/* Handle #pragma, system V.4 style. Supports #pragma weak and #pragma pack.
Copyright (C) 1992-2024 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h" /* For cfun. */
#include "c-common.h"
#include "memmodel.h"
#include "tm_p.h" /* For REGISTER_TARGET_PRAGMAS. */
#include "stringpool.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "attribs.h"
#include "varasm.h"
#include "c-pragma.h"
#include "opts.h"
#include "plugin.h"
#include "opt-suggestions.h"
#define GCC_BAD(gmsgid) \
do { warning (OPT_Wpragmas, gmsgid); return; } while (0)
#define GCC_BAD2(gmsgid, arg) \
do { warning (OPT_Wpragmas, gmsgid, arg); return; } while (0)
#define GCC_BAD_AT(loc, gmsgid) \
do { warning_at (loc, OPT_Wpragmas, gmsgid); return; } while (0)
#define GCC_BAD2_AT(loc, gmsgid, arg) \
do { warning_at (loc, OPT_Wpragmas, gmsgid, arg); return; } while (0)
struct GTY(()) align_stack {
int alignment;
tree id;
struct align_stack * prev;
};
static GTY(()) struct align_stack * alignment_stack;
static void handle_pragma_pack (cpp_reader *);
/* If we have a "global" #pragma pack() in effect when the first
#pragma pack(push,) is encountered, this stores the value of
maximum_field_alignment in effect. When the final pop_alignment()
happens, we restore the value to this, not to a value of 0 for
maximum_field_alignment. Value is in bits. */
static int default_alignment;
#define SET_GLOBAL_ALIGNMENT(ALIGN) (maximum_field_alignment = *(alignment_stack == NULL \
? &default_alignment \
: &alignment_stack->alignment) = (ALIGN))
static void push_alignment (int, tree);
static void pop_alignment (tree);
/* Push an alignment value onto the stack. */
static void
push_alignment (int alignment, tree id)
{
align_stack * entry = ggc_alloc ();
entry->alignment = alignment;
entry->id = id;
entry->prev = alignment_stack;
/* The current value of maximum_field_alignment is not necessarily
0 since there may be a #pragma pack() in effect; remember it
so that we can restore it after the final #pragma pop(). */
if (alignment_stack == NULL)
default_alignment = maximum_field_alignment;
alignment_stack = entry;
maximum_field_alignment = alignment;
}
/* Undo a push of an alignment onto the stack. */
static void
pop_alignment (tree id)
{
align_stack * entry;
if (alignment_stack == NULL)
GCC_BAD ("%<#pragma pack (pop)%> encountered without matching "
"%<#pragma pack (push)%>");
/* If we got an identifier, strip away everything above the target
entry so that the next step will restore the state just below it. */
if (id)
{
for (entry = alignment_stack; entry; entry = entry->prev)
if (entry->id == id)
{
alignment_stack = entry;
break;
}
if (entry == NULL)
warning (OPT_Wpragmas,
"%<#pragma pack(pop, %E)%> encountered without matching "
"%<#pragma pack(push, %E)%>"
, id, id);
}
entry = alignment_stack->prev;
maximum_field_alignment = entry ? entry->alignment : default_alignment;
alignment_stack = entry;
}
/* #pragma pack ()
#pragma pack (N)
#pragma pack (push)
#pragma pack (push, N)
#pragma pack (push, ID)
#pragma pack (push, ID, N)
#pragma pack (pop)
#pragma pack (pop, ID) */
static void
handle_pragma_pack (cpp_reader *)
{
location_t loc;
tree x, id = 0;
int align = -1;
enum cpp_ttype token;
enum { set, push, pop } action;
if (pragma_lex (&x) != CPP_OPEN_PAREN)
GCC_BAD ("missing %<(%> after %<#pragma pack%> - ignored");
token = pragma_lex (&x, &loc);
if (token == CPP_CLOSE_PAREN)
{
action = set;
align = initial_max_fld_align;
}
else if (token == CPP_NUMBER)
{
if (TREE_CODE (x) != INTEGER_CST)
GCC_BAD_AT (loc, "invalid constant in %<#pragma pack%> - ignored");
align = TREE_INT_CST_LOW (x);
action = set;
if (pragma_lex (&x) != CPP_CLOSE_PAREN)
GCC_BAD ("malformed %<#pragma pack%> - ignored");
}
else if (token == CPP_NAME)
{
#define GCC_BAD_ACTION do { if (action != pop) \
GCC_BAD ("malformed %<#pragma pack(push[, id][, ])%> - ignored"); \
else \
GCC_BAD ("malformed %<#pragma pack(pop[, id])%> - ignored"); \
} while (0)
const char *op = IDENTIFIER_POINTER (x);
if (!strcmp (op, "push"))
action = push;
else if (!strcmp (op, "pop"))
action = pop;
else
GCC_BAD2_AT (loc, "unknown action %qE for %<#pragma pack%> - ignored",
x);
while ((token = pragma_lex (&x)) == CPP_COMMA)
{
token = pragma_lex (&x, &loc);
if (token == CPP_NAME && id == 0)
{
id = x;
}
else if (token == CPP_NUMBER && action == push && align == -1)
{
if (TREE_CODE (x) != INTEGER_CST)
GCC_BAD_AT (loc,
"invalid constant in %<#pragma pack%> - ignored");
align = TREE_INT_CST_LOW (x);
if (align == -1)
action = set;
}
else
GCC_BAD_ACTION;
}
if (token != CPP_CLOSE_PAREN)
GCC_BAD_ACTION;
#undef GCC_BAD_ACTION
}
else
GCC_BAD ("malformed %<#pragma pack%> - ignored");
if (pragma_lex (&x, &loc) != CPP_EOF)
warning_at (loc, OPT_Wpragmas, "junk at end of %<#pragma pack%>");
if (flag_pack_struct)
GCC_BAD ("%<#pragma pack%> has no effect with %<-fpack-struct%> - ignored");
if (action != pop)
switch (align)
{
case 0:
case 1:
case 2:
case 4:
case 8:
case 16:
align *= BITS_PER_UNIT;
break;
case -1:
if (action == push)
{
align = maximum_field_alignment;
break;
}
/* FALLTHRU */
default:
GCC_BAD2 ("alignment must be a small power of two, not %d", align);
}
switch (action)
{
case set: SET_GLOBAL_ALIGNMENT (align); break;
case push: push_alignment (align, id); break;
case pop: pop_alignment (id); break;
}
}
struct GTY(()) pending_weak
{
tree name;
tree value;
};
static GTY(()) vec *pending_weaks;
static void apply_pragma_weak (tree, tree);
static void handle_pragma_weak (cpp_reader *);
static void
apply_pragma_weak (tree decl, tree value)
{
if (value)
{
value = build_string (IDENTIFIER_LENGTH (value),
IDENTIFIER_POINTER (value));
decl_attributes (&decl, build_tree_list (get_identifier ("alias"),
build_tree_list (NULL, value)),
0);
}
if (SUPPORTS_WEAK && DECL_EXTERNAL (decl) && TREE_USED (decl)
&& !DECL_WEAK (decl) /* Don't complain about a redundant #pragma. */
&& DECL_ASSEMBLER_NAME_SET_P (decl)
&& TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
warning (OPT_Wpragmas, "applying %<#pragma weak %+D%> after first use "
"results in unspecified behavior", decl);
declare_weak (decl);
}
void
maybe_apply_pragma_weak (tree decl)
{
tree id;
int i;
pending_weak *pe;
/* Avoid asking for DECL_ASSEMBLER_NAME when it's not needed. */
/* No weak symbols pending, take the short-cut. */
if (vec_safe_is_empty (pending_weaks))
return;
/* If it's not visible outside this file, it doesn't matter whether
it's weak. */
if (!DECL_EXTERNAL (decl) && !TREE_PUBLIC (decl))
return;
/* If it's not a function or a variable, it can't be weak.
