EXPR) { gcc_assert (C_MAYBE_CONST_EXPR_PRE (expr.value) == NULL_TREE); C_MAYBE_CONST_EXPR_PRE (expr.value) = type_expr; } else { gcc_assert (!non_const); expr.value = build2 (C_MAYBE_CONST_EXPR, type, type_expr, expr.value); } } return c_parser_postfix_expression_after_primary (parser, start_loc, expr); } /* Callback function for sizeof_pointer_memaccess_warning to compare types. */ static bool sizeof_ptr_memacc_comptypes (tree type1, tree type2) { return comptypes (type1, type2) == 1; } /* Warn for patterns where abs-like function appears to be used incorrectly, gracefully ignore any non-abs-like function. The warning location should be LOC. FNDECL is the declaration of called function, it must be a BUILT_IN_NORMAL function. ARG is the first and only argument of the call. */ static void warn_for_abs (location_t loc, tree fndecl, tree arg) { /* Avoid warning in unreachable subexpressions. */ if (c_inhibit_evaluation_warnings) return; tree atype = TREE_TYPE (arg); /* Casts from pointers (and thus arrays and fndecls) will generate -Wint-conversion warnings. Most other wrong types hopefully lead to type mismatch errors. TODO: Think about what to do with FIXED_POINT_TYPE_P types and possibly other exotic types. */ if (!INTEGRAL_TYPE_P (atype) && !SCALAR_FLOAT_TYPE_P (atype) && TREE_CODE (atype) != COMPLEX_TYPE) return; enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); switch (fcode) { case BUILT_IN_ABS: case BUILT_IN_LABS: case BUILT_IN_LLABS: case BUILT_IN_IMAXABS: if (!INTEGRAL_TYPE_P (atype)) { if (SCALAR_FLOAT_TYPE_P (atype)) warning_at (loc, OPT_Wabsolute_value, "using integer absolute value function %qD when " "argument is of floating point type %qT", fndecl, atype); else if (TREE_CODE (atype) == COMPLEX_TYPE) warning_at (loc, OPT_Wabsolute_value, "using integer absolute value function %qD when " "argument is of complex type %qT", fndecl, atype); else gcc_unreachable (); return; } if (TYPE_UNSIGNED (atype)) warning_at (loc, OPT_Wabsolute_value, "taking the absolute value of unsigned type %qT " "has no effect", atype); break; CASE_FLT_FN (BUILT_IN_FABS): CASE_FLT_FN_FLOATN_NX (BUILT_IN_FABS): if (!SCALAR_FLOAT_TYPE_P (atype) || DECIMAL_FLOAT_MODE_P (TYPE_MODE (atype))) { if (INTEGRAL_TYPE_P (atype)) warning_at (loc, OPT_Wabsolute_value, "using floating point absolute value function %qD " "when argument is of integer type %qT", fndecl, atype); else if (DECIMAL_FLOAT_TYPE_P (atype)) warning_at (loc, OPT_Wabsolute_value, "using floating point absolute value function %qD " "when argument is of decimal floating point type %qT", fndecl, atype); else if (TREE_CODE (atype) == COMPLEX_TYPE) warning_at (loc, OPT_Wabsolute_value, "using floating point absolute value function %qD when " "argument is of complex type %qT", fndecl, atype); else gcc_unreachable (); return; } break; CASE_FLT_FN (BUILT_IN_CABS): if (TREE_CODE (atype) != COMPLEX_TYPE) { if (INTEGRAL_TYPE_P (atype)) warning_at (loc, OPT_Wabsolute_value, "using complex absolute value function %qD when " "argument is of integer type %qT", fndecl, atype); else if (SCALAR_FLOAT_TYPE_P (atype)) warning_at (loc, OPT_Wabsolute_value, "using complex absolute value function %qD when " "argument is of floating point type %qT", fndecl, atype); else gcc_unreachable (); return; } break; case BUILT_IN_FABSD32: case BUILT_IN_FABSD64: case BUILT_IN_FABSD128: if (!DECIMAL_FLOAT_TYPE_P (atype)) { if (INTEGRAL_TYPE_P (atype)) warning_at (loc, OPT_Wabsolute_value, "using decimal floating point absolute value " "function %qD when argument is of integer type %qT", fndecl, atype); else if (SCALAR_FLOAT_TYPE_P (atype)) warning_at (loc, OPT_Wabsolute_value, "using decimal floating point absolute value " "function %qD when argument is of floating point " "type %qT", fndecl, atype); else if (TREE_CODE (atype) == COMPLEX_TYPE) warning_at (loc, OPT_Wabsolute_value, "using decimal floating point absolute value " "function %qD when argument is of complex type %qT", fndecl, atype); else gcc_unreachable (); return; } break; default: return; } if (!TYPE_ARG_TYPES (TREE_TYPE (fndecl))) return; tree ftype = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); if (TREE_CODE (atype) == COMPLEX_TYPE) { gcc_assert (TREE_CODE (ftype) == COMPLEX_TYPE); atype = TREE_TYPE (atype); ftype = TREE_TYPE (ftype); } if (TYPE_PRECISION (ftype) < TYPE_PRECISION (atype)) warning_at (loc, OPT_Wabsolute_value, "absolute value function %qD given an argument of type %qT " "but has parameter of type %qT which may cause truncation " "of value", fndecl, atype, ftype); } /* Parse a postfix expression after the initial primary or compound literal; that is, parse a series of postfix operators. EXPR_LOC is the location of the primary expression. */ static struct c_expr c_parser_postfix_expression_after_primary (c_parser *parser, location_t expr_loc, struct c_expr expr) { struct c_expr orig_expr; tree ident, idx; location_t sizeof_arg_loc[3], comp_loc; tree sizeof_arg[3]; unsigned int literal_zero_mask; unsigned int i; vec *exprlist; vec *origtypes = NULL; vec arg_loc = vNULL; location_t start; location_t finish; while (true) { location_t op_loc = c_parser_peek_token (parser)->location; switch (c_parser_peek_token (parser)->type) { case CPP_OPEN_SQUARE: /* Array reference. */ c_parser_consume_token (parser); idx = c_parser_expression (parser).value; c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); start = expr.get_start (); finish = parser->tokens_buf[0].location; expr.value = build_array_ref (op_loc, expr.value, idx); set_c_expr_source_range (&expr, start, finish); expr.original_code = ERROR_MARK; expr.original_type = NULL; break; case CPP_OPEN_PAREN: /* Function call. */ c_parser_consume_token (parser); for (i = 0; i < 3; i++) { sizeof_arg[i] = NULL_TREE; sizeof_arg_loc[i] = UNKNOWN_LOCATION; } literal_zero_mask = 0; if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) exprlist = NULL; else exprlist = c_parser_expr_list (parser, true, false, &origtypes, sizeof_arg_loc, sizeof_arg, &arg_loc, &literal_zero_mask); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); orig_expr = expr; mark_exp_read (expr.value); if (warn_sizeof_pointer_memaccess) sizeof_pointer_memaccess_warning (sizeof_arg_loc, expr.value, exprlist, sizeof_arg, sizeof_ptr_memacc_comptypes); if (TREE_CODE (expr.value) == FUNCTION_DECL) { if (fndecl_built_in_p (expr.value, BUILT_IN_MEMSET) && vec_safe_length (exprlist) == 3) { tree arg0 = (*exprlist)[0]; tree arg2 = (*exprlist)[2]; warn_for_memset (expr_loc, arg0, arg2, literal_zero_mask); } if (warn_absolute_value && fndecl_built_in_p (expr.value, BUILT_IN_NORMAL) && vec_safe_length (exprlist) == 1) warn_for_abs (expr_loc, expr.value, (*exprlist)[0]); } start = expr.get_start (); finish = parser->tokens_buf[0].get_finish (); expr.value = c_build_function_call_vec (expr_loc, arg_loc, expr.value, exprlist, origtypes); set_c_expr_source_range (&expr, start, finish); expr.original_code = ERROR_MARK; if (TREE_CODE (expr.value) == INTEGER_CST && TREE_CODE (orig_expr.value) == FUNCTION_DECL && fndecl_built_in_p (orig_expr.value, BUILT_IN_CONSTANT_P)) expr.original_code = C_MAYBE_CONST_EXPR; expr.original_type = NULL; if (exprlist) { release_tree_vector (exprlist); release_tree_vector (origtypes); } arg_loc.release (); break; case CPP_DOT: /* Structure element reference. */ c_parser_consume_token (parser); expr = default_function_array_conversion (expr_loc, expr); if (c_parser_next_token_is (parser, CPP_NAME)) { c_token *comp_tok = c_parser_peek_token (parser); ident = comp_tok->value; comp_loc = comp_tok->location; } else { c_parser_error (parser, "expected identifier"); expr.set_error (); expr.original_code = ERROR_MARK; expr.original_type = NULL; return expr; } start = expr.get_start (); finish = c_parser_peek_token (parser)->get_finish (); c_parser_consume_token (parser); expr.value = build_component_ref (op_loc, expr.value, ident, comp_loc); set_c_expr_source_range (&expr, start, finish); expr.original_code = ERROR_MARK; if (TREE_CODE (expr.value) != COMPONENT_REF) expr.original_type = NULL; else { /* Remember the original type of a bitfield. */ tree field = TREE_OPERAND (expr.value, 1); if (TREE_CODE (field) != FIELD_DECL) expr.original_type = NULL; else expr.original_type = DECL_BIT_FIELD_TYPE (field); } break; case CPP_DEREF: /* Structure element reference. */ c_parser_consume_token (parser); expr = convert_lvalue_to_rvalue (expr_loc, expr, true, false); if (c_parser_next_token_is (parser, CPP_NAME)) { c_token *comp_tok = c_parser_peek_token (parser); ident = comp_tok->value; comp_loc = comp_tok->location; } else { c_parser_error (parser, "expected identifier"); expr.set_error (); expr.original_code = ERROR_MARK; expr.original_type = NULL; return expr; } start = expr.get_start (); finish = c_parser_peek_token (parser)->get_finish (); c_parser_consume_token (parser); expr.value = build_component_ref (op_loc, build_indirect_ref (op_loc, expr.value, RO_ARROW), ident, comp_loc); set_c_expr_source_range (&expr, start, finish); expr.original_code = ERROR_MARK; if (TREE_CODE (expr.value) != COMPONENT_REF) expr.original_type = NULL; else { /* Remember the original type of a bitfield. */ tree field = TREE_OPERAND (expr.value, 1); if (TREE_CODE (field) != FIELD_DECL) expr.original_type = NULL; else expr.original_type = DECL_BIT_FIELD_TYPE (field); } break; case CPP_PLUS_PLUS: /* Postincrement. */ start = expr.get_start (); finish = c_parser_peek_token (parser)->get_finish (); c_parser_consume_token (parser); expr = default_function_array_read_conversion (expr_loc, expr); expr.value = build_unary_op (op_loc, POSTINCREMENT_EXPR, expr.value, false); set_c_expr_source_range (&expr, start, finish); expr.original_code = ERROR_MARK; expr.original_type = NULL; break; case CPP_MINUS_MINUS: /* Postdecrement. */ start = expr.get_start (); finish = c_parser_peek_token (parser)->get_finish (); c_parser_consume_token (parser); expr = default_function_array_read_conversion (expr_loc, expr); expr.value = build_unary_op (op_loc, POSTDECREMENT_EXPR, expr.value, false); set_c_expr_source_range (&expr, start, finish); expr.original_code = ERROR_MARK; expr.original_type = NULL; break; default: return expr; } } } /* Parse an expression (C90 6.3.17, C99 6.5.17, C11 6.5.17). expression: assignment-expression expression , assignment-expression */ static struct c_expr c_parser_expression (c_parser *parser) { location_t tloc = c_parser_peek_token (parser)->location; struct c_expr expr; expr = c_parser_expr_no_commas (parser, NULL); if (c_parser_next_token_is (parser, CPP_COMMA)) expr = convert_lvalue_to_rvalue (tloc, expr, true, false); while (c_parser_next_token_is (parser, CPP_COMMA)) { struct c_expr next; tree lhsval; location_t loc = c_parser_peek_token (parser)->location; location_t expr_loc; c_parser_consume_token (parser); expr_loc = c_parser_peek_token (parser)->location; lhsval = expr.value; while (TREE_CODE (lhsval) == COMPOUND_EXPR) lhsval = TREE_OPERAND (lhsval, 1); if (DECL_P (lhsval) || handled_component_p (lhsval)) mark_exp_read (lhsval); next = c_parser_expr_no_commas (parser, NULL); next = convert_lvalue_to_rvalue (expr_loc, next, true, false); expr.value = build_compound_expr (loc, expr.value, next.value); expr.original_code = COMPOUND_EXPR; expr.original_type = next.original_type; } return expr; } /* Parse an expression and convert functions or arrays to pointers and lvalues to rvalues. */ static struct c_expr c_parser_expression_conv (c_parser *parser) { struct c_expr expr; location_t loc = c_parser_peek_token (parser)->location; expr = c_parser_expression (parser); expr = convert_lvalue_to_rvalue (loc, expr, true, false); return expr; } /* Helper function of c_parser_expr_list. Check if IDXth (0 based) argument is a literal zero alone and if so, set it in literal_zero_mask. */ static inline void c_parser_check_literal_zero (c_parser *parser, unsigned *literal_zero_mask, unsigned int idx) { if (idx >= HOST_BITS_PER_INT) return; c_token *tok = c_parser_peek_token (parser); switch (tok->type) { case CPP_NUMBER: case CPP_CHAR: case CPP_WCHAR: case CPP_CHAR16: case CPP_CHAR32: /* If a parameter is literal zero alone, remember it for -Wmemset-transposed-args warning. */ if (integer_zerop (tok->value) && !TREE_OVERFLOW (tok->value) && (c_parser_peek_2nd_token (parser)->type == CPP_COMMA || c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_PAREN)) *literal_zero_mask |= 1U << idx; default: break; } } /* Parse a non-empty list of expressions. If CONVERT_P, convert functions and arrays to pointers and lvalues to rvalues. If FOLD_P, fold the expressions. If LOCATIONS is non-NULL, save the locations of function arguments into this vector. nonempty-expr-list: assignment-expression nonempty-expr-list , assignment-expression */ static vec * c_parser_expr_list (c_parser *parser, bool convert_p, bool fold_p, vec **p_orig_types, location_t *sizeof_arg_loc, tree *sizeof_arg, vec *locations, unsigned int *literal_zero_mask) { vec *ret; vec *orig_types; struct c_expr expr; unsigned int idx = 0; ret = make_tree_vector (); if (p_orig_types == NULL) orig_types = NULL; else orig_types = make_tree_vector (); if (literal_zero_mask) c_parser_check_literal_zero (parser, literal_zero_mask, 0); expr = c_parser_expr_no_commas (parser, NULL); if (convert_p) expr = convert_lvalue_to_rvalue (expr.get_location (), expr, true, true); if (fold_p) expr.value = c_fully_fold (expr.value, false, NULL); ret->quick_push (expr.value); if (orig_types) orig_types->quick_push (expr.original_type); if (locations) locations->safe_push (expr.get_location ()); if (sizeof_arg != NULL && expr.original_code == SIZEOF_EXPR) { sizeof_arg[0] = c_last_sizeof_arg; sizeof_arg_loc[0] = c_last_sizeof_loc; } while (c_parser_next_token_is (parser, CPP_COMMA)) { c_parser_consume_token (parser); if (literal_zero_mask) c_parser_check_literal_zero (parser, literal_zero_mask, idx + 1); expr = c_parser_expr_no_commas (parser, NULL); if (convert_p) expr = convert_lvalue_to_rvalue (expr.get_location (), expr, true, true); if (fold_p) expr.value = c_fully_fold (expr.value, false, NULL); vec_safe_push (ret, expr.value); if (orig_types) vec_safe_push (orig_types, expr.original_type); if (locations) locations->safe_push (expr.get_location ()); if (++idx < 3 && sizeof_arg != NULL && expr.original_code == SIZEOF_EXPR) { sizeof_arg[idx] = c_last_sizeof_arg; sizeof_arg_loc[idx] = c_last_sizeof_loc; } } if (orig_types) *p_orig_types = orig_types; return ret; } /* Parse Objective-C-specific constructs. */ /* Parse an objc-class-definition. objc-class-definition: @interface identifier objc-superclass[opt] objc-protocol-refs[opt] objc-class-instance-variables[opt] objc-methodprotolist @end @implementation identifier objc-superclass[opt] objc-class-instance-variables[opt] @interface identifier ( identifier ) objc-protocol-refs[opt] objc-methodprotolist @end @interface identifier ( ) objc-protocol-refs[opt] objc-methodprotolist @end @implementation identifier ( identifier ) objc-superclass: : identifier "@interface identifier (" must start "@interface identifier ( identifier ) ...": objc-methodprotolist in the first production may not start with a parenthesized identifier as a declarator of a data definition with no declaration specifiers if the objc-superclass, objc-protocol-refs and objc-class-instance-variables are omitted. */ static void c_parser_objc_class_definition (c_parser *parser, tree attributes) { bool iface_p; tree id1; tree superclass; if (c_parser_next_token_is_keyword (parser, RID_AT_INTERFACE)) iface_p = true; else if (c_parser_next_token_is_keyword (parser, RID_AT_IMPLEMENTATION)) iface_p = false; else gcc_unreachable (); c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); return; } id1 = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { /* We have a category or class extension. */ tree id2; tree proto = NULL_TREE; matching_parens parens; parens.consume_open (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { if (iface_p && c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { /* We have a class extension. */ id2 = NULL_TREE; } else { c_parser_error (parser, "expected identifier or %<)%>"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); return; } } else { id2 = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); } parens.skip_until_found_close (parser); if (!iface_p) { objc_start_category_implementation (id1, id2); return; } if (c_parser_next_token_is (parser, CPP_LESS)) proto = c_parser_objc_protocol_refs (parser); objc_start_category_interface (id1, id2, proto, attributes); c_parser_objc_methodprotolist (parser); c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>"); objc_finish_interface (); return; } if (c_parser_next_token_is (parser, CPP_COLON)) { c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); return; } superclass = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); } else superclass = NULL_TREE; if (iface_p) { tree proto = NULL_TREE; if (c_parser_next_token_is (parser, CPP_LESS)) proto = c_parser_objc_protocol_refs (parser); objc_start_class_interface (id1, superclass, proto, attributes); } else objc_start_class_implementation (id1, superclass); if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) c_parser_objc_class_instance_variables (parser); if (iface_p) { objc_continue_interface (); c_parser_objc_methodprotolist (parser); c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>"); objc_finish_interface (); } else { objc_continue_implementation (); return; } } /* Parse objc-class-instance-variables. objc-class-instance-variables: { objc-instance-variable-decl-list[opt] } objc-instance-variable-decl-list: objc-visibility-spec objc-instance-variable-decl ; ; objc-instance-variable-decl-list objc-visibility-spec objc-instance-variable-decl-list objc-instance-variable-decl ; objc-instance-variable-decl-list ; objc-visibility-spec: @private @protected @public objc-instance-variable-decl: struct-declaration */ static void c_parser_objc_class_instance_variables (c_parser *parser) { gcc_assert (c_parser_next_token_is (parser, CPP_OPEN_BRACE)); c_parser_consume_token (parser); while (c_parser_next_token_is_not (parser, CPP_EOF)) { tree decls; /* Parse any stray semicolon. */ if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic, "extra semicolon"); c_parser_consume_token (parser); continue; } /* Stop if at the end of the instance variables. */ if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { c_parser_consume_token (parser); break; } /* Parse any objc-visibility-spec. */ if (c_parser_next_token_is_keyword (parser, RID_AT_PRIVATE)) { c_parser_consume_token (parser); objc_set_visibility (OBJC_IVAR_VIS_PRIVATE); continue; } else if (c_parser_next_token_is_keyword (parser, RID_AT_PROTECTED)) { c_parser_consume_token (parser); objc_set_visibility (OBJC_IVAR_VIS_PROTECTED); continue; } else if (c_parser_next_token_is_keyword (parser, RID_AT_PUBLIC)) { c_parser_consume_token (parser); objc_set_visibility (OBJC_IVAR_VIS_PUBLIC); continue; } else if (c_parser_next_token_is_keyword (parser, RID_AT_PACKAGE)) { c_parser_consume_token (parser); objc_set_visibility (OBJC_IVAR_VIS_PACKAGE); continue; } else if (c_parser_next_token_is (parser, CPP_PRAGMA)) { c_parser_pragma (parser, pragma_external, NULL); continue; } /* Parse some comma-separated declarations. */ decls = c_parser_struct_declaration (parser); if (decls == NULL) { /* There is a syntax error. We want to skip the offending tokens up to the next ';' (included) or '}' (excluded). */ /* First, skip manually a ')' or ']'. This is because they reduce the nesting level, so c_parser_skip_until_found() wouldn't be able to skip past them. */ c_token *token = c_parser_peek_token (parser); if (token->type == CPP_CLOSE_PAREN || token->type == CPP_CLOSE_SQUARE) c_parser_consume_token (parser); /* Then, do the standard skipping. */ c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL); /* We hopefully recovered. Start normal parsing again. */ parser->error = false; continue; } else { /* Comma-separated instance variables are chained together in reverse order; add them one by one. */ tree ivar = nreverse (decls); for (; ivar; ivar = DECL_CHAIN (ivar)) objc_add_instance_variable (copy_node (ivar)); } c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } } /* Parse an objc-class-declaration. objc-class-declaration: @class identifier-list ; */ static void c_parser_objc_class_declaration (c_parser *parser) { gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_CLASS)); c_parser_consume_token (parser); /* Any identifiers, including those declared as type names, are OK here. */ while (true) { tree id; if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL); parser->error = false; return; } id = c_parser_peek_token (parser)->value; objc_declare_class (id); c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } /* Parse an objc-alias-declaration. objc-alias-declaration: @compatibility_alias identifier identifier ; */ static void c_parser_objc_alias_declaration (c_parser *parser) { tree id1, id2; gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_ALIAS)); c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL); return; } id1 = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL); return; } id2 = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); objc_declare_alias (id1, id2); } /* Parse an objc-protocol-definition. objc-protocol-definition: @protocol identifier objc-protocol-refs[opt] objc-methodprotolist @end @protocol identifier-list ; "@protocol identifier ;" should be resolved as "@protocol identifier-list ;": objc-methodprotolist may not start with a semicolon in the first alternative if objc-protocol-refs are omitted. */ static void c_parser_objc_protocol_definition (c_parser *parser, tree attributes) { gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_PROTOCOL)); c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); return; } if (c_parser_peek_2nd_token (parser)->type == CPP_COMMA || c_parser_peek_2nd_token (parser)->type == CPP_SEMICOLON) { /* Any identifiers, including those declared as type names, are OK here. */ while (true) { tree id; if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); break; } id = c_parser_peek_token (parser)->value; objc_declare_protocol (id, attributes); c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } else { tree id = c_parser_peek_token (parser)->value; tree proto = NULL_TREE; c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_LESS)) proto = c_parser_objc_protocol_refs (parser); parser->objc_pq_context = true; objc_start_protocol (id, proto, attributes); c_parser_objc_methodprotolist (parser); c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>"); parser->objc_pq_context = false; objc_finish_interface (); } } /* Parse an objc-method-type. objc-method-type: + - Return true if it is a class method (+) and false if it is an instance method (-). */ static inline bool c_parser_objc_method_type (c_parser *parser) { switch (c_parser_peek_token (parser)->type) { case CPP_PLUS: c_parser_consume_token (parser); return true; case CPP_MINUS: c_parser_consume_token (parser); return false; default: gcc_unreachable (); } } /* Parse an objc-method-definition. objc-method-definition: objc-method-type objc-method-decl ;[opt] compound-statement */ static void c_parser_objc_method_definition (c_parser *parser) { bool is_class_method = c_parser_objc_method_type (parser); tree decl, attributes = NULL_TREE, expr = NULL_TREE; parser->objc_pq_context = true; decl = c_parser_objc_method_decl (parser, is_class_method, &attributes, &expr); if (decl == error_mark_node) return; /* Bail here. */ if (c_parser_next_token_is (parser, CPP_SEMICOLON)) { c_parser_consume_token (parser); pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic, "extra semicolon in method definition specified"); } if (!c_parser_next_token_is (parser, CPP_OPEN_BRACE)) { c_parser_error (parser, "expected %<{%>"); return; } parser->objc_pq_context = false; if (objc_start_method_definition (is_class_method, decl, attributes, expr)) { add_stmt (c_parser_compound_statement (parser)); objc_finish_method_definition (current_function_decl); } else { /* This code is executed when we find a method definition outside of an @implementation context (or invalid for other reasons). Parse the method (to keep going) but do not emit any code. */ c_parser_compound_statement (parser); } } /* Parse an objc-methodprotolist. objc-methodprotolist: empty objc-methodprotolist objc-methodproto objc-methodprotolist declaration objc-methodprotolist ; @optional @required The declaration is a data definition, which may be missing declaration specifiers under the same rules and diagnostics as other data definitions outside functions, and the stray semicolon is diagnosed the same way as a stray semicolon outside a function. */ static void c_parser_objc_methodprotolist (c_parser *parser) { while (true) { /* The list is terminated by @end. */ switch (c_parser_peek_token (parser)->type) { case CPP_SEMICOLON: pedwarn (c_parser_peek_token (parser)->location, OPT_Wpedantic, "ISO C does not allow extra %<;%> outside of a function"); c_parser_consume_token (parser); break; case CPP_PLUS: case CPP_MINUS: c_parser_objc_methodproto (parser); break; case CPP_PRAGMA: c_parser_pragma (parser, pragma_external, NULL); break; case CPP_EOF: return; default: if (c_parser_next_token_is_keyword (parser, RID_AT_END)) return; else if (c_parser_next_token_is_keyword (parser, RID_AT_PROPERTY)) c_parser_objc_at_property_declaration (parser); else if (c_parser_next_token_is_keyword (parser, RID_AT_OPTIONAL)) { objc_set_method_opt (true); c_parser_consume_token (parser); } else if (c_parser_next_token_is_keyword (parser, RID_AT_REQUIRED)) { objc_set_method_opt (false); c_parser_consume_token (parser); } else c_parser_declaration_or_fndef (parser, false, false, true, false, true, NULL, vNULL); break; } } } /* Parse an objc-methodproto. objc-methodproto: objc-method-type objc-method-decl ; */ static void c_parser_objc_methodproto (c_parser *parser) { bool is_class_method = c_parser_objc_method_type (parser); tree decl, attributes = NULL_TREE; /* Remember protocol qualifiers in prototypes. */ parser->objc_pq_context = true; decl = c_parser_objc_method_decl (parser, is_class_method, &attributes, NULL); /* Forget protocol qualifiers now. */ parser->objc_pq_context = false; /* Do not allow the presence of attributes to hide an erroneous method implementation in the interface section. */ if (!c_parser_next_token_is (parser, CPP_SEMICOLON)) { c_parser_error (parser, "expected %<;%>"); return; } if (decl != error_mark_node) objc_add_method_declaration (is_class_method, decl, attributes); c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } /* If we are at a position that method attributes may be present, check that there are not any parsed already (a syntax error) and then collect any specified at the current location. Finally, if new attributes were present, check that the next token is legal ( ';' for decls and '{' for defs). */ static bool c_parser_objc_maybe_method_attributes (c_parser* parser, tree* attributes) { bool bad = false; if (*attributes) { c_parser_error (parser, "method attributes must be specified at the end only"); *attributes = NULL_TREE; bad = true; } if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) *attributes = c_parser_attributes (parser); /* If there were no attributes here, just report any earlier error. */ if (*attributes == NULL_TREE || bad) return bad; /* If the attributes are followed by a ; or {, then just report any earlier error. */ if (c_parser_next_token_is (parser, CPP_SEMICOLON) || c_parser_next_token_is (parser, CPP_OPEN_BRACE)) return bad; /* We've got attributes, but not at the end. */ c_parser_error (parser, "expected %<;%> or %<{%> after method attribute definition"); return true; } /* Parse an objc-method-decl. objc-method-decl: ( objc-type-name ) objc-selector objc-selector ( objc-type-name ) objc-keyword-selector objc-optparmlist objc-keyword-selector objc-optparmlist attributes objc-keyword-selector: objc-keyword-decl objc-keyword-selector objc-keyword-decl objc-keyword-decl: objc-selector : ( objc-type-name ) identifier objc-selector : identifier : ( objc-type-name ) identifier : identifier objc-optparmlist: objc-optparms objc-optellipsis objc-optparms: empty objc-opt-parms , parameter-declaration objc-optellipsis: empty , ... */ static tree c_parser_objc_method_decl (c_parser *parser, bool is_class_method, tree *attributes, tree *expr) { tree type = NULL_TREE; tree sel; tree parms = NULL_TREE; bool ellipsis = false; bool attr_err = false; *attributes = NULL_TREE; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { matching_parens parens; parens.consume_open (parser); type = c_parser_objc_type_name (parser); parens.skip_until_found_close (parser); } sel = c_parser_objc_selector (parser); /* If there is no selector, or a colon follows, we have an objc-keyword-selector. If there is a selector, and a colon does not follow, that selector ends the objc-method-decl. */ if (!sel || c_parser_next_token_is (parser, CPP_COLON)) { tree tsel = sel; tree list = NULL_TREE; while (true) { tree atype = NULL_TREE, id, keyworddecl; tree param_attr = NULL_TREE; if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) break; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { c_parser_consume_token (parser); atype = c_parser_objc_type_name (parser); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); } /* New ObjC allows attributes on method parameters. */ if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) param_attr = c_parser_attributes (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); return error_mark_node; } id = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); keyworddecl = objc_build_keyword_decl (tsel, atype, id, param_attr); list = chainon (list, keyworddecl); tsel = c_parser_objc_selector (parser); if (!tsel && c_parser_next_token_is_not (parser, CPP_COLON)) break; } attr_err |= c_parser_objc_maybe_method_attributes (parser, attributes) ; /* Parse the optional parameter list. Optional Objective-C method parameters follow the C syntax, and may include '...' to denote a variable number of arguments. */ parms = make_node (TREE_LIST); while (c_parser_next_token_is (parser, CPP_COMMA)) { struct c_parm *parm; c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_ELLIPSIS)) { ellipsis = true; c_parser_consume_token (parser); attr_err |= c_parser_objc_maybe_method_attributes (parser, attributes) ; break; } parm = c_parser_parameter_declaration (parser, NULL_TREE); if (parm == NULL) break; parms = chainon (parms, build_tree_list (NULL_TREE, grokparm (parm, expr))); } sel = list; } else attr_err |= c_parser_objc_maybe_method_attributes (parser, attributes) ; if (sel == NULL) { c_parser_error (parser, "objective-c method declaration is expected"); return error_mark_node; } if (attr_err) return error_mark_node; return objc_build_method_signature (is_class_method, type, sel, parms, ellipsis); } /* Parse an objc-type-name. objc-type-name: objc-type-qualifiers[opt] type-name objc-type-qualifiers[opt] objc-type-qualifiers: objc-type-qualifier objc-type-qualifiers objc-type-qualifier objc-type-qualifier: one of in out inout bycopy byref oneway */ static tree c_parser_objc_type_name (c_parser *parser) { tree quals = NULL_TREE; struct c_type_name *type_name = NULL; tree type = NULL_TREE; while (true) { c_token *token = c_parser_peek_token (parser); if (token->type == CPP_KEYWORD && (token->keyword == RID_IN || token->keyword == RID_OUT || token->keyword == RID_INOUT || token->keyword == RID_BYCOPY || token->keyword == RID_BYREF || token->keyword == RID_ONEWAY)) { quals = chainon (build_tree_list (NULL_TREE, token->value), quals); c_parser_consume_token (parser); } else break; } if (c_parser_next_tokens_start_typename (parser, cla_prefer_type)) type_name = c_parser_type_name (parser); if (type_name) type = groktypename (type_name, NULL, NULL); /* If the type is unknown, and error has already been produced and we need to recover from the error. In that case, use NULL_TREE for the type, as if no type had been specified; this will use the default type ('id') which is good for error recovery. */ if (type == error_mark_node) type = NULL_TREE; return build_tree_list (quals, type); } /* Parse objc-protocol-refs. objc-protocol-refs: < identifier-list > */ static tree c_parser_objc_protocol_refs (c_parser *parser) { tree list = NULL_TREE; gcc_assert (c_parser_next_token_is (parser, CPP_LESS)); c_parser_consume_token (parser); /* Any identifiers, including those declared as type names, are OK here. */ while (true) { tree id; if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); break; } id = c_parser_peek_token (parser)->value; list = chainon (list, build_tree_list (NULL_TREE, id)); c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } c_parser_require (parser, CPP_GREATER, "expected %<>%>"); return list; } /* Parse an objc-try-catch-finally-statement. objc-try-catch-finally-statement: @try compound-statement objc-catch-list[opt] @try compound-statement objc-catch-list[opt] @finally compound-statement objc-catch-list: @catch ( objc-catch-parameter-declaration ) compound-statement objc-catch-list @catch ( objc-catch-parameter-declaration ) compound-statement objc-catch-parameter-declaration: parameter-declaration '...' where '...' is to be interpreted literally, that is, it means CPP_ELLIPSIS. PS: This function is identical to cp_parser_objc_try_catch_finally_statement for C++. Keep them in sync. */ static void c_parser_objc_try_catch_finally_statement (c_parser *parser) { location_t location; tree stmt; gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_TRY)); c_parser_consume_token (parser); location = c_parser_peek_token (parser)->location; objc_maybe_warn_exceptions (location); stmt = c_parser_compound_statement (parser); objc_begin_try_stmt (location, stmt); while (c_parser_next_token_is_keyword (parser, RID_AT_CATCH)) { struct c_parm *parm; tree parameter_declaration = error_mark_node; bool seen_open_paren = false; c_parser_consume_token (parser); matching_parens parens; if (!parens.require_open (parser)) seen_open_paren = true; if (c_parser_next_token_is (parser, CPP_ELLIPSIS)) { /* We have "@catch (...)" (where the '...' are literally what is in the code). Skip the '...'