------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- S E M _ R E S -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Accessibility; use Accessibility; with Aspects; use Aspects; with Atree; use Atree; with Checks; use Checks; with Debug; use Debug; with Debug_A; use Debug_A; with Einfo; use Einfo; with Einfo.Entities; use Einfo.Entities; with Einfo.Utils; use Einfo.Utils; with Elists; use Elists; with Errout; use Errout; with Expander; use Expander; with Exp_Ch6; use Exp_Ch6; with Exp_Ch7; use Exp_Ch7; with Exp_Disp; use Exp_Disp; with Exp_Tss; use Exp_Tss; with Exp_Util; use Exp_Util; with Freeze; use Freeze; with Ghost; use Ghost; with Inline; use Inline; with Itypes; use Itypes; with Lib; use Lib; with Lib.Xref; use Lib.Xref; with Local_Restrict; with Mutably_Tagged; use Mutably_Tagged; with Namet; use Namet; with Nmake; use Nmake; with Nlists; use Nlists; with Opt; use Opt; with Output; use Output; with Par_SCO; use Par_SCO; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Sem; use Sem; with Sem_Aggr; use Sem_Aggr; with Sem_Attr; use Sem_Attr; with Sem_Aux; use Sem_Aux; with Sem_Case; use Sem_Case; with Sem_Cat; use Sem_Cat; with Sem_Ch3; use Sem_Ch3; with Sem_Ch4; use Sem_Ch4; with Sem_Ch5; use Sem_Ch5; with Sem_Ch6; use Sem_Ch6; with Sem_Ch8; use Sem_Ch8; with Sem_Ch13; use Sem_Ch13; with Sem_Dim; use Sem_Dim; with Sem_Disp; use Sem_Disp; with Sem_Dist; use Sem_Dist; with Sem_Elab; use Sem_Elab; with Sem_Elim; use Sem_Elim; with Sem_Eval; use Sem_Eval; with Sem_Intr; use Sem_Intr; with Sem_Mech; use Sem_Mech; with Sem_Type; use Sem_Type; with Sem_Util; use Sem_Util; with Sem_Warn; use Sem_Warn; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Sinfo.CN; use Sinfo.CN; with Snames; use Snames; with Stand; use Stand; with Stringt; use Stringt; with Strub; use Strub; with Style; use Style; with Targparm; use Targparm; with Tbuild; use Tbuild; with Uintp; use Uintp; with Urealp; use Urealp; with Warnsw; use Warnsw; package body Sem_Res is ----------------------- -- Local Subprograms -- ----------------------- -- Second pass (top-down) type checking and overload resolution procedures -- Typ is the type required by context. These procedures propagate the -- type information recursively to the descendants of N. If the node is not -- overloaded, its Etype is established in the first pass. If overloaded, -- the Resolve routines set the correct type. For arithmetic operators, the -- Etype is the base type of the context. -- Note that Resolve_Attribute is separated off in Sem_Attr function Has_Applicable_User_Defined_Literal (N : Node_Id; Typ : Entity_Id) return Boolean; -- Check whether N is a literal or a named number, and whether Typ has a -- user-defined literal aspect that may apply to N. In this case, replace -- N with a call to the corresponding function and return True. procedure Check_Discriminant_Use (N : Node_Id); -- Enforce the restrictions on the use of discriminants when constraining -- a component of a discriminated type (record or concurrent type). procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id); -- Given a node for an operator associated with type T, check that the -- operator is visible. Operators all of whose operands are universal must -- be checked for visibility during resolution because their type is not -- determinable based on their operands. procedure Check_Fully_Declared_Prefix (Typ : Entity_Id; Pref : Node_Id); -- Check that the type of the prefix of a dereference is not incomplete function Check_Infinite_Recursion (Call : Node_Id) return Boolean; -- Given a call node, Call, which is known to occur immediately within the -- subprogram being called, determines whether it is a detectable case of -- an infinite recursion, and if so, outputs appropriate messages. Returns -- True if an infinite recursion is detected, and False otherwise. procedure Check_No_Direct_Boolean_Operators (N : Node_Id); -- N is the node for a logical operator. If the operator is predefined, and -- the root type of the operands is Standard.Boolean, then a check is made -- for restriction No_Direct_Boolean_Operators. This procedure also handles -- the style check for Style_Check_Boolean_And_Or. function Is_Atomic_Non_VFA_Ref_With_Address (N : Node_Id) return Boolean; -- N is either an indexed component or a selected component. Return true -- if the prefix denotes an Atomic but not Volatile_Full_Access object that -- has an address clause (the case in which we may want to give a warning). function Is_Definite_Access_Type (E : N_Entity_Id) return Boolean; -- Determine whether E is an access type declared by an access declaration, -- and not an (anonymous) allocator type. function Is_Predefined_Op (Nam : Entity_Id) return Boolean; -- Utility to check whether the entity for an operator is a predefined -- operator, in which case the expression is left as an operator in the -- tree (else it is rewritten into a call). An instance of an intrinsic -- conversion operation may be given an operator name, but is not treated -- like an operator. Note that an operator that is an imported back-end -- builtin has convention Intrinsic, but is expected to be rewritten into -- a call, so such an operator is not treated as predefined by this -- predicate. function Original_Implementation_Base_Type (Id : Entity_Id) return Entity_Id; -- Like Implementation_Base_Type, but looks at Original_Node. procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id; With_Freezing : Boolean); -- Subsidiary of public versions of Preanalyze_And_Resolve. procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id); -- If a default expression in entry call N depends on the discriminants -- of the task, it must be replaced with a reference to the discriminant -- of the task being called. procedure Resolve_Dependent_Expression (N : Node_Id; Expr : Node_Id; Typ : Entity_Id); -- Internal procedure to resolve the dependent expression Expr of the -- conditional expression N with type Typ. procedure Resolve_Op_Concat_Arg (N : Node_Id; Arg : Node_Id; Typ : Entity_Id; Is_Comp : Boolean); -- Internal procedure for Resolve_Op_Concat to resolve one operand of -- concatenation operator. The operand is either of the array type or of -- the component type. If the operand is an aggregate, and the component -- type is composite, this is ambiguous if component type has aggregates. procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id); -- Does the first part of the work of Resolve_Op_Concat procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id); -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand -- has been resolved. See Resolve_Op_Concat for details. procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id); procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id); procedure Resolve_Call (N : Node_Id; Typ : Entity_Id); procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id); procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id); procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id); procedure Resolve_Declare_Expression (N : Node_Id; Typ : Entity_Id); procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id); procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id); procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id); procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id); procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id); procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id); procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id); procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id); procedure Resolve_Interpolated_String_Literal (N : Node_Id; Typ : Entity_Id); procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id); procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id); procedure Resolve_Null (N : Node_Id; Typ : Entity_Id); procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id); procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id); procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id); procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id); procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id); procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id); procedure Resolve_Range (N : Node_Id; Typ : Entity_Id); procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id); procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id); procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id); procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id); procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id); procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id); procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id); procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id); procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id); procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id); procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id); procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id); function Operator_Kind (Op_Name : Name_Id; Is_Binary : Boolean) return Node_Kind; -- Utility to map the name of an operator into the corresponding Node. Used -- by other node rewriting procedures. procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id); -- Resolve actuals of call, and add default expressions for missing ones. -- N is the Node_Id for the subprogram call, and Nam is the entity of the -- called subprogram. procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id); -- Called from Resolve_Call, when the prefix denotes an entry or element -- of entry family. Actuals are resolved as for subprograms, and the node -- is rebuilt as an entry call. Also called for protected operations. Typ -- is the context type, which is used when the operation is a protected -- function with no arguments, and the return value is indexed. procedure Resolve_Implicit_Dereference (P : Node_Id); -- Called when P is the prefix of an indexed component, or of a selected -- component, or of a slice. If P is of an access type, we unconditionally -- rewrite it as an explicit dereference. This ensures that the expander -- and the code generator have a fully explicit tree to work with. procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id); -- A call to a user-defined intrinsic operator is rewritten as a call to -- the corresponding predefined operator, with suitable conversions. Note -- that this applies only for intrinsic operators that denote predefined -- operators, not ones that are intrinsic imports of back-end builtins. procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id); -- Ditto, for arithmetic unary operators procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id); -- If an operator node resolves to a call to a user-defined operator, -- rewrite the node as a function call. procedure Make_Call_Into_Operator (N : Node_Id; Typ : Entity_Id; Op_Id : Entity_Id); -- Inverse transformation: if an operator is given in functional notation, -- then after resolving the node, transform into an operator node, so that -- operands are resolved properly. Recall that predefined operators do not -- have a full signature and special resolution rules apply. procedure Rewrite_Renamed_Operator (N : Node_Id; Op : Entity_Id; Typ : Entity_Id); -- An operator can rename another, e.g. in an instantiation. In that -- case, the proper operator node must be constructed and resolved. procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id); -- The String_Literal_Subtype is built for all strings that are not -- operands of a static concatenation operation. If the argument is not -- a N_String_Literal node, then the call has no effect. procedure Set_Slice_Subtype (N : Node_Id); -- Build subtype of array type, with the range specified by the slice procedure Simplify_Type_Conversion (N : Node_Id); -- Called after N has been resolved and evaluated, but before range checks -- have been applied. This rewrites the conversion into a simpler form. function Try_User_Defined_Literal (N : Node_Id; Typ : Entity_Id) return Boolean; -- If the node is a literal or a named number or a conditional expression -- whose dependent expressions are all literals or named numbers, and the -- context type has a user-defined literal aspect, then rewrite the node -- or its leaf nodes as calls to the corresponding function, which plays -- the role of an implicit conversion. function Try_User_Defined_Literal_For_Operator (N : Node_Id; Typ : Entity_Id) return Boolean; -- If an operator node has a literal operand, check whether the type of the -- context, or that of the other operand has a user-defined literal aspect -- that can be applied to the literal to resolve the node. If such aspect -- exists, replace literal with a call to the corresponding function and -- return True, return false otherwise. function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id; -- A universal_fixed expression in an universal context is unambiguous if -- there is only one applicable fixed point type. Determining whether there -- is only one requires a search over all visible entities, and happens -- only in very pathological cases (see 6115-006). ------------------------- -- Ambiguous_Character -- ------------------------- procedure Ambiguous_Character (C : Node_Id) is E : Entity_Id; begin if Nkind (C) = N_Character_Literal then Error_Msg_N ("ambiguous character literal", C); -- First the ones in Standard Error_Msg_N ("\\possible interpretation: Character!", C); Error_Msg_N ("\\possible interpretation: Wide_Character!", C); -- Include Wide_Wide_Character in Ada 2005 mode if Ada_Version >= Ada_2005 then Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C); end if; -- Now any other types that match E := Current_Entity (C); while Present (E) loop Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E)); E := Homonym (E); end loop; end if; end Ambiguous_Character; ------------------------- -- Analyze_And_Resolve -- ------------------------- procedure Analyze_And_Resolve (N : Node_Id) is begin Analyze (N); Resolve (N); end Analyze_And_Resolve; procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is begin Analyze (N); Resolve (N, Typ); end Analyze_And_Resolve; -- Versions with check(s) suppressed procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is Scop : constant Entity_Id := Current_Scope; begin if Suppress = All_Checks then declare Sva : constant Suppress_Array := Scope_Suppress.Suppress; begin Scope_Suppress.Suppress := (others => True); Analyze_And_Resolve (N, Typ); Scope_Suppress.Suppress := Sva; end; else declare Svg : constant Boolean := Scope_Suppress.Suppress (Suppress); begin Scope_Suppress.Suppress (Suppress) := True; Analyze_And_Resolve (N, Typ); Scope_Suppress.Suppress (Suppress) := Svg; end; end if; if Current_Scope /= Scop and then Scope_Is_Transient then -- This can only happen if a transient scope was created for an inner -- expression, which will be removed upon completion of the analysis -- of an enclosing construct. The transient scope must have the -- suppress status of the enclosing environment, not of this Analyze -- call. Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress := Scope_Suppress; end if; end Analyze_And_Resolve; procedure Analyze_And_Resolve (N : Node_Id; Suppress : Check_Id) is Scop : constant Entity_Id := Current_Scope; begin if Suppress = All_Checks then declare Sva : constant Suppress_Array := Scope_Suppress.Suppress; begin Scope_Suppress.Suppress := (others => True); Analyze_And_Resolve (N); Scope_Suppress.Suppress := Sva; end; else declare Svg : constant Boolean := Scope_Suppress.Suppress (Suppress); begin Scope_Suppress.Suppress (Suppress) := True; Analyze_And_Resolve (N); Scope_Suppress.Suppress (Suppress) := Svg; end; end if; if Current_Scope /= Scop and then Scope_Is_Transient then Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress := Scope_Suppress; end if; end Analyze_And_Resolve; ------------------------------------- -- Has_Applicable_User_Defined_Literal -- ------------------------------------- function Has_Applicable_User_Defined_Literal (N : Node_Id; Typ : Entity_Id) return Boolean is Loc : constant Source_Ptr := Sloc (N); Literal_Aspect_Map : constant array (N_Numeric_Or_String_Literal) of Aspect_Id := (N_Integer_Literal => Aspect_Integer_Literal, N_Interpolated_String_Literal => Aspect_String_Literal, N_Real_Literal => Aspect_Real_Literal, N_String_Literal => Aspect_String_Literal); Named_Number_Aspect_Map : constant array (Named_Kind) of Aspect_Id := (E_Named_Integer => Aspect_Integer_Literal, E_Named_Real => Aspect_Real_Literal); Lit_Aspect : Aspect_Id; Callee : Entity_Id; Name : Node_Id; Param1 : Node_Id; Param2 : Node_Id; Params : List_Id; Call : Node_Id; Expr : Node_Id; begin if (Nkind (N) in N_Numeric_Or_String_Literal | N_Interpolated_String_Literal and then Present (Find_Aspect (Typ, Literal_Aspect_Map (Nkind (N))))) or else (Nkind (N) = N_Identifier and then Is_Named_Number (Entity (N)) and then Present (Find_Aspect (Typ, Named_Number_Aspect_Map (Ekind (Entity (N)))))) then Lit_Aspect := (if Nkind (N) = N_Identifier then Named_Number_Aspect_Map (Ekind (Entity (N))) else Literal_Aspect_Map (Nkind (N))); Callee := Entity (Expression (Find_Aspect (Typ, Lit_Aspect))); Name := Make_Identifier (Loc, Chars (Callee)); if Is_Derived_Type (Typ) and then Base_Type (Etype (Callee)) /= Base_Type (Typ) then Callee := Corresponding_Primitive_Op (Ancestor_Op => Callee, Descendant_Type => Base_Type (Typ)); end if; -- Handle an identifier that denotes a named number. if Nkind (N) = N_Identifier then Expr := Expression (Declaration_Node (Entity (N))); if Ekind (Entity (N)) = E_Named_Integer then UI_Image (Expr_Value (Expr), Decimal); Start_String; Store_String_Chars (UI_Image_Buffer (1 .. UI_Image_Length)); Param1 := Make_String_Literal (Loc, End_String); Params := New_List (Param1); else UI_Image (Norm_Num (Expr_Value_R (Expr)), Decimal); Start_String; if UR_Is_Negative (Expr_Value_R (Expr)) then Store_String_Chars ("-"); end if; Store_String_Chars (UI_Image_Buffer (1 .. UI_Image_Length)); Param1 := Make_String_Literal (Loc, End_String); -- Note: Set_Etype is called below on Param1 UI_Image (Norm_Den (Expr_Value_R (Expr)), Decimal); Start_String; Store_String_Chars (UI_Image_Buffer (1 .. UI_Image_Length)); Param2 := Make_String_Literal (Loc, End_String); Set_Etype (Param2, Standard_String); Params := New_List (Param1, Param2); if Present (Related_Expression (Callee)) then Callee := Related_Expression (Callee); else Error_Msg_NE ("cannot resolve & for a named real", N, Callee); return False; end if; end if; elsif Nkind (N) = N_String_Literal then Param1 := Make_String_Literal (Loc, Strval (N)); Params := New_List (Param1); elsif Nkind (N) = N_Interpolated_String_Literal then Param1 := New_Copy_Tree (N); Params := New_List (Param1); else Param1 := Make_String_Literal (Loc, String_From_Numeric_Literal (N)); Params := New_List (Param1); end if; Call := Make_Function_Call (Sloc => Loc, Name => Name, Parameter_Associations => Params); Set_Entity (Name, Callee); Set_Is_Overloaded (Name, False); if Lit_Aspect = Aspect_String_Literal then Set_Etype (Param1, Standard_Wide_Wide_String); else Set_Etype (Param1, Standard_String); end if; Set_Etype (Call, Etype (Callee)); -- Conversion not needed if the result type of the call is class-wide -- or if the result type matches the context type. if not Is_Class_Wide_Type (Typ) and then Base_Type (Etype (Call)) /= Base_Type (Typ) then -- Conversion may be needed in case of an inherited -- aspect of a derived type. For a null extension, we -- use a null extension aggregate instead because the -- downward type conversion would be illegal. if Is_Null_Extension_Of (Descendant => Typ, Ancestor => Etype (Call)) then Call := Make_Extension_Aggregate (Loc, Ancestor_Part => Call, Null_Record_Present => True); else Call := Convert_To (Typ, Call); end if; end if; Rewrite (N, Call); Analyze_And_Resolve (N, Typ); return True; else return False; end if; end Has_Applicable_User_Defined_Literal; ---------------------------- -- Check_Discriminant_Use -- ---------------------------- procedure Check_Discriminant_Use (N : Node_Id) is PN : constant Node_Id := Parent (N); Disc : constant Entity_Id := Entity (N); P : Node_Id; D : Node_Id; begin -- Any use in a spec-expression is legal if In_Spec_Expression then null; elsif Nkind (PN) = N_Range then -- Discriminant cannot be used to constrain a scalar type P := Parent (PN); if Nkind (P) = N_Range_Constraint and then Nkind (Parent (P)) = N_Subtype_Indication and then Nkind (Parent (Parent (P))) = N_Component_Definition then Error_Msg_N ("discriminant cannot constrain scalar type", N); elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then -- The following check catches the unusual case where a -- discriminant appears within an index constraint that is part -- of a larger expression within a constraint on a component, -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only -- check case of record components, and note that a similar check -- should also apply in the case of discriminant constraints -- below. ??? -- Note that the check for N_Subtype_Declaration below is to -- detect the valid use of discriminants in the constraints of a -- subtype declaration when this subtype declaration appears -- inside the scope of a record type (which is syntactically -- illegal, but which may be created as part of derived type -- processing for records). See Sem_Ch3.Build_Derived_Record_Type -- for more info. if Ekind (Current_Scope) = E_Record_Type and then Scope (Disc) = Current_Scope and then not (Nkind (Parent (P)) = N_Subtype_Indication and then Nkind (Parent (Parent (P))) in N_Component_Definition | N_Subtype_Declaration and then Paren_Count (N) = 0) then Error_Msg_N ("discriminant must appear alone in component constraint", N); return; end if; -- Detect a common error: -- type R (D : Positive := 100) is record -- Name : String (1 .. D); -- end record; -- The default value causes an object of type R to be allocated -- with room for Positive'Last characters. The RM does not mandate -- the allocation of the maximum size, but that is what GNAT does -- so we should warn the programmer that there is a problem. Check_Large : declare SI : Node_Id; T : Entity_Id; TB : Node_Id; CB : Entity_Id; function Large_Storage_Type (T : Entity_Id) return Boolean; -- Return True if type T has a large enough range that any -- array whose index type covered the whole range of the type -- would likely raise Storage_Error. ------------------------ -- Large_Storage_Type -- ------------------------ function Large_Storage_Type (T : Entity_Id) return Boolean is begin -- The type is considered large if its bounds are known at -- compile time and if it requires at least as many bits as -- a Positive to store the possible values. return Compile_Time_Known_Value (Type_Low_Bound (T)) and then Compile_Time_Known_Value (Type_High_Bound (T)) and then Minimum_Size (T, Biased => True) >= RM_Size (Standard_Positive); end Large_Storage_Type; -- Start of processing for Check_Large begin -- Check that the Disc has a large range if not Large_Storage_Type (Etype (Disc)) then goto No_Danger; end if; -- If the enclosing type is limited, we allocate only the -- default value, not the maximum, and there is no need for -- a warning. if Is_Limited_Type (Scope (Disc)) then goto No_Danger; end if; -- Check that it is the high bound if N /= High_Bound (PN) or else No (Discriminant_Default_Value (Disc)) then goto No_Danger; end if; -- Check the array allows a large range at this bound. First -- find the array SI := Parent (P); if Nkind (SI) /= N_Subtype_Indication then goto No_Danger; end if; T := Entity (Subtype_Mark (SI)); if not Is_Array_Type (T) then goto No_Danger; end if; -- Next, find the dimension TB := First_Index (T); CB := First (Constraints (P)); while True and then Present (TB) and then Present (CB) and then CB /= PN loop Next_Index (TB); Next (CB); end loop; if CB /= PN then goto No_Danger; end if; -- Now, check the dimension has a large range if not Large_Storage_Type (Etype (TB)) then goto No_Danger; end if; -- Warn about the danger Error_Msg_N ("??creation of & object may raise Storage_Error!", Scope (Disc)); <> null; end Check_Large; end if; -- Legal case is in index or discriminant constraint elsif Nkind (PN) in N_Index_Or_Discriminant_Constraint | N_Discriminant_Association then if Paren_Count (N) > 0 then Error_Msg_N ("discriminant in constraint must appear alone", N); elsif Nkind (N) = N_Expanded_Name and then Comes_From_Source (N) then Error_Msg_N ("discriminant must appear alone as a direct name", N); end if; return; -- Otherwise, context is an expression. It should not be within (i.e. a -- subexpression of) a constraint for a component. else D := PN; P := Parent (PN); while Nkind (P) not in N_Component_Declaration | N_Subtype_Indication | N_Entry_Declaration loop D := P; P := Parent (P); exit when No (P); end loop; -- If the discriminant is used in an expression that is a bound of a -- scalar type, an Itype is created and the bounds are attached to -- its range, not to the original subtype indication. Such use is of -- course a double fault. if (Nkind (P) = N_Subtype_Indication and then Nkind (Parent (P)) in N_Component_Definition | N_Derived_Type_Definition and then D = Constraint (P)) -- The constraint itself may be given by a subtype indication, -- rather than by a more common discrete range. or else (Nkind (P) = N_Subtype_Indication and then Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint) or else Nkind (P) = N_Entry_Declaration or else Nkind (D) = N_Defining_Identifier then Error_Msg_N ("discriminant in constraint must appear alone", N); end if; end if; end Check_Discriminant_Use; -------------------------------- -- Check_For_Visible_Operator -- -------------------------------- procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is begin if Comes_From_Source (N) and then not Is_Visible_Operator (Original_Node (N), T) and then not Error_Posted (N) then Error_Msg_NE -- CODEFIX ("operator for} is not directly visible!", N, First_Subtype (T)); Error_Msg_N -- CODEFIX ("use clause would make operation legal!", N); end if; end Check_For_Visible_Operator; --------------------------------- -- Check_Fully_Declared_Prefix -- --------------------------------- procedure Check_Fully_Declared_Prefix (Typ : Entity_Id; Pref : Node_Id) is begin -- Check that the designated type of the prefix of a dereference is -- not an incomplete type. This cannot be done unconditionally, because -- dereferences of private types are legal in default expressions. This -- case is taken care of in Check_Fully_Declared, called below. There -- are also 2005 cases where it is legal for the prefix to be unfrozen. -- This consideration also applies to similar checks for allocators, -- qualified expressions, and type conversions. -- An additional exception concerns other per-object expressions that -- are not directly related to component declarations, in particular -- representation pragmas for tasks. These will be per-object -- expressions if they depend on discriminants or some global entity. -- If the task has access discriminants, the designated type may be -- incomplete at the point the expression is resolved. This resolution -- takes place within the body of the initialization procedure, where -- the discriminant is replaced by its discriminal. if Is_Entity_Name (Pref) and then Ekind (Entity (Pref)) = E_In_Parameter then null; -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages -- are handled by Analyze_Access_Attribute, Analyze_Assignment, -- Analyze_Object_Renaming, and Freeze_Entity. elsif Ada_Version >= Ada_2005 and then Is_Entity_Name (Pref) and then Is_Access_Type (Etype (Pref)) and then Ekind (Directly_Designated_Type (Etype (Pref))) = E_Incomplete_Type and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref))) then null; else Check_Fully_Declared (Typ, Parent (Pref)); end if; end Check_Fully_Declared_Prefix; ------------------------------ -- Check_Infinite_Recursion -- ------------------------------ function Check_Infinite_Recursion (Call : Node_Id) return Boolean is function Invoked_With_Different_Arguments (N : Node_Id) return Boolean; -- Determine whether call N invokes the related enclosing subprogram -- with actuals that differ from the subprogram's formals. function Is_Conditional_Statement (N : Node_Id) return Boolean; -- Determine whether arbitrary node N denotes a conditional construct function Is_Control_Flow_Statement (N : Node_Id) return Boolean; -- Determine whether arbitrary node N denotes a control flow statement -- or a construct that may contains such a statement. function Is_Immediately_Within_Body (N : Node_Id) return Boolean; -- Determine whether arbitrary node N appears immediately within the -- statements of an entry or subprogram body. function Is_Raise_Idiom (N : Node_Id) return Boolean; -- Determine whether arbitrary node N appears immediately within the -- body of an entry or subprogram, and is preceded by a single raise -- statement. function Is_Raise_Statement (N : Node_Id) return Boolean; -- Determine whether arbitrary node N denotes a raise statement function Is_Sole_Statement (N : Node_Id) return Boolean; -- Determine whether arbitrary node N is the sole source statement in -- the body of the enclosing subprogram. function Preceded_By_Control_Flow_Statement (N : Node_Id) return Boolean; -- Determine whether arbitrary node N is preceded by a control flow -- statement. function Within_Conditional_Statement (N : Node_Id) return Boolean; -- Determine whether arbitrary node N appears within a conditional -- construct. -------------------------------------- -- Invoked_With_Different_Arguments -- -------------------------------------- function Invoked_With_Different_Arguments (N : Node_Id) return Boolean is Subp : constant Entity_Id := Get_Called_Entity (N); Actual : Node_Id; Formal : Entity_Id; begin -- Determine whether the formals of the invoked subprogram are not -- used as actuals in the call. Actual := First_Actual (N); Formal := First_Formal (Subp); while Present (Actual) and then Present (Formal) loop -- The current actual does not match the current formal if not (Is_Entity_Name (Actual) and then Entity (Actual) = Formal) then return True; end if; Next_Actual (Actual); Next_Formal (Formal); end loop; return False; end Invoked_With_Different_Arguments; ------------------------------ -- Is_Conditional_Statement -- ------------------------------ function Is_Conditional_Statement (N : Node_Id) return Boolean is begin return Nkind (N) in N_And_Then | N_Case_Expression | N_Case_Statement | N_If_Expression | N_If_Statement | N_Or_Else; end Is_Conditional_Statement; ------------------------------- -- Is_Control_Flow_Statement -- ------------------------------- function Is_Control_Flow_Statement (N : Node_Id) return Boolean is begin -- It is assumed that all statements may affect the control flow in -- some way. A raise statement may be expanded into a non-statement -- node. return Is_Statement (N) or else Is_Raise_Statement (N); end Is_Control_Flow_Statement; -------------------------------- -- Is_Immediately_Within_Body -- -------------------------------- function Is_Immediately_Within_Body (N : Node_Id) return Boolean is HSS : constant Node_Id := Parent (N); begin return Nkind (HSS) = N_Handled_Sequence_Of_Statements and then Nkind (Parent (HSS)) in N_Entry_Body | N_Subprogram_Body and then Is_List_Member (N) and then List_Containing (N) = Statements (HSS); end Is_Immediately_Within_Body; -------------------- -- Is_Raise_Idiom -- -------------------- function Is_Raise_Idiom (N : Node_Id) return Boolean is Raise_Stmt : Node_Id; Stmt : Node_Id; begin if Is_Immediately_Within_Body (N) then -- Assume that no raise statement has been seen yet Raise_Stmt := Empty; -- Examine the statements preceding the input node, skipping -- internally-generated constructs. Stmt := Prev (N); while Present (Stmt) loop -- Multiple raise statements violate the idiom if Is_Raise_Statement (Stmt) then if Present (Raise_Stmt) then return False; end if; Raise_Stmt := Stmt; elsif Comes_From_Source (Stmt) then exit; end if; Stmt := Prev (Stmt); end loop; -- At this point the node must be preceded by a raise statement, -- and the raise statement has to be the sole statement within -- the enclosing entry or subprogram body. return Present (Raise_Stmt) and then Is_Sole_Statement (Raise_Stmt); end if; return False; end Is_Raise_Idiom; ------------------------ -- Is_Raise_Statement -- ------------------------ function Is_Raise_Statement (N : Node_Id) return Boolean is begin -- A raise statement may be transfomed into a Raise_xxx_Error node return Nkind (N) = N_Raise_Statement or else Nkind (N) in N_Raise_xxx_Error; end Is_Raise_Statement; ----------------------- -- Is_Sole_Statement -- ----------------------- function Is_Sole_Statement (N : Node_Id) return Boolean is Stmt : Node_Id; begin -- The input node appears within the statements of an entry or -- subprogram body. Examine the statements preceding the node. if Is_Immediately_Within_Body (N) then Stmt := Prev (N); while Present (Stmt) loop -- The statement is preceded by another statement or a source -- construct. This indicates that the node does not appear by -- itself. if Is_Control_Flow_Statement (Stmt) or else Comes_From_Source (Stmt) then return False; end if; Stmt := Prev (Stmt); end loop; return True; end if; -- The input node is within a construct nested inside the entry or -- subprogram body. return False; end Is_Sole_Statement; ---------------------------------------- -- Preceded_By_Control_Flow_Statement -- ---------------------------------------- function Preceded_By_Control_Flow_Statement (N : Node_Id) return Boolean is Stmt : Node_Id; begin if Is_List_Member (N) then Stmt := Prev (N); -- Examine the statements preceding the input node while Present (Stmt) loop if Is_Control_Flow_Statement (Stmt) then return True; end if; Stmt := Prev (Stmt); end loop; return False; end if; -- Assume that the node is part of some control flow statement return True; end Preceded_By_Control_Flow_Statement; ---------------------------------- -- Within_Conditional_Statement -- ---------------------------------- function Within_Conditional_Statement (N : Node_Id) return Boolean is Stmt : Node_Id; begin Stmt := Parent (N); while Present (Stmt) loop if Is_Conditional_Statement (Stmt) then return True; -- Prevent the search from going too far elsif Is_Body_Or_Package_Declaration (Stmt) then exit; end if; Stmt := Parent (Stmt); end loop; return False; end Within_Conditional_Statement; -- Local variables Call_Context : constant Node_Id := Enclosing_Declaration_Or_Statement (Call); -- Start of processing for Check_Infinite_Recursion begin -- The call is assumed to be safe when the enclosing subprogram is -- invoked with actuals other than its formals. -- -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is -- begin -- ... -- Proc (A1, A2, ..., AN); -- ... -- end Proc; if Invoked_With_Different_Arguments (Call) then return False; -- The call is assumed to be safe when the invocation of the enclosing -- subprogram depends on a conditional statement. -- -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is -- begin -- ... -- if Some_Condition then -- Proc (F1, F2, ..., FN); -- end if; -- ... -- end Proc; elsif Within_Conditional_Statement (Call) then return False; -- The context of the call is assumed to be safe when the invocation of -- the enclosing subprogram is preceded by some control flow statement. -- -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is -- begin -- ... -- if Some_Condition then -- ... -- end if; -- ... -- Proc (F1, F2, ..., FN); -- ... -- end Proc; elsif Preceded_By_Control_Flow_Statement (Call_Context) then return False; -- Detect an idiom where the context of the call is preceded by a single -- raise statement. -- -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is -- begin -- raise ...; -- Proc (F1, F2, ..., FN); -- end Proc; elsif Is_Raise_Idiom (Call_Context) then return False; end if; -- At this point it is certain that infinite recursion will take place -- as long as the call is executed. Detect a case where the context of -- the call is the sole source statement within the subprogram body. -- -- procedure Proc (F1 : ...; F2 : ...; ...; FN : ...) is -- begin -- Proc (F1, F2, ..., FN); -- end Proc; -- -- Install an explicit raise to prevent the infinite recursion. if Is_Sole_Statement (Call_Context) then Error_Msg_Warn := SPARK_Mode /= On; Error_Msg_N ("!infinite recursion<<", Call); Error_Msg_N ("\!Storage_Error [<<", Call); Insert_Action (Call, Make_Raise_Storage_Error (Sloc (Call), Reason => SE_Infinite_Recursion)); -- Otherwise infinite recursion could take place, considering other flow -- control constructs such as gotos, exit statements, etc. else Error_Msg_Warn := SPARK_Mode /= On; Error_Msg_N ("!possible infinite recursion<<", Call); Error_Msg_N ("\!??Storage_Error ]<<", Call); end if; return True; end Check_Infinite_Recursion; --------------------------------------- -- Check_No_Direct_Boolean_Operators -- --------------------------------------- procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is begin if Scope (Entity (N)) = Standard_Standard and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean then -- Restriction only applies to original source code if Comes_From_Source (N) then Check_Restriction (No_Direct_Boolean_Operators, N); end if; end if; -- Do style check (but skip if in instance, error is on template) if Style_Check then if not In_Instance then Check_Boolean_Operator (N); end if; end if; end Check_No_Direct_Boolean_Operators; ------------------------------ -- Check_Parameterless_Call -- ------------------------------ procedure Check_Parameterless_Call (N : Node_Id) is Nam : Node_Id; function Prefix_Is_Access_Subp return Boolean; -- If the prefix is of an access_to_subprogram type, the node must be -- rewritten as a call. Ditto if the prefix is overloaded and all its -- interpretations are access to subprograms. --------------------------- -- Prefix_Is_Access_Subp -- --------------------------- function Prefix_Is_Access_Subp return Boolean is I : Interp_Index; It : Interp; begin -- If the context is an attribute reference that can apply to -- functions, this is never a parameterless call (RM 4.1.4(6)). if Nkind (Parent (N)) = N_Attribute_Reference and then Attribute_Name (Parent (N)) in Name_Address | Name_Code_Address | Name_Access then return False; end if; if not Is_Overloaded (N) then return Ekind (Etype (N)) = E_Subprogram_Type and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type; else Get_First_Interp (N, I, It); while Present (It.Typ) loop if Ekind (It.Typ) /= E_Subprogram_Type or else Base_Type (Etype (It.Typ)) = Standard_Void_Type then return False; end if; Get_Next_Interp (I, It); end loop; return True; end if; end Prefix_Is_Access_Subp; -- Start of processing for Check_Parameterless_Call begin -- Defend against junk stuff if errors already detected if Total_Errors_Detected /= 0 then if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then return; elsif Nkind (N) in N_Has_Chars and then not Is_Valid_Name (Chars (N)) then return; end if; Require_Entity (N); end if; -- If the context expects a value, and the name is a procedure, this is -- most likely a missing 'Access. Don't try to resolve the parameterless -- call, error will be caught when the outer call is analyzed. if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Procedure and then not Is_Overloaded (N) and then Nkind (Parent (N)) in N_Parameter_Association | N_Function_Call | N_Procedure_Call_Statement then return; end if; -- Rewrite as call if overloadable entity that is (or could be, in the -- overloaded case) a function call. If we know for sure that the entity -- is an enumeration literal, we do not rewrite it. -- If the entity is the name of an operator, it cannot be a call because -- operators cannot have default parameters. In this case, this must be -- a string whose contents coincide with an operator name. Set the kind -- of the node appropriately. if (Is_Entity_Name (N) and then Nkind (N) /= N_Operator_Symbol and then Is_Overloadable (Entity (N)) and then (Ekind (Entity (N)) /= E_Enumeration_Literal or else Is_Overloaded (N))) -- Rewrite as call if it is an explicit dereference of an expression of -- a subprogram access type, and the subprogram type is not that of a -- procedure or entry. or else (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp) -- Rewrite as call if it is a selected component which is a function, -- this is the case of a call to a protected function (which may be -- overloaded with other protected operations). or else (Nkind (N) = N_Selected_Component and then (Ekind (Entity (Selector_Name (N))) = E_Function or else (Ekind (Entity (Selector_Name (N))) in E_Entry | E_Procedure and then Is_Overloaded (Selector_Name (N))))) -- If one of the above three conditions is met, rewrite as call. Apply -- the rewriting only once. then if Nkind (Parent (N)) /= N_Function_Call or else N /= Name (Parent (N)) then -- This may be a prefixed call that was not fully analyzed, e.g. -- an actual in an instance. if Ada_Version >= Ada_2005 and then Nkind (N) = N_Selected_Component and then Is_Dispatching_Operation (Entity (Selector_Name (N))) then Analyze_Selected_Component (N); if Nkind (N) /= N_Selected_Component then return; end if; end if; -- The node is the name of the parameterless call. Preserve its -- descendants, which may be complex expressions. Nam := Relocate_Node (N); -- If overloaded, overload set belongs to new copy Save_Interps (N, Nam); -- Change node to parameterless function call (note that the -- Parameter_Associations associations field is left set to Empty, -- its normal default value since there are no parameters) Change_Node (N, N_Function_Call); Set_Name (N, Nam); Set_Sloc (N, Sloc (Nam)); Analyze_Call (N); end if; elsif Nkind (N) = N_Parameter_Association then Check_Parameterless_Call (Explicit_Actual_Parameter (N)); elsif Nkind (N) = N_Operator_Symbol then Set_Etype (N, Empty); Set_Entity (N, Empty); Set_Is_Overloaded (N, False); Change_Operator_Symbol_To_String_Literal (N); Set_Etype (N, Any_String); end if; end Check_Parameterless_Call; ---------------------------------------- -- Is_Atomic_Non_VFA_Ref_With_Address -- ---------------------------------------- function Is_Atomic_Non_VFA_Ref_With_Address (N : Node_Id) return Boolean is Pref : constant Node_Id := Prefix (N); function Is_Atomic_Non_VFA (E : Entity_Id) return Boolean; -- Return true if E is Atomic but not Volatile_Full_Access ----------------------- -- Is_Atomic_Non_VFA -- ----------------------- function Is_Atomic_Non_VFA (E : Entity_Id) return Boolean is begin return Is_Atomic (E) and then not Is_Volatile_Full_Access (E); end Is_Atomic_Non_VFA; begin if Is_Entity_Name (Pref) then declare Pent : constant Entity_Id := Entity (Pref); Ptyp : constant Entity_Id := Etype (Pent); begin return not Is_Access_Type (Ptyp) and then (Is_Atomic_Non_VFA (Ptyp) or else Is_Atomic_Non_VFA (Pent)) and then Present (Address_Clause (Pent)); end; else return False; end if; end Is_Atomic_Non_VFA_Ref_With_Address; ----------------------------- -- Is_Definite_Access_Type -- ----------------------------- function Is_Definite_Access_Type (E : N_Entity_Id) return Boolean is Btyp : constant Entity_Id := Base_Type (E); begin return Ekind (Btyp) = E_Access_Type or else (Ekind (Btyp) = E_Access_Subprogram_Type and then Comes_From_Source (Btyp)); end Is_Definite_Access_Type; ---------------------- -- Is_Predefined_Op -- ---------------------- function Is_Predefined_Op (Nam : Entity_Id) return Boolean is begin -- Predefined operators are intrinsic subprograms if not Is_Intrinsic_Subprogram (Nam) then return False; end if; -- A call to a back-end builtin is never a predefined operator if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then return False; end if; return not Is_Generic_Instance (Nam) and then Chars (Nam) in Any_Operator_Name and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam))); end Is_Predefined_Op; ----------------------------- -- Make_Call_Into_Operator -- ----------------------------- procedure Make_Call_Into_Operator (N : Node_Id; Typ : Entity_Id; Op_Id : Entity_Id) is Op_Name : constant Name_Id := Chars (Op_Id); Act1 : Node_Id := First_Actual (N); Act2 : Node_Id := Next_Actual (Act1); Error : Boolean := False; Func : constant Entity_Id := Entity (Name (N)); Is_Binary : constant Boolean := Present (Act2); Op_Node : Node_Id; Opnd_Type : Entity_Id := Empty; Orig_Type : Entity_Id := Empty; Pack : Entity_Id; type Kind_Test is access function (E : N_Entity_Id) return Boolean; function Operand_Type_In_Scope (S : Entity_Id) return Boolean; -- If the operand is not universal, and the operator is given by an -- expanded name, verify that the operand has an interpretation with a -- type defined in the given scope of the operator. function Type_In_P (Test : Kind_Test) return Entity_Id; -- Find a type of the given class in package Pack that contains the -- operator. --------------------------- -- Operand_Type_In_Scope -- --------------------------- function Operand_Type_In_Scope (S : Entity_Id) return Boolean is Nod : constant Node_Id := Right_Opnd (Op_Node); I : Interp_Index; It : Interp; begin if not Is_Overloaded (Nod) then return Scope (Base_Type (Etype (Nod))) = S; else Get_First_Interp (Nod, I, It); while Present (It.Typ) loop if Scope (Base_Type (It.Typ)) = S then return True; end if; Get_Next_Interp (I, It); end loop; return False; end if; end Operand_Type_In_Scope; --------------- -- Type_In_P -- --------------- function Type_In_P (Test : Kind_Test) return Entity_Id is E : Entity_Id; function In_Decl return Boolean; -- Verify that node is not part of the type declaration for the -- candidate type, which would otherwise be invisible. ------------- -- In_Decl -- ------------- function In_Decl return Boolean is Decl_Node : constant Node_Id := Parent (E); N2 : Node_Id; begin N2 := N; if Etype (E) = Any_Type then return True; elsif No (Decl_Node) then return False; else while Present (N2) and then Nkind (N2) /= N_Compilation_Unit loop if N2 = Decl_Node then return True; else N2 := Parent (N2); end if; end loop; return False; end if; end In_Decl; -- Start of processing for Type_In_P begin -- If the context type is declared in the prefix package, this is the -- desired base type. if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then return Base_Type (Typ); else E := First_Entity (Pack); while Present (E) loop if Test (E) and then not In_Decl then return E; end if; Next_Entity (E); end loop; return Empty; end if; end Type_In_P; -- Start of processing for Make_Call_Into_Operator begin Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N)); -- Preserve the Comes_From_Source flag on the result if the original -- call came from source. Although it is not strictly the case that the -- operator as such comes from the source, logically it corresponds -- exactly to the function call in the source, so it should be marked -- this way (e.g. to make sure that validity checks work fine). Preserve_Comes_From_Source (Op_Node, N); -- Ensure that the corresponding operator has the same parent as the -- original call. This guarantees that parent traversals performed by -- the ABE mechanism succeed. Set_Parent (Op_Node, Parent (N)); -- Binary operator if Is_Binary then Set_Left_Opnd (Op_Node, Relocate_Node (Act1)); Set_Right_Opnd (Op_Node, Relocate_Node (Act2)); Save_Interps (Act1, Left_Opnd (Op_Node)); Save_Interps (Act2, Right_Opnd (Op_Node)); Act1 := Left_Opnd (Op_Node); Act2 := Right_Opnd (Op_Node); -- Unary operator else Set_Right_Opnd (Op_Node, Relocate_Node (Act1)); Save_Interps (Act1, Right_Opnd (Op_Node)); Act1 := Right_Opnd (Op_Node); end if; -- If the operator is denoted by an expanded name, and the prefix is -- not Standard, but the operator is a predefined one whose scope is -- Standard, then this is an implicit_operator, inserted as an -- interpretation by the procedure of the same name. This procedure -- overestimates the presence of implicit operators, because it does -- not examine the type of the operands. Verify now that the operand -- type appears in the given scope. If right operand is universal, -- check the other operand. In the case of concatenation, either -- argument can be the component type, so check the type of the result. -- If both arguments are literals, look for a type of the right kind -- defined in the given scope. This elaborate nonsense is brought to -- you courtesy of b33302a. The type itself must be frozen, so we must -- find the type of the proper class in the given scope. -- A final wrinkle is the multiplication operator for fixed point types, -- which is defined in Standard only, and not in the scope of the -- fixed point type itself. if Nkind (Name (N)) = N_Expanded_Name then Pack := Entity (Prefix (Name (N))); -- If this is a package renaming, get renamed entity, which will be -- the scope of the operands if operaton is type-correct. if Present (Renamed_Entity (Pack)) then Pack := Renamed_Entity (Pack); end if; -- If the entity being called is defined in the given package, it is -- a renaming of a predefined operator, and known to be legal. if Scope (Entity (Name (N))) = Pack and then Pack /= Standard_Standard then null; -- Visibility does not need to be checked in an instance: if the -- operator was not visible in the generic it has been diagnosed -- already, else there is an implicit copy of it in the instance. elsif In_Instance then null; elsif Op_Name in Name_Op_Multiply | Name_Op_Divide and then Is_Fixed_Point_Type (Etype (Act1)) and then Is_Fixed_Point_Type (Etype (Act2)) then if Pack /= Standard_Standard then Error := True; end if; -- Ada 2005 AI-420: Predefined equality on Universal_Access is -- available. elsif Ada_Version >= Ada_2005 and then Op_Name in Name_Op_Eq | Name_Op_Ne and then (Is_Anonymous_Access_Type (Etype (Act1)) or else Is_Anonymous_Access_Type (Etype (Act2))) then null; else Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node))); if Op_Name = Name_Op_Concat then Opnd_Type := Base_Type (Typ); elsif (Scope (Opnd_Type) = Standard_Standard and then Is_Binary) or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference and then Is_Binary and then not Comes_From_Source (Opnd_Type)) then Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node))); end if; if Scope (Opnd_Type) = Standard_Standard then -- Verify that the scope contains a type that corresponds to -- the given