FIXME: what kinds of things are visible outside this file but
aren't functions or variables? Should this be an assert instead? */
if (!VAR_OR_FUNCTION_DECL_P (decl))
return;
if (DECL_ASSEMBLER_NAME_SET_P (decl))
id = DECL_ASSEMBLER_NAME (decl);
else
{
id = DECL_ASSEMBLER_NAME (decl);
SET_DECL_ASSEMBLER_NAME (decl, NULL_TREE);
}
FOR_EACH_VEC_ELT (*pending_weaks, i, pe)
if (id == pe->name)
{
apply_pragma_weak (decl, pe->value);
pending_weaks->unordered_remove (i);
break;
}
}
/* Process all "#pragma weak A = B" directives where we have not seen
a decl for A. */
void
maybe_apply_pending_pragma_weaks (void)
{
tree alias_id, id, decl;
int i;
pending_weak *pe;
symtab_node *target;
if (vec_safe_is_empty (pending_weaks))
return;
FOR_EACH_VEC_ELT (*pending_weaks, i, pe)
{
alias_id = pe->name;
id = pe->value;
if (id == NULL)
continue;
target = symtab_node::get_for_asmname (id);
decl = build_decl (UNKNOWN_LOCATION,
target ? TREE_CODE (target->decl) : FUNCTION_DECL,
alias_id, default_function_type);
DECL_ARTIFICIAL (decl) = 1;
TREE_PUBLIC (decl) = 1;
DECL_WEAK (decl) = 1;
if (VAR_P (decl))
TREE_STATIC (decl) = 1;
if (!target)
{
error ("%q+D aliased to undefined symbol %qE",
decl, id);
continue;
}
assemble_alias (decl, id);
}
}
/* #pragma weak name [= value] */
static void
handle_pragma_weak (cpp_reader *)
{
tree name, value, x, decl;
enum cpp_ttype t;
value = 0;
if (pragma_lex (&name) != CPP_NAME)
GCC_BAD ("malformed %<#pragma weak%>, ignored");
t = pragma_lex (&x);
if (t == CPP_EQ)
{
if (pragma_lex (&value) != CPP_NAME)
GCC_BAD ("malformed %<#pragma weak%>, ignored");
t = pragma_lex (&x);
}
if (t != CPP_EOF)
warning (OPT_Wpragmas, "junk at end of %<#pragma weak%>");
decl = identifier_global_value (name);
if (decl && DECL_P (decl))
{
if (!VAR_OR_FUNCTION_DECL_P (decl))
GCC_BAD2 ("%<#pragma weak%> declaration of %q+D not allowed,"
" ignored", decl);
apply_pragma_weak (decl, value);
if (value)
{
DECL_EXTERNAL (decl) = 0;
if (VAR_P (decl))
TREE_STATIC (decl) = 1;
assemble_alias (decl, value);
}
}
else
{
pending_weak pe = {name, value};
vec_safe_push (pending_weaks, pe);
}
}
static enum scalar_storage_order_kind global_sso;
void
maybe_apply_pragma_scalar_storage_order (tree type)
{
if (global_sso == SSO_NATIVE)
return;
gcc_assert (RECORD_OR_UNION_TYPE_P (type));
if (lookup_attribute ("scalar_storage_order", TYPE_ATTRIBUTES (type)))
return;
if (global_sso == SSO_BIG_ENDIAN)
TYPE_REVERSE_STORAGE_ORDER (type) = !BYTES_BIG_ENDIAN;
else if (global_sso == SSO_LITTLE_ENDIAN)
TYPE_REVERSE_STORAGE_ORDER (type) = BYTES_BIG_ENDIAN;
else
gcc_unreachable ();
}
static void
handle_pragma_scalar_storage_order (cpp_reader *)
{
const char *kind_string;
enum cpp_ttype token;
tree x;
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
{
error ("% is not supported because endianness "
"is not uniform");
return;
}
if (c_dialect_cxx ())
{
if (warn_unknown_pragmas > in_system_header_at (input_location))
warning (OPT_Wunknown_pragmas,
"%<#pragma scalar_storage_order%> is not supported for C++");
return;
}
token = pragma_lex (&x);
if (token != CPP_NAME)
GCC_BAD ("missing %, %, or % after "
"%<#pragma scalar_storage_order%>");
kind_string = IDENTIFIER_POINTER (x);
if (strcmp (kind_string, "default") == 0)
global_sso = default_sso;
else if (strcmp (kind_string, "big") == 0)
global_sso = SSO_BIG_ENDIAN;
else if (strcmp (kind_string, "little") == 0)
global_sso = SSO_LITTLE_ENDIAN;
else
GCC_BAD ("expected %, %, or % after "
"%<#pragma scalar_storage_order%>");
}
/* GCC supports two #pragma directives for renaming the external
symbol associated with a declaration (DECL_ASSEMBLER_NAME), for
compatibility with the Solaris and VMS system headers. GCC also
has its own notation for this, __asm__("name") annotations.
Corner cases of these features and their interaction:
1) Both pragmas silently apply only to declarations with external
linkage (that is, TREE_PUBLIC || DECL_EXTERNAL). Asm labels
do not have this restriction.
2) In C++, both #pragmas silently apply only to extern "C" declarations.
Asm labels do not have this restriction.
3) If any of the three ways of changing DECL_ASSEMBLER_NAME is
applied to a decl whose DECL_ASSEMBLER_NAME is already set, and the
new name is different, a warning issues and the name does not change.
4) The "source name" for #pragma redefine_extname is the DECL_NAME,
*not* the DECL_ASSEMBLER_NAME.
5) If #pragma extern_prefix is in effect and a declaration occurs
with an __asm__ name, the #pragma extern_prefix is silently
ignored for that declaration.
