/* Tracking equivalence classes and constraints at a point on an execution path. Copyright (C) 2019-2022 Free Software Foundation, Inc. Contributed by David Malcolm . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_ANALYZER_CONSTRAINT_MANAGER_H #define GCC_ANALYZER_CONSTRAINT_MANAGER_H namespace ana { class constraint_manager; enum bound_kind { BK_LOWER, BK_UPPER }; /* One of the end-points of a range. */ struct bound { bound () : m_constant (NULL_TREE), m_closed (false) {} bound (tree constant, bool closed) : m_constant (constant), m_closed (closed) {} void ensure_closed (enum bound_kind bound_kind); const char * get_relation_as_str () const; tree m_constant; bool m_closed; }; /* A range of values, used for determining if a value has been constrained to just one possible constant value. */ class range { public: range () : m_lower_bound (), m_upper_bound () {} range (const bound &lower, const bound &upper) : m_lower_bound (lower), m_upper_bound (upper) {} void dump_to_pp (pretty_printer *pp) const; void dump () const; tree constrained_to_single_element (); tristate eval_condition (enum tree_code op, tree rhs_const) const; bool below_lower_bound (tree rhs_const) const; bool above_upper_bound (tree rhs_const) const; bool add_bound (bound b, enum bound_kind bound_kind); bool add_bound (enum tree_code op, tree rhs_const); private: bound m_lower_bound; bound m_upper_bound; }; /* A closed range of values with constant integer bounds e.g. [3, 5] for the set {3, 4, 5}. */ struct bounded_range { bounded_range (const_tree lower, const_tree upper); void dump_to_pp (pretty_printer *pp, bool show_types) const; void dump (bool show_types) const; json::object *to_json () const; bool contains_p (tree cst) const; bool intersects_p (const bounded_range &other, bounded_range *out) const; bool operator== (const bounded_range &other) const; bool operator!= (const bounded_range &other) const { return !(*this == other); } static int cmp (const bounded_range &a, const bounded_range &b); tree m_lower; tree m_upper; private: static void set_json_attr (json::object *obj, const char *name, tree value); }; /* A collection of bounded_range instances, suitable for representing the ranges on a case label within a switch statement. */ struct bounded_ranges { public: typedef bounded_ranges key_t; bounded_ranges (const bounded_range &range); bounded_ranges (const vec &ranges); bounded_ranges (enum tree_code op, tree rhs_const); bool operator== (const bounded_ranges &other) const; hashval_t get_hash () const { return m_hash; } void dump_to_pp (pretty_printer *pp, bool show_types) const; void dump (bool show_types) const; json::value *to_json () const; tristate eval_condition (enum tree_code op, tree rhs_const, bounded_ranges_manager *mgr) const; bool contain_p (tree cst) const; bool empty_p () const { return m_ranges.length () == 0; } static int cmp (const bounded_ranges *a, const bounded_ranges *b); unsigned get_count () const { return m_ranges.length (); } const bounded_range &get_range (unsigned idx) const { return m_ranges[idx]; } private: void canonicalize (); void validate () const; friend class bounded_ranges_manager; auto_vec m_ranges; hashval_t m_hash; }; } // namespace ana template <> struct default_hash_traits : public member_function_hash_traits { static const bool empty_zero_p = true; }; namespace ana { /* An object to own and consolidate bounded_ranges instances. This also caches the mapping from switch_cfg_superedge bounded_ranges instances, so that get_or_create_ranges_for_switch is memoized. */ class bounded_ranges_manager { public: ~bounded_ranges_manager (); const bounded_ranges * get_or_create_ranges_for_switch (const switch_cfg_superedge *edge, const gswitch *switch_stmt); const bounded_ranges *get_or_create_empty (); const bounded_ranges *get_or_create_point (const_tree