------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- U I N T P -- -- -- -- S p e c -- -- -- -- Copyright (C) 1992-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ -- Support for universal integer arithmetic -- WARNING: There is a C version of this package. Any changes to this -- source file must be properly reflected in the C header file uintp.h with Alloc; with Table; pragma Elaborate_All (Table); with Types; use Types; package Uintp is ------------------------------------------------- -- Basic Types and Constants for Uintp Package -- ------------------------------------------------- type Uint is private; -- The basic universal integer type No_Uint : constant Uint; -- A constant value indicating a missing or unset Uint value Uint_0 : constant Uint; Uint_1 : constant Uint; Uint_2 : constant Uint; Uint_3 : constant Uint; Uint_4 : constant Uint; Uint_5 : constant Uint; Uint_6 : constant Uint; Uint_7 : constant Uint; Uint_8 : constant Uint; Uint_9 : constant Uint; Uint_10 : constant Uint; Uint_11 : constant Uint; Uint_12 : constant Uint; Uint_13 : constant Uint; Uint_14 : constant Uint; Uint_15 : constant Uint; Uint_16 : constant Uint; Uint_24 : constant Uint; Uint_31 : constant Uint; Uint_32 : constant Uint; Uint_63 : constant Uint; Uint_64 : constant Uint; Uint_80 : constant Uint; Uint_127 : constant Uint; Uint_128 : constant Uint; Uint_256 : constant Uint; Uint_Minus_1 : constant Uint; Uint_Minus_2 : constant Uint; Uint_Minus_3 : constant Uint; Uint_Minus_4 : constant Uint; Uint_Minus_5 : constant Uint; Uint_Minus_6 : constant Uint; Uint_Minus_7 : constant Uint; Uint_Minus_8 : constant Uint; Uint_Minus_9 : constant Uint; Uint_Minus_12 : constant Uint; Uint_Minus_18 : constant Uint; Uint_Minus_31 : constant Uint; Uint_Minus_36 : constant Uint; Uint_Minus_63 : constant Uint; Uint_Minus_76 : constant Uint; Uint_Minus_80 : constant Uint; Uint_Minus_127 : constant Uint; Uint_Minus_128 : constant Uint; -- Functions for detecting No_Uint. Note that clients of this package -- cannot use "=" and "/=" to compare with No_Uint; they must use No -- and Present instead. function No (X : Uint) return Boolean is (X = No_Uint); -- Note that this is using the predefined "=", not the "=" declared below, -- which would blow up on No_Uint. function Present (X : Uint) return Boolean is (not No (X)); subtype Valid_Uint is Uint with Predicate => Present (Valid_Uint); subtype Unat is Valid_Uint with Predicate => Unat >= Uint_0; -- natural subtype Upos is Valid_Uint with Predicate => Upos >= Uint_1; -- positive subtype Nonzero_Uint is Valid_Uint with Predicate => Nonzero_Uint /= Uint_0; subtype Unegative is Valid_Uint with Predicate => Unegative < Uint_0; subtype Ubool is Valid_Uint with Predicate => Ubool = Uint_0 or else Ubool = Uint_1; subtype Opt_Ubool is Uint with Predicate => No (Opt_Ubool) or else Opt_Ubool in Ubool; ----------------- -- Subprograms -- ----------------- procedure Initialize; -- Initialize Uint tables. Note also that there is no lock routine in this -- unit, these are among the few tables that can be expanded during -- gigi processing. function UI_Abs (Right : Valid_Uint) return Unat; pragma Inline (UI_Abs); -- Returns abs function of universal integer function UI_Add (Left : Valid_Uint; Right : Valid_Uint) return Valid_Uint; function UI_Add (Left : Int; Right : Valid_Uint) return Valid_Uint; function UI_Add (Left : Valid_Uint; Right : Int) return Valid_Uint; -- Returns sum of two integer values function UI_Decimal_Digits_Hi (U : Valid_Uint) return Nat; -- Returns an estimate of the number of decimal digits required to -- represent the absolute value of U. This estimate is correct or high, -- i.e. it never returns a value that is too low. The accuracy of the -- estimate affects only the effectiveness of comparison optimizations -- in Urealp. function UI_Decimal_Digits_Lo (U : Valid_Uint) return Nat; -- Returns an estimate of the number of decimal digits required to -- represent the absolute value of U. This estimate is correct or low, -- i.e. it never returns a value that is too high. The accuracy of the -- estimate affects only the effectiveness of comparison optimizations -- in Urealp. function UI_Div (Left : Valid_Uint; Right : Nonzero_Uint) return Valid_Uint; function UI_Div (Left : Int; Right : Nonzero_Uint) return Valid_Uint; function UI_Div (Left : Valid_Uint; Right : Nonzero_Int) return Valid_Uint; -- Returns quotient of two integer values. Fatal error if Right = 0 function UI_Eq (Left : Valid_Uint; Right : Valid_Uint) return Boolean; function UI_Eq (Left : Int; Right : Valid_Uint) return Boolean; function UI_Eq (Left : Valid_Uint; Right : Int) return Boolean; pragma Inline (UI_Eq); -- Compares integer values for equality function UI_Expon (Left : Valid_Uint; Right : Unat) return Valid_Uint; function UI_Expon (Left : Int; Right : Unat) return Valid_Uint; function UI_Expon (Left : Valid_Uint; Right : Nat) return Valid_Uint; function UI_Expon (Left : Int; Right : Nat) return Valid_Uint; -- Returns result of exponentiating two integer values. -- Fatal error if Right is negative. function UI_GCD (Uin, Vin : Valid_Uint) return Valid_Uint; -- Computes GCD of input values. Assumes Uin >= Vin >= 0 function UI_Ge (Left : Valid_Uint; Right : Valid_Uint) return Boolean; function UI_Ge (Left : Int; Right : Valid_Uint) return Boolean; function UI_Ge (Left : Valid_Uint; Right : Int) return Boolean; pragma Inline (UI_Ge); -- Compares integer values for greater than or equal function UI_Gt (Left : Valid_Uint; Right : Valid_Uint) return Boolean; function UI_Gt (Left : Int; Right : Valid_Uint) return Boolean; function UI_Gt (Left : Valid_Uint; Right : Int) return Boolean; pragma Inline (UI_Gt); -- Compares integer values for greater than function UI_Is_In_Int_Range (Input : Valid_Uint) return Boolean; pragma Inline (UI_Is_In_Int_Range); -- Determines if universal integer is in Int range. function UI_Le (Left : Valid_Uint; Right : Valid_Uint) return Boolean; function UI_Le (Left : Int; Right : Valid_Uint) return Boolean; function UI_Le (Left : Valid_Uint; Right : Int) return Boolean; pragma Inline (UI_Le); -- Compares integer values for less than or equal function UI_Lt (Left : Valid_Uint; Right : Valid_Uint) return Boolean; function UI_Lt (Left : Int; Right : Valid_Uint) return Boolean; function UI_Lt (Left : Valid_Uint; Right : Int) return Boolean; -- Compares integer values for less than function UI_Max (Left : Valid_Uint; Right : Valid_Uint) return Valid_Uint; function UI_Max (Left : Int; Right : Valid_Uint) return Valid_Uint; function UI_Max (Left : Valid_Uint; Right : Int) return Valid_Uint; -- Returns maximum of two integer values function UI_Min (Left : Valid_Uint; Right : Valid_Uint) return Valid_Uint; function UI_Min (Left : Int; Right : Valid_Uint) return Valid_Uint; function UI_Min (Left : Valid_Uint; Right : Int) return Valid_Uint; -- Returns minimum of two integer values function UI_Mod (Left : Valid_Uint; Right : Nonzero_Uint) return Valid_Uint; function UI_Mod (Left : Int; Right : Nonzero_Uint) return Valid_Uint; function UI_Mod (Left : Valid_Uint; Right : Nonzero_Int) return Valid_Uint; pragma Inline (UI_Mod); -- Returns mod function of two integer values function UI_Mul (Left : Valid_Uint; Right : Valid_Uint) return Valid_Uint; function UI_Mul (Left : Int; Right : Valid_Uint) return Valid_Uint; function UI_Mul (Left : Valid_Uint; Right : Int) return Valid_Uint; -- Returns product of two integer values function UI_Ne (Left : Valid_Uint; Right : Valid_Uint) return Boolean; function UI_Ne (Left : Int; Right : Valid_Uint) return Boolean; function UI_Ne (Left : Valid_Uint; Right : Int) return Boolean; pragma Inline (UI_Ne); -- Compares integer values for inequality function UI_Negate (Right : Valid_Uint) return Valid_Uint; pragma Inline (UI_Negate); -- Returns negative of universal integer function UI_Rem (Left : Valid_Uint; Right : Nonzero_Uint) return Valid_Uint; function UI_Rem (Left : Int; Right : Nonzero_Uint) return Valid_Uint; function UI_Rem (Left : Valid_Uint; Right : Nonzero_Int) return Valid_Uint; -- Returns rem of two integer values function UI_Sub (Left : Valid_Uint; Right : Valid_Uint) return Valid_Uint; function UI_Sub (Left : Int; Right : Valid_Uint) return Valid_Uint; function UI_Sub (Left : Valid_Uint; Right : Int) return Valid_Uint; pragma Inline (UI_Sub); -- Returns difference of two integer values function UI_From_Int (Input : Int) return Valid_Uint; -- Converts Int value to universal integer form generic type In_T is range <>; function UI_From_Integral (Input : In_T) return Valid_Uint; -- Likewise, but converts from any integer type. Must not be applied to -- biased types (instantiation will provide a warning if actual is a biased -- type). function UI_From_CC (Input : Char_Code) return Valid_Uint; -- Converts Char_Code value to universal integer form function UI_To_Int (Input : Valid_Uint) return Int; -- Converts universal integer value to Int. Constraint_Error if value is -- not in appropriate range. type Unsigned_64 is mod 2**64; function UI_To_Unsigned_64 (Input : Valid_Uint) return Unsigned_64; -- Converts universal integer value to Unsigned_64. Constraint_Error if -- value is not in appropriate range. function UI_To_CC (Input : Valid_Uint) return Char_Code; -- Converts universal integer value to Char_Code. Constraint_Error if value -- is not in Char_Code range. function Num_Bits (Input : Valid_Uint) return Nat; -- Approximate number of binary bits in given universal integer. This -- function is used for capacity checks, and it can be one bit off -- without affecting its usage. function Type_Size_For (Input : Valid_Uint) return Nat; -- Returns the size of an integer type that can accommodate Input --------------------- -- Output Routines -- --------------------- type UI_Format is (Hex, Decimal, Auto); -- Used to determine whether UI_Image/UI_Write output is in hexadecimal -- or decimal format. Auto, the default setting, lets the routine make a -- decision based on the value. UI_Image_Max : constant := 1024; UI_Image_Buffer : String (1 .. UI_Image_Max); UI_Image_Length : Natural; -- Buffer used for UI_Image as described below procedure UI_Image (Input : Uint; Format : UI_Format := Auto); -- Places a representation of Uint, consisting of a possible minus sign, -- followed by the value in UI_Image_Buffer. The form of the value is an -- integer literal in either decimal (no base) or hexadecimal (base 16) -- format. If Hex is True on entry, then hex mode is forced, otherwise -- UI_Image makes a guess at which output format is more convenient. The -- value must fit in UI_Image_Buffer. The actual length of the result is -- returned in UI_Image_Length. If necessary to meet this requirement, the -- result is an approximation of the proper value, using an exponential -- format. The image of No_Uint is output as a single question mark. function UI_Image (Input : Uint; Format : UI_Format := Auto) return String; -- Functional form, in which the result is returned as a string. This call -- also leaves the result in UI_Image_Buffer/Length as described above. procedure UI_Write (Input : Uint; Format : UI_Format := Auto); -- Writes a representation of Uint, consisting of a possible minus sign, -- followed by the value to the output file. The form of the value is an -- integer literal in either decimal (no base) or hexadecimal (base 16) -- format as appropriate. UI_Format shows which format to use. Auto, the -- default, asks UI_Write to make a guess at which output