literal. Optimize the case where Pack is Standard. if Pack /= Standard_Standard then if Opnd_Type = Universal_Integer then Orig_Type := Type_In_P (Is_Integer_Type'Access); elsif Opnd_Type = Universal_Real then Orig_Type := Type_In_P (Is_Real_Type'Access); elsif Opnd_Type = Universal_Access then Orig_Type := Type_In_P (Is_Definite_Access_Type'Access); elsif Opnd_Type = Any_String then Orig_Type := Type_In_P (Is_String_Type'Access); elsif Opnd_Type = Any_Composite then Orig_Type := Type_In_P (Is_Composite_Type'Access); if Present (Orig_Type) then if Has_Private_Component (Orig_Type) then Orig_Type := Empty; else Set_Etype (Act1, Orig_Type); if Is_Binary then Set_Etype (Act2, Orig_Type); end if; end if; end if; else Orig_Type := Empty; end if; Error := No (Orig_Type); end if; elsif Ekind (Opnd_Type) = E_Allocator_Type and then No (Type_In_P (Is_Definite_Access_Type'Access)) then Error := True; -- If the type is defined elsewhere, and the operator is not -- defined in the given scope (by a renaming declaration, e.g.) -- then this is an error as well. If an extension of System is -- present, and the type may be defined there, Pack must be -- System itself. elsif Scope (Opnd_Type) /= Pack and then Scope (Op_Id) /= Pack and then (No (System_Aux_Id) or else Scope (Opnd_Type) /= System_Aux_Id or else Pack /= Scope (System_Aux_Id)) then if not Is_Overloaded (Right_Opnd (Op_Node)) then Error := True; else Error := not Operand_Type_In_Scope (Pack); end if; elsif Pack = Standard_Standard and then not Operand_Type_In_Scope (Standard_Standard) then Error := True; end if; end if; if Error then Error_Msg_Node_2 := Pack; Error_Msg_NE ("& not declared in&", N, Selector_Name (Name (N))); Set_Etype (N, Any_Type); return; -- Detect a mismatch between the context type and the result type -- in the named package, which is otherwise not detected if the -- operands are universal. Check is only needed if source entity is -- an operator, not a function that renames an operator. elsif Nkind (Parent (N)) /= N_Type_Conversion and then Ekind (Entity (Name (N))) = E_Operator and then Is_Numeric_Type (Typ) and then not Is_Universal_Numeric_Type (Typ) and then Scope (Base_Type (Typ)) /= Pack and then not In_Instance then if Is_Fixed_Point_Type (Typ) and then Op_Name in Name_Op_Multiply | Name_Op_Divide then -- Already checked above null; -- Operator may be defined in an extension of System elsif Present (System_Aux_Id) and then Present (Opnd_Type) and then Scope (Opnd_Type) = System_Aux_Id then null; else -- Could we use Wrong_Type here??? (this would require setting -- Etype (N) to the actual type found where Typ was expected). Error_Msg_NE ("expect }", N, Typ); end if; end if; end if; Set_Chars (Op_Node, Op_Name); if not Is_Private_Type (Etype (N)) then Set_Etype (Op_Node, Base_Type (Etype (N))); else Set_Etype (Op_Node, Etype (N)); end if; -- If this is a call to a function that renames a predefined equality, -- the renaming declaration provides a type that must be used to -- resolve the operands. This must be done now because resolution of -- the equality node will not resolve any remaining ambiguity, and it -- assumes that the first operand is not overloaded. if Op_Name in Name_Op_Eq | Name_Op_Ne and then Ekind (Func) = E_Function and then Is_Overloaded (Act1) then Resolve (Act1, Base_Type (Etype (First_Formal (Func)))); Resolve (Act2, Base_Type (Etype (First_Formal (Func)))); end if; Set_Entity (Op_Node, Op_Id); Generate_Reference (Op_Id, N, ' '); Rewrite (N, Op_Node); -- If this is an arithmetic operator and the result type is private, -- the operands and the result must be wrapped in conversion to -- expose the underlying numeric type and expand the proper checks, -- e.g. on division. if Is_Private_Type (Typ) then case Nkind (N) is when N_Op_Add | N_Op_Divide | N_Op_Expon | N_Op_Mod | N_Op_Multiply | N_Op_Rem | N_Op_Subtract => Resolve_Intrinsic_Operator (N, Typ); when N_Op_Abs | N_Op_Minus | N_Op_Plus => Resolve_Intrinsic_Unary_Operator (N, Typ); when others => Resolve (N, Typ); end case; else Resolve (N, Typ); end if; end Make_Call_Into_Operator; ------------------- -- Operator_Kind -- ------------------- function Operator_Kind (Op_Name : Name_Id; Is_Binary : Boolean) return Node_Kind is Kind : Node_Kind; begin -- Use CASE statement or array??? if Is_Binary then if Op_Name = Name_Op_And then Kind := N_Op_And; elsif Op_Name = Name_Op_Or then Kind := N_Op_Or; elsif Op_Name = Name_Op_Xor then Kind := N_Op_Xor; elsif Op_Name = Name_Op_Eq then Kind := N_Op_Eq; elsif Op_Name = Name_Op_Ne then Kind := N_Op_Ne; elsif Op_Name = Name_Op_Lt then Kind := N_Op_Lt; elsif Op_Name = Name_Op_Le then Kind := N_Op_Le; elsif Op_Name = Name_Op_Gt then Kind := N_Op_Gt; elsif Op_Name = Name_Op_Ge then Kind := N_Op_Ge; elsif Op_Name = Name_Op_Add then Kind := N_Op_Add; elsif Op_Name = Name_Op_Subtract then Kind := N_Op_Subtract; elsif Op_Name = Name_Op_Concat then Kind := N_Op_Concat; elsif Op_Name = Name_Op_Multiply then Kind := N_Op_Multiply; elsif Op_Name = Name_Op_Divide then Kind := N_Op_Divide; elsif Op_Name = Name_Op_Mod then Kind := N_Op_Mod; elsif Op_Name = Name_Op_Rem then Kind := N_Op_Rem; elsif Op_Name = Name_Op_Expon then Kind := N_Op_Expon; else raise Program_Error; end if; -- Unary operators else if Op_Name = Name_Op_Add then Kind := N_Op_Plus; elsif Op_Name = Name_Op_Subtract then Kind := N_Op_Minus; elsif Op_Name = Name_Op_Abs then Kind := N_Op_Abs; elsif Op_Name = Name_Op_Not then Kind := N_Op_Not; else raise Program_Error; end if; end if; return Kind; end Operator_Kind; --------------------------------------- -- Original_Implementation_Base_Type -- --------------------------------------- function Original_Implementation_Base_Type (Id : Entity_Id) return Entity_Id is IBT : constant Entity_Id := Implementation_Base_Type (Id); IBT_Decl : constant Node_Id := Parent (IBT); Parent_Id : Node_Id; begin if Nkind (IBT_Decl) = N_Full_Type_Declaration and then Original_Node (IBT_Decl) /= IBT_Decl and then Nkind (Original_Node (IBT_Decl)) = N_Full_Type_Declaration and then Nkind (Type_Definition (Original_Node (IBT_Decl))) = N_Derived_Type_Definition then Parent_Id := Subtype_Indication (Type_Definition (Original_Node (IBT_Decl))); if Nkind (Parent_Id) = N_Subtype_Indication then Parent_Id := Subtype_Mark (Parent_Id); end if; return Original_Implementation_Base_Type (Etype (Parent_Id)); else return IBT; end if; end Original_Implementation_Base_Type; ---------------------------- -- Preanalyze_And_Resolve -- ---------------------------- procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id; With_Freezing : Boolean) is Save_Full_Analysis : constant Boolean := Full_Analysis; Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N); Save_Preanalysis_Count : constant Nat := Inside_Preanalysis_Without_Freezing; begin pragma Assert (Nkind (N) in N_Subexpr); if not With_Freezing then Set_Must_Not_Freeze (N); Inside_Preanalysis_Without_Freezing := Inside_Preanalysis_Without_Freezing + 1; end if; Full_Analysis := False; Expander_Mode_Save_And_Set (False); -- See also Preanalyze_And_Resolve in sem.adb for similar handling -- Normally, we suppress all checks for this preanalysis. There is no -- point in processing them now, since they will be applied properly -- and in the proper location when the default expressions reanalyzed -- and reexpanded later on. We will also have more information at that -- point for possible suppression of individual checks. -- However, in GNATprove mode, most expansion is suppressed, and this -- later reanalysis and reexpansion may not occur. GNATprove mode does -- require the setting of checking flags for proof purposes, so we -- do the GNATprove preanalysis without suppressing checks. -- This special handling for SPARK mode is required for example in the -- case of Ada 2012 constructs such as quantified expressions, which are -- expanded in two separate steps. -- We also do not want to suppress checks if we are not dealing -- with a default expression. One such case that is known to reach -- this point is the expression of an expression function. if GNATprove_Mode or Nkind (Parent (N)) = N_Simple_Return_Statement then Analyze_And_Resolve (N, T); else Analyze_And_Resolve (N, T, Suppress => All_Checks); end if; Expander_Mode_Restore; Full_Analysis := Save_Full_Analysis; if not With_Freezing then Set_Must_Not_Freeze (N, Save_Must_Not_Freeze); Inside_Preanalysis_Without_Freezing := Inside_Preanalysis_Without_Freezing - 1; end if; pragma Assert (Inside_Preanalysis_Without_Freezing = Save_Preanalysis_Count); end Preanalyze_And_Resolve; ---------------------------- -- Preanalyze_And_Resolve -- ---------------------------- procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is begin Preanalyze_And_Resolve (N, T, With_Freezing => False); end Preanalyze_And_Resolve; -- Version without context type procedure Preanalyze_And_Resolve (N : Node_Id) is Save_Full_Analysis : constant Boolean := Full_Analysis; begin Full_Analysis := False; Expander_Mode_Save_And_Set (False); Analyze (N); Resolve (N, Etype (N), Suppress => All_Checks); Expander_Mode_Restore; Full_Analysis := Save_Full_Analysis; end Preanalyze_And_Resolve; ------------------------------------------ -- Preanalyze_With_Freezing_And_Resolve -- ------------------------------------------ procedure Preanalyze_With_Freezing_And_Resolve (N : Node_Id; T : Entity_Id) is begin Preanalyze_And_Resolve (N, T, With_Freezing => True); end Preanalyze_With_Freezing_And_Resolve; ---------------------------------- -- Replace_Actual_Discriminants -- ---------------------------------- procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Tsk : Node_Id := Empty; function Process_Discr (Nod : Node_Id) return Traverse_Result; -- Comment needed??? ------------------- -- Process_Discr -- ------------------- function Process_Discr (Nod : Node_Id) return Traverse_Result is Ent : Entity_Id; begin if Nkind (Nod) = N_Identifier then Ent := Entity (Nod); if Present (Ent) and then Ekind (Ent) = E_Discriminant then Rewrite (Nod, Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc), Selector_Name => Make_Identifier (Loc, Chars (Ent)))); Set_Etype (Nod, Etype (Ent)); end if; end if; return OK; end Process_Discr; procedure Replace_Discrs is new Traverse_Proc (Process_Discr); -- Start of processing for Replace_Actual_Discriminants begin if Expander_Active then null; -- Allow the replacement of concurrent discriminants in GNATprove even -- though this is a light expansion activity. Note that generic units -- are not modified. elsif GNATprove_Mode and not Inside_A_Generic then null; else return; end if; if Nkind (Name (N)) = N_Selected_Component then Tsk := Prefix (Name (N)); elsif Nkind (Name (N)) = N_Indexed_Component then Tsk := Prefix (Prefix (Name (N))); end if; if Present (Tsk) then Replace_Discrs (Default); end if; end Replace_Actual_Discriminants; ------------- -- Resolve -- ------------- procedure Resolve (N : Node_Id; Typ : Entity_Id) is Ambiguous : Boolean := False; Ctx_Type : Entity_Id := Typ; Expr_Type : Entity_Id := Empty; -- prevent junk warning Err_Type : Entity_Id := Empty; Found : Boolean := False; From_Lib : Boolean; I : Interp_Index; I1 : Interp_Index := 0; -- prevent junk warning It : Interp; It1 : Interp; Seen : Entity_Id := Empty; -- prevent junk warning function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean; -- Determine whether a node comes from a predefined library unit or -- Standard. procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id); -- Try and fix up a literal so that it matches its expected type. New -- literals are manufactured if necessary to avoid cascaded errors. procedure Report_Ambiguous_Argument; -- Additional diagnostics when an ambiguous call has an ambiguous -- argument (typically a controlling actual). procedure Resolution_Failed; -- Called when attempt at resolving current expression fails ------------------------------------ -- Comes_From_Predefined_Lib_Unit -- ------------------------------------- function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is begin return Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod); end Comes_From_Predefined_Lib_Unit; -------------------- -- Patch_Up_Value -- -------------------- procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is begin if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then Rewrite (N, Make_Real_Literal (Sloc (N), Realval => UR_From_Uint (Intval (N)))); Set_Etype (N, Universal_Real); Set_Is_Static_Expression (N); elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then Rewrite (N, Make_Integer_Literal (Sloc (N), Intval => UR_To_Uint (Realval (N)))); Set_Etype (N, Universal_Integer); Set_Is_Static_Expression (N); elsif Nkind (N) = N_String_Literal and then Is_Character_Type (Typ) then Set_Character_Literal_Name (Get_Char_Code ('A')); Rewrite (N, Make_Character_Literal (Sloc (N), Chars => Name_Find, Char_Literal_Value => UI_From_CC (Get_Char_Code ('A')))); Set_Etype (N, Any_Character); Set_Is_Static_Expression (N); elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then Rewrite (N, Make_String_Literal (Sloc (N), Strval => End_String)); elsif Nkind (N) = N_Range then Patch_Up_Value (Low_Bound (N), Typ); Patch_Up_Value (High_Bound (N), Typ); end if; end Patch_Up_Value; ------------------------------- -- Report_Ambiguous_Argument -- ------------------------------- procedure Report_Ambiguous_Argument is Arg : constant Node_Id := First (Parameter_Associations (N)); I : Interp_Index; It : Interp; begin if Nkind (Arg) = N_Function_Call and then Is_Entity_Name (Name (Arg)) and then Is_Overloaded (Name (Arg)) then Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg)); -- Examine possible interpretations, and adapt the message -- for inherited subprograms declared by a type derivation. Get_First_Interp (Name (Arg), I, It); while Present (It.Nam) loop Error_Msg_Sloc := Sloc (It.Nam); if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then Error_Msg_N ("interpretation (inherited) #!", Arg); else Error_Msg_N ("interpretation #!", Arg); end if; Get_Next_Interp (I, It); end loop; end if; -- Additional message and hint if the ambiguity involves an Ada 2022 -- container aggregate. Check_Ambiguous_Aggregate (N); end Report_Ambiguous_Argument; ----------------------- -- Resolution_Failed -- ----------------------- procedure Resolution_Failed is begin Patch_Up_Value (N, Typ); -- Set the type to the desired one to minimize cascaded errors. Note -- that this is an approximation and does not work in all cases. Set_Etype (N, Typ); Debug_A_Exit ("resolving ", N, " (done, resolution failed)"); Set_Is_Overloaded (N, False); -- The caller will return without calling the expander, so we need -- to set the analyzed flag. Note that it is fine to set Analyzed -- to True even if we are in the middle of a shallow analysis, -- (see the spec of sem for more details) since this is an error -- situation anyway, and there is no point in repeating the -- analysis later (indeed it won't work to repeat it later, since -- we haven't got a clear resolution of which entity is being -- referenced.) Set_Analyzed (N, True); return; end Resolution_Failed; -- Start of processing for Resolve begin if N = Error then return; end if; -- Access attribute on remote subprogram cannot be used for a non-remote -- access-to-subprogram type. if Nkind (N) = N_Attribute_Reference and then Attribute_Name (N) in Name_Access | Name_Unrestricted_Access | Name_Unchecked_Access and then Comes_From_Source (N) and then Is_Entity_Name (Prefix (N)) and then Is_Subprogram (Entity (Prefix (N))) and then Is_Remote_Call_Interface (Entity (Prefix (N))) and then not Is_Remote_Access_To_Subprogram_Type (Typ) then Error_Msg_N ("prefix must statically denote a non-remote subprogram", N); end if; -- If the context is a Remote_Access_To_Subprogram, access attributes -- must be resolved with the corresponding fat pointer. There is no need -- to check for the attribute name since the return type of an -- attribute is never a remote type. if Nkind (N) = N_Attribute_Reference and then Comes_From_Source (N) and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ)) then declare Attr : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N)); Pref : constant Node_Id := Prefix (N); Decl : Node_Id; Spec : Node_Id; Is_Remote : Boolean := True; begin -- Check that Typ is a remote access-to-subprogram type if Is_Remote_Access_To_Subprogram_Type (Typ) then -- Prefix (N) must statically denote a remote subprogram -- declared in a package specification. if Attr = Attribute_Access or else Attr = Attribute_Unchecked_Access or else Attr = Attribute_Unrestricted_Access then Decl := Unit_Declaration_Node (Entity (Pref)); if Nkind (Decl) = N_Subprogram_Body then Spec := Corresponding_Spec (Decl); if Present (Spec) then Decl := Unit_Declaration_Node (Spec); end if; end if; Spec := Parent (Decl); if not Is_Entity_Name (Prefix (N)) or else Nkind (Spec) /= N_Package_Specification or else not Is_Remote_Call_Interface (Defining_Entity (Spec)) then Is_Remote := False; Error_Msg_N ("prefix must statically denote a remote subprogram", N); end if; -- If we are generating code in distributed mode, perform -- semantic checks against corresponding remote entities. if Expander_Active and then Get_PCS_Name /= Name_No_DSA then Check_Subtype_Conformant (New_Id => Entity (Prefix (N)), Old_Id => Designated_Type (Corresponding_Remote_Type (Typ)), Err_Loc => N); if Is_Remote then Process_Remote_AST_Attribute (N, Typ); end if; end if; end if; end if; end; end if; Debug_A_Entry ("resolving ", N); if Debug_Flag_V then Write_Overloads (N); end if; if Comes_From_Source (N) then if Is_Fixed_Point_Type (Typ) then Check_Restriction (No_Fixed_Point, N); elsif Is_Floating_Point_Type (Typ) and then Typ /= Universal_Real and then Typ /= Any_Real then Check_Restriction (No_Floating_Point, N); end if; end if; -- Return if already analyzed if Analyzed (N) then Debug_A_Exit ("resolving ", N, " (done, already analyzed)"); Analyze_Dimension (N); return; -- Any case of Any_Type as the Etype value means that we had a -- previous error. elsif Etype (N) = Any_Type then Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)"); return; end if; Check_Parameterless_Call (N); -- The resolution of an Expression_With_Actions is determined by -- its Expression, but if the node comes from source it is a -- Declare_Expression and requires scope management. if Nkind (N) = N_Expression_With_Actions then if Comes_From_Source (N) and then not Is_Rewrite_Substitution (N) then Resolve_Declare_Expression (N, Typ); else Resolve (Expression (N), Typ); end if; Found := True; Expr_Type := Etype (Expression (N)); -- The resolution of a conditional expression that is the operand of a -- type conversion is determined by the conversion (RM 4.5.7(10/3)). elsif Nkind (N) in N_Case_Expression | N_If_Expression and then Nkind (Parent (N)) = N_Type_Conversion then Found := True; Expr_Type := Etype (Parent (N)); -- If not overloaded, then we know the type, and all that needs doing -- is to check that this type is compatible with the context. But note -- that we may have an operator with no interpretation in Ada 2022 for -- the case of possible user-defined literals as operands. elsif not Is_Overloaded (N) then if Nkind (N) in N_Op and then No (Entity (N)) then pragma Assert (Ada_Version >= Ada_2022); Found := False; elsif not Comes_From_Source (N) and then Original_Implementation_Base_Type (Typ) = Original_Implementation_Base_Type (Etype (N)) then -- Ignore privacy for streaming or Put_Image routines Found := True; else Found := Covers (Typ, Etype (N)); end if; Expr_Type := Etype (N); -- In the overloaded case, we must select the interpretation that -- is compatible with the context (i.e. the type passed to Resolve) else From_Lib := Comes_From_Predefined_Lib_Unit (N); -- Loop through possible interpretations Get_First_Interp (N, I, It); Interp_Loop : while Present (It.Typ) loop if Debug_Flag_V then Write_Str ("Interp: "); Write_Interp (It); end if; -- We are only interested in interpretations that are compatible -- with the expected type, any other interpretations are ignored. if not Covers (Typ, It.Typ) then if Debug_Flag_V then Write_Str (" interpretation incompatible with context"); Write_Eol; end if; else -- Skip the current interpretation if it is disabled by an -- abstract operator. This action is performed only when the -- type against which we are resolving is the same as the -- type of the interpretation. if Ada_Version >= Ada_2005 and then It.Typ = Typ and then not Is_Universal_Numeric_Type (Typ) and then Present (It.Abstract_Op) then if Debug_Flag_V then Write_Line ("Skip."); end if; goto Continue; end if; -- First matching interpretation if not Found then Found := True; I1 := I; Seen := It.Nam; Expr_Type := It.Typ; -- Matching interpretation that is not the first, maybe an -- error, but there are some cases where preference rules are -- used to choose between the two possibilities. These and -- some more obscure cases are handled in Disambiguate. else -- If the current statement is part of a predefined library -- unit, then all interpretations which come from user level -- packages should not be considered. Check previous and -- current one. if From_Lib then if not Comes_From_Predefined_Lib_Unit (It.Nam) then goto Continue; elsif not Comes_From_Predefined_Lib_Unit (Seen) then -- Previous interpretation must be discarded I1 := I; Seen := It.Nam; Expr_Type := It.Typ; Set_Entity (N, Seen); goto Continue; end if; end if; -- Otherwise apply further disambiguation steps Error_Msg_Sloc := Sloc (Seen); It1 := Disambiguate (N, I1, I, Typ); -- Disambiguation has succeeded. Skip the remaining -- interpretations. if It1 /= No_Interp then Seen := It1.Nam; Expr_Type := It1.Typ; while Present (It.Typ) loop Get_Next_Interp (I, It); end loop; else -- Before we issue an ambiguity complaint, check for the -- case of a subprogram call where at least one of the -- arguments is Any_Type, and if so suppress the message, -- since it is a cascaded error. This can also happen for -- a generalized indexing operation. if Nkind (N) in N_Subprogram_Call or else (Nkind (N) = N_Indexed_Component and then Present (Generalized_Indexing (N))) then declare A : Node_Id; E : Node_Id; begin if Nkind (N) = N_Indexed_Component then Rewrite (N, Generalized_Indexing (N)); end if; A := First_Actual (N); while Present (A) loop E := A; if Nkind (E) = N_Parameter_Association then E := Explicit_Actual_Parameter (E); end if; if Etype (E) = Any_Type then if Debug_Flag_V then Write_Str ("Any_Type in call"); Write_Eol; end if; exit Interp_Loop; end if; Next_Actual (A); end loop; end; elsif Nkind (N) in N_Binary_Op and then (Etype (Left_Opnd (N)) = Any_Type or else Etype (Right_Opnd (N)) = Any_Type) then exit Interp_Loop; elsif Nkind (N) in N_Unary_Op and then Etype (Right_Opnd (N)) = Any_Type then exit Interp_Loop; end if; -- Not that special case, so issue message using the flag -- Ambiguous to control printing of the header message -- only at the start of an ambiguous set. if not Ambiguous then if Nkind (N) = N_Function_Call and then Nkind (Name (N)) = N_Explicit_Dereference then Error_Msg_N ("ambiguous expression (cannot resolve indirect " & "call)!", N); else Error_Msg_NE -- CODEFIX ("ambiguous expression (cannot resolve&)!", N, It.Nam); end if; Ambiguous := True; if Nkind (Parent (Seen)) = N_Full_Type_Declaration then Error_Msg_N ("\\possible interpretation (inherited)#!", N); else Error_Msg_N -- CODEFIX ("\\possible interpretation#!", N); end if; if Nkind (N) in N_Subprogram_Call and then Present (Parameter_Associations (N)) then Report_Ambiguous_Argument; end if; end if; Error_Msg_Sloc := Sloc (It.Nam); -- By default, the error message refers to the candidate -- interpretation. But if it is a predefined operator, it -- is implicitly declared at the declaration of the type -- of the operand. Recover the sloc of that declaration -- for the error message. if Nkind (N) in N_Op and then Scope (It.Nam) = Standard_Standard and then not Is_Overloaded (Right_Opnd (N)) and then Scope (Base_Type (Etype (Right_Opnd (N)))) /= Standard_Standard then Err_Type := First_Subtype (Etype (Right_Opnd (N))); if Comes_From_Source (Err_Type) and then Present (Parent (Err_Type)) then Error_Msg_Sloc := Sloc (Parent (Err_Type)); end if; elsif Nkind (N) in N_Binary_Op and then Scope (It.Nam) = Standard_Standard and then not Is_Overloaded (Left_Opnd (N)) and then Scope (Base_Type (Etype (Left_Opnd (N)))) /= Standard_Standard then Err_Type := First_Subtype (Etype (Left_Opnd (N))); if Comes_From_Source (Err_Type) and then Present (Parent (Err_Type)) then Error_Msg_Sloc := Sloc (Parent (Err_Type)); end if; -- If this is an indirect call, use the subprogram_type -- in the message, to have a meaningful location. Also -- indicate if this is an inherited operation, created -- by a type declaration. elsif Nkind (N) = N_Function_Call and then Nkind (Name (N)) = N_Explicit_Dereference and then Is_Type (It.Nam) then Err_Type := It.Nam; Error_Msg_Sloc := Sloc (Associated_Node_For_Itype (Err_Type)); else Err_Type := Empty; end if; if Nkind (N) in N_Op and then Scope (It.Nam) = Standard_Standard and then Present (Err_Type) then -- Special-case the message for universal_fixed -- operators, which are not declared with the type -- of the operand, but