value); const bounded_ranges *get_or_create_range (const_tree lower_bound, const_tree upper_bound); const bounded_ranges * get_or_create_union (const vec &others); const bounded_ranges * get_or_create_intersection (const bounded_ranges *a, const bounded_ranges *b); const bounded_ranges * get_or_create_inverse (const bounded_ranges *other, tree type); void log_stats (logger *logger, bool show_objs) const; private: const bounded_ranges * create_ranges_for_switch (const switch_cfg_superedge &edge, const gswitch *switch_stmt); const bounded_ranges * make_case_label_ranges (const gswitch *switch_stmt, tree case_label); const bounded_ranges *consolidate (bounded_ranges *); struct hash_traits_t : public typed_noop_remove { typedef bounded_ranges *key_type; typedef bounded_ranges *value_type; static inline bool equal (const key_type &k1, const key_type &k2) { return *k1 == *k2; } static inline hashval_t hash (const key_type &k) { return k->get_hash (); } static inline bool is_empty (key_type k) { return k == NULL; } static inline void mark_empty (key_type &k) { k = NULL; } static inline bool is_deleted (key_type k) { return k == reinterpret_cast (1); } static const bool empty_zero_p = true; }; struct traits_t : public simple_hashmap_traits { }; typedef hash_map map_t; map_t m_map; typedef hash_map edge_cache_t; edge_cache_t m_edge_cache; }; /* An equivalence class within a constraint manager: a set of svalues that are known to all be equal to each other, together with an optional tree constant that they are equal to. */ class equiv_class { public: equiv_class (); equiv_class (const equiv_class &other); hashval_t hash () const; bool operator== (const equiv_class &other); void add (const svalue *sval); bool del (const svalue *sval); tree get_any_constant () const { return m_constant; } const svalue *get_representative () const; void canonicalize (); void print (pretty_printer *pp) const; json::object *to_json () const; bool contains_non_constant_p () const; /* An equivalence class can contain multiple constants (e.g. multiple different zeroes, for different types); these are just for the last constant added. */ tree m_constant; const svalue *m_cst_sval; // TODO: should this be a set rather than a vec? auto_vec m_vars; }; /* The various kinds of constraint. */ enum constraint_op { CONSTRAINT_NE, CONSTRAINT_LT, CONSTRAINT_LE }; const char *constraint_op_code (enum constraint_op c_op); /* An ID for an equiv_class within a constraint_manager. Internally, this is an index into a vector of equiv_class * within the constraint_manager. */ class equiv_class_id { public: static equiv_class_id null () { return equiv_class_id (-1); } equiv_class_id (unsigned idx) : m_idx (idx) {} const equiv_class &get_obj (const constraint_manager &cm) const; equiv_class &get_obj (constraint_manager &cm) const; bool operator== (const equiv_class_id &other) const { return m_idx == other.m_idx; } bool operator!= (const equiv_class_id &other) const { return m_idx != other.m_idx; } bool null_p () const { return m_idx == -1; } static equiv_class_id from_int (int idx) { return equiv_class_id (idx); } int as_int () const { return m_idx; } void print (pretty_printer *pp) const; void update_for_removal (equiv_class_id other) { if (m_idx > other.m_idx) m_idx--; } int m_idx; }; /* A relationship between two equivalence classes in a constraint_manager. */ class constraint { public: constraint (equiv_class_id lhs, enum constraint_op c_op, equiv_class_id rhs) : m_lhs (lhs), m_op (c_op), m_rhs (rhs) { gcc_assert (!lhs.null_p ()); gcc_assert (!rhs.null_p ()); } void print (pretty_printer *pp, const constraint_manager &cm) const; json::object *to_json () const; hashval_t hash () const; bool operator== (const constraint &other) const; /* Is this an ordering, rather than a "!