format will be -- more convenient to read. procedure pid (Input : Uint); pragma Export (Ada, pid); -- Writes representation of Uint in decimal with a terminating line -- return. This is intended for use from the debugger. procedure pih (Input : Uint); pragma Export (Ada, pih); -- Writes representation of Uint in hex with a terminating line return. -- This is intended for use from the debugger. ------------------------ -- Operator Renamings -- ------------------------ function "+" (Left : Valid_Uint; Right : Valid_Uint) return Valid_Uint renames UI_Add; function "+" (Left : Int; Right : Valid_Uint) return Valid_Uint renames UI_Add; function "+" (Left : Valid_Uint; Right : Int) return Valid_Uint renames UI_Add; function "/" (Left : Valid_Uint; Right : Nonzero_Uint) return Valid_Uint renames UI_Div; function "/" (Left : Int; Right : Nonzero_Uint) return Valid_Uint renames UI_Div; function "/" (Left : Valid_Uint; Right : Nonzero_Int) return Valid_Uint renames UI_Div; function "*" (Left : Valid_Uint; Right : Valid_Uint) return Valid_Uint renames UI_Mul; function "*" (Left : Int; Right : Valid_Uint) return Valid_Uint renames UI_Mul; function "*" (Left : Valid_Uint; Right : Int) return Valid_Uint renames UI_Mul; function "-" (Left : Valid_Uint; Right : Valid_Uint) return Valid_Uint renames UI_Sub; function "-" (Left : Int; Right : Valid_Uint) return Valid_Uint renames UI_Sub; function "-" (Left : Valid_Uint; Right : Int) return Valid_Uint renames UI_Sub; function "**" (Left : Valid_Uint; Right : Unat) return Valid_Uint renames UI_Expon; function "**" (Left : Valid_Uint; Right : Nat) return Valid_Uint renames UI_Expon; function "**" (Left : Int; Right : Unat) return Valid_Uint renames UI_Expon; function "**" (Left : Int; Right : Nat) return Valid_Uint renames UI_Expon; function "abs" (Real : Valid_Uint) return Unat renames UI_Abs; function "mod" (Left : Valid_Uint; Right : Nonzero_Uint) return Valid_Uint renames UI_Mod; function "mod" (Left : Int; Right : Nonzero_Uint) return Valid_Uint renames UI_Mod; function "mod" (Left : Valid_Uint; Right : Nonzero_Int) return Valid_Uint renames UI_Mod; function "rem" (Left : Valid_Uint; Right : Nonzero_Uint) return Valid_Uint renames UI_Rem; function "rem" (Left : Int; Right : Nonzero_Uint) return Valid_Uint renames UI_Rem; function "rem" (Left : Valid_Uint; Right : Nonzero_Int) return Valid_Uint renames UI_Rem; function "-" (Real : Valid_Uint) return Valid_Uint renames UI_Negate; function "=" (Left : Valid_Uint; Right : Valid_Uint) return Boolean renames UI_Eq; function "=" (Left : Int; Right : Valid_Uint) return Boolean renames UI_Eq; function "=" (Left : Valid_Uint; Right : Int) return Boolean renames UI_Eq; function ">=" (Left : Valid_Uint; Right : Valid_Uint) return Boolean renames UI_Ge; function ">=" (Left : Int; Right : Valid_Uint) return Boolean renames UI_Ge; function ">=" (Left : Valid_Uint; Right : Int) return Boolean renames UI_Ge; function ">" (Left : Valid_Uint; Right : Valid_Uint) return Boolean renames UI_Gt; function ">" (Left : Int; Right : Valid_Uint) return Boolean renames UI_Gt; function ">" (Left : Valid_Uint; Right : Int) return Boolean renames UI_Gt; function "<=" (Left : Valid_Uint; Right : Valid_Uint) return Boolean renames UI_Le; function "<=" (Left : Int; Right : Valid_Uint) return Boolean renames UI_Le; function "<=" (Left : Valid_Uint; Right : Int) return Boolean renames UI_Le; function "<" (Left : Valid_Uint; Right : Valid_Uint) return Boolean renames UI_Lt; function "<" (Left : Int; Right : Valid_Uint) return Boolean renames UI_Lt; function "<" (Left : Valid_Uint; Right : Int) return Boolean renames UI_Lt; ----------------------------- -- Mark/Release Processing -- ----------------------------- -- The space used by Uint data is not automatically reclaimed. However, a -- mark-release regime is implemented which allows storage to be released -- back to a previously noted mark. This is used for example when doing -- comparisons, where only intermediate results get stored that do not -- need to be saved for future use. type Save_Mark is private; function Mark return Save_Mark; -- Note mark point for future release procedure Release (M : Save_Mark); -- Release storage allocated since mark was noted procedure Release_And_Save (M : Save_Mark; UI : in out Valid_Uint); -- Like Release, except that the given Uint value (which is typically among -- the data being released) is recopied after the release, so that it is -- the most recent item, and UI is updated to point to its copied location. procedure Release_And_Save (M : Save_Mark; UI1, UI2 : in out Valid_Uint); -- Like Release, except that the given Uint values (which are typically -- among the data being released) are recopied after the release, so that -- they are the most recent items, and UI1 and UI2 are updated if necessary -- to point to the copied locations. This routine is careful to do things -- in the right order, so that the values do not clobber one another. ----------------------------------- -- Representation of Uint Values -- ----------------------------------- private type Uint is new Int range Uint_Low_Bound .. Uint_High_Bound; for Uint'Size use 32; No_Uint : constant Uint := Uint (Uint_Low_Bound); -- Uint values are represented as multiple precision integers stored in -- a multi-digit format using Base as the base. This value is chosen so -- that the product Base*Base is within the range of allowed Int values. -- Base is defined to allow efficient execution of the primitive operations -- (a0, b0, c0) defined in the section "The Classical Algorithms" -- (sec. 4.3.1) of Donald Knuth's "The Art of Computer Programming", -- Vol. 2. These algorithms are used in this package. In particular, -- the product of two single digits in this base fits in a 32-bit integer. Base_Bits : constant := 15; -- Number of bits in base value Base : constant Int := 2**Base_Bits; -- Values in the range -(Base-1) .. Max_Direct are encoded directly as -- Uint values by adding a bias value. The value of Max_Direct is chosen -- so that a directly represented number always fits in two digits when -- represented in base format. Min_Direct : constant Int := -(Base - 1); Max_Direct : constant Int := (Base - 1) * (Base - 1); -- The following values define the bias used to store Uint values which -- are in this range, as well as the biased values for the first and last -- values in this range. We use a new derived type for these constants to -- avoid accidental use of Uint arithmetic on these values, which is never -- correct. type Ctrl is new Int; Uint_Direct_Bias : constant Ctrl := Ctrl (Uint_Low_Bound) + Ctrl (Base); Uint_Direct_First : constant Ctrl := Uint_Direct_Bias + Ctrl (Min_Direct); Uint_Direct_Last : constant Ctrl := Uint_Direct_Bias + Ctrl (Max_Direct); Uint_0 : constant Uint := Uint (Uint_Direct_Bias + 0); Uint_1 : constant Uint := Uint (Uint_Direct_Bias + 1); Uint_2 : constant Uint := Uint (Uint_Direct_Bias + 2); Uint_3 : constant Uint := Uint (Uint_Direct_Bias + 3); Uint_4 : constant Uint := Uint (Uint_Direct_Bias + 4); Uint_5 : constant Uint := Uint (Uint_Direct_Bias + 5); Uint_6 : constant Uint := Uint (Uint_Direct_Bias + 6); Uint_7 : constant Uint := Uint (Uint_Direct_Bias + 7); Uint_8 : constant Uint := Uint (Uint_Direct_Bias + 8); Uint_9 : constant Uint := Uint (Uint_Direct_Bias + 9); Uint_10 : constant Uint := Uint (Uint_Direct_Bias + 10); Uint_11 : constant Uint := Uint (Uint_Direct_Bias + 11); Uint_12 : constant Uint := Uint (Uint_Direct_Bias + 12); Uint_13 : constant Uint := Uint (Uint_Direct_Bias + 13); Uint_14 : constant Uint := Uint (Uint_Direct_Bias + 14); Uint_15 : constant Uint := Uint (Uint_Direct_Bias + 15); Uint_16 : constant Uint := Uint (Uint_Direct_Bias + 16); Uint_24 : constant Uint := Uint (Uint_Direct_Bias + 24); Uint_31 : constant Uint := Uint (Uint_Direct_Bias + 31); Uint_32 : constant Uint := Uint (Uint_Direct_Bias + 32); Uint_63 : constant Uint := Uint (Uint_Direct_Bias + 63); Uint_64 : constant Uint := Uint (Uint_Direct_Bias + 64); Uint_80 : constant Uint := Uint (Uint_Direct_Bias + 80); Uint_127 : constant Uint := Uint (Uint_Direct_Bias + 127); Uint_128 : constant Uint := Uint (Uint_Direct_Bias + 128); Uint_256 : constant Uint := Uint (Uint_Direct_Bias + 256); Uint_Minus_1 : constant Uint := Uint (Uint_Direct_Bias - 1); Uint_Minus_2 : constant Uint := Uint (Uint_Direct_Bias - 2); Uint_Minus_3 : constant Uint := Uint (Uint_Direct_Bias - 3); Uint_Minus_4 : constant Uint := Uint (Uint_Direct_Bias - 4); Uint_Minus_5 : constant Uint := Uint (Uint_Direct_Bias - 5); Uint_Minus_6 : constant Uint := Uint (Uint_Direct_Bias - 6); Uint_Minus_7 : constant Uint := Uint (Uint_Direct_Bias - 7); Uint_Minus_8 : constant Uint := Uint (Uint_Direct_Bias - 8); Uint_Minus_9 : constant Uint := Uint (Uint_Direct_Bias - 9); Uint_Minus_12 : constant Uint := Uint (Uint_Direct_Bias - 12); Uint_Minus_18 : constant Uint := Uint (Uint_Direct_Bias - 18); Uint_Minus_31 : constant Uint := Uint (Uint_Direct_Bias - 31); Uint_Minus_36 : constant Uint := Uint (Uint_Direct_Bias - 36); Uint_Minus_63 : constant Uint := Uint (Uint_Direct_Bias - 63); Uint_Minus_76 : constant Uint := Uint (Uint_Direct_Bias - 76); Uint_Minus_80 : constant Uint := Uint (Uint_Direct_Bias - 80); Uint_Minus_127 : constant Uint := Uint (Uint_Direct_Bias - 127); Uint_Minus_128 : constant Uint := Uint (Uint_Direct_Bias - 128); Uint_Max_Simple_Mul : constant := Uint_Direct_Bias + 2**15; -- If two values are directly represented and less than or equal to this -- value, then we know the product fits in a 32-bit integer. This allows -- UI_Mul to efficiently compute the product in this case. type Save_Mark is record Save_Uint : Valid_Uint; Save_Udigit : Int; end record; -- Values outside the range that is represented directly are stored using -- two tables. The secondary table Udigits contains sequences of Int values -- consisting of the digits of the number in a radix Base system. The -- digits are stored from most significant to least significant with the -- first digit only carrying the sign. -- There is one entry in the primary Uints table for each distinct Uint -- value. This table entry contains the length (number of digits) and -- a starting offset of the value in the Udigits table. Uint_First_Entry : constant Uint := Uint (Uint_Table_Start); -- Some subprograms defined in this package manipulate the Udigits table -- directly, while for others it is more convenient to work with locally -- defined arrays of the digits of the Universal Integers. The type -- UI_Vector is declared in the package body for this purpose and some -- internal subprograms used for converting from one to the other are -- defined. type Uint_Entry is record Length : aliased Pos; -- Length of entry in Udigits table in digits (i.e. in words) Loc : aliased Int; -- Starting location in Udigits table of this Uint value end record; package Uints is new Table.Table ( Table_Component_Type => Uint_Entry, Table_Index_Type => Uint'Base, Table_Low_Bound => Uint_First_Entry, Table_Initial => Alloc.Uints_Initial, Table_Increment => Alloc.Uints_Increment, Table_Name => "Uints"); package Udigits is new Table.Table ( Table_Component_Type => Int, Table_Index_Type => Int, Table_Low_Bound => 0, Table_Initial => Alloc.Udigits_Initial, Table_Increment => Alloc.Udigits_Increment, Table_Name => "Udigits"); -- Note: the reason these tables are defined here in the private part of -- the spec, rather than in the body, is that they are referenced directly -- by gigi. end Uintp;