appear forever in Standard. if It.Typ = Universal_Fixed and then Scope (It.Nam) = Standard_Standard then Error_Msg_N ("\\possible interpretation as universal_fixed " & "operation (RM 4.5.5 (19))", N); else Error_Msg_N ("\\possible interpretation (predefined)#!", N); end if; elsif Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then Error_Msg_N ("\\possible interpretation (inherited)#!", N); else Error_Msg_N -- CODEFIX ("\\possible interpretation#!", N); end if; end if; end if; -- We have a matching interpretation, Expr_Type is the type -- from this interpretation, and Seen is the entity. -- For an operator, just set the entity name. The type will be -- set by the specific operator resolution routine. if Nkind (N) in N_Op then Set_Entity (N, Seen); Generate_Reference (Seen, N); elsif Nkind (N) in N_Case_Expression | N_Character_Literal | N_Delta_Aggregate | N_If_Expression then Set_Etype (N, Expr_Type); -- AI05-0139-2: Expression is overloaded because type has -- implicit dereference. The context may be the one that -- requires implicit dereferemce. elsif Has_Implicit_Dereference (Expr_Type) then Set_Etype (N, Expr_Type); Set_Is_Overloaded (N, False); -- If the expression is an entity, generate a reference -- to it, as this is not done for an overloaded construct -- during analysis. if Is_Entity_Name (N) and then Comes_From_Source (N) then Generate_Reference (Entity (N), N); -- Examine access discriminants of entity type, -- to check whether one of them yields the -- expected type. declare Disc : Entity_Id := First_Discriminant (Etype (Entity (N))); begin while Present (Disc) loop exit when Is_Access_Type (Etype (Disc)) and then Has_Implicit_Dereference (Disc) and then Designated_Type (Etype (Disc)) = Typ; Next_Discriminant (Disc); end loop; if Present (Disc) then Build_Explicit_Dereference (N, Disc); end if; end; end if; exit Interp_Loop; elsif Is_Overloaded (N) and then Present (It.Nam) and then Ekind (It.Nam) = E_Discriminant and then Has_Implicit_Dereference (It.Nam) then -- If the node is a general indexing, the dereference is -- is inserted when resolving the rewritten form, else -- insert it now. if Nkind (N) /= N_Indexed_Component or else No (Generalized_Indexing (N)) then Build_Explicit_Dereference (N, It.Nam); end if; -- For an explicit dereference, attribute reference, range, -- short-circuit form (which is not an operator node), or call -- with a name that is an explicit dereference, there is -- nothing to be done at this point. elsif Nkind (N) in N_Attribute_Reference | N_And_Then | N_Explicit_Dereference | N_Identifier | N_Indexed_Component | N_Or_Else | N_Range | N_Selected_Component | N_Slice or else Nkind (Name (N)) = N_Explicit_Dereference then null; -- For procedure or function calls, set the type of the name, -- and also the entity pointer for the prefix. elsif Nkind (N) in N_Subprogram_Call and then Is_Entity_Name (Name (N)) then Set_Etype (Name (N), Expr_Type); Set_Entity (Name (N), Seen); Generate_Reference (Seen, Name (N)); elsif Nkind (N) = N_Function_Call and then Nkind (Name (N)) = N_Selected_Component then Set_Etype (Name (N), Expr_Type); Set_Entity (Selector_Name (Name (N)), Seen); Generate_Reference (Seen, Selector_Name (Name (N))); -- For all other cases, just set the type of the Name else Set_Etype (Name (N), Expr_Type); end if; end if; <> -- Move to next interpretation exit Interp_Loop when No (It.Typ); Get_Next_Interp (I, It); end loop Interp_Loop; end if; -- At this stage Found indicates whether or not an acceptable -- interpretation exists. If not, then we have an error, except that if -- the context is Any_Type as a result of some other error, then we -- suppress the error report. if not Found then if Typ /= Any_Type then -- If type we are looking for is Void, then this is the procedure -- call case, and the error is simply that what we gave is not a -- procedure name (we think of procedure calls as expressions with -- types internally, but the user doesn't think of them this way). if Typ = Standard_Void_Type then -- Special case message if function used as a procedure if Nkind (N) = N_Procedure_Call_Statement and then Is_Entity_Name (Name (N)) and then Ekind (Entity (Name (N))) = E_Function then Error_Msg_NE ("cannot use call to function & as a statement", Name (N), Entity (Name (N))); Error_Msg_N ("\return value of a function call cannot be ignored", Name (N)); -- Otherwise give general message (not clear what cases this -- covers, but no harm in providing for them). else Error_Msg_N ("expect procedure name in procedure call", N); end if; Found := True; -- Otherwise we do have a subexpression with the wrong type -- Check for the case of an allocator which uses an access type -- instead of the designated type. This is a common error and we -- specialize the message, posting an error on the operand of the -- allocator, complaining that we expected the designated type of -- the allocator. elsif Nkind (N) = N_Allocator and then Is_Access_Type (Typ) and then Is_Access_Type (Etype (N)) and then Designated_Type (Etype (N)) = Typ then Wrong_Type (Expression (N), Designated_Type (Typ)); Found := True; -- Check for view mismatch on Null in instances, for which the -- view-swapping mechanism has no identifier. elsif (In_Instance or else In_Inlined_Body) and then Nkind (N) = N_Null and then Is_Private_Type (Typ) and then Is_Access_Type (Full_View (Typ)) then Resolve (N, Full_View (Typ)); Set_Etype (N, Typ); return; -- Check for an aggregate. Sometimes we can get bogus aggregates -- from misuse of parentheses, and we are about to complain about -- the aggregate without even looking inside it. -- Instead, if we have an aggregate of type Any_Composite, then -- analyze and resolve the component fields, and then only issue -- another message if we get no errors doing this (otherwise -- assume that the errors in the aggregate caused the problem). elsif Nkind (N) = N_Aggregate and then Etype (N) = Any_Composite then if Ada_Version >= Ada_2022 and then Has_Aspect (Typ, Aspect_Aggregate) then Resolve_Container_Aggregate (N, Typ); if Expander_Active then Expand (N); end if; return; end if; -- Disable expansion in any case. If there is a type mismatch -- it may be fatal to try to expand the aggregate. The flag -- would otherwise be set to false when the error is posted. Expander_Active := False; declare procedure Check_Aggr (Aggr : Node_Id); -- Check one aggregate, and set Found to True if we have a -- definite error in any of its elements procedure Check_Elmt (Aelmt : Node_Id); -- Check one element of aggregate and set Found to True if -- we definitely have an error in the element. ---------------- -- Check_Aggr -- ---------------- procedure Check_Aggr (Aggr : Node_Id) is Elmt : Node_Id; begin if Present (Expressions (Aggr)) then Elmt := First (Expressions (Aggr)); while Present (Elmt) loop Check_Elmt (Elmt); Next (Elmt); end loop; end if; if Present (Component_Associations (Aggr)) then Elmt := First (Component_Associations (Aggr)); while Present (Elmt) loop -- If this is a default-initialized component, then -- there is nothing to check. The box will be -- replaced by the appropriate call during late -- expansion. if Nkind (Elmt) /= N_Iterated_Component_Association and then not Box_Present (Elmt) then Check_Elmt (Expression (Elmt)); end if; Next (Elmt); end loop; end if; end Check_Aggr; ---------------- -- Check_Elmt -- ---------------- procedure Check_Elmt (Aelmt : Node_Id) is begin -- If we have a nested aggregate, go inside it (to -- attempt a naked analyze-resolve of the aggregate can -- cause undesirable cascaded errors). Do not resolve -- expression if it needs a type from context, as for -- integer * fixed expression. if Nkind (Aelmt) = N_Aggregate then Check_Aggr (Aelmt); else Analyze (Aelmt); if not Is_Overloaded (Aelmt) and then Etype (Aelmt) /= Any_Fixed then Resolve (Aelmt); end if; if Etype (Aelmt) = Any_Type then Found := True; end if; end if; end Check_Elmt; begin Check_Aggr (N); end; end if; -- Check whether the node is a literal or a named number or a -- conditional expression whose dependent expressions are all -- literals or named numbers. if Try_User_Defined_Literal (N, Typ) then return; end if; -- Looks like we have a type error, but check for special case -- of Address wanted, integer found, with the configuration pragma -- Allow_Integer_Address active. If we have this case, introduce -- an unchecked conversion to allow the integer expression to be -- treated as an Address. The reverse case of integer wanted, -- Address found, is treated in an analogous manner. if Address_Integer_Convert_OK (Typ, Etype (N)) then Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N))); Analyze_And_Resolve (N, Typ); return; -- Under relaxed RM semantics silently replace occurrences of null -- by System.Null_Address. elsif Null_To_Null_Address_Convert_OK (N, Typ) then Replace_Null_By_Null_Address (N); Analyze_And_Resolve (N, Typ); return; end if; -- That special Allow_Integer_Address check did not apply, so we -- have a real type error. If an error message was issued already, -- Found got reset to True, so if it's still False, issue standard -- Wrong_Type message. if not Found then if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then declare Subp_Name : Node_Id; begin if Is_Entity_Name (Name (N)) then Subp_Name := Name (N); elsif Nkind (Name (N)) = N_Selected_Component then -- Protected operation: retrieve operation name Subp_Name := Selector_Name (Name (N)); else raise Program_Error; end if; Error_Msg_Node_2 := Typ; Error_Msg_NE ("no visible interpretation of& matches expected type&", N, Subp_Name); end; if All_Errors_Mode then declare Index : Interp_Index; It : Interp; begin Error_Msg_N ("\\possible interpretations:", N); Get_First_Interp (Name (N), Index, It); while Present (It.Nam) loop Error_Msg_Sloc := Sloc (It.Nam); Error_Msg_Node_2 := It.Nam; Error_Msg_NE ("\\ type& for & declared#", N, It.Typ); Get_Next_Interp (Index, It); end loop; end; else Error_Msg_N ("\use -gnatf for details", N); end if; -- Recognize the case of a quantified expression being mistaken -- for an iterated component association because the user -- forgot the "all" or "some" keyword after "for". Because the -- error message starts with "missing ALL", we automatically -- benefit from the associated CODEFIX, which requires that -- the message is located on the identifier following "for" -- in order for the CODEFIX to insert "all" in the right place. elsif Nkind (N) = N_Aggregate and then List_Length (Component_Associations (N)) = 1 and then Nkind (First (Component_Associations (N))) = N_Iterated_Component_Association and then Is_Boolean_Type (Typ) then if Present (Iterator_Specification (First (Component_Associations (N)))) then Error_Msg_N -- CODEFIX ("missing ALL or SOME in quantified expression", Defining_Identifier (Iterator_Specification (First (Component_Associations (N))))); else Error_Msg_N -- CODEFIX ("missing ALL or SOME in quantified expression", Defining_Identifier (First (Component_Associations (N)))); end if; -- For an operator with no interpretation, check whether one of -- its operands may be a user-defined literal. elsif Nkind (N) in N_Op and then No (Entity (N)) then if Try_User_Defined_Literal_For_Operator (N, Typ) then return; else Unresolved_Operator (N); end if; else Wrong_Type (N, Typ); end if; end if; end if; Resolution_Failed; return; -- Test if we have more than one interpretation for the context elsif Ambiguous then Resolution_Failed; return; -- Only one interpretation else -- Prevent implicit conversions between access-to-subprogram types -- with different strub modes. Explicit conversions are acceptable in -- some circumstances. We don't have to be concerned about data or -- access-to-data types. Conversions between data types can safely -- drop or add strub attributes from types, because strub effects are -- associated with the locations rather than values. E.g., converting -- a hypothetical Strub_Integer variable to Integer would load the -- value from the variable, enabling stack scrabbing for the -- enclosing subprogram, and then convert the value to Integer. As -- for conversions between access-to-data types, that's no different -- from any other case of type punning. if Is_Access_Type (Typ) and then Ekind (Designated_Type (Typ)) = E_Subprogram_Type and then Is_Access_Type (Expr_Type) and then Ekind (Designated_Type (Expr_Type)) = E_Subprogram_Type then Check_Same_Strub_Mode (Designated_Type (Typ), Designated_Type (Expr_Type)); end if; -- In Ada 2005, if we have something like "X : T := 2 + 2;", where -- the "+" on T is abstract, and the operands are of universal type, -- the above code will have (incorrectly) resolved the "+" to the -- universal one in Standard. Therefore check for this case and give -- an error. We can't do this earlier, because it would cause legal -- cases to get errors (when some other type has an abstract "+"). if Ada_Version >= Ada_2005 and then Nkind (N) in N_Op and then Is_Overloaded (N) and then Is_Universal_Numeric_Type (Etype (Entity (N))) then Get_First_Interp (N, I, It); while Present (It.Typ) loop if Present (It.Abstract_Op) and then Etype (It.Abstract_Op) = Typ then Nondispatching_Call_To_Abstract_Operation (N, It.Abstract_Op); return; end if; Get_Next_Interp (I, It); end loop; end if; -- Here we have an acceptable interpretation for the context -- Propagate type information and normalize tree for various -- predefined operations. If the context only imposes a class of -- types, rather than a specific type, propagate the actual type -- downward. if Typ = Any_Integer or else Typ = Any_Boolean or else Typ = Any_Modular or else Typ = Any_Real or else Typ = Any_Discrete then Ctx_Type := Expr_Type; -- Any_Fixed is legal in a real context only if a specific fixed- -- point type is imposed. If Norman Cohen can be confused by this, -- it deserves a separate message. if Typ = Any_Real and then Expr_Type = Any_Fixed then Error_Msg_N ("illegal context for mixed mode operation", N); Set_Etype (N, Universal_Real); Ctx_Type := Universal_Real; end if; end if; -- A user-defined operator is transformed into a function call at -- this point, so that further processing knows that operators are -- really operators (i.e. are predefined operators). User-defined -- operators that are intrinsic are just renamings of the predefined -- ones, and need not be turned into calls either, but if they rename -- a different operator, we must transform the node accordingly. -- Instantiations of Unchecked_Conversion are intrinsic but are -- treated as functions, even if given an operator designator. if Nkind (N) in N_Op and then Present (Entity (N)) and then Ekind (Entity (N)) /= E_Operator then if not Is_Predefined_Op (Entity (N)) then Rewrite_Operator_As_Call (N, Entity (N)); elsif Present (Alias (Entity (N))) and then Nkind (Parent (Parent (Entity (N)))) = N_Subprogram_Renaming_Declaration then Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ); -- If the node is rewritten, it will be fully resolved in -- Rewrite_Renamed_Operator. if Analyzed (N) then return; end if; end if; end if; case N_Subexpr'(Nkind (N)) is when N_Aggregate => Resolve_Aggregate (N, Ctx_Type); when N_Allocator => Resolve_Allocator (N, Ctx_Type); when N_Short_Circuit => Resolve_Short_Circuit (N, Ctx_Type); when N_Attribute_Reference => Resolve_Attribute (N, Ctx_Type); when N_Case_Expression => Resolve_Case_Expression (N, Ctx_Type); when N_Character_Literal => Resolve_Character_Literal (N, Ctx_Type); when N_Delta_Aggregate => Resolve_Delta_Aggregate (N, Ctx_Type); when N_Expanded_Name => Resolve_Entity_Name (N, Ctx_Type); when N_Explicit_Dereference => Resolve_Explicit_Dereference (N, Ctx_Type); when N_Expression_With_Actions => Resolve_Expression_With_Actions (N, Ctx_Type); when N_Extension_Aggregate => Resolve_Extension_Aggregate (N, Ctx_Type); when N_Function_Call => Resolve_Call (N, Ctx_Type); when N_Identifier => Resolve_Entity_Name (N, Ctx_Type); when N_If_Expression => Resolve_If_Expression (N, Ctx_Type); when N_Indexed_Component => Resolve_Indexed_Component (N, Ctx_Type); when N_Integer_Literal => Resolve_Integer_Literal (N, Ctx_Type); when N_Membership_Test => Resolve_Membership_Op (N, Ctx_Type); when N_Null => Resolve_Null (N, Ctx_Type); when N_Op_And | N_Op_Or | N_Op_Xor => Resolve_Logical_Op (N, Ctx_Type); when N_Op_Eq | N_Op_Ne => Resolve_Equality_Op (N, Ctx_Type); when N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt => Resolve_Comparison_Op (N, Ctx_Type); when N_Op_Not => Resolve_Op_Not (N, Ctx_Type); when N_Op_Add | N_Op_Divide | N_Op_Mod | N_Op_Multiply | N_Op_Rem | N_Op_Subtract => Resolve_Arithmetic_Op (N, Ctx_Type); when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type); when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type); when N_Op_Abs | N_Op_Minus | N_Op_Plus => Resolve_Unary_Op (N, Ctx_Type); when N_Op_Shift => Resolve_Shift (N, Ctx_Type); when N_Procedure_Call_Statement => Resolve_Call (N, Ctx_Type); when N_Operator_Symbol => Resolve_Operator_Symbol (N, Ctx_Type); when N_Qualified_Expression => Resolve_Qualified_Expression (N, Ctx_Type); -- Why is the following null, needs a comment ??? when N_Quantified_Expression => null; when N_Raise_Expression => Resolve_Raise_Expression (N, Ctx_Type); when N_Raise_xxx_Error => Set_Etype (N, Ctx_Type); when N_Range => Resolve_Range (N, Ctx_Type); when N_Real_Literal => Resolve_Real_Literal (N, Ctx_Type); when N_Reference => Resolve_Reference (N, Ctx_Type); when N_Selected_Component => Resolve_Selected_Component (N, Ctx_Type); when N_Slice => Resolve_Slice (N, Ctx_Type); when N_String_Literal => Resolve_String_Literal (N, Ctx_Type); when N_Interpolated_String_Literal => Resolve_Interpolated_String_Literal (N, Ctx_Type); when N_Target_Name => Resolve_Target_Name (N, Ctx_Type); when N_Type_Conversion => Resolve_Type_Conversion (N, Ctx_Type); when N_Unchecked_Expression => Resolve_Unchecked_Expression (N, Ctx_Type); when N_Unchecked_Type_Conversion => Resolve_Unchecked_Type_Conversion (N, Ctx_Type); end case; -- Mark relevant use-type and use-package clauses as effective using -- the original node because constant folding may have occurred and -- removed references that need to be examined. if Nkind (Original_Node (N)) in N_Op then Mark_Use_Clauses (Original_Node (N)); end if; -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an -- expression of an anonymous access type that occurs in the context -- of a named general access type, except when the expression is that -- of a membership test. This ensures proper legality checking in -- terms of allowed conversions (expressions that would be illegal to -- convert implicitly are allowed in membership tests). if Ada_Version >= Ada_2012 and then Ekind (Base_Type (Ctx_Type)) = E_General_Access_Type and then Ekind (Etype (N)) = E_Anonymous_Access_Type and then Nkind (Parent (N)) not in N_Membership_Test then Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N))); Analyze_And_Resolve (N, Ctx_Type); end if; -- If the subexpression was replaced by a non-subexpression, then -- all we do is to expand it. The only legitimate case we know of -- is converting procedure call statement to entry call statements, -- but there may be others, so we are making this test general. if Nkind (N) not in N_Subexpr then Debug_A_Exit ("resolving ", N, " (done)"); Expand (N); return; end if; -- The expression is definitely NOT overloaded at this point, so -- we reset the Is_Overloaded flag to avoid any confusion when -- reanalyzing the node. Set_Is_Overloaded (N, False); -- Freeze expression type, entity if it is a name, and designated -- type if it is an allocator (RM 13.14(10,11,13)). -- Now that the resolution of the type of the node is complete, and -- we did not detect an error, we can expand this node. We skip the -- expand call if we are in a default expression, see section -- "Handling of Default Expressions" in Sem spec. Debug_A_Exit ("resolving ", N, " (done)"); -- We unconditionally freeze the expression, even if we are in -- default expression mode (the Freeze_Expression routine tests this -- flag and only freezes static types if it is set). -- Ada 2012 (AI05-177): The declaration of an expression function -- does not cause freezing, but we never reach here in that case. -- Here we are resolving the corresponding expanded body, so we do -- need to perform normal freezing. -- As elsewhere we do not emit freeze node within a generic. if not Inside_A_Generic then Freeze_Expression (N); end if; -- Now we can do the expansion Expand (N); end if; end Resolve; ------------- -- Resolve -- ------------- -- Version with check(s) suppressed procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is begin if Suppress = All_Checks then declare Sva : constant Suppress_Array := Scope_Suppress.Suppress; begin Scope_Suppress.Suppress := (others => True); Resolve (N, Typ); Scope_Suppress.Suppress := Sva; end; else declare Svg : constant Boolean := Scope_Suppress.Suppress (Suppress); begin Scope_Suppress.Suppress (Suppress) := True; Resolve (N, Typ); Scope_Suppress.Suppress (Suppress) := Svg; end; end if; end Resolve; ------------- -- Resolve -- ------------- -- Version with implicit type procedure Resolve (N : Node_Id) is begin Resolve (N, Etype (N)); end Resolve; --------------------- -- Resolve_Actuals -- --------------------- procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); A : Node_Id; A_Typ : Entity_Id := Empty; -- init to avoid warning F : Entity_Id; F_Typ : Entity_Id; Prev : Node_Id := Empty; Orig_A : Node_Id; Real_F : Entity_Id := Empty; -- init to avoid warning Real_Subp : Entity_Id; -- If the subprogram being called is an inherited operation for -- a formal derived type in an instance, Real_Subp is the subprogram -- that will be called. It may have different formal names than the -- operation of the formal in the generic, so after actual is resolved -- the name of the actual in a named association must carry the name -- of the actual of the subprogram being called. procedure Check_Aliased_Parameter; -- Check rules on aliased parameters and related accessibility rules -- in (RM 3.10.2 (10.2-10.4)). procedure Check_Argument_Order; -- Performs a check for the case where the actuals are all simple -- identifiers that correspond to the formal names, but in the wrong -- order, which is considered suspicious and cause for a warning. procedure Check_Prefixed_Call; -- If the original node is an overloaded call in prefix notation, -- insert an 'Access or a dereference as needed over the first actual. -- Try_Object_Operation has already verified that there is a valid -- interpretation, but the form of the actual can only be determined -- once the primitive operation is identified. procedure Insert_Default; -- If the actual is missing in a call, insert in the actuals list -- an instance of the default expression. The insertion is always -- a named association. function Same_Ancestor (T1, T2 : Entity_Id) return Boolean; -- Check whether T1 and T2, or their full views, are derived from a -- common type. Used to enforce the restrictions on array conversions -- of AI95-00246. function Static_Concatenation (N : Node_Id) return Boolean; -- Predicate to determine whether an actual that is a concatenation -- will be evaluated statically and does not need a transient scope. -- This must be determined before the actual is resolved and expanded -- because if needed the transient scope must be introduced earlier. ----------------------------- -- Check_Aliased_Parameter -- ----------------------------- procedure Check_Aliased_Parameter is Nominal_Subt : Entity_Id; begin if Is_Aliased (F) then if Is_Tagged_Type (A_Typ) then null; elsif Is_Aliased_View (A) then if Is_Constr_Subt_For_U_Nominal (A_Typ) then Nominal_Subt := Base_Type (A_Typ); else Nominal_Subt := A_Typ; end if; if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then null; -- In a generic body assume the worst for generic formals: -- they can have a constrained partial view (AI05-041). elsif Has_Discriminants (F_Typ) and then not Is_Constrained (F_Typ) and then not Object_Type_Has_Constrained_Partial_View (Typ => F_Typ, Scop => Current_Scope) then null; else Error_Msg_NE ("untagged actual does not statically match " & "aliased formal&", A, F); end if; else Error_Msg_NE ("actual for aliased formal& must be " & "aliased object", A, F); end if; if Ekind (Nam) = E_Procedure then null; elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then if Nkind (Parent (N)) = N_Type_Conversion and then Type_Access_Level (Etype (Parent (N))) < Static_Accessibility_Level (A, Object_Decl_Level) then Error_Msg_N ("aliased actual has wrong accessibility", A); end if; elsif Nkind (Parent (N)) = N_Qualified_Expression and then Nkind (Parent (Parent (N))) = N_Allocator and then Type_Access_Level (Etype (Parent (Parent (N)))) < Static_Accessibility_Level (A, Object_Decl_Level) then Error_Msg_N ("aliased actual in allocator has wrong accessibility", A); end if; end if; end Check_Aliased_Parameter; -------------------------- -- Check_Argument_Order -- -------------------------- procedure Check_Argument_Order is begin -- Nothing to do if no parameters, or original node is neither a -- function call nor a procedure call statement (happens in the -- operator-transformed-to-function call case), or