. parameter_declaration is set to NULL_TREE, and objc_being_catch_clauses() knows that that means '...'. */ c_parser_consume_token (parser); parameter_declaration = NULL_TREE; } else { /* We have "@catch (NSException *exception)" or something like that. Parse the parameter declaration. */ parm = c_parser_parameter_declaration (parser, NULL_TREE); if (parm == NULL) parameter_declaration = error_mark_node; else parameter_declaration = grokparm (parm, NULL); } if (seen_open_paren) parens.require_close (parser); else { /* If there was no open parenthesis, we are recovering from an error, and we are trying to figure out what mistake the user has made. */ /* If there is an immediate closing parenthesis, the user probably forgot the opening one (ie, they typed "@catch NSException *e)". Parse the closing parenthesis and keep going. */ if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) c_parser_consume_token (parser); /* If these is no immediate closing parenthesis, the user probably doesn't know that parenthesis are required at all (ie, they typed "@catch NSException *e"). So, just forget about the closing parenthesis and keep going. */ } objc_begin_catch_clause (parameter_declaration); if (c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>")) c_parser_compound_statement_nostart (parser); objc_finish_catch_clause (); } if (c_parser_next_token_is_keyword (parser, RID_AT_FINALLY)) { c_parser_consume_token (parser); location = c_parser_peek_token (parser)->location; stmt = c_parser_compound_statement (parser); objc_build_finally_clause (location, stmt); } objc_finish_try_stmt (); } /* Parse an objc-synchronized-statement. objc-synchronized-statement: @synchronized ( expression ) compound-statement */ static void c_parser_objc_synchronized_statement (c_parser *parser) { location_t loc; tree expr, stmt; gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_SYNCHRONIZED)); c_parser_consume_token (parser); loc = c_parser_peek_token (parser)->location; objc_maybe_warn_exceptions (loc); matching_parens parens; if (parens.require_open (parser)) { struct c_expr ce = c_parser_expression (parser); ce = convert_lvalue_to_rvalue (loc, ce, false, false); expr = ce.value; expr = c_fully_fold (expr, false, NULL); parens.skip_until_found_close (parser); } else expr = error_mark_node; stmt = c_parser_compound_statement (parser); objc_build_synchronized (loc, expr, stmt); } /* Parse an objc-selector; return NULL_TREE without an error if the next token is not an objc-selector. objc-selector: identifier one of enum struct union if else while do for switch case default break continue return goto asm sizeof typeof __alignof unsigned long const short volatile signed restrict _Complex in out inout bycopy byref oneway int char float double void _Bool _Atomic ??? Why this selection of keywords but not, for example, storage class specifiers? */ static tree c_parser_objc_selector (c_parser *parser) { c_token *token = c_parser_peek_token (parser); tree value = token->value; if (token->type == CPP_NAME) { c_parser_consume_token (parser); return value; } if (token->type != CPP_KEYWORD) return NULL_TREE; switch (token->keyword) { case RID_ENUM: case RID_STRUCT: case RID_UNION: case RID_IF: case RID_ELSE: case RID_WHILE: case RID_DO: case RID_FOR: case RID_SWITCH: case RID_CASE: case RID_DEFAULT: case RID_BREAK: case RID_CONTINUE: case RID_RETURN: case RID_GOTO: case RID_ASM: case RID_SIZEOF: case RID_TYPEOF: case RID_ALIGNOF: case RID_UNSIGNED: case RID_LONG: case RID_CONST: case RID_SHORT: case RID_VOLATILE: case RID_SIGNED: case RID_RESTRICT: case RID_COMPLEX: case RID_IN: case RID_OUT: case RID_INOUT: case RID_BYCOPY: case RID_BYREF: case RID_ONEWAY: case RID_INT: case RID_CHAR: case RID_FLOAT: case RID_DOUBLE: CASE_RID_FLOATN_NX: case RID_VOID: case RID_BOOL: case RID_ATOMIC: case RID_AUTO_TYPE: case RID_INT_N_0: case RID_INT_N_1: case RID_INT_N_2: case RID_INT_N_3: c_parser_consume_token (parser); return value; default: return NULL_TREE; } } /* Parse an objc-selector-arg. objc-selector-arg: objc-selector objc-keywordname-list objc-keywordname-list: objc-keywordname objc-keywordname-list objc-keywordname objc-keywordname: objc-selector : : */ static tree c_parser_objc_selector_arg (c_parser *parser) { tree sel = c_parser_objc_selector (parser); tree list = NULL_TREE; if (sel && c_parser_next_token_is_not (parser, CPP_COLON)) return sel; while (true) { if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) return list; list = chainon (list, build_tree_list (sel, NULL_TREE)); sel = c_parser_objc_selector (parser); if (!sel && c_parser_next_token_is_not (parser, CPP_COLON)) break; } return list; } /* Parse an objc-receiver. objc-receiver: expression class-name type-name */ static tree c_parser_objc_receiver (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; if (c_parser_peek_token (parser)->type == CPP_NAME && (c_parser_peek_token (parser)->id_kind == C_ID_TYPENAME || c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME)) { tree id = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); return objc_get_class_reference (id); } struct c_expr ce = c_parser_expression (parser); ce = convert_lvalue_to_rvalue (loc, ce, false, false); return c_fully_fold (ce.value, false, NULL); } /* Parse objc-message-args. objc-message-args: objc-selector objc-keywordarg-list objc-keywordarg-list: objc-keywordarg objc-keywordarg-list objc-keywordarg objc-keywordarg: objc-selector : objc-keywordexpr : objc-keywordexpr */ static tree c_parser_objc_message_args (c_parser *parser) { tree sel = c_parser_objc_selector (parser); tree list = NULL_TREE; if (sel && c_parser_next_token_is_not (parser, CPP_COLON)) return sel; while (true) { tree keywordexpr; if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) return error_mark_node; keywordexpr = c_parser_objc_keywordexpr (parser); list = chainon (list, build_tree_list (sel, keywordexpr)); sel = c_parser_objc_selector (parser); if (!sel && c_parser_next_token_is_not (parser, CPP_COLON)) break; } return list; } /* Parse an objc-keywordexpr. objc-keywordexpr: nonempty-expr-list */ static tree c_parser_objc_keywordexpr (c_parser *parser) { tree ret; vec *expr_list = c_parser_expr_list (parser, true, true, NULL, NULL, NULL, NULL); if (vec_safe_length (expr_list) == 1) { /* Just return the expression, remove a level of indirection. */ ret = (*expr_list)[0]; } else { /* We have a comma expression, we will collapse later. */ ret = build_tree_list_vec (expr_list); } release_tree_vector (expr_list); return ret; } /* A check, needed in several places, that ObjC interface, implementation or method definitions are not prefixed by incorrect items. */ static bool c_parser_objc_diagnose_bad_element_prefix (c_parser *parser, struct c_declspecs *specs) { if (!specs->declspecs_seen_p || specs->non_sc_seen_p || specs->typespec_kind != ctsk_none) { c_parser_error (parser, "no type or storage class may be specified here,"); c_parser_skip_to_end_of_block_or_statement (parser); return true; } return false; } /* Parse an Objective-C @property declaration. The syntax is: objc-property-declaration: '@property' objc-property-attributes[opt] struct-declaration ; objc-property-attributes: '(' objc-property-attribute-list ')' objc-property-attribute-list: objc-property-attribute objc-property-attribute-list, objc-property-attribute objc-property-attribute 'getter' = identifier 'setter' = identifier 'readonly' 'readwrite' 'assign' 'retain' 'copy' 'nonatomic' For example: @property NSString *name; @property (readonly) id object; @property (retain, nonatomic, getter=getTheName) id name; @property int a, b, c; PS: This function is identical to cp_parser_objc_at_propery_declaration for C++. Keep them in sync. */ static void c_parser_objc_at_property_declaration (c_parser *parser) { /* The following variables hold the attributes of the properties as parsed. They are 'false' or 'NULL_TREE' if the attribute was not seen. When we see an attribute, we set them to 'true' (if they are boolean properties) or to the identifier (if they have an argument, ie, for getter and setter). Note that here we only parse the list of attributes, check the syntax and accumulate the attributes that we find. objc_add_property_declaration() will then process the information. */ bool property_assign = false; bool property_copy = false; tree property_getter_ident = NULL_TREE; bool property_nonatomic = false; bool property_readonly = false; bool property_readwrite = false; bool property_retain = false; tree property_setter_ident = NULL_TREE; /* 'properties' is the list of properties that we read. Usually a single one, but maybe more (eg, in "@property int a, b, c;" there are three). */ tree properties; location_t loc; loc = c_parser_peek_token (parser)->location; gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_PROPERTY)); c_parser_consume_token (parser); /* Eat '@property'. */ /* Parse the optional attribute list... */ if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { matching_parens parens; /* Eat the '(' */ parens.consume_open (parser); /* Property attribute keywords are valid now. */ parser->objc_property_attr_context = true; while (true) { bool syntax_error = false; c_token *token = c_parser_peek_token (parser); enum rid keyword; if (token->type != CPP_KEYWORD) { if (token->type == CPP_CLOSE_PAREN) c_parser_error (parser, "expected identifier"); else { c_parser_consume_token (parser); c_parser_error (parser, "unknown property attribute"); } break; } keyword = token->keyword; c_parser_consume_token (parser); switch (keyword) { case RID_ASSIGN: property_assign = true; break; case RID_COPY: property_copy = true; break; case RID_NONATOMIC: property_nonatomic = true; break; case RID_READONLY: property_readonly = true; break; case RID_READWRITE: property_readwrite = true; break; case RID_RETAIN: property_retain = true; break; case RID_GETTER: case RID_SETTER: if (c_parser_next_token_is_not (parser, CPP_EQ)) { if (keyword == RID_GETTER) c_parser_error (parser, "missing %<=%> (after % attribute)"); else c_parser_error (parser, "missing %<=%> (after % attribute)"); syntax_error = true; break; } c_parser_consume_token (parser); /* eat the = */ if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); syntax_error = true; break; } if (keyword == RID_SETTER) { if (property_setter_ident != NULL_TREE) c_parser_error (parser, "the % attribute may only be specified once"); else property_setter_ident = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_COLON)) c_parser_error (parser, "setter name must terminate with %<:%>"); else c_parser_consume_token (parser); } else { if (property_getter_ident != NULL_TREE) c_parser_error (parser, "the % attribute may only be specified once"); else property_getter_ident = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); } break; default: c_parser_error (parser, "unknown property attribute"); syntax_error = true; break; } if (syntax_error) break; if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } parser->objc_property_attr_context = false; parens.skip_until_found_close (parser); } /* ... and the property declaration(s). */ properties = c_parser_struct_declaration (parser); if (properties == error_mark_node) { c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL); parser->error = false; return; } if (properties == NULL_TREE) c_parser_error (parser, "expected identifier"); else { /* Comma-separated properties are chained together in reverse order; add them one by one. */ properties = nreverse (properties); for (; properties; properties = TREE_CHAIN (properties)) objc_add_property_declaration (loc, copy_node (properties), property_readonly, property_readwrite, property_assign, property_retain, property_copy, property_nonatomic, property_getter_ident, property_setter_ident); } c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); parser->error = false; } /* Parse an Objective-C @synthesize declaration. The syntax is: objc-synthesize-declaration: @synthesize objc-synthesize-identifier-list ; objc-synthesize-identifier-list: objc-synthesize-identifier objc-synthesize-identifier-list, objc-synthesize-identifier objc-synthesize-identifier identifier identifier = identifier For example: @synthesize MyProperty; @synthesize OneProperty, AnotherProperty=MyIvar, YetAnotherProperty; PS: This function is identical to cp_parser_objc_at_synthesize_declaration for C++. Keep them in sync. */ static void c_parser_objc_at_synthesize_declaration (c_parser *parser) { tree list = NULL_TREE; location_t loc; gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_SYNTHESIZE)); loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); while (true) { tree property, ivar; if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL); /* Once we find the semicolon, we can resume normal parsing. We have to reset parser->error manually because c_parser_skip_until_found() won't reset it for us if the next token is precisely a semicolon. */ parser->error = false; return; } property = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_EQ)) { c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL); parser->error = false; return; } ivar = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); } else ivar = NULL_TREE; list = chainon (list, build_tree_list (ivar, property)); if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); objc_add_synthesize_declaration (loc, list); } /* Parse an Objective-C @dynamic declaration. The syntax is: objc-dynamic-declaration: @dynamic identifier-list ; For example: @dynamic MyProperty; @dynamic MyProperty, AnotherProperty; PS: This function is identical to cp_parser_objc_at_dynamic_declaration for C++. Keep them in sync. */ static void c_parser_objc_at_dynamic_declaration (c_parser *parser) { tree list = NULL_TREE; location_t loc; gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_DYNAMIC)); loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); while (true) { tree property; if (c_parser_next_token_is_not (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL); parser->error = false; return; } property = c_parser_peek_token (parser)->value; list = chainon (list, build_tree_list (NULL_TREE, property)); c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); objc_add_dynamic_declaration (loc, list); } /* Parse a pragma GCC ivdep. */ static bool c_parse_pragma_ivdep (c_parser *parser) { c_parser_consume_pragma (parser); c_parser_skip_to_pragma_eol (parser); return true; } /* Parse a pragma GCC unroll. */ static unsigned short c_parser_pragma_unroll (c_parser *parser) { unsigned short unroll; c_parser_consume_pragma (parser); location_t location = c_parser_peek_token (parser)->location; tree expr = c_parser_expr_no_commas (parser, NULL).value; mark_exp_read (expr); expr = c_fully_fold (expr, false, NULL); HOST_WIDE_INT lunroll = 0; if (!INTEGRAL_TYPE_P (TREE_TYPE (expr)) || TREE_CODE (expr) != INTEGER_CST || (lunroll = tree_to_shwi (expr)) < 0 || lunroll >= USHRT_MAX) { error_at (location, "%<#pragma GCC unroll%> requires an" " assignment-expression that evaluates to a non-negative" " integral constant less than %u", USHRT_MAX); unroll = 0; } else { unroll = (unsigned short)lunroll; if (unroll == 0) unroll = 1; } c_parser_skip_to_pragma_eol (parser); return unroll; } /* Handle pragmas. Some OpenMP pragmas are associated with, and therefore should be considered, statements. ALLOW_STMT is true if we're within the context of a function and such pragmas are to be allowed. Returns true if we actually parsed such a pragma. */ static bool c_parser_pragma (c_parser *parser, enum pragma_context context, bool *if_p) { unsigned int id; const char *construct = NULL; id = c_parser_peek_token (parser)->pragma_kind; gcc_assert (id != PRAGMA_NONE); switch (id) { case PRAGMA_OACC_DECLARE: c_parser_oacc_declare (parser); return false; case PRAGMA_OACC_ENTER_DATA: if (context != pragma_compound) { construct = "acc enter data"; in_compound: if (context == pragma_stmt) { error_at (c_parser_peek_token (parser)->location, "%<#pragma %s%> may only be used in compound " "statements", construct); c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL); return false; } goto bad_stmt; } c_parser_oacc_enter_exit_data (parser, true); return false; case PRAGMA_OACC_EXIT_DATA: if (context != pragma_compound) { construct = "acc exit data"; goto in_compound; } c_parser_oacc_enter_exit_data (parser, false); return false; case PRAGMA_OACC_ROUTINE: if (context != pragma_external) { error_at (c_parser_peek_token (parser)->location, "%<#pragma acc routine%> must be at file scope"); c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL); return false; } c_parser_oacc_routine (parser, context); return false; case PRAGMA_OACC_UPDATE: if (context != pragma_compound) { construct = "acc update"; goto in_compound; } c_parser_oacc_update (parser); return false; case PRAGMA_OMP_BARRIER: if (context != pragma_compound) { construct = "omp barrier"; goto in_compound; } c_parser_omp_barrier (parser); return false; case PRAGMA_OMP_DEPOBJ: if (context != pragma_compound) { construct = "omp depobj"; goto in_compound; } c_parser_omp_depobj (parser); return false; case PRAGMA_OMP_FLUSH: if (context != pragma_compound) { construct = "omp flush"; goto in_compound; } c_parser_omp_flush (parser); return false; case PRAGMA_OMP_TASKWAIT: if (context != pragma_compound) { construct = "omp taskwait"; goto in_compound; } c_parser_omp_taskwait (parser); return false; case PRAGMA_OMP_TASKYIELD: if (context != pragma_compound) { construct = "omp taskyield"; goto in_compound; } c_parser_omp_taskyield (parser); return false; case PRAGMA_OMP_CANCEL: if (context != pragma_compound) { construct = "omp cancel"; goto in_compound; } c_parser_omp_cancel (parser); return false; case PRAGMA_OMP_CANCELLATION_POINT: c_parser_omp_cancellation_point (parser, context); return false; case PRAGMA_OMP_THREADPRIVATE: c_parser_omp_threadprivate (parser); return false; case PRAGMA_OMP_TARGET: return c_parser_omp_target (parser, context, if_p); case PRAGMA_OMP_END_DECLARE_TARGET: c_parser_omp_end_declare_target (parser); return false; case PRAGMA_OMP_SECTION: error_at (c_parser_peek_token (parser)->location, "%<#pragma omp section%> may only be used in " "%<#pragma omp sections%> construct"); c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL); return false; case PRAGMA_OMP_DECLARE: c_parser_omp_declare (parser, context); return false; case PRAGMA_OMP_REQUIRES: c_parser_omp_requires (parser); return false; case PRAGMA_OMP_ORDERED: return c_parser_omp_ordered (parser, context, if_p); case PRAGMA_IVDEP: { const bool ivdep = c_parse_pragma_ivdep (parser); unsigned short unroll; if (c_parser_peek_token (parser)->pragma_kind == PRAGMA_UNROLL) unroll = c_parser_pragma_unroll (parser); else unroll = 0; if (!c_parser_next_token_is_keyword (parser, RID_FOR) && !c_parser_next_token_is_keyword (parser, RID_WHILE) && !c_parser_next_token_is_keyword (parser, RID_DO)) { c_parser_error (parser, "for, while or do statement expected"); return false; } if (c_parser_next_token_is_keyword (parser, RID_FOR)) c_parser_for_statement (parser, ivdep, unroll, if_p); else if (c_parser_next_token_is_keyword (parser, RID_WHILE)) c_parser_while_statement (parser, ivdep, unroll, if_p); else c_parser_do_statement (parser, ivdep, unroll); } return false; case PRAGMA_UNROLL: { unsigned short unroll = c_parser_pragma_unroll (parser); bool ivdep; if (c_parser_peek_token (parser)->pragma_kind == PRAGMA_IVDEP) ivdep = c_parse_pragma_ivdep (parser); else ivdep = false; if (!c_parser_next_token_is_keyword (parser, RID_FOR) && !c_parser_next_token_is_keyword (parser, RID_WHILE) && !c_parser_next_token_is_keyword (parser, RID_DO)) { c_parser_error (parser, "for, while or do statement expected"); return false; } if (c_parser_next_token_is_keyword (parser, RID_FOR)) c_parser_for_statement (parser, ivdep, unroll, if_p); else if (c_parser_next_token_is_keyword (parser, RID_WHILE)) c_parser_while_statement (parser, ivdep, unroll, if_p); else c_parser_do_statement (parser, ivdep, unroll); } return false; case PRAGMA_GCC_PCH_PREPROCESS: c_parser_error (parser, "%<#pragma GCC pch_preprocess%> must be first"); c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL); return false; case PRAGMA_OACC_WAIT: if (context != pragma_compound) { construct = "acc wait"; goto in_compound; } /* FALL THROUGH. */ default: if (id < PRAGMA_FIRST_EXTERNAL) { if (context != pragma_stmt && context != pragma_compound) { bad_stmt: c_parser_error (parser, "expected declaration specifiers"); c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL); return false; } c_parser_omp_construct (parser, if_p); return true; } break; } c_parser_consume_pragma (parser); c_invoke_pragma_handler (id); /* Skip to EOL, but suppress any error message. Those will have been generated by the handler routine through calling error, as opposed to calling c_parser_error. */ parser->error = true; c_parser_skip_to_pragma_eol (parser); return false; } /* The interface the pragma parsers have to the lexer. */ enum cpp_ttype pragma_lex (tree *value, location_t *loc) { c_token *tok = c_parser_peek_token (the_parser); enum cpp_ttype ret = tok->type; *value = tok->value; if (loc) *loc = tok->location; if (ret == CPP_PRAGMA_EOL || ret == CPP_EOF) ret = CPP_EOF; else { if (ret == CPP_KEYWORD) ret = CPP_NAME; c_parser_consume_token (the_parser); } return ret; } static void c_parser_pragma_pch_preprocess (c_parser *parser) { tree name = NULL; c_parser_consume_pragma (parser); if (c_parser_next_token_is (parser, CPP_STRING)) { name = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); } else c_parser_error (parser, "expected string literal"); c_parser_skip_to_pragma_eol (parser); if (name) c_common_pch_pragma (parse_in, TREE_STRING_POINTER (name)); } /* OpenACC and OpenMP parsing routines. */ /* Returns name of the next clause. If the clause is not recognized PRAGMA_OMP_CLAUSE_NONE is returned and the token is not consumed. Otherwise appropriate pragma_omp_clause is returned and the token is consumed. */ static pragma_omp_clause c_parser_omp_clause_name (c_parser *parser) { pragma_omp_clause result = PRAGMA_OMP_CLAUSE_NONE; if (c_parser_next_token_is_keyword (parser, RID_AUTO)) result = PRAGMA_OACC_CLAUSE_AUTO; else if (c_parser_next_token_is_keyword (parser, RID_IF)) result = PRAGMA_OMP_CLAUSE_IF; else if (c_parser_next_token_is_keyword (parser, RID_DEFAULT)) result = PRAGMA_OMP_CLAUSE_DEFAULT; else if (c_parser_next_token_is_keyword (parser, RID_FOR)) result = PRAGMA_OMP_CLAUSE_FOR; else if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); switch (p[0]) { case 'a': if (!strcmp ("aligned", p)) result = PRAGMA_OMP_CLAUSE_ALIGNED; else if (!strcmp ("async", p)) result = PRAGMA_OACC_CLAUSE_ASYNC; break; case 'c': if (!strcmp ("collapse", p)) result = PRAGMA_OMP_CLAUSE_COLLAPSE; else if (!strcmp ("copy", p)) result = PRAGMA_OACC_CLAUSE_COPY; else if (!strcmp ("copyin", p)) result = PRAGMA_OMP_CLAUSE_COPYIN; else if (!strcmp ("copyout", p)) result = PRAGMA_OACC_CLAUSE_COPYOUT; else if (!strcmp ("copyprivate", p)) result = PRAGMA_OMP_CLAUSE_COPYPRIVATE; else if (!strcmp ("create", p)) result = PRAGMA_OACC_CLAUSE_CREATE; break; case 'd': if (!strcmp ("defaultmap", p)) result = PRAGMA_OMP_CLAUSE_DEFAULTMAP; else if (!strcmp ("delete", p)) result = PRAGMA_OACC_CLAUSE_DELETE; else if (!strcmp ("depend", p)) result = PRAGMA_OMP_CLAUSE_DEPEND; else if (!strcmp ("device", p)) result = PRAGMA_OMP_CLAUSE_DEVICE; else if (!strcmp ("deviceptr", p)) result = PRAGMA_OACC_CLAUSE_DEVICEPTR; else if (!strcmp ("device_resident", p)) result = PRAGMA_OACC_CLAUSE_DEVICE_RESIDENT; else if (!strcmp ("dist_schedule", p)) result = PRAGMA_OMP_CLAUSE_DIST_SCHEDULE; break; case 'f': if (!strcmp ("final", p)) result = PRAGMA_OMP_CLAUSE_FINAL; else if (!strcmp ("finalize", p)) result = PRAGMA_OACC_CLAUSE_FINALIZE; else if (!strcmp ("firstprivate", p)) result = PRAGMA_OMP_CLAUSE_FIRSTPRIVATE; else if (!strcmp ("from", p)) result = PRAGMA_OMP_CLAUSE_FROM; break; case 'g': if (!strcmp ("gang", p)) result = PRAGMA_OACC_CLAUSE_GANG; else if (!strcmp ("grainsize", p)) result = PRAGMA_OMP_CLAUSE_GRAINSIZE; break; case 'h': if (!strcmp ("hint", p)) result = PRAGMA_OMP_CLAUSE_HINT; else if (!strcmp ("host", p)) result = PRAGMA_OACC_CLAUSE_HOST; break; case 'i': if (!strcmp ("if_present", p)) result = PRAGMA_OACC_CLAUSE_IF_PRESENT; else if (!strcmp ("in_reduction", p)) result = PRAGMA_OMP_CLAUSE_IN_REDUCTION; else if (!strcmp ("inbranch", p)) result = PRAGMA_OMP_CLAUSE_INBRANCH; else if (!strcmp ("independent", p)) result = PRAGMA_OACC_CLAUSE_INDEPENDENT; else if (!strcmp ("is_device_ptr", p)) result = PRAGMA_OMP_CLAUSE_IS_DEVICE_PTR; break; case 'l': if (!strcmp ("lastprivate", p)) result = PRAGMA_OMP_CLAUSE_LASTPRIVATE; else if (!strcmp ("linear", p)) result = PRAGMA_OMP_CLAUSE_LINEAR; else if (!strcmp ("link", p)) result = PRAGMA_OMP_CLAUSE_LINK; break; case 'm': if (!strcmp ("map", p)) result = PRAGMA_OMP_CLAUSE_MAP; else if (!strcmp ("mergeable", p)) result = PRAGMA_OMP_CLAUSE_MERGEABLE; break; case 'n': if (!strcmp ("nogroup", p)) result = PRAGMA_OMP_CLAUSE_NOGROUP; else if (!strcmp ("nontemporal", p)) result = PRAGMA_OMP_CLAUSE_NONTEMPORAL; else if (!strcmp ("notinbranch", p)) result = PRAGMA_OMP_CLAUSE_NOTINBRANCH; else if (!strcmp ("nowait", p)) result = PRAGMA_OMP_CLAUSE_NOWAIT; else if (!strcmp ("num_gangs", p)) result = PRAGMA_OACC_CLAUSE_NUM_GANGS; else if (!strcmp ("num_tasks", p)) result = PRAGMA_OMP_CLAUSE_NUM_TASKS; else if (!strcmp ("num_teams", p)) result = PRAGMA_OMP_CLAUSE_NUM_TEAMS; else if (!strcmp ("num_threads", p)) result = PRAGMA_OMP_CLAUSE_NUM_THREADS; else if (!strcmp ("num_workers", p)) result = PRAGMA_OACC_CLAUSE_NUM_WORKERS; break; case 'o': if (!strcmp ("ordered", p)) result = PRAGMA_OMP_CLAUSE_ORDERED; break; case 'p': if (!strcmp ("parallel", p)) result = PRAGMA_OMP_CLAUSE_PARALLEL; else if (!strcmp ("present", p)) result = PRAGMA_OACC_CLAUSE_PRESENT; /* As of OpenACC 2.5, these are now aliases of the non-present_or clauses. */ else if (!strcmp ("present_or_copy", p) || !strcmp ("pcopy", p)) result = PRAGMA_OACC_CLAUSE_COPY; else if (!strcmp ("present_or_copyin", p) || !strcmp ("pcopyin", p)) result = PRAGMA_OACC_CLAUSE_COPYIN; else if (!strcmp ("present_or_copyout", p) || !strcmp ("pcopyout", p)) result = PRAGMA_OACC_CLAUSE_COPYOUT; else if (!strcmp ("present_or_create", p) || !strcmp ("pcreate", p)) result = PRAGMA_OACC_CLAUSE_CREATE; else if (!strcmp ("priority", p)) result = PRAGMA_OMP_CLAUSE_PRIORITY; else if (!strcmp ("private", p)) result = PRAGMA_OMP_CLAUSE_PRIVATE; else if (!strcmp ("proc_bind", p)) result = PRAGMA_OMP_CLAUSE_PROC_BIND; break; case 'r': if (!strcmp ("reduction", p)) result = PRAGMA_OMP_CLAUSE_REDUCTION; break; case 's': if (!strcmp ("safelen", p)) result = PRAGMA_OMP_CLAUSE_SAFELEN; else if (!strcmp ("schedule", p)) result = PRAGMA_OMP_CLAUSE_SCHEDULE; else if (!strcmp ("sections", p)) result = PRAGMA_OMP_CLAUSE_SECTIONS; else if (!strcmp ("self", p)) /* "self" is a synonym for "host". */ result = PRAGMA_OACC_CLAUSE_HOST; else if (!strcmp ("seq", p)) result = PRAGMA_OACC_CLAUSE_SEQ; else if (!strcmp ("shared", p)) result = PRAGMA_OMP_CLAUSE_SHARED; else if (!strcmp ("simd", p)) result = PRAGMA_OMP_CLAUSE_SIMD; else if (!strcmp ("simdlen", p)) result = PRAGMA_OMP_CLAUSE_SIMDLEN; break; case 't': if (!strcmp ("task_reduction", p)) result = PRAGMA_OMP_CLAUSE_TASK_REDUCTION; else if (!strcmp ("taskgroup", p)) result = PRAGMA_OMP_CLAUSE_TASKGROUP; else if (!strcmp ("thread_limit", p)) result = PRAGMA_OMP_CLAUSE_THREAD_LIMIT; else if (!strcmp ("threads", p)) result = PRAGMA_OMP_CLAUSE_THREADS; else if (!strcmp ("tile", p)) result = PRAGMA_OACC_CLAUSE_TILE; else if (!strcmp ("to", p)) result = PRAGMA_OMP_CLAUSE_TO; break; case 'u': if (!strcmp ("uniform", p)) result = PRAGMA_OMP_CLAUSE_UNIFORM; else if (!strcmp ("untied", p)) result = PRAGMA_OMP_CLAUSE_UNTIED; else if (!strcmp ("use_device", p)) result = PRAGMA_OACC_CLAUSE_USE_DEVICE; else if (!strcmp ("use_device_ptr", p)) result = PRAGMA_OMP_CLAUSE_USE_DEVICE_PTR; break; case 'v': if (!strcmp ("vector", p)) result = PRAGMA_OACC_CLAUSE_VECTOR; else if (!strcmp ("vector_length", p)) result = PRAGMA_OACC_CLAUSE_VECTOR_LENGTH; break; case 'w': if (!strcmp ("wait", p)) result = PRAGMA_OACC_CLAUSE_WAIT; else if (!strcmp ("worker", p)) result = PRAGMA_OACC_CLAUSE_WORKER; break; } } if (result != PRAGMA_OMP_CLAUSE_NONE) c_parser_consume_token (parser); return result; } /* Validate that a clause of the given type does not already exist. */ static void check_no_duplicate_clause (tree clauses, enum omp_clause_code code, const char *name) { tree c; for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c)) if (OMP_CLAUSE_CODE (c) == code) { location_t loc = OMP_CLAUSE_LOCATION (c); error_at (loc, "too many %qs clauses", name); break; } } /* OpenACC 2.0 Parse wait clause or wait directive parameters. */ static tree c_parser_oacc_wait_list (c_parser *parser, location_t clause_loc, tree list) { vec *args; tree t, args_tree; matching_parens parens; if (!parens.require_open (parser)) return list; args = c_parser_expr_list (parser, false, true, NULL, NULL, NULL, NULL); args_tree = build_tree_list_vec (args); for (t = args_tree; t; t = TREE_CHAIN (t)) { tree targ = TREE_VALUE (t); if (targ != error_mark_node) { if (!INTEGRAL_TYPE_P (TREE_TYPE (targ))) { c_parser_error (parser, "expression must be integral"); targ = error_mark_node; } else { tree c = build_omp_clause (clause_loc, OMP_CLAUSE_WAIT); OMP_CLAUSE_DECL (c) = targ; OMP_CLAUSE_CHAIN (c) = list; list = c; } } } release_tree_vector (args); parens.require_close (parser); return list; } /* OpenACC 2.0, OpenMP 2.5: variable-list: identifier variable-list , identifier If KIND is nonzero, create the appropriate node and install the decl in OMP_CLAUSE_DECL and add the node to the head of the list. If KIND is nonzero, CLAUSE_LOC is the location of the clause. If KIND is zero, create a TREE_LIST with the decl in TREE_PURPOSE; return the list created. */ static tree c_parser_omp_variable_list (c_parser *parser, location_t clause_loc, enum omp_clause_code kind, tree list) { auto_vec tokens; unsigned int tokens_avail = 0; if (kind != OMP_CLAUSE_DEPEND && (c_parser_next_token_is_not (parser, CPP_NAME) || c_parser_peek_token (parser)->id_kind != C_ID_ID)) c_parser_error (parser, "expected identifier"); while (kind == OMP_CLAUSE_DEPEND || (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_token (parser)->id_kind == C_ID_ID)) { bool array_section_p = false; if (kind == OMP_CLAUSE_DEPEND) { if (c_parser_next_token_is_not (parser, CPP_NAME) || c_parser_peek_token (parser)->id_kind != C_ID_ID) { struct c_expr expr = c_parser_expr_no_commas (parser, NULL); if (expr.value != error_mark_node) { tree u = build_omp_clause (clause_loc, kind); OMP_CLAUSE_DECL (u) = expr.value; OMP_CLAUSE_CHAIN (u) = list; list = u; } if (c_parser_next_token_is_not (parser, CPP_COMMA)) break; c_parser_consume_token (parser); continue; } tokens.truncate (0); unsigned int nesting_depth = 0; while (1) { c_token *token = c_parser_peek_token (parser); switch (token->type) { case CPP_EOF: case CPP_PRAGMA_EOL: break; case CPP_OPEN_BRACE: case CPP_OPEN_PAREN: case CPP_OPEN_SQUARE: ++nesting_depth; goto add; case CPP_CLOSE_BRACE: case CPP_CLOSE_PAREN: case CPP_CLOSE_SQUARE: if (nesting_depth-- == 0) break; goto add; case CPP_COMMA: if (nesting_depth == 0) break; goto add; default: add: tokens.safe_push (*token); c_parser_consume_token (parser); continue; } break; } /* Make sure nothing tries to read past the end of the tokens. */ c_token eof_token; memset (&eof_token, 0, sizeof (eof_token)); eof_token.type = CPP_EOF; tokens.safe_push (eof_token); tokens.safe_push (eof_token); tokens_avail = parser->tokens_avail; gcc_assert (parser->tokens == &parser->tokens_buf[0]); parser->tokens = tokens.address (); parser->tokens_avail = tokens.length (); } tree t = lookup_name (c_parser_peek_token (parser)->value); if (t == NULL_TREE) { undeclared_variable (c_parser_peek_token (parser)->location, c_parser_peek_token (parser)->value); t = error_mark_node; } c_parser_consume_token (parser); if (t == error_mark_node) ; else if (kind != 0) { switch (kind) { case OMP_CLAUSE__CACHE_: /* The OpenACC cache directive explicitly only allows "array elements or subarrays". */ if (c_parser_peek_token (parser)->type != CPP_OPEN_SQUARE) { c_parser_error (parser, "expected %<[%>"); t = error_mark_node; break; } /* FALLTHROUGH */ case OMP_CLAUSE_MAP: case OMP_CLAUSE_FROM: case OMP_CLAUSE_TO: while (c_parser_next_token_is (parser, CPP_DOT)) { location_t op_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); if (!c_parser_next_token_is (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); t = error_mark_node; break; } c_token *comp_tok = c_parser_peek_token (parser); tree ident = comp_tok->value; location_t comp_loc = comp_tok->location; c_parser_consume_token (parser); t = build_component_ref (op_loc, t, ident, comp_loc); } /* FALLTHROUGH */ case OMP_CLAUSE_DEPEND: case OMP_CLAUSE_REDUCTION: case OMP_CLAUSE_IN_REDUCTION: case OMP_CLAUSE_TASK_REDUCTION: while (c_parser_next_token_is (parser, CPP_OPEN_SQUARE)) { tree low_bound = NULL_TREE, length = NULL_TREE; c_parser_consume_token (parser); if (!c_parser_next_token_is (parser, CPP_COLON)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expression (parser); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); low_bound = expr.value; } if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE)) length = integer_one_node; else { /* Look for `:'. */ if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) { t = error_mark_node; break; } array_section_p = true; if (!c_parser_next_token_is (parser, CPP_CLOSE_SQUARE)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expression (parser); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); length = expr.value; } } /* Look for the closing `]'. */ if (!c_parser_require (parser, CPP_CLOSE_SQUARE, "expected %<]%>")) { t = error_mark_node; break; } t = tree_cons (low_bound, length, t); } if (kind == OMP_CLAUSE_DEPEND && t != error_mark_node && parser->tokens_avail != 2) { if (array_section_p) { error_at (c_parser_peek_token (parser)->location, "expected %<)%> or %<,%>"); t = error_mark_node; } else { parser->tokens = tokens.address (); parser->tokens_avail = tokens.length (); t = c_parser_expr_no_commas (parser, NULL).value; if (t != error_mark_node && parser->tokens_avail != 2) { error_at (c_parser_peek_token (parser)->location, "expected %<)%> or %<,%>"); t = error_mark_node; } } } break; default: break; } if (t != error_mark_node) { tree u = build_omp_clause (clause_loc, kind); OMP_CLAUSE_DECL (u) = t; OMP_CLAUSE_CHAIN (u) = list; list = u; } } else list = tree_cons (t, NULL_TREE, list); if (kind == OMP_CLAUSE_DEPEND) { parser->tokens = &parser->tokens_buf[0]; parser->tokens_avail = tokens_avail; } if (c_parser_next_token_is_not (parser, CPP_COMMA)) break; c_parser_consume_token (parser); } return list; } /* Similarly, but expect leading and trailing parenthesis. This is a very common case for OpenACC and OpenMP clauses. */ static tree c_parser_omp_var_list_parens (c_parser *parser, enum omp_clause_code kind, tree list) { /* The clauses location. */ location_t loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { list = c_parser_omp_variable_list (parser, loc, kind, list); parens.skip_until_found_close (parser); } return list; } /* OpenACC 2.0: copy ( variable-list ) copyin ( variable-list ) copyout ( variable-list ) create ( variable-list ) delete ( variable-list ) present ( variable-list ) */ static tree c_parser_oacc_data_clause (c_parser *parser, pragma_omp_clause c_kind, tree list) { enum gomp_map_kind kind; switch (c_kind) { case PRAGMA_OACC_CLAUSE_COPY: kind = GOMP_MAP_TOFROM; break; case PRAGMA_OACC_CLAUSE_COPYIN: kind = GOMP_MAP_TO; break; case PRAGMA_OACC_CLAUSE_COPYOUT: kind = GOMP_MAP_FROM; break; case PRAGMA_OACC_CLAUSE_CREATE: kind = GOMP_MAP_ALLOC; break; case PRAGMA_OACC_CLAUSE_DELETE: kind = GOMP_MAP_RELEASE; break; case PRAGMA_OACC_CLAUSE_DEVICE: kind = GOMP_MAP_FORCE_TO; break; case PRAGMA_OACC_CLAUSE_DEVICE_RESIDENT: kind = GOMP_MAP_DEVICE_RESIDENT; break; case PRAGMA_OACC_CLAUSE_HOST: kind = GOMP_MAP_FORCE_FROM; break; case PRAGMA_OACC_CLAUSE_LINK: kind = GOMP_MAP_LINK; break; case PRAGMA_OACC_CLAUSE_PRESENT: kind = GOMP_MAP_FORCE_PRESENT; break; default: gcc_unreachable (); } tree nl, c; nl = c_parser_omp_var_list_parens (parser, OMP_CLAUSE_MAP, list); for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c)) OMP_CLAUSE_SET_MAP_KIND (c, kind); return nl; } /* OpenACC 2.0: deviceptr ( variable-list ) */ static tree c_parser_oacc_data_clause_deviceptr (c_parser *parser, tree list) { location_t loc = c_parser_peek_token (parser)->location; tree vars, t; /* Can't use OMP_CLAUSE_MAP here (that is, can't use the generic c_parser_oacc_data_clause), as for PRAGMA_OACC_CLAUSE_DEVICEPTR, variable-list must only allow for pointer variables. */ vars = c_parser_omp_var_list_parens (parser, OMP_CLAUSE_ERROR, NULL); for (t = vars; t && t; t = TREE_CHAIN (t)) { tree v = TREE_PURPOSE (t); /* FIXME diagnostics: Ideally we should keep individual locations for all the variables in the var list to make the following errors more precise. Perhaps c_parser_omp_var_list_parens() should construct a list of locations to go along with the var list. */ if (!VAR_P (v) && TREE_CODE (v) != PARM_DECL) error_at (loc, "%qD is not a variable", v); else if (TREE_TYPE (v) == error_mark_node) ; else if (!POINTER_TYPE_P (TREE_TYPE (v))) error_at (loc, "%qD is not a pointer variable", v); tree u = build_omp_clause (loc, OMP_CLAUSE_MAP); OMP_CLAUSE_SET_MAP_KIND (u, GOMP_MAP_FORCE_DEVICEPTR); OMP_CLAUSE_DECL (u) = v; OMP_CLAUSE_CHAIN (u) = list; list = u; } return list; } /* OpenACC 2.0, OpenMP 3.0: collapse ( constant-expression ) */ static tree c_parser_omp_clause_collapse (c_parser *parser, tree list) { tree c, num = error_mark_node; HOST_WIDE_INT n; location_t loc; check_no_duplicate_clause (list, OMP_CLAUSE_COLLAPSE, "collapse"); check_no_duplicate_clause (list, OMP_CLAUSE_TILE, "tile"); loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { num = c_parser_expr_no_commas (parser, NULL).value; parens.skip_until_found_close (parser); } if (num == error_mark_node) return list; mark_exp_read (num); num = c_fully_fold (num, false, NULL); if (!INTEGRAL_TYPE_P (TREE_TYPE (num)) || !tree_fits_shwi_p (num) || (n = tree_to_shwi (num)) <= 0 || (int) n != n) { error_at (loc, "collapse argument needs positive constant integer expression"); return list; } c = build_omp_clause (loc, OMP_CLAUSE_COLLAPSE); OMP_CLAUSE_COLLAPSE_EXPR (c) = num; OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 2.5: copyin ( variable-list ) */ static tree c_parser_omp_clause_copyin (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_COPYIN, list); } /* OpenMP 2.5: copyprivate ( variable-list ) */ static tree c_parser_omp_clause_copyprivate (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_COPYPRIVATE, list); } /* OpenMP 2.5: default ( none | shared ) OpenACC: default ( none | present ) */ static tree c_parser_omp_clause_default (c_parser *parser, tree list, bool is_oacc) { enum omp_clause_default_kind kind = OMP_CLAUSE_DEFAULT_UNSPECIFIED; location_t loc = c_parser_peek_token (parser)->location; tree c; matching_parens parens; if (!parens.require_open (parser)) return list; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); switch (p[0]) { case 'n': if (strcmp ("none", p) != 0) goto invalid_kind; kind = OMP_CLAUSE_DEFAULT_NONE; break; case 'p': if (strcmp ("present", p) != 0 || !is_oacc) goto invalid_kind; kind = OMP_CLAUSE_DEFAULT_PRESENT; break; case 's': if (strcmp ("shared", p) != 0 || is_oacc) goto invalid_kind; kind = OMP_CLAUSE_DEFAULT_SHARED; break; default: goto invalid_kind; } c_parser_consume_token (parser); } else { invalid_kind: if (is_oacc) c_parser_error (parser, "expected % or %"); else c_parser_error (parser, "expected % or %"); } parens.skip_until_found_close (parser); if (kind == OMP_CLAUSE_DEFAULT_UNSPECIFIED) return list; check_no_duplicate_clause (list, OMP_CLAUSE_DEFAULT, "default"); c = build_omp_clause (loc, OMP_CLAUSE_DEFAULT); OMP_CLAUSE_CHAIN (c) = list; OMP_CLAUSE_DEFAULT_KIND (c) = kind; return c; } /* OpenMP 2.5: firstprivate ( variable-list ) */ static tree c_parser_omp_clause_firstprivate (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_FIRSTPRIVATE, list); } /* OpenMP 3.1: final ( expression ) */ static tree c_parser_omp_clause_final (c_parser *parser, tree list) { location_t loc = c_parser_peek_token (parser)->location; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { matching_parens parens; tree t, c; if (!parens.require_open (parser)) t = error_mark_node; else { location_t eloc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); t = convert_lvalue_to_rvalue (eloc, expr, true, true).value; t = c_objc_common_truthvalue_conversion (eloc, t); t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); } check_no_duplicate_clause (list, OMP_CLAUSE_FINAL, "final"); c = build_omp_clause (loc, OMP_CLAUSE_FINAL); OMP_CLAUSE_FINAL_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } else c_parser_error (parser, "expected %<(%>"); return list; } /* OpenACC, OpenMP 2.5: if ( expression ) OpenMP 4.5: if ( directive-name-modifier : expression ) directive-name-modifier: parallel | task | taskloop | target data | target | target update | target enter data | target exit data OpenMP 5.0: directive-name-modifier: ... | simd | cancel */ static tree c_parser_omp_clause_if (c_parser *parser, tree list, bool is_omp) { location_t location = c_parser_peek_token (parser)->location; enum tree_code if_modifier = ERROR_MARK; matching_parens parens; if (!parens.require_open (parser)) return list; if (is_omp && c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); int n = 2; if (strcmp (p, "cancel") == 0) if_modifier = VOID_CST; else if (strcmp (p, "parallel") == 0) if_modifier = OMP_PARALLEL; else if (strcmp (p, "simd") == 0) if_modifier = OMP_SIMD; else if (strcmp (p, "task") == 0) if_modifier = OMP_TASK; else if (strcmp (p, "taskloop") == 0) if_modifier = OMP_TASKLOOP; else if (strcmp (p, "target") == 0) { if_modifier = OMP_TARGET; if (c_parser_peek_2nd_token (parser)->type == CPP_NAME) { p = IDENTIFIER_POINTER (c_parser_peek_2nd_token (parser)->value); if (strcmp ("data", p) == 0) if_modifier = OMP_TARGET_DATA; else if (strcmp ("update", p) == 0) if_modifier = OMP_TARGET_UPDATE; else if (strcmp ("enter", p) == 0) if_modifier = OMP_TARGET_ENTER_DATA; else if (strcmp ("exit", p) == 0) if_modifier = OMP_TARGET_EXIT_DATA; if (if_modifier != OMP_TARGET) { n = 3; c_parser_consume_token (parser); } else { location_t loc = c_parser_peek_2nd_token (parser)->location; error_at (loc, "expected %, %, % " "or %"); if_modifier = ERROR_MARK; } if (if_modifier == OMP_TARGET_ENTER_DATA || if_modifier == OMP_TARGET_EXIT_DATA) { if (c_parser_peek_2nd_token (parser)->type == CPP_NAME) { p = IDENTIFIER_POINTER (c_parser_peek_2nd_token (parser)->value); if (strcmp ("data", p) == 0) n = 4; } if (n == 4) c_parser_consume_token (parser); else { location_t loc = c_parser_peek_2nd_token (parser)->location; error_at (loc, "expected %"); if_modifier = ERROR_MARK; } } } } if (if_modifier != ERROR_MARK) { if (c_parser_peek_2nd_token (parser)->type == CPP_COLON) { c_parser_consume_token (parser); c_parser_consume_token (parser); } else { if (n > 2) { location_t loc = c_parser_peek_2nd_token (parser)->location; error_at (loc, "expected %<:%>"); } if_modifier = ERROR_MARK; } } } location_t loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (loc, expr, true, true); tree t = c_objc_common_truthvalue_conversion (loc, expr.value), c; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); for (c = list; c ; c = OMP_CLAUSE_CHAIN (c)) if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_IF) { if (if_modifier != ERROR_MARK && OMP_CLAUSE_IF_MODIFIER (c) == if_modifier) { const char *p = NULL; switch (if_modifier) { case VOID_CST: p = "cancel"; break; case OMP_PARALLEL: p = "parallel"; break; case OMP_SIMD: p = "simd"; break; case OMP_TASK: p = "task"; break; case OMP_TASKLOOP: p = "taskloop"; break; case OMP_TARGET_DATA: p = "target data"; break; case OMP_TARGET: p = "target"; break; case OMP_TARGET_UPDATE: p = "target update"; break; case OMP_TARGET_ENTER_DATA: p = "enter data"; break; case OMP_TARGET_EXIT_DATA: p = "exit data"; break; default: gcc_unreachable (); } error_at (location, "too many % clauses with %qs modifier", p); return list; } else if (OMP_CLAUSE_IF_MODIFIER (c) == if_modifier) { if (!is_omp) error_at (location, "too many % clauses"); else error_at (location, "too many % clauses without modifier"); return list; } else if (if_modifier == ERROR_MARK || OMP_CLAUSE_IF_MODIFIER (c) == ERROR_MARK) { error_at (location, "if any % clause has modifier, then all " "% clauses have to use modifier"); return list; } } c = build_omp_clause (location, OMP_CLAUSE_IF); OMP_CLAUSE_IF_MODIFIER (c) = if_modifier; OMP_CLAUSE_IF_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 2.5: lastprivate ( variable-list ) OpenMP 5.0: lastprivate ( [ lastprivate-modifier : ] variable-list ) */ static tree c_parser_omp_clause_lastprivate (c_parser *parser, tree list) { /* The clauses location. */ location_t loc = c_parser_peek_token (parser)->location; if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>")) { bool conditional = false; if (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_2nd_token (parser)->type == CPP_COLON) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "conditional") == 0) { conditional = true; c_parser_consume_token (parser); c_parser_consume_token (parser); } } tree nlist = c_parser_omp_variable_list (parser, loc, OMP_CLAUSE_LASTPRIVATE, list); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); if (conditional) for (tree c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c)) OMP_CLAUSE_LASTPRIVATE_CONDITIONAL (c) = 1; return nlist; } return list; } /* OpenMP 3.1: mergeable */ static tree c_parser_omp_clause_mergeable (c_parser *parser ATTRIBUTE_UNUSED, tree list) { tree c; /* FIXME: Should we allow duplicates? */ check_no_duplicate_clause (list, OMP_CLAUSE_MERGEABLE, "mergeable"); c = build_omp_clause (c_parser_peek_token (parser)->location, OMP_CLAUSE_MERGEABLE); OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 2.5: nowait */ static tree c_parser_omp_clause_nowait (c_parser *parser ATTRIBUTE_UNUSED, tree list) { tree c; location_t loc = c_parser_peek_token (parser)->location; check_no_duplicate_clause (list, OMP_CLAUSE_NOWAIT, "nowait"); c = build_omp_clause (loc, OMP_CLAUSE_NOWAIT); OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 2.5: num_threads ( expression ) */ static tree c_parser_omp_clause_num_threads (c_parser *parser, tree list) { location_t num_threads_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) { c_parser_error (parser, "expected integer expression"); return list; } /* Attempt to statically determine when the number isn't positive. */ c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t, build_int_cst (TREE_TYPE (t), 0)); protected_set_expr_location (c, expr_loc); if (c == boolean_true_node) { warning_at (expr_loc, 0, "% value must be positive"); t = integer_one_node; } check_no_duplicate_clause (list, OMP_CLAUSE_NUM_THREADS, "num_threads"); c = build_omp_clause (num_threads_loc, OMP_CLAUSE_NUM_THREADS); OMP_CLAUSE_NUM_THREADS_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 4.5: num_tasks ( expression ) */ static tree c_parser_omp_clause_num_tasks (c_parser *parser, tree list) { location_t num_tasks_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) { c_parser_error (parser, "expected integer expression"); return list; } /* Attempt to statically determine when the number isn't positive. */ c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t, build_int_cst (TREE_TYPE (t), 0)); if (CAN_HAVE_LOCATION_P (c)) SET_EXPR_LOCATION (c, expr_loc); if (c == boolean_true_node) { warning_at (expr_loc, 0, "% value must be positive"); t = integer_one_node; } check_no_duplicate_clause (list, OMP_CLAUSE_NUM_TASKS, "num_tasks"); c = build_omp_clause (num_tasks_loc, OMP_CLAUSE_NUM_TASKS); OMP_CLAUSE_NUM_TASKS_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 4.5: grainsize ( expression ) */ static tree c_parser_omp_clause_grainsize (c_parser *parser, tree list) { location_t grainsize_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) { c_parser_error (parser, "expected integer expression"); return list; } /* Attempt to statically determine when the number isn't positive. */ c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t, build_int_cst (TREE_TYPE (t), 0)); if (CAN_HAVE_LOCATION_P (c)) SET_EXPR_LOCATION (c, expr_loc); if (c == boolean_true_node) { warning_at (expr_loc, 0, "% value must be positive"); t = integer_one_node; } check_no_duplicate_clause (list, OMP_CLAUSE_GRAINSIZE, "grainsize"); c = build_omp_clause (grainsize_loc, OMP_CLAUSE_GRAINSIZE); OMP_CLAUSE_GRAINSIZE_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 4.5: priority ( expression ) */ static tree c_parser_omp_clause_priority (c_parser *parser, tree list) { location_t priority_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) { c_parser_error (parser, "expected integer expression"); return list; } /* Attempt to statically determine when the number isn't non-negative. */ c = fold_build2_loc (expr_loc, LT_EXPR, boolean_type_node, t, build_int_cst (TREE_TYPE (t), 0)); if (CAN_HAVE_LOCATION_P (c)) SET_EXPR_LOCATION (c, expr_loc); if (c == boolean_true_node) { warning_at (expr_loc, 0, "% value must be non-negative"); t = integer_one_node; } check_no_duplicate_clause (list, OMP_CLAUSE_PRIORITY, "priority"); c = build_omp_clause (priority_loc, OMP_CLAUSE_PRIORITY); OMP_CLAUSE_PRIORITY_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 4.5: hint ( expression ) */ static tree c_parser_omp_clause_hint (c_parser *parser, tree list) { location_t hint_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (t)) || TREE_CODE (t) != INTEGER_CST) { c_parser_error (parser, "expected constant integer expression"); return list; } check_no_duplicate_clause (list, OMP_CLAUSE_HINT, "hint"); c = build_omp_clause (hint_loc, OMP_CLAUSE_HINT); OMP_CLAUSE_HINT_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 4.5: defaultmap ( tofrom : scalar ) OpenMP 5.0: defaultmap ( implicit-behavior [ : variable-category ] ) */ static tree c_parser_omp_clause_defaultmap (c_parser *parser, tree list) { location_t loc = c_parser_peek_token (parser)->location; tree c; const char *p; enum omp_clause_defaultmap_kind behavior = OMP_CLAUSE_DEFAULTMAP_DEFAULT; enum omp_clause_defaultmap_kind category = OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED; matching_parens parens; if (!parens.require_open (parser)) return list; if (c_parser_next_token_is_keyword (parser, RID_DEFAULT)) p = "default"; else if (!c_parser_next_token_is (parser, CPP_NAME)) { invalid_behavior: c_parser_error (parser, "expected %, %, %, " "%, %, % " "or %"); goto out_err; } else p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); switch (p[0]) { case 'a': if (strcmp ("alloc", p) == 0) behavior = OMP_CLAUSE_DEFAULTMAP_ALLOC; else goto invalid_behavior; break; case 'd': if (strcmp ("default", p) == 0) behavior = OMP_CLAUSE_DEFAULTMAP_DEFAULT; else goto invalid_behavior; break; case 'f': if (strcmp ("firstprivate", p) == 0) behavior = OMP_CLAUSE_DEFAULTMAP_FIRSTPRIVATE; else if (strcmp ("from", p) == 0) behavior = OMP_CLAUSE_DEFAULTMAP_FROM; else goto invalid_behavior; break; case 'n': if (strcmp ("none", p) == 0) behavior = OMP_CLAUSE_DEFAULTMAP_NONE; else goto invalid_behavior; break; case 't': if (strcmp ("tofrom", p) == 0) behavior = OMP_CLAUSE_DEFAULTMAP_TOFROM; else if (strcmp ("to", p) == 0) behavior = OMP_CLAUSE_DEFAULTMAP_TO; else goto invalid_behavior; break; default: goto invalid_behavior; } c_parser_consume_token (parser); if (!c_parser_next_token_is (parser, CPP_CLOSE_PAREN)) { if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) goto out_err; if (!c_parser_next_token_is (parser, CPP_NAME)) { invalid_category: c_parser_error (parser, "expected %, % or " "%"); goto out_err; } p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); switch (p[0]) { case 'a': if (strcmp ("aggregate", p) == 0) category = OMP_CLAUSE_DEFAULTMAP_CATEGORY_AGGREGATE; else goto invalid_category; break; case 'p': if (strcmp ("pointer", p) == 0) category = OMP_CLAUSE_DEFAULTMAP_CATEGORY_POINTER; else goto invalid_category; break; case 's': if (strcmp ("scalar", p) == 0) category = OMP_CLAUSE_DEFAULTMAP_CATEGORY_SCALAR; else goto invalid_category; break; default: goto invalid_category; } c_parser_consume_token (parser); } parens.skip_until_found_close (parser); for (c = list; c ; c = OMP_CLAUSE_CHAIN (c)) if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_DEFAULTMAP && (category == OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED || OMP_CLAUSE_DEFAULTMAP_CATEGORY (c) == category || (OMP_CLAUSE_DEFAULTMAP_CATEGORY (c) == OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED))) { enum omp_clause_defaultmap_kind cat = category; location_t loc = OMP_CLAUSE_LOCATION (c); if (cat == OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED) cat = OMP_CLAUSE_DEFAULTMAP_CATEGORY (c); p = NULL; switch (cat) { case OMP_CLAUSE_DEFAULTMAP_CATEGORY_UNSPECIFIED: p = NULL; break; case OMP_CLAUSE_DEFAULTMAP_CATEGORY_AGGREGATE: p = "aggregate"; break; case OMP_CLAUSE_DEFAULTMAP_CATEGORY_POINTER: p = "pointer"; break; case OMP_CLAUSE_DEFAULTMAP_CATEGORY_SCALAR: p = "scalar"; break; default: gcc_unreachable (); } if (p) error_at (loc, "too many % clauses with %qs category", p); else error_at (loc, "too many % clauses with unspecified " "category"); break; } c = build_omp_clause (loc, OMP_CLAUSE_DEFAULTMAP); OMP_CLAUSE_DEFAULTMAP_SET_KIND (c, behavior, category); OMP_CLAUSE_CHAIN (c) = list; return c; out_err: parens.skip_until_found_close (parser); return list; } /* OpenACC 2.0: use_device ( variable-list ) OpenMP 4.5: use_device_ptr ( variable-list ) */ static tree c_parser_omp_clause_use_device_ptr (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_USE_DEVICE_PTR, list); } /* OpenMP 4.5: is_device_ptr ( variable-list ) */ static tree c_parser_omp_clause_is_device_ptr (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_IS_DEVICE_PTR, list); } /* OpenACC: num_gangs ( expression ) num_workers ( expression ) vector_length ( expression ) */ static tree c_parser_oacc_single_int_clause (c_parser *parser, omp_clause_code code, tree list) { location_t loc = c_parser_peek_token (parser)->location; matching_parens parens; if (!parens.require_open (parser)) return list; location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expression (parser); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (t == error_mark_node) return list; else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) { error_at (expr_loc, "%qs expression must be integral", omp_clause_code_name[code]); return list; } /* Attempt to statically determine when the number isn't positive. */ c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t, build_int_cst (TREE_TYPE (t), 0)); protected_set_expr_location (c, expr_loc); if (c == boolean_true_node) { warning_at (expr_loc, 0, "%qs value must be positive", omp_clause_code_name[code]); t = integer_one_node; } check_no_duplicate_clause (list, code, omp_clause_code_name[code]); c = build_omp_clause (loc, code); OMP_CLAUSE_OPERAND (c, 0) = t; OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenACC: gang [( gang-arg-list )] worker [( [num:] int-expr )] vector [( [length:] int-expr )] where gang-arg is one of: [num:] int-expr static: size-expr and size-expr may be: * int-expr */ static tree c_parser_oacc_shape_clause (c_parser *parser, location_t loc, omp_clause_code kind, const char *str, tree list) { const char *id = "num"; tree ops[2] = { NULL_TREE, NULL_TREE }, c; if (kind == OMP_CLAUSE_VECTOR) id = "length"; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { c_parser_consume_token (parser); do { c_token *next = c_parser_peek_token (parser); int idx = 0; /* Gang static argument. */ if (kind == OMP_CLAUSE_GANG && c_parser_next_token_is_keyword (parser, RID_STATIC)) { c_parser_consume_token (parser); if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) goto cleanup_error; idx = 1; if (ops[idx] != NULL_TREE) { c_parser_error (parser, "too many % arguments"); goto cleanup_error; } /* Check for the '*' argument. */ if (c_parser_next_token_is (parser, CPP_MULT) && (c_parser_peek_2nd_token (parser)->type == CPP_COMMA || c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_PAREN)) { c_parser_consume_token (parser); ops[idx] = integer_minus_one_node; if (c_parser_next_token_is (parser, CPP_COMMA)) { c_parser_consume_token (parser); continue; } else break; } } /* Worker num: argument and vector length: arguments. */ else if (c_parser_next_token_is (parser, CPP_NAME) && strcmp (id, IDENTIFIER_POINTER (next->value)) == 0 && c_parser_peek_2nd_token (parser)->type == CPP_COLON) { c_parser_consume_token (parser); /* id */ c_parser_consume_token (parser); /* ':' */ } /* Now collect the actual argument. */ if (ops[idx] != NULL_TREE) { c_parser_error (parser, "unexpected argument"); goto cleanup_error; } location_t expr_loc = c_parser_peek_token (parser)->location; c_expr cexpr = c_parser_expr_no_commas (parser, NULL); cexpr = convert_lvalue_to_rvalue (expr_loc, cexpr, false, true); tree expr = cexpr.value; if (expr == error_mark_node) goto cleanup_error; expr = c_fully_fold (expr, false, NULL); /* Attempt to statically determine when the number isn't a positive integer. */ if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))) { c_parser_error (parser, "expected integer expression"); return list; } tree c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, expr, build_int_cst (TREE_TYPE (expr), 0)); if (c == boolean_true_node) { warning_at (loc, 0, "%qs value must be positive", str); expr = integer_one_node; } ops[idx] = expr; if (kind == OMP_CLAUSE_GANG && c_parser_next_token_is (parser, CPP_COMMA)) { c_parser_consume_token (parser); continue; } break; } while (1); if (!c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>")) goto cleanup_error; } check_no_duplicate_clause (list, kind, str); c = build_omp_clause (loc, kind); if (ops[1]) OMP_CLAUSE_OPERAND (c, 1) = ops[1]; OMP_CLAUSE_OPERAND (c, 0) = ops[0]; OMP_CLAUSE_CHAIN (c) = list; return c; cleanup_error: c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, 0); return list; } /* OpenACC 2.5: auto finalize independent nohost seq */ static tree c_parser_oacc_simple_clause (location_t loc, enum omp_clause_code code, tree list) { check_no_duplicate_clause (list, code, omp_clause_code_name[code]); tree c = build_omp_clause (loc, code); OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenACC: async [( int-expr )] */ static tree c_parser_oacc_clause_async (c_parser *parser, tree list) { tree c, t; location_t loc = c_parser_peek_token (parser)->location; t = build_int_cst (integer_type_node, GOMP_ASYNC_NOVAL); if (c_parser_peek_token (parser)->type == CPP_OPEN_PAREN) { c_parser_consume_token (parser); t = c_parser_expression (parser).value; if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) c_parser_error (parser, "expected integer expression"); else if (t == error_mark_node || !c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>")) return list; } else t = c_fully_fold (t, false, NULL); check_no_duplicate_clause (list, OMP_CLAUSE_ASYNC, "async"); c = build_omp_clause (loc, OMP_CLAUSE_ASYNC); OMP_CLAUSE_ASYNC_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; return list; } /* OpenACC 2.0: tile ( size-expr-list ) */ static tree c_parser_oacc_clause_tile (c_parser *parser, tree list) { tree c, expr = error_mark_node; location_t loc; tree tile = NULL_TREE; check_no_duplicate_clause (list, OMP_CLAUSE_TILE, "tile"); check_no_duplicate_clause (list, OMP_CLAUSE_COLLAPSE, "collapse"); loc = c_parser_peek_token (parser)->location; if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>")) return list; do { if (tile && !c_parser_require (parser, CPP_COMMA, "expected %<,%>")) return list; if (c_parser_next_token_is (parser, CPP_MULT) && (c_parser_peek_2nd_token (parser)->type == CPP_COMMA || c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_PAREN)) { c_parser_consume_token (parser); expr = integer_zero_node; } else { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr cexpr = c_parser_expr_no_commas (parser, NULL); cexpr = convert_lvalue_to_rvalue (expr_loc, cexpr, false, true); expr = cexpr.value; if (expr == error_mark_node) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return