/* Tree lowering pass. This pass gimplifies the tree representation built by the C-based front ends. The structure of gimplified, or language-independent, trees is dictated by the grammar described in this file. Copyright (C) 2002, 2003 Free Software Foundation, Inc. Lowering of expressions contributed by Sebastian Pop Re-written to support lowering of whole function trees, documentation and miscellaneous cleanups by Diego Novillo This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "errors.h" #include "varray.h" #include "c-tree.h" #include "c-common.h" #include "tree-simple.h" #include "hard-reg-set.h" #include "basic-block.h" #include "tree-flow.h" #include "tree-inline.h" #include "diagnostic.h" #include "langhooks.h" #include "langhooks-def.h" #include "flags.h" #include "rtl.h" #include "toplev.h" #include "tree-dump.h" #include "c-pretty-print.h" #include "cgraph.h" /* The gimplification pass converts the language-dependent trees (ld-trees) emitted by the parser into language-independent trees (li-trees) that are the target of SSA analysis and transformations. Language-independent trees are based on the SIMPLE intermediate representation used in the McCAT compiler framework: "Designing the McCAT Compiler Based on a Family of Structured Intermediate Representations," L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridharan, Proceedings of the 5th International Workshop on Languages and Compilers for Parallel Computing, no. 757 in Lecture Notes in Computer Science, New Haven, Connecticut, pp. 406-420, Springer-Verlag, August 3-5, 1992. http://www-acaps.cs.mcgill.ca/info/McCAT/McCAT.html Basically, we walk down gimplifying the nodes that we encounter. As we walk back up, we check that they fit our constraints, and copy them into temporaries if not. */ /* Local declarations. */ static enum gimplify_status gimplify_expr_stmt (tree *); static enum gimplify_status gimplify_decl_stmt (tree *); static enum gimplify_status gimplify_for_stmt (tree *, tree *); static enum gimplify_status gimplify_while_stmt (tree *); static enum gimplify_status gimplify_do_stmt (tree *); static enum gimplify_status gimplify_if_stmt (tree *); static enum gimplify_status gimplify_switch_stmt (tree *); static enum gimplify_status gimplify_return_stmt (tree *); static enum gimplify_status gimplify_stmt_expr (tree *); static enum gimplify_status gimplify_compound_literal_expr (tree *); #if defined ENABLE_CHECKING static int is_last_stmt_of_scope (tree); #endif static enum gimplify_status gimplify_block (tree *, tree *); static enum gimplify_status gimplify_cleanup (tree *, tree *); static tree gimplify_c_loop (tree, tree, tree, bool); static void push_context (void); static void pop_context (void); static tree c_build_bind_expr (tree, tree); static void add_block_to_enclosing (tree); static void gimplify_condition (tree *); enum bc_t { bc_break = 0, bc_continue = 1 }; static tree begin_bc_block (enum bc_t); static tree finish_bc_block (tree, tree); static tree build_bc_goto (enum bc_t); static struct c_gimplify_ctx { /* For handling break and continue. */ tree current_bc_label; tree bc_id[2]; } *ctxp; static void push_context (void) { if (ctxp) abort (); ctxp = (struct c_gimplify_ctx *) xcalloc (1, sizeof (struct c_gimplify_ctx)); ctxp->bc_id[bc_continue] = get_identifier ("continue"); ctxp->bc_id[bc_break] = get_identifier ("break"); } static void pop_context (void) { if (!ctxp || ctxp->current_bc_label) abort (); free (ctxp); ctxp = NULL; } /* Gimplification of statement trees. */ /* Convert the tree representation of FNDECL from C frontend trees to GENERIC. */ void c_genericize (tree fndecl) { FILE *dump_file; int local_dump_flags; struct cgraph_node *cgn; /* Dump the C-specific