6) If #pragma extern_prefix and #pragma redefine_extname apply to
the same declaration, whichever triggered first wins, and a warning
is issued. (We would like to have #pragma redefine_extname always
win, but it can appear either before or after the declaration, and
if it appears afterward, we have no way of knowing whether a modified
DECL_ASSEMBLER_NAME is due to #pragma extern_prefix.) */
struct GTY(()) pending_redefinition {
tree oldname;
tree newname;
};
static GTY(()) vec *pending_redefine_extname;
static void handle_pragma_redefine_extname (cpp_reader *);
/* #pragma redefine_extname oldname newname */
static void
handle_pragma_redefine_extname (cpp_reader *)
{
tree oldname, newname, decls, x;
enum cpp_ttype t;
bool found;
if (pragma_lex (&oldname) != CPP_NAME)
GCC_BAD ("malformed %<#pragma redefine_extname%>, ignored");
if (pragma_lex (&newname) != CPP_NAME)
GCC_BAD ("malformed %<#pragma redefine_extname%>, ignored");
t = pragma_lex (&x);
if (t != CPP_EOF)
warning (OPT_Wpragmas, "junk at end of %<#pragma redefine_extname%>");
found = false;
for (decls = c_linkage_bindings (oldname);
decls; )
{
tree decl;
if (TREE_CODE (decls) == TREE_LIST)
{
decl = TREE_VALUE (decls);
decls = TREE_CHAIN (decls);
}
else
{
decl = decls;
decls = NULL_TREE;
}
if ((TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
&& VAR_OR_FUNCTION_DECL_P (decl))
{
found = true;
if (DECL_ASSEMBLER_NAME_SET_P (decl))
{
const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
name = targetm.strip_name_encoding (name);
if (!id_equal (newname, name))
warning (OPT_Wpragmas, "%<#pragma redefine_extname%> "
"ignored due to conflict with previous rename");
}
else
symtab->change_decl_assembler_name (decl, newname);
}
}
if (!found)
/* We have to add this to the rename list even if there's already
a global value that doesn't meet the above criteria, because in
C++ "struct foo {...};" puts "foo" in the current namespace but
does *not* conflict with a subsequent declaration of a function
or variable foo. See g++.dg/other/pragma-re-2.C. */
add_to_renaming_pragma_list (oldname, newname);
}
/* This is called from here and from ia64-c.cc. */
void
add_to_renaming_pragma_list (tree oldname, tree newname)
{
unsigned ix;
pending_redefinition *p;
FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p)
if (oldname == p->oldname)
{
if (p->newname != newname)
warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored due to "
"conflict with previous %<#pragma redefine_extname%>");
return;
}
pending_redefinition e = {oldname, newname};
vec_safe_push (pending_redefine_extname, e);
}
/* The current prefix set by #pragma extern_prefix. */
GTY(()) tree pragma_extern_prefix;
/* Hook from the front ends to apply the results of one of the preceding
pragmas that rename variables. */
tree
maybe_apply_renaming_pragma (tree decl, tree asmname)
{
unsigned ix;
pending_redefinition *p;
/* The renaming pragmas are only applied to declarations with
external linkage. */
if (!VAR_OR_FUNCTION_DECL_P (decl)
|| (!TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl))
|| !has_c_linkage (decl))
return asmname;
/* If the DECL_ASSEMBLER_NAME is already set, it does not change,
but we may warn about a rename that conflicts. */
if (DECL_ASSEMBLER_NAME_SET_P (decl))
{
const char *oldname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
oldname = targetm.strip_name_encoding (oldname);
if (asmname && strcmp (TREE_STRING_POINTER (asmname), oldname))
warning (OPT_Wpragmas, "% declaration ignored due to "
"conflict with previous rename");
/* Take any pending redefine_extname off the list. */
FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p)
if (DECL_NAME (decl) == p->oldname)
{
/* Only warn if there is a conflict. */
if (!id_equal (p->newname, oldname))
warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored "
"due to conflict with previous rename");
pending_redefine_extname->unordered_remove (ix);
break;
}
return NULL_TREE;
}
/* Find out if we have a pending #pragma redefine_extname. */
FOR_EACH_VEC_SAFE_ELT (pending_redefine_extname, ix, p)
if (DECL_NAME (decl) == p->oldname)
{
tree newname = p->newname;
pending_redefine_extname->unordered_remove (ix);
/* If we already have an asmname, #pragma redefine_extname is
ignored (with a warning if it conflicts). */
if (asmname)
{
if (strcmp (TREE_STRING_POINTER (asmname),
IDENTIFIER_POINTER (newname)) != 0)
warning (OPT_Wpragmas, "%<#pragma redefine_extname%> ignored "
"due to conflict with % declaration");
return asmname;
}
/* Otherwise we use what we've got; #pragma extern_prefix is
silently ignored. */
return build_string (IDENTIFIER_LENGTH (newname),
IDENTIFIER_POINTER (newname));
}
/* If we've got an asmname, #pragma extern_prefix is silently ignored. */
if (asmname)
return asmname;
/* If #pragma extern_prefix is in effect, apply it. */
if (pragma_extern_prefix)
{
const char *prefix = TREE_STRING_POINTER (pragma_extern_prefix);
size_t plen = TREE_STRING_LENGTH (pragma_extern_prefix) - 1;
const char *id = IDENTIFIER_POINTER (DECL_NAME (decl));
size_t ilen = IDENTIFIER_LENGTH (DECL_NAME (decl));
char *newname = (char *) alloca (plen + ilen + 1);
memcpy (newname, prefix, plen);
memcpy (newname + plen, id, ilen + 1);
return build_string (plen + ilen, newname);
}
/* Nada. */
return NULL_TREE;
}
static void handle_pragma_visibility (cpp_reader *);
static vec visstack;
/* Push the visibility indicated by STR onto the top of the #pragma
visibility stack. KIND is 0 for #pragma GCC visibility, 1 for
C++ namespace with visibility attribute and 2 for C++ builtin
ABI namespace. push_visibility/pop_visibility calls must have
matching KIND, it is not allowed to push visibility using one
KIND and pop using a different one. */
void
push_visibility (const char *str, int kind)
{
visstack.safe_push (((int) default_visibility) | (kind << 8));
if (!strcmp (str, "default"))
default_visibility = VISIBILITY_DEFAULT;
else if (!strcmp (str, "internal"))
default_visibility = VISIBILITY_INTERNAL;
else if (!strcmp (str, "hidden"))
default_visibility = VISIBILITY_HIDDEN;
else if (!strcmp (str, "protected"))
default_visibility = VISIBILITY_PROTECTED;
else
GCC_BAD ("%<#pragma GCC visibility push()%> must specify %, "
"%, % or %");
visibility_options.inpragma = 1;
}
/* Pop a level of the #pragma visibility stack. Return true if
successful. */
bool
pop_visibility (int kind)
{
if (!visstack.length ())
return false;
if ((visstack.last () >> 8) != kind)
return false;
default_visibility
= (enum symbol_visibility) (visstack.pop () & 0xff);
visibility_options.inpragma
= visstack.length () != 0;
return true;
}
/* Sets the default visibility for symbols to something other than that
specified on the command line. */
static void
handle_pragma_visibility (cpp_reader *)
{