list; } expr = c_fully_fold (expr, false, NULL); if (!INTEGRAL_TYPE_P (TREE_TYPE (expr)) || !tree_fits_shwi_p (expr) || tree_to_shwi (expr) <= 0) { error_at (expr_loc, "% argument needs positive" " integral constant"); expr = integer_zero_node; } } tile = tree_cons (NULL_TREE, expr, tile); } while (c_parser_next_token_is_not (parser, CPP_CLOSE_PAREN)); /* Consume the trailing ')'. */ c_parser_consume_token (parser); c = build_omp_clause (loc, OMP_CLAUSE_TILE); tile = nreverse (tile); OMP_CLAUSE_TILE_LIST (c) = tile; OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenACC: wait [( int-expr-list )] */ static tree c_parser_oacc_clause_wait (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; if (c_parser_peek_token (parser)->type == CPP_OPEN_PAREN) list = c_parser_oacc_wait_list (parser, clause_loc, list); else { tree c = build_omp_clause (clause_loc, OMP_CLAUSE_WAIT); OMP_CLAUSE_DECL (c) = build_int_cst (integer_type_node, GOMP_ASYNC_NOVAL); OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 2.5: ordered OpenMP 4.5: ordered ( constant-expression ) */ static tree c_parser_omp_clause_ordered (c_parser *parser, tree list) { check_no_duplicate_clause (list, OMP_CLAUSE_ORDERED, "ordered"); tree c, num = NULL_TREE; HOST_WIDE_INT n; location_t loc = c_parser_peek_token (parser)->location; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { matching_parens parens; parens.consume_open (parser); num = c_parser_expr_no_commas (parser, NULL).value; parens.skip_until_found_close (parser); } if (num == error_mark_node) return list; if (num) { mark_exp_read (num); num = c_fully_fold (num, false, NULL); if (!INTEGRAL_TYPE_P (TREE_TYPE (num)) || !tree_fits_shwi_p (num) || (n = tree_to_shwi (num)) <= 0 || (int) n != n) { error_at (loc, "ordered argument needs positive " "constant integer expression"); return list; } } c = build_omp_clause (loc, OMP_CLAUSE_ORDERED); OMP_CLAUSE_ORDERED_EXPR (c) = num; OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 2.5: private ( variable-list ) */ static tree c_parser_omp_clause_private (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_PRIVATE, list); } /* OpenMP 2.5: reduction ( reduction-operator : variable-list ) reduction-operator: One of: + * - & ^ | && || OpenMP 3.1: reduction-operator: One of: + * - & ^ | && || max min OpenMP 4.0: reduction-operator: One of: + * - & ^ | && || identifier OpenMP 5.0: reduction ( reduction-modifier, reduction-operator : variable-list ) in_reduction ( reduction-operator : variable-list ) task_reduction ( reduction-operator : variable-list ) */ static tree c_parser_omp_clause_reduction (c_parser *parser, enum omp_clause_code kind, bool is_omp, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { bool task = false; bool inscan = false; enum tree_code code = ERROR_MARK; tree reduc_id = NULL_TREE; if (kind == OMP_CLAUSE_REDUCTION && is_omp) { if (c_parser_next_token_is_keyword (parser, RID_DEFAULT) && c_parser_peek_2nd_token (parser)->type == CPP_COMMA) { c_parser_consume_token (parser); c_parser_consume_token (parser); } else if (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_2nd_token (parser)->type == CPP_COMMA) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "task") == 0) task = true; else if (strcmp (p, "inscan") == 0) { inscan = true; sorry ("% modifier on % clause " "not supported yet"); } if (task || inscan) { c_parser_consume_token (parser); c_parser_consume_token (parser); } } } switch (c_parser_peek_token (parser)->type) { case CPP_PLUS: code = PLUS_EXPR; break; case CPP_MULT: code = MULT_EXPR; break; case CPP_MINUS: code = MINUS_EXPR; break; case CPP_AND: code = BIT_AND_EXPR; break; case CPP_XOR: code = BIT_XOR_EXPR; break; case CPP_OR: code = BIT_IOR_EXPR; break; case CPP_AND_AND: code = TRUTH_ANDIF_EXPR; break; case CPP_OR_OR: code = TRUTH_ORIF_EXPR; break; case CPP_NAME: { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "min") == 0) { code = MIN_EXPR; break; } if (strcmp (p, "max") == 0) { code = MAX_EXPR; break; } reduc_id = c_parser_peek_token (parser)->value; break; } default: c_parser_error (parser, "expected %<+%>, %<*%>, %<-%>, %<&%>, " "%<^%>, %<|%>, %<&&%>, %<||%> or identifier"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, 0); return list; } c_parser_consume_token (parser); reduc_id = c_omp_reduction_id (code, reduc_id); if (c_parser_require (parser, CPP_COLON, "expected %<:%>")) { tree nl, c; nl = c_parser_omp_variable_list (parser, clause_loc, kind, list); for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c)) { tree d = OMP_CLAUSE_DECL (c), type; if (TREE_CODE (d) != TREE_LIST) type = TREE_TYPE (d); else { int cnt = 0; tree t; for (t = d; TREE_CODE (t) == TREE_LIST; t = TREE_CHAIN (t)) cnt++; type = TREE_TYPE (t); while (cnt > 0) { if (TREE_CODE (type) != POINTER_TYPE && TREE_CODE (type) != ARRAY_TYPE) break; type = TREE_TYPE (type); cnt--; } } while (TREE_CODE (type) == ARRAY_TYPE) type = TREE_TYPE (type); OMP_CLAUSE_REDUCTION_CODE (c) = code; if (task) OMP_CLAUSE_REDUCTION_TASK (c) = 1; else if (inscan) OMP_CLAUSE_REDUCTION_INSCAN (c) = 1; if (code == ERROR_MARK || !(INTEGRAL_TYPE_P (type) || TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == COMPLEX_TYPE)) OMP_CLAUSE_REDUCTION_PLACEHOLDER (c) = c_omp_reduction_lookup (reduc_id, TYPE_MAIN_VARIANT (type)); } list = nl; } parens.skip_until_found_close (parser); } return list; } /* OpenMP 2.5: schedule ( schedule-kind ) schedule ( schedule-kind , expression ) schedule-kind: static | dynamic | guided | runtime | auto OpenMP 4.5: schedule ( schedule-modifier : schedule-kind ) schedule ( schedule-modifier [ , schedule-modifier ] : schedule-kind , expression ) schedule-modifier: simd monotonic nonmonotonic */ static tree c_parser_omp_clause_schedule (c_parser *parser, tree list) { tree c, t; location_t loc = c_parser_peek_token (parser)->location; int modifiers = 0, nmodifiers = 0; matching_parens parens; if (!parens.require_open (parser)) return list; c = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE); while (c_parser_next_token_is (parser, CPP_NAME)) { tree kind = c_parser_peek_token (parser)->value; const char *p = IDENTIFIER_POINTER (kind); if (strcmp ("simd", p) == 0) OMP_CLAUSE_SCHEDULE_SIMD (c) = 1; else if (strcmp ("monotonic", p) == 0) modifiers |= OMP_CLAUSE_SCHEDULE_MONOTONIC; else if (strcmp ("nonmonotonic", p) == 0) modifiers |= OMP_CLAUSE_SCHEDULE_NONMONOTONIC; else break; c_parser_consume_token (parser); if (nmodifiers++ == 0 && c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else { c_parser_require (parser, CPP_COLON, "expected %<:%>"); break; } } if ((modifiers & (OMP_CLAUSE_SCHEDULE_MONOTONIC | OMP_CLAUSE_SCHEDULE_NONMONOTONIC)) == (OMP_CLAUSE_SCHEDULE_MONOTONIC | OMP_CLAUSE_SCHEDULE_NONMONOTONIC)) { error_at (loc, "both % and % modifiers " "specified"); modifiers = 0; } if (c_parser_next_token_is (parser, CPP_NAME)) { tree kind = c_parser_peek_token (parser)->value; const char *p = IDENTIFIER_POINTER (kind); switch (p[0]) { case 'd': if (strcmp ("dynamic", p) != 0) goto invalid_kind; OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_DYNAMIC; break; case 'g': if (strcmp ("guided", p) != 0) goto invalid_kind; OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_GUIDED; break; case 'r': if (strcmp ("runtime", p) != 0) goto invalid_kind; OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_RUNTIME; break; default: goto invalid_kind; } } else if (c_parser_next_token_is_keyword (parser, RID_STATIC)) OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_STATIC; else if (c_parser_next_token_is_keyword (parser, RID_AUTO)) OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_AUTO; else goto invalid_kind; c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_COMMA)) { location_t here; c_parser_consume_token (parser); here = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (here, expr, false, true); t = expr.value; t = c_fully_fold (t, false, NULL); if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_RUNTIME) error_at (here, "schedule % does not take " "a % parameter"); else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_AUTO) error_at (here, "schedule % does not take " "a % parameter"); else if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE) { /* Attempt to statically determine when the number isn't positive. */ tree s = fold_build2_loc (loc, LE_EXPR, boolean_type_node, t, build_int_cst (TREE_TYPE (t), 0)); protected_set_expr_location (s, loc); if (s == boolean_true_node) { warning_at (loc, 0, "chunk size value must be positive"); t = integer_one_node; } OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c) = t; } else c_parser_error (parser, "expected integer expression"); parens.skip_until_found_close (parser); } else c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<,%> or %<)%>"); OMP_CLAUSE_SCHEDULE_KIND (c) = (enum omp_clause_schedule_kind) (OMP_CLAUSE_SCHEDULE_KIND (c) | modifiers); check_no_duplicate_clause (list, OMP_CLAUSE_SCHEDULE, "schedule"); OMP_CLAUSE_CHAIN (c) = list; return c; invalid_kind: c_parser_error (parser, "invalid schedule kind"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, 0); return list; } /* OpenMP 2.5: shared ( variable-list ) */ static tree c_parser_omp_clause_shared (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_SHARED, list); } /* OpenMP 3.0: untied */ static tree c_parser_omp_clause_untied (c_parser *parser ATTRIBUTE_UNUSED, tree list) { tree c; /* FIXME: Should we allow duplicates? */ check_no_duplicate_clause (list, OMP_CLAUSE_UNTIED, "untied"); c = build_omp_clause (c_parser_peek_token (parser)->location, OMP_CLAUSE_UNTIED); OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 4.0: inbranch notinbranch */ static tree c_parser_omp_clause_branch (c_parser *parser ATTRIBUTE_UNUSED, enum omp_clause_code code, tree list) { check_no_duplicate_clause (list, code, omp_clause_code_name[code]); tree c = build_omp_clause (c_parser_peek_token (parser)->location, code); OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 4.0: parallel for sections taskgroup */ static tree c_parser_omp_clause_cancelkind (c_parser *parser ATTRIBUTE_UNUSED, enum omp_clause_code code, tree list) { tree c = build_omp_clause (c_parser_peek_token (parser)->location, code); OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 4.5: nogroup */ static tree c_parser_omp_clause_nogroup (c_parser *parser ATTRIBUTE_UNUSED, tree list) { check_no_duplicate_clause (list, OMP_CLAUSE_NOGROUP, "nogroup"); tree c = build_omp_clause (c_parser_peek_token (parser)->location, OMP_CLAUSE_NOGROUP); OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 4.5: simd threads */ static tree c_parser_omp_clause_orderedkind (c_parser *parser ATTRIBUTE_UNUSED, enum omp_clause_code code, tree list) { check_no_duplicate_clause (list, code, omp_clause_code_name[code]); tree c = build_omp_clause (c_parser_peek_token (parser)->location, code); OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 4.0: num_teams ( expression ) */ static tree c_parser_omp_clause_num_teams (c_parser *parser, tree list) { location_t num_teams_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) { c_parser_error (parser, "expected integer expression"); return list; } /* Attempt to statically determine when the number isn't positive. */ c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t, build_int_cst (TREE_TYPE (t), 0)); protected_set_expr_location (c, expr_loc); if (c == boolean_true_node) { warning_at (expr_loc, 0, "% value must be positive"); t = integer_one_node; } check_no_duplicate_clause (list, OMP_CLAUSE_NUM_TEAMS, "num_teams"); c = build_omp_clause (num_teams_loc, OMP_CLAUSE_NUM_TEAMS); OMP_CLAUSE_NUM_TEAMS_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 4.0: thread_limit ( expression ) */ static tree c_parser_omp_clause_thread_limit (c_parser *parser, tree list) { location_t num_thread_limit_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) { c_parser_error (parser, "expected integer expression"); return list; } /* Attempt to statically determine when the number isn't positive. */ c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t, build_int_cst (TREE_TYPE (t), 0)); protected_set_expr_location (c, expr_loc); if (c == boolean_true_node) { warning_at (expr_loc, 0, "% value must be positive"); t = integer_one_node; } check_no_duplicate_clause (list, OMP_CLAUSE_THREAD_LIMIT, "thread_limit"); c = build_omp_clause (num_thread_limit_loc, OMP_CLAUSE_THREAD_LIMIT); OMP_CLAUSE_THREAD_LIMIT_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 4.0: aligned ( variable-list ) aligned ( variable-list : constant-expression ) */ static tree c_parser_omp_clause_aligned (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; tree nl, c; matching_parens parens; if (!parens.require_open (parser)) return list; nl = c_parser_omp_variable_list (parser, clause_loc, OMP_CLAUSE_ALIGNED, list); if (c_parser_next_token_is (parser, CPP_COLON)) { c_parser_consume_token (parser); location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree alignment = expr.value; alignment = c_fully_fold (alignment, false, NULL); if (TREE_CODE (alignment) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (alignment)) || tree_int_cst_sgn (alignment) != 1) { error_at (clause_loc, "% clause alignment expression must " "be positive constant integer expression"); alignment = NULL_TREE; } for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c)) OMP_CLAUSE_ALIGNED_ALIGNMENT (c) = alignment; } parens.skip_until_found_close (parser); return nl; } /* OpenMP 4.0: linear ( variable-list ) linear ( variable-list : expression ) OpenMP 4.5: linear ( modifier ( variable-list ) ) linear ( modifier ( variable-list ) : expression ) */ static tree c_parser_omp_clause_linear (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; tree nl, c, step; enum omp_clause_linear_kind kind = OMP_CLAUSE_LINEAR_DEFAULT; matching_parens parens; if (!parens.require_open (parser)) return list; if (c_parser_next_token_is (parser, CPP_NAME)) { c_token *tok = c_parser_peek_token (parser); const char *p = IDENTIFIER_POINTER (tok->value); if (strcmp ("val", p) == 0) kind = OMP_CLAUSE_LINEAR_VAL; if (c_parser_peek_2nd_token (parser)->type != CPP_OPEN_PAREN) kind = OMP_CLAUSE_LINEAR_DEFAULT; if (kind != OMP_CLAUSE_LINEAR_DEFAULT) { c_parser_consume_token (parser); c_parser_consume_token (parser); } } nl = c_parser_omp_variable_list (parser, clause_loc, OMP_CLAUSE_LINEAR, list); if (kind != OMP_CLAUSE_LINEAR_DEFAULT) parens.skip_until_found_close (parser); if (c_parser_next_token_is (parser, CPP_COLON)) { c_parser_consume_token (parser); location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); step = expr.value; step = c_fully_fold (step, false, NULL); if (!INTEGRAL_TYPE_P (TREE_TYPE (step))) { error_at (clause_loc, "% clause step expression must " "be integral"); step = integer_one_node; } } else step = integer_one_node; for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c)) { OMP_CLAUSE_LINEAR_STEP (c) = step; OMP_CLAUSE_LINEAR_KIND (c) = kind; } parens.skip_until_found_close (parser); return nl; } /* OpenMP 5.0: nontemporal ( variable-list ) */ static tree c_parser_omp_clause_nontemporal (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_NONTEMPORAL, list); } /* OpenMP 4.0: safelen ( constant-expression ) */ static tree c_parser_omp_clause_safelen (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; tree c, t; matching_parens parens; if (!parens.require_open (parser)) return list; location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); t = expr.value; t = c_fully_fold (t, false, NULL); if (TREE_CODE (t) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (t)) || tree_int_cst_sgn (t) != 1) { error_at (clause_loc, "% clause expression must " "be positive constant integer expression"); t = NULL_TREE; } parens.skip_until_found_close (parser); if (t == NULL_TREE || t == error_mark_node) return list; check_no_duplicate_clause (list, OMP_CLAUSE_SAFELEN, "safelen"); c = build_omp_clause (clause_loc, OMP_CLAUSE_SAFELEN); OMP_CLAUSE_SAFELEN_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 4.0: simdlen ( constant-expression ) */ static tree c_parser_omp_clause_simdlen (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; tree c, t; matching_parens parens; if (!parens.require_open (parser)) return list; location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); t = expr.value; t = c_fully_fold (t, false, NULL); if (TREE_CODE (t) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (t)) || tree_int_cst_sgn (t) != 1) { error_at (clause_loc, "% clause expression must " "be positive constant integer expression"); t = NULL_TREE; } parens.skip_until_found_close (parser); if (t == NULL_TREE || t == error_mark_node) return list; check_no_duplicate_clause (list, OMP_CLAUSE_SIMDLEN, "simdlen"); c = build_omp_clause (clause_loc, OMP_CLAUSE_SIMDLEN); OMP_CLAUSE_SIMDLEN_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 4.5: vec: identifier [+/- integer] vec , identifier [+/- integer] */ static tree c_parser_omp_clause_depend_sink (c_parser *parser, location_t clause_loc, tree list) { tree vec = NULL; if (c_parser_next_token_is_not (parser, CPP_NAME) || c_parser_peek_token (parser)->id_kind != C_ID_ID) { c_parser_error (parser, "expected identifier"); return list; } while (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_token (parser)->id_kind == C_ID_ID) { tree t = lookup_name (c_parser_peek_token (parser)->value); tree addend = NULL; if (t == NULL_TREE) { undeclared_variable (c_parser_peek_token (parser)->location, c_parser_peek_token (parser)->value); t = error_mark_node; } c_parser_consume_token (parser); bool neg = false; if (c_parser_next_token_is (parser, CPP_MINUS)) neg = true; else if (!c_parser_next_token_is (parser, CPP_PLUS)) { addend = integer_zero_node; neg = false; goto add_to_vector; } c_parser_consume_token (parser); if (c_parser_next_token_is_not (parser, CPP_NUMBER)) { c_parser_error (parser, "expected integer"); return list; } addend = c_parser_peek_token (parser)->value; if (TREE_CODE (addend) != INTEGER_CST) { c_parser_error (parser, "expected integer"); return list; } c_parser_consume_token (parser); add_to_vector: if (t != error_mark_node) { vec = tree_cons (addend, t, vec); if (neg) OMP_CLAUSE_DEPEND_SINK_NEGATIVE (vec) = 1; } if (c_parser_next_token_is_not (parser, CPP_COMMA)) break; c_parser_consume_token (parser); } if (vec == NULL_TREE) return list; tree u = build_omp_clause (clause_loc, OMP_CLAUSE_DEPEND); OMP_CLAUSE_DEPEND_KIND (u) = OMP_CLAUSE_DEPEND_SINK; OMP_CLAUSE_DECL (u) = nreverse (vec); OMP_CLAUSE_CHAIN (u) = list; return u; } /* OpenMP 5.0: iterators ( iterators-definition ) iterators-definition: iterator-specifier iterator-specifier , iterators-definition iterator-specifier: identifier = range-specification iterator-type identifier = range-specification range-specification: begin : end begin : end : step */ static tree c_parser_omp_iterators (c_parser *parser) { tree ret = NULL_TREE, *last = &ret; c_parser_consume_token (parser); push_scope (); matching_parens parens; if (!parens.require_open (parser)) return error_mark_node; do { tree iter_type = NULL_TREE, type_expr = NULL_TREE; if (c_parser_next_tokens_start_typename (parser, cla_prefer_id)) { struct c_type_name *type = c_parser_type_name (parser); if (type != NULL) iter_type = groktypename (type, &type_expr, NULL); } if (iter_type == NULL_TREE) iter_type = integer_type_node; location_t loc = c_parser_peek_token (parser)->location; if (!c_parser_next_token_is (parser, CPP_NAME)) { c_parser_error (parser, "expected identifier"); break; } tree id = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); if (!c_parser_require (parser, CPP_EQ, "expected %<=%>")) break; location_t eloc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (eloc, expr, true, false); tree begin = expr.value; if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) break; eloc = c_parser_peek_token (parser)->location; expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (eloc, expr, true, false); tree end = expr.value; tree step = integer_one_node; if (c_parser_next_token_is (parser, CPP_COLON)) { c_parser_consume_token (parser); eloc = c_parser_peek_token (parser)->location; expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (eloc, expr, true, false); step = expr.value; } tree iter_var = build_decl (loc, VAR_DECL, id, iter_type); DECL_ARTIFICIAL (iter_var) = 1; DECL_CONTEXT (iter_var) = current_function_decl; pushdecl (iter_var); *last = make_tree_vec (6); TREE_VEC_ELT (*last, 0) = iter_var; TREE_VEC_ELT (*last, 1) = begin; TREE_VEC_ELT (*last, 2) = end; TREE_VEC_ELT (*last, 3) = step; last = &TREE_CHAIN (*last); if (c_parser_next_token_is (parser, CPP_COMMA)) { c_parser_consume_token (parser); continue; } break; } while (1); parens.skip_until_found_close (parser); return ret ? ret : error_mark_node; } /* OpenMP 4.0: depend ( depend-kind: variable-list ) depend-kind: in | out | inout OpenMP 4.5: depend ( source ) depend ( sink : vec ) OpenMP 5.0: depend ( depend-modifier , depend-kind: variable-list ) depend-kind: in | out | inout | mutexinoutset | depobj depend-modifier: iterator ( iterators-definition ) */ static tree c_parser_omp_clause_depend (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; enum omp_clause_depend_kind kind = OMP_CLAUSE_DEPEND_LAST; tree nl, c, iterators = NULL_TREE; matching_parens parens; if (!parens.require_open (parser)) return list; do { if (c_parser_next_token_is_not (parser, CPP_NAME)) goto invalid_kind; const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp ("iterator", p) == 0 && iterators == NULL_TREE) { iterators = c_parser_omp_iterators (parser); c_parser_require (parser, CPP_COMMA, "expected %<,%>"); continue; } if (strcmp ("in", p) == 0) kind = OMP_CLAUSE_DEPEND_IN; else if (strcmp ("inout", p) == 0) kind = OMP_CLAUSE_DEPEND_INOUT; else if (strcmp ("mutexinoutset", p) == 0) kind = OMP_CLAUSE_DEPEND_MUTEXINOUTSET; else if (strcmp ("out", p) == 0) kind = OMP_CLAUSE_DEPEND_OUT; else if (strcmp ("depobj", p) == 0) kind = OMP_CLAUSE_DEPEND_DEPOBJ; else if (strcmp ("sink", p) == 0) kind = OMP_CLAUSE_DEPEND_SINK; else if (strcmp ("source", p) == 0) kind = OMP_CLAUSE_DEPEND_SOURCE; else goto invalid_kind; break; } while (1); c_parser_consume_token (parser); if (iterators && (kind == OMP_CLAUSE_DEPEND_SOURCE || kind == OMP_CLAUSE_DEPEND_SINK)) { pop_scope (); error_at (clause_loc, "% modifier incompatible with %qs", kind == OMP_CLAUSE_DEPEND_SOURCE ? "source" : "sink"); iterators = NULL_TREE; } if (kind == OMP_CLAUSE_DEPEND_SOURCE) { c = build_omp_clause (clause_loc, OMP_CLAUSE_DEPEND); OMP_CLAUSE_DEPEND_KIND (c) = kind; OMP_CLAUSE_DECL (c) = NULL_TREE; OMP_CLAUSE_CHAIN (c) = list; parens.skip_until_found_close (parser); return c; } if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) goto resync_fail; if (kind == OMP_CLAUSE_DEPEND_SINK) nl = c_parser_omp_clause_depend_sink (parser, clause_loc, list); else { nl = c_parser_omp_variable_list (parser, clause_loc, OMP_CLAUSE_DEPEND, list); if (iterators) { tree block = pop_scope (); if (iterators == error_mark_node) iterators = NULL_TREE; else TREE_VEC_ELT (iterators, 5) = block; } for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c)) { OMP_CLAUSE_DEPEND_KIND (c) = kind; if (iterators) OMP_CLAUSE_DECL (c) = build_tree_list (iterators, OMP_CLAUSE_DECL (c)); } } parens.skip_until_found_close (parser); return nl; invalid_kind: c_parser_error (parser, "invalid depend kind"); resync_fail: parens.skip_until_found_close (parser); if (iterators) pop_scope (); return list; } /* OpenMP 4.0: map ( map-kind: variable-list ) map ( variable-list ) map-kind: alloc | to | from | tofrom OpenMP 4.5: map-kind: alloc | to | from | tofrom | release | delete map ( always [,] map-kind: variable-list ) */ static tree c_parser_omp_clause_map (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; enum gomp_map_kind kind = GOMP_MAP_TOFROM; int always = 0; enum c_id_kind always_id_kind = C_ID_NONE; location_t always_loc = UNKNOWN_LOCATION; tree always_id = NULL_TREE; tree nl, c; matching_parens parens; if (!parens.require_open (parser)) return list; if (c_parser_next_token_is (parser, CPP_NAME)) { c_token *tok = c_parser_peek_token (parser); const char *p = IDENTIFIER_POINTER (tok->value); always_id_kind = tok->id_kind; always_loc = tok->location; always_id = tok->value; if (strcmp ("always", p) == 0) { c_token *sectok = c_parser_peek_2nd_token (parser); if (sectok->type == CPP_COMMA) { c_parser_consume_token (parser); c_parser_consume_token (parser); always = 2; } else if (sectok->type == CPP_NAME) { p = IDENTIFIER_POINTER (sectok->value); if (strcmp ("alloc", p) == 0 || strcmp ("to", p) == 0 || strcmp ("from", p) == 0 || strcmp ("tofrom", p) == 0 || strcmp ("release", p) == 0 || strcmp ("delete", p) == 0) { c_parser_consume_token (parser); always = 1; } } } } if (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_2nd_token (parser)->type == CPP_COLON) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp ("alloc", p) == 0) kind = GOMP_MAP_ALLOC; else if (strcmp ("to", p) == 0) kind = always ? GOMP_MAP_ALWAYS_TO : GOMP_MAP_TO; else if (strcmp ("from", p) == 0) kind = always ? GOMP_MAP_ALWAYS_FROM : GOMP_MAP_FROM; else if (strcmp ("tofrom", p) == 0) kind = always ? GOMP_MAP_ALWAYS_TOFROM : GOMP_MAP_TOFROM; else if (strcmp ("release", p) == 0) kind = GOMP_MAP_RELEASE; else if (strcmp ("delete", p) == 0) kind = GOMP_MAP_DELETE; else { c_parser_error (parser, "invalid map kind"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return list; } c_parser_consume_token (parser); c_parser_consume_token (parser); } else if (always) { if (always_id_kind != C_ID_ID) { c_parser_error (parser, "expected identifier"); parens.skip_until_found_close (parser); return list; } tree t = lookup_name (always_id); if (t == NULL_TREE) { undeclared_variable (always_loc, always_id); t = error_mark_node; } if (t != error_mark_node) { tree u = build_omp_clause (clause_loc, OMP_CLAUSE_MAP); OMP_CLAUSE_DECL (u) = t; OMP_CLAUSE_CHAIN (u) = list; OMP_CLAUSE_SET_MAP_KIND (u, kind); list = u; } if (always == 1) { parens.skip_until_found_close (parser); return list; } } nl = c_parser_omp_variable_list (parser, clause_loc, OMP_CLAUSE_MAP, list); for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c)) OMP_CLAUSE_SET_MAP_KIND (c, kind); parens.skip_until_found_close (parser); return nl; } /* OpenMP 4.0: device ( expression ) */ static tree c_parser_omp_clause_device (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); tree c, t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) { c_parser_error (parser, "expected integer expression"); return list; } check_no_duplicate_clause (list, OMP_CLAUSE_DEVICE, "device"); c = build_omp_clause (clause_loc, OMP_CLAUSE_DEVICE); OMP_CLAUSE_DEVICE_ID (c) = t; OMP_CLAUSE_CHAIN (c) = list; list = c; } return list; } /* OpenMP 4.0: dist_schedule ( static ) dist_schedule ( static , expression ) */ static tree c_parser_omp_clause_dist_schedule (c_parser *parser, tree list) { tree c, t = NULL_TREE; location_t loc = c_parser_peek_token (parser)->location; matching_parens parens; if (!parens.require_open (parser)) return list; if (!c_parser_next_token_is_keyword (parser, RID_STATIC)) { c_parser_error (parser, "invalid dist_schedule kind"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); return list; } c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_COMMA)) { c_parser_consume_token (parser); location_t expr_loc = c_parser_peek_token (parser)->location; c_expr expr = c_parser_expr_no_commas (parser, NULL); expr = convert_lvalue_to_rvalue (expr_loc, expr, false, true); t = expr.value; t = c_fully_fold (t, false, NULL); parens.skip_until_found_close (parser); } else c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<,%> or %<)%>"); check_no_duplicate_clause (list, OMP_CLAUSE_SCHEDULE, "schedule"); if (t == error_mark_node) return list; c = build_omp_clause (loc, OMP_CLAUSE_DIST_SCHEDULE); OMP_CLAUSE_DIST_SCHEDULE_CHUNK_EXPR (c) = t; OMP_CLAUSE_CHAIN (c) = list; return c; } /* OpenMP 4.0: proc_bind ( proc-bind-kind ) proc-bind-kind: master | close | spread */ static tree c_parser_omp_clause_proc_bind (c_parser *parser, tree list) { location_t clause_loc = c_parser_peek_token (parser)->location; enum omp_clause_proc_bind_kind kind; tree c; matching_parens parens; if (!parens.require_open (parser)) return list; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp ("master", p) == 0) kind = OMP_CLAUSE_PROC_BIND_MASTER; else if (strcmp ("close", p) == 0) kind = OMP_CLAUSE_PROC_BIND_CLOSE; else if (strcmp ("spread", p) == 0) kind = OMP_CLAUSE_PROC_BIND_SPREAD; else goto invalid_kind; } else goto invalid_kind; c_parser_consume_token (parser); parens.skip_until_found_close (parser); c = build_omp_clause (clause_loc, OMP_CLAUSE_PROC_BIND); OMP_CLAUSE_PROC_BIND_KIND (c) = kind; OMP_CLAUSE_CHAIN (c) = list; return c; invalid_kind: c_parser_error (parser, "invalid proc_bind kind"); parens.skip_until_found_close (parser); return list; } /* OpenMP 4.0: to ( variable-list ) */ static tree c_parser_omp_clause_to (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_TO, list); } /* OpenMP 4.0: from ( variable-list ) */ static tree c_parser_omp_clause_from (c_parser *parser, tree list) { return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_FROM, list); } /* OpenMP 4.0: uniform ( variable-list ) */ static tree c_parser_omp_clause_uniform (c_parser *parser, tree list) { /* The clauses location. */ location_t loc = c_parser_peek_token (parser)->location; matching_parens parens; if (parens.require_open (parser)) { list = c_parser_omp_variable_list (parser, loc, OMP_CLAUSE_UNIFORM, list); parens.skip_until_found_close (parser); } return list; } /* Parse all OpenACC clauses. The set clauses allowed by the directive is a bitmask in MASK. Return the list of clauses found. */ static tree c_parser_oacc_all_clauses (c_parser *parser, omp_clause_mask mask, const char *where, bool finish_p = true) { tree clauses = NULL; bool first = true; while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) { location_t here; pragma_omp_clause c_kind; const char *c_name; tree prev = clauses; if (!first && c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); here = c_parser_peek_token (parser)->location; c_kind = c_parser_omp_clause_name (parser); switch (c_kind) { case PRAGMA_OACC_CLAUSE_ASYNC: clauses = c_parser_oacc_clause_async (parser, clauses); c_name = "async"; break; case PRAGMA_OACC_CLAUSE_AUTO: clauses = c_parser_oacc_simple_clause (here, OMP_CLAUSE_AUTO, clauses); c_name = "auto"; break; case PRAGMA_OACC_CLAUSE_COLLAPSE: clauses = c_parser_omp_clause_collapse (parser, clauses); c_name = "collapse"; break; case PRAGMA_OACC_CLAUSE_COPY: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "copy"; break; case PRAGMA_OACC_CLAUSE_COPYIN: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "copyin"; break; case PRAGMA_OACC_CLAUSE_COPYOUT: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "copyout"; break; case PRAGMA_OACC_CLAUSE_CREATE: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "create"; break; case PRAGMA_OACC_CLAUSE_DELETE: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "delete"; break; case PRAGMA_OMP_CLAUSE_DEFAULT: clauses = c_parser_omp_clause_default (parser, clauses, true); c_name = "default"; break; case PRAGMA_OACC_CLAUSE_DEVICE: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "device"; break; case PRAGMA_OACC_CLAUSE_DEVICEPTR: clauses = c_parser_oacc_data_clause_deviceptr (parser, clauses); c_name = "deviceptr"; break; case PRAGMA_OACC_CLAUSE_DEVICE_RESIDENT: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "device_resident"; break; case PRAGMA_OACC_CLAUSE_FINALIZE: clauses = c_parser_oacc_simple_clause (here, OMP_CLAUSE_FINALIZE, clauses); c_name = "finalize"; break; case PRAGMA_OACC_CLAUSE_FIRSTPRIVATE: clauses = c_parser_omp_clause_firstprivate (parser, clauses); c_name = "firstprivate"; break; case PRAGMA_OACC_CLAUSE_GANG: c_name = "gang"; clauses = c_parser_oacc_shape_clause (parser, here, OMP_CLAUSE_GANG, c_name, clauses); break; case PRAGMA_OACC_CLAUSE_HOST: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "host"; break; case PRAGMA_OACC_CLAUSE_IF: clauses = c_parser_omp_clause_if (parser, clauses, false); c_name = "if"; break; case PRAGMA_OACC_CLAUSE_IF_PRESENT: clauses = c_parser_oacc_simple_clause (here, OMP_CLAUSE_IF_PRESENT, clauses); c_name = "if_present"; break; case PRAGMA_OACC_CLAUSE_INDEPENDENT: clauses = c_parser_oacc_simple_clause (here, OMP_CLAUSE_INDEPENDENT, clauses); c_name = "independent"; break; case PRAGMA_OACC_CLAUSE_LINK: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "link"; break; case PRAGMA_OACC_CLAUSE_NUM_GANGS: clauses = c_parser_oacc_single_int_clause (parser, OMP_CLAUSE_NUM_GANGS, clauses); c_name = "num_gangs"; break; case PRAGMA_OACC_CLAUSE_NUM_WORKERS: clauses = c_parser_oacc_single_int_clause (parser, OMP_CLAUSE_NUM_WORKERS, clauses); c_name = "num_workers"; break; case PRAGMA_OACC_CLAUSE_PRESENT: clauses = c_parser_oacc_data_clause (parser, c_kind, clauses); c_name = "present"; break; case PRAGMA_OACC_CLAUSE_PRIVATE: clauses = c_parser_omp_clause_private (parser, clauses); c_name = "private"; break; case PRAGMA_OACC_CLAUSE_REDUCTION: clauses = c_parser_omp_clause_reduction (parser, OMP_CLAUSE_REDUCTION, false, clauses); c_name = "reduction"; break; case PRAGMA_OACC_CLAUSE_SEQ: clauses = c_parser_oacc_simple_clause (here, OMP_CLAUSE_SEQ, clauses); c_name = "seq"; break; case PRAGMA_OACC_CLAUSE_TILE: clauses = c_parser_oacc_clause_tile (parser, clauses); c_name = "tile"; break; case PRAGMA_OACC_CLAUSE_USE_DEVICE: clauses = c_parser_omp_clause_use_device_ptr (parser, clauses); c_name = "use_device"; break; case PRAGMA_OACC_CLAUSE_VECTOR: c_name = "vector"; clauses = c_parser_oacc_shape_clause (parser, here, OMP_CLAUSE_VECTOR, c_name, clauses); break; case PRAGMA_OACC_CLAUSE_VECTOR_LENGTH: clauses = c_parser_oacc_single_int_clause (parser, OMP_CLAUSE_VECTOR_LENGTH, clauses); c_name = "vector_length"; break; case PRAGMA_OACC_CLAUSE_WAIT: clauses = c_parser_oacc_clause_wait (parser, clauses); c_name = "wait"; break; case PRAGMA_OACC_CLAUSE_WORKER: c_name = "worker"; clauses = c_parser_oacc_shape_clause (parser, here, OMP_CLAUSE_WORKER, c_name, clauses); break; default: c_parser_error (parser, "expected %<#pragma acc%> clause"); goto saw_error; } first = false; if (((mask >> c_kind) & 1) == 0) { /* Remove the invalid clause(s) from the list to avoid confusing the rest of the compiler. */ clauses = prev; error_at (here, "%qs is not valid for %qs", c_name, where); } } saw_error: c_parser_skip_to_pragma_eol (parser); if (finish_p) return c_finish_omp_clauses (clauses, C_ORT_ACC); return clauses; } /* Parse all OpenMP clauses. The set clauses allowed by the directive is a bitmask in MASK. Return the list of clauses found. */ static tree c_parser_omp_all_clauses (c_parser *parser, omp_clause_mask mask, const char *where, bool finish_p = true) { tree clauses = NULL; bool first = true; while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) { location_t here; pragma_omp_clause c_kind; const char *c_name; tree prev = clauses; if (!first && c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); here = c_parser_peek_token (parser)->location; c_kind = c_parser_omp_clause_name (parser); switch (c_kind) { case PRAGMA_OMP_CLAUSE_COLLAPSE: clauses = c_parser_omp_clause_collapse (parser, clauses); c_name = "collapse"; break; case PRAGMA_OMP_CLAUSE_COPYIN: clauses = c_parser_omp_clause_copyin (parser, clauses); c_name = "copyin"; break; case PRAGMA_OMP_CLAUSE_COPYPRIVATE: clauses = c_parser_omp_clause_copyprivate (parser, clauses); c_name = "copyprivate"; break; case PRAGMA_OMP_CLAUSE_DEFAULT: clauses = c_parser_omp_clause_default (parser, clauses, false); c_name = "default"; break; case PRAGMA_OMP_CLAUSE_FIRSTPRIVATE: clauses = c_parser_omp_clause_firstprivate (parser, clauses); c_name = "firstprivate"; break; case PRAGMA_OMP_CLAUSE_FINAL: clauses = c_parser_omp_clause_final (parser, clauses); c_name = "final"; break; case PRAGMA_OMP_CLAUSE_GRAINSIZE: clauses = c_parser_omp_clause_grainsize (parser, clauses); c_name = "grainsize"; break; case PRAGMA_OMP_CLAUSE_HINT: clauses = c_parser_omp_clause_hint (parser, clauses); c_name = "hint"; break; case PRAGMA_OMP_CLAUSE_DEFAULTMAP: clauses = c_parser_omp_clause_defaultmap (parser, clauses); c_name = "defaultmap"; break; case PRAGMA_OMP_CLAUSE_IF: clauses = c_parser_omp_clause_if (parser, clauses, true); c_name = "if"; break; case PRAGMA_OMP_CLAUSE_IN_REDUCTION: clauses = c_parser_omp_clause_reduction (parser, OMP_CLAUSE_IN_REDUCTION, true, clauses); c_name = "in_reduction"; break; case PRAGMA_OMP_CLAUSE_LASTPRIVATE: clauses = c_parser_omp_clause_lastprivate (parser, clauses); c_name = "lastprivate"; break; case PRAGMA_OMP_CLAUSE_MERGEABLE: clauses = c_parser_omp_clause_mergeable (parser, clauses); c_name = "mergeable"; break; case PRAGMA_OMP_CLAUSE_NOWAIT: clauses = c_parser_omp_clause_nowait (parser, clauses); c_name = "nowait"; break; case PRAGMA_OMP_CLAUSE_NUM_TASKS: clauses = c_parser_omp_clause_num_tasks (parser, clauses); c_name = "num_tasks"; break; case PRAGMA_OMP_CLAUSE_NUM_THREADS: clauses = c_parser_omp_clause_num_threads (parser, clauses); c_name = "num_threads"; break; case PRAGMA_OMP_CLAUSE_ORDERED: clauses = c_parser_omp_clause_ordered (parser, clauses); c_name = "ordered"; break; case PRAGMA_OMP_CLAUSE_PRIORITY: clauses = c_parser_omp_clause_priority (parser, clauses); c_name = "priority"; break; case PRAGMA_OMP_CLAUSE_PRIVATE: clauses = c_parser_omp_clause_private (parser, clauses); c_name = "private"; break; case PRAGMA_OMP_CLAUSE_REDUCTION: clauses = c_parser_omp_clause_reduction (parser, OMP_CLAUSE_REDUCTION, true, clauses); c_name = "reduction"; break; case PRAGMA_OMP_CLAUSE_SCHEDULE: clauses = c_parser_omp_clause_schedule (parser, clauses); c_name = "schedule"; break; case PRAGMA_OMP_CLAUSE_SHARED: clauses = c_parser_omp_clause_shared (parser, clauses); c_name = "shared"; break; case PRAGMA_OMP_CLAUSE_TASK_REDUCTION: clauses = c_parser_omp_clause_reduction (parser, OMP_CLAUSE_TASK_REDUCTION, true, clauses); c_name = "task_reduction"; break; case PRAGMA_OMP_CLAUSE_UNTIED: clauses = c_parser_omp_clause_untied (parser, clauses); c_name = "untied"; break; case PRAGMA_OMP_CLAUSE_INBRANCH: clauses = c_parser_omp_clause_branch (parser, OMP_CLAUSE_INBRANCH, clauses); c_name = "inbranch"; break; case PRAGMA_OMP_CLAUSE_NONTEMPORAL: clauses = c_parser_omp_clause_nontemporal (parser, clauses); c_name = "nontemporal"; break; case PRAGMA_OMP_CLAUSE_NOTINBRANCH: clauses = c_parser_omp_clause_branch (parser, OMP_CLAUSE_NOTINBRANCH, clauses); c_name = "notinbranch"; break; case PRAGMA_OMP_CLAUSE_PARALLEL: clauses = c_parser_omp_clause_cancelkind (parser, OMP_CLAUSE_PARALLEL, clauses); c_name = "parallel"; if (!first) { clause_not_first: error_at (here, "%qs must be the first clause of %qs", c_name, where); clauses = prev; } break; case PRAGMA_OMP_CLAUSE_FOR: clauses = c_parser_omp_clause_cancelkind (parser, OMP_CLAUSE_FOR, clauses); c_name = "for"; if (!first) goto clause_not_first; break; case PRAGMA_OMP_CLAUSE_SECTIONS: clauses = c_parser_omp_clause_cancelkind (parser, OMP_CLAUSE_SECTIONS, clauses); c_name = "sections"; if (!first) goto clause_not_first; break; case PRAGMA_OMP_CLAUSE_TASKGROUP: clauses = c_parser_omp_clause_cancelkind (parser, OMP_CLAUSE_TASKGROUP, clauses); c_name = "taskgroup"; if (!first) goto clause_not_first; break; case PRAGMA_OMP_CLAUSE_LINK: clauses = c_parser_omp_var_list_parens (parser, OMP_CLAUSE_LINK, clauses); c_name = "link"; break; case PRAGMA_OMP_CLAUSE_TO: if ((mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LINK)) != 0) clauses = c_parser_omp_var_list_parens (parser, OMP_CLAUSE_TO_DECLARE, clauses); else clauses = c_parser_omp_clause_to (parser, clauses); c_name = "to"; break; case PRAGMA_OMP_CLAUSE_FROM: clauses = c_parser_omp_clause_from (parser, clauses); c_name = "from"; break; case PRAGMA_OMP_CLAUSE_UNIFORM: clauses = c_parser_omp_clause_uniform (parser, clauses); c_name = "uniform"; break; case PRAGMA_OMP_CLAUSE_NUM_TEAMS: clauses = c_parser_omp_clause_num_teams (parser, clauses); c_name = "num_teams"; break; case PRAGMA_OMP_CLAUSE_THREAD_LIMIT: clauses = c_parser_omp_clause_thread_limit (parser, clauses); c_name = "thread_limit"; break; case PRAGMA_OMP_CLAUSE_ALIGNED: clauses = c_parser_omp_clause_aligned (parser, clauses); c_name = "aligned"; break; case PRAGMA_OMP_CLAUSE_LINEAR: clauses = c_parser_omp_clause_linear (parser, clauses); c_name = "linear"; break; case PRAGMA_OMP_CLAUSE_DEPEND: clauses = c_parser_omp_clause_depend (parser, clauses); c_name = "depend"; break; case PRAGMA_OMP_CLAUSE_MAP: clauses = c_parser_omp_clause_map (parser, clauses); c_name = "map"; break; case PRAGMA_OMP_CLAUSE_USE_DEVICE_PTR: clauses = c_parser_omp_clause_use_device_ptr (parser, clauses); c_name = "use_device_ptr"; break; case PRAGMA_OMP_CLAUSE_IS_DEVICE_PTR: clauses = c_parser_omp_clause_is_device_ptr (parser, clauses); c_name = "is_device_ptr"; break; case PRAGMA_OMP_CLAUSE_DEVICE: clauses = c_parser_omp_clause_device (parser, clauses); c_name = "device"; break; case PRAGMA_OMP_CLAUSE_DIST_SCHEDULE: clauses = c_parser_omp_clause_dist_schedule (parser, clauses); c_name = "dist_schedule"; break; case PRAGMA_OMP_CLAUSE_PROC_BIND: clauses = c_parser_omp_clause_proc_bind (parser, clauses); c_name = "proc_bind"; break; case PRAGMA_OMP_CLAUSE_SAFELEN: clauses = c_parser_omp_clause_safelen (parser, clauses); c_name = "safelen"; break; case PRAGMA_OMP_CLAUSE_SIMDLEN: clauses = c_parser_omp_clause_simdlen (parser, clauses); c_name = "simdlen"; break; case PRAGMA_OMP_CLAUSE_NOGROUP: clauses = c_parser_omp_clause_nogroup (parser, clauses); c_name = "nogroup"; break; case PRAGMA_OMP_CLAUSE_THREADS: clauses = c_parser_omp_clause_orderedkind (parser, OMP_CLAUSE_THREADS, clauses); c_name = "threads"; break; case PRAGMA_OMP_CLAUSE_SIMD: clauses = c_parser_omp_clause_orderedkind (parser, OMP_CLAUSE_SIMD, clauses); c_name = "simd"; break; default: c_parser_error (parser, "expected %<#pragma omp%> clause"); goto saw_error; } first = false; if (((mask >> c_kind) & 1) == 0) { /* Remove the invalid clause(s) from the list to avoid confusing the rest of the compiler. */ clauses = prev; error_at (here, "%qs is not valid for %qs", c_name, where); } } saw_error: c_parser_skip_to_pragma_eol (parser); if (finish_p) { if ((mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_UNIFORM)) != 0) return c_finish_omp_clauses (clauses, C_ORT_OMP_DECLARE_SIMD); return c_finish_omp_clauses (clauses, C_ORT_OMP); } return clauses; } /* OpenACC 2.0, OpenMP 2.5: structured-block: statement In practice, we're also interested in adding the statement to an outer node. So it is convenient if we work around the fact that c_parser_statement calls add_stmt. */ static tree c_parser_omp_structured_block (c_parser *parser, bool *if_p) { tree stmt = push_stmt_list (); c_parser_statement (parser, if_p); return pop_stmt_list (stmt); } /* OpenACC 2.0: # pragma acc cache (variable-list) new-line LOC is the location of the #pragma token. */ static tree c_parser_oacc_cache (location_t loc, c_parser *parser) { tree stmt, clauses; clauses = c_parser_omp_var_list_parens (parser, OMP_CLAUSE__CACHE_, NULL); clauses = c_finish_omp_clauses (clauses, C_ORT_ACC); c_parser_skip_to_pragma_eol (parser); stmt = make_node (OACC_CACHE); TREE_TYPE (stmt) = void_type_node; OACC_CACHE_CLAUSES (stmt) = clauses; SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); return stmt; } /* OpenACC 2.0: # pragma acc data oacc-data-clause[optseq] new-line structured-block LOC is the location of the #pragma token. */ #define OACC_DATA_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPY) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYIN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYOUT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_CREATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DEVICEPTR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_PRESENT)) static tree c_parser_oacc_data (location_t loc, c_parser *parser, bool *if_p) { tree stmt, clauses, block; clauses = c_parser_oacc_all_clauses (parser, OACC_DATA_CLAUSE_MASK, "#pragma acc data"); block = c_begin_omp_parallel (); add_stmt (c_parser_omp_structured_block (parser, if_p)); stmt = c_finish_oacc_data (loc, clauses, block); return stmt; } /* OpenACC 2.0: # pragma acc declare oacc-data-clause[optseq] new-line */ #define OACC_DECLARE_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPY) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYIN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYOUT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_CREATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DEVICEPTR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DEVICE_RESIDENT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_LINK) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_PRESENT)) static void c_parser_oacc_declare (c_parser *parser) { location_t pragma_loc = c_parser_peek_token (parser)->location; tree clauses, stmt, t, decl; bool error = false; c_parser_consume_pragma (parser); clauses = c_parser_oacc_all_clauses (parser, OACC_DECLARE_CLAUSE_MASK, "#pragma acc declare"); if (!clauses) { error_at (pragma_loc, "no valid clauses specified in %<#pragma acc declare%>"); return; } for (t = clauses; t; t = OMP_CLAUSE_CHAIN (t)) { location_t loc = OMP_CLAUSE_LOCATION (t); decl = OMP_CLAUSE_DECL (t); if (!DECL_P (decl)) { error_at (loc, "array section in %<#pragma acc declare%>"); error = true; continue; } switch (OMP_CLAUSE_MAP_KIND (t)) { case GOMP_MAP_FIRSTPRIVATE_POINTER: case GOMP_MAP_ALLOC: case GOMP_MAP_TO: case GOMP_MAP_FORCE_DEVICEPTR: case GOMP_MAP_DEVICE_RESIDENT: break; case GOMP_MAP_LINK: if (!global_bindings_p () && (TREE_STATIC (decl) || !DECL_EXTERNAL (decl))) { error_at (loc, "%qD must be a global variable in " "%<#pragma acc declare link%>", decl); error = true; continue; } break; default: if (global_bindings_p ()) { error_at (loc, "invalid OpenACC clause at file scope"); error = true; continue; } if (DECL_EXTERNAL (decl)) { error_at (loc, "invalid use of % variable %qD " "in %<#pragma acc declare%>", decl); error = true; continue; } else if (TREE_PUBLIC (decl)) { error_at (loc, "invalid use of % variable %qD " "in %<#pragma acc declare%>", decl); error = true; continue; } break; } if (lookup_attribute ("omp declare target", DECL_ATTRIBUTES (decl)) || lookup_attribute ("omp declare target link", DECL_ATTRIBUTES (decl))) { error_at (loc, "variable %qD used more than once with " "%<#pragma acc declare%>", decl); error = true; continue; } if (!error) { tree id; if (OMP_CLAUSE_MAP_KIND (t) == GOMP_MAP_LINK) id = get_identifier ("omp declare target link"); else id = get_identifier ("omp declare target"); DECL_ATTRIBUTES (decl) = tree_cons (id, NULL_TREE, DECL_ATTRIBUTES (decl)); if (global_bindings_p ()) { symtab_node *node = symtab_node::get (decl); if (node != NULL) { node->offloadable = 1; if (ENABLE_OFFLOADING) { g->have_offload = true; if (is_a (node)) vec_safe_push (offload_vars, decl); } } } } } if (error || global_bindings_p ()) return; stmt = make_node (OACC_DECLARE); TREE_TYPE (stmt) = void_type_node; OACC_DECLARE_CLAUSES (stmt) = clauses; SET_EXPR_LOCATION (stmt, pragma_loc); add_stmt (stmt); return; } /* OpenACC 2.0: # pragma acc enter data oacc-enter-data-clause[optseq] new-line or # pragma acc exit data oacc-exit-data-clause[optseq] new-line LOC is the location of the #pragma token. */ #define OACC_ENTER_DATA_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_ASYNC) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYIN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_CREATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_WAIT) ) #define OACC_EXIT_DATA_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_ASYNC) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYOUT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DELETE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_FINALIZE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_WAIT) ) static void c_parser_oacc_enter_exit_data (c_parser *parser, bool enter) { location_t loc = c_parser_peek_token (parser)->location; tree clauses, stmt; const char *p = ""; c_parser_consume_pragma (parser); if (c_parser_next_token_is (parser, CPP_NAME)) { p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); c_parser_consume_token (parser); } if (strcmp (p, "data") != 0) { error_at (loc, "expected % after %<#pragma acc %s%>", enter ? "enter" : "exit"); parser->error = true; c_parser_skip_to_pragma_eol (parser); return; } if (enter) clauses = c_parser_oacc_all_clauses (parser, OACC_ENTER_DATA_CLAUSE_MASK, "#pragma acc enter data"); else clauses = c_parser_oacc_all_clauses (parser, OACC_EXIT_DATA_CLAUSE_MASK, "#pragma acc exit data"); if (omp_find_clause (clauses, OMP_CLAUSE_MAP) == NULL_TREE) { error_at (loc, "%<#pragma acc %s data%> has no data movement clause", enter ? "enter" : "exit"); return; } stmt = enter ? make_node (OACC_ENTER_DATA) : make_node (OACC_EXIT_DATA); TREE_TYPE (stmt) = void_type_node; OMP_STANDALONE_CLAUSES (stmt) = clauses; SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); } /* OpenACC 2.0: # pragma acc host_data oacc-data-clause[optseq] new-line structured-block */ #define OACC_HOST_DATA_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_USE_DEVICE) ) static tree c_parser_oacc_host_data (location_t loc, c_parser *parser, bool *if_p) { tree stmt, clauses, block; clauses = c_parser_oacc_all_clauses (parser, OACC_HOST_DATA_CLAUSE_MASK, "#pragma acc host_data"); block = c_begin_omp_parallel (); add_stmt (c_parser_omp_structured_block (parser, if_p)); stmt = c_finish_oacc_host_data (loc, clauses, block); return stmt; } /* OpenACC 2.0: # pragma acc loop oacc-loop-clause[optseq] new-line structured-block LOC is the location of the #pragma token. */ #define OACC_LOOP_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COLLAPSE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_REDUCTION) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_GANG) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_WORKER) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_VECTOR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_AUTO) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_INDEPENDENT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_SEQ) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_TILE) ) static tree c_parser_oacc_loop (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses, bool *if_p) { bool is_parallel = ((mask >> PRAGMA_OACC_CLAUSE_REDUCTION) & 1) == 1; strcat (p_name, " loop"); mask |= OACC_LOOP_CLAUSE_MASK; tree clauses = c_parser_oacc_all_clauses (parser, mask, p_name, cclauses == NULL); if (cclauses) { clauses = c_oacc_split_loop_clauses (clauses, cclauses, is_parallel); if (*cclauses) *cclauses = c_finish_omp_clauses (*cclauses, C_ORT_ACC); if (clauses) clauses = c_finish_omp_clauses (clauses, C_ORT_ACC); } tree block = c_begin_compound_stmt (true); tree stmt = c_parser_omp_for_loop (loc, parser, OACC_LOOP, clauses, NULL, if_p); block = c_end_compound_stmt (loc, block, true); add_stmt (block); return stmt; } /* OpenACC 2.0: # pragma acc kernels oacc-kernels-clause[optseq] new-line structured-block or # pragma acc parallel oacc-parallel-clause[optseq] new-line structured-block LOC is the location of the #pragma token. */ #define OACC_KERNELS_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_ASYNC) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPY) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYIN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYOUT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_CREATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DEFAULT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DEVICEPTR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_NUM_GANGS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_NUM_WORKERS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_PRESENT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_VECTOR_LENGTH) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_WAIT) ) #define OACC_PARALLEL_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_ASYNC) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPY) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYIN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_COPYOUT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_CREATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DEFAULT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DEVICEPTR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_NUM_GANGS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_NUM_WORKERS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_PRESENT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_REDUCTION) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_VECTOR_LENGTH) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_WAIT) ) static tree c_parser_oacc_kernels_parallel (location_t loc, c_parser *parser, enum pragma_kind p_kind, char *p_name, bool *if_p) { omp_clause_mask mask; enum tree_code code; switch (p_kind) { case PRAGMA_OACC_KERNELS: strcat (p_name, " kernels"); mask = OACC_KERNELS_CLAUSE_MASK; code = OACC_KERNELS; break; case PRAGMA_OACC_PARALLEL: strcat (p_name, " parallel"); mask = OACC_PARALLEL_CLAUSE_MASK; code = OACC_PARALLEL; break; default: gcc_unreachable (); } if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "loop") == 0) { c_parser_consume_token (parser); tree block = c_begin_omp_parallel (); tree clauses; c_parser_oacc_loop (loc, parser, p_name, mask, &clauses, if_p); return c_finish_omp_construct (loc, code, block, clauses); } } tree clauses = c_parser_oacc_all_clauses (parser, mask, p_name); tree block = c_begin_omp_parallel (); add_stmt (c_parser_omp_structured_block (parser, if_p)); return c_finish_omp_construct (loc, code, block, clauses); } /* OpenACC 2.0: # pragma acc routine oacc-routine-clause[optseq] new-line function-definition # pragma acc routine ( name ) oacc-routine-clause[optseq] new-line */ #define OACC_ROUTINE_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_GANG) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_WORKER) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_VECTOR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_SEQ) ) /* Parse an OpenACC routine directive. For named directives, we apply immediately to the named function. For unnamed ones we then parse a declaration or definition, which must be for a function. */ static void c_parser_oacc_routine (c_parser *parser, enum pragma_context context) { gcc_checking_assert (context == pragma_external); oacc_routine_data data; data.error_seen = false; data.fndecl_seen = false; data.clauses = NULL_TREE; data.loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); /* Look for optional '( name )'. */ if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { c_parser_consume_token (parser); /* '(' */ tree decl = NULL_TREE; c_token *name_token = c_parser_peek_token (parser); location_t name_loc = name_token->location; if (name_token->type == CPP_NAME && (name_token->id_kind == C_ID_ID || name_token->id_kind == C_ID_TYPENAME)) { decl = lookup_name (name_token->value); if (!decl) error_at (name_loc, "%qE has not been declared", name_token->value); c_parser_consume_token (parser); } else c_parser_error (parser, "expected function name"); if (!decl || !c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>")) { c_parser_skip_to_pragma_eol (parser, false); return; } data.clauses = c_parser_oacc_all_clauses (parser, OACC_ROUTINE_CLAUSE_MASK, "#pragma acc routine"); if (TREE_CODE (decl) != FUNCTION_DECL) { error_at (name_loc, "%qD does not refer to a function", decl); return; } c_finish_oacc_routine (&data, decl, false); } else /* No optional '( name )'. */ { data.clauses = c_parser_oacc_all_clauses (parser, OACC_ROUTINE_CLAUSE_MASK, "#pragma acc routine"); /* Emit a helpful diagnostic if there's another pragma following this one. Also don't allow a static assertion declaration, as in the following we'll just parse a *single* "declaration or function definition", and the static assertion counts an one. */ if (c_parser_next_token_is (parser, CPP_PRAGMA) || c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT)) { error_at (data.loc, "%<#pragma acc routine%> not immediately followed by" " function declaration or definition"); /* ..., and then just keep going. */ return; } /* We only have to consider the pragma_external case here. */ if (c_parser_next_token_is (parser, CPP_KEYWORD) && c_parser_peek_token (parser)->keyword == RID_EXTENSION) { int ext = disable_extension_diagnostics (); do c_parser_consume_token (parser); while (c_parser_next_token_is (parser, CPP_KEYWORD) && c_parser_peek_token (parser)->keyword == RID_EXTENSION); c_parser_declaration_or_fndef (parser, true, true, true, false, true, NULL, vNULL, &data); restore_extension_diagnostics (ext); } else c_parser_declaration_or_fndef (parser, true, true, true, false, true, NULL, vNULL, &data); } } /* Finalize an OpenACC routine pragma, applying it to FNDECL. IS_DEFN is true if we're applying it to the definition. */ static void c_finish_oacc_routine (struct oacc_routine_data *data, tree fndecl, bool is_defn) { /* Keep going if we're in error reporting mode. */ if (data->error_seen || fndecl == error_mark_node) return; if (data->fndecl_seen) { error_at (data->loc, "%<#pragma acc routine%> not immediately followed by" " a single function declaration or definition"); data->error_seen = true; return; } if (fndecl == NULL_TREE || TREE_CODE (fndecl) != FUNCTION_DECL) { error_at (data->loc, "%<#pragma acc routine%> not immediately followed by" " function declaration or definition"); data->error_seen = true; return; } if (oacc_get_fn_attrib (fndecl)) { error_at (data->loc, "%<#pragma acc routine%> already applied to %qD", fndecl); data->error_seen = true; return; } if (TREE_USED (fndecl) || (!is_defn && DECL_SAVED_TREE (fndecl))) { error_at (data->loc, TREE_USED (fndecl) ? G_("%<#pragma acc routine%> must be applied before use") : G_("%<#pragma acc routine%> must be applied before " "definition")); data->error_seen = true; return; } /* Process the routine's dimension clauses. */ tree dims = oacc_build_routine_dims (data->clauses); oacc_replace_fn_attrib (fndecl, dims); /* Add an "omp declare target" attribute. */ DECL_ATTRIBUTES (fndecl) = tree_cons (get_identifier ("omp declare target"), NULL_TREE, DECL_ATTRIBUTES (fndecl)); /* Remember that we've used this "#pragma acc routine". */ data->fndecl_seen = true; } /* OpenACC 2.0: # pragma acc update oacc-update-clause[optseq] new-line */ #define OACC_UPDATE_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_ASYNC) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_DEVICE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_HOST) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_IF_PRESENT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_WAIT) ) static void c_parser_oacc_update (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); tree clauses = c_parser_oacc_all_clauses (parser, OACC_UPDATE_CLAUSE_MASK, "#pragma acc update"); if (omp_find_clause (clauses, OMP_CLAUSE_MAP) == NULL_TREE) { error_at (loc, "%<#pragma acc update%> must contain at least one " "% or % or % clause"); return; } if (parser->error) return; tree stmt = make_node (OACC_UPDATE); TREE_TYPE (stmt) = void_type_node; OACC_UPDATE_CLAUSES (stmt) = clauses; SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); } /* OpenACC 2.0: # pragma acc wait [(intseq)] oacc-wait-clause[optseq] new-line LOC is the location of the #pragma token. */ #define OACC_WAIT_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OACC_CLAUSE_ASYNC) ) static tree c_parser_oacc_wait (location_t loc, c_parser *parser, char *p_name) { tree clauses, list = NULL_TREE, stmt = NULL_TREE; if (c_parser_peek_token (parser)->type == CPP_OPEN_PAREN) list = c_parser_oacc_wait_list (parser, loc, list); strcpy (p_name, " wait"); clauses = c_parser_oacc_all_clauses (parser, OACC_WAIT_CLAUSE_MASK, p_name); stmt = c_finish_oacc_wait (loc, list, clauses); add_stmt (stmt); return stmt; } /* OpenMP 2.5: # pragma omp atomic new-line expression-stmt expression-stmt: x binop= expr | x++ | ++x | x-- | --x binop: +, *, -, /, &, ^, |, <<, >> where x is an lvalue expression with scalar type. OpenMP 3.1: # pragma omp atomic new-line update-stmt # pragma omp atomic read new-line read-stmt # pragma omp atomic write new-line write-stmt # pragma omp atomic update new-line update-stmt # pragma omp atomic capture new-line capture-stmt # pragma omp atomic capture new-line capture-block read-stmt: v = x write-stmt: x = expr update-stmt: expression-stmt | x = x binop expr capture-stmt: v = expression-stmt capture-block: { v = x; update-stmt; } | { update-stmt; v = x; } OpenMP 4.0: update-stmt: expression-stmt | x = x binop expr | x = expr binop x capture-stmt: v = update-stmt capture-block: { v = x; update-stmt; } | { update-stmt; v = x; } | { v = x; x = expr; } where x and v are lvalue expressions with scalar type. LOC is the location of the #pragma token. */ static void c_parser_omp_atomic (location_t loc, c_parser *parser) { tree lhs = NULL_TREE, rhs = NULL_TREE, v = NULL_TREE; tree lhs1 = NULL_TREE, rhs1 = NULL_TREE; tree stmt, orig_lhs, unfolded_lhs = NULL_TREE, unfolded_lhs1 = NULL_TREE; enum tree_code code = ERROR_MARK, opcode = NOP_EXPR; enum omp_memory_order memory_order = OMP_MEMORY_ORDER_UNSPECIFIED; struct c_expr expr; location_t eloc; bool structured_block = false; bool swapped = false; bool non_lvalue_p; bool first = true; tree clauses = NULL_TREE; while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) { if (!first && c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); first = false; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); location_t cloc = c_parser_peek_token (parser)->location; enum tree_code new_code = ERROR_MARK; enum omp_memory_order new_memory_order = OMP_MEMORY_ORDER_UNSPECIFIED; if (!strcmp (p, "read")) new_code = OMP_ATOMIC_READ; else if (!strcmp (p, "write")) new_code = NOP_EXPR; else if (!strcmp (p, "update")) new_code = OMP_ATOMIC; else if (!strcmp (p, "capture")) new_code = OMP_ATOMIC_CAPTURE_NEW; else if (!strcmp (p, "seq_cst")) new_memory_order = OMP_MEMORY_ORDER_SEQ_CST; else if (!strcmp (p, "acq_rel")) new_memory_order = OMP_MEMORY_ORDER_ACQ_REL; else if (!strcmp (p, "release")) new_memory_order = OMP_MEMORY_ORDER_RELEASE; else if (!strcmp (p, "acquire")) new_memory_order = OMP_MEMORY_ORDER_ACQUIRE; else if (!strcmp (p, "relaxed")) new_memory_order = OMP_MEMORY_ORDER_RELAXED; else if (!strcmp (p, "hint")) { c_parser_consume_token (parser); clauses = c_parser_omp_clause_hint (parser, clauses); continue; } else { p = NULL; error_at (cloc, "expected %, %, %, " "%, %, %, " "%, % or % clause"); } if (p) { if (new_code != ERROR_MARK) { if (code != ERROR_MARK) error_at (cloc, "too many atomic clauses"); else code = new_code; } else if (new_memory_order != OMP_MEMORY_ORDER_UNSPECIFIED) { if (memory_order != OMP_MEMORY_ORDER_UNSPECIFIED) error_at (cloc, "too many memory order clauses"); else memory_order = new_memory_order; } c_parser_consume_token (parser); continue; } } break; } c_parser_skip_to_pragma_eol (parser); if (code == ERROR_MARK) code = OMP_ATOMIC; if (memory_order == OMP_MEMORY_ORDER_UNSPECIFIED) { omp_requires_mask = (enum omp_requires) (omp_requires_mask | OMP_REQUIRES_ATOMIC_DEFAULT_MEM_ORDER_USED); switch ((enum omp_memory_order) (omp_requires_mask & OMP_REQUIRES_ATOMIC_DEFAULT_MEM_ORDER)) { case OMP_MEMORY_ORDER_UNSPECIFIED: case OMP_MEMORY_ORDER_RELAXED: memory_order = OMP_MEMORY_ORDER_RELAXED; break; case OMP_MEMORY_ORDER_SEQ_CST: memory_order = OMP_MEMORY_ORDER_SEQ_CST; break; case OMP_MEMORY_ORDER_ACQ_REL: switch (code) { case OMP_ATOMIC_READ: memory_order = OMP_MEMORY_ORDER_ACQUIRE; break; case NOP_EXPR: /* atomic write */ case OMP_ATOMIC: memory_order = OMP_MEMORY_ORDER_RELEASE; break; default: memory_order = OMP_MEMORY_ORDER_ACQ_REL; break; } break; default: gcc_unreachable (); } } else switch (code) { case OMP_ATOMIC_READ: if (memory_order == OMP_MEMORY_ORDER_ACQ_REL || memory_order == OMP_MEMORY_ORDER_RELEASE) { error_at (loc, "%<#pragma omp atomic read%> incompatible with " "% or % clauses"); memory_order = OMP_MEMORY_ORDER_SEQ_CST; } break; case NOP_EXPR: /* atomic write */ if (memory_order == OMP_MEMORY_ORDER_ACQ_REL || memory_order == OMP_MEMORY_ORDER_ACQUIRE) { error_at (loc, "%<#pragma omp atomic write%> incompatible with " "% or % clauses"); memory_order = OMP_MEMORY_ORDER_SEQ_CST; } break; case OMP_ATOMIC: if (memory_order == OMP_MEMORY_ORDER_ACQ_REL || memory_order == OMP_MEMORY_ORDER_ACQUIRE) { error_at (loc, "%<#pragma omp atomic update%> incompatible with " "% or % clauses"); memory_order = OMP_MEMORY_ORDER_SEQ_CST; } break; default: break; } switch (code) { case OMP_ATOMIC_READ: case NOP_EXPR: /* atomic write */ v = c_parser_cast_expression (parser, NULL).value; non_lvalue_p = !lvalue_p (v); v = c_fully_fold (v, false, NULL, true); if (v == error_mark_node) goto saw_error; if (non_lvalue_p) v = non_lvalue (v); loc = c_parser_peek_token (parser)->location; if (!c_parser_require (parser, CPP_EQ, "expected %<=%>")) goto saw_error; if (code == NOP_EXPR) { lhs = c_parser_expression (parser).value; lhs = c_fully_fold (lhs, false, NULL); if (lhs == error_mark_node) goto saw_error; } else { lhs = c_parser_cast_expression (parser, NULL).value; non_lvalue_p = !lvalue_p (lhs); lhs = c_fully_fold (lhs, false, NULL, true); if (lhs == error_mark_node) goto saw_error; if (non_lvalue_p) lhs = non_lvalue (lhs); } if (code == NOP_EXPR) { /* atomic write is represented by OMP_ATOMIC with NOP_EXPR opcode. */ code = OMP_ATOMIC; rhs = lhs; lhs = v; v = NULL_TREE; } goto done; case OMP_ATOMIC_CAPTURE_NEW: if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) { c_parser_consume_token (parser); structured_block = true; } else { v = c_parser_cast_expression (parser, NULL).value; non_lvalue_p = !lvalue_p (v); v = c_fully_fold (v, false, NULL, true); if (v == error_mark_node) goto saw_error; if (non_lvalue_p) v = non_lvalue (v); if (!c_parser_require (parser, CPP_EQ, "expected %<=%>")) goto saw_error; } break; default: break; } /* For structured_block case we don't know yet whether old or new x should be captured. */ restart: eloc = c_parser_peek_token (parser)->location; expr = c_parser_cast_expression (parser, NULL); lhs = expr.value; expr = default_function_array_conversion (eloc, expr); unfolded_lhs = expr.value; lhs = c_fully_fold (lhs, false, NULL, true); orig_lhs = lhs; switch (TREE_CODE (lhs)) { case ERROR_MARK: saw_error: c_parser_skip_to_end_of_block_or_statement (parser); if (structured_block) { if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) c_parser_consume_token (parser); else if (code == OMP_ATOMIC_CAPTURE_NEW) { c_parser_skip_to_end_of_block_or_statement (parser); if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) c_parser_consume_token (parser); } } return; case POSTINCREMENT_EXPR: if (code == OMP_ATOMIC_CAPTURE_NEW && !structured_block) code = OMP_ATOMIC_CAPTURE_OLD; /* FALLTHROUGH */ case PREINCREMENT_EXPR: lhs = TREE_OPERAND (lhs, 0); unfolded_lhs = NULL_TREE; opcode = PLUS_EXPR; rhs = integer_one_node; break; case POSTDECREMENT_EXPR: if (code == OMP_ATOMIC_CAPTURE_NEW && !structured_block) code = OMP_ATOMIC_CAPTURE_OLD; /* FALLTHROUGH */ case PREDECREMENT_EXPR: lhs = TREE_OPERAND (lhs, 0); unfolded_lhs = NULL_TREE; opcode = MINUS_EXPR; rhs = integer_one_node; break; case COMPOUND_EXPR: if (TREE_CODE (TREE_OPERAND (lhs, 0)) == SAVE_EXPR && TREE_CODE (TREE_OPERAND (lhs, 1)) == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (TREE_OPERAND (lhs, 1), 0)) == MODIFY_EXPR && TREE_OPERAND (TREE_OPERAND (lhs, 1), 1) == TREE_OPERAND (lhs, 0) && TREE_CODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (lhs, 1), 0), 0))) == BOOLEAN_TYPE) /* Undo effects of boolean_increment for post {in,de}crement. */ lhs = TREE_OPERAND (TREE_OPERAND (lhs, 1), 0); /* FALLTHRU */ case MODIFY_EXPR: if (TREE_CODE (lhs) == MODIFY_EXPR && TREE_CODE (TREE_TYPE (TREE_OPERAND (lhs, 0))) == BOOLEAN_TYPE) { /* Undo effects of boolean_increment. */ if (integer_onep (TREE_OPERAND (lhs, 1))) { /* This is pre or post increment. */ rhs = TREE_OPERAND (lhs, 1); lhs = TREE_OPERAND (lhs, 0); unfolded_lhs = NULL_TREE; opcode = NOP_EXPR; if (code == OMP_ATOMIC_CAPTURE_NEW && !structured_block && TREE_CODE (orig_lhs) == COMPOUND_EXPR) code = OMP_ATOMIC_CAPTURE_OLD; break; } if (TREE_CODE (TREE_OPERAND (lhs, 1)) == TRUTH_NOT_EXPR && TREE_OPERAND (lhs, 0) == TREE_OPERAND (TREE_OPERAND (lhs, 1), 0)) { /* This is pre or post decrement. */ rhs = TREE_OPERAND (lhs, 1); lhs = TREE_OPERAND (lhs, 0); unfolded_lhs = NULL_TREE; opcode = NOP_EXPR; if (code == OMP_ATOMIC_CAPTURE_NEW && !structured_block && TREE_CODE (orig_lhs) == COMPOUND_EXPR) code = OMP_ATOMIC_CAPTURE_OLD; break; } } /* FALLTHRU */ default: if (!lvalue_p (unfolded_lhs)) lhs = non_lvalue (lhs); switch (c_parser_peek_token (parser)->type) { case CPP_MULT_EQ: opcode = MULT_EXPR; break; case CPP_DIV_EQ: opcode = TRUNC_DIV_EXPR; break; case CPP_PLUS_EQ: opcode = PLUS_EXPR; break; case CPP_MINUS_EQ: opcode = MINUS_EXPR; break; case CPP_LSHIFT_EQ: opcode = LSHIFT_EXPR; break; case CPP_RSHIFT_EQ: opcode = RSHIFT_EXPR; break; case CPP_AND_EQ: opcode = BIT_AND_EXPR; break; case CPP_OR_EQ: opcode = BIT_IOR_EXPR; break; case CPP_XOR_EQ: opcode = BIT_XOR_EXPR; break; case CPP_EQ: c_parser_consume_token (parser); eloc = c_parser_peek_token (parser)->location; expr = c_parser_expr_no_commas (parser, NULL, unfolded_lhs); rhs1 = expr.value; switch (TREE_CODE (rhs1)) { case MULT_EXPR: case TRUNC_DIV_EXPR: case RDIV_EXPR: case PLUS_EXPR: case MINUS_EXPR: case LSHIFT_EXPR: case RSHIFT_EXPR: case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: if (c_tree_equal (TREE_OPERAND (rhs1, 0), unfolded_lhs)) { opcode = TREE_CODE (rhs1); rhs = c_fully_fold (TREE_OPERAND (rhs1, 1), false, NULL, true); rhs1 = c_fully_fold (TREE_OPERAND (rhs1, 0), false, NULL, true); goto stmt_done; } if (c_tree_equal (TREE_OPERAND (rhs1, 1), unfolded_lhs)) { opcode = TREE_CODE (rhs1); rhs = c_fully_fold (TREE_OPERAND (rhs1, 0), false, NULL, true); rhs1 = c_fully_fold (TREE_OPERAND (rhs1, 1), false, NULL, true); swapped = !commutative_tree_code (opcode); goto stmt_done; } break; case ERROR_MARK: goto saw_error; default: break; } if (c_parser_peek_token (parser)->type == CPP_SEMICOLON) { if (structured_block && code == OMP_ATOMIC_CAPTURE_NEW) { code = OMP_ATOMIC_CAPTURE_OLD; v = lhs; lhs = NULL_TREE; expr = default_function_array_read_conversion (eloc, expr); unfolded_lhs1 = expr.value; lhs1 = c_fully_fold (unfolded_lhs1, false, NULL, true); rhs1 = NULL_TREE; c_parser_consume_token (parser); goto restart; } if (structured_block) { opcode = NOP_EXPR; expr = default_function_array_read_conversion (eloc, expr); rhs = c_fully_fold (expr.value, false, NULL, true); rhs1 = NULL_TREE; goto stmt_done; } } c_parser_error (parser, "invalid form of %<#pragma omp atomic%>"); goto saw_error; default: c_parser_error (parser, "invalid operator for %<#pragma omp atomic%>"); goto saw_error; } /* Arrange to pass the location of the assignment operator to c_finish_omp_atomic. */ loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); eloc = c_parser_peek_token (parser)->location; expr = c_parser_expression (parser); expr = default_function_array_read_conversion (eloc, expr); rhs = expr.value; rhs = c_fully_fold (rhs, false, NULL, true); break; } stmt_done: if (structured_block && code == OMP_ATOMIC_CAPTURE_NEW) { if (!c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>")) goto saw_error; v = c_parser_cast_expression (parser, NULL).value; non_lvalue_p = !lvalue_p (v); v = c_fully_fold (v, false, NULL, true); if (v == error_mark_node) goto saw_error; if (non_lvalue_p) v = non_lvalue (v); if (!c_parser_require (parser, CPP_EQ, "expected %<=%>")) goto saw_error; eloc = c_parser_peek_token (parser)->location; expr = c_parser_cast_expression (parser, NULL); lhs1 = expr.value; expr = default_function_array_read_conversion (eloc, expr); unfolded_lhs1 = expr.value; lhs1 = c_fully_fold (lhs1, false, NULL, true); if (lhs1 == error_mark_node) goto saw_error; if (!lvalue_p (unfolded_lhs1)) lhs1 = non_lvalue (lhs1); } if (structured_block) { c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); c_parser_require (parser, CPP_CLOSE_BRACE, "expected %<}%>"); } done: if (unfolded_lhs && unfolded_lhs1 && !c_tree_equal (unfolded_lhs, unfolded_lhs1)) { error ("%<#pragma omp atomic capture%> uses two different " "expressions for memory"); stmt = error_mark_node; } else stmt = c_finish_omp_atomic (loc, code, opcode, lhs, rhs, v, lhs1, rhs1, swapped, memory_order); if (stmt != error_mark_node) add_stmt (stmt); if (!structured_block) c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } /* OpenMP 2.5: # pragma omp barrier new-line */ static void c_parser_omp_barrier (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); c_parser_skip_to_pragma_eol (parser); c_finish_omp_barrier (loc); } /* OpenMP 2.5: # pragma omp critical [(name)] new-line structured-block OpenMP 4.5: # pragma omp critical [(name) [hint(expression)]] new-line LOC is the location of the #pragma itself. */ #define OMP_CRITICAL_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_HINT) ) static tree c_parser_omp_critical (location_t loc, c_parser *parser, bool *if_p) { tree stmt, name = NULL_TREE, clauses = NULL_TREE; if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_NAME)) { name = c_parser_peek_token (parser)->value; c_parser_consume_token (parser); c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>"); } else c_parser_error (parser, "expected identifier"); if (c_parser_next_token_is (parser, CPP_COMMA) && c_parser_peek_2nd_token (parser)->type == CPP_NAME) c_parser_consume_token (parser); clauses = c_parser_omp_all_clauses (parser, OMP_CRITICAL_CLAUSE_MASK, "#pragma omp critical"); } else { if (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) c_parser_error (parser, "expected %<(%> or end of line"); c_parser_skip_to_pragma_eol (parser); } stmt = c_parser_omp_structured_block (parser, if_p); return c_finish_omp_critical (loc, stmt, name, clauses); } /* OpenMP 5.0: # pragma omp depobj ( depobj ) depobj-clause new-line depobj-clause: depend (dependence-type : locator) destroy update (dependence-type) dependence-type: in out inout mutexinout */ static void c_parser_omp_depobj (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); matching_parens parens; if (!parens.require_open (parser)) { c_parser_skip_to_pragma_eol (parser); return; } tree depobj = c_parser_expr_no_commas (parser, NULL).value; if (depobj != error_mark_node) { if (!lvalue_p (depobj)) { error_at (EXPR_LOC_OR_LOC (depobj, loc), "% expression is not lvalue expression"); depobj = error_mark_node; } else { tree addr = build_unary_op (EXPR_LOC_OR_LOC (depobj, loc), ADDR_EXPR, depobj, false); if (addr == error_mark_node) depobj = error_mark_node; else depobj = build_indirect_ref (EXPR_LOC_OR_LOC (depobj, loc), addr, RO_UNARY_STAR); } } parens.skip_until_found_close (parser); tree clause = NULL_TREE; enum omp_clause_depend_kind kind = OMP_CLAUSE_DEPEND_SOURCE; location_t c_loc = c_parser_peek_token (parser)->location; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); c_parser_consume_token (parser); if (!strcmp ("depend", p)) { clause = c_parser_omp_clause_depend (parser, NULL_TREE); clause = c_finish_omp_clauses (clause, C_ORT_OMP); if (!clause) clause = error_mark_node; } else if (!strcmp ("destroy", p)) kind = OMP_CLAUSE_DEPEND_LAST; else if (!strcmp ("update", p)) { matching_parens c_parens; if (c_parens.require_open (parser)) { location_t c2_loc = c_parser_peek_token (parser)->location; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p2 = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); c_parser_consume_token (parser); if (!strcmp ("in", p2)) kind = OMP_CLAUSE_DEPEND_IN; else if (!strcmp ("out", p2)) kind = OMP_CLAUSE_DEPEND_OUT; else if (!strcmp ("inout", p2)) kind = OMP_CLAUSE_DEPEND_INOUT; else if (!strcmp ("mutexinoutset", p2)) kind = OMP_CLAUSE_DEPEND_MUTEXINOUTSET; } if (kind == OMP_CLAUSE_DEPEND_SOURCE) { clause = error_mark_node; error_at (c2_loc, "expected %, %, % or " "%"); } c_parens.skip_until_found_close (parser); } else clause = error_mark_node; } } if (!clause && kind == OMP_CLAUSE_DEPEND_SOURCE) { clause = error_mark_node; error_at (c_loc, "expected %, % or % clause"); } c_parser_skip_to_pragma_eol (parser); c_finish_omp_depobj (loc, depobj, kind, clause); } /* OpenMP 2.5: # pragma omp flush flush-vars[opt] new-line flush-vars: ( variable-list ) OpenMP 5.0: # pragma omp flush memory-order-clause new-line */ static void c_parser_omp_flush (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); enum memmodel mo = MEMMODEL_LAST; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (!strcmp (p, "acq_rel")) mo = MEMMODEL_ACQ_REL; else if (!strcmp (p, "release")) mo = MEMMODEL_RELEASE; else if (!strcmp (p, "acquire")) mo = MEMMODEL_ACQUIRE; else error_at (c_parser_peek_token (parser)->location, "expected %, % or %"); c_parser_consume_token (parser); } if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { if (mo != MEMMODEL_LAST) error_at (c_parser_peek_token (parser)->location, "% list specified together with memory order " "clause"); c_parser_omp_var_list_parens (parser, OMP_CLAUSE_ERROR, NULL); } else if (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) c_parser_error (parser, "expected %<(%> or end of line"); c_parser_skip_to_pragma_eol (parser); c_finish_omp_flush (loc, mo); } /* Parse the restricted form of loop statements allowed by OpenACC and OpenMP. The real trick here is to determine the loop control variable early so that we can push a new decl if necessary to make it private. LOC is the location of the "acc" or "omp" in "#pragma acc" or "#pragma omp", respectively. */ static tree c_parser_omp_for_loop (location_t loc, c_parser *parser, enum tree_code code, tree clauses, tree *cclauses, bool *if_p) { tree decl, cond, incr, save_break, save_cont, body, init, stmt, cl; tree declv, condv, incrv, initv, ret = NULL_TREE; tree pre_body = NULL_TREE, this_pre_body; tree ordered_cl = NULL_TREE; bool fail = false, open_brace_parsed = false; int i, collapse = 1, ordered = 0, count, nbraces = 0; location_t for_loc; bool tiling = false; vec *for_block = make_tree_vector (); for (cl = clauses; cl; cl = OMP_CLAUSE_CHAIN (cl)) if (OMP_CLAUSE_CODE (cl) == OMP_CLAUSE_COLLAPSE) collapse = tree_to_shwi (OMP_CLAUSE_COLLAPSE_EXPR (cl)); else if (OMP_CLAUSE_CODE (cl) == OMP_CLAUSE_TILE) { tiling = true; collapse = list_length (OMP_CLAUSE_TILE_LIST (cl)); } else if (OMP_CLAUSE_CODE (cl) == OMP_CLAUSE_ORDERED && OMP_CLAUSE_ORDERED_EXPR (cl)) { ordered_cl = cl; ordered = tree_to_shwi (OMP_CLAUSE_ORDERED_EXPR (cl)); } if (ordered && ordered < collapse) { error_at (OMP_CLAUSE_LOCATION (ordered_cl), "% clause parameter is less than %"); OMP_CLAUSE_ORDERED_EXPR (ordered_cl) = build_int_cst (NULL_TREE, collapse); ordered = collapse; } if (ordered) { for (tree *pc = &clauses; *pc; ) if (OMP_CLAUSE_CODE (*pc) == OMP_CLAUSE_LINEAR) { error_at (OMP_CLAUSE_LOCATION (*pc), "% clause may not be specified together " "with % clause with a parameter"); *pc = OMP_CLAUSE_CHAIN (*pc); } else pc = &OMP_CLAUSE_CHAIN (*pc); } gcc_assert (tiling || (collapse >= 1 && ordered >= 0)); count = ordered ? ordered : collapse; declv = make_tree_vec (count); initv = make_tree_vec (count); condv = make_tree_vec (count); incrv = make_tree_vec (count); if (!c_parser_next_token_is_keyword (parser, RID_FOR)) { c_parser_error (parser, "for statement expected"); return NULL; } for_loc = c_parser_peek_token (parser)->location; c_parser_consume_token (parser); for (i = 0; i < count; i++) { int bracecount = 0; matching_parens parens; if (!parens.require_open (parser)) goto pop_scopes; /* Parse the initialization declaration or expression. */ if (c_parser_next_tokens_start_declaration (parser)) { if (i > 0) vec_safe_push (for_block, c_begin_compound_stmt (true)); this_pre_body = push_stmt_list (); c_parser_declaration_or_fndef (parser, true, true, true, true, true, NULL, vNULL); if (this_pre_body) { this_pre_body = pop_stmt_list (this_pre_body); if (pre_body) { tree t = pre_body; pre_body = push_stmt_list (); add_stmt (t); add_stmt (this_pre_body); pre_body = pop_stmt_list (pre_body); } else pre_body = this_pre_body; } decl = check_for_loop_decls (for_loc, flag_isoc99); if (decl == NULL) goto error_init; if (DECL_INITIAL (decl) == error_mark_node) decl = error_mark_node; init = decl; } else if (c_parser_next_token_is (parser, CPP_NAME) && c_parser_peek_2nd_token (parser)->type == CPP_EQ) { struct c_expr decl_exp; struct c_expr init_exp; location_t init_loc; decl_exp = c_parser_postfix_expression (parser); decl = decl_exp.value; c_parser_require (parser, CPP_EQ, "expected %<=%>"); init_loc = c_parser_peek_token (parser)->location; init_exp = c_parser_expr_no_commas (parser, NULL); init_exp = default_function_array_read_conversion (init_loc, init_exp); init = build_modify_expr (init_loc, decl, decl_exp.original_type, NOP_EXPR, init_loc, init_exp.value, init_exp.original_type); init = c_process_expr_stmt (init_loc, init); c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); } else { error_init: c_parser_error (parser, "expected iteration declaration or initialization"); c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>"); fail = true; goto parse_next; } /* Parse the loop condition. */ cond = NULL_TREE; if (c_parser_next_token_is_not (parser, CPP_SEMICOLON)) { location_t cond_loc = c_parser_peek_token (parser)->location; struct c_expr cond_expr = c_parser_binary_expression (parser, NULL, NULL_TREE); cond = cond_expr.value; cond = c_objc_common_truthvalue_conversion (cond_loc, cond); if (COMPARISON_CLASS_P (cond)) { tree op0 = TREE_OPERAND (cond, 0), op1 = TREE_OPERAND (cond, 1); op0 = c_fully_fold (op0, false, NULL); op1 = c_fully_fold (op1, false, NULL); TREE_OPERAND (cond, 0) = op0; TREE_OPERAND (cond, 1) = op1; } switch (cond_expr.original_code) { case GT_EXPR: case GE_EXPR: case LT_EXPR: case LE_EXPR: break; case NE_EXPR: if (code != OACC_LOOP) break; /* FALLTHRU. */ default: /* Can't be cond = error_mark_node, because we want to preserve the location until c_finish_omp_for. */ cond = build1 (NOP_EXPR, boolean_type_node, error_mark_node); break; } protected_set_expr_location (cond, cond_loc); } c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>"); /* Parse the increment expression. */ incr = NULL_TREE; if (c_parser_next_token_is_not (parser, CPP_CLOSE_PAREN)) { location_t incr_loc = c_parser_peek_token (parser)->location; incr = c_process_expr_stmt (incr_loc, c_parser_expression (parser).value); } parens.skip_until_found_close (parser); if (decl == NULL || decl == error_mark_node || init == error_mark_node) fail = true; else { TREE_VEC_ELT (declv, i) = decl; TREE_VEC_ELT (initv, i) = init; TREE_VEC_ELT (condv, i) = cond; TREE_VEC_ELT (incrv, i) = incr; } parse_next: if (i == count - 1) break; /* FIXME: OpenMP 3.0 draft isn't very clear on what exactly is allowed in between the collapsed for loops to be still considered perfectly nested. Hopefully the final version clarifies this. For now handle (multiple) {'s and empty statements. */ do { if (c_parser_next_token_is_keyword (parser, RID_FOR)) { c_parser_consume_token (parser); break; } else if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) { c_parser_consume_token (parser); bracecount++; } else if (bracecount && c_parser_next_token_is (parser, CPP_SEMICOLON)) c_parser_consume_token (parser); else { c_parser_error (parser, "not enough perfectly nested loops"); if (bracecount) { open_brace_parsed = true; bracecount--; } fail = true; count = 0; break; } } while (1); nbraces += bracecount; } if (nbraces) if_p = NULL; save_break = c_break_label; c_break_label = size_one_node; save_cont = c_cont_label; c_cont_label = NULL_TREE; body = push_stmt_list (); if (open_brace_parsed) { location_t here = c_parser_peek_token (parser)->location; stmt = c_begin_compound_stmt (true); c_parser_compound_statement_nostart (parser); add_stmt (c_end_compound_stmt (here, stmt, true)); } else add_stmt (c_parser_c99_block_statement (parser, if_p)); if (c_cont_label) { tree t = build1 (LABEL_EXPR, void_type_node, c_cont_label); SET_EXPR_LOCATION (t, loc); add_stmt (t); } body = pop_stmt_list (body); c_break_label = save_break; c_cont_label = save_cont; while (nbraces) { if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) { c_parser_consume_token (parser); nbraces--; } else if (c_parser_next_token_is (parser, CPP_SEMICOLON)) c_parser_consume_token (parser); else { c_parser_error (parser, "collapsed loops not perfectly nested"); while (nbraces) { location_t here = c_parser_peek_token (parser)->location; stmt = c_begin_compound_stmt (true); add_stmt (body); c_parser_compound_statement_nostart (parser); body = c_end_compound_stmt (here, stmt, true); nbraces--; } goto pop_scopes; } } /* Only bother calling c_finish_omp_for if we haven't already generated an error from the initialization parsing. */ if (!fail) { stmt = c_finish_omp_for (loc, code, declv, NULL, initv, condv, incrv, body, pre_body, true); /* Check for iterators appearing in lb, b or incr expressions. */ if (stmt && !c_omp_check_loop_iv (stmt, declv, NULL)) stmt = NULL_TREE; if (stmt) { add_stmt (stmt); if (cclauses != NULL && cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL] != NULL) { tree *c; for (c = &cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL]; *c ; ) if (OMP_CLAUSE_CODE (*c) != OMP_CLAUSE_FIRSTPRIVATE && OMP_CLAUSE_CODE (*c) != OMP_CLAUSE_LASTPRIVATE) c = &OMP_CLAUSE_CHAIN (*c); else { for (i = 0; i < count; i++) if (TREE_VEC_ELT (declv, i) == OMP_CLAUSE_DECL (*c)) break; if (i == count) c = &OMP_CLAUSE_CHAIN (*c); else if (OMP_CLAUSE_CODE (*c) == OMP_CLAUSE_FIRSTPRIVATE) { error_at (loc, "iteration variable %qD should not be firstprivate", OMP_CLAUSE_DECL (*c)); *c = OMP_CLAUSE_CHAIN (*c); } else { /* Move lastprivate (decl) clause to OMP_FOR_CLAUSES. */ tree l = *c; *c = OMP_CLAUSE_CHAIN (*c); if (code == OMP_SIMD) { OMP_CLAUSE_CHAIN (l) = cclauses[C_OMP_CLAUSE_SPLIT_FOR]; cclauses[C_OMP_CLAUSE_SPLIT_FOR] = l; } else { OMP_CLAUSE_CHAIN (l) = clauses; clauses = l; } } } } OMP_FOR_CLAUSES (stmt) = clauses; } ret = stmt; } pop_scopes: while (!for_block->is_empty ()) { /* FIXME diagnostics: LOC below should be the actual location of this particular for block. We need to build a list of locations to go along with FOR_BLOCK. */ stmt = c_end_compound_stmt (loc, for_block->pop (), true); add_stmt (stmt); } release_tree_vector (for_block); return ret; } /* Helper function for OpenMP parsing, split clauses and call finish_omp_clauses on each of the set of clauses afterwards. */ static void omp_split_clauses (location_t loc, enum tree_code code, omp_clause_mask mask, tree clauses, tree *cclauses) { int i; c_omp_split_clauses (loc, code, mask, clauses, cclauses); for (i = 0; i < C_OMP_CLAUSE_SPLIT_COUNT; i++) if (cclauses[i]) cclauses[i] = c_finish_omp_clauses (cclauses[i], C_ORT_OMP); } /* OpenMP 4.0: #pragma omp simd simd-clause[optseq] new-line for-loop LOC is the location of the #pragma token. */ #define OMP_SIMD_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SAFELEN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SIMDLEN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LINEAR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_ALIGNED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COLLAPSE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NONTEMPORAL)) static tree c_parser_omp_simd (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses, bool *if_p) { tree block, clauses, ret; strcat (p_name, " simd"); mask |= OMP_SIMD_CLAUSE_MASK; clauses = c_parser_omp_all_clauses (parser, mask, p_name, cclauses == NULL); if (cclauses) { omp_split_clauses (loc, OMP_SIMD, mask, clauses, cclauses); clauses = cclauses[C_OMP_CLAUSE_SPLIT_SIMD]; tree c = omp_find_clause (cclauses[C_OMP_CLAUSE_SPLIT_FOR], OMP_CLAUSE_ORDERED); if (c && OMP_CLAUSE_ORDERED_EXPR (c)) { error_at (OMP_CLAUSE_LOCATION (c), "% clause with parameter may not be specified " "on %qs construct", p_name); OMP_CLAUSE_ORDERED_EXPR (c) = NULL_TREE; } } block = c_begin_compound_stmt (true); ret = c_parser_omp_for_loop (loc, parser, OMP_SIMD, clauses, cclauses, if_p); block = c_end_compound_stmt (loc, block, true); add_stmt (block); return ret; } /* OpenMP 2.5: #pragma omp for for-clause[optseq] new-line for-loop OpenMP 4.0: #pragma omp for simd for-simd-clause[optseq] new-line for-loop LOC is the location of the #pragma token. */ #define OMP_FOR_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LINEAR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_ORDERED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SCHEDULE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COLLAPSE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT)) static tree c_parser_omp_for (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses, bool *if_p) { tree block, clauses, ret; strcat (p_name, " for"); mask |= OMP_FOR_CLAUSE_MASK; /* parallel for{, simd} disallows nowait clause, but for target {teams distribute ,}parallel for{, simd} it should be accepted. */ if (cclauses && (mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MAP)) == 0) mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT); /* Composite distribute parallel for{, simd} disallows ordered clause. */ if ((mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DIST_SCHEDULE)) != 0) mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_ORDERED); if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "simd") == 0) { tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT]; if (cclauses == NULL) cclauses = cclauses_buf; c_parser_consume_token (parser); if (!flag_openmp) /* flag_openmp_simd */ return c_parser_omp_simd (loc, parser, p_name, mask, cclauses, if_p); block = c_begin_compound_stmt (true); ret = c_parser_omp_simd (loc, parser, p_name, mask, cclauses, if_p); block = c_end_compound_stmt (loc, block, true); if (ret == NULL_TREE) return ret; ret = make_node (OMP_FOR); TREE_TYPE (ret) = void_type_node; OMP_FOR_BODY (ret) = block; OMP_FOR_CLAUSES (ret) = cclauses[C_OMP_CLAUSE_SPLIT_FOR]; SET_EXPR_LOCATION (ret, loc); add_stmt (ret); return ret; } } if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } /* Composite distribute parallel for disallows linear clause. */ if ((mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DIST_SCHEDULE)) != 0) mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LINEAR); clauses = c_parser_omp_all_clauses (parser, mask, p_name, cclauses == NULL); if (cclauses) { omp_split_clauses (loc, OMP_FOR, mask, clauses, cclauses); clauses = cclauses[C_OMP_CLAUSE_SPLIT_FOR]; } block = c_begin_compound_stmt (true); ret = c_parser_omp_for_loop (loc, parser, OMP_FOR, clauses, cclauses, if_p); block = c_end_compound_stmt (loc, block, true); add_stmt (block); return ret; } static tree c_parser_omp_taskloop (location_t, c_parser *, char *, omp_clause_mask, tree *, bool *); /* OpenMP 2.5: # pragma omp master new-line structured-block LOC is the location of the #pragma token. */ static tree c_parser_omp_master (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses, bool *if_p) { tree block, clauses, ret; strcat (p_name, " master"); if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "taskloop") == 0) { tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT]; if (cclauses == NULL) cclauses = cclauses_buf; c_parser_consume_token (parser); if (!flag_openmp) /* flag_openmp_simd */ return c_parser_omp_taskloop (loc, parser, p_name, mask, cclauses, if_p); block = c_begin_compound_stmt (true); ret = c_parser_omp_taskloop (loc, parser, p_name, mask, cclauses, if_p); block = c_end_compound_stmt (loc, block, true); if (ret == NULL_TREE) return ret; ret = c_finish_omp_master (loc, block); return ret; } } if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } if (cclauses) { clauses = c_parser_omp_all_clauses (parser, mask, p_name, false); omp_split_clauses (loc, OMP_MASTER, mask, clauses, cclauses); } else c_parser_skip_to_pragma_eol (parser); return c_finish_omp_master (loc, c_parser_omp_structured_block (parser, if_p)); } /* OpenMP 2.5: # pragma omp ordered new-line structured-block OpenMP 4.5: # pragma omp ordered ordered-clauses new-line structured-block # pragma omp ordered depend-clauses new-line */ #define OMP_ORDERED_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_THREADS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SIMD)) #define OMP_ORDERED_DEPEND_CLAUSE_MASK \ (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEPEND) static bool c_parser_omp_ordered (c_parser *parser, enum pragma_context context, bool *if_p) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); if (context != pragma_stmt && context != pragma_compound) { c_parser_error (parser, "expected declaration specifiers"); c_parser_skip_to_pragma_eol (parser, false); return false; } if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (!strcmp ("depend", p)) { if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return false; } if (context == pragma_stmt) { error_at (loc, "%<#pragma omp ordered%> with % clause may " "only be used in compound statements"); c_parser_skip_to_pragma_eol (parser, false); return false; } tree clauses = c_parser_omp_all_clauses (parser, OMP_ORDERED_DEPEND_CLAUSE_MASK, "#pragma omp ordered"); c_finish_omp_ordered (loc, clauses, NULL_TREE); return false; } } tree clauses = c_parser_omp_all_clauses (parser, OMP_ORDERED_CLAUSE_MASK, "#pragma omp ordered"); if (!flag_openmp /* flag_openmp_simd */ && omp_find_clause (clauses, OMP_CLAUSE_SIMD) == NULL_TREE) return false; c_finish_omp_ordered (loc, clauses, c_parser_omp_structured_block (parser, if_p)); return true; } /* OpenMP 2.5: section-scope: { section-sequence } section-sequence: section-directive[opt] structured-block section-sequence section-directive structured-block SECTIONS_LOC is the location of the #pragma omp sections. */ static tree c_parser_omp_sections_scope (location_t sections_loc, c_parser *parser) { tree stmt, substmt; bool error_suppress = false; location_t loc; loc = c_parser_peek_token (parser)->location; if (!c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>")) { /* Avoid skipping until the end of the block. */ parser->error = false; return NULL_TREE; } stmt = push_stmt_list (); if (c_parser_peek_token (parser)->pragma_kind != PRAGMA_OMP_SECTION) { substmt = c_parser_omp_structured_block (parser, NULL); substmt = build1 (OMP_SECTION, void_type_node, substmt); SET_EXPR_LOCATION (substmt, loc); add_stmt (substmt); } while (1) { if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) break; if (c_parser_next_token_is (parser, CPP_EOF)) break; loc = c_parser_peek_token (parser)->location; if (c_parser_peek_token (parser)->pragma_kind == PRAGMA_OMP_SECTION) { c_parser_consume_pragma (parser); c_parser_skip_to_pragma_eol (parser); error_suppress = false; } else if (!error_suppress) { error_at (loc, "expected %<#pragma omp section%> or %<}%>"); error_suppress = true; } substmt = c_parser_omp_structured_block (parser, NULL); substmt = build1 (OMP_SECTION, void_type_node, substmt); SET_EXPR_LOCATION (substmt, loc); add_stmt (substmt); } c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, "expected %<#pragma omp section%> or %<}%>"); substmt = pop_stmt_list (stmt); stmt = make_node (OMP_SECTIONS); SET_EXPR_LOCATION (stmt, sections_loc); TREE_TYPE (stmt) = void_type_node; OMP_SECTIONS_BODY (stmt) = substmt; return add_stmt (stmt); } /* OpenMP 2.5: # pragma omp sections sections-clause[optseq] newline sections-scope LOC is the location of the #pragma token. */ #define OMP_SECTIONS_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT)) static tree c_parser_omp_sections (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses) { tree block, clauses, ret; strcat (p_name, " sections"); mask |= OMP_SECTIONS_CLAUSE_MASK; if (cclauses) mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT); clauses = c_parser_omp_all_clauses (parser, mask, p_name, cclauses == NULL); if (cclauses) { omp_split_clauses (loc, OMP_SECTIONS, mask, clauses, cclauses); clauses = cclauses[C_OMP_CLAUSE_SPLIT_SECTIONS]; } block = c_begin_compound_stmt (true); ret = c_parser_omp_sections_scope (loc, parser); if (ret) OMP_SECTIONS_CLAUSES (ret) = clauses; block = c_end_compound_stmt (loc, block, true); add_stmt (block); return ret; } /* OpenMP 2.5: # pragma omp parallel parallel-clause[optseq] new-line structured-block # pragma omp parallel for parallel-for-clause[optseq] new-line structured-block # pragma omp parallel sections parallel-sections-clause[optseq] new-line structured-block OpenMP 4.0: # pragma omp parallel for simd parallel-for-simd-clause[optseq] new-line structured-block LOC is the location of the #pragma token. */ #define OMP_PARALLEL_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEFAULT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SHARED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COPYIN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NUM_THREADS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PROC_BIND)) static tree c_parser_omp_parallel (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses, bool *if_p) { tree stmt, clauses, block; strcat (p_name, " parallel"); mask |= OMP_PARALLEL_CLAUSE_MASK; /* #pragma omp target parallel{, for, for simd} disallow copyin clause. */ if ((mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MAP)) != 0 && (mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DIST_SCHEDULE)) == 0) mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COPYIN); if (c_parser_next_token_is_keyword (parser, RID_FOR)) { tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT]; if (cclauses == NULL) cclauses = cclauses_buf; c_parser_consume_token (parser); if (!flag_openmp) /* flag_openmp_simd */ return c_parser_omp_for (loc, parser, p_name, mask, cclauses, if_p); block = c_begin_omp_parallel (); tree ret = c_parser_omp_for (loc, parser, p_name, mask, cclauses, if_p); stmt = c_finish_omp_parallel (loc, cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL], block); if (ret == NULL_TREE) return ret; OMP_PARALLEL_COMBINED (stmt) = 1; return stmt; } /* When combined with distribute, parallel has to be followed by for. #pragma omp target parallel is allowed though. */ else if (cclauses && (mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DIST_SCHEDULE)) != 0) { error_at (loc, "expected % after %qs", p_name); c_parser_skip_to_pragma_eol (parser); return NULL_TREE; } else if (cclauses == NULL && c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "master") == 0) { tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT]; cclauses = cclauses_buf; c_parser_consume_token (parser); if (!flag_openmp) /* flag_openmp_simd */ return c_parser_omp_master (loc, parser, p_name, mask, cclauses, if_p); block = c_begin_omp_parallel (); tree ret = c_parser_omp_master (loc, parser, p_name, mask, cclauses, if_p); stmt = c_finish_omp_parallel (loc, cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL], block); OMP_PARALLEL_COMBINED (stmt) = 1; if (ret == NULL) return ret; return stmt; } else if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } else if (strcmp (p, "sections") == 0) { tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT]; cclauses = cclauses_buf; c_parser_consume_token (parser); block = c_begin_omp_parallel (); c_parser_omp_sections (loc, parser, p_name, mask, cclauses); stmt = c_finish_omp_parallel (loc, cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL], block); OMP_PARALLEL_COMBINED (stmt) = 1; return stmt; } } else if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } clauses = c_parser_omp_all_clauses (parser, mask, p_name, cclauses == NULL); if (cclauses) { omp_split_clauses (loc, OMP_PARALLEL, mask, clauses, cclauses); clauses = cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL]; } block = c_begin_omp_parallel (); c_parser_statement (parser, if_p); stmt = c_finish_omp_parallel (loc, clauses, block); return stmt; } /* OpenMP 2.5: # pragma omp single single-clause[optseq] new-line structured-block LOC is the location of the #pragma. */ #define OMP_SINGLE_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COPYPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT)) static tree c_parser_omp_single (location_t loc, c_parser *parser, bool *if_p) { tree stmt = make_node (OMP_SINGLE); SET_EXPR_LOCATION (stmt, loc); TREE_TYPE (stmt) = void_type_node; OMP_SINGLE_CLAUSES (stmt) = c_parser_omp_all_clauses (parser, OMP_SINGLE_CLAUSE_MASK, "#pragma omp single"); OMP_SINGLE_BODY (stmt) = c_parser_omp_structured_block (parser, if_p); return add_stmt (stmt); } /* OpenMP 3.0: # pragma omp task task-clause[optseq] new-line LOC is the location of the #pragma. */ #define OMP_TASK_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_UNTIED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEFAULT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SHARED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FINAL) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MERGEABLE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEPEND) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIORITY) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IN_REDUCTION)) static tree c_parser_omp_task (location_t loc, c_parser *parser, bool *if_p) { tree clauses, block; clauses = c_parser_omp_all_clauses (parser, OMP_TASK_CLAUSE_MASK, "#pragma omp task"); block = c_begin_omp_task (); c_parser_statement (parser, if_p); return c_finish_omp_task (loc, clauses, block); } /* OpenMP 3.0: # pragma omp taskwait new-line OpenMP 5.0: # pragma omp taskwait taskwait-clause[optseq] new-line */ #define OMP_TASKWAIT_CLAUSE_MASK \ (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEPEND) static void c_parser_omp_taskwait (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); tree clauses = c_parser_omp_all_clauses (parser, OMP_TASKWAIT_CLAUSE_MASK, "#pragma omp taskwait"); if (clauses) { tree stmt = make_node (OMP_TASK); TREE_TYPE (stmt) = void_node; OMP_TASK_CLAUSES (stmt) = clauses; OMP_TASK_BODY (stmt) = NULL_TREE; SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); } else c_finish_omp_taskwait (loc); } /* OpenMP 3.1: # pragma omp taskyield new-line */ static void c_parser_omp_taskyield (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); c_parser_skip_to_pragma_eol (parser); c_finish_omp_taskyield (loc); } /* OpenMP 4.0: # pragma omp taskgroup new-line OpenMP 5.0: # pragma omp taskgroup taskgroup-clause[optseq] new-line */ #define OMP_TASKGROUP_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_TASK_REDUCTION)) static tree c_parser_omp_taskgroup (location_t loc, c_parser *parser, bool *if_p) { tree clauses = c_parser_omp_all_clauses (parser, OMP_TASKGROUP_CLAUSE_MASK, "#pragma omp taskgroup"); tree body = c_parser_omp_structured_block (parser, if_p); return c_finish_omp_taskgroup (loc, body, clauses); } /* OpenMP 4.0: # pragma omp cancel cancel-clause[optseq] new-line LOC is the location of the #pragma. */ #define OMP_CANCEL_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PARALLEL) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FOR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SECTIONS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_TASKGROUP) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF)) static void c_parser_omp_cancel (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); tree clauses = c_parser_omp_all_clauses (parser, OMP_CANCEL_CLAUSE_MASK, "#pragma omp cancel"); c_finish_omp_cancel (loc, clauses); } /* OpenMP 4.0: # pragma omp cancellation point cancelpt-clause[optseq] new-line LOC is the location of the #pragma. */ #define OMP_CANCELLATION_POINT_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PARALLEL) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FOR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SECTIONS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_TASKGROUP)) static void c_parser_omp_cancellation_point (c_parser *parser, enum pragma_context context) { location_t loc = c_parser_peek_token (parser)->location; tree clauses; bool point_seen = false; c_parser_consume_pragma (parser); if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "point") == 0) { c_parser_consume_token (parser); point_seen = true; } } if (!point_seen) { c_parser_error (parser, "expected %"); c_parser_skip_to_pragma_eol (parser); return; } if (context != pragma_compound) { if (context == pragma_stmt) error_at (loc, "%<#pragma %s%> may only be used in compound statements", "omp cancellation point"); else c_parser_error (parser, "expected declaration specifiers"); c_parser_skip_to_pragma_eol (parser, false); return; } clauses = c_parser_omp_all_clauses (parser, OMP_CANCELLATION_POINT_CLAUSE_MASK, "#pragma omp cancellation point"); c_finish_omp_cancellation_point (loc, clauses); } /* OpenMP 4.0: #pragma omp distribute distribute-clause[optseq] new-line for-loop */ #define OMP_DISTRIBUTE_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DIST_SCHEDULE)\ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COLLAPSE)) static tree c_parser_omp_distribute (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses, bool *if_p) { tree clauses, block, ret; strcat (p_name, " distribute"); mask |= OMP_DISTRIBUTE_CLAUSE_MASK; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); bool simd = false; bool parallel = false; if (strcmp (p, "simd") == 0) simd = true; else parallel = strcmp (p, "parallel") == 0; if (parallel || simd) { tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT]; if (cclauses == NULL) cclauses = cclauses_buf; c_parser_consume_token (parser); if (!flag_openmp) /* flag_openmp_simd */ { if (simd) return c_parser_omp_simd (loc, parser, p_name, mask, cclauses, if_p); else return c_parser_omp_parallel (loc, parser, p_name, mask, cclauses, if_p); } block = c_begin_compound_stmt (true); if (simd) ret = c_parser_omp_simd (loc, parser, p_name, mask, cclauses, if_p); else ret = c_parser_omp_parallel (loc, parser, p_name, mask, cclauses, if_p); block = c_end_compound_stmt (loc, block, true); if (ret == NULL) return ret; ret = make_node (OMP_DISTRIBUTE); TREE_TYPE (ret) = void_type_node; OMP_FOR_BODY (ret) = block; OMP_FOR_CLAUSES (ret) = cclauses[C_OMP_CLAUSE_SPLIT_DISTRIBUTE]; SET_EXPR_LOCATION (ret, loc); add_stmt (ret); return ret; } } if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } clauses = c_parser_omp_all_clauses (parser, mask, p_name, cclauses == NULL); if (cclauses) { omp_split_clauses (loc, OMP_DISTRIBUTE, mask, clauses, cclauses); clauses = cclauses[C_OMP_CLAUSE_SPLIT_DISTRIBUTE]; } block = c_begin_compound_stmt (true); ret = c_parser_omp_for_loop (loc, parser, OMP_DISTRIBUTE, clauses, NULL, if_p); block = c_end_compound_stmt (loc, block, true); add_stmt (block); return ret; } /* OpenMP 4.0: # pragma omp teams teams-clause[optseq] new-line structured-block */ #define OMP_TEAMS_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SHARED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NUM_TEAMS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_THREAD_LIMIT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEFAULT)) static tree c_parser_omp_teams (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses, bool *if_p) { tree clauses, block, ret; strcat (p_name, " teams"); mask |= OMP_TEAMS_CLAUSE_MASK; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "distribute") == 0) { tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT]; if (cclauses == NULL) cclauses = cclauses_buf; c_parser_consume_token (parser); if (!flag_openmp) /* flag_openmp_simd */ return c_parser_omp_distribute (loc, parser, p_name, mask, cclauses, if_p); block = c_begin_omp_parallel (); ret = c_parser_omp_distribute (loc, parser, p_name, mask, cclauses, if_p); block = c_end_compound_stmt (loc, block, true); if (ret == NULL) return ret; clauses = cclauses[C_OMP_CLAUSE_SPLIT_TEAMS]; ret = make_node (OMP_TEAMS); TREE_TYPE (ret) = void_type_node; OMP_TEAMS_CLAUSES (ret) = clauses; OMP_TEAMS_BODY (ret) = block; OMP_TEAMS_COMBINED (ret) = 1; SET_EXPR_LOCATION (ret, loc); return add_stmt (ret); } } if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } clauses = c_parser_omp_all_clauses (parser, mask, p_name, cclauses == NULL); if (cclauses) { omp_split_clauses (loc, OMP_TEAMS, mask, clauses, cclauses); clauses = cclauses[C_OMP_CLAUSE_SPLIT_TEAMS]; } tree stmt = make_node (OMP_TEAMS); TREE_TYPE (stmt) = void_type_node; OMP_TEAMS_CLAUSES (stmt) = clauses; block = c_begin_omp_parallel (); add_stmt (c_parser_omp_structured_block (parser, if_p)); OMP_TEAMS_BODY (stmt) = c_end_compound_stmt (loc, block, true); SET_EXPR_LOCATION (stmt, loc); return add_stmt (stmt); } /* OpenMP 4.0: # pragma omp target data target-data-clause[optseq] new-line structured-block */ #define OMP_TARGET_DATA_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEVICE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MAP) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_USE_DEVICE_PTR)) static tree c_parser_omp_target_data (location_t loc, c_parser *parser, bool *if_p) { tree clauses = c_parser_omp_all_clauses (parser, OMP_TARGET_DATA_CLAUSE_MASK, "#pragma omp target data"); int map_seen = 0; for (tree *pc = &clauses; *pc;) { if (OMP_CLAUSE_CODE (*pc) == OMP_CLAUSE_MAP) switch (OMP_CLAUSE_MAP_KIND (*pc)) { case GOMP_MAP_TO: case GOMP_MAP_ALWAYS_TO: case GOMP_MAP_FROM: case GOMP_MAP_ALWAYS_FROM: case GOMP_MAP_TOFROM: case GOMP_MAP_ALWAYS_TOFROM: case GOMP_MAP_ALLOC: map_seen = 3; break; case GOMP_MAP_FIRSTPRIVATE_POINTER: case GOMP_MAP_ALWAYS_POINTER: break; default: map_seen |= 1; error_at (OMP_CLAUSE_LOCATION (*pc), "%<#pragma omp target data%> with map-type other " "than %, %, % or % " "on % clause"); *pc = OMP_CLAUSE_CHAIN (*pc); continue; } else if (OMP_CLAUSE_CODE (*pc) == OMP_CLAUSE_USE_DEVICE_PTR) map_seen = 3; pc = &OMP_CLAUSE_CHAIN (*pc); } if (map_seen != 3) { if (map_seen == 0) error_at (loc, "%<#pragma omp target data%> must contain at least " "one % or % clause"); return NULL_TREE; } tree stmt = make_node (OMP_TARGET_DATA); TREE_TYPE (stmt) = void_type_node; OMP_TARGET_DATA_CLAUSES (stmt) = clauses; keep_next_level (); tree block = c_begin_compound_stmt (true); add_stmt (c_parser_omp_structured_block (parser, if_p)); OMP_TARGET_DATA_BODY (stmt) = c_end_compound_stmt (loc, block, true); SET_EXPR_LOCATION (stmt, loc); return add_stmt (stmt); } /* OpenMP 4.0: # pragma omp target update target-update-clause[optseq] new-line */ #define OMP_TARGET_UPDATE_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FROM) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_TO) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEVICE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEPEND) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT)) static bool c_parser_omp_target_update (location_t loc, c_parser *parser, enum pragma_context context) { if (context == pragma_stmt) { error_at (loc, "%<#pragma %s%> may only be used in compound statements", "omp target update"); c_parser_skip_to_pragma_eol (parser, false); return false; } tree clauses = c_parser_omp_all_clauses (parser, OMP_TARGET_UPDATE_CLAUSE_MASK, "#pragma omp target update"); if (omp_find_clause (clauses, OMP_CLAUSE_TO) == NULL_TREE && omp_find_clause (clauses, OMP_CLAUSE_FROM) == NULL_TREE) { error_at (loc, "%<#pragma omp target update%> must contain at least one " "% or % clauses"); return false; } tree stmt = make_node (OMP_TARGET_UPDATE); TREE_TYPE (stmt) = void_type_node; OMP_TARGET_UPDATE_CLAUSES (stmt) = clauses; SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); return false; } /* OpenMP 4.5: # pragma omp target enter data target-data-clause[optseq] new-line */ #define OMP_TARGET_ENTER_DATA_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEVICE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MAP) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEPEND) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT)) static tree c_parser_omp_target_enter_data (location_t loc, c_parser *parser, enum pragma_context context) { bool data_seen = false; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "data") == 0) { c_parser_consume_token (parser); data_seen = true; } } if (!data_seen) { c_parser_error (parser, "expected %"); c_parser_skip_to_pragma_eol (parser); return NULL_TREE; } if (context == pragma_stmt) { error_at (loc, "%<#pragma %s%> may only be used in compound statements", "omp target enter data"); c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } tree clauses = c_parser_omp_all_clauses (parser, OMP_TARGET_ENTER_DATA_CLAUSE_MASK, "#pragma omp target enter data"); int map_seen = 0; for (tree *pc = &clauses; *pc;) { if (OMP_CLAUSE_CODE (*pc) == OMP_CLAUSE_MAP) switch (OMP_CLAUSE_MAP_KIND (*pc)) { case GOMP_MAP_TO: case GOMP_MAP_ALWAYS_TO: case GOMP_MAP_ALLOC: map_seen = 3; break; case GOMP_MAP_FIRSTPRIVATE_POINTER: case GOMP_MAP_ALWAYS_POINTER: break; default: map_seen |= 1; error_at (OMP_CLAUSE_LOCATION (*pc), "%<#pragma omp target enter data%> with map-type other " "than % or % on % clause"); *pc = OMP_CLAUSE_CHAIN (*pc); continue; } pc = &OMP_CLAUSE_CHAIN (*pc); } if (map_seen != 3) { if (map_seen == 0) error_at (loc, "%<#pragma omp target enter data%> must contain at least " "one % clause"); return NULL_TREE; } tree stmt = make_node (OMP_TARGET_ENTER_DATA); TREE_TYPE (stmt) = void_type_node; OMP_TARGET_ENTER_DATA_CLAUSES (stmt) = clauses; SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); return stmt; } /* OpenMP 4.5: # pragma omp target exit data target-data-clause[optseq] new-line */ #define OMP_TARGET_EXIT_DATA_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEVICE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MAP) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEPEND) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT)) static tree c_parser_omp_target_exit_data (location_t loc, c_parser *parser, enum pragma_context context) { bool data_seen = false; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "data") == 0) { c_parser_consume_token (parser); data_seen = true; } } if (!data_seen) { c_parser_error (parser, "expected %"); c_parser_skip_to_pragma_eol (parser); return NULL_TREE; } if (context == pragma_stmt) { error_at (loc, "%<#pragma %s%> may only be used in compound statements", "omp target exit data"); c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } tree clauses = c_parser_omp_all_clauses (parser, OMP_TARGET_EXIT_DATA_CLAUSE_MASK, "#pragma omp target exit data"); int map_seen = 0; for (tree *pc = &clauses; *pc;) { if (OMP_CLAUSE_CODE (*pc) == OMP_CLAUSE_MAP) switch (OMP_CLAUSE_MAP_KIND (*pc)) { case GOMP_MAP_FROM: case GOMP_MAP_ALWAYS_FROM: case GOMP_MAP_RELEASE: case GOMP_MAP_DELETE: map_seen = 3; break; case GOMP_MAP_FIRSTPRIVATE_POINTER: case GOMP_MAP_ALWAYS_POINTER: break; default: map_seen |= 1; error_at (OMP_CLAUSE_LOCATION (*pc), "%<#pragma omp target exit data%> with map-type other " "than %, % or % on %" " clause"); *pc = OMP_CLAUSE_CHAIN (*pc); continue; } pc = &OMP_CLAUSE_CHAIN (*pc); } if (map_seen != 3) { if (map_seen == 0) error_at (loc, "%<#pragma omp target exit data%> must contain at least one " "% clause"); return NULL_TREE; } tree stmt = make_node (OMP_TARGET_EXIT_DATA); TREE_TYPE (stmt) = void_type_node; OMP_TARGET_EXIT_DATA_CLAUSES (stmt) = clauses; SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); return stmt; } /* OpenMP 4.0: # pragma omp target target-clause[optseq] new-line structured-block */ #define OMP_TARGET_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEVICE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MAP) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEPEND) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEFAULTMAP) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IS_DEVICE_PTR)) static bool c_parser_omp_target (c_parser *parser, enum pragma_context context, bool *if_p) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); tree *pc = NULL, stmt, block; if (context != pragma_stmt && context != pragma_compound) { c_parser_error (parser, "expected declaration specifiers"); c_parser_skip_to_pragma_eol (parser); return false; } if (flag_openmp) omp_requires_mask = (enum omp_requires) (omp_requires_mask | OMP_REQUIRES_TARGET_USED); if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); enum tree_code ccode = ERROR_MARK; if (strcmp (p, "teams") == 0) ccode = OMP_TEAMS; else if (strcmp (p, "parallel") == 0) ccode = OMP_PARALLEL; else if (strcmp (p, "simd") == 0) ccode = OMP_SIMD; if (ccode != ERROR_MARK) { tree cclauses[C_OMP_CLAUSE_SPLIT_COUNT]; char p_name[sizeof ("#pragma omp target teams distribute " "parallel for simd")]; c_parser_consume_token (parser); strcpy (p_name, "#pragma omp target"); if (!flag_openmp) /* flag_openmp_simd */ { tree stmt; switch (ccode) { case OMP_TEAMS: stmt = c_parser_omp_teams (loc, parser, p_name, OMP_TARGET_CLAUSE_MASK, cclauses, if_p); break; case OMP_PARALLEL: stmt = c_parser_omp_parallel (loc, parser, p_name, OMP_TARGET_CLAUSE_MASK, cclauses, if_p); break; case OMP_SIMD: stmt = c_parser_omp_simd (loc, parser, p_name, OMP_TARGET_CLAUSE_MASK, cclauses, if_p); break; default: gcc_unreachable (); } return stmt != NULL_TREE; } keep_next_level (); tree block = c_begin_compound_stmt (true), ret; switch (ccode) { case OMP_TEAMS: ret = c_parser_omp_teams (loc, parser, p_name, OMP_TARGET_CLAUSE_MASK, cclauses, if_p); break; case OMP_PARALLEL: ret = c_parser_omp_parallel (loc, parser, p_name, OMP_TARGET_CLAUSE_MASK, cclauses, if_p); break; case OMP_SIMD: ret = c_parser_omp_simd (loc, parser, p_name, OMP_TARGET_CLAUSE_MASK, cclauses, if_p); break; default: gcc_unreachable (); } block = c_end_compound_stmt (loc, block, true); if (ret == NULL_TREE) return false; if (ccode == OMP_TEAMS) { /* For combined target teams, ensure the num_teams and thread_limit clause expressions are evaluated on the host, before entering the target construct. */ tree c; for (c = cclauses[C_OMP_CLAUSE_SPLIT_TEAMS]; c; c = OMP_CLAUSE_CHAIN (c)) if ((OMP_CLAUSE_CODE (c) == OMP_CLAUSE_NUM_TEAMS || OMP_CLAUSE_CODE (c) == OMP_CLAUSE_THREAD_LIMIT) && TREE_CODE (OMP_CLAUSE_OPERAND (c, 0)) != INTEGER_CST) { tree expr = OMP_CLAUSE_OPERAND (c, 0); tree tmp = create_tmp_var_raw (TREE_TYPE (expr)); expr = build4 (TARGET_EXPR, TREE_TYPE (expr), tmp, expr, NULL_TREE, NULL_TREE); add_stmt (expr); OMP_CLAUSE_OPERAND (c, 0) = expr; tree tc = build_omp_clause (OMP_CLAUSE_LOCATION (c), OMP_CLAUSE_FIRSTPRIVATE); OMP_CLAUSE_DECL (tc) = tmp; OMP_CLAUSE_CHAIN (tc) = cclauses[C_OMP_CLAUSE_SPLIT_TARGET]; cclauses[C_OMP_CLAUSE_SPLIT_TARGET] = tc; } } tree stmt = make_node (OMP_TARGET); TREE_TYPE (stmt) = void_type_node; OMP_TARGET_CLAUSES (stmt) = cclauses[C_OMP_CLAUSE_SPLIT_TARGET]; OMP_TARGET_BODY (stmt) = block; OMP_TARGET_COMBINED (stmt) = 1; SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); pc = &OMP_TARGET_CLAUSES (stmt); goto check_clauses; } else if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return false; } else if (strcmp (p, "data") == 0) { c_parser_consume_token (parser); c_parser_omp_target_data (loc, parser, if_p); return true; } else if (strcmp (p, "enter") == 0) { c_parser_consume_token (parser); c_parser_omp_target_enter_data (loc, parser, context); return false; } else if (strcmp (p, "exit") == 0) { c_parser_consume_token (parser); c_parser_omp_target_exit_data (loc, parser, context); return false; } else if (strcmp (p, "update") == 0) { c_parser_consume_token (parser); return c_parser_omp_target_update (loc, parser, context); } } if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return false; } stmt = make_node (OMP_TARGET); TREE_TYPE (stmt) = void_type_node; OMP_TARGET_CLAUSES (stmt) = c_parser_omp_all_clauses (parser, OMP_TARGET_CLAUSE_MASK, "#pragma omp target"); pc = &OMP_TARGET_CLAUSES (stmt); keep_next_level (); block = c_begin_compound_stmt (true); add_stmt (c_parser_omp_structured_block (parser, if_p)); OMP_TARGET_BODY (stmt) = c_end_compound_stmt (loc, block, true); SET_EXPR_LOCATION (stmt, loc); add_stmt (stmt); check_clauses: while (*pc) { if (OMP_CLAUSE_CODE (*pc) == OMP_CLAUSE_MAP) switch (OMP_CLAUSE_MAP_KIND (*pc)) { case GOMP_MAP_TO: case GOMP_MAP_ALWAYS_TO: case GOMP_MAP_FROM: case GOMP_MAP_ALWAYS_FROM: case GOMP_MAP_TOFROM: case GOMP_MAP_ALWAYS_TOFROM: case GOMP_MAP_ALLOC: case GOMP_MAP_FIRSTPRIVATE_POINTER: case GOMP_MAP_ALWAYS_POINTER: break; default: error_at (OMP_CLAUSE_LOCATION (*pc), "%<#pragma omp target%> with map-type other " "than %, %, % or % " "on % clause"); *pc = OMP_CLAUSE_CHAIN (*pc); continue; } pc = &OMP_CLAUSE_CHAIN (*pc); } return true; } /* OpenMP 4.0: # pragma omp declare simd declare-simd-clauses[optseq] new-line */ #define OMP_DECLARE_SIMD_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SIMDLEN) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LINEAR) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_ALIGNED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_UNIFORM) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_INBRANCH) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOTINBRANCH)) static void c_parser_omp_declare_simd (c_parser *parser, enum pragma_context context) { auto_vec clauses; while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) { c_token *token = c_parser_peek_token (parser); if (token->type == CPP_EOF) { c_parser_skip_to_pragma_eol (parser); return; } clauses.safe_push (*token); c_parser_consume_token (parser); } clauses.safe_push (*c_parser_peek_token (parser)); c_parser_skip_to_pragma_eol (parser); while (c_parser_next_token_is (parser, CPP_PRAGMA)) { if (c_parser_peek_token (parser)->pragma_kind != PRAGMA_OMP_DECLARE || c_parser_peek_2nd_token (parser)->type != CPP_NAME || strcmp (IDENTIFIER_POINTER (c_parser_peek_2nd_token (parser)->value), "simd") != 0) { c_parser_error (parser, "%<#pragma omp declare simd%> must be followed by " "function declaration or definition or another " "%<#pragma omp declare simd%>"); return; } c_parser_consume_pragma (parser); while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) { c_token *token = c_parser_peek_token (parser); if (token->type == CPP_EOF) { c_parser_skip_to_pragma_eol (parser); return; } clauses.safe_push (*token); c_parser_consume_token (parser); } clauses.safe_push (*c_parser_peek_token (parser)); c_parser_skip_to_pragma_eol (parser); } /* Make sure nothing tries to read past the end of the tokens. */ c_token eof_token; memset (&eof_token, 0, sizeof (eof_token)); eof_token.type = CPP_EOF; clauses.safe_push (eof_token); clauses.safe_push (eof_token); switch (context) { case pragma_external: if (c_parser_next_token_is (parser, CPP_KEYWORD) && c_parser_peek_token (parser)->keyword == RID_EXTENSION) { int ext = disable_extension_diagnostics (); do c_parser_consume_token (parser); while (c_parser_next_token_is (parser, CPP_KEYWORD) && c_parser_peek_token (parser)->keyword == RID_EXTENSION); c_parser_declaration_or_fndef (parser, true, true, true, false, true, NULL, clauses); restore_extension_diagnostics (ext); } else c_parser_declaration_or_fndef (parser, true, true, true, false, true, NULL, clauses); break; case pragma_struct: case pragma_param: case pragma_stmt: c_parser_error (parser, "%<#pragma omp declare simd%> must be followed by " "function declaration or definition"); break; case pragma_compound: if (c_parser_next_token_is (parser, CPP_KEYWORD) && c_parser_peek_token (parser)->keyword == RID_EXTENSION) { int ext = disable_extension_diagnostics (); do c_parser_consume_token (parser); while (c_parser_next_token_is (parser, CPP_KEYWORD) && c_parser_peek_token (parser)->keyword == RID_EXTENSION); if (c_parser_next_tokens_start_declaration (parser)) { c_parser_declaration_or_fndef (parser, true, true, true, true, true, NULL, clauses); restore_extension_diagnostics (ext); break; } restore_extension_diagnostics (ext); } else if (c_parser_next_tokens_start_declaration (parser)) { c_parser_declaration_or_fndef (parser, true, true, true, true, true, NULL, clauses); break; } c_parser_error (parser, "%<#pragma omp declare simd%> must be followed by " "function declaration or definition"); break; default: gcc_unreachable (); } } /* Finalize #pragma omp declare simd clauses after FNDECL has been parsed, and put that into "omp declare simd" attribute. */ static void c_finish_omp_declare_simd (c_parser *parser, tree fndecl, tree parms, vec clauses) { /* Normally first token is CPP_NAME "simd". CPP_EOF there indicates error has been reported and CPP_PRAGMA that c_finish_omp_declare_simd has already processed the tokens. */ if (clauses.exists () && clauses[0].type == CPP_EOF) return; if (fndecl == NULL_TREE || TREE_CODE (fndecl) != FUNCTION_DECL) { error ("%<#pragma omp declare simd%> not immediately followed by " "a function declaration or definition"); clauses[0].type = CPP_EOF; return; } if (clauses.exists () && clauses[0].type != CPP_NAME) { error_at (DECL_SOURCE_LOCATION (fndecl), "%<#pragma omp declare simd%> not immediately followed by " "a single function declaration or definition"); clauses[0].type = CPP_EOF; return; } if (parms == NULL_TREE) parms = DECL_ARGUMENTS (fndecl); unsigned int tokens_avail = parser->tokens_avail; gcc_assert (parser->tokens == &parser->tokens_buf[0]); parser->tokens = clauses.address (); parser->tokens_avail = clauses.length (); /* c_parser_omp_declare_simd pushed 2 extra CPP_EOF tokens at the end. */ while (parser->tokens_avail > 3) { c_token *token = c_parser_peek_token (parser); gcc_assert (token->type == CPP_NAME && strcmp (IDENTIFIER_POINTER (token->value), "simd") == 0); c_parser_consume_token (parser); parser->in_pragma = true; tree c = NULL_TREE; c = c_parser_omp_all_clauses (parser, OMP_DECLARE_SIMD_CLAUSE_MASK, "#pragma omp declare simd"); c = c_omp_declare_simd_clauses_to_numbers (parms, c); if (c != NULL_TREE) c = tree_cons (NULL_TREE, c, NULL_TREE); c = build_tree_list (get_identifier ("omp declare simd"), c); TREE_CHAIN (c) = DECL_ATTRIBUTES (fndecl); DECL_ATTRIBUTES (fndecl) = c; } parser->tokens = &parser->tokens_buf[0]; parser->tokens_avail = tokens_avail; if (clauses.exists ()) clauses[0].type = CPP_PRAGMA; } /* OpenMP 4.0: # pragma omp declare target new-line declarations and definitions # pragma omp end declare target new-line OpenMP 4.5: # pragma omp declare target ( extended-list ) new-line # pragma omp declare target declare-target-clauses[seq] new-line */ #define