tree IR. */ dump_file = dump_begin (TDI_original, &local_dump_flags); if (dump_file) { fprintf (dump_file, "\n;; Function %s", (*lang_hooks.decl_printable_name) (fndecl, 2)); fprintf (dump_file, " (%s)\n", IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl))); fprintf (dump_file, ";; enabled by -%s\n", dump_flag_name (TDI_original)); fprintf (dump_file, "\n"); if (local_dump_flags & TDF_RAW) dump_node (DECL_SAVED_TREE (fndecl), TDF_SLIM | local_dump_flags, dump_file); else print_c_tree (dump_file, DECL_SAVED_TREE (fndecl)); fprintf (dump_file, "\n"); dump_end (TDI_original, dump_file); } /* Go ahead and gimplify for now. */ push_context (); gimplify_function_tree (fndecl); pop_context (); /* Dump the genericized tree IR. */ dump_function (TDI_generic, fndecl); /* Genericize all nested functions now. We do things in this order so that items like VLA sizes are expanded properly in the context of the correct function. */ cgn = cgraph_node (fndecl); for (cgn = cgn->nested; cgn ; cgn = cgn->next_nested) c_genericize (cgn->decl); } /* Entry point for the tree lowering pass. Recursively scan *STMT_P and convert it to a GIMPLE tree. */ int c_gimplify_stmt (tree *stmt_p) { tree stmt, next; tree outer_pre = NULL_TREE; /* PRE and POST are tree chains that contain the side-effects of the gimplified tree. For instance, given the expression tree: c = ++a * 3 + b++; After gimplification, the tree will be re-written as: a = a + 1; t1 = a * 3; <-- PRE c = t1 + b; b = b + 1; <-- POST */ for (stmt = *stmt_p; stmt && stmt != error_mark_node; stmt = next) { tree pre, post; int saved_stmts_are_full_exprs_p; location_t stmt_locus; enum gimplify_status ret; /* Set up context appropriately for handling this statement. */ saved_stmts_are_full_exprs_p = stmts_are_full_exprs_p (); prep_stmt (stmt); stmt_locus = input_location; pre = NULL_TREE; post = NULL_TREE; next = TREE_CHAIN (stmt); switch (TREE_CODE (stmt)) { case COMPOUND_STMT: stmt = COMPOUND_BODY (stmt); ret = GS_OK; break; case SCOPE_STMT: ret = gimplify_block (&stmt, &next); break; case FOR_STMT: ret = gimplify_for_stmt (&stmt, &next); break; case WHILE_STMT: ret = gimplify_while_stmt (&stmt); break; case DO_STMT: ret = gimplify_do_stmt (&stmt); break; case IF_STMT: ret = gimplify_if_stmt (&stmt); break; case SWITCH_STMT: ret = gimplify_switch_stmt (&stmt); break; case EXPR_STMT: ret = gimplify_expr_stmt (&stmt); break; case RETURN_STMT: ret = gimplify_return_stmt (&stmt); break; case DECL_STMT: ret = gimplify_decl_stmt (&stmt); break; case LABEL_STMT: stmt = build1 (LABEL_EXPR, void_type_node, LABEL_STMT_LABEL (stmt)); ret = GS_OK; break; case GOTO_STMT: stmt = build1 (GOTO_EXPR, void_type_node, GOTO_DESTINATION (stmt)); ret = GS_OK; break; case CASE_LABEL: { tree label = create_artificial_label (); stmt = build (CASE_LABEL_EXPR, void_type_node, CASE_LOW (stmt), CASE_HIGH (stmt), label); ret = GS_OK; } break; case CONTINUE_STMT: stmt = build_bc_goto (bc_continue); ret = GS_OK; break; case BREAK_STMT: stmt = build_bc_goto (bc_break); ret = GS_OK; break; case CLEANUP_STMT: ret = gimplify_cleanup (&stmt, &next); break; case ASM_STMT: { tree new_stmt = build (ASM_EXPR, void_type_node, ASM_STRING (stmt), ASM_OUTPUTS (stmt), ASM_INPUTS (stmt), ASM_CLOBBERS (stmt)); ASM_INPUT_P (new_stmt) = ASM_INPUT_P (stmt); ASM_VOLATILE_P (new_stmt) = ASM_VOLATILE_P (stmt); stmt = new_stmt; ret = GS_OK; } break; default: if (lang_gimplify_stmt && (*lang_gimplify_stmt) (&stmt, &next)) { ret = GS_OK; break; } fprintf (stderr, "unhandled statement node in c_gimplify_stmt:\n"); debug_tree (stmt); abort (); break; } switch (ret) { case GS_ERROR: goto cont; case GS_OK: gimplify_stmt (&stmt); break; case GS_ALL_DONE: break; default: abort (); } /* PRE and