=". */ bool is_ordering_p () const { return m_op != CONSTRAINT_NE; } bool implied_by (const constraint &other, const constraint_manager &cm) const; equiv_class_id m_lhs; enum constraint_op m_op; equiv_class_id m_rhs; }; /* An abstract base class for use with constraint_manager::for_each_fact. */ class fact_visitor { public: virtual ~fact_visitor () {} virtual void on_fact (const svalue *lhs, enum tree_code, const svalue *rhs) = 0; virtual void on_ranges (const svalue *lhs, const bounded_ranges *ranges) = 0; }; class bounded_ranges_constraint { public: bounded_ranges_constraint (equiv_class_id ec_id, const bounded_ranges *ranges) : m_ec_id (ec_id), m_ranges (ranges) { } void print (pretty_printer *pp, const constraint_manager &cm) const; json::object *to_json () const; bool operator== (const bounded_ranges_constraint &other) const; bool operator!= (const bounded_ranges_constraint &other) const { return !(*this == other); } void add_to_hash (inchash::hash *hstate) const; equiv_class_id m_ec_id; const bounded_ranges *m_ranges; }; /* A collection of equivalence classes and constraints on them. Given N svalues, this can be thought of as representing a subset of N-dimensional space. When we call add_constraint, we are effectively taking an intersection with that constraint. */ class constraint_manager { public: constraint_manager (region_model_manager *mgr) : m_mgr (mgr) {} constraint_manager (const constraint_manager &other); virtual ~constraint_manager () {} constraint_manager& operator= (const constraint_manager &other); hashval_t hash () const; bool operator== (const constraint_manager &other) const; bool operator!= (const constraint_manager &other) const { return !(*this == other); } void print (pretty_printer *pp) const; void dump_to_pp (pretty_printer *pp, bool multiline) const; void dump (FILE *fp) const; void dump () const; json::object *to_json () const; const equiv_class &get_equiv_class_by_index (unsigned idx) const { return *m_equiv_classes[idx]; } equiv_class &get_equiv_class_by_index (unsigned idx) { return *m_equiv_classes[idx]; } equiv_class &get_equiv_class (const svalue *sval) { equiv_class_id ec_id = get_or_add_equiv_class (sval); return ec_id.get_obj (*this); } bool add_constraint (const svalue *lhs, enum tree_code op, const svalue *rhs); bool add_constraint (equiv_class_id lhs_ec_id, enum tree_code op, equiv_class_id rhs_ec_id); void add_unknown_constraint (equiv_class_id lhs_ec_id, enum tree_code op, equiv_class_id rhs_ec_id); bool add_bounded_ranges (const svalue *sval, const bounded_ranges *ranges); bool get_equiv_class_by_svalue (const svalue *sval, equiv_class_id *out) const; equiv_class_id get_or_add_equiv_class (const svalue *sval); tristate eval_condition (equiv_class_id lhs, enum tree_code op, equiv_class_id rhs) const; tristate eval_condition (equiv_class_id lhs_ec, enum tree_code op, tree rhs_const) const; tristate eval_condition (const svalue *lhs, enum tree_code op, const svalue *rhs) const; range get_ec_bounds (equiv_class_id ec_id) const; /* PurgeCriteria should have: bool should_purge_p (const svalue *sval) const. */ template void purge (const PurgeCriteria &p, purge_stats *stats); void on_liveness_change (const svalue_set &live_svalues, const region_model *model); void purge_state_involving (const svalue *sval); void canonicalize (); static void merge (const constraint_manager &cm_a, const constraint_manager &cm_b, constraint_manager *out); void for_each_fact (fact_visitor *) const; void validate () const; bounded_ranges_manager *get_range_manager () const; auto_delete_vec m_equiv_classes; auto_vec m_constraints; auto_vec m_bounded_ranges_constraints; private: void add_constraint_internal (equiv_class_id lhs_id, enum constraint_op c_op, equiv_class_id rhs_id); region_model_manager *m_mgr; }; } // namespace ana #endif /* GCC_ANALYZER_CONSTRAINT_MANAGER_H */