OMP_DECLARE_TARGET_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_TO) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LINK)) static void c_parser_omp_declare_target (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; tree clauses = NULL_TREE; if (c_parser_next_token_is (parser, CPP_NAME)) clauses = c_parser_omp_all_clauses (parser, OMP_DECLARE_TARGET_CLAUSE_MASK, "#pragma omp declare target"); else if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)) { clauses = c_parser_omp_var_list_parens (parser, OMP_CLAUSE_TO_DECLARE, clauses); clauses = c_finish_omp_clauses (clauses, C_ORT_OMP); c_parser_skip_to_pragma_eol (parser); } else { c_parser_skip_to_pragma_eol (parser); current_omp_declare_target_attribute++; return; } if (current_omp_declare_target_attribute) error_at (loc, "%<#pragma omp declare target%> with clauses in between " "%<#pragma omp declare target%> without clauses and " "%<#pragma omp end declare target%>"); for (tree c = clauses; c; c = OMP_CLAUSE_CHAIN (c)) { tree t = OMP_CLAUSE_DECL (c), id; tree at1 = lookup_attribute ("omp declare target", DECL_ATTRIBUTES (t)); tree at2 = lookup_attribute ("omp declare target link", DECL_ATTRIBUTES (t)); if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LINK) { id = get_identifier ("omp declare target link"); std::swap (at1, at2); } else id = get_identifier ("omp declare target"); if (at2) { error_at (OMP_CLAUSE_LOCATION (c), "%qD specified both in declare target % and %" " clauses", t); continue; } if (!at1) { DECL_ATTRIBUTES (t) = tree_cons (id, NULL_TREE, DECL_ATTRIBUTES (t)); if (TREE_CODE (t) != FUNCTION_DECL && !is_global_var (t)) continue; symtab_node *node = symtab_node::get (t); if (node != NULL) { node->offloadable = 1; if (ENABLE_OFFLOADING) { g->have_offload = true; if (is_a (node)) vec_safe_push (offload_vars, t); } } } } } static void c_parser_omp_end_declare_target (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; c_parser_consume_pragma (parser); if (c_parser_next_token_is (parser, CPP_NAME) && strcmp (IDENTIFIER_POINTER (c_parser_peek_token (parser)->value), "declare") == 0) { c_parser_consume_token (parser); if (c_parser_next_token_is (parser, CPP_NAME) && strcmp (IDENTIFIER_POINTER (c_parser_peek_token (parser)->value), "target") == 0) c_parser_consume_token (parser); else { c_parser_error (parser, "expected %"); c_parser_skip_to_pragma_eol (parser); return; } } else { c_parser_error (parser, "expected %"); c_parser_skip_to_pragma_eol (parser); return; } c_parser_skip_to_pragma_eol (parser); if (!current_omp_declare_target_attribute) error_at (loc, "%<#pragma omp end declare target%> without corresponding " "%<#pragma omp declare target%>"); else current_omp_declare_target_attribute--; } /* OpenMP 4.0 #pragma omp declare reduction (reduction-id : typename-list : expression) \ initializer-clause[opt] new-line initializer-clause: initializer (omp_priv = initializer) initializer (function-name (argument-list)) */ static void c_parser_omp_declare_reduction (c_parser *parser, enum pragma_context context) { unsigned int tokens_avail = 0, i; vec types = vNULL; vec clauses = vNULL; enum tree_code reduc_code = ERROR_MARK; tree reduc_id = NULL_TREE; tree type; location_t rloc = c_parser_peek_token (parser)->location; if (context == pragma_struct || context == pragma_param) { error ("%<#pragma omp declare reduction%> not at file or block scope"); goto fail; } if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>")) goto fail; switch (c_parser_peek_token (parser)->type) { case CPP_PLUS: reduc_code = PLUS_EXPR; break; case CPP_MULT: reduc_code = MULT_EXPR; break; case CPP_MINUS: reduc_code = MINUS_EXPR; break; case CPP_AND: reduc_code = BIT_AND_EXPR; break; case CPP_XOR: reduc_code = BIT_XOR_EXPR; break; case CPP_OR: reduc_code = BIT_IOR_EXPR; break; case CPP_AND_AND: reduc_code = TRUTH_ANDIF_EXPR; break; case CPP_OR_OR: reduc_code = TRUTH_ORIF_EXPR; break; case CPP_NAME: const char *p; p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "min") == 0) { reduc_code = MIN_EXPR; break; } if (strcmp (p, "max") == 0) { reduc_code = MAX_EXPR; break; } reduc_id = c_parser_peek_token (parser)->value; break; default: c_parser_error (parser, "expected %<+%>, %<*%>, %<-%>, %<&%>, " "%<^%>, %<|%>, %<&&%>, %<||%> or identifier"); goto fail; } tree orig_reduc_id, reduc_decl; orig_reduc_id = reduc_id; reduc_id = c_omp_reduction_id (reduc_code, reduc_id); reduc_decl = c_omp_reduction_decl (reduc_id); c_parser_consume_token (parser); if (!c_parser_require (parser, CPP_COLON, "expected %<:%>")) goto fail; while (true) { location_t loc = c_parser_peek_token (parser)->location; struct c_type_name *ctype = c_parser_type_name (parser); if (ctype != NULL) { type = groktypename (ctype, NULL, NULL); if (type == error_mark_node) ; else if ((INTEGRAL_TYPE_P (type) || TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == COMPLEX_TYPE) && orig_reduc_id == NULL_TREE) error_at (loc, "predeclared arithmetic type in " "%<#pragma omp declare reduction%>"); else if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == ARRAY_TYPE) error_at (loc, "function or array type in " "%<#pragma omp declare reduction%>"); else if (TYPE_ATOMIC (type)) error_at (loc, "%<_Atomic%> qualified type in " "%<#pragma omp declare reduction%>"); else if (TYPE_QUALS_NO_ADDR_SPACE (type)) error_at (loc, "const, volatile or restrict qualified type in " "%<#pragma omp declare reduction%>"); else { tree t; for (t = DECL_INITIAL (reduc_decl); t; t = TREE_CHAIN (t)) if (comptypes (TREE_PURPOSE (t), type)) { error_at (loc, "redeclaration of %qs " "%<#pragma omp declare reduction%> for " "type %qT", IDENTIFIER_POINTER (reduc_id) + sizeof ("omp declare reduction ") - 1, type); location_t ploc = DECL_SOURCE_LOCATION (TREE_VEC_ELT (TREE_VALUE (t), 0)); error_at (ploc, "previous %<#pragma omp declare " "reduction%>"); break; } if (t == NULL_TREE) types.safe_push (type); } if (c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); else break; } else break; } if (!c_parser_require (parser, CPP_COLON, "expected %<:%>") || types.is_empty ()) { fail: clauses.release (); types.release (); while (true) { c_token *token = c_parser_peek_token (parser); if (token->type == CPP_EOF || token->type == CPP_PRAGMA_EOL) break; c_parser_consume_token (parser); } c_parser_skip_to_pragma_eol (parser); return; } if (types.length () > 1) { while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) { c_token *token = c_parser_peek_token (parser); if (token->type == CPP_EOF) goto fail; clauses.safe_push (*token); c_parser_consume_token (parser); } clauses.safe_push (*c_parser_peek_token (parser)); c_parser_skip_to_pragma_eol (parser); /* Make sure nothing tries to read past the end of the tokens. */ c_token eof_token; memset (&eof_token, 0, sizeof (eof_token)); eof_token.type = CPP_EOF; clauses.safe_push (eof_token); clauses.safe_push (eof_token); } int errs = errorcount; FOR_EACH_VEC_ELT (types, i, type) { tokens_avail = parser->tokens_avail; gcc_assert (parser->tokens == &parser->tokens_buf[0]); if (!clauses.is_empty ()) { parser->tokens = clauses.address (); parser->tokens_avail = clauses.length (); parser->in_pragma = true; } bool nested = current_function_decl != NULL_TREE; if (nested) c_push_function_context (); tree fndecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, reduc_id, default_function_type); current_function_decl = fndecl; allocate_struct_function (fndecl, true); push_scope (); tree stmt = push_stmt_list (); /* Intentionally BUILTINS_LOCATION, so that -Wshadow doesn't warn about these. */ tree omp_out = build_decl (BUILTINS_LOCATION, VAR_DECL, get_identifier ("omp_out"), type); DECL_ARTIFICIAL (omp_out) = 1; DECL_CONTEXT (omp_out) = fndecl; pushdecl (omp_out); tree omp_in = build_decl (BUILTINS_LOCATION, VAR_DECL, get_identifier ("omp_in"), type); DECL_ARTIFICIAL (omp_in) = 1; DECL_CONTEXT (omp_in) = fndecl; pushdecl (omp_in); struct c_expr combiner = c_parser_expression (parser); struct c_expr initializer; tree omp_priv = NULL_TREE, omp_orig = NULL_TREE; bool bad = false; initializer.set_error (); if (!c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>")) bad = true; else if (c_parser_next_token_is (parser, CPP_NAME) && strcmp (IDENTIFIER_POINTER (c_parser_peek_token (parser)->value), "initializer") == 0) { c_parser_consume_token (parser); pop_scope (); push_scope (); omp_priv = build_decl (BUILTINS_LOCATION, VAR_DECL, get_identifier ("omp_priv"), type); DECL_ARTIFICIAL (omp_priv) = 1; DECL_INITIAL (omp_priv) = error_mark_node; DECL_CONTEXT (omp_priv) = fndecl; pushdecl (omp_priv); omp_orig = build_decl (BUILTINS_LOCATION, VAR_DECL, get_identifier ("omp_orig"), type); DECL_ARTIFICIAL (omp_orig) = 1; DECL_CONTEXT (omp_orig) = fndecl; pushdecl (omp_orig); if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>")) bad = true; else if (!c_parser_next_token_is (parser, CPP_NAME)) { c_parser_error (parser, "expected % or " "function-name"); bad = true; } else if (strcmp (IDENTIFIER_POINTER (c_parser_peek_token (parser)->value), "omp_priv") != 0) { if (c_parser_peek_2nd_token (parser)->type != CPP_OPEN_PAREN || c_parser_peek_token (parser)->id_kind != C_ID_ID) { c_parser_error (parser, "expected function-name %<(%>"); bad = true; } else initializer = c_parser_postfix_expression (parser); if (initializer.value && TREE_CODE (initializer.value) == CALL_EXPR) { int j; tree c = initializer.value; for (j = 0; j < call_expr_nargs (c); j++) { tree a = CALL_EXPR_ARG (c, j); STRIP_NOPS (a); if (TREE_CODE (a) == ADDR_EXPR && TREE_OPERAND (a, 0) == omp_priv) break; } if (j == call_expr_nargs (c)) error ("one of the initializer call arguments should be " "%<&omp_priv%>"); } } else { c_parser_consume_token (parser); if (!c_parser_require (parser, CPP_EQ, "expected %<=%>")) bad = true; else { tree st = push_stmt_list (); location_t loc = c_parser_peek_token (parser)->location; rich_location richloc (line_table, loc); start_init (omp_priv, NULL_TREE, 0, &richloc); struct c_expr init = c_parser_initializer (parser); finish_init (); finish_decl (omp_priv, loc, init.value, init.original_type, NULL_TREE); pop_stmt_list (st); } } if (!bad && !c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>")) bad = true; } if (!bad) { c_parser_skip_to_pragma_eol (parser); tree t = tree_cons (type, make_tree_vec (omp_priv ? 6 : 3), DECL_INITIAL (reduc_decl)); DECL_INITIAL (reduc_decl) = t; DECL_SOURCE_LOCATION (omp_out) = rloc; TREE_VEC_ELT (TREE_VALUE (t), 0) = omp_out; TREE_VEC_ELT (TREE_VALUE (t), 1) = omp_in; TREE_VEC_ELT (TREE_VALUE (t), 2) = combiner.value; walk_tree (&combiner.value, c_check_omp_declare_reduction_r, &TREE_VEC_ELT (TREE_VALUE (t), 0), NULL); if (omp_priv) { DECL_SOURCE_LOCATION (omp_priv) = rloc; TREE_VEC_ELT (TREE_VALUE (t), 3) = omp_priv; TREE_VEC_ELT (TREE_VALUE (t), 4) = omp_orig; TREE_VEC_ELT (TREE_VALUE (t), 5) = initializer.value; walk_tree (&initializer.value, c_check_omp_declare_reduction_r, &TREE_VEC_ELT (TREE_VALUE (t), 3), NULL); walk_tree (&DECL_INITIAL (omp_priv), c_check_omp_declare_reduction_r, &TREE_VEC_ELT (TREE_VALUE (t), 3), NULL); } } pop_stmt_list (stmt); pop_scope (); if (cfun->language != NULL) { ggc_free (cfun->language); cfun->language = NULL; } set_cfun (NULL); current_function_decl = NULL_TREE; if (nested) c_pop_function_context (); if (!clauses.is_empty ()) { parser->tokens = &parser->tokens_buf[0]; parser->tokens_avail = tokens_avail; } if (bad) goto fail; if (errs != errorcount) break; } clauses.release (); types.release (); } /* OpenMP 4.0 #pragma omp declare simd declare-simd-clauses[optseq] new-line #pragma omp declare reduction (reduction-id : typename-list : expression) \ initializer-clause[opt] new-line #pragma omp declare target new-line */ static void c_parser_omp_declare (c_parser *parser, enum pragma_context context) { c_parser_consume_pragma (parser); if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "simd") == 0) { /* c_parser_consume_token (parser); done in c_parser_omp_declare_simd. */ c_parser_omp_declare_simd (parser, context); return; } if (strcmp (p, "reduction") == 0) { c_parser_consume_token (parser); c_parser_omp_declare_reduction (parser, context); return; } if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return; } if (strcmp (p, "target") == 0) { c_parser_consume_token (parser); c_parser_omp_declare_target (parser); return; } } c_parser_error (parser, "expected % or % " "or %"); c_parser_skip_to_pragma_eol (parser); } /* OpenMP 5.0 #pragma omp requires clauses[optseq] new-line */ static void c_parser_omp_requires (c_parser *parser) { bool first = true; enum omp_requires new_req = (enum omp_requires) 0; c_parser_consume_pragma (parser); location_t loc = c_parser_peek_token (parser)->location; while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL)) { if (!first && c_parser_next_token_is (parser, CPP_COMMA)) c_parser_consume_token (parser); first = false; if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); location_t cloc = c_parser_peek_token (parser)->location; enum omp_requires this_req = (enum omp_requires) 0; if (!strcmp (p, "unified_address")) this_req = OMP_REQUIRES_UNIFIED_ADDRESS; else if (!strcmp (p, "unified_shared_memory")) this_req = OMP_REQUIRES_UNIFIED_SHARED_MEMORY; else if (!strcmp (p, "dynamic_allocators")) this_req = OMP_REQUIRES_DYNAMIC_ALLOCATORS; else if (!strcmp (p, "reverse_offload")) this_req = OMP_REQUIRES_REVERSE_OFFLOAD; else if (!strcmp (p, "atomic_default_mem_order")) { c_parser_consume_token (parser); matching_parens parens; if (parens.require_open (parser)) { if (c_parser_next_token_is (parser, CPP_NAME)) { tree v = c_parser_peek_token (parser)->value; p = IDENTIFIER_POINTER (v); if (!strcmp (p, "seq_cst")) this_req = (enum omp_requires) OMP_MEMORY_ORDER_SEQ_CST; else if (!strcmp (p, "relaxed")) this_req = (enum omp_requires) OMP_MEMORY_ORDER_RELAXED; else if (!strcmp (p, "acq_rel")) this_req = (enum omp_requires) OMP_MEMORY_ORDER_ACQ_REL; } if (this_req == 0) { error_at (c_parser_peek_token (parser)->location, "expected %, % or " "%"); if (c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_PAREN) c_parser_consume_token (parser); } else c_parser_consume_token (parser); parens.skip_until_found_close (parser); if (this_req == 0) { c_parser_skip_to_pragma_eol (parser, false); return; } } p = NULL; } else { error_at (cloc, "expected %, " "%, " "%, " "% " "or % clause"); c_parser_skip_to_pragma_eol (parser, false); return; } if (p) sorry_at (cloc, "%qs clause on % directive not " "supported yet", p); if (p) c_parser_consume_token (parser); if (this_req) { if ((this_req & ~OMP_REQUIRES_ATOMIC_DEFAULT_MEM_ORDER) != 0) { if ((this_req & new_req) != 0) error_at (cloc, "too many %qs clauses", p); if (this_req != OMP_REQUIRES_DYNAMIC_ALLOCATORS && (omp_requires_mask & OMP_REQUIRES_TARGET_USED) != 0) error_at (cloc, "%qs clause used lexically after first " "target construct or offloading API", p); } else if ((new_req & OMP_REQUIRES_ATOMIC_DEFAULT_MEM_ORDER) != 0) { error_at (cloc, "too many %qs clauses", "atomic_default_mem_order"); this_req = (enum omp_requires) 0; } else if ((omp_requires_mask & OMP_REQUIRES_ATOMIC_DEFAULT_MEM_ORDER) != 0) { error_at (cloc, "more than one %" " clause in a single compilation unit"); this_req = (enum omp_requires) (omp_requires_mask & OMP_REQUIRES_ATOMIC_DEFAULT_MEM_ORDER); } else if ((omp_requires_mask & OMP_REQUIRES_ATOMIC_DEFAULT_MEM_ORDER_USED) != 0) error_at (cloc, "% clause used " "lexically after first % construct " "without memory order clause"); new_req = (enum omp_requires) (new_req | this_req); omp_requires_mask = (enum omp_requires) (omp_requires_mask | this_req); continue; } } break; } c_parser_skip_to_pragma_eol (parser); if (new_req == 0) error_at (loc, "% requires at least one clause"); } /* Helper function for c_parser_omp_taskloop. Disallow zero sized or potentially zero sized task reductions. */ static tree c_finish_taskloop_clauses (tree clauses) { tree *pc = &clauses; for (tree c = clauses; c; c = *pc) { bool remove = false; if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION) { tree type = strip_array_types (TREE_TYPE (OMP_CLAUSE_DECL (c))); if (integer_zerop (TYPE_SIZE_UNIT (type))) { error_at (OMP_CLAUSE_LOCATION (c), "zero sized type %qT in % clause", type); remove = true; } else if (TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST) { error_at (OMP_CLAUSE_LOCATION (c), "variable sized type %qT in % clause", type); remove = true; } } if (remove) *pc = OMP_CLAUSE_CHAIN (c); else pc = &OMP_CLAUSE_CHAIN (c); } return clauses; } /* OpenMP 4.5: #pragma omp taskloop taskloop-clause[optseq] new-line for-loop #pragma omp taskloop simd taskloop-simd-clause[optseq] new-line for-loop */ #define OMP_TASKLOOP_CLAUSE_MASK \ ( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SHARED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEFAULT) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_GRAINSIZE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NUM_TASKS) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COLLAPSE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_UNTIED) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FINAL) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MERGEABLE) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOGROUP) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIORITY) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \ | (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IN_REDUCTION)) static tree c_parser_omp_taskloop (location_t loc, c_parser *parser, char *p_name, omp_clause_mask mask, tree *cclauses, bool *if_p) { tree clauses, block, ret; strcat (p_name, " taskloop"); mask |= OMP_TASKLOOP_CLAUSE_MASK; /* #pragma omp parallel master taskloop{, simd} disallow in_reduction clause. */ if ((mask & (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NUM_THREADS)) != 0) mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IN_REDUCTION); if (c_parser_next_token_is (parser, CPP_NAME)) { const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value); if (strcmp (p, "simd") == 0) { tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT]; if (cclauses == NULL) cclauses = cclauses_buf; c_parser_consume_token (parser); if (!flag_openmp) /* flag_openmp_simd */ return c_parser_omp_simd (loc, parser, p_name, mask, cclauses, if_p); block = c_begin_compound_stmt (true); ret = c_parser_omp_simd (loc, parser, p_name, mask, cclauses, if_p); block = c_end_compound_stmt (loc, block, true); if (ret == NULL) return ret; ret = make_node (OMP_TASKLOOP); TREE_TYPE (ret) = void_type_node; OMP_FOR_BODY (ret) = block; OMP_FOR_CLAUSES (ret) = cclauses[C_OMP_CLAUSE_SPLIT_TASKLOOP]; OMP_FOR_CLAUSES (ret) = c_finish_taskloop_clauses (OMP_FOR_CLAUSES (ret)); SET_EXPR_LOCATION (ret, loc); add_stmt (ret); return ret; } } if (!flag_openmp) /* flag_openmp_simd */ { c_parser_skip_to_pragma_eol (parser, false); return NULL_TREE; } clauses = c_parser_omp_all_clauses (parser, mask, p_name, cclauses == NULL); if (cclauses) { omp_split_clauses (loc, OMP_TASKLOOP, mask, clauses, cclauses); clauses = cclauses[C_OMP_CLAUSE_SPLIT_TASKLOOP]; } clauses = c_finish_taskloop_clauses (clauses); block = c_begin_compound_stmt (true); ret = c_parser_omp_for_loop (loc, parser, OMP_TASKLOOP, clauses, NULL, if_p); block = c_end_compound_stmt (loc, block, true); add_stmt (block); return ret; } /* Main entry point to parsing most OpenMP pragmas. */ static void c_parser_omp_construct (c_parser *parser, bool *if_p) { enum pragma_kind p_kind; location_t loc; tree stmt; char p_name[sizeof "#pragma omp teams distribute parallel for simd"]; omp_clause_mask mask (0); loc = c_parser_peek_token (parser)->location; p_kind = c_parser_peek_token (parser)->pragma_kind; c_parser_consume_pragma (parser); switch (p_kind) { case PRAGMA_OACC_ATOMIC: c_parser_omp_atomic (loc, parser); return; case PRAGMA_OACC_CACHE: strcpy (p_name, "#pragma acc"); stmt = c_parser_oacc_cache (loc, parser); break; case PRAGMA_OACC_DATA: stmt = c_parser_oacc_data (loc, parser, if_p); break; case PRAGMA_OACC_HOST_DATA: stmt = c_parser_oacc_host_data (loc, parser, if_p); break; case PRAGMA_OACC_KERNELS: case PRAGMA_OACC_PARALLEL: strcpy (p_name, "#pragma acc"); stmt = c_parser_oacc_kernels_parallel (loc, parser, p_kind, p_name, if_p); break; case PRAGMA_OACC_LOOP: strcpy (p_name, "#pragma acc"); stmt = c_parser_oacc_loop (loc, parser, p_name, mask, NULL, if_p); break; case PRAGMA_OACC_WAIT: strcpy (p_name, "#pragma wait"); stmt = c_parser_oacc_wait (loc, parser, p_name); break; case PRAGMA_OMP_ATOMIC: c_parser_omp_atomic (loc, parser); return; case PRAGMA_OMP_CRITICAL: stmt = c_parser_omp_critical (loc, parser, if_p); break; case PRAGMA_OMP_DISTRIBUTE: strcpy (p_name, "#pragma omp"); stmt = c_parser_omp_distribute (loc, parser, p_name, mask, NULL, if_p); break; case PRAGMA_OMP_FOR: strcpy (p_name, "#pragma omp"); stmt = c_parser_omp_for (loc, parser, p_name, mask, NULL, if_p); break; case PRAGMA_OMP_MASTER: strcpy (p_name, "#pragma omp"); stmt = c_parser_omp_master (loc, parser, p_name, mask, NULL, if_p); break; case PRAGMA_OMP_PARALLEL: strcpy (p_name, "#pragma omp"); stmt = c_parser_omp_parallel (loc, parser, p_name, mask, NULL, if_p); break; case PRAGMA_OMP_SECTIONS: strcpy (p_name, "#pragma omp"); stmt = c_parser_omp_sections (loc, parser, p_name, mask, NULL); break; case PRAGMA_OMP_SIMD: strcpy (p_name, "#pragma omp"); stmt = c_parser_omp_simd (loc, parser, p_name, mask, NULL, if_p); break; case PRAGMA_OMP_SINGLE: stmt = c_parser_omp_single (loc, parser, if_p); break; case PRAGMA_OMP_TASK: stmt = c_parser_omp_task (loc, parser, if_p); break; case PRAGMA_OMP_TASKGROUP: stmt = c_parser_omp_taskgroup (loc, parser, if_p); break; case PRAGMA_OMP_TASKLOOP: strcpy (p_name, "#pragma omp"); stmt = c_parser_omp_taskloop (loc, parser, p_name, mask, NULL, if_p); break; case PRAGMA_OMP_TEAMS: strcpy (p_name, "#pragma omp"); stmt = c_parser_omp_teams (loc, parser, p_name, mask, NULL, if_p); break; default: gcc_unreachable (); } if (stmt) gcc_assert (EXPR_LOCATION (stmt) != UNKNOWN_LOCATION); } /* OpenMP 2.5: # pragma omp threadprivate (variable-list) */ static void c_parser_omp_threadprivate (c_parser *parser) { tree vars, t; location_t loc; c_parser_consume_pragma (parser); loc = c_parser_peek_token (parser)->location; vars = c_parser_omp_var_list_parens (parser, OMP_CLAUSE_ERROR, NULL); /* Mark every variable in VARS to be assigned thread local storage. */ for (t = vars; t; t = TREE_CHAIN (t)) { tree v = TREE_PURPOSE (t); /* FIXME diagnostics: Ideally we should keep individual locations for all the variables in the var list to make the following errors more precise. Perhaps c_parser_omp_var_list_parens() should construct a list of locations to go along with the var list. */ /* If V had already been marked threadprivate, it doesn't matter whether it had been used prior to this point. */ if (!VAR_P (v)) error_at (loc, "%qD is not a variable", v); else if (TREE_USED (v) && !C_DECL_THREADPRIVATE_P (v)) error_at (loc, "%qE declared % after first use", v); else if (! is_global_var (v)) error_at (loc, "automatic variable %qE cannot be %", v); else if (TREE_TYPE (v) == error_mark_node) ; else if (! COMPLETE_TYPE_P (TREE_TYPE (v))) error_at (loc, "% %qE has incomplete type", v); else { if (! DECL_THREAD_LOCAL_P (v)) { set_decl_tls_model (v, decl_default_tls_model (v)); /* If rtl has been already set for this var, call make_decl_rtl once again, so that encode_section_info has a chance to look at the new decl flags. */ if (DECL_RTL_SET_P (v)) make_decl_rtl (v); } C_DECL_THREADPRIVATE_P (v) = 1; } } c_parser_skip_to_pragma_eol (parser); } /* Parse a transaction attribute (GCC Extension). transaction-attribute: attributes [ [ any-word ] ] The transactional memory language description is written for C++, and uses the C++0x attribute syntax. For compatibility, allow the bracket style for transactions in C as well. */ static tree c_parser_transaction_attributes (c_parser *parser) { tree attr_name, attr = NULL; if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)) return c_parser_attributes (parser); if (!c_parser_next_token_is (parser, CPP_OPEN_SQUARE)) return NULL_TREE; c_parser_consume_token (parser); if (!c_parser_require (parser, CPP_OPEN_SQUARE, "expected %<[%>")) goto error1; attr_name = c_parser_attribute_any_word (parser); if (attr_name) { c_parser_consume_token (parser); attr = build_tree_list (attr_name, NULL_TREE); } else c_parser_error (parser, "expected identifier"); c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); error1: c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, "expected %<]%>"); return attr; } /* Parse a __transaction_atomic or __transaction_relaxed statement (GCC Extension). transaction-statement: __transaction_atomic transaction-attribute[opt] compound-statement __transaction_relaxed compound-statement Note that the only valid attribute is: "outer". */ static tree c_parser_transaction (c_parser *parser, enum rid keyword) { unsigned int old_in = parser->in_transaction; unsigned int this_in = 1, new_in; location_t loc = c_parser_peek_token (parser)->location; tree stmt, attrs; gcc_assert ((keyword == RID_TRANSACTION_ATOMIC || keyword == RID_TRANSACTION_RELAXED) && c_parser_next_token_is_keyword (parser, keyword)); c_parser_consume_token (parser); if (keyword == RID_TRANSACTION_RELAXED) this_in |= TM_STMT_ATTR_RELAXED; else { attrs = c_parser_transaction_attributes (parser); if (attrs) this_in |= parse_tm_stmt_attr (attrs, TM_STMT_ATTR_OUTER); } /* Keep track if we're in the lexical scope of an outer transaction. */ new_in = this_in | (old_in & TM_STMT_ATTR_OUTER); parser->in_transaction = new_in; stmt = c_parser_compound_statement (parser); parser->in_transaction = old_in; if (flag_tm) stmt = c_finish_transaction (loc, stmt, this_in); else error_at (loc, (keyword == RID_TRANSACTION_ATOMIC ? "%<__transaction_atomic%> without transactional memory support enabled" : "%<__transaction_relaxed %> " "without transactional memory support enabled")); return stmt; } /* Parse a __transaction_atomic or __transaction_relaxed expression (GCC Extension). transaction-expression: __transaction_atomic ( expression ) __transaction_relaxed ( expression ) */ static struct c_expr c_parser_transaction_expression (c_parser *parser, enum rid keyword) { struct c_expr ret; unsigned int old_in = parser->in_transaction; unsigned int this_in = 1; location_t loc = c_parser_peek_token (parser)->location; tree attrs; gcc_assert ((keyword == RID_TRANSACTION_ATOMIC || keyword == RID_TRANSACTION_RELAXED) && c_parser_next_token_is_keyword (parser, keyword)); c_parser_consume_token (parser); if (keyword == RID_TRANSACTION_RELAXED) this_in |= TM_STMT_ATTR_RELAXED; else { attrs = c_parser_transaction_attributes (parser); if (attrs) this_in |= parse_tm_stmt_attr (attrs, 0); } parser->in_transaction = this_in; matching_parens parens; if (parens.require_open (parser)) { tree expr = c_parser_expression (parser).value; ret.original_type = TREE_TYPE (expr); ret.value = build1 (TRANSACTION_EXPR, ret.original_type, expr); if (this_in & TM_STMT_ATTR_RELAXED) TRANSACTION_EXPR_RELAXED (ret.value) = 1; SET_EXPR_LOCATION (ret.value, loc); ret.original_code = TRANSACTION_EXPR; if (!parens.require_close (parser)) { c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL); goto error; } } else { error: ret.set_error (); ret.original_code = ERROR_MARK; ret.original_type = NULL; } parser->in_transaction = old_in; if (!flag_tm) error_at (loc, (keyword == RID_TRANSACTION_ATOMIC ? "%<__transaction_atomic%> without transactional memory support enabled" : "%<__transaction_relaxed %> " "without transactional memory support enabled")); set_c_expr_source_range (&ret, loc, loc); return ret; } /* Parse a __transaction_cancel statement (GCC Extension). transaction-cancel-statement: __transaction_cancel transaction-attribute[opt] ; Note that the only valid attribute is "outer". */ static tree c_parser_transaction_cancel (c_parser *parser) { location_t loc = c_parser_peek_token (parser)->location; tree attrs; bool is_outer = false; gcc_assert (c_parser_next_token_is_keyword (parser, RID_TRANSACTION_CANCEL)); c_parser_consume_token (parser); attrs = c_parser_transaction_attributes (parser); if (attrs) is_outer = (parse_tm_stmt_attr (attrs, TM_STMT_ATTR_OUTER) != 0); if (!flag_tm) { error_at (loc, "%<__transaction_cancel%> without " "transactional memory support enabled"); goto ret_error; } else if (parser->in_transaction & TM_STMT_ATTR_RELAXED) { error_at (loc, "%<__transaction_cancel%> within a " "%<__transaction_relaxed%>"); goto ret_error; } else if (is_outer) { if ((parser->in_transaction & TM_STMT_ATTR_OUTER) == 0 && !is_tm_may_cancel_outer (current_function_decl)) { error_at (loc, "outer %<__transaction_cancel%> not " "within outer %<__transaction_atomic%>"); error_at (loc, " or a % function"); goto ret_error; } } else if (parser->in_transaction == 0) { error_at (loc, "%<__transaction_cancel%> not within " "%<__transaction_atomic%>"); goto ret_error; } return add_stmt (build_tm_abort_call (loc, is_outer)); ret_error: return build1 (NOP_EXPR, void_type_node, error_mark_node); } /* Parse a single source file. */ void c_parse_file (void) { /* Use local storage to begin. If the first token is a pragma, parse it. If it is #pragma GCC pch_preprocess, then this will load a PCH file which will cause garbage collection. */ c_parser tparser; memset (&tparser, 0, sizeof tparser); tparser.tokens = &tparser.tokens_buf[0]; the_parser = &tparser; if (c_parser_peek_token (&tparser)->pragma_kind == PRAGMA_GCC_PCH_PREPROCESS) c_parser_pragma_pch_preprocess (&tparser); the_parser = ggc_alloc (); *the_parser = tparser; if (tparser.tokens == &tparser.tokens_buf[0]) the_parser->tokens = &the_parser->tokens_buf[0]; /* Initialize EH, if we've been told to do so. */ if (flag_exceptions) using_eh_for_cleanups (); c_parser_translation_unit (the_parser); the_parser = NULL; } /* Parse the body of a function declaration marked with "__RTL". The RTL parser works on the level of characters read from a FILE *, whereas c_parser works at the level of tokens. Square this circle by consuming all of the tokens up to and including the closing brace, recording the start/end of the RTL fragment, and reopening the file and re-reading the relevant lines within the RTL parser. This requires the opening and closing braces of the C function to be on separate lines from the RTL they wrap. Take ownership of START_WITH_PASS, if non-NULL. */ void c_parser_parse_rtl_body (c_parser *parser, char *start_with_pass) { if (!c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>")) { free (start_with_pass); return; } location_t start_loc = c_parser_peek_token (parser)->location; /* Consume all tokens, up to the closing brace, handling matching pairs of braces in the rtl dump. */ int num_open_braces = 1; while (1) { switch (c_parser_peek_token (parser)->type) { case CPP_OPEN_BRACE: num_open_braces++; break; case CPP_CLOSE_BRACE: if (--num_open_braces == 0) goto found_closing_brace; break; case CPP_EOF: error_at (start_loc, "no closing brace"); free (start_with_pass); return; default: break; } c_parser_consume_token (parser); } found_closing_brace: /* At the closing brace; record its location. */ location_t end_loc = c_parser_peek_token (parser)->location; /* Consume the closing brace. */ c_parser_consume_token (parser); /* Invoke the RTL parser. */ if (!read_rtl_function_body_from_file_range (start_loc, end_loc)) { free (start_with_pass); return; } /* If a pass name was provided for START_WITH_PASS, run the backend accordingly now, on the cfun created above, transferring ownership of START_WITH_PASS. */ if (start_with_pass) run_rtl_passes (start_with_pass); } #include "gt-c-c-parser.h"