POST now contain a list of statements for all the side-effects in STMT. */ append_to_statement_list (stmt, &pre); append_to_statement_list (post, &pre); annotate_all_with_locus (&pre, stmt_locus); append_to_statement_list (pre, &outer_pre); cont: /* Restore saved state. */ current_stmt_tree ()->stmts_are_full_exprs_p = saved_stmts_are_full_exprs_p; } append_to_statement_list (stmt, &outer_pre); *stmt_p = outer_pre; return GS_ALL_DONE; } static void add_block_to_enclosing (tree block) { tree enclosing; for (enclosing = gimple_current_bind_expr (); enclosing; enclosing = TREE_CHAIN (enclosing)) if (BIND_EXPR_BLOCK (enclosing)) break; enclosing = BIND_EXPR_BLOCK (enclosing); BLOCK_SUBBLOCKS (enclosing) = chainon (BLOCK_SUBBLOCKS (enclosing), block); } /* Genericize a scope by creating a new BIND_EXPR. BLOCK is either a BLOCK representing the scope or a chain of _DECLs. In the latter case, we need to create a new BLOCK and add it to the BLOCK_SUBBLOCKS of the enclosing block. BODY is a chain of C _STMT nodes for the contents of the scope, to be genericized. */ static tree c_build_bind_expr (tree block, tree body) { tree decls, bind; if (block == NULL_TREE) decls = NULL_TREE; else if (TREE_CODE (block) == BLOCK) decls = BLOCK_VARS (block); else { decls = block; if (DECL_ARTIFICIAL (decls)) block = NULL_TREE; else { block = make_node (BLOCK); BLOCK_VARS (block) = decls; add_block_to_enclosing (block); } } if (!body) body = build_empty_stmt (); bind = build (BIND_EXPR, void_type_node, decls, body, block); TREE_SIDE_EFFECTS (bind) = 1; return bind; } /* Genericize a syntactic block by removing the bracketing SCOPE_STMTs and wrapping the intervening code in a BIND_EXPR. This function assumes that matching SCOPE_STMTs will always appear in the same statement sequence. */ static enum gimplify_status gimplify_block (tree *stmt_p, tree *next_p) { tree *p; tree block; tree bind; int depth; location_t stmt_locus; if (!SCOPE_BEGIN_P (*stmt_p)) { /* Can wind up mismatched with syntax errors. */ if (!errorcount && !sorrycount) abort (); *stmt_p = NULL; return GS_ERROR; } block = SCOPE_STMT_BLOCK (*stmt_p); /* Find the matching ending SCOPE_STMT. */ depth = 1; for (p = &TREE_CHAIN (*stmt_p);; p = &TREE_CHAIN (*p)) { if (*p == NULL) break; if (TREE_CODE (*p) == SCOPE_STMT) { if (SCOPE_BEGIN_P (*p)) ++depth; else if (--depth == 0) break; } } stmt_locus = input_location; if (*p) { if (SCOPE_STMT_BLOCK (*p) != block) abort (); if (EXPR_LOCUS (*p)) stmt_locus = *EXPR_LOCUS (*p); *next_p = TREE_CHAIN (*p); *p = NULL_TREE; } else { /* Can wind up mismatched with syntax errors. */ if (!errorcount && !sorrycount) abort (); } bind = c_build_bind_expr (block, TREE_CHAIN (*stmt_p)); *stmt_p = bind; input_location = stmt_locus; return GS_OK; } /* Genericize a CLEANUP_STMT. Just wrap everything from here to the end of the block in a TRY_FINALLY_EXPR. Or a TRY_CATCH_EXPR, if it's an EH-only cleanup. */ static enum gimplify_status gimplify_cleanup (tree *stmt_p, tree *next_p) { tree stmt = *stmt_p; tree body = TREE_CHAIN (stmt); tree cleanup = CLEANUP_EXPR (stmt); enum tree_code code = (CLEANUP_EH_ONLY (stmt) ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR); if (!body) body = build_empty_stmt (); if (!cleanup) cleanup = build_empty_stmt (); *stmt_p = build (code, void_type_node, body, cleanup); *next_p = NULL_TREE; return GS_OK; } /* Gimplify an EXPR_STMT node. STMT is the statement node. PRE_P points to the list where side effects that must happen before STMT should be stored. POST_P points to the list where side effects that must happen after STMT should be stored. */ static enum gimplify_status gimplify_expr_stmt (tree *stmt_p) { tree stmt = EXPR_STMT_EXPR (*stmt_p); if (stmt == error_mark_node) stmt = NULL; /* Gimplification of a statement expression will nullify the statement if all its side effects are moved to *PRE_P and *POST_P. In this case we will not want to emit the gimplified statement. However, we may still want to emit a warning, so we do that before gimplification. */ if (stmt && (extra_warnings || warn_unused_value)) { if (!TREE_SIDE_EFFECTS (stmt)) { if (!IS_EMPTY_STMT (stmt) && !VOID_TYPE_P (TREE_TYPE (stmt)) && !TREE_NO_WARNING (stmt)) warning ("statement with no effect"); } else if (warn_unused_value) { /* Kludge for 20020220-2.c. warn_if_unused_value shouldn't use the stmt file location info. */ set_file_and_line_for_stmt (input_location); warn_if_unused_value (stmt); } } if (stmt == NULL_TREE) stmt = build_empty_stmt (); else if (stmts_are_full_exprs_p ()) stmt = build1 (CLEANUP_POINT_EXPR, void_type_node, stmt); *stmt_p = stmt; return GS_OK; } /* If the condition for a loop (or the like) is a decl, it will be a TREE_LIST where the TREE_PURPOSE is a DECL_STMT and the TREE_VALUE is a use of the decl. Turn such a thing into a COMPOUND_EXPR. */ static void gimplify_condition (tree *cond_p) { tree cond = *cond_p; if (cond && TREE_CODE (cond) == TREE_LIST) { tree decl = TREE_PURPOSE (cond); tree value = TREE_VALUE (cond); c_gimplify_stmt (&decl); *cond_p = build (COMPOUND_EXPR, TREE_TYPE (value), decl, value); } } /* Begin a scope which can be exited by a break or continue statement. BC indicates which. Just creates a label and pushes it into the current context. */ static tree begin_bc_block (enum bc_t bc) { tree label = create_artificial_label (); DECL_NAME (label) = ctxp->bc_id[bc]; TREE_CHAIN (label) = ctxp->current_bc_label; ctxp->current_bc_label = label; return label; } /* Finish a scope which can be exited by a break or continue statement. LABEL was returned from the most recent call to begin_bc_block. BODY is an expression for the contents of the scope. If we saw a break (or continue) in the scope, append a LABEL_EXPR to body. Otherwise, just forget the label. */ static tree finish_bc_block (tree label, tree body) { if (label != ctxp->current_bc_label) abort (); if (TREE_USED (label)) { tree t, sl = NULL; /* Clear the name so flow can delete the label. */ DECL_NAME (label) = NULL_TREE; t = build1 (LABEL_EXPR, void_type_node, label); append_to_statement_list (body, &sl); append_to_statement_list (t, &sl); body = sl; } ctxp->current_bc_label = TREE_CHAIN (label); TREE_CHAIN (label) = NULL_TREE; return body; } /* Build a GOTO_EXPR to represent a break or continue statement. BC indicates which. */ static tree build_bc_goto (enum bc_t bc) { tree label; tree target_name = ctxp->bc_id[bc]; /* Look for the appropriate type of label. */ for (label = ctxp->current_bc_label; label; label = TREE_CHAIN (label)) if (DECL_NAME (label) == target_name) break; if (label == NULL_TREE) { if (bc == bc_break) error ("break statement not within loop or switch"); else error ("continue statement not within loop or switch"); return NULL_TREE; } /* Mark the label used for finish_bc_block. */ TREE_USED (label) = 1; return build1 (GOTO_EXPR, void_type_node, label); } /* Build a generic representation of one of the C loop forms. COND is the loop condition or NULL_TREE. BODY is the (possibly compound) statement controlled by the loop. INCR is the increment expression of a for-loop, or NULL_TREE. COND_IS_FIRST indicates whether the condition is evaluated before the loop body as in while and for loops, or after the loop body as in do-while loops. */ static tree gimplify_c_loop (tree cond, tree body, tree incr, bool cond_is_first) { tree top, entry, exit, cont_block, break_block, stmt_list, t; location_t stmt_locus; stmt_locus = input_location; /* Detect do { ... } while (0) and don't generate loop construct. */ if (!cond_is_first && cond && integer_zerop (cond)) top = cond = NULL; else { /* If we use a LOOP_EXPR here, we have to feed the whole thing back through the main gimplifier to lower it. Given that we have to gimplify the loop body NOW so that we can resolve break/continue stmts, seems easier to just expand to gotos. */ top = build1 (LABEL_EXPR, void_type_node, NULL_TREE); } break_block = begin_bc_block (bc_break); if (top) { /* If we have an exit condition, then we build an IF with gotos either out of the loop, or to the top of it. If there's no exit condition, then we just build a jump back to the top. */ exit = build_and_jump (&LABEL_EXPR_LABEL (top)); if (cond) { gimplify_condition (&cond); t = build_bc_goto (bc_break); exit = build (COND_EXPR, void_type_node, cond, exit, t); exit = fold (exit); gimplify_stmt (&exit); } } else exit = NULL_TREE; cont_block = begin_bc_block (bc_continue); gimplify_stmt (&body); if (incr && stmts_are_full_exprs_p ()) incr = fold (build1 (CLEANUP_POINT_EXPR, void_type_node, incr)); gimplify_stmt (&incr); body = finish_bc_block (cont_block, body); stmt_list = NULL; if (cond_is_first && cond) { entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE); t = build_and_jump (&LABEL_EXPR_LABEL (entry)); append_to_statement_list (t, &stmt_list); } else entry = NULL_TREE; append_to_statement_list (top, &stmt_list); append_to_statement_list (body, &stmt_list); append_to_statement_list (incr, &stmt_list); append_to_statement_list (entry, &stmt_list); append_to_statement_list (exit, &stmt_list); annotate_all_with_locus (&stmt_list, stmt_locus); return finish_bc_block (break_block, stmt_list); } /* Gimplify a FOR_STMT node. Move the stuff in the for-init-stmt into the prequeue and hand off to gimplify_c_loop. */ static enum gimplify_status gimplify_for_stmt (tree *stmt_p, tree *next_p) { tree stmt = *stmt_p; tree init = FOR_INIT_STMT (stmt); if (init) { /* Reorganize the statements so that we do the right thing with a CLEANUP_STMT. We want the FOR_STMT and nothing else to be in the scope of the cleanup, so play with pointers to accomplish that. */ FOR_INIT_STMT (stmt) = NULL_TREE; chainon (init, stmt); *stmt_p = init; *next_p = TREE_CHAIN (stmt); TREE_CHAIN (stmt) = NULL_TREE; c_gimplify_stmt (stmt_p); } else *stmt_p = gimplify_c_loop (FOR_COND (stmt), FOR_BODY (stmt), FOR_EXPR (stmt), 1); return GS_ALL_DONE; } /* Gimplify a WHILE_STMT node. */ static enum gimplify_status gimplify_while_stmt (tree *stmt_p) { tree stmt = *stmt_p; *stmt_p = gimplify_c_loop (WHILE_COND (stmt), WHILE_BODY (stmt), NULL_TREE, 1); return GS_ALL_DONE; } /* Gimplify a DO_STMT node. */ static enum gimplify_status gimplify_do_stmt (tree *stmt_p) { tree stmt = *stmt_p; *stmt_p = gimplify_c_loop (DO_COND (stmt), DO_BODY (stmt), NULL_TREE, 0); return GS_ALL_DONE; } /* Genericize an IF_STMT by turning it into a COND_EXPR. */ static enum gimplify_status gimplify_if_stmt (tree *stmt_p) { tree stmt, then_, else_; stmt = *stmt_p; restart: then_ = THEN_CLAUSE (stmt); else_ = ELSE_CLAUSE (stmt); if (!then_) then_ = build_empty_stmt (); if (!else_) else_ = build_empty_stmt (); stmt = build (COND_EXPR, void_type_node, IF_COND (stmt), then_, else_); gimplify_condition (& TREE_OPERAND (stmt, 0)); *stmt_p = stmt; /* Handle properly nested if-else chains via iteration instead of mutual recursion between gimplify.c and c-simplify.c. */ annotate_with_locus (stmt, input_location); if (TREE_CODE (else_) == IF_STMT && !TREE_CHAIN (else_)) { stmt_p = &COND_EXPR_ELSE (stmt); stmt = else_; prep_stmt (stmt); goto restart; } return GS_OK; } /* Genericize a SWITCH_STMT by turning it into a SWITCH_EXPR. */ static enum gimplify_status gimplify_switch_stmt (tree *stmt_p) { tree stmt = *stmt_p; tree break_block, body; location_t stmt_locus = input_location; break_block = begin_bc_block (bc_break); gimplify_condition (&SWITCH_COND (stmt)); body = SWITCH_BODY (stmt); if (!body) body = build_empty_stmt (); *stmt_p = build (SWITCH_EXPR, SWITCH_TYPE (stmt), SWITCH_COND (stmt), body, NULL_TREE); annotate_with_locus (*stmt_p, stmt_locus); gimplify_stmt (stmt_p); *stmt_p = finish_bc_block (break_block, *stmt_p); return GS_ALL_DONE; } /* Genericize a RETURN_STMT by turning it into a RETURN_EXPR. */ static enum gimplify_status gimplify_return_stmt (tree *stmt_p) { tree expr = RETURN_STMT_EXPR (*stmt_p); expr = build1 (RETURN_EXPR, void_type_node, expr); if (stmts_are_full_exprs_p ()) expr = build1 (CLEANUP_POINT_EXPR, void_type_node, expr); *stmt_p = expr; return GS_OK; } /* Gimplifies a DECL_STMT node T. If a declaration V has an initial value I, create an expression 'V = I' and insert it after the DECL_STMT. PRE_P is a queue for effects that should happen before the DECL_STMT. MID_P is a queue for effects that should happen after the DECL_STMT, but before uses of the initialized decl. POST_P is a queue for effects that should happen after uses of the initialized decl. Usually these last two will be the same, but they may need to be different if the DECL_STMT is somehow embedded in an expression. */ static enum gimplify_status gimplify_decl_stmt (tree *stmt_p) { tree stmt = *stmt_p; tree decl = DECL_STMT_DECL (stmt); tree pre = NULL_TREE; tree post = NULL_TREE; if (TREE_TYPE (decl) == error_mark_node) { *stmt_p = NULL; return GS_ERROR; } if (TREE_CODE (decl) == TYPE_DECL) { tree type = TREE_TYPE (decl); if (TYPE_SIZE_UNIT (type) && !TREE_CONSTANT (TYPE_SIZE_UNIT (type))) { /* This is a variable-sized array type. Simplify its size. */ tree temp = TYPE_SIZE_UNIT (type); gimplify_expr (&temp, &pre, &post, is_gimple_val, fb_rvalue); } } if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl)) { tree init = DECL_INITIAL (decl); if (!TREE_CONSTANT (DECL_SIZE (decl))) { tree pt_type = build_pointer_type (TREE_TYPE (decl)); tree alloc, size; /* This is a variable-sized decl. Simplify its size and mark it for deferred expansion. Note that mudflap depends on the format of the emitted code: see mx_register_decls(). */ size = get_initialized_tmp_var (DECL_SIZE_UNIT (decl), &pre, &post); DECL_DEFER_OUTPUT (decl) = 1; alloc = build_function_call_expr (implicit_built_in_decls[BUILT_IN_STACK_ALLOC], tree_cons (NULL_TREE, build1 (ADDR_EXPR, pt_type, decl), tree_cons (NULL_TREE, size, NULL_TREE))); append_to_compound_expr (alloc, &pre); } if (init && init != error_mark_node) { if (!TREE_STATIC (decl)) { /* Do not warn about int x = x; as it is a GCC extension to turn off this warning but only if warn_init_self is zero. */ if (init == decl && !warn_init_self) TREE_NO_WARNING (decl) = 1; DECL_INITIAL (decl) = NULL_TREE; init = build (MODIFY_EXPR, void_type_node, decl, init); if (stmts_are_full_exprs_p ()) init = build1 (CLEANUP_POINT_EXPR, void_type_node, init); append_to_compound_expr (init, &pre); } else { /* We must still examine initializers for static variables as they may contain a label address. */ walk_tree (&init, force_labels_r, NULL, NULL); } } /* This decl isn't mentioned in the enclosing block, so add it to the list of temps. FIXME it seems a bit of a kludge to say that anonymous artificial vars aren't pushed, but everything else is. */ if (DECL_ARTIFICIAL (decl) && DECL_NAME (decl) == NULL_TREE) gimple_add_tmp_var (decl); } append_to_compound_expr (post, &pre); *stmt_p = pre; return GS_OK; } /* Gimplification of expression trees. */ /* Gimplify a C99 compound literal expression. This just means adding the DECL_STMT before the