/* Form is #pragma GCC visibility push(hidden)|pop */
tree x;
enum cpp_ttype token;
enum { bad, push, pop } action = bad;
token = pragma_lex (&x);
if (token == CPP_NAME)
{
const char *op = IDENTIFIER_POINTER (x);
if (!strcmp (op, "push"))
action = push;
else if (!strcmp (op, "pop"))
action = pop;
}
if (bad == action)
GCC_BAD ("%<#pragma GCC visibility%> must be followed by % "
"or %");
else
{
if (pop == action)
{
if (! pop_visibility (0))
GCC_BAD ("no matching push for %<#pragma GCC visibility pop%>");
}
else
{
if (pragma_lex (&x) != CPP_OPEN_PAREN)
GCC_BAD ("missing %<(%> after %<#pragma GCC visibility push%> - ignored");
token = pragma_lex (&x);
if (token != CPP_NAME)
GCC_BAD ("malformed %<#pragma GCC visibility push%>");
else
push_visibility (IDENTIFIER_POINTER (x), 0);
if (pragma_lex (&x) != CPP_CLOSE_PAREN)
GCC_BAD ("missing %<(%> after %<#pragma GCC visibility push%> - ignored");
}
}
if (pragma_lex (&x) != CPP_EOF)
warning (OPT_Wpragmas, "junk at end of %<#pragma GCC visibility%>");
}
/* Helper routines for parsing #pragma GCC diagnostic. */
class pragma_diagnostic_data
{
pragma_diagnostic_data (const pragma_diagnostic_data &) = delete;
pragma_diagnostic_data& operator= (const pragma_diagnostic_data &) = delete;
public:
bool valid;
location_t loc_kind, loc_option;
enum pd_kind_t
{
PK_INVALID,
PK_PUSH,
PK_POP,
PK_IGNORED_ATTRIBUTES,
PK_DIAGNOSTIC,
} pd_kind;
diagnostic_t diagnostic_kind;
const char *kind_str;
const char *option_str;
bool own_option_str;
pragma_diagnostic_data () { clear (); }
void clear ()
{
valid = false;
loc_kind = loc_option = UNKNOWN_LOCATION;
pd_kind = PK_INVALID;
diagnostic_kind = DK_UNSPECIFIED;
kind_str = option_str = nullptr;
own_option_str = false;
}
~pragma_diagnostic_data ()
{
if (own_option_str && option_str)
XDELETEVEC (const_cast (option_str));
}
void set_kind (const char *kind_string)
{
kind_str = kind_string;
pd_kind = PK_INVALID;
diagnostic_kind = DK_UNSPECIFIED;
if (strcmp (kind_str, "push") == 0)
pd_kind = PK_PUSH;
else if (strcmp (kind_str, "pop") == 0)
pd_kind = PK_POP;
else if (strcmp (kind_str, "ignored_attributes") == 0)
pd_kind = PK_IGNORED_ATTRIBUTES;
else if (strcmp (kind_str, "error") == 0)
{
pd_kind = PK_DIAGNOSTIC;
diagnostic_kind = DK_ERROR;
}
else if (strcmp (kind_str, "warning") == 0)
{
pd_kind = PK_DIAGNOSTIC;
diagnostic_kind = DK_WARNING;
}
else if (strcmp (kind_str, "ignored") == 0)
{
pd_kind = PK_DIAGNOSTIC;
diagnostic_kind = DK_IGNORED;
}
}
bool needs_option () const
{
return pd_kind == PK_IGNORED_ATTRIBUTES
|| pd_kind == PK_DIAGNOSTIC;
}
};
/* This will call into either the C or C++ frontends as appropriate to get
tokens from libcpp for the pragma. */
static void
pragma_diagnostic_lex (pragma_diagnostic_data *result)
{
result->clear ();
tree x;
auto ttype = pragma_lex (&x, &result->loc_kind);
if (ttype != CPP_NAME)
return;
result->set_kind (IDENTIFIER_POINTER (x));
if (result->pd_kind == pragma_diagnostic_data::PK_INVALID)
return;
if (result->needs_option ())
{
ttype = pragma_lex (&x, &result->loc_option);
if (ttype != CPP_STRING)
return;
result->option_str = TREE_STRING_POINTER (x);
}
result->valid = true;
}
/* Handle #pragma GCC diagnostic. Early mode is used by frontends (such as C++)
that do not process the deferred pragma while they are consuming tokens; they
can use early mode to make sure diagnostics affecting the preprocessor itself
are correctly modified by the #pragma. */
template static void
handle_pragma_diagnostic_impl ()
{
static const bool want_diagnostics = (is_pp || !early);
pragma_diagnostic_data data;
pragma_diagnostic_lex (&data);
if (!data.kind_str)
{
if (want_diagnostics)
warning_at (data.loc_kind, OPT_Wpragmas,
"missing %, %, %, %, "
"%, or % after "
"%<#pragma GCC diagnostic%>");
return;
}
switch (data.pd_kind)
{
case pragma_diagnostic_data::PK_PUSH:
diagnostic_push_diagnostics (global_dc, input_location);
return;
case pragma_diagnostic_data::PK_POP:
diagnostic_pop_diagnostics (global_dc, input_location);
return;
case pragma_diagnostic_data::PK_IGNORED_ATTRIBUTES:
{
if (early)
return;
if (!data.option_str)
{
warning_at (data.loc_option, OPT_Wpragmas,
"missing attribute name after %<#pragma GCC diagnostic "
"ignored_attributes%>");
return;
}
char *args = xstrdup (data.option_str);
const size_t l = strlen (args);
if (l == 0)
{
warning_at (data.loc_option, OPT_Wpragmas,
"missing argument to %<#pragma GCC "
"diagnostic ignored_attributes%>");
free (args);
return;
}
else if (args[l - 1] == ',')
{
warning_at (data.loc_option, OPT_Wpragmas,
"trailing %<,%> in arguments for "
"%<#pragma GCC diagnostic ignored_attributes%>");
free (args);
return;
}
auto_vec v;
for (char *p = strtok (args, ","); p; p = strtok (NULL, ","))
v.safe_push (p);
handle_ignored_attributes_option (&v);
free (args);
return;
}
case pragma_diagnostic_data::PK_DIAGNOSTIC:
if (!data.option_str)
{
if (want_diagnostics)
warning_at (data.loc_option, OPT_Wpragmas,
"missing option after %<#pragma GCC diagnostic%> kind");
return;
}
break;
default:
if (want_diagnostics)
warning_at (data.loc_kind, OPT_Wpragmas,
"expected %, %, %, %, "
"%, % after "
"%<#pragma GCC diagnostic%>");
return;
}
gcc_assert (data.pd_kind == pragma_diagnostic_data::PK_DIAGNOSTIC);
gcc_assert (data.valid);
unsigned int lang_mask = c_common_option_lang_mask () | CL_COMMON;
/* option_string + 1 to skip the initial '-' */
unsigned int option_index = find_opt (data.option_str + 1, lang_mask);
if (early && !(c_option_is_from_cpp_diagnostics (option_index)
|| option_index == OPT_Wunknown_pragmas))
return;
if (option_index == OPT_SPECIAL_unknown)
{
if (want_diagnostics)
{
auto_diagnostic_group d;
if (warning_at (data.loc_option, OPT_Wpragmas,
"unknown option after %<#pragma GCC diagnostic%> kind"))
{
option_proposer op;
const char *hint = op.suggest_option (data.option_str + 1);
if (hint)
inform (data.loc_option, "did you mean %<-%s%>?", hint);
}
}
return;
}
else if (!(cl_options[option_index].flags & CL_WARNING))
{
if (want_diagnostics)
warning_at (data.loc_option, OPT_Wpragmas,
"%qs is not an option that controls warnings",
data.option_str);
return;
}
else if (!(cl_options[option_index].flags & lang_mask))
{
if (want_diagnostics)
{
char *ok_langs = write_langs (cl_options[option_index].flags);
char *bad_lang = write_langs (c_common_option_lang_mask ());
warning_at (data.loc_option, OPT_Wpragmas,
"option %qs is valid for %s but not for %s",
data.option_str, ok_langs, bad_lang);
free (ok_langs);
free (bad_lang);
}
return;
}
const char *arg = NULL;
if (cl_options[option_index].flags & CL_JOINED)
arg = data.option_str + 1 + cl_options[option_index].opt_len;
struct cl_option_handlers handlers;
set_default_handlers (&handlers, NULL);
/* FIXME: input_location isn't the best location here, but it is
what we used to do here before and changing it breaks e.g.
PR69543 and PR69558. */
control_warning_option (option_index, (int) data.diagnostic_kind,
arg, data.diagnostic_kind != DK_IGNORED,
input_location, lang_mask, &handlers,
&global_options, &global_options_set,
global_dc);
}
static void
handle_pragma_diagnostic (cpp_reader *)
{
handle_pragma_diagnostic_impl ();
}
static void
handle_pragma_diagnostic_early (cpp_reader *)
{
handle_pragma_diagnostic_impl ();
}
static void
handle_pragma_diagnostic_early_pp (cpp_reader *)
{
handle_pragma_diagnostic_impl ();
}
/* Parse #pragma GCC target (xxx) to set target specific options. */
static void
handle_pragma_target(cpp_reader *)
{
location_t loc;
enum cpp_ttype token;
tree x;
bool close_paren_needed_p = false;
if (cfun)
{
error ("%<#pragma GCC option%> is not allowed inside functions");
return;
}
token = pragma_lex (&x, &loc);
if (token == CPP_OPEN_PAREN)
{
close_paren_needed_p = true;
token = pragma_lex (&x, &loc);
}
if (token != CPP_STRING)
GCC_BAD_AT (loc, "%<#pragma GCC option%> is not a string");
/* Strings are user options. */
else
{
tree args = NULL_TREE;
do
{
/* Build up the strings now as a tree linked list. Skip empty
strings. */
if (TREE_STRING_LENGTH (x) > 0)
args = tree_cons (NULL_TREE, x, args);
token = pragma_lex (&x);
while (token == CPP_COMMA)
token = pragma_lex (&x);
}
while (token == CPP_STRING);
if (close_paren_needed_p)
{
if (token == CPP_CLOSE_PAREN)
token = pragma_lex (&x);
else
GCC_BAD ("%<#pragma GCC target (string [,string]...)%> does "
"not have a final %<)%>");
}
if (token != CPP_EOF)
{
error ("%<#pragma GCC target%> string is badly formed");
return;
}
/* put arguments in the order the user typed them. */
args = nreverse (args);
if (targetm.target_option.pragma_parse (args, NULL_TREE))
current_target_pragma = chainon (current_target_pragma, args);
/* A target pragma can also influence optimization options. */
tree current_optimize
= build_optimization_node (&global_options, &global_options_set);
if (current_optimize != optimization_current_node)
optimization_current_node = current_optimize;
}
}
/* Handle #pragma GCC optimize to set optimization options. */
static void
handle_pragma_optimize (cpp_reader *)
{
enum cpp_ttype token;
tree x;
bool close_paren_needed_p = false;
tree optimization_previous_node = optimization_current_node;
if (cfun)
{
error ("%<#pragma GCC optimize%> is not allowed inside functions");
return;
}
token = pragma_lex (&x);
if (token == CPP_OPEN_PAREN)
{
close_paren_needed_p = true;
token = pragma_lex (&x);
}
if (token != CPP_STRING && token != CPP_NUMBER)
GCC_BAD ("%<#pragma GCC optimize%> is not a string or number");
/* Strings/numbers are user options. */
else
{
tree args = NULL_TREE;
do
{
/* Build up the numbers/strings now as a list. */
if (token != CPP_STRING || TREE_STRING_LENGTH (x) > 0)
args = tree_cons (NULL_TREE, x, args);
token = pragma_lex (&x);
while (token == CPP_COMMA)
token = pragma_lex (&x);
}
while (token == CPP_STRING || token == CPP_NUMBER);
if (close_paren_needed_p)
{
if (token == CPP_CLOSE_PAREN)
token = pragma_lex (&x);
else
GCC_BAD ("%<#pragma GCC optimize (string [,string]...)%> does "
"not have a final %<)%>");
}
if (token != CPP_EOF)
{
error ("%<#pragma GCC optimize%> string is badly formed");
return;
}
/* put arguments in the order the user typed them. */
args = nreverse (args);
parse_optimize_options (args, false);
current_optimize_pragma = chainon (current_optimize_pragma, args);
optimization_current_node
= build_optimization_node (&global_options, &global_options_set);
c_cpp_builtins_optimize_pragma (parse_in,
optimization_previous_node,
optimization_current_node);
}
}
/* Stack of the #pragma GCC options created with #pragma GCC push_option. Save
both the binary representation of the options and the TREE_LIST of
strings that will be added to the function's attribute list. */
struct GTY(()) opt_stack {
struct opt_stack *prev;
tree target_binary;
tree target_strings;
tree optimize_binary;
tree optimize_strings;
gcc_options * GTY ((skip)) saved_global_options;
};
static GTY(()) struct opt_stack * options_stack;
/* Handle #pragma GCC push_options to save the current target and optimization
options. */
static void
handle_pragma_push_options (cpp_reader *)
{
enum cpp_ttype token;
tree x = 0;
token = pragma_lex (&x);
if (token != CPP_EOF)
{
warning (OPT_Wpragmas, "junk at end of %<#pragma GCC push_options%>");
return;
}
opt_stack *p = ggc_alloc ();
p->prev = options_stack;
options_stack = p;
/* Save optimization and target flags in binary format. */
if (flag_checking)
{
p->saved_global_options = XNEW (gcc_options);
*p->saved_global_options = global_options;
}
p->optimize_binary = build_optimization_node (&global_options,
&global_options_set);
p->target_binary = build_target_option_node (&global_options,
&global_options_set);
/* Save optimization and target flags in string list format. */
p->optimize_strings = copy_list (current_optimize_pragma);
p->target_strings = copy_list (current_target_pragma);
}
/* Handle #pragma GCC pop_options to restore the current target and
optimization options from a previous push_options. */
static void
handle_pragma_pop_options (cpp_reader *)
{
enum cpp_ttype token;
tree x = 0;
opt_stack *p;
token = pragma_lex (&x);
if (token != CPP_EOF)
{
warning (OPT_Wpragmas, "junk at end of %<#pragma GCC pop_options%>");
return;
}
if (! options_stack)
{
warning (OPT_Wpragmas,
"%<#pragma GCC pop_options%> without a corresponding "
"%<#pragma GCC push_options%>");
return;
}
p = options_stack;
options_stack = p->prev;
if (p->target_binary != target_option_current_node)
{
(void) targetm.target_option.pragma_parse (NULL_TREE, p->target_binary);
target_option_current_node = p->target_binary;
}
/* Always restore optimization options as optimization_current_node is
* overwritten by invoke_set_current_function_hook. */
cl_optimization_restore (&global_options, &global_options_set,
TREE_OPTIMIZATION (p->optimize_binary));
cl_target_option_restore (&global_options, &global_options_set,
TREE_TARGET_OPTION (p->target_binary));
if (p->optimize_binary != optimization_current_node)
{
c_cpp_builtins_optimize_pragma (parse_in, optimization_current_node,
p->optimize_binary);
optimization_current_node = p->optimize_binary;
}
if (flag_checking && !seen_error ())
{
cl_optimization_compare (p->saved_global_options, &global_options);
free (p->saved_global_options);
}
current_target_pragma = p->target_strings;
current_optimize_pragma = p->optimize_strings;
}
/* This is mostly a helper for handle_pragma_reset_options () to do the actual
work, but the C++ frontend, for example, needs an external interface to
perform this operation, since it processes target pragmas twice. (Once for
preprocessing purposes, and then again during compilation.) */
void
c_reset_target_pragmas ()
{
tree new_optimize = optimization_default_node;
tree new_target = target_option_default_node;
if (new_target != target_option_current_node)
{
(void) targetm.target_option.pragma_parse (NULL_TREE, new_target);
target_option_current_node = new_target;
}
if (new_optimize != optimization_current_node)
{
tree old_optimize = optimization_current_node;
cl_optimization_restore (&global_options, &global_options_set,
TREE_OPTIMIZATION (new_optimize));
c_cpp_builtins_optimize_pragma (parse_in, old_optimize, new_optimize);
optimization_current_node = new_optimize;
}
current_target_pragma = NULL_TREE;
current_optimize_pragma = NULL_TREE;
}
/* Handle #pragma GCC reset_options to restore the current target and
optimization options to the original options used on the command line. */
static void
handle_pragma_reset_options (cpp_reader *)
{
tree x;
if (pragma_lex (&x) != CPP_EOF)
warning (OPT_Wpragmas, "junk at end of %<#pragma reset_options%>");
else
c_reset_target_pragmas ();
}
/* Print a plain user-specified message. */
static void
handle_pragma_message (cpp_reader *)
{
location_t loc;
enum cpp_ttype token;
tree x, message = 0;
token = pragma_lex (&x);
if (token == CPP_OPEN_PAREN)
{
token = pragma_lex (&x);
if (token == CPP_STRING)
message = x;
else
GCC_BAD ("expected a string after %<#pragma message%>");
if (pragma_lex (&x) != CPP_CLOSE_PAREN)
GCC_BAD ("malformed %<#pragma message%>, ignored");
}
else if (token == CPP_STRING)
message = x;
else if (token == CPP_STRING_USERDEF)
GCC_BAD ("string literal with user-defined suffix is invalid in this "
"context");
else
GCC_BAD ("expected a string after %<#pragma message%>");
gcc_assert (message);
if (pragma_lex (&x, &loc) != CPP_EOF)
warning_at (loc, OPT_Wpragmas, "junk at end of %<#pragma message%>");
if (TREE_STRING_LENGTH (message) > 1)
inform (input_location, "%<#pragma message: %s%>",
TREE_STRING_POINTER (message));
}
/* Ignore a no-op pragma that GCC recognizes, but which has no effect. */
static void
handle_pragma_ignore (cpp_reader *)
{
}
/* Mark whether the current location is valid for a STDC pragma. */
static bool valid_location_for_stdc_pragma;
void
mark_valid_location_for_stdc_pragma (bool flag)
{
valid_location_for_stdc_pragma = flag;
}
/* Return true if the current location is valid for a STDC pragma. */
bool
valid_location_for_stdc_pragma_p (void)
{
return valid_location_for_stdc_pragma;
}
enum pragma_switch_t { PRAGMA_ON, PRAGMA_OFF, PRAGMA_DEFAULT, PRAGMA_BAD };
/* A STDC pragma must appear outside of external declarations or
preceding all explicit declarations and statements inside a compound
statement; its behavior is undefined if used in any other context.
It takes a switch of ON, OFF, or DEFAULT. */
static enum pragma_switch_t
handle_stdc_pragma (const char *pname)
{
const char *arg;
tree t;
enum pragma_switch_t ret;
if (!valid_location_for_stdc_pragma_p ())
{
warning (OPT_Wpragmas, "invalid location for %, ignored",
pname);
return PRAGMA_BAD;
}
if (pragma_lex (&t) != CPP_NAME)
{
warning (OPT_Wpragmas, "malformed %<#pragma %s%>, ignored", pname);
return PRAGMA_BAD;
}
arg = IDENTIFIER_POINTER (t);
if (!strcmp (arg, "ON"))
ret = PRAGMA_ON;
else if (!strcmp (arg, "OFF"))
ret = PRAGMA_OFF;
else if (!strcmp (arg, "DEFAULT"))
ret = PRAGMA_DEFAULT;
else
{
warning (OPT_Wpragmas, "malformed %<#pragma %s%>, ignored", pname);
return PRAGMA_BAD;
}
if (pragma_lex (&t) != CPP_EOF)
{
warning (OPT_Wpragmas, "junk at end of %<#pragma %s%>", pname);
return PRAGMA_BAD;
}
return ret;
}
/* #pragma STDC FLOAT_CONST_DECIMAL64 ON
#pragma STDC FLOAT_CONST_DECIMAL64 OFF
#pragma STDC FLOAT_CONST_DECIMAL64 DEFAULT */
static void
handle_pragma_float_const_decimal64 (cpp_reader *)
{
if (c_dialect_cxx ())
{
if (warn_unknown_pragmas > in_system_header_at (input_location))
warning (OPT_Wunknown_pragmas,
"%<#pragma STDC FLOAT_CONST_DECIMAL64%> is not supported"
" for C++");
return;
}
if (!targetm.decimal_float_supported_p ())
{
if (warn_unknown_pragmas > in_system_header_at (input_location))
warning (OPT_Wunknown_pragmas,
"%<#pragma STDC FLOAT_CONST_DECIMAL64%> is not supported"
" on this target");
return;
}
pedwarn (input_location, OPT_Wpedantic,
"ISO C does not support %<#pragma STDC FLOAT_CONST_DECIMAL64%>");
switch (handle_stdc_pragma ("STDC FLOAT_CONST_DECIMAL64"))
{
case PRAGMA_ON:
set_float_const_decimal64 ();
break;
case PRAGMA_OFF:
case PRAGMA_DEFAULT:
clear_float_const_decimal64 ();
break;
case PRAGMA_BAD:
break;
}
}
/* A vector of registered pragma callbacks, which is never freed. */
static vec registered_pragmas;
struct pragma_pp_data
{
const char *space;
const char *name;
pragma_handler_1arg early_handler;
};
static vec registered_pp_pragmas;
struct omp_pragma_def { const char *name; unsigned int id; };
static const struct omp_pragma_def oacc_pragmas[] = {
{ "atomic", PRAGMA_OACC_ATOMIC },
{ "cache", PRAGMA_OACC_CACHE },
{ "data", PRAGMA_OACC_DATA },
{ "declare", PRAGMA_OACC_DECLARE },
{ "enter", PRAGMA_OACC_ENTER_DATA },
{ "exit", PRAGMA_OACC_EXIT_DATA },
{ "host_data", PRAGMA_OACC_HOST_DATA },
{ "kernels", PRAGMA_OACC_KERNELS },
{ "loop", PRAGMA_OACC_LOOP },
{ "parallel", PRAGMA_OACC_PARALLEL },
{ "routine", PRAGMA_OACC_ROUTINE },
{ "serial", PRAGMA_OACC_SERIAL },
{ "update", PRAGMA_OACC_UPDATE },
{ "wait", PRAGMA_OACC_WAIT }
};
static const struct omp_pragma_def omp_pragmas[] = {
{ "allocate", PRAGMA_OMP_ALLOCATE },
{ "assumes", PRAGMA_OMP_ASSUMES },
{ "atomic", PRAGMA_OMP_ATOMIC },
{ "barrier", PRAGMA_OMP_BARRIER },
{ "begin", PRAGMA_OMP_BEGIN },
{ "cancel", PRAGMA_OMP_CANCEL },
{ "cancellation", PRAGMA_OMP_CANCELLATION_POINT },
{ "critical", PRAGMA_OMP_CRITICAL },
{ "depobj", PRAGMA_OMP_DEPOBJ },
{ "error", PRAGMA_OMP_ERROR },
{ "end", PRAGMA_OMP_END },
{ "flush", PRAGMA_OMP_FLUSH },
{ "nothing", PRAGMA_OMP_NOTHING },
{ "requires", PRAGMA_OMP_REQUIRES },
{ "scope", PRAGMA_OMP_SCOPE },
{ "section", PRAGMA_OMP_SECTION },
{ "sections", PRAGMA_OMP_SECTIONS },
{ "single", PRAGMA_OMP_SINGLE },
{ "task", PRAGMA_OMP_TASK },
{ "taskgroup", PRAGMA_OMP_TASKGROUP },
{ "taskwait", PRAGMA_OMP_TASKWAIT },
{ "taskyield", PRAGMA_OMP_TASKYIELD },
{ "threadprivate", PRAGMA_OMP_THREADPRIVATE }
};
static const struct omp_pragma_def omp_pragmas_simd[] = {
{ "assume", PRAGMA_OMP_ASSUME },
{ "declare", PRAGMA_OMP_DECLARE },
{ "distribute", PRAGMA_OMP_DISTRIBUTE },
{ "for", PRAGMA_OMP_FOR },
{ "loop", PRAGMA_OMP_LOOP },
{ "masked", PRAGMA_OMP_MASKED },
{ "master", PRAGMA_OMP_MASTER },
{ "ordered", PRAGMA_OMP_ORDERED },
{ "parallel", PRAGMA_OMP_PARALLEL },
{ "scan", PRAGMA_OMP_SCAN },
{ "simd", PRAGMA_OMP_SIMD },
{ "target", PRAGMA_OMP_TARGET },
{ "taskloop", PRAGMA_OMP_TASKLOOP },
{ "teams", PRAGMA_OMP_TEAMS },
{ "tile", PRAGMA_OMP_TILE },
{ "unroll", PRAGMA_OMP_UNROLL },
};
void
c_pp_lookup_pragma (unsigned int id, const char **space, const char **name)
{
const int n_oacc_pragmas = ARRAY_SIZE (oacc_pragmas);
const int n_omp_pragmas = ARRAY_SIZE (omp_pragmas);
const int n_omp_pragmas_simd = ARRAY_SIZE (omp_pragmas_simd);
int i;
for (i = 0; i < n_oacc_pragmas; ++i)
if (oacc_pragmas[i].id == id)
{
*space = "acc";
*name = oacc_pragmas[i].name;
return;
}
for (i = 0; i < n_omp_pragmas; ++i)
if (omp_pragmas[i].id == id)
{
*space = "omp";
*name = omp_pragmas[i].name;
return;
}
for (i = 0; i < n_omp_pragmas_simd; ++i)
if (omp_pragmas_simd[i].id == id)
{
*space = "omp";
*name = omp_pragmas_simd[i].name;
return;
}
if (id >= PRAGMA_FIRST_EXTERNAL
&& (id < PRAGMA_FIRST_EXTERNAL + registered_pp_pragmas.length ()))
{
*space = registered_pp_pragmas[id - PRAGMA_FIRST_EXTERNAL].space;
*name = registered_pp_pragmas[id - PRAGMA_FIRST_EXTERNAL].name;
return;
}
gcc_unreachable ();
}
/* Front-end wrappers for pragma registration to avoid dragging
cpplib.h in almost everywhere. */
static void
c_register_pragma_1 (const char *space, const char *name,
internal_pragma_handler ihandler, bool allow_expansion)
{
unsigned id;
if (flag_preprocess_only)
{
if (cpp_get_options (parse_in)->directives_only
|| !(allow_expansion || ihandler.early_handler.handler_1arg))
return;
pragma_pp_data pp_data;
pp_data.space = space;
pp_data.name = name;
pp_data.early_handler = ihandler.early_handler.handler_1arg;
registered_pp_pragmas.safe_push (pp_data);
id = registered_pp_pragmas.length ();
id += PRAGMA_FIRST_EXTERNAL - 1;
}
else
{
registered_pragmas.safe_push (ihandler);
id = registered_pragmas.length ();
id += PRAGMA_FIRST_EXTERNAL - 1;
/* The C front end allocates 8 bits in c_token. The C++ front end
keeps the pragma kind in the form of INTEGER_CST, so no small
limit applies. At present this is sufficient. */
gcc_assert (id < 256);
}
cpp_register_deferred_pragma (parse_in, space, name, id,
allow_expansion, false);
}
/* Register a C pragma handler, using a space and a name. It disallows pragma
expansion (if you want it, use c_register_pragma_with_expansion instead). */
void
c_register_pragma (const char *space, const char *name,
pragma_handler_1arg handler)
{
c_register_pragma_with_early_handler (space, name, handler, nullptr);
}
void c_register_pragma_with_early_handler (const char *space, const char *name,
pragma_handler_1arg handler,
pragma_handler_1arg early_handler)
{
internal_pragma_handler ihandler;
ihandler.handler.handler_1arg = handler;
ihandler.early_handler.handler_1arg = early_handler;
ihandler.extra_data = false;
ihandler.data = NULL;
c_register_pragma_1 (space, name, ihandler, false);
}
/* Register a C pragma handler, using a space and a name, it also carries an
extra data field which can be used by the handler. It disallows pragma
expansion (if you want it, use c_register_pragma_with_expansion_and_data
instead). */
void
c_register_pragma_with_data (const char *space, const char *name,
pragma_handler_2arg handler, void * data)
{
internal_pragma_handler ihandler;
ihandler.handler.handler_2arg = handler;
ihandler.early_handler.handler_2arg = nullptr;
ihandler.extra_data = true;
ihandler.data = data;
c_register_pragma_1 (space, name, ihandler, false);
}
/* Register a C pragma handler, using a space and a name. It allows pragma
expansion as in the following example:
#define NUMBER 10
#pragma count (NUMBER)
Name expansion is still disallowed. */
void
c_register_pragma_with_expansion (const char *space, const char *name,
pragma_handler_1arg handler)
{
internal_pragma_handler ihandler;
ihandler.handler.handler_1arg = handler;
ihandler.early_handler.handler_1arg = nullptr;
ihandler.extra_data = false;
ihandler.data = NULL;
c_register_pragma_1 (space, name, ihandler, true);
}
/* Register a C pragma handler, using a space and a name, it also carries an
extra data field which can be used by the handler. It allows pragma
expansion as in the following example:
#define NUMBER 10
#pragma count (NUMBER)
Name expansion is still disallowed. */
void
c_register_pragma_with_expansion_and_data (const char *space, const char *name,
pragma_handler_2arg handler,
void *data)
{
internal_pragma_handler ihandler;
ihandler.handler.handler_2arg = handler;
ihandler.early_handler.handler_2arg = nullptr;
ihandler.extra_data = true;
ihandler.data = data;
c_register_pragma_1 (space, name, ihandler, true);
}
void
c_invoke_pragma_handler (unsigned int id)
{
internal_pragma_handler *ihandler;
pragma_handler_1arg handler_1arg;
pragma_handler_2arg handler_2arg;
id -= PRAGMA_FIRST_EXTERNAL;
ihandler = ®istered_pragmas[id];
if (ihandler->extra_data)
{
handler_2arg = ihandler->handler.handler_2arg;
handler_2arg (parse_in, ihandler->data);
}
else
{
handler_1arg = ihandler->handler.handler_1arg;
handler_1arg (parse_in);
}
}
/* In contrast to the normal handler, the early handler is optional. */
void
c_invoke_early_pragma_handler (unsigned int id)
{
internal_pragma_handler *ihandler;
pragma_handler_1arg handler_1arg;
pragma_handler_2arg handler_2arg;
id -= PRAGMA_FIRST_EXTERNAL;
ihandler = ®istered_pragmas[id];
if (ihandler->extra_data)
{
handler_2arg = ihandler->early_handler.handler_2arg;
if (handler_2arg)
handler_2arg (parse_in, ihandler->data);
}
else
{
handler_1arg = ihandler->early_handler.handler_1arg;
if (handler_1arg)
handler_1arg (parse_in);
}
}
void
c_pp_invoke_early_pragma_handler (unsigned int id)
{
const auto data = ®istered_pp_pragmas[id - PRAGMA_FIRST_EXTERNAL];
if (data->early_handler)
{
data->early_handler (parse_in);
pragma_lex_discard_to_eol ();
}
}
/* Set up front-end pragmas. */
void
init_pragma (void)
{
if (!cpp_get_options (parse_in)->directives_only)
{
if (flag_openacc)
{
const int n_oacc_pragmas = ARRAY_SIZE (oacc_pragmas);
int i;
for (i = 0; i < n_oacc_pragmas; ++i)
cpp_register_deferred_pragma (parse_in, "acc", oacc_pragmas[i].name,
oacc_pragmas[i].id, true, true);
}
if (flag_openmp)
{
const int n_omp_pragmas = ARRAY_SIZE (omp_pragmas);
int i;
for (i = 0; i < n_omp_pragmas; ++i)
cpp_register_deferred_pragma (parse_in, "omp", omp_pragmas[i].name,
omp_pragmas[i].id, true, true);
}
if (flag_openmp || flag_openmp_simd)
{
const int n_omp_pragmas_simd = ARRAY_SIZE (omp_pragmas_simd);
int i;
for (i = 0; i < n_omp_pragmas_simd; ++i)
cpp_register_deferred_pragma (parse_in, "omp",
omp_pragmas_simd[i].name,
omp_pragmas_simd[i].id, true, true);
}
}
if (!flag_preprocess_only)
cpp_register_deferred_pragma (parse_in, "GCC", "pch_preprocess",
PRAGMA_GCC_PCH_PREPROCESS, false, false);
if (!flag_preprocess_only)
cpp_register_deferred_pragma (parse_in, "GCC", "ivdep", PRAGMA_IVDEP, false,
false);
if (!flag_preprocess_only)
cpp_register_deferred_pragma (parse_in, "GCC", "unroll", PRAGMA_UNROLL,
false, false);
if (!flag_preprocess_only)
cpp_register_deferred_pragma (parse_in, "GCC", "novector", PRAGMA_NOVECTOR,
false, false);
#ifdef HANDLE_PRAGMA_PACK_WITH_EXPANSION
c_register_pragma_with_expansion (0, "pack", handle_pragma_pack);
#else
c_register_pragma (0, "pack", handle_pragma_pack);
#endif
c_register_pragma (0, "weak", handle_pragma_weak);
c_register_pragma ("GCC", "visibility", handle_pragma_visibility);
if (flag_preprocess_only)
c_register_pragma_with_early_handler ("GCC", "diagnostic",
nullptr,
handle_pragma_diagnostic_early_pp);
else
c_register_pragma_with_early_handler ("GCC", "diagnostic",
handle_pragma_diagnostic,
handle_pragma_diagnostic_early);
c_register_pragma_with_early_handler ("GCC", "target",
handle_pragma_target,
handle_pragma_target);
c_register_pragma ("GCC", "optimize", handle_pragma_optimize);
c_register_pragma_with_early_handler ("GCC", "push_options",
handle_pragma_push_options,
handle_pragma_push_options);
c_register_pragma_with_early_handler ("GCC", "pop_options",
handle_pragma_pop_options,
handle_pragma_pop_options);
c_register_pragma_with_early_handler ("GCC", "reset_options",
handle_pragma_reset_options,
handle_pragma_reset_options);
c_register_pragma (0, "region", handle_pragma_ignore);
c_register_pragma (0, "endregion", handle_pragma_ignore);
c_register_pragma ("STDC", "FLOAT_CONST_DECIMAL64",
handle_pragma_float_const_decimal64);
c_register_pragma_with_expansion (0, "redefine_extname",
handle_pragma_redefine_extname);
c_register_pragma_with_expansion (0, "message", handle_pragma_message);
#ifdef REGISTER_TARGET_PRAGMAS
REGISTER_TARGET_PRAGMAS ();
#endif
global_sso = default_sso;
c_register_pragma (0, "scalar_storage_order",
handle_pragma_scalar_storage_order);
/* Allow plugins to register their own pragmas. */
invoke_plugin_callbacks (PLUGIN_PRAGMAS, NULL);
}
#include "gt-c-family-c-pragma.h"