the call is to an -- operator symbol (which is usually in infix form), or the call does -- not come from source, or this warning is off. if not Warn_On_Parameter_Order or else No (Parameter_Associations (N)) or else Nkind (Original_Node (N)) not in N_Subprogram_Call or else (Nkind (Name (N)) = N_Identifier and then Present (Entity (Name (N))) and then Nkind (Entity (Name (N))) = N_Defining_Operator_Symbol) or else not Comes_From_Source (N) then return; end if; declare Nargs : constant Nat := List_Length (Parameter_Associations (N)); begin -- Nothing to do if only one parameter if Nargs < 2 then return; end if; -- Here if at least two arguments declare Actuals : array (1 .. Nargs) of Node_Id; Actual : Node_Id; Formal : Node_Id; Wrong_Order : Boolean := False; -- Set True if an out of order case is found begin -- Collect identifier names of actuals, fail if any actual is -- not a simple identifier, and record max length of name. Actual := First (Parameter_Associations (N)); for J in Actuals'Range loop if Nkind (Actual) /= N_Identifier then return; else Actuals (J) := Actual; Next (Actual); end if; end loop; -- If we got this far, all actuals are identifiers and the list -- of their names is stored in the Actuals array. Formal := First_Formal (Nam); for J in Actuals'Range loop -- If we ran out of formals, that's odd, probably an error -- which will be detected elsewhere, but abandon the search. if No (Formal) then return; end if; -- If name matches and is in order OK if Chars (Formal) = Chars (Actuals (J)) then null; else -- If no match, see if it is elsewhere in list and if so -- flag potential wrong order if type is compatible. for K in Actuals'Range loop if Chars (Formal) = Chars (Actuals (K)) and then Has_Compatible_Type (Actuals (K), Etype (Formal)) then Wrong_Order := True; goto Continue; end if; end loop; -- No match return; end if; <> Next_Formal (Formal); end loop; -- If Formals left over, also probably an error, skip warning if Present (Formal) then return; end if; -- Here we give the warning if something was out of order if Wrong_Order then Error_Msg_N ("?.p?actuals for this call may be in wrong order", N); end if; end; end; end Check_Argument_Order; ------------------------- -- Check_Prefixed_Call -- ------------------------- procedure Check_Prefixed_Call is Act : constant Node_Id := First_Actual (N); A_Type : constant Entity_Id := Etype (Act); F_Type : constant Entity_Id := Etype (First_Formal (Nam)); Orig : constant Node_Id := Original_Node (N); New_A : Node_Id; begin -- Check whether the call is a prefixed call, with or without -- additional actuals. if Nkind (Orig) = N_Selected_Component or else (Nkind (Orig) = N_Indexed_Component and then Nkind (Prefix (Orig)) = N_Selected_Component and then Is_Entity_Name (Prefix (Prefix (Orig))) and then Is_Entity_Name (Act) and then Chars (Act) = Chars (Prefix (Prefix (Orig)))) then if Is_Access_Type (A_Type) and then not Is_Access_Type (F_Type) then -- Introduce dereference on object in prefix New_A := Make_Explicit_Dereference (Sloc (Act), Prefix => Relocate_Node (Act)); Rewrite (Act, New_A); Analyze (Act); elsif Is_Access_Type (F_Type) and then not Is_Access_Type (A_Type) then -- Introduce an implicit 'Access in prefix if not Is_Aliased_View (Act) then Error_Msg_NE ("object in prefixed call to& must be aliased " & "(RM 4.1.3 (13 1/2))", Prefix (Act), Nam); end if; Rewrite (Act, Make_Attribute_Reference (Loc, Attribute_Name => Name_Access, Prefix => Relocate_Node (Act))); end if; Analyze (Act); end if; end Check_Prefixed_Call; -------------------- -- Insert_Default -- -------------------- procedure Insert_Default is Actval : Node_Id; Assoc : Node_Id; begin -- Missing argument in call, nothing to insert if No (Default_Value (F)) then return; else -- Note that we do a full New_Copy_Tree, so that any associated -- Itypes are properly copied. This may not be needed any more, -- but it does no harm as a safety measure. Defaults of a generic -- formal may be out of bounds of the corresponding actual (see -- cc1311b) and an additional check may be required. Actval := New_Copy_Tree (Default_Value (F), New_Scope => Current_Scope, New_Sloc => Loc); -- Propagate dimension information, if any. Copy_Dimensions (Default_Value (F), Actval); if Is_Concurrent_Type (Scope (Nam)) and then Has_Discriminants (Scope (Nam)) then Replace_Actual_Discriminants (N, Actval); end if; if Is_Overloadable (Nam) and then Present (Alias (Nam)) then if Base_Type (Etype (F)) /= Base_Type (Etype (Actval)) and then not Is_Tagged_Type (Etype (F)) then -- If default is a real literal, do not introduce a -- conversion whose effect may depend on the run-time -- size of universal real. if Nkind (Actval) = N_Real_Literal then Set_Etype (Actval, Base_Type (Etype (F))); else Actval := Unchecked_Convert_To (Etype (F), Actval); end if; end if; if Is_Scalar_Type (Etype (F)) then Enable_Range_Check (Actval); end if; Set_Parent (Actval, N); -- Resolve aggregates with their base type, to avoid scope -- anomalies: the subtype was first built in the subprogram -- declaration, and the current call may be nested. if Nkind (Actval) = N_Aggregate then Analyze_And_Resolve (Actval, Etype (F)); else Analyze_And_Resolve (Actval, Etype (Actval)); end if; else Set_Parent (Actval, N); -- See note above concerning aggregates if Nkind (Actval) = N_Aggregate and then Has_Discriminants (Etype (Actval)) then Analyze_And_Resolve (Actval, Base_Type (Etype (Actval))); -- Resolve entities with their own type, which may differ from -- the type of a reference in a generic context because of the -- trick used in Save_Global_References.Set_Global_Type to set -- full views forcefully, which did not anticipate the need to -- re-analyze default values in calls. elsif Is_Entity_Name (Actval) then Analyze_And_Resolve (Actval, Etype (Entity (Actval))); -- Ditto for calls whose name is an entity, for the same reason elsif Nkind (Actval) = N_Function_Call and then Is_Entity_Name (Name (Actval)) then Analyze_And_Resolve (Actval, Etype (Entity (Name (Actval)))); else Analyze_And_Resolve (Actval, Etype (Actval)); end if; end if; -- If default is a tag indeterminate function call, propagate tag -- to obtain proper dispatching. if Is_Controlling_Formal (F) and then Nkind (Default_Value (F)) = N_Function_Call then Set_Is_Controlling_Actual (Actval); end if; end if; -- If the default expression raises constraint error, then just -- silently replace it with an N_Raise_Constraint_Error node, since -- we already gave the warning on the subprogram spec. If node is -- already a Raise_Constraint_Error leave as is, to prevent loops in -- the warnings removal machinery. if Raises_Constraint_Error (Actval) and then Nkind (Actval) /= N_Raise_Constraint_Error then Rewrite (Actval, Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed)); Set_Raises_Constraint_Error (Actval); Set_Etype (Actval, Etype (F)); end if; Assoc := Make_Parameter_Association (Loc, Explicit_Actual_Parameter => Actval, Selector_Name => Make_Identifier (Loc, Chars (F))); -- Case of insertion is first named actual if No (Prev) or else Nkind (Parent (Prev)) /= N_Parameter_Association then Set_Next_Named_Actual (Assoc, First_Named_Actual (N)); Set_First_Named_Actual (N, Actval); if No (Prev) then if No (Parameter_Associations (N)) then Set_Parameter_Associations (N, New_List (Assoc)); else Append (Assoc, Parameter_Associations (N)); end if; else Insert_After (Prev, Assoc); end if; -- Case of insertion is not first named actual else Set_Next_Named_Actual (Assoc, Next_Named_Actual (Parent (Prev))); Set_Next_Named_Actual (Parent (Prev), Actval); Append (Assoc, Parameter_Associations (N)); end if; Mark_Rewrite_Insertion (Assoc); Mark_Rewrite_Insertion (Actval); Prev := Actval; end Insert_Default; ------------------- -- Same_Ancestor -- ------------------- function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is FT1 : Entity_Id := T1; FT2 : Entity_Id := T2; begin if Is_Private_Type (T1) and then Present (Full_View (T1)) then FT1 := Full_View (T1); end if; if Is_Private_Type (T2) and then Present (Full_View (T2)) then FT2 := Full_View (T2); end if; return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2)); end Same_Ancestor; -------------------------- -- Static_Concatenation -- -------------------------- function Static_Concatenation (N : Node_Id) return Boolean is begin case Nkind (N) is when N_String_Literal => return True; when N_Op_Concat => -- Concatenation is static when both operands are static and -- the concatenation operator is a predefined one. return Scope (Entity (N)) = Standard_Standard and then Static_Concatenation (Left_Opnd (N)) and then Static_Concatenation (Right_Opnd (N)); when others => if Is_Entity_Name (N) then declare Ent : constant Entity_Id := Entity (N); begin return Ekind (Ent) = E_Constant and then Present (Constant_Value (Ent)) and then Is_OK_Static_Expression (Constant_Value (Ent)); end; else return False; end if; end case; end Static_Concatenation; -- Start of processing for Resolve_Actuals begin Check_Argument_Order; if Is_Overloadable (Nam) and then Is_Inherited_Operation (Nam) and then In_Instance and then Present (Alias (Nam)) and then Present (Overridden_Operation (Alias (Nam))) then Real_Subp := Alias (Nam); else Real_Subp := Empty; end if; if Present (First_Actual (N)) then Check_Prefixed_Call; end if; A := First_Actual (N); F := First_Formal (Nam); if Present (Real_Subp) then Real_F := First_Formal (Real_Subp); end if; while Present (F) loop if No (A) and then Needs_No_Actuals (Nam) then null; -- If we have an error in any formal or actual, indicated by a type -- of Any_Type, then abandon resolution attempt, and set result type -- to Any_Type. elsif Etype (F) = Any_Type then Set_Etype (N, Any_Type); return; elsif Present (A) and then Etype (A) = Any_Type then -- For the peculiar case of a user-defined comparison or equality -- operator that does not return a boolean type, the operands may -- have been ambiguous for the predefined operator and, therefore, -- marked with Any_Type. Since the operation has been resolved to -- the user-defined operator, that is irrelevant, so reset Etype. if Nkind (Original_Node (N)) in N_Op_Compare and then not Is_Boolean_Type (Etype (N)) then Set_Etype (A, Etype (F)); -- Also skip this if the actual is a Raise_Expression, whose type -- is imposed from context. elsif Nkind (A) = N_Raise_Expression then null; else Set_Etype (N, Any_Type); return; end if; end if; -- Case where actual is present -- If the actual is an entity, generate a reference to it now. We -- do this before the actual is resolved, because a formal of some -- protected subprogram, or a task discriminant, will be rewritten -- during expansion, and the source entity reference may be lost. if Present (A) and then Is_Entity_Name (A) and then Comes_From_Source (A) then -- Annotate the tree by creating a variable reference marker when -- the actual denotes a variable reference, in case the reference -- is folded or optimized away. The variable reference marker is -- automatically saved for later examination by the ABE Processing -- phase. The status of the reference is set as follows: -- status mode -- read IN, IN OUT -- write IN OUT, OUT if Needs_Variable_Reference_Marker (N => A, Calls_OK => True) then Build_Variable_Reference_Marker (N => A, Read => Ekind (F) /= E_Out_Parameter, Write => Ekind (F) /= E_In_Parameter); end if; Orig_A := Entity (A); if Present (Orig_A) then if Is_Formal (Orig_A) and then Ekind (F) /= E_In_Parameter then Generate_Reference (Orig_A, A, 'm'); elsif not Is_Overloaded (A) then if Ekind (F) /= E_Out_Parameter then Generate_Reference (Orig_A, A); -- RM 6.4.1(12): For an out parameter that is passed by -- copy, the formal parameter object is created, and: -- * For an access type, the formal parameter is initialized -- from the value of the actual, without checking that the -- value satisfies any constraint, any predicate, or any -- exclusion of the null value. -- * For a scalar type that has the Default_Value aspect -- specified, the formal parameter is initialized from the -- value of the actual, without checking that the value -- satisfies any constraint or any predicate. -- I do not understand why this case is included??? this is -- not a case where an OUT parameter is treated as IN OUT. -- * For a composite type with discriminants or that has -- implicit initial values for any subcomponents, the -- behavior is as for an in out parameter passed by copy. -- Hence for these cases we generate the read reference now -- (the write reference will be generated later by -- Note_Possible_Modification). elsif Is_By_Copy_Type (Etype (F)) and then (Is_Access_Type (Etype (F)) or else (Is_Scalar_Type (Etype (F)) and then Present (Default_Aspect_Value (Etype (F)))) or else (Is_Composite_Type (Etype (F)) and then (Has_Discriminants (Etype (F)) or else Is_Partially_Initialized_Type (Etype (F))))) then Generate_Reference (Orig_A, A); end if; end if; end if; end if; if Present (A) and then (Nkind (Parent (A)) /= N_Parameter_Association or else Chars (Selector_Name (Parent (A))) = Chars (F)) then -- If style checking mode on, check match of formal name if Style_Check then if Nkind (Parent (A)) = N_Parameter_Association then Check_Identifier (Selector_Name (Parent (A)), F); end if; end if; -- If the formal is Out or In_Out, do not resolve and expand the -- conversion, because it is subsequently expanded into explicit -- temporaries and assignments. However, the object of the -- conversion can be resolved. An exception is the case of tagged -- type conversion with a class-wide actual. In that case we want -- the tag check to occur and no temporary will be needed (no -- representation change can occur) and the parameter is passed by -- reference, so we go ahead and resolve the type conversion. -- Another exception is the case of reference to component or -- subcomponent of a bit-packed array, in which case we want to -- defer expansion to the point the in and out assignments are -- performed. if Ekind (F) /= E_In_Parameter and then Nkind (A) = N_Type_Conversion and then not Is_Class_Wide_Type (Etype (Expression (A))) and then not Is_Interface (Etype (A)) then declare Expr_Typ : constant Entity_Id := Etype (Expression (A)); begin -- Check RM 4.6 (24.2/2) if Is_Array_Type (Etype (F)) and then Is_View_Conversion (A) then -- In a view conversion, the conversion must be legal in -- both directions, and thus both component types must be -- aliased, or neither (4.6 (8)). -- Check RM 4.6 (24.8/2) if Has_Aliased_Components (Expr_Typ) /= Has_Aliased_Components (Etype (F)) then -- This normally illegal conversion is legal in an -- expanded instance body because of RM 12.3(11). -- At runtime, conversion must create a new object. if not In_Instance then Error_Msg_N ("both component types in a view conversion must" & " be aliased, or neither", A); end if; -- Check RM 4.6 (24/3) elsif not Same_Ancestor (Etype (F), Expr_Typ) then -- Check view conv between unrelated by ref array -- types. if Is_By_Reference_Type (Etype (F)) or else Is_By_Reference_Type (Expr_Typ) then Error_Msg_N ("view conversion between unrelated by reference " & "array types not allowed ('A'I-00246)", A); -- In Ada 2005 mode, check view conversion component -- type cannot be private, tagged, or volatile. Note -- that we only apply this to source conversions. The -- generated code can contain conversions which are -- not subject to this test, and we cannot extract the -- component type in such cases since it is not -- present. elsif Comes_From_Source (A) and then Ada_Version >= Ada_2005 then declare Comp_Type : constant Entity_Id := Component_Type (Expr_Typ); begin if (Is_Private_Type (Comp_Type) and then not Is_Generic_Type (Comp_Type)) or else Is_Tagged_Type (Comp_Type) or else Is_Volatile (Comp_Type) then Error_Msg_N ("component type of a view conversion " & "cannot be private, tagged, or volatile" & " (RM 4.6 (24))", Expression (A)); end if; end; end if; end if; -- AI12-0074 & AI12-0377 -- Check 6.4.1: If the mode is out, the actual parameter is -- a view conversion, and the type of the formal parameter -- is a scalar type, then either: -- - the target and operand type both do not have the -- Default_Value aspect specified; or -- - the target and operand type both have the -- Default_Value aspect specified, and there shall exist -- a type (other than a root numeric type) that is an -- ancestor of both the target type and the operand -- type. elsif Ekind (F) = E_Out_Parameter and then Is_Scalar_Type (Etype (F)) then if Has_Default_Aspect (Etype (F)) /= Has_Default_Aspect (Expr_Typ) then Error_Msg_N ("view conversion requires Default_Value on both " & "types (RM 6.4.1)", A); elsif Has_Default_Aspect (Expr_Typ) and then not Same_Ancestor (Etype (F), Expr_Typ) then Error_Msg_N ("view conversion between unrelated types with " & "Default_Value not allowed (RM 6.4.1)", A); end if; end if; end; -- Resolve expression if conversion is all OK if (Conversion_OK (A) or else Valid_Conversion (A, Etype (A), Expression (A))) and then not Is_Ref_To_Bit_Packed_Array (Expression (A)) then Resolve (Expression (A)); end if; -- In GNATprove mode, add a range check flag on scalar -- conversions for IN OUT parameters. The check may be -- needed on entry from the call. if GNATprove_Mode and then Ekind (F) = E_In_Out_Parameter and then Is_Scalar_Type (Etype (F)) then Set_Do_Range_Check (Expression (A)); end if; -- If the actual is a function call that returns a limited -- unconstrained object that needs finalization, create a -- transient scope for it, so that it can receive the proper -- finalization list. elsif Expander_Active and then Nkind (A) = N_Function_Call and then Is_Limited_Record (Etype (F)) and then not Is_Constrained (Etype (F)) and then (Needs_Finalization (Etype (F)) or else Has_Task (Etype (F))) then Establish_Transient_Scope (A, Manage_Sec_Stack => False); Resolve (A, Etype (F)); -- A small optimization: if one of the actuals is a concatenation -- create a block around a procedure call to recover stack space. -- This alleviates stack usage when several procedure calls in -- the same statement list use concatenation. We do not perform -- this wrapping for code statements, where the argument is a -- static string, and we want to preserve warnings involving -- sequences of such statements. elsif Expander_Active and then Nkind (A) = N_Op_Concat and then Nkind (N) = N_Procedure_Call_Statement and then not (Is_Intrinsic_Subprogram (Nam) and then Chars (Nam) = Name_Asm) and then not Static_Concatenation (A) then Establish_Transient_Scope (A, Manage_Sec_Stack => False); Resolve (A, Etype (F)); else if Nkind (A) = N_Type_Conversion and then Is_Array_Type (Etype (F)) and then not Same_Ancestor (Etype (F), Etype (Expression (A))) and then (Is_Limited_Type (Etype (F)) or else Is_Limited_Type (Etype (Expression (A)))) then Error_Msg_N ("conversion between unrelated limited array types not " & "allowed ('A'I-00246)", A); if Is_Limited_Type (Etype (F)) then Explain_Limited_Type (Etype (F), A); end if; if Is_Limited_Type (Etype (Expression (A))) then Explain_Limited_Type (Etype (Expression (A)), A); end if; end if; -- (Ada 2005: AI-251): If the actual is an allocator whose -- directly designated type is a class-wide interface, we build -- an anonymous access type to use it as the type of the -- allocator. Later, when the subprogram call is expanded, if -- the interface has a secondary dispatch table the expander -- will add a type conversion to force the correct displacement -- of the pointer. if Nkind (A) = N_Allocator then declare DDT : constant Entity_Id := Directly_Designated_Type (Base_Type (Etype (F))); begin -- Displace the pointer to the object to reference its -- secondary dispatch table. if Is_Class_Wide_Type (DDT) and then Is_Interface (DDT) then Rewrite (A, Convert_To (Etype (F), Relocate_Node (A))); Analyze_And_Resolve (A, Etype (F), Suppress => Access_Check); end if; -- Ada 2005, AI-162:If the actual is an allocator, the -- innermost enclosing statement is the master of the -- created object. This needs to be done with expansion -- enabled only, otherwise the transient scope will not -- be removed in the expansion of the wrapped construct. if Expander_Active and then (Needs_Finalization (DDT) or else Has_Task (DDT)) then Establish_Transient_Scope (A, Manage_Sec_Stack => False); end if; end; if Ekind (Etype (F)) = E_Anonymous_Access_Type then Check_Restriction (No_Access_Parameter_Allocators, A); end if; end if; -- (Ada 2005): The call may be to a primitive operation of a -- tagged synchronized type, declared outside of the type. In -- this case the controlling actual must be converted to its -- corresponding record type, which is the formal type. The -- actual may be a subtype, either because of a constraint or -- because it is a generic actual, so use base type to locate -- concurrent type. F_Typ := Base_Type (Etype (F)); if Is_Tagged_Type (F_Typ) and then (Is_Concurrent_Type (F_Typ) or else Is_Concurrent_Record_Type (F_Typ)) then -- If the actual is overloaded, look for an interpretation -- that has a synchronized type. if not Is_Overloaded (A) then A_Typ := Base_Type (Etype (A)); else declare Index : Interp_Index; It : Interp; begin Get_First_Interp (A, Index, It); while Present (It.Typ) loop if Is_Concurrent_Type (It.Typ) or else Is_Concurrent_Record_Type (It.Typ) then A_Typ := Base_Type (It.Typ); exit; end if; Get_Next_Interp (Index, It); end loop; end; end if; declare Full_A_Typ : Entity_Id; begin if Present (Full_View (A_Typ)) then Full_A_Typ := Base_Type (Full_View (A_Typ)); else Full_A_Typ := A_Typ; end if; -- Tagged synchronized type (case 1): the actual is a -- concurrent type. if Is_Concurrent_Type (A_Typ) and then Corresponding_Record_Type (A_Typ) = F_Typ then Rewrite (A, Unchecked_Convert_To (Corresponding_Record_Type (A_Typ), A)); Resolve (A, Etype (F)); -- Tagged synchronized type (case 2): the formal is a -- concurrent type. elsif Ekind (Full_A_Typ) = E_Record_Type and then Present (Corresponding_Concurrent_Type (Full_A_Typ)) and then Is_Concurrent_Type (F_Typ) and then Present (Corresponding_Record_Type (F_Typ)) and then Full_A_Typ = Corresponding_Record_Type (F_Typ) then Resolve (A, Corresponding_Record_Type (F_Typ)); -- Common case else Resolve (A, Etype (F)); end if; end; -- Not a synchronized operation else Resolve (A, Etype (F)); end if; end if; A_Typ := Etype (A); F_Typ := Etype (F); -- An actual cannot be an untagged formal incomplete type if Ekind (A_Typ) = E_Incomplete_Type and then not Is_Tagged_Type (A_Typ) and then Is_Generic_Type (A_Typ) then Error_Msg_N ("invalid use of untagged formal incomplete type", A); end if; -- For mode IN, if actual is an entity, and the type of the formal -- has warnings suppressed, then we reset Never_Set_In_Source for -- the calling entity. The reason for this is to catch cases like -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram -- uses trickery to modify an IN parameter. if Ekind (F) = E_In_Parameter and then Is_Entity_Name (A) and then Present (Entity (A)) and then Ekind (Entity (A)) = E_Variable and then Has_Warnings_Off (F_Typ) then Set_Never_Set_In_Source (Entity (A), False); end if; -- Perform error checks for IN and IN OUT parameters if Ekind (F) /= E_Out_Parameter then -- Check unset reference. For scalar parameters, it is clearly -- wrong to pass an uninitialized value as either an IN or -- IN-OUT parameter. For composites, it is also clearly an -- error to pass a completely uninitialized value as an IN -- parameter, but the case of IN OUT is trickier. We prefer -- not to give a warning here. For example, suppose there is -- a routine that sets some component of a record to False. -- It is perfectly reasonable to make this IN-OUT and allow -- either initialized or uninitialized records to be passed -- in this case. -- For partially initialized composite values, we also avoid -- warnings, since it is quite likely that we are passing a -- partially initialized value and only the initialized fields -- will in fact be read in the subprogram. if Is_Scalar_Type (A_Typ) or else (Ekind (F) = E_In_Parameter and then not Is_Partially_Initialized_Type (A_Typ)) then Check_Unset_Reference (A); end if; -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT -- actual to a nested call, since this constitutes a reading of -- the parameter, which is not allowed. if Ada_Version = Ada_83 and then Is_Entity_Name (A) and then Ekind (Entity (A)) = E_Out_Parameter then Error_Msg_N ("(Ada 83) illegal reading of out parameter", A); end if; end if; -- In -gnatd.q mode, forget that a given array is constant when -- it is passed as an IN parameter to a foreign-convention -- subprogram. This is in case the subprogram evilly modifies the -- object. Of course, correct code would use IN OUT. if Debug_Flag_Dot_Q and then Ekind (F) = E_In_Parameter and then Has_Foreign_Convention (Nam) and then Is_Array_Type (F_Typ) and then Nkind (A) in N_Has_Entity and then Present (Entity (A)) then Set_Is_True_Constant (Entity (A), False); end if; -- Case of OUT or IN OUT parameter if Ekind (F) /= E_In_Parameter then -- For an Out parameter, check for useless assignment. Note -- that we can't set Last_Assignment this early, because we may -- kill current values in Resolve_Call, and that call would -- clobber the Last_Assignment field. -- Note: call Warn_On_Useless_Assignment before doing the check -- below for Is_OK_Variable_For_Out_Formal so that the setting -- of Referenced_As_LHS/Referenced_As_Out_Formal properly -- reflects the last assignment, not this one. if Ekind (F) = E_Out_Parameter then if Warn_On_Modified_As_Out_Parameter (F) and then Is_Entity_Name (A) and then Present (Entity (A)) and then Comes_From_Source (N) then Warn_On_Useless_Assignment (Entity (A), A); end if; end if; -- Validate the form of the actual. Note that the call to -- Is_OK_Variable_For_Out_Formal generates the required -- reference in this case. -- A call to an initialization procedure for an aggregate -- component may initialize a nested component of a constant -- designated object. In this context the object is variable. if not Is_OK_Variable_For_Out_Formal (A) and then not Is_Init_Proc (Nam) then Error_Msg_NE ("actual for& must be a variable", A, F); if Is_Subprogram (Current_Scope) then if Is_Invariant_Procedure (Current_Scope) or else Is_Partial_Invariant_Procedure (Current_Scope) then Error_Msg_N ("function used in invariant cannot modify its " & "argument", F); elsif Is_Predicate_Function (Current_Scope) then Error_Msg_N ("function used in predicate cannot modify its " & "argument", F); end if; end if; end if; -- What's the following about??? if Is_Entity_Name (A) then Kill_Checks (Entity (A)); else Kill_All_Checks; end if; end if; if A_Typ = Any_Type then Set_Etype (N, Any_Type); return; end if; -- Apply appropriate constraint/predicate checks for IN [OUT] case if Ekind (F) in E_In_Parameter | E_In_Out_Parameter then -- Apply predicate tests except in certain special cases. Note -- that it might be more consistent to apply these only when -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do -- for the outbound predicate tests ??? In any case indicate -- the function being called, for better warnings if the call -- leads to an infinite recursion. if Predicate_Tests_On_Arguments (Nam) then Apply_Predicate_Check (A, F_Typ, Fun => Nam); end if; -- Apply required constraint checks if Is_Scalar_Type (A_Typ) then Apply_Scalar_Range_Check (A, F_Typ); elsif Is_Array_Type (A_Typ) then Apply_Length_Check (A, F_Typ); elsif Is_Record_Type (F_Typ) and then Has_Discriminants (F_Typ) and then Is_Constrained (F_Typ) and then (not Is_Derived_Type (F_Typ) or else Comes_From_Source (Nam)) then Apply_Discriminant_Check (A, F_Typ); -- For view conversions of a discriminated object, apply -- check to object itself, the conversion alreay has the -- proper type. if Nkind (A) = N_Type_Conversion and then Is_Constrained (Etype (Expression (A))) then Apply_Discriminant_Check (Expression (A), F_Typ); end if; elsif Is_Access_Type (F_Typ) and then Is_Array_Type (Designated_Type (F_Typ)) and then Is_Constrained (Designated_Type (F_Typ)) then Apply_Length_Check (A, F_Typ); elsif Is_Access_Type (F_Typ) and then Has_Discriminants (Designated_Type (F_Typ)) and then Is_Constrained (Designated_Type (F_Typ)) then Apply_Discriminant_Check (A, F_Typ); else Apply_Range_Check (A, F_Typ); end if; -- Ada 2005 (AI-231): Note that the controlling parameter case -- already existed in Ada 95, which is partially checked -- elsewhere (see Checks), and we don't want the warning -- message to differ. if Is_Access_Type (F_Typ) and then Can_Never_Be_Null (F_Typ) and then Known_Null (A) then if Is_Controlling_Formal (F) then Apply_Compile_Time_Constraint_Error (N => A, Msg => "null value not allowed here??", Reason => CE_Access_Check_Failed); elsif Ada_Version >= Ada_2005 then Apply_Compile_Time_Constraint_Error (N => A, Msg => "(Ada 2005) NULL not allowed in " & "null-excluding formal??", Reason => CE_Null_Not_Allowed); end if; end if; end if; -- Checks for OUT parameters and IN OUT parameters if Ekind (F) in E_Out_Parameter | E_In_Out_Parameter then -- If there is a type conversion, make sure the return value -- meets the constraints of the variable before the conversion. if Nkind (A) = N_Type_Conversion then if Is_Scalar_Type (A_Typ) then -- Special case here tailored to Exp_Ch6.Is_Legal_Copy, -- which would prevent the check from being generated. -- This is for Starlet only though, so long obsolete. if Mechanism (F) = By_Reference and then Ekind (Nam) = E_Procedure and then Is_Valued_Procedure (Nam) then null; else Apply_Scalar_Range_Check (Expression (A), Etype (Expression (A)), A_Typ); end if; -- In addition the return value must meet the constraints -- of the object type (see the comment below). Apply_Scalar_Range_Check (A, A_Typ, F_Typ); else Apply_Range_Check (Expression (A), Etype (Expression (A)), A_Typ); end if; -- If no conversion, apply scalar range checks and length check -- based on the subtype of the actual (NOT that of the formal). -- This indicates that the check takes place on return from the -- call. During expansion the required constraint checks are -- inserted. In GNATprove mode, in the absence of expansion, -- the flag indicates that the returned value is valid. else if Is_Scalar_Type (F_Typ) then Apply_Scalar_Range_Check (A, A_Typ, F_Typ); elsif Is_Array_Type (F_Typ) and then Ekind (F) = E_Out_Parameter then Apply_Length_Check (A, F_Typ); else Apply_Range_Check (A, A_Typ, F_Typ); end if; end if; -- Note: we do not apply the predicate checks for the case of -- OUT and IN OUT parameters. They are instead applied in the -- Expand_Actuals routine in Exp_Ch6. end if; -- If the formal is of an unconstrained array subtype with fixed -- lower bound, then sliding to that bound may be needed. if Is_Fixed_Lower_Bound_Array_Subtype (F_Typ) then Expand_Sliding_Conversion (A, F_Typ); end if; -- An actual associated with an access parameter is implicitly -- converted to the anonymous access type of the formal and must -- satisfy the legality checks for access conversions. if Ekind (F_Typ) = E_Anonymous_Access_Type then if not Valid_Conversion (A, F_Typ, A) then Error_Msg_N ("invalid implicit conversion for access parameter", A); end if; -- If the actual is an access selected component of a variable, -- the call may modify its designated object. It is reasonable -- to treat this as a potential modification of the enclosing -- record, to prevent spurious warnings that it should be -- declared as a constant, because intuitively programmers -- regard the designated subcomponent as part of the record. if Nkind (A) = N_Selected_Component and then Is_Entity_Name (Prefix (A)) and then not Is_Constant_Object (Entity (Prefix (A))) then Note_Possible_Modification (A, Sure => False); end if; end if; -- Check illegal cases of atomic/volatile/VFA actual (RM C.6(12)) if (Is_By_Reference_Type (F_Typ) or else Is_Aliased (F)) and then Comes_From_Source (N) then if Is_Atomic_Object (A) and then not Is_Atomic (F_Typ) then Error_Msg_NE ("cannot pass atomic object to nonatomic formal&", A, F); Error_Msg_N ("\which is passed by reference (RM C.6(12))", A); elsif Is_Volatile_Object_Ref (A) and then not Is_Volatile (F_Typ) then Error_Msg_NE ("cannot pass volatile object to nonvolatile formal&", A, F); Error_Msg_N ("\which is passed by reference (RM C.6(12))", A); elsif Is_Volatile_Full_Access_Object_Ref (A) and then not Is_Volatile_Full_Access (F_Typ) then Error_Msg_NE ("cannot pass full access object to nonfull access " & "formal&", A, F); Error_Msg_N ("\which is passed by reference (RM C.6(12))", A); end if; -- Check for nonatomic subcomponent of a full access object -- in Ada 2022 (RM C.6 (12)). if Ada_Version >= Ada_2022 and then Is_Subcomponent_Of_Full_Access_Object (A) and then not Is_Atomic_Object (A) then Error_Msg_N ("cannot pass nonatomic subcomponent of full access " & "object", A); Error_Msg_NE ("\to formal & which is passed by reference (RM C.6(12))", A, F); end if; end if; -- Check that subprograms don't have improper controlling -- arguments (RM 3.9.2 (9)). -- A primitive operation may have an access parameter of an -- incomplete tagged type, but a dispatching call is illegal -- if the type is still incomplete. if Is_Controlling_Formal (F) then Set_Is_Controlling_Actual (A); if Ekind (F_Typ) = E_Anonymous_Access_Type then declare Desig : constant Entity_Id := Designated_Type (F_Typ); begin if Ekind (Desig) = E_Incomplete_Type and then No (Full_View (Desig)) and then No (Non_Limited_View (Desig)) then Error_Msg_NE ("premature use of incomplete type& " & "in dispatching call", A, Desig); end if; end; end if; elsif Nkind (A) = N_Explicit_Dereference then Validate_Remote_Access_To_Class_Wide_Type (A); end if; -- Apply legality rule 3.9.2 (9/1) -- Skip this check on helpers and indirect-call wrappers built to -- support class-wide preconditions. -- We make special exception here for mutably tagged types and -- related calls to their initialization procedures. if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A)) and then not Is_Class_Wide_Type (F_Typ) and then not Is_Controlling_Formal (F) and then not In_Instance and then (not Is_Subprogram (Nam) or else No (Class_Preconditions_Subprogram (Nam))) -- Ignore mutably tagged types and their use in calls to init -- procs. and then not Is_Mutably_Tagged_CW_Equivalent_Type (A_Typ) and then not Is_Init_Proc (Nam) then Error_Msg_N ("class-wide argument not allowed here!", A); if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then Error_Msg_Node_2 := F_Typ; Error_Msg_NE ("& is not a dispatching operation of &!", A, Nam); end if; -- Apply the checks described in 3.10.2(27): if the context is a -- specific access-to-object, the actual cannot be class-wide. -- Use base type to exclude access_to_subprogram cases. elsif Is_Access_Type (A_Typ) and then Is_Access_Type (F_Typ) and then not Is_Access_Subprogram_Type (Base_Type (F_Typ)) and then (Is_Class_Wide_Type (Designated_Type (A_Typ)) or else (Nkind (A) = N_Attribute_Reference and then Is_Class_Wide_Type (Etype (Prefix (A))))) and then not Is_Class_Wide_Type (Designated_Type (F_Typ)) and then not Is_Controlling_Formal (F) -- Disable these checks for call to imported C++ subprograms and then not (Is_Entity_Name (Name (N)) and then Is_Imported (Entity (Name (N))) and then Convention (Entity (Name (N))) = Convention_CPP) then Error_Msg_N ("access to class-wide argument not allowed here!", A); if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then Error_Msg_Node_2 := Designated_Type (F_Typ); Error_Msg_NE ("& is not a dispatching operation of &!", A, Nam); end if; end if; Check_Aliased_Parameter; Eval_Actual (A); -- If it is a named association, treat the selector_name as a -- proper identifier, and mark the corresponding entity. if Nkind (Parent (A)) = N_Parameter_Association -- Ignore reference in SPARK mode, as it refers to an entity not -- in scope at the point of reference, so the reference should -- be ignored for computing effects of subprograms. and then not GNATprove_Mode then -- If subprogram is overridden, use name of formal that -- is being called. if Present (Real_Subp) then Set_Entity (Selector_Name (Parent (A)), Real_F); Set_Etype (Selector_Name (Parent (A)), Etype (Real_F)); else Set_Entity (Selector_Name (Parent (A)), F); Generate_Reference (F, Selector_Name (Parent (A))); Set_Etype (Selector_Name (Parent (A)), F_Typ); Generate_Reference (F_Typ, N, ' '); end if; end if; Prev := A; if Ekind (F) /= E_Out_Parameter then Check_Unset_Reference (A); end if; -- A formal parameter of a specific tagged type whose related -- subprogram is subject to pragma Extensions_Visible with value -- "False" cannot act as an actual in a subprogram with value -- "True" (SPARK RM 6.1.7(3)). -- No check needed for helpers and indirect-call wrappers built to -- support class-wide preconditions. if Is_EVF_Expression (A) and then Extensions_Visible_Status (Nam) = Extensions_Visible_True and then not (Is_Subprogram (Current_Scope) and then Present (Class_Preconditions_Subprogram (Current_Scope))) then Error_Msg_N ("formal parameter cannot act as actual parameter when " & "Extensions_Visible is False", A); Error_Msg_NE ("\subprogram & has Extensions_Visible True", A, Nam); end if; -- The actual parameter of a Ghost subprogram whose formal is of -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)). if Comes_From_Source (Nam) and then Is_Ghost_Entity (Nam) and then Ekind (F) in E_In_Out_Parameter | E_Out_Parameter and then Is_Entity_Name (A) and then Present (Entity (A)) and then not Is_Ghost_Entity (Entity (A)) then Error_Msg_NE ("non-ghost variable & cannot appear as actual in call to " & "ghost procedure", A, Entity (A)); if Ekind (F) = E_In_Out_Parameter then Error_Msg_N ("\corresponding formal has mode `IN OUT`", A); else Error_Msg_N ("\corresponding formal has mode OUT", A); end if; end if; -- (AI12-0397): The target of a subprogram call that occurs within -- the expression of an Default_Initial_Condition aspect and has -- an actual that is the current instance of the type must be -- either a primitive of the type or a class-wide subprogram, -- because the type of the current instance in such an aspect is -- considered to be a notional formal derived type whose only -- operations correspond to the primitives of the enclosing type. -- Nonprimitives can be called, but the current instance must be -- converted rather than passed directly. Note that a current -- instance of a type with DIC will occur as a reference to an -- in-mode formal of an enclosing DIC procedure or partial DIC -- procedure. (It seems that this check should perhaps also apply -- to calls within Type_Invariant'Class, but not Type_Invariant, -- aspects???) if Nkind (A) = N_Identifier and then Ekind (Entity (A)) = E_In_Parameter and then Is_Subprogram (Scope (Entity (A))) and then Is_DIC_Procedure (Scope (Entity (A))) -- We check Comes_From_Source to exclude inherited primitives -- from being flagged, because such subprograms turn out to not -- always have the Is_Primitive flag set. ??? and then Comes_From_Source (Nam) and then not Is_Primitive (Nam) and then not Is_Class_Wide_Type (F_Typ) then Error_Msg_NE ("call to nonprimitive & with current instance not allowed " & "for aspect", A, Nam); end if; Next_Actual (A); -- Case where actual is not present else Insert_Default; end if; Next_Formal (F); if Present (Real_Subp) then Next_Formal (Real_F); end if; end loop; end Resolve_Actuals; ----------------------- -- Resolve_Allocator -- ----------------------- procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is Desig_T : constant Entity_Id := Designated_Type (Typ); E : constant Node_Id := Expression (N); Subtyp : Entity_Id; Discrim : Entity_Id; Constr : Node_Id; Aggr : Node_Id; Assoc : Node_Id := Empty; Disc_Exp : Node_Id; procedure Check_Allocator_Discrim_Accessibility (Disc_Exp : Node_Id; Alloc_Typ : Entity_Id); -- Check that accessibility level associated with an access discriminant -- initialized in an allocator by the expression Disc_Exp is not deeper -- than the level of the allocator type Alloc_Typ. An error message is -- issued if this condition is violated. Specialized checks are done for -- the cases of a constraint expression which is an access attribute or -- an access discriminant. procedure Check_Allocator_Discrim_Accessibility_Exprs (Curr_Exp : Node_Id; Alloc_Typ : Entity_Id); -- Dispatch checks performed by Check_Allocator_Discrim_Accessibility -- across all expressions within a given conditional expression. function In_Dispatching_Context return Boolean; -- If the allocator is an actual in a call, it is allowed to be class- -- wide when the context is not because it is a controlling actual. ------------------------------------------- -- Check_Allocator_Discrim_Accessibility -- ------------------------------------------- procedure Check_Allocator_Discrim_Accessibility (Disc_Exp : Node_Id; Alloc_Typ : Entity_Id) is begin if Type_Access_Level (Etype (Disc_Exp)) > Deepest_Type_Access_Level (Alloc_Typ) then Error_Msg_N ("operand type has deeper level than allocator type", Disc_Exp); -- When the expression is an Access attribute the level of the prefix -- object must not be deeper than that of the allocator's type. elsif Nkind (Disc_Exp) = N_Attribute_Reference and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) = Attribute_Access and then Static_Accessibility_Level (Disc_Exp, Zero_On_Dynamic_Level) > Deepest_Type_Access_Level (Alloc_Typ) then Error_Msg_N ("prefix of attribute has deeper level than allocator type", Disc_Exp); -- When the expression is an access discriminant the check is against -- the level of the prefix object. elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type and then Nkind (Disc_Exp) = N_Selected_Component and then Static_Accessibility_Level (Disc_Exp, Zero_On_Dynamic_Level) > Deepest_Type_Access_Level (Alloc_Typ) then Error_Msg_N ("access discriminant has deeper level than allocator type", Disc_Exp); -- All other cases are legal else null; end if; end Check_Allocator_Discrim_Accessibility; ------------------------------------------------- -- Check_Allocator_Discrim_Accessibility_Exprs -- ------------------------------------------------- procedure Check_Allocator_Discrim_Accessibility_Exprs (Curr_Exp : Node_Id; Alloc_Typ : Entity_Id) is Alt : Node_Id; Expr : Node_Id; Disc_Exp : constant Node_Id := Original_Node (Curr_Exp); begin -- When conditional expressions are constant folded we know at -- compile time which expression to check - so don't bother with -- the rest of the cases. if Nkind (Curr_Exp) = N_Attribute_Reference then Check_Allocator_Discrim_Accessibility (Curr_Exp, Alloc_Typ); -- Non-constant-folded if expressions elsif Nkind (Disc_Exp) = N_If_Expression then -- Check both expressions if they are still present in the face -- of expansion. Expr := Next (First (Expressions (Disc_Exp))); if Present (Expr) then Check_Allocator_Discrim_Accessibility_Exprs (Expr, Alloc_Typ); Next (Expr); if Present (Expr) then Check_Allocator_Discrim_Accessibility_Exprs (Expr, Alloc_Typ); end if; end if; -- Non-constant-folded case expressions elsif Nkind (Disc_Exp) = N_Case_Expression then -- Check all alternatives Alt := First (Alternatives (Disc_Exp)); while Present (Alt) loop Check_Allocator_Discrim_Accessibility_Exprs (Expression (Alt), Alloc_Typ); Next (Alt); end loop; -- Base case, check the accessibility of the original node of the -- expression. else Check_Allocator_Discrim_Accessibility (Disc_Exp, Alloc_Typ); end if; end Check_Allocator_Discrim_Accessibility_Exprs; ---------------------------- -- In_Dispatching_Context -- ---------------------------- function In_Dispatching_Context return Boolean is Par : constant Node_Id := Parent (N); begin return Nkind (Par) in N_Subprogram_Call and then Is_Entity_Name (Name (Par)) and then Is_Dispatching_Operation (Entity (Name (Par))); end In_Dispatching_Context; -- Start of processing for Resolve_Allocator begin -- Replace general access with specific type if Ekind (Etype (N)) = E_Allocator_Type then Set_Etype (N, Base_Type (Typ)); end if; if Is_Abstract_Type (Typ) then Error_Msg_N ("type of allocator cannot be abstract", N); end if; -- For qualified expression, resolve the expression using the given -- subtype (nothing to do for type mark, subtype indication) if Nkind (E) = N_Qualified_Expression then if Is_Class_Wide_Type (Etype (E)) and then not Is_Class_Wide_Type (Desig_T) and then not In_Dispatching_Context then Error_Msg_N ("class-wide allocator not allowed for this access type", N); end if; -- Do a full resolution to apply constraint and predicate checks Resolve_Qualified_Expression (E, Etype (E)); Check_Unset_Reference (Expression (E)); -- Allocators generated by the build-in-place expansion mechanism -- are explicitly marked as coming from source but do not need to be -- checked for limited initialization. To exclude this case, ensure -- that the parent of the allocator is a source node. -- The return statement constructed for an Expression_Function does -- not come from source but requires a limited check. if Is_Limited_Type (Etype (E)) and then Comes_From_Source (N) and then (Comes_From_Source (Parent (N)) or else (Ekind (Current_Scope) = E_Function and then Nkind (Original_Node (Unit_Declaration_Node (Current_Scope))) = N_Expression_Function)) and then not In_Instance_Body then if not OK_For_Limited_Init (Etype (E), Expression (E)) then if Nkind (Parent (N)) = N_Assignment_Statement then Error_Msg_N ("illegal expression for initialized allocator of a " & "limited type (RM 7.5 (2.7/2))", N); else Error_Msg_N ("initialization not allowed for limited types", N); end if; Explain_Limited_Type (Etype (E), N); end if; end if; -- Calls to build-in-place functions are not currently supported in -- allocators for access types associated with a simple storage pool. -- Supporting such allocators may require passing additional implicit -- parameters to build-in-place functions (or a significant revision -- of the current b-i-p implementation to unify the handling for -- multiple kinds of storage pools). ??? if Is_Inherently_Limited_Type (Desig_T) and then Nkind (Expression (E)) = N_Function_Call then declare Pool : constant Entity_Id := Associated_Storage_Pool (Root_Type (Typ)); begin if Present (Pool) and then Present (Get_Rep_Pragma (Etype (Pool), Name_Simple_Storage_Pool_Type)) then Error_Msg_N ("limited function calls not yet supported in simple " & "storage pool allocators", Expression (E)); end if; end; end if; -- A special accessibility check is needed for allocators that -- constrain access discriminants. The level of the type of the -- expression used to constrain an access discriminant cannot be -- deeper than the type of the allocator (in contrast to access -- parameters, where the level of the actual can be arbitrary). -- We can't use Valid_Conversion to perform this check because in -- general the type of the allocator is unrelated to the type of -- the access discriminant. if Ekind (Typ) /= E_Anonymous_Access_Type or else Is_Local_Anonymous_Access (Typ) then Subtyp := Entity (Subtype_Mark (E)); Aggr := Original_Node (Expression (E)); if Has_Discriminants (Subtyp) and then Nkind (Aggr) in N_Aggregate | N_Extension_Aggregate then Discrim := First_Discriminant (Base_Type (Subtyp)); -- Get the first component expression of the aggregate if Present (Expressions (Aggr)) then Disc_Exp := First (Expressions (Aggr)); elsif Present (Component_Associations (Aggr)) then Assoc := First (Component_Associations (Aggr)); if Present (Assoc) then Disc_Exp := Expression (Assoc); else Disc_Exp := Empty; end if; else Disc_Exp := Empty; end if; while Present (Discrim) and then Present (Disc_Exp) loop if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then Check_Allocator_Discrim_Accessibility_Exprs (Disc_Exp, Typ); end if; Next_Discriminant (Discrim); if Present (Discrim) then if Present (Assoc) then Next (Assoc); Disc_Exp := Expression (Assoc); elsif Present (Next (Disc_Exp)) then Next (Disc_Exp); else Assoc := First (Component_Associations (Aggr)); if Present (Assoc) then Disc_Exp := Expression (Assoc); else Disc_Exp := Empty; end if; end if; end if; end loop; end if; end if; -- For a subtype mark or subtype indication, freeze the subtype else Freeze_Expression (E); if Is_Access_Constant (Typ) and then not No_Initialization (N) then Error_Msg_N ("initialization required for access-to-constant allocator", N); end if; -- A special accessibility check is needed for allocators that -- constrain access discriminants. The level of the type of the -- expression used to constrain an access discriminant cannot be -- deeper than the type of the allocator (in contrast to access -- parameters, where the level of the actual can be arbitrary). -- We can't use Valid_Conversion to perform this check because -- in general the type of the allocator is unrelated to the type -- of the access discriminant. if Nkind (Original_Node (E)) = N_Subtype_Indication and then (Ekind (Typ) /= E_Anonymous_Access_Type or else Is_Local_Anonymous_Access (Typ)) then Subtyp := Entity (Subtype_Mark (Original_Node (E))); if Has_Discriminants (Subtyp) then Discrim := First_Discriminant (Base_Type (Subtyp)); Constr := First (Constraints (Constraint (Original_Node (E)))); while Present (Discrim) and then Present (Constr) loop if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then if Nkind (Constr) = N_Discriminant_Association then Disc_Exp := Expression (Constr); else Disc_Exp := Constr; end if; Check_Allocator_Discrim_Accessibility_Exprs (Disc_Exp, Typ); end if; Next_Discriminant (Discrim); Next (Constr); end loop; end if; end if; end if; -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility -- check that the level of the type of the created object is not deeper -- than the level of the allocator's access type, since extensions can -- now occur at deeper levels than their ancestor types. This is a -- static accessibility level check; a run-time check is also needed in -- the case of an initialized allocator with a class-wide argument (see -- Expand_Allocator_Expression). if Ada_Version >= Ada_2005 and then Is_Class_Wide_Type (Desig_T) then declare Exp_Typ : Entity_Id; begin if Nkind (E) = N_Qualified_Expression then Exp_Typ := Etype (E); elsif Nkind (E) = N_Subtype_Indication then Exp_Typ := Entity (Subtype_Mark (Original_Node (E))); else Exp_Typ := Entity (E); end if; if Type_Access_Level (Exp_Typ) > Deepest_Type_Access_Level (Typ) then if In_Instance_Body then Error_Msg_Warn := SPARK_Mode /= On; Error_Msg_N ("type in allocator has deeper level than designated " & "class-wide type<<", E); Error_Msg_N ("\Program_Error [<<", E); Rewrite (N, Make_Raise_Program_Error (Sloc (N), Reason => PE_Accessibility_Check_Failed)); Set_Etype (N, Typ); -- Do not apply Ada 2005 accessibility checks on a class-wide -- allocator if the type given in the allocator is a formal -- type or within a formal package. A run-time check will be -- performed in the instance. elsif not Is_Generic_Type (Exp_Typ) and then not In_Generic_Formal_Package (Exp_Typ) then Error_Msg_N ("type in allocator has deeper level than designated " & "class-wide type", E); end if; end if; end; end if; -- Check for allocation from an empty storage pool. But do not complain -- if it's a return statement for a build-in-place function, because the -- allocator is there just in case the caller uses an allocator. If the -- caller does use an allocator, it will be caught at the call site. if No_Pool_Assigned (Typ) and then not For_Special_Return_Object (N) then Error_Msg_N ("allocation from empty storage pool!", N); -- If the context is an unchecked conversion, as may happen within an -- inlined subprogram, the allocator is being resolved with its own -- anonymous type. In that case, if the target type has a specific -- storage pool, it must be inherited explicitly by the allocator type. elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion and then No (Associated_Storage_Pool (Typ)) then Set_Associated_Storage_Pool (Typ, Associated_Storage_Pool (Etype (Parent (N)))); end if; if Ekind (Etype (N)) = E_Anonymous_Access_Type then Check_Restriction (No_Anonymous_Allocators, N); end if; -- Check that an allocator with task parts isn't for a nested access -- type when restriction No_Task_Hierarchy applies. if not Is_Library_Level_Entity (Base_Type (Typ)) and then Has_Task (Base_Type (Desig_T)) then Check_Restriction (No_Task_Hierarchy, N); end if; -- An illegal allocator may be rewritten as a raise Program_Error -- statement. if Nkind (N) = N_Allocator then -- Avoid coextension processing for an allocator that is the -- expansion of a build-in-place function call. if Nkind (Original_Node (N)) = N_Allocator and then Nkind (Expression (Original_Node (N))) = N_Qualified_Expression and then Nkind (Expression (Expression (Original_Node (N)))) = N_Function_Call and then Is_Expanded_Build_In_Place_Call (Expression (Expression (Original_Node (N)))) then null; -- b-i-p function call case else -- An anonymous access discriminant is the definition of a -- coextension. if Ekind (Typ) = E_Anonymous_Access_Type and then Nkind (Associated_Node_For_Itype (Typ)) = N_Discriminant_Specification then declare Discr : constant Entity_Id := Defining_Identifier (Associated_Node_For_Itype (Typ)); begin Check_Restriction (No_Coextensions, N); -- Ada 2012 AI05-0052: If the designated type of the -- allocator is limited, then the allocator shall not -- be used to define the value of an access discriminant -- unless the discriminated type is immutably limited. if Ada_Version >= Ada_2012 and then Is_Limited_Type (Desig_T) and then not Is_Inherently_Limited_Type (Scope (Discr)) then Error_Msg_N ("only immutably limited types can have anonymous " & "access discriminants designating a limited type", N); end if; end; -- Avoid marking an allocator as a dynamic coextension if it is -- within a static construct. if not Is_Static_Coextension (N) then Set_Is_Dynamic_Coextension (N); -- Finalization and deallocation of coextensions utilizes an -- approximate implementation which does not directly adhere -- to the semantic rules. Warn on potential issues involving -- coextensions. if Is_Controlled (Desig_T) then Error_Msg_N ("??coextension will not be finalized when its " & "associated owner is deallocated or finalized", N); else Error_Msg_N ("??coextension will not be deallocated when its " & "associated owner is deallocated", N); end if; end if; -- Cleanup for potential static coextensions else Set_Is_Dynamic_Coextension (N, False); Set_Is_Static_Coextension (N, False); -- Objects allocated through anonymous access types are not -- finalized on time because this involves run-time ownership -- and currently this property is not available. In rare cases -- the object might not be finalized at all. Warn on potential -- issues involving anonymous access-to-controlled types. if Ekind (Typ) = E_Anonymous_Access_Type and then Is_Controlled_Active (Desig_T) then Error_Msg_N ("??object designated by anonymous access value might " & "not be finalized until its enclosing library unit " & "goes out of scope, or not be finalized at all", N); Error_Msg_N ("\use named access type instead", N); end if; end if; end if; end if; -- Report a simple error: if the designated object is a local task, -- its body has not been seen yet, and its activation will fail an -- elaboration check. if Is_Task_Type (Desig_T) and then Scope (Base_Type (Desig_T)) = Current_Scope and then Is_Compilation_Unit (Current_Scope) and then Ekind (Current_Scope) = E_Package and then not In_Package_Body (Current_Scope) then Error_Msg_Warn := SPARK_Mode /= On; Error_Msg_N ("cannot activate task before body seen<<", N); Error_Msg_N ("\Program_Error [<<", N); end if; -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a -- type with a task component on a subpool. This action must raise -- Program_Error at runtime. if Ada_Version >= Ada_2012 and then Nkind (N) = N_Allocator and then Present (Subpool_Handle_Name (N)) and then Has_Task (Desig_T) then Error_Msg_Warn := SPARK_Mode /= On; Error_Msg_N ("cannot allocate task on subpool<<", N); Error_Msg_N ("\Program_Error [<<", N); Rewrite (N, Make_Raise_Program_Error (Sloc (N), Reason => PE_Explicit_Raise)); Set_Etype (N, Typ); end if; end Resolve_Allocator; --------------------------- -- Resolve_Arithmetic_Op -- --------------------------- -- Used for resolving all arithmetic operators except exponentiation procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is L : constant Node_Id := Left_Opnd (N); R : constant Node_Id := Right_Opnd (N); TL : constant Entity_Id := Base_Type (Etype (L)); TR : constant Entity_Id := Base_Type (Etype (R)); T : Entity_Id; Rop : Node_Id; B_Typ : constant Entity_Id := Base_Type (Typ); -- We do the resolution using the base type, because intermediate values -- in expressions always are of the base type, not a subtype of it. function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean; -- Returns True if N is in a context that expects "any real type" function Is_Integer_Or_Universal (N : Node_Id) return Boolean; -- Return True iff given type is Integer or universal real/integer procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id); -- Choose type of integer literal in fixed-point operation to conform -- to available fixed-point type. T is the type of the other operand, -- which is needed to determine the expected type of N. procedure Set_Operand_Type (N : Node_Id); -- Set operand type to T if universal ------------------------------- -- Expected_Type_Is_Any_Real -- ------------------------------- function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is begin -- N is the expression after "delta" in a fixed_point_definition; -- see RM-3.5.9(6): return Nkind (Parent (N)) in N_Ordinary_Fixed_Point_Definition | N_Decimal_Fixed_Point_Definition -- N is one of the bounds in a real_range_specification; -- see RM-3.5.7(5): | N_Real_Range_Specification -- N is the expression of a delta_constraint; -- see RM-J.3(3): | N_Delta_Constraint; end Expected_Type_Is_Any_Real; ----------------------------- -- Is_Integer_Or_Universal -- ----------------------------- function Is_Integer_Or_Universal (N : Node_Id) return Boolean is T : Entity_Id; Index : Interp_Index; It : Interp; begin if not Is_Overloaded (N) then T := Etype (N); return Base_Type (T) = Base_Type (Standard_Integer) or else Is_Universal_Numeric_Type (T); else Get_First_Interp (N, Index, It); while Present (It.Typ) loop if Base_Type (It.Typ) = Base_Type (Standard_Integer) or else Is_Universal_Numeric_Type (It.Typ) then return True; end if; Get_Next_Interp (Index, It); end loop; end if; return False; end Is_Integer_Or_Universal; ---------------------------- -- Set_Mixed_Mode_Operand -- ---------------------------- procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is Index : Interp_Index; It : Interp; begin if Universal_Interpretation (N) = Universal_Integer then -- A universal integer literal is resolved as standard integer -- except in the case of a fixed-point result, where we leave it -- as universal (to be handled by Exp_Fixd later on) if Is_Fixed_Point_Type (T) then Resolve (N, Universal_Integer); else Resolve (N, Standard_Integer); end if; elsif Universal_Interpretation (N) = Universal_Real and then (T = Base_Type (Standard_Integer) or else Is_Universal_Numeric_Type (T)) then -- A universal real can appear in a fixed-type context. We resolve -- the literal with that context, even though this might raise an -- exception prematurely (the other operand may be zero). Resolve (N, B_Typ); elsif Etype (N) = Base_Type (Standard_Integer) and then T = Universal_Real and then Is_Overloaded (N) then -- Integer arg in mixed-mode operation. Resolve with universal -- type, in case preference rule must be applied. Resolve (N, Universal_Integer); elsif Etype (N) = T and then B_Typ /= Universal_Fixed then -- If the operand is part of a fixed multiplication operation, -- a conversion will be applied to each operand, so resolve it -- with its own type. if Nkind (Parent (N)) in N_Op_Divide | N_Op_Multiply then Resolve (N); else -- Not a mixed-mode operation, resolve with context Resolve (N, B_Typ); end if; elsif Etype (N) = Any_Fixed then -- N may itself be a mixed-mode operation, so use context type Resolve (N, B_Typ); elsif Is_Fixed_Point_Type (T) and then B_Typ = Universal_Fixed and then Is_Overloaded (N) then -- Must be (fixed * fixed) operation, operand must have one -- compatible interpretation. Resolve (N, Any_Fixed); elsif Is_Fixed_Point_Type (B_Typ) and then (T = Universal_Real or else Is_Fixed_Point_Type (T)) and then Is_Overloaded (N) then -- C * F(X) in a fixed context, where C is a real literal or a -- fixed-point expression. F must have either a fixed type -- interpretation or an integer interpretation, but not both. Get_First_Interp (N, Index, It); while Present (It.Typ) loop if Base_Type (It.Typ) = Base_Type (Standard_Integer) then if Analyzed (N) then Error_Msg_N ("ambiguous operand in fixed operation", N); else Resolve (N, Standard_Integer); end if; elsif Is_Fixed_Point_Type (It.Typ) then if Analyzed (N) then Error_Msg_N ("ambiguous operand in fixed operation", N); else Resolve (N, It.Typ); end if; end if; Get_Next_Interp (Index, It); end loop; -- Reanalyze the literal with the fixed type of the context. If -- context is Universal_Fixed, we are within a conversion, leave -- the literal as a universal real because there is no usable -- fixed type, and the target of the conversion plays no role in -- the resolution. declare Op2 : Node_Id; T2 : Entity_Id; begin if N = L then Op2 := R; else Op2 := L; end if; if B_Typ = Universal_Fixed and then Nkind (Op2) = N_Real_Literal then T2 := Universal_Real; else T2 := B_Typ; end if; Set_Analyzed (Op2, False); Resolve (Op2, T2); end; -- A universal real conditional expression can appear in a fixed-type -- context and must be resolved with that context to facilitate the -- code generation in the back end. However, If the context is -- Universal_fixed (i.e. as an operand of a multiplication/division -- involving a fixed-point operand) the conditional expression must -- resolve to a unique visible fixed_point type, normally Duration. elsif Nkind (N) in N_Case_Expression | N_If_Expression and then Etype (N) = Universal_Real and then Is_Fixed_Point_Type (B_Typ) then if B_Typ = Universal_Fixed then Resolve (N, Unique_Fixed_Point_Type (N)); else Resolve (N, B_Typ); end if; else Resolve (N); end if; end Set_Mixed_Mode_Operand; ---------------------- -- Set_Operand_Type -- ---------------------- procedure Set_Operand_Type (N : Node_Id) is begin if Is_Universal_Numeric_Type (Etype (N)) then Set_Etype (N, T); end if; end Set_Operand_Type; -- Start of processing for Resolve_Arithmetic_Op begin if Ekind (Entity (N)) = E_Function and then Is_Imported (Entity (N)) and then Is_Intrinsic_Subprogram (Entity (N)) then Generate_Reference (Entity (N), N); Resolve_Intrinsic_Operator (N, Typ); return; -- Special-case for mixed-mode universal expressions or fixed point type -- operation: each argument is resolved separately. The same treatment -- is required if one of the operands of a fixed point operation is -- universal real, since in this case we don't do a conversion to a -- specific fixed-point type (instead the expander handles the case). -- Set the type of the node to its universal interpretation because -- legality checks on an exponentiation operand need the context. elsif Is_Universal_Numeric_Type (B_Typ) and then Present (Universal_Interpretation (L)) and then Present (Universal_Interpretation (R)) then Set_Etype (N, B_Typ); Resolve (L, Universal_Interpretation (L)); Resolve (R, Universal_Interpretation (R)); elsif (B_Typ = Universal_Real or else Etype (N) = Universal_Fixed or else (Etype (N) = Any_Fixed and then Is_Fixed_Point_Type (B_Typ)) or else (Is_Fixed_Point_Type (B_Typ) and then (Is_Integer_Or_Universal (L) or else Is_Integer_Or_Universal (R)))) and then Nkind (N) in N_Op_Multiply | N_Op_Divide then if TL = Universal_Integer or else TR = Universal_Integer then Check_For_Visible_Operator (N, B_Typ); end if; -- If context is a fixed type and one operand is integer, the other -- is resolved with the type of the context. if Is_Fixed_Point_Type (B_Typ) and then (Base_Type (TL) = Base_Type (Standard_Integer) or else TL = Universal_Integer) then Resolve (R, B_Typ); Resolve (L, TL); elsif Is_Fixed_Point_Type (B_Typ) and then (Base_Type (TR) = Base_Type (Standard_Integer) or else TR = Universal_Integer) then Resolve (L, B_Typ); Resolve (R, TR); -- If both operands are universal and the context is a floating -- point type, the operands are resolved to the type of the context. elsif Is_Floating_Point_Type (B_Typ) then Resolve (L, B_Typ); Resolve (R, B_Typ); else Set_Mixed_Mode_Operand (L, TR); Set_Mixed_Mode_Operand (R, TL); end if; -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed -- multiplying operators from being used when the expected type is -- also universal_fixed. Note that B_Typ will be Universal_Fixed in -- some cases where the expected type is actually Any_Real; -- Expected_Type_Is_Any_Real takes care of that case. if Etype (N) = Universal_Fixed or else Etype (N) = Any_Fixed then if B_Typ = Universal_Fixed and then not Expected_Type_Is_Any_Real (N) and then Nkind (Parent (N)) not in N_Type_Conversion | N_Unchecked_Type_Conversion then Error_Msg_N ("type cannot be determined from context!", N); Error_Msg_N ("\explicit conversion to result type required", N); Set_Etype (L, Any_Type); Set_Etype (R, Any_Type); else if Ada_Version = Ada_83 and then Etype (N) = Universal_Fixed and then Nkind (Parent (N)) not in N_Type_Conversion | N_Unchecked_Type_Conversion then Error_Msg_N ("(Ada 83) fixed-point operation needs explicit " & "conversion", N); end if; -- The expected type is "any real type" in contexts like -- type T is delta ... -- in which case we need to set the type to Universal_Real -- so that static expression evaluation will work properly. if Expected_Type_Is_Any_Real (N) then Set_Etype (N, Universal_Real); else Set_Etype (N, B_Typ); end if; end if; elsif Is_Fixed_Point_Type (B_Typ) and then (Is_Integer_Or_Universal (L) or else Nkind (L) = N_Real_Literal or else Nkind (R) = N_Real_Literal or else Is_Integer_Or_Universal (R)) then Set_Etype (N, B_Typ); elsif Etype (N) = Any_Fixed then -- If no previous errors, this is only possible if one operand is -- overloaded and the context is universal. Resolve as such. Set_Etype (N, B_Typ); end if; else if Is_Universal_Numeric_Type (TL) and then Is_Universal_Numeric_Type (TR) then Check_For_Visible_Operator (N, B_Typ); end if; -- If the context is Universal_Fixed and the operands are also -- universal fixed, this is an error, unless there is only one -- applicable fixed_point type (usually Duration). if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then T := Unique_Fixed_Point_Type (N); if T = Any_Type then Set_Etype (N, T); return; else Resolve (L, T); Resolve (R, T); end if; else Resolve (L, B_Typ); Resolve (R, B_Typ); end if; -- If one of the arguments was resolved to a non-universal type. -- label the result of the operation itself with the same type. -- Do the same for the universal argument, if any. T := Intersect_Types (L, R); Set_Etype (N, Base_Type (T)); Set_Operand_Type (L); Set_Operand_Type (R); end if; Generate_Operator_Reference (N, Typ); Analyze_Dimension (N); Eval_Arithmetic_Op (N); -- Set overflow and division checking bit if Nkind (N) in N_Op then if not Overflow_Checks_Suppressed (Etype (N)) then Enable_Overflow_Check (N); end if; -- Give warning if explicit division by zero if Nkind (N) in N_Op_Divide | N_Op_Rem | N_Op_Mod and then not Division_Checks_Suppressed (Etype (N)) then Rop := Right_Opnd (N); if Compile_Time_Known_Value (Rop) and then ((Is_Integer_Type (Etype (Rop)) and then Expr_Value (Rop) = Uint_0) or else (Is_Real_Type (Etype (Rop)) and then Expr_Value_R (Rop) = Ureal_0)) then -- Specialize the warning message according to the operation. -- When SPARK_Mode is On, force a warning instead of an error -- in that case, as this likely corresponds to deactivated -- code. The following warnings are for the case case Nkind (N) is when N_Op_Divide => -- For division, we have two cases, for float division -- of an unconstrained float type, on a machine where -- Machine_Overflows is false, we don't get an exception -- at run-time, but rather an infinity or Nan. The Nan -- case is pretty obscure, so just warn about infinities. if Is_Floating_Point_Type (Typ) and then not Is_Constrained (Typ) and then not Machine_Overflows_On_Target then Error_Msg_N ("float division by zero, may generate " & "'+'/'- infinity??", Right_Opnd (N)); -- For all other cases, we get a Constraint_Error else Apply_Compile_Time_Constraint_Error (N, "division by zero??", CE_Divide_By_Zero, Loc => Sloc (Right_Opnd (N)), Warn => SPARK_Mode = On); end if; when N_Op_Rem => Apply_Compile_Time_Constraint_Error (N, "rem with zero divisor??", CE_Divide_By_Zero, Loc => Sloc (Right_Opnd (N)), Warn => SPARK_Mode = On); when N_Op_Mod => Apply_Compile_Time_Constraint_Error (N, "mod with zero divisor??", CE_Divide_By_Zero, Loc => Sloc (Right_Opnd (N)), Warn => SPARK_Mode = On); -- Division by zero can only happen with division, rem, -- and mod operations. when others => raise Program_Error; end case; -- Otherwise just set the flag to check at run time else Activate_Division_Check (N); end if; end if; -- If Restriction No_Implicit_Conditionals is active, then it is -- violated if either operand can be negative for mod, or for rem -- if both operands can be negative. if Restriction_Check_Required (No_Implicit_Conditionals) and then Nkind (N) in N_Op_Rem | N_Op_Mod then declare Lo : Uint; Hi : Uint; OK : Boolean; LNeg : Boolean; RNeg : Boolean; -- Set if corresponding operand might be negative begin Determine_Range (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True); LNeg := not OK or else Lo < 0; Determine_Range (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True); RNeg := not OK or else Lo < 0; -- Check if we will be generating conditionals. There are two -- cases where that can happen, first for REM, the only case -- is largest negative integer mod -1, where the division can -- overflow, but we still have to give the right result. The -- front end generates a test for this annoying case. Here we -- just test if both operands can be negative (that's what the -- expander does, so we match its logic here). -- The second case is mod where either operand can be negative. -- In this case, the back end has to generate additional tests. if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg)) or else (Nkind (N) = N_Op_Mod and then (LNeg or RNeg)) then Check_Restriction (No_Implicit_Conditionals, N); end if; end; end if; end if; Check_Unset_Reference (L); Check_Unset_Reference (R); end Resolve_Arithmetic_Op; ------------------ -- Resolve_Call -- ------------------ procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); Subp : constant Node_Id := Name (N); Body_Id : Entity_Id; I : Interp_Index; It : Interp; Nam : Entity_Id; Nam_Decl : Node_Id; Nam_UA : Entity_Id; Norm_OK : Boolean; Rtype : Entity_Id; Scop : Entity_Id; begin -- Preserve relevant elaboration-related attributes of the context which -- are no longer available or very expensive to recompute once analysis, -- resolution, and expansion are over. Mark_Elaboration_Attributes (N_Id => N, Checks => True, Modes => True, Warnings => True); -- The context imposes a unique interpretation with type Typ on a -- procedure or function call. Find the entity of the subprogram that -- yields the expected type, and propagate the corresponding formal -- constraints on the actuals. The caller has established that an -- interpretation exists, and emitted an error if not unique. -- First deal with the case of a call to an access-to-subprogram, -- dereference made explicit in Analyze_Call. if Ekind (Etype (Subp)) = E_Subprogram_Type then if not Is_Overloaded (Subp) then Nam := Etype (Subp); else -- Find the interpretation whose type (a subprogram type) has a -- return type that is compatible with the context. Analysis of -- the node has established that one exists. Nam := Empty; Get_First_Interp (Subp, I, It); while Present (It.Typ) loop if Covers (Typ, Etype (It.Typ)) then Nam := It.Typ; exit; end if; Get_Next_Interp (I, It); end loop; if No (Nam) then raise Program_Error; end if; end if; -- If the prefix is not an entity, then resolve it if not Is_Entity_Name (Subp) then Resolve (Subp, Nam); end if; -- For an indirect call, we always invalidate checks, since we do not -- know whether the subprogram is local or global. Yes we could do -- better here, e.g. by knowing that there are no local subprograms, -- but it does not seem worth the effort. Similarly, we kill all -- knowledge of current constant values. Kill_Current_Values; -- If this is a procedure call which is really an entry call, do -- the conversion of the procedure call to an entry call. Protected -- operations use the same circuitry because the name in the call -- can be an arbitrary expression with special resolution rules. elsif Nkind (Subp) in N_Selected_Component | N_Indexed_Component or else (Is_Entity_Name (Subp) and then Is_Entry (Entity (Subp))) then Resolve_Entry_Call (N, Typ); if Legacy_Elaboration_Checks then Check_Elab_Call (N); end if; -- Annotate the tree by creating a call marker in case the original -- call is transformed by expansion. The call marker is automatically -- saved for later examination by the ABE Processing phase. Build_Call_Marker (N); -- Kill checks and constant values, as above for indirect case -- Who knows what happens when another task is activated? Kill_Current_Values; return; -- Normal subprogram call with name established in Resolve elsif not Is_Type (Entity (Subp)) then Nam := Entity (Subp); Set_Entity_With_Checks (Subp, Nam); -- Otherwise we must have the case of an overloaded call else pragma Assert (Is_Overloaded (Subp)); -- Initialize Nam to prevent warning (we know it will be assigned -- in the loop below, but the compiler does not know that). Nam := Empty; Get_First_Interp (Subp, I, It); while Present (It.Typ) loop if Covers (Typ, It.Typ) then Nam := It.Nam; Set_Entity_With_Checks (Subp, Nam); exit; end if; Get_Next_Interp (I, It); end loop; end if; -- Check that a call to Current_Task does not occur in an entry body if Is_RTE (Nam, RE_Current_Task) then declare P : Node_Id; begin P := N; loop P := Parent (P); -- Exclude calls that occur within the default of a formal -- parameter of the entry, since those are evaluated outside -- of the body. exit when No (P) or else Nkind (P) = N_Parameter_Specification; if Nkind (P) = N_Entry_Body or else (Nkind (P) = N_Subprogram_Body and then Is_Entry_Barrier_Function (P)) then Rtype := Etype (N); Error_Msg_Warn := SPARK_Mode /= On; Error_Msg_NE ("& should not be used in entry body (RM C.7(17))<<", N, Nam); Error_Msg_NE ("\Program_Error [<<", N, Nam); Rewrite (N, Make_Raise_Program_Error (Loc, Reason => PE_Current_Task_In_Entry_Body)); Set_Etype (N, Rtype); return; end if; end loop; end; end if; -- Check that a procedure call does not occur in the context of the -- entry call statement of a conditional or timed entry call. Note that -- the case of a call to a subprogram renaming of an entry will also be -- rejected. The test for N not being an N_Entry_Call_Statement is -- defensive, covering the possibility that the processing of entry -- calls might reach this point due to later modifications of the code -- above. if Nkind (Parent (N)) = N_Entry_Call_Alternative and then Nkind (N) /= N_Entry_Call_Statement and then Entry_Call_Statement (Parent (N)) = N then if Ada_Version < Ada_2005 then Error_Msg_N ("entry call required in select statement", N); -- Ada 2005 (AI-345): If