/* Handle #pragma, system V.4 style. Supports #pragma weak and #pragma pack. Copyright (C) 1992-2024 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #define INCLUDE_MEMORY #include "config.h" #include "system.h" #include "coretypes.h" #include "target.h" #include "function.h" /* For cfun. */ #include "c-common.h" #include "memmodel.h" #include "tm_p.h" /* For REGISTER_TARGET_PRAGMAS. */ #include "stringpool.h" #include "cgraph.h" #include "diagnostic.h" #include "attribs.h" #include "varasm.h" #include "c-pragma.h" #include "opts.h" #include "plugin.h" #include "opt-suggestions.h" #define GCC_BAD(gmsgid) \ do { warning (OPT_Wpragmas, gmsgid); return; } while (0) #define GCC_BAD2(gmsgid, arg) \ do { warning (OPT_Wpragmas, gmsgid, arg); return; } while (0) #define GCC_BAD_AT(loc, gmsgid) \ do { warning_at (loc, OPT_Wpragmas, gmsgid); return; } while (0) #define GCC_BAD2_AT(loc, gmsgid, arg) \ do { warning_at (loc, OPT_Wpragmas, gmsgid, arg); return; } while (0) struct GTY(()) align_stack { int alignment; tree id; struct align_stack * prev; }; static GTY(()) struct align_stack * alignment_stack; static void handle_pragma_pack (cpp_reader *); /* If we have a "global" #pragma pack() in effect when the first #pragma pack(push,) is encountered, this stores the value of maximum_field_alignment in effect. When the final pop_alignment() happens, we restore the value to this, not to a value of 0 for maximum_field_alignment. Value is in bits. */ static int default_alignment; #define SET_GLOBAL_ALIGNMENT(ALIGN) (maximum_field_alignment = *(alignment_stack == NULL \ ? &default_alignment \ : &alignment_stack->alignment) = (ALIGN)) static void push_alignment (int, tree); static void pop_alignment (tree); /* Push an alignment value onto the stack. */ static void push_alignment (int alignment, tree id) { align_stack * entry = ggc_alloc (); entry->alignment = alignment; entry->id = id; entry->prev = alignment_stack; /* The current value of maximum_field_alignment is not necessarily 0 since there may be a #pragma pack() in effect; remember it so that we can restore it after the final #pragma pop(). */ if (alignment_stack == NULL) default_alignment = maximum_field_alignment; alignment_stack = entry; maximum_field_alignment = alignment; } /* Undo a push of an alignment onto the stack. */ static void pop_alignment (tree id) { align_stack * entry; if (alignment_stack == NULL) GCC_BAD ("%<#pragma pack (pop)%> encountered without matching " "%<#pragma pack (push)%>"); /* If we got an identifier, strip away everything above the target entry so that the next step will restore the state just below it. */ if (id) { for (entry = alignment_stack; entry; entry = entry->prev) if (entry->id == id) { alignment_stack = entry; break; } if (entry == NULL) warning (OPT_Wpragmas, "%<#pragma pack(pop, %E)%> encountered without matching " "%<#pragma pack(push, %E)%>" , id, id); } entry = alignment_stack->prev; maximum_field_alignment = entry ? entry->alignment : default_alignment; alignment_stack = entry; } /* #pragma pack () #pragma pack (N) #pragma pack (push) #pragma pack (push, N) #pragma pack (push, ID) #pragma pack (push, ID, N) #pragma pack (pop) #pragma pack (pop, ID) */ static void handle_pragma_pack (cpp_reader *) { location_t loc; tree x, id = 0; int align = -1; enum cpp_ttype token; enum { set, push, pop } action; if (pragma_lex (&x) != CPP_OPEN_PAREN) GCC_BAD ("missing %<(%> after %<#pragma pack%> - ignored"); token = pragma_lex (&x, &loc); if (token == CPP_CLOSE_PAREN) { action = set; align = initial_max_fld_align; } else if (token == CPP_NUMBER) { if (TREE_CODE (x) != INTEGER_CST) GCC_BAD_AT (loc, "invalid constant in %<#pragma pack%> - ignored"); align = TREE_INT_CST_LOW (x); action = set; if (pragma_lex (&x) != CPP_CLOSE_PAREN) GCC_BAD ("malformed %<#pragma pack%> - ignored"); } else if (token == CPP_NAME) { #define GCC_BAD_ACTION do { if (action != pop) \ GCC_BAD ("malformed %<#pragma pack(push[, id][, ])%> - ignored"); \ else \ GCC_BAD ("malformed %<#pragma pack(pop[, id])%> - ignored"); \ } while (0) const char *op = IDENTIFIER_POINTER (x); if (!strcmp (op, "push")) action = push; else if (!strcmp (op, "pop")) action = pop; else GCC_BAD2_AT (loc, "unknown action %qE for %<#pragma pack%> - ignored", x); while ((token = pragma_lex (&x)) == CPP_COMMA) { token = pragma_lex (&x, &loc); if (token == CPP_NAME && id == 0) { id = x; } else if (token == CPP_NUMBER && action == push && align == -1) { if (TREE_CODE (x) != INTEGER_CST) GCC_BAD_AT (loc, "invalid constant in %<#pragma pack%> - ignored"); align = TREE_INT_CST_LOW (x); if (align == -1) action = set; } else GCC_BAD_ACTION; } if (token != CPP_CLOSE_PAREN) GCC_BAD_ACTION; #undef GCC_BAD_ACTION } else GCC_BAD ("malformed %<#pragma pack%> - ignored"); if (pragma_lex (&x, &loc) != CPP_EOF) warning_at (loc, OPT_Wpragmas, "junk at end of %<#pragma pack%>"); if (flag_pack_struct) GCC_BAD ("%<#pragma pack%> has no effect with %<-fpack-struct%> - ignored"); if (action != pop) switch (align) { case 0: case 1: case 2: case 4: case 8: case 16: align *= BITS_PER_UNIT; break; case -1: if (action == push) { align = maximum_field_alignment; break; } /* FALLTHRU */ default: GCC_BAD2 ("alignment must be a small power of two, not %d", align); } switch (action) { case set: SET_GLOBAL_ALIGNMENT (align); break; case push: push_alignment (align, id); break; case pop: pop_alignment (id); break; } } struct GTY(()) pending_weak { tree name; tree value; }; static GTY(()) vec *pending_weaks; static void apply_pragma_weak (tree, tree); static void handle_pragma_weak (cpp_reader *); static void apply_pragma_weak (tree decl, tree value) { if (value) { value = build_string (IDENTIFIER_LENGTH (value), IDENTIFIER_POINTER (value)); decl_attributes (&decl, build_tree_list (get_identifier ("alias"), build_tree_list (NULL, value)), 0); } if (SUPPORTS_WEAK && DECL_EXTERNAL (decl) && TREE_USED (decl) && !DECL_WEAK (decl) /* Don't complain about a redundant #pragma. */ && DECL_ASSEMBLER_NAME_SET_P (decl) && TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl))) warning (OPT_Wpragmas, "applying %<#pragma weak %+D%> after first use " "results in unspecified behavior", decl); declare_weak (decl); } void maybe_apply_pragma_weak (tree decl) { tree id; int i; pending_weak *pe; /* Avoid asking for DECL_ASSEMBLER_NAME when it's not needed. */ /* No weak symbols pending, take the short-cut. */ if (vec_safe_is_empty (pending_weaks)) return; /* If it's not visible outside this file, it doesn't matter whether it's weak. */ if (!DECL_EXTERNAL (decl) && !TREE_PUBLIC (decl)) return; /* If it's not a function or a variable, it can't be weak. FIXME: what kinds of things are visible outside this file but aren't functions or variables? Should this be an assert instead? */ if (!VAR_OR_FUNCTION_DECL_P (decl)) return; if (DECL_ASSEMBLER_NAME_SET_P (decl)) id = DECL_ASSEMBLER_NAME (decl); else { id = DECL_ASSEMBLER_NAME (decl); SET_DECL_ASSEMBLER_NAME (decl, NULL_TREE); } FOR_EACH_VEC_ELT (*pending_weaks, i, pe) if (id == pe->name) { apply_pragma_weak (decl, pe->value); pending_weaks->unordered_remove (i); break; } } /* Process all "#pragma weak A = B" directives where we have not seen a decl for A. */ void maybe_apply_pending_pragma_weaks (void) { tree alias_id, id, decl; int i; pending_weak *pe; symtab_node *target; if (vec_safe_is_empty (pending_weaks)) return; FOR_EACH_VEC_ELT (*pending_weaks, i, pe) { alias_id = pe->name; id = pe->value; if (id == NULL) continue; target = symtab_node::get_for_asmname (id); decl = build_decl (UNKNOWN_LOCATION, target ? TREE_CODE (target->decl) : FUNCTION_DECL, alias_id, default_function_type); DECL_ARTIFICIAL (decl) = 1; TREE_PUBLIC (decl) = 1; DECL_WEAK (decl) = 1; if (VAR_P (decl)) TREE_STATIC (decl) = 1; if (!target) { error ("%q+D aliased to undefined symbol %qE", decl, id); continue; } assemble_alias (decl, id); } } /* #pragma weak name [= value] */ static void handle_pragma_weak (cpp_reader *) { tree name, value, x, decl; enum cpp_ttype t; value = 0; if (pragma_lex (&name) != CPP_NAME) GCC_BAD ("malformed %<#pragma weak%>, ignored"); t = pragma_lex (&x); if (t == CPP_EQ) { if (pragma_lex (&value) != CPP_NAME) GCC_BAD ("malformed %<#pragma weak%>, ignored"); t = pragma_lex (&x); } if (t != CPP_EOF) warning (OPT_Wpragmas, "junk at end of %<#pragma weak%>"); decl = identifier_global_value (name); if (decl && DECL_P (decl)) { if (!VAR_OR_FUNCTION_DECL_P (decl)) GCC_BAD2 ("%<#pragma weak%> declaration of %q+D not allowed," " ignored", decl); apply_pragma_weak (decl, value); if (value) { DECL_EXTERNAL (decl) = 0; if (VAR_P (decl)) TREE_STATIC (decl) = 1; assemble_alias (decl, value); } } else { pending_weak pe = {name, value}; vec_safe_push (pending_weaks, pe); } } static enum scalar_storage_order_kind global_sso; void maybe_apply_pragma_scalar_storage_order (tree type) { if (global_sso == SSO_NATIVE) return; gcc_assert (RECORD_OR_UNION_TYPE_P (type)); if (lookup_attribute ("scalar_storage_order", TYPE_ATTRIBUTES (type))) return; if (global_sso == SSO_BIG_ENDIAN) TYPE_REVERSE_STORAGE_ORDER (type) = !BYTES_BIG_ENDIAN; else if (global_sso == SSO_LITTLE_ENDIAN) TYPE_REVERSE_STORAGE_ORDER (type) = BYTES_BIG_ENDIAN; else gcc_unreachable (); } static void handle_pragma_scalar_storage_order (cpp_reader *) { const char *kind_string; enum cpp_ttype token; tree x; if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN) { error ("% is not supported because endianness " "is not uniform"); return; } if (c_dialect_cxx ()) { if (warn_unknown_pragmas > in_system_header_at (input_location)) warning (OPT_Wunknown_pragmas, "%<#pragma scalar_storage_order%> is not supported for C++"); return; } token = pragma_lex (&x); if (token != CPP_NAME) GCC_BAD ("missing %, %, or % after " "%<#pragma scalar_storage_order%>"); kind_string = IDENTIFIER_POINTER (x); if (strcmp (kind_string, "default") == 0) global_sso = default_sso; else if (strcmp (kind_string, "big") == 0) global_sso = SSO_BIG_ENDIAN; else if (strcmp (kind_string, "little") == 0) global_sso = SSO_LITTLE_ENDIAN; else GCC_BAD ("expected %, %, or % after " "%<#pragma scalar_storage_order%>"); } /* GCC supports two #pragma directives for renaming the external symbol associated with a declaration (DECL_ASSEMBLER_NAME), for compatibility with the Solaris and VMS system headers. GCC also has its own notation for this, __asm__("name") annotations. Corner cases of these features and their interaction: 1) Both pragmas silently apply only to declarations with external linkage (that is, TREE_PUBLIC || DECL_EXTERNAL). Asm labels do not have this restriction. 2) In C++, both #pragmas silently apply only to extern "C" declarations. Asm labels do not have this restriction. 3) If any of the three ways of changing DECL_ASSEMBLER_NAME is applied to a decl whose DECL_ASSEMBLER_NAME is already set, and the new name is different, a warning issues and the name does not change. 4) The "source name" for #pragma redefine_extname is the DECL_NAME, *not* the DECL_ASSEMBLER_NAME. 5) If #pragma extern_prefix is in effect and a declaration occurs with an __asm__ name, the #pragma extern_prefix is silently ignored for that declaration. 6) If #pragma extern_prefix and #pragma redefine_extname apply to the same declaration, whichever triggered first wins, and a warning is issued. (We would like to have #pragma redefine_extname always win, but it can appear either before or after the declaration, and if it appears afterward, we have no way of knowing whether a modified DECL_ASSEMBLER_NAME is due to #pragma extern_prefix.) */ struct GTY(()) pending_redefinition { tree oldname; tree newname; }; static GTY(()) vec *pending_redefine_extname; static void handle_pragma_redefine_extname (cpp_reader *); /* #pragma redefine_extname oldname newname */ static void handle_pragma_redefine_extname (cpp_reader *) { tree oldname, newname, decls, x; enum cpp_ttype t; bool found; if (pragma_lex (&oldname) != CPP_NAME) GCC_BAD ("malformed %<#pragma redefine_extname%>, ignored"); if (pragma_lex (&newname) != CPP_NAME) GCC_BAD ("malformed %<#pragma redefine_extname%>, ignored"); t = pragma_lex (&x); if (t != CPP_EOF) warning (OPT_Wpragmas, "junk at end of %<#pragma redefine_extname%>"); found = false; for (decls = c_linkage_bindings (oldname); decls; ) { tree decl; if (TREE_CODE (decls) == TREE_LIST) { decl = TREE_VALUE (decls); decls = TREE_CHAIN (decls); } else { decl = decls; decls = NULL_TREE; } if ((TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)) && VAR_OR_FUNCTION_DECL_P (decl)) { found = true; if (DECL_ASSEMBLER_NAME_SET_P (decl)) { const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); if (!id_equal (newname, name)) warning (OPT_Wpragmas, "%<#pragma redefine_extname%> " "ignored due to conflict with previous rename"); } else symtab->change_decl_assembler_name (decl, newname); } } if (!found) /* We have to add this to the rename list even if there's already a global value that doesn't meet the above criteria, because in C++ "struct foo {...};" puts "foo" in the current namespace but does *not* conflict with a subsequent declaration of a function or variable foo. See g++.dg/other/pragma-re-2.C. */ add_to_renaming_pragma_list (oldname, newname); } /* This is called from here and from ia64-c.cc. */ void add_to_renaming_pragma_list (tree oldname, tree newname) { unsigned ix; pending_redefinition *p; FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p) if (oldname == p->oldname) { if (p->newname != newname) warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored due to " "conflict with previous %<#pragma redefine_extname%>"); return; } pending_redefinition e = {oldname, newname}; vec_safe_push (pending_redefine_extname, e); } /* The current prefix set by #pragma extern_prefix. */ GTY(()) tree pragma_extern_prefix; /* Hook from the front ends to apply the results of one of the preceding pragmas that rename variables. */ tree maybe_apply_renaming_pragma (tree decl, tree asmname) { unsigned ix; pending_redefinition *p; /* The renaming pragmas are only applied to declarations with external linkage. */ if (!VAR_OR_FUNCTION_DECL_P (decl) || (!TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl)) || !has_c_linkage (decl)) return asmname; /* If the DECL_ASSEMBLER_NAME is already set, it does not change, but we may warn about a rename that conflicts. */ if (DECL_ASSEMBLER_NAME_SET_P (decl)) { const char *oldname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); oldname = targetm.strip_name_encoding (oldname); if (asmname && strcmp (TREE_STRING_POINTER (asmname), oldname)) warning (OPT_Wpragmas, "% declaration ignored due to " "conflict with previous rename"); /* Take any pending redefine_extname off the list. */ FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p) if (DECL_NAME (decl) == p->oldname) { /* Only warn if there is a conflict. */ if (!id_equal (p->newname, oldname)) warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored " "due to conflict with previous rename"); pending_redefine_extname->unordered_remove (ix); break; } return NULL_TREE; } /* Find out if we have a pending #pragma redefine_extname. */ FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p) if (DECL_NAME (decl) == p->oldname) { tree newname = p->newname; pending_redefine_extname->unordered_remove (ix); /* If we already have an asmname, #pragma redefine_extname is ignored (with a warning if it conflicts). */ if (asmname) { if (strcmp (TREE_STRING_POINTER (asmname), IDENTIFIER_POINTER (newname)) != 0) warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored " "due to conflict with % declaration"); return asmname; } /* Otherwise we use what we've got; #pragma extern_prefix is silently ignored. */ return build_string (IDENTIFIER_LENGTH (newname), IDENTIFIER_POINTER (newname)); } /* If we've got an asmname, #pragma extern_prefix is silently ignored. */ if (asmname) return asmname; /* If #pragma extern_prefix is in effect, apply it. */ if (pragma_extern_prefix) { const char *prefix = TREE_STRING_POINTER (pragma_extern_prefix); size_t plen = TREE_STRING_LENGTH (pragma_extern_prefix) - 1; const char *id = IDENTIFIER_POINTER (DECL_NAME (decl)); size_t ilen = IDENTIFIER_LENGTH (DECL_NAME (decl)); char *newname = (char *) alloca (plen + ilen + 1); memcpy (newname, prefix, plen); memcpy (newname + plen, id, ilen + 1); return build_string (plen + ilen, newname); } /* Nada. */ return NULL_TREE; } static void handle_pragma_visibility (cpp_reader *); static vec visstack; /* Push the visibility indicated by STR onto the top of the #pragma visibility stack. KIND is 0 for #pragma GCC visibility, 1 for C++ namespace with visibility attribute and 2 for C++ builtin ABI namespace. push_visibility/pop_visibility calls must have matching KIND, it is not allowed to push visibility using one KIND and pop using a different one. */ void push_visibility (const char *str, int kind) { visstack.safe_push (((int) default_visibility) | (kind << 8)); if (!strcmp (str, "default")) default_visibility = VISIBILITY_DEFAULT; else if (!strcmp (str, "internal")) default_visibility = VISIBILITY_INTERNAL; else if (!strcmp (str, "hidden")) default_visibility = VISIBILITY_HIDDEN; else if (!strcmp (str, "protected")) default_visibility = VISIBILITY_PROTECTED; else GCC_BAD ("%<#pragma GCC visibility push()%> must specify %, " "%, % or %"); visibility_options.inpragma = 1; } /* Pop a level of the #pragma visibility stack. Return true if successful. */ bool pop_visibility (int kind) { if (!visstack.length ()) return false; if ((visstack.last () >> 8) != kind) return false; default_visibility = (enum symbol_visibility) (visstack.pop () & 0xff); visibility_options.inpragma = visstack.length () != 0; return true; } /* Sets the default visibility for symbols to something other than that specified on the command line. */ static void handle_pragma_visibility (cpp_reader *) { /* Form is #pragma GCC visibility push(hidden)|pop */ tree x; enum cpp_ttype token; enum { bad, push, pop } action = bad; token = pragma_lex (&x); if (token == CPP_NAME) { const char *op = IDENTIFIER_POINTER (x); if (!strcmp (op, "push")) action = push; else if (!strcmp (op, "pop")) action = pop; } if (bad == action) GCC_BAD ("%<#pragma GCC visibility%> must be followed by % " "or %"); else { if (pop == action) { if (! pop_visibility (0)) GCC_BAD ("no matching push for %<#pragma GCC visibility pop%>"); } else { if (pragma_lex (&x) != CPP_OPEN_PAREN) GCC_BAD ("missing %<(%> after %<#pragma GCC visibility push%> - ignored"); token = pragma_lex (&x); if (token != CPP_NAME) GCC_BAD ("malformed %<#pragma GCC visibility push%>"); else push_visibility (IDENTIFIER_POINTER (x), 0); if (pragma_lex (&x) != CPP_CLOSE_PAREN) GCC_BAD ("missing %<(%> after %<#pragma GCC visibility push%> - ignored"); } } if (pragma_lex (&x) != CPP_EOF) warning (OPT_Wpragmas, "junk at end of %<#pragma GCC visibility%>"); } /* Helper routines for parsing #pragma GCC diagnostic. */ class pragma_diagnostic_data { pragma_diagnostic_data (const pragma_diagnostic_data &) = delete; pragma_diagnostic_data& operator= (const pragma_diagnostic_data &) = delete; public: bool valid; location_t loc_kind, loc_option; enum pd_kind_t { PK_INVALID, PK_PUSH, PK_POP, PK_IGNORED_ATTRIBUTES, PK_DIAGNOSTIC, } pd_kind; diagnostic_t diagnostic_kind; const char *kind_str; const char *option_str; bool own_option_str; pragma_diagnostic_data () { clear (); } void clear () { valid = false; loc_kind = loc_option = UNKNOWN_LOCATION; pd_kind = PK_INVALID; diagnostic_kind = DK_UNSPECIFIED; kind_str = option_str = nullptr; own_option_str = false; } ~pragma_diagnostic_data () { if (own_option_str && option_str) XDELETEVEC (const_cast (option_str)); } void set_kind (const char *kind_string) { kind_str = kind_string; pd_kind = PK_INVALID; diagnostic_kind = DK_UNSPECIFIED; if (strcmp (kind_str, "push") == 0) pd_kind = PK_PUSH; else if (strcmp (kind_str, "pop") == 0) pd_kind = PK_POP; else if (strcmp (kind_str, "ignored_attributes") == 0) pd_kind = PK_IGNORED_ATTRIBUTES; else if (strcmp (kind_str, "error") == 0) { pd_kind = PK_DIAGNOSTIC; diagnostic_kind = DK_ERROR; } else if (strcmp (kind_str, "warning") == 0) { pd_kind = PK_DIAGNOSTIC; diagnostic_kind = DK_WARNING; } else if (strcmp (kind_str, "ignored") == 0) { pd_kind = PK_DIAGNOSTIC; diagnostic_kind = DK_IGNORED; } } bool needs_option () const { return pd_kind == PK_IGNORED_ATTRIBUTES || pd_kind == PK_DIAGNOSTIC; } }; /* This will call into either the C or C++ frontends as appropriate to get tokens from libcpp for the pragma. */ static void pragma_diagnostic_lex (pragma_diagnostic_data *result) { result->clear (); tree x; auto ttype = pragma_lex (&x, &result->loc_kind); if (ttype != CPP_NAME) return; result->set_kind (IDENTIFIER_POINTER (x)); if (result->pd_kind == pragma_diagnostic_data::PK_INVALID) return; if (result->needs_option ()) { ttype = pragma_lex (&x, &result->loc_option); if (ttype != CPP_STRING) return; result->option_str = TREE_STRING_POINTER (x); } result->valid = true; } /* Handle #pragma GCC diagnostic. Early mode is used by frontends (such as C++) that do not process the deferred pragma while they are consuming tokens; they can use early mode to make sure diagnostics affecting the preprocessor itself are correctly modified by the #pragma. */ template static void handle_pragma_diagnostic_impl () { static const bool want_diagnostics = (is_pp || !early); pragma_diagnostic_data data; pragma_diagnostic_lex (&data); if (!data.kind_str) { if (want_diagnostics) warning_at (data.loc_kind, OPT_Wpragmas, "missing %, %, %, %, " "%, or % after " "%<#pragma GCC diagnostic%>"); return; } switch (data.pd_kind) { case pragma_diagnostic_data::PK_PUSH: diagnostic_push_diagnostics (global_dc, input_location); return; case pragma_diagnostic_data::PK_POP: diagnostic_pop_diagnostics (global_dc, input_location); return; case pragma_diagnostic_data::PK_IGNORED_ATTRIBUTES: { if (early) return; if (!data.option_str) { warning_at (data.loc_option, OPT_Wpragmas, "missing attribute name after %<#pragma GCC diagnostic " "ignored_attributes%>"); return; } char *args = xstrdup (data.option_str); const size_t l = strlen (args); if (l == 0) { warning_at (data.loc_option, OPT_Wpragmas, "missing argument to %<#pragma GCC " "diagnostic ignored_attributes%>"); free (args); return; } else if (args[l - 1] == ',') { warning_at (data.loc_option, OPT_Wpragmas, "trailing %<,%> in arguments for " "%<#pragma GCC diagnostic ignored_attributes%>"); free (args); return; } auto_vec v; for (char *p = strtok (args, ","); p; p = strtok (NULL, ",")) v.safe_push (p); handle_ignored_attributes_option (&v); free (args); return; } case pragma_diagnostic_data::PK_DIAGNOSTIC: if (!data.option_str) { if (want_diagnostics) warning_at (data.loc_option, OPT_Wpragmas, "missing option after %<#pragma GCC diagnostic%> kind"); return; } break; default: if (want_diagnostics) warning_at (data.loc_kind, OPT_Wpragmas, "expected %, %, %, %, " "%, % after " "%<#pragma GCC diagnostic%>"); return; } gcc_assert (data.pd_kind == pragma_diagnostic_data::PK_DIAGNOSTIC); gcc_assert (data.valid); unsigned int lang_mask = c_common_option_lang_mask () | CL_COMMON; /* option_string + 1 to skip the initial '-' */ unsigned int option_index = find_opt (data.option_str + 1, lang_mask); if (early && !(c_option_is_from_cpp_diagnostics (option_index) || option_index == OPT_Wunknown_pragmas)) return; if (option_index == OPT_SPECIAL_unknown) { if (want_diagnostics) { auto_diagnostic_group d; if (warning_at (data.loc_option, OPT_Wpragmas, "unknown option after %<#pragma GCC diagnostic%> kind")) { option_proposer op; const char *hint = op.suggest_option (data.option_str + 1); if (hint) inform (data.loc_option, "did you mean %<-%s%>?", hint); } } return; } else if (!(cl_options[option_index].flags & CL_WARNING)) { if (want_diagnostics) warning_at (data.loc_option, OPT_Wpragmas, "%qs is not an option that controls warnings", data.option_str); return; } else if (!(cl_options[option_index].flags & lang_mask)) { if (want_diagnostics) { char *ok_langs = write_langs (cl_options[option_index].flags); char *bad_lang = write_langs (c_common_option_lang_mask ()); warning_at (data.loc_option, OPT_Wpragmas, "option %qs is valid for %s but not for %s", data.option_str, ok_langs, bad_lang); free (ok_langs); free (bad_lang); } return; } const char *arg = NULL; if (cl_options[option_index].flags & CL_JOINED) arg = data.option_str + 1 + cl_options[option_index].opt_len; struct cl_option_handlers handlers; set_default_handlers (&handlers, NULL); /* FIXME: input_location isn't the best location here, but it is what we used to do here before and changing it breaks e.g. PR69543 and PR69558. */ control_warning_option (option_index, (int) data.diagnostic_kind, arg, data.diagnostic_kind != DK_IGNORED, input_location, lang_mask, &handlers, &global_options, &global_options_set, global_dc); } static void handle_pragma_diagnostic (cpp_reader *) { handle_pragma_diagnostic_impl (); } static void handle_pragma_diagnostic_early (cpp_reader *) { handle_pragma_diagnostic_impl (); } static void handle_pragma_diagnostic_early_pp (cpp_reader *) { handle_pragma_diagnostic_impl (); } /* Parse #pragma GCC target (xxx) to set target specific options. */ static void handle_pragma_target(cpp_reader *) { location_t loc; enum cpp_ttype token; tree x; bool close_paren_needed_p = false; if (cfun) { error ("%<#pragma GCC option%> is not allowed inside functions"); return; } token = pragma_lex (&x, &loc); if (token == CPP_OPEN_PAREN) { close_paren_needed_p = true; token = pragma_lex (&x, &loc); } if (token != CPP_STRING) GCC_BAD_AT (loc, "%<#pragma GCC option%> is not a string"); /* Strings are user options. */ else { tree args = NULL_TREE; do { /* Build up the strings now as a tree linked list. Skip empty strings. */ if (TREE_STRING_LENGTH (x) > 0) args = tree_cons (NULL_TREE, x, args); token = pragma_lex (&x); while (token == CPP_COMMA) token = pragma_lex (&x); } while (token == CPP_STRING); if (close_paren_needed_p) { if (token == CPP_CLOSE_PAREN) token = pragma_lex (&x); else GCC_BAD ("%<#pragma GCC target (string [,string]...)%> does " "not have a final %<)%>"); } if (token != CPP_EOF) { error ("%<#pragma GCC target%> string is badly formed"); return; } /* put arguments in the order the user typed them. */ args = nreverse (args); if (targetm.target_option.pragma_parse (args, NULL_TREE)) current_target_pragma = chainon (current_target_pragma, args); /* A target pragma can also influence optimization options. */ tree current_optimize = build_optimization_node (&global_options, &global_options_set); if (current_optimize != optimization_current_node) optimization_current_node = current_optimize; } } /* Handle #pragma GCC optimize to set optimization options. */ static void handle_pragma_optimize (cpp_reader *) { enum cpp_ttype token; tree x; bool close_paren_needed_p = false; tree optimization_previous_node = optimization_current_node; if (cfun) { error ("%<#pragma GCC optimize%> is not allowed inside functions"); return; } token = pragma_lex (&x); if (token == CPP_OPEN_PAREN) { close_paren_needed_p = true; token = pragma_lex (&x); } if (token != CPP_STRING && token != CPP_NUMBER) GCC_BAD ("%<#pragma GCC optimize%> is not a string or number"); /* Strings/numbers are user options. */ else { tree args = NULL_TREE; do { /* Build up the numbers/strings now as a list. */ if (token != CPP_STRING || TREE_STRING_LENGTH (x) > 0) args = tree_cons (NULL_TREE, x, args); token = pragma_lex (&x); while (token == CPP_COMMA) token = pragma_lex (&x); } while (token == CPP_STRING || token == CPP_NUMBER); if (close_paren_needed_p) { if (token == CPP_CLOSE_PAREN) token = pragma_lex (&x); else GCC_BAD ("%<#pragma GCC optimize (string [,string]...)%> does " "not have a final %<)%>"); } if (token != CPP_EOF) { error ("%<#pragma GCC optimize%> string is badly formed"); return; } /* put arguments in the order the user typed them. */ args = nreverse (args); parse_optimize_options (args, false); current_optimize_pragma = chainon (current_optimize_pragma, args); optimization_current_node = build_optimization_node (&global_options, &global_options_set); c_cpp_builtins_optimize_pragma (parse_in, optimization_previous_node, optimization_current_node); } } /* Stack of the #pragma GCC options created with #pragma GCC push_option. Save both the binary representation of the options and the TREE_LIST of strings that will be added to the function's attribute list. */ struct GTY(()) opt_stack { struct opt_stack *prev; tree target_binary; tree target_strings; tree optimize_binary; tree optimize_strings; gcc_options * GTY ((skip)) saved_global_options; }; static GTY(()) struct opt_stack * options_stack; /* Handle #pragma GCC push_options to save the current target and optimization options. */ static void handle_pragma_push_options (cpp_reader *) { enum cpp_ttype token; tree x = 0; token = pragma_lex (&x); if (token != CPP_EOF) { warning (OPT_Wpragmas, "junk at end of %<#pragma GCC push_options%>"); return; } opt_stack *p = ggc_alloc (); p->prev = options_stack; options_stack = p; /* Save optimization and target flags in binary format. */ if (flag_checking) { p->saved_global_options = XNEW (gcc_options); *p->saved_global_options = global_options; } p->optimize_binary = build_optimization_node (&global_options, &global_options_set); p->target_binary = build_target_option_node (&global_options, &global_options_set); /* Save optimization and target flags in string list format. */ p->optimize_strings = copy_list (current_optimize_pragma); p->target_strings = copy_list (current_target_pragma); } /* Handle #pragma GCC pop_options to restore the current target and optimization options from a previous push_options. */ static void handle_pragma_pop_options (cpp_reader *) { enum cpp_ttype token; tree x = 0; opt_stack *p; token = pragma_lex (&x); if (token != CPP_EOF) { warning (OPT_Wpragmas, "junk at end of %<#pragma GCC pop_options%>"); return; } if (! options_stack) { warning (OPT_Wpragmas, "%<#pragma GCC pop_options%> without a corresponding " "%<#pragma GCC push_options%>"); return; } p = options_stack; options_stack = p->prev; if (p->target_binary != target_option_current_node) { (void) targetm.target_option.pragma_parse (NULL_TREE, p->target_binary); target_option_current_node = p->target_binary; } /* Always restore optimization options as optimization_current_node is * overwritten by invoke_set_current_function_hook. */ cl_optimization_restore (&global_options, &global_options_set, TREE_OPTIMIZATION (p->optimize_binary)); cl_target_option_restore (&global_options, &global_options_set, TREE_TARGET_OPTION (p->target_binary)); if (p->optimize_binary != optimization_current_node) { c_cpp_builtins_optimize_pragma (parse_in, optimization_current_node, p->optimize_binary); optimization_current_node = p->optimize_binary; } if (flag_checking && !seen_error ()) { cl_optimization_compare (p->saved_global_options, &global_options); free (p->saved_global_options); } current_target_pragma = p->target_strings; current_optimize_pragma = p->optimize_strings; } /* This is mostly a helper for handle_pragma_reset_options () to do the actual work, but the C++ frontend, for example, needs an external interface to perform this operation, since it processes target pragmas twice. (Once for preprocessing purposes, and then again during compilation.) */ void c_reset_target_pragmas () { tree new_optimize = optimization_default_node; tree new_target = target_option_default_node; if (new_target != target_option_current_node) { (void) targetm.target_option.pragma_parse (NULL_TREE, new_target); target_option_current_node = new_target; } if (new_optimize != optimization_current_node) { tree old_optimize = optimization_current_node; cl_optimization_restore (&global_options, &global_options_set, TREE_OPTIMIZATION (new_optimize)); c_cpp_builtins_optimize_pragma (parse_in, old_optimize, new_optimize); optimization_current_node = new_optimize; } current_target_pragma = NULL_TREE; current_optimize_pragma = NULL_TREE; } /* Handle #pragma GCC reset_options to restore the current target and optimization options to the original options used on the command line. */ static void handle_pragma_reset_options (cpp_reader *) { tree x; if (pragma_lex (&x) != CPP_EOF) warning (OPT_Wpragmas, "junk at end of %<#pragma reset_options%>"); else c_reset_target_pragmas (); } /* Print a plain user-specified message. */ static void handle_pragma_message (cpp_reader *) { location_t loc; enum cpp_ttype token; tree x, message = 0; token = pragma_lex (&x); if (token == CPP_OPEN_PAREN) { token = pragma_lex (&x); if (token == CPP_STRING) message = x; else GCC_BAD ("expected a string after %<#pragma message%>"); if (pragma_lex (&x) != CPP_CLOSE_PAREN) GCC_BAD ("malformed %<#pragma message%>, ignored"); } else if (token == CPP_STRING) message = x; else if (token == CPP_STRING_USERDEF) GCC_BAD ("string literal with user-defined suffix is invalid in this " "context"); else GCC_BAD ("expected a string after %<#pragma message%>"); gcc_assert (message); if (pragma_lex (&x, &loc) != CPP_EOF) warning_at (loc, OPT_Wpragmas, "junk at end of %<#pragma message%>"); if (TREE_STRING_LENGTH (message) > 1) inform (input_location, "%<#pragma message: %s%>", TREE_STRING_POINTER (message)); } /* Ignore a no-op pragma that GCC recognizes, but which has no effect. */ static void handle_pragma_ignore (cpp_reader *) { } /* Mark whether the current location is valid for a STDC pragma. */ static bool valid_location_for_stdc_pragma; void mark_valid_location_for_stdc_pragma (bool flag) { valid_location_for_stdc_pragma = flag; } /* Return true if the current location is valid for a STDC pragma. */ bool valid_location_for_stdc_pragma_p (void) { return valid_location_for_stdc_pragma; } enum pragma_switch_t { PRAGMA_ON, PRAGMA_OFF, PRAGMA_DEFAULT, PRAGMA_BAD }; /* A STDC pragma must appear outside of external declarations or preceding all explicit declarations and statements inside a compound statement; its behavior is undefined if used in any other context. It takes a switch of ON, OFF, or DEFAULT. */ static enum pragma_switch_t handle_stdc_pragma (const char *pname) { const char *arg; tree t; enum pragma_switch_t ret; if (!valid_location_for_stdc_pragma_p ()) { warning (OPT_Wpragmas, "invalid location for %, ignored", pname); return PRAGMA_BAD; } if (pragma_lex (&t) != CPP_NAME) { warning (OPT_Wpragmas, "malformed %<#pragma %s%>, ignored", pname); return PRAGMA_BAD; } arg = IDENTIFIER_POINTER (t); if (!strcmp (arg, "ON")) ret = PRAGMA_ON; else if (!strcmp (arg, "OFF")) ret = PRAGMA_OFF; else if (!strcmp (arg, "DEFAULT")) ret = PRAGMA_DEFAULT; else { warning (OPT_Wpragmas, "malformed %<#pragma %s%>, ignored", pname); return PRAGMA_BAD; } if (pragma_lex (&t) != CPP_EOF) { warning (OPT_Wpragmas, "junk at end of %<#pragma %s%>", pname); return PRAGMA_BAD; } return ret; } /* #pragma STDC FLOAT_CONST_DECIMAL64 ON #pragma STDC FLOAT_CONST_DECIMAL64 OFF #pragma STDC FLOAT_CONST_DECIMAL64 DEFAULT */ static void handle_pragma_float_const_decimal64 (cpp_reader *) { if (c_dialect_cxx ()) { if (warn_unknown_pragmas > in_system_header_at (input_location)) warning (OPT_Wunknown_pragmas, "%<#pragma STDC FLOAT_CONST_DECIMAL64%> is not supported" " for C++"); return; } if (!targetm.decimal_float_supported_p ()) { if (warn_unknown_pragmas > in_system_header_at (input_location)) warning (OPT_Wunknown_pragmas, "%<#pragma STDC FLOAT_CONST_DECIMAL64%> is not supported" " on this target"); return; } pedwarn (input_location, OPT_Wpedantic, "ISO C does not support %<#pragma STDC FLOAT_CONST_DECIMAL64%>"); switch (handle_stdc_pragma ("STDC FLOAT_CONST_DECIMAL64")) { case PRAGMA_ON: set_float_const_decimal64 (); break; case PRAGMA_OFF: case PRAGMA_DEFAULT: clear_float_const_decimal64 (); break; case PRAGMA_BAD: break; } } /* A vector of registered pragma callbacks, which is never freed. */ struct pragma_data { const char *space; const char *name; struct internal_pragma_handler ihandler; }; static vec registered_pragmas; struct omp_pragma_def { const char *name; unsigned int id; }; static const struct omp_pragma_def oacc_pragmas[] = { { "atomic", PRAGMA_OACC_ATOMIC }, { "cache", PRAGMA_OACC_CACHE }, { "data", PRAGMA_OACC_DATA }, { "declare", PRAGMA_OACC_DECLARE }, { "enter", PRAGMA_OACC_ENTER_DATA }, { "exit", PRAGMA_OACC_EXIT_DATA }, { "host_data", PRAGMA_OACC_HOST_DATA }, { "kernels", PRAGMA_OACC_KERNELS }, { "loop", PRAGMA_OACC_LOOP }, { "parallel", PRAGMA_OACC_PARALLEL }, { "routine", PRAGMA_OACC_ROUTINE }, { "serial", PRAGMA_OACC_SERIAL }, { "update", PRAGMA_OACC_UPDATE }, { "wait", PRAGMA_OACC_WAIT } }; static const struct omp_pragma_def omp_pragmas[] = { { "allocate", PRAGMA_OMP_ALLOCATE }, { "assumes", PRAGMA_OMP_ASSUMES }, { "atomic", PRAGMA_OMP_ATOMIC }, { "barrier", PRAGMA_OMP_BARRIER }, { "begin", PRAGMA_OMP_BEGIN }, { "cancel", PRAGMA_OMP_CANCEL }, { "cancellation", PRAGMA_OMP_CANCELLATION_POINT }, { "critical", PRAGMA_OMP_CRITICAL }, { "depobj", PRAGMA_OMP_DEPOBJ }, { "error", PRAGMA_OMP_ERROR }, { "end", PRAGMA_OMP_END }, { "flush", PRAGMA_OMP_FLUSH }, { "nothing", PRAGMA_OMP_NOTHING }, { "requires", PRAGMA_OMP_REQUIRES }, { "scope", PRAGMA_OMP_SCOPE }, { "section", PRAGMA_OMP_SECTION }, { "sections", PRAGMA_OMP_SECTIONS }, { "single", PRAGMA_OMP_SINGLE }, { "task", PRAGMA_OMP_TASK }, { "taskgroup", PRAGMA_OMP_TASKGROUP }, { "taskwait", PRAGMA_OMP_TASKWAIT }, { "taskyield", PRAGMA_OMP_TASKYIELD }, { "threadprivate", PRAGMA_OMP_THREADPRIVATE } }; static const struct omp_pragma_def omp_pragmas_simd[] = { { "assume", PRAGMA_OMP_ASSUME }, { "declare", PRAGMA_OMP_DECLARE }, { "distribute", PRAGMA_OMP_DISTRIBUTE }, { "for", PRAGMA_OMP_FOR }, { "loop", PRAGMA_OMP_LOOP }, { "masked", PRAGMA_OMP_MASKED }, { "master", PRAGMA_OMP_MASTER }, { "ordered", PRAGMA_OMP_ORDERED }, { "parallel", PRAGMA_OMP_PARALLEL }, { "scan", PRAGMA_OMP_SCAN }, { "simd", PRAGMA_OMP_SIMD }, { "target", PRAGMA_OMP_TARGET }, { "taskloop", PRAGMA_OMP_TASKLOOP }, { "teams", PRAGMA_OMP_TEAMS }, { "tile", PRAGMA_OMP_TILE }, { "unroll", PRAGMA_OMP_UNROLL }, }; void c_pp_lookup_pragma (unsigned int id, const char **space, const char **name) { const int n_oacc_pragmas = ARRAY_SIZE (oacc_pragmas); const int n_omp_pragmas = ARRAY_SIZE (omp_pragmas); const int n_omp_pragmas_simd = ARRAY_SIZE (omp_pragmas_simd); int i; for (i = 0; i < n_oacc_pragmas; ++i) if (oacc_pragmas[i].id == id) { *space = "acc"; *name = oacc_pragmas[i].name; return; } for (i = 0; i < n_omp_pragmas; ++i) if (omp_pragmas[i].id == id) { *space = "omp"; *name = omp_pragmas[i].name; return; } for (i = 0; i < n_omp_pragmas_simd; ++i) if (omp_pragmas_simd[i].id == id) { *space = "omp"; *name = omp_pragmas_simd[i].name; return; } if (id >= PRAGMA_FIRST_EXTERNAL && (id < PRAGMA_FIRST_EXTERNAL + registered_pragmas.length ())) { *space = registered_pragmas[id - PRAGMA_FIRST_EXTERNAL].space; *name = registered_pragmas[id - PRAGMA_FIRST_EXTERNAL].name; return; } gcc_unreachable (); } /* Front-end wrappers for pragma registration to avoid dragging cpplib.h in almost everywhere. */ static void c_register_pragma_1 (const char *space, const char *name, internal_pragma_handler ihandler, bool allow_expansion) { unsigned id; pragma_data data; data.space = space; data.name = name; if (flag_preprocess_only && (cpp_get_options (parse_in)->directives_only || !(allow_expansion || ihandler.early_handler.handler_1arg))) return; data.ihandler = ihandler; registered_pragmas.safe_push (data); id = registered_pragmas.length (); id += PRAGMA_FIRST_EXTERNAL - 1; /* The C front end allocates 8 bits in c_token. The C++ front end keeps the pragma kind in the form of INTEGER_CST, so no small limit applies. At present this is sufficient. */ gcc_assert (id < 256); cpp_register_deferred_pragma (parse_in, space, name, id, allow_expansion, false); } /* Register a C pragma handler, using a space and a name. It disallows pragma expansion (if you want it, use c_register_pragma_with_expansion instead). */ void c_register_pragma (const char *space, const char *name, pragma_handler_1arg handler) { c_register_pragma_with_early_handler (space, name, handler, nullptr); } void c_register_pragma_with_early_handler (const char *space, const char *name, pragma_handler_1arg handler, pragma_handler_1arg early_handler) { internal_pragma_handler ihandler; ihandler.handler.handler_1arg = handler; ihandler.early_handler.handler_1arg = early_handler; ihandler.extra_data = false; ihandler.data = NULL; c_register_pragma_1 (space, name, ihandler, false); } /* Register a C pragma handler, using a space and a name, it also carries an extra data field which can be used by the handler. It disallows pragma expansion (if you want it, use c_register_pragma_with_expansion_and_data instead). */ void c_register_pragma_with_data (const char *space, const char *name, pragma_handler_2arg handler, void * data) { internal_pragma_handler ihandler; ihandler.handler.handler_2arg = handler; ihandler.early_handler.handler_2arg = nullptr; ihandler.extra_data = true; ihandler.data = data; c_register_pragma_1 (space, name, ihandler, false); } /* Register a C pragma handler, using a space and a name. It allows pragma expansion as in the following example: #define NUMBER 10 #pragma count (NUMBER) Name expansion is still disallowed. */ void c_register_pragma_with_expansion (const char *space, const char *name, pragma_handler_1arg handler) { internal_pragma_handler ihandler; ihandler.handler.handler_1arg = handler; ihandler.early_handler.handler_1arg = nullptr; ihandler.extra_data = false; ihandler.data = NULL; c_register_pragma_1 (space, name, ihandler, true); } /* Register a C pragma handler, using a space and a name, it also carries an extra data field which can be used by the handler. It allows pragma expansion as in the following example: #define NUMBER 10 #pragma count (NUMBER) Name expansion is still disallowed. */ void c_register_pragma_with_expansion_and_data (const char *space, const char *name, pragma_handler_2arg handler, void *data) { internal_pragma_handler ihandler; ihandler.handler.handler_2arg = handler; ihandler.early_handler.handler_2arg = nullptr; ihandler.extra_data = true; ihandler.data = data; c_register_pragma_1 (space, name, ihandler, true); } void c_invoke_pragma_handler (unsigned int id) { internal_pragma_handler *ihandler; pragma_handler_1arg handler_1arg; pragma_handler_2arg handler_2arg; id -= PRAGMA_FIRST_EXTERNAL; ihandler = ®istered_pragmas[id].ihandler; if (ihandler->extra_data) { handler_2arg = ihandler->handler.handler_2arg; handler_2arg (parse_in, ihandler->data); } else { handler_1arg = ihandler->handler.handler_1arg; handler_1arg (parse_in); } } /* In contrast to the normal handler, the early handler is optional. */ void c_invoke_early_pragma_handler (unsigned int id) { internal_pragma_handler *ihandler; pragma_handler_1arg handler_1arg; pragma_handler_2arg handler_2arg; id -= PRAGMA_FIRST_EXTERNAL; ihandler = ®istered_pragmas[id].ihandler; if (ihandler->extra_data) { handler_2arg = ihandler->early_handler.handler_2arg; if (handler_2arg) handler_2arg (parse_in, ihandler->data); } else { handler_1arg = ihandler->early_handler.handler_1arg; if (handler_1arg) handler_1arg (parse_in); } } void c_pp_invoke_early_pragma_handler (unsigned int id) { const auto data = ®istered_pragmas[id - PRAGMA_FIRST_EXTERNAL]; pragma_handler_1arg handler = data->ihandler.early_handler.handler_1arg; if (handler) { handler (parse_in); pragma_lex_discard_to_eol (); } } /* Set up front-end pragmas. */ void init_pragma (void) { if (!cpp_get_options (parse_in)->directives_only) { if (flag_openacc) { const int n_oacc_pragmas = ARRAY_SIZE (oacc_pragmas); int i; for (i = 0; i < n_oacc_pragmas; ++i) cpp_register_deferred_pragma (parse_in, "acc", oacc_pragmas[i].name, oacc_pragmas[i].id, true, true); } if (flag_openmp) { const int n_omp_pragmas = ARRAY_SIZE (omp_pragmas); int i; for (i = 0; i < n_omp_pragmas; ++i) cpp_register_deferred_pragma (parse_in, "omp", omp_pragmas[i].name, omp_pragmas[i].id, true, true); } if (flag_openmp || flag_openmp_simd) { const int n_omp_pragmas_simd = ARRAY_SIZE (omp_pragmas_simd); int i; for (i = 0; i < n_omp_pragmas_simd; ++i) cpp_register_deferred_pragma (parse_in, "omp", omp_pragmas_simd[i].name, omp_pragmas_simd[i].id, true, true); } } if (!flag_preprocess_only) cpp_register_deferred_pragma (parse_in, "GCC", "pch_preprocess", PRAGMA_GCC_PCH_PREPROCESS, false, false); if (!flag_preprocess_only) cpp_register_deferred_pragma (parse_in, "GCC", "ivdep", PRAGMA_IVDEP, false, false); if (!flag_preprocess_only) cpp_register_deferred_pragma (parse_in, "GCC", "unroll", PRAGMA_UNROLL, false, false); if (!flag_preprocess_only) cpp_register_deferred_pragma (parse_in, "GCC", "novector", PRAGMA_NOVECTOR, false, false); #ifdef HANDLE_PRAGMA_PACK_WITH_EXPANSION c_register_pragma_with_expansion (0, "pack", handle_pragma_pack); #else c_register_pragma (0, "pack", handle_pragma_pack); #endif c_register_pragma (0, "weak", handle_pragma_weak); c_register_pragma ("GCC", "visibility", handle_pragma_visibility); if (flag_preprocess_only) c_register_pragma_with_early_handler ("GCC", "diagnostic", nullptr, handle_pragma_diagnostic_early_pp); else c_register_pragma_with_early_handler ("GCC", "diagnostic", handle_pragma_diagnostic, handle_pragma_diagnostic_early); c_register_pragma_with_early_handler ("GCC", "target", handle_pragma_target, handle_pragma_target); c_register_pragma ("GCC", "optimize", handle_pragma_optimize); c_register_pragma_with_early_handler ("GCC", "push_options", handle_pragma_push_options, handle_pragma_push_options); c_register_pragma_with_early_handler ("GCC", "pop_options", handle_pragma_pop_options, handle_pragma_pop_options); c_register_pragma_with_early_handler ("GCC", "reset_options", handle_pragma_reset_options, handle_pragma_reset_options); c_register_pragma (0, "region", handle_pragma_ignore); c_register_pragma (0, "endregion", handle_pragma_ignore); c_register_pragma ("STDC", "FLOAT_CONST_DECIMAL64", handle_pragma_float_const_decimal64); c_register_pragma_with_expansion (0, "redefine_extname", handle_pragma_redefine_extname); c_register_pragma_with_expansion (0, "message", handle_pragma_message); #ifdef REGISTER_TARGET_PRAGMAS REGISTER_TARGET_PRAGMAS (); #endif global_sso = default_sso; c_register_pragma (0, "scalar_storage_order", handle_pragma_scalar_storage_order); /* Allow plugins to register their own pragmas. */ invoke_plugin_callbacks (PLUGIN_PRAGMAS, NULL); } #include "gt-c-family-c-pragma.h"