current EXPR_STMT and using its anonymous decl instead. */ static enum gimplify_status gimplify_compound_literal_expr (tree *expr_p) { tree decl_s = COMPOUND_LITERAL_EXPR_DECL_STMT (*expr_p); tree decl = DECL_STMT_DECL (decl_s); /* This decl isn't mentioned in the enclosing block, so add it to the list of temps. FIXME it seems a bit of a kludge to say that anonymous artificial vars aren't pushed, but everything else is. */ if (DECL_NAME (decl) == NULL_TREE) gimple_add_tmp_var (decl); gimplify_decl_stmt (&decl_s); *expr_p = decl_s ? decl_s : decl; return GS_OK; } /* Do C-specific gimplification. Args are as for gimplify_expr. */ int c_gimplify_expr (tree *expr_p, tree *pre_p ATTRIBUTE_UNUSED, tree *post_p ATTRIBUTE_UNUSED) { enum tree_code code = TREE_CODE (*expr_p); if (STATEMENT_CODE_P (code)) return c_gimplify_stmt (expr_p); switch (code) { case COMPOUND_LITERAL_EXPR: return gimplify_compound_literal_expr (expr_p); case STMT_EXPR: return gimplify_stmt_expr (expr_p); default: return GS_UNHANDLED; } } /* Returns the final EXPR_STMT which represents the return value of a STMT_EXPR, or NULL_TREE if none. */ tree stmt_expr_last_stmt (tree stmt_expr) { tree body = STMT_EXPR_STMT (stmt_expr); tree last_stmt, substmt; /* Splice the last expression out of the STMT chain. */ last_stmt = NULL_TREE; for (substmt = COMPOUND_BODY (body); substmt; substmt = TREE_CHAIN (substmt)) if (TREE_CODE (substmt) != SCOPE_STMT) last_stmt = substmt; if (last_stmt == NULL_TREE || TREE_CODE (last_stmt) != EXPR_STMT || (TREE_TYPE (last_stmt) && VOID_TYPE_P (TREE_TYPE (last_stmt)))) { location_t loc; if (last_stmt && EXPR_LOCUS (last_stmt)) loc = *EXPR_LOCUS (last_stmt); else if (EXPR_LOCUS (stmt_expr)) loc = *EXPR_LOCUS (stmt_expr); else loc = input_location; warning ("%Hstatement-expressions should end with a " "non-void expression", &loc); last_stmt = NULL_TREE; } #if defined ENABLE_CHECKING if (last_stmt && !is_last_stmt_of_scope (last_stmt)) abort (); #endif return last_stmt; } /* Gimplify a STMT_EXPR. EXPR_P points to the expression to gimplify. After gimplification, if the STMT_EXPR returns a value, EXPR_P will point to a new temporary that holds that value; otherwise it will be null. PRE_P points to the list where side effects that must happen before *EXPR_P should be stored. */ static enum gimplify_status gimplify_stmt_expr (tree *expr_p) { tree body = STMT_EXPR_STMT (*expr_p); if (VOID_TYPE_P (TREE_TYPE (*expr_p))) { *expr_p = body; return c_gimplify_stmt (expr_p); } else { tree last_stmt = stmt_expr_last_stmt (*expr_p); tree last_expr = NULL_TREE; if (last_stmt) { last_expr = EXPR_STMT_EXPR (last_stmt); if (stmts_are_full_exprs_p ()) last_expr = build1 (CLEANUP_POINT_EXPR, TREE_TYPE (last_expr), last_expr); EXPR_STMT_EXPR (last_stmt) = NULL_TREE; } /* Genericize the block. */ c_gimplify_stmt (&body); /* Now retrofit that last expression into the BIND_EXPR. */ if (last_expr) { tree *sub_p; if (!STMT_EXPR_NO_SCOPE (*expr_p)) { /* Our BIND_EXPR will always be hidden within a STATEMENT_LIST. Discard that. */ body = expr_first (body); sub_p = &BIND_EXPR_BODY (body); /* Append the last expression to the end of the BIND_EXPR. We'll now re-process this, and let voidify_wrapper_expr do its job. */ append_to_statement_list_force (last_expr, sub_p); TREE_TYPE (body) = TREE_TYPE (last_expr); } else append_to_compound_expr (last_expr, &body); } *expr_p = body; return GS_OK; } } /* Code generation. */ /* Miscellaneous helpers. */ #if defined ENABLE_CHECKING /* Return nonzero if STMT is the last statement of its scope. */ static int is_last_stmt_of_scope (tree stmt) { return (TREE_CHAIN (stmt) == NULL_TREE || (TREE_CODE (TREE_CHAIN (stmt)) == SCOPE_STMT && SCOPE_END_P (TREE_CHAIN (stmt)))); } #endif