a procedure_call_statement is used -- for a procedure_or_entry_call, the procedure_name or -- procedure_prefix of the procedure_call_statement shall denote -- an entry renamed by a procedure, or (a view of) a primitive -- subprogram of a limited interface whose first parameter is -- a controlling parameter. elsif Nkind (N) = N_Procedure_Call_Statement and then not Is_Renamed_Entry (Nam) and then not Is_Controlling_Limited_Procedure (Nam) then Error_Msg_N ("entry call or dispatching primitive of interface required", N); end if; end if; -- Check that this is not a call to a protected procedure or entry from -- within a protected function. Check_Internal_Protected_Use (N, Nam); -- Freeze the subprogram name if not in a spec-expression. Note that -- we freeze procedure calls as well as function calls. Procedure calls -- are not frozen according to the rules (RM 13.14(14)) because it is -- impossible to have a procedure call to a non-frozen procedure in -- pure Ada, but in the code that we generate in the expander, this -- rule needs extending because we can generate procedure calls that -- need freezing. -- In Ada 2012, expression functions may be called within pre/post -- conditions of subsequent functions or expression functions. Such -- calls do not freeze when they appear within generated bodies, -- (including the body of another expression function) which would -- place the freeze node in the wrong scope. An expression function -- is frozen in the usual fashion, by the appearance of a real body, -- or at the end of a declarative part. However an implicit call to -- an expression function may appear when it is part of a default -- expression in a call to an initialization procedure, and must be -- frozen now, even if the body is inserted at a later point. -- Otherwise, the call freezes the expression if expander is active, -- for example as part of an object declaration. if Is_Entity_Name (Subp) and then not In_Spec_Expression and then not Is_Expression_Function_Or_Completion (Current_Scope) and then not (Chars (Current_Scope) = Name_uWrapped_Statements and then Is_Expression_Function_Or_Completion (Scope (Current_Scope))) and then (not Is_Expression_Function_Or_Completion (Entity (Subp)) or else Expander_Active) then if Is_Expression_Function (Entity (Subp)) then -- Force freeze of expression function in call Set_Comes_From_Source (Subp, True); Set_Must_Not_Freeze (Subp, False); end if; Freeze_Expression (Subp); end if; -- For a predefined operator, the type of the result is the type imposed -- by context, except for a predefined operation on universal fixed. -- Otherwise the type of the call is the type returned by the subprogram -- being called. if Is_Predefined_Op (Nam) then if Etype (N) /= Universal_Fixed then Set_Etype (N, Typ); end if; -- If the subprogram returns an array type, and the context requires the -- component type of that array type, the node is really an indexing of -- the parameterless call. Resolve as such. A pathological case occurs -- when the type of the component is an access to the array type. In -- this case the call is truly ambiguous. If the call is to an intrinsic -- subprogram, it can't be an indexed component. This check is necessary -- because if it's Unchecked_Conversion, and we have "type T_Ptr is -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of -- pointers to the same array), the compiler gets confused and does an -- infinite recursion. elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam)) and then ((Is_Array_Type (Etype (Nam)) and then Covers (Typ, Component_Type (Etype (Nam)))) or else (Is_Access_Type (Etype (Nam)) and then Is_Array_Type (Designated_Type (Etype (Nam))) and then Covers (Typ, Component_Type (Designated_Type (Etype (Nam)))) and then not Is_Intrinsic_Subprogram (Entity (Subp)))) then declare Index_Node : Node_Id; New_Subp : Node_Id; Ret_Type : constant Entity_Id := Etype (Nam); begin -- If this is a parameterless call there is no ambiguity and the -- call has the type of the function. if No (First_Actual (N)) then Set_Etype (N, Etype (Nam)); if Present (First_Formal (Nam)) then Resolve_Actuals (N, Nam); end if; -- Annotate the tree by creating a call marker in case the -- original call is transformed by expansion. The call marker -- is automatically saved for later examination by the ABE -- Processing phase. Build_Call_Marker (N); elsif Is_Access_Type (Ret_Type) and then Ret_Type = Component_Type (Designated_Type (Ret_Type)) then Error_Msg_N ("cannot disambiguate function call and indexing", N); else New_Subp := Relocate_Node (Subp); -- The called entity may be an explicit dereference, in which -- case there is no entity to set. if Nkind (New_Subp) /= N_Explicit_Dereference then Set_Entity (Subp, Nam); end if; if (Is_Array_Type (Ret_Type) and then Component_Type (Ret_Type) /= Any_Type) or else (Is_Access_Type (Ret_Type) and then Component_Type (Designated_Type (Ret_Type)) /= Any_Type) then if Needs_No_Actuals (Nam) then -- Indexed call to a parameterless function Index_Node := Make_Indexed_Component (Loc, Prefix => Make_Function_Call (Loc, Name => New_Subp), Expressions => Parameter_Associations (N)); else -- An Ada 2005 prefixed call to a primitive operation -- whose first parameter is the prefix. This prefix was -- prepended to the parameter list, which is actually a -- list of indexes. Remove the prefix in order to build -- the proper indexed component. Index_Node := Make_Indexed_Component (Loc, Prefix => Make_Function_Call (Loc, Name => New_Subp, Parameter_Associations => New_List (Remove_Head (Parameter_Associations (N)))), Expressions => Parameter_Associations (N)); end if; -- Preserve the parenthesis count of the node Set_Paren_Count (Index_Node, Paren_Count (N)); -- Since we are correcting a node classification error made -- by the parser, we call Replace rather than Rewrite. Replace (N, Index_Node); Set_Etype (Prefix (N), Ret_Type); Set_Etype (N, Typ); if Legacy_Elaboration_Checks then Check_Elab_Call (Prefix (N)); end if; -- Annotate the tree by creating a call marker in case -- the original call is transformed by expansion. The call -- marker is automatically saved for later examination by -- the ABE Processing phase. Build_Call_Marker (Prefix (N)); Resolve_Indexed_Component (N, Typ); end if; end if; return; end; else -- If the called function is not declared in the main unit and it -- returns the limited view of type then use the available view (as -- is done in Try_Object_Operation) to prevent back-end confusion; -- for the function entity itself. The call must appear in a context -- where the nonlimited view is available. If the function entity is -- in the extended main unit then no action is needed, because the -- back end handles this case. In either case the type of the call -- is the nonlimited view. if From_Limited_With (Etype (Nam)) and then Present (Available_View (Etype (Nam))) then Set_Etype (N, Available_View (Etype (Nam))); if not In_Extended_Main_Code_Unit (Nam) then Set_Etype (Nam, Available_View (Etype (Nam))); end if; else Set_Etype (N, Etype (Nam)); end if; end if; -- In the case where the call is to an overloaded subprogram, Analyze -- calls Normalize_Actuals once per overloaded subprogram. Therefore in -- such a case Normalize_Actuals needs to be called once more to order -- the actuals correctly. Otherwise the call will have the ordering -- given by the last overloaded subprogram whether this is the correct -- one being called or not. if Is_Overloaded (Subp) then Normalize_Actuals (N, Nam, False, Norm_OK); pragma Assert (Norm_OK); end if; -- In any case, call is fully resolved now. Reset Overload flag, to -- prevent subsequent overload resolution if node is analyzed again Set_Is_Overloaded (Subp, False); Set_Is_Overloaded (N, False); -- A Ghost entity must appear in a specific context if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then Check_Ghost_Context (Nam, N); end if; if Is_Entity_Name (Subp) then Local_Restrict.Check_Call (Call => N, Callee => Ultimate_Alias (Nam)); else Local_Restrict.Check_Call (Call => N); end if; -- If we are calling the current subprogram from immediately within its -- body, then that is the case where we can sometimes detect cases of -- infinite recursion statically. Do not try this in case restriction -- No_Recursion is in effect anyway, and do it only for source calls. if Comes_From_Source (N) then Scop := Current_Scope; -- Issue warning for possible infinite recursion in the absence -- of the No_Recursion restriction. if Same_Or_Aliased_Subprograms (Nam, Scop) and then not Restriction_Active (No_Recursion) and then not Is_Static_Function (Scop) and then Check_Infinite_Recursion (N) then -- Here we detected and flagged an infinite recursion, so we do -- not need to test the case below for further warnings. Also we -- are all done if we now have a raise SE node. if Nkind (N) = N_Raise_Storage_Error then return; end if; -- If call is to immediately containing subprogram, then check for -- the case of a possible run-time detectable infinite recursion. else Scope_Loop : while Scop /= Standard_Standard loop if Same_Or_Aliased_Subprograms (Nam, Scop) then -- Ada 2022 (AI12-0075): Static functions are never allowed -- to make a recursive call, as specified by 6.8(5.4/5). if Is_Static_Function (Scop) then Error_Msg_N ("recursive call not allowed in static expression " & "function", N); Set_Error_Posted (Scop); exit Scope_Loop; end if; -- Although in general case, recursion is not statically -- checkable, the case of calling an immediately containing -- subprogram is easy to catch. if not Is_Ignored_Ghost_Entity (Nam) then Check_Restriction (No_Recursion, N); end if; -- If the recursive call is to a parameterless subprogram, -- then even if we can't statically detect infinite -- recursion, this is pretty suspicious, and we output a -- warning. Furthermore, we will try later to detect some -- cases here at run time by expanding checking code (see -- Detect_Infinite_Recursion in package Exp_Ch6). -- If the recursive call is within a handler, do not emit a -- warning, because this is a common idiom: loop until input -- is correct, catch illegal input in handler and restart. if No (First_Formal (Nam)) and then Etype (Nam) = Standard_Void_Type and then not Error_Posted (N) and then Nkind (Parent (N)) /= N_Exception_Handler then -- For the case of a procedure call. We give the message -- only if the call is the first statement in a sequence -- of statements, or if all previous statements are -- simple assignments. This is simply a heuristic to -- decrease false positives, without losing too many good -- warnings. The idea is that these previous statements -- may affect global variables the procedure depends on. -- We also exclude raise statements, that may arise from -- constraint checks and are probably unrelated to the -- intended control flow. if Nkind (N) = N_Procedure_Call_Statement and then Is_List_Member (N) then declare P : Node_Id; begin P := Prev (N); while Present (P) loop if Nkind (P) not in N_Assignment_Statement | N_Raise_Constraint_Error then exit Scope_Loop; end if; Prev (P); end loop; end; end if; -- Do not give warning if we are in a conditional context declare K : constant Node_Kind := Nkind (Parent (N)); begin if (K = N_Loop_Statement and then Present (Iteration_Scheme (Parent (N)))) or else K = N_If_Statement or else K = N_Elsif_Part or else K = N_Case_Statement_Alternative then exit Scope_Loop; end if; end; -- Here warning is to be issued Set_Has_Recursive_Call (Nam); Error_Msg_Warn := SPARK_Mode /= On; Error_Msg_N ("possible infinite recursion< PE_Explicit_Raise)); end if; end; end if; -- Check for calling a function with OUT or IN OUT parameter when the -- calling context (us right now) is not Ada 2012, so does not allow -- OUT or IN OUT parameters in function calls. Functions declared in -- a predefined unit are OK, as they may be called indirectly from a -- user-declared instantiation. if Ada_Version < Ada_2012 and then Ekind (Nam) = E_Function and then Has_Out_Or_In_Out_Parameter (Nam) and then not In_Predefined_Unit (Nam) then Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam); Error_Msg_N ("\call to this function only allowed in Ada 2012", N); end if; -- Check the dimensions of the actuals in the call. For function calls, -- propagate the dimensions from the returned type to N. Analyze_Dimension_Call (N, Nam); -- Check unreachable code after calls to procedures with No_Return if Ekind (Nam) = E_Procedure and then No_Return (Nam) then Check_Unreachable_Code (N); end if; -- All done, evaluate call and deal with elaboration issues Eval_Call (N); if Legacy_Elaboration_Checks then Check_Elab_Call (N); end if; -- Annotate the tree by creating a call marker in case the original call -- is transformed by expansion. The call marker is automatically saved -- for later examination by the ABE Processing phase. Build_Call_Marker (N); Mark_Use_Clauses (Subp); Warn_On_Overlapping_Actuals (Nam, N); -- Ada 2022 (AI12-0075): If the call is a static call to a static -- expression function, then we want to "inline" the call, replacing -- it with the folded static result. This is not done if the checking -- for a potentially static expression is enabled or if an error has -- been posted on the call (which may be due to the check for recursive -- calls, in which case we don't want to fall into infinite recursion -- when doing the inlining). if not Checking_Potentially_Static_Expression and then Is_Static_Function_Call (N) and then not Is_Intrinsic_Subprogram (Ultimate_Alias (Nam)) and then not Error_Posted (Ultimate_Alias (Nam)) then Inline_Static_Function_Call (N, Ultimate_Alias (Nam)); -- In GNATprove mode, expansion is disabled, but we want to inline some -- subprograms to facilitate formal verification. Indirect calls through -- a subprogram type or within a generic cannot be inlined. Inlining is -- performed only for calls subject to SPARK_Mode => On. elsif GNATprove_Mode and then SPARK_Mode = On and then Is_Overloadable (Nam) and then not Inside_A_Generic then Nam_UA := Ultimate_Alias (Nam); Nam_Decl := Unit_Declaration_Node (Nam_UA); if Nkind (Nam_Decl) = N_Subprogram_Declaration then Body_Id := Corresponding_Body (Nam_Decl); -- Nothing to do if the subprogram is not inlined (because it is -- recursive, directly or indirectly), or is not eligible for -- inlining GNATprove mode (because of properties of the -- subprogram itself), or inlining has been disabled with switch -- -gnatdm. if not Is_Inlined (Nam_UA) or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id) or else Debug_Flag_M then null; -- Calls cannot be inlined inside assertions, as GNATprove treats -- assertions as logic expressions. Only issue a message when the -- body has been seen, otherwise this leads to spurious messages -- on expression functions. elsif In_Assertion_Expr /= 0 then Cannot_Inline ("cannot inline & (in assertion expression)?", N, Nam_UA, Suppress_Info => No (Body_Id)); -- Calls cannot be inlined inside default expressions elsif In_Default_Expr then Cannot_Inline ("cannot inline & (in default expression)?", N, Nam_UA); -- Calls cannot be inlined inside potentially unevaluated -- expressions, as this would create complex actions inside -- expressions, that are not handled by GNATprove. elsif Is_Potentially_Unevaluated (N) then Cannot_Inline ("cannot inline & (in potentially unevaluated context)?", N, Nam_UA); -- Calls are not inlined inside the loop_parameter_specification -- or iterator_specification of the quantified expression, as they -- are only preanalyzed. Calls in the predicate part are handled -- by the previous test on potentially unevaluated expressions. elsif In_Quantified_Expression (N) then Cannot_Inline ("cannot inline & (in quantified expression)?", N, Nam_UA); -- Inlining should not be performed during preanalysis elsif Full_Analysis then -- Do not inline calls inside expression functions or functions -- generated by the front end for subtype predicates, as this -- would prevent interpreting them as logical formulas in -- GNATprove. Only issue a message when the body has been seen, -- otherwise this leads to spurious messages on callees that -- are themselves expression functions. if Present (Current_Subprogram) and then (Is_Expression_Function_Or_Completion (Current_Subprogram) or else Is_Predicate_Function (Current_Subprogram) or else Is_Invariant_Procedure (Current_Subprogram) or else Is_DIC_Procedure (Current_Subprogram)) then declare Issue_Msg : constant Boolean := Present (Body_Id) and then Present (Body_To_Inline (Nam_Decl)); begin if Is_Predicate_Function (Current_Subprogram) then Cannot_Inline ("cannot inline & (inside predicate)?", N, Nam_UA, Suppress_Info => not Issue_Msg); elsif Is_Invariant_Procedure (Current_Subprogram) then Cannot_Inline ("cannot inline & (inside invariant)?", N, Nam_UA, Suppress_Info => not Issue_Msg); elsif Is_DIC_Procedure (Current_Subprogram) then Cannot_Inline ("cannot inline & (inside Default_Initial_Condition)?", N, Nam_UA, Suppress_Info => not Issue_Msg); else Cannot_Inline ("cannot inline & (inside expression function)?", N, Nam_UA, Suppress_Info => not Issue_Msg); end if; end; -- Cannot inline a call inside the definition of a record type, -- typically inside the constraints of the type. Calls in -- default expressions are also not inlined, but this is -- filtered out above when testing In_Default_Expr. elsif Is_Record_Type (Current_Scope) then Cannot_Inline ("cannot inline & (inside record type)?", N, Nam_UA); -- With the one-pass inlining technique, a call cannot be -- inlined if the corresponding body has not been seen yet. elsif No (Body_Id) then Cannot_Inline ("cannot inline & (body not seen yet)?", N, Nam_UA); -- Nothing to do if there is no body to inline, indicating that -- the subprogram is not suitable for inlining in GNATprove -- mode. elsif No (Body_To_Inline (Nam_Decl)) then null; -- Calls cannot be inlined inside the conditions of while -- loops, as this would create complex actions inside -- the condition, that are not handled by GNATprove. elsif In_Statement_Condition_With_Actions (N) then Cannot_Inline ("cannot inline & (in while loop condition)?", N, Nam_UA); -- Do not inline calls which would possibly lead to missing a -- type conversion check on an input parameter or a memory leak -- on an output parameter. elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then Cannot_Inline ("cannot inline & (possible check on parameters)?", N, Nam_UA); -- Otherwise, inline the call, issuing an info message when -- -gnatd_f is set. else if Debug_Flag_Underscore_F then Error_Msg_NE ("info: analyzing call to & in context?", N, Nam_UA); end if; Expand_Inlined_Call (N, Nam_UA, Nam); end if; end if; end if; end if; end Resolve_Call; ----------------------------- -- Resolve_Case_Expression -- ----------------------------- procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is Alt : Node_Id; Alt_Expr : Node_Id; Alt_Typ : Entity_Id; Is_Dyn : Boolean; begin Alt := First (Alternatives (N)); while Present (Alt) loop Alt_Expr := Expression (Alt); if Error_Posted (Alt_Expr) then return; end if; Resolve_Dependent_Expression (N, Alt_Expr, Typ); Check_Unset_Reference (Alt_Expr); Alt_Typ := Etype (Alt_Expr); -- When the expression is of a scalar subtype different from the -- result subtype, then insert a conversion to ensure the generation -- of a constraint check. if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr)); Analyze_And_Resolve (Alt_Expr, Typ); elsif Is_Array_Type (Typ) then Apply_Length_Check (Alt_Expr, Typ); end if; Next (Alt); end loop; -- Apply RM 4.5.7 (17/3): whether the expression is statically or -- dynamically tagged must be known statically. if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then Alt := First (Alternatives (N)); Is_Dyn := Is_Dynamically_Tagged (Expression (Alt)); while Present (Alt) loop if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then Error_Msg_N ("all or none of the dependent expressions can be " & "dynamically tagged", N); end if; Next (Alt); end loop; end if; Set_Etype (N, Typ); Eval_Case_Expression (N); Analyze_Dimension (N); end Resolve_Case_Expression; ------------------------------- -- Resolve_Character_Literal -- ------------------------------- procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is B_Typ : constant Entity_Id := Base_Type (Typ); C : Entity_Id; begin -- Verify that the character does belong to the type of the context Set_Etype (N, B_Typ); Eval_Character_Literal (N); -- Wide_Wide_Character literals must always be defined, since the set -- of wide wide character literals is complete, i.e. if a character -- literal is accepted by the parser, then it is OK for wide wide -- character (out of range character literals are rejected). if Root_Type (B_Typ) = Standard_Wide_Wide_Character then return; -- Always accept character literal for type Any_Character, which -- occurs in error situations and in comparisons of literals, both -- of which should accept all literals. elsif B_Typ = Any_Character then return; -- For Standard.Character or a type derived from it, check that the -- literal is in range. elsif Root_Type (B_Typ) = Standard_Character then if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then return; end if; -- For Standard.Wide_Character or a type derived from it, check that the -- literal is in range. elsif Root_Type (B_Typ) = Standard_Wide_Character then if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then return; end if; -- If the entity is already set, this has already been resolved in a -- generic context, or comes from expansion. Nothing else to do. elsif Present (Entity (N)) then return; -- Otherwise we have a user defined character type, and we can use the -- standard visibility mechanisms to locate the referenced entity. else C := Current_Entity (N); while Present (C) loop if Etype (C) = B_Typ then Set_Entity_With_Checks (N, C); Generate_Reference (C, N); return; end if; C := Homonym (C); end loop; end if; -- If we fall through, then the literal does not match any of the -- entries of the enumeration type. This isn't just a constraint error -- situation, it is an illegality (see RM 4.2). Error_Msg_NE ("character not defined for }", N, First_Subtype (B_Typ)); end Resolve_Character_Literal; --------------------------- -- Resolve_Comparison_Op -- --------------------------- -- The operands must have compatible types and the boolean context does not -- participate in the resolution. The first pass verifies that the operands -- are not ambiguous and sets their type correctly, or to Any_Type in case -- of ambiguity. If both operands are strings or aggregates, then they are -- ambiguous even if they carry a single (universal) type. procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is L : constant Node_Id := Left_Opnd (N); R : constant Node_Id := Right_Opnd (N); T : Entity_Id := Find_Unique_Type (L, R); begin if T = Any_Fixed then T := Unique_Fixed_Point_Type (L); end if; Set_Etype (N, Base_Type (Typ)); Generate_Reference (T, N, ' '); if T = Any_Type then -- Deal with explicit ambiguity of operands if Is_Overloaded (L) or else Is_Overloaded (R) then Ambiguous_Operands (N); end if; return; end if; -- Deal with other error cases if T = Any_String or else T = Any_Composite or else T = Any_Character then if T = Any_Character then Ambiguous_Character (L); else Error_Msg_N ("ambiguous operands for comparison", N); end if; Set_Etype (N, Any_Type); return; end if; -- Resolve the operands if types OK Resolve (L, T); Resolve (R, T); Set_Compare_Type (N, T); Check_Unset_Reference (L); Check_Unset_Reference (R); Generate_Operator_Reference (N, T); Check_Low_Bound_Tested (N); -- Check comparison on unordered enumeration if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then Error_Msg_Sloc := Sloc (Etype (L)); Error_Msg_NE ("comparison on unordered enumeration type& declared#?.u?", N, Etype (L)); end if; Analyze_Dimension (N); Eval_Relational_Op (N); end Resolve_Comparison_Op; -------------------------------- -- Resolve_Declare_Expression -- -------------------------------- procedure Resolve_Declare_Expression (N : Node_Id; Typ : Entity_Id) is Expr : constant Node_Id := Expression (N); Decl : Node_Id; Local : Entity_Id := Empty; function Replace_Local (N : Node_Id) return Traverse_Result; -- Use a tree traversal to replace each occurrence of the name of -- a local object declared in the construct, with the corresponding -- entity. This replaces the usual way to perform name capture by -- visibility, because it is not possible to place on the scope -- stack the fake scope created for the analysis of the local -- declarations; such a scope conflicts with the transient scopes -- that may be generated if the expression includes function calls -- requiring finalization. ------------------- -- Replace_Local -- ------------------- function Replace_Local (N : Node_Id) return Traverse_Result is begin -- The identifier may be the prefix of a selected component, -- but not a selector name, because the local entities do not -- have a scope that can be named: a selected component whose -- selector is a homonym of a local entity must denote some -- global entity. if Nkind (N) = N_Identifier and then Chars (N) = Chars (Local) and then No (Entity (N)) and then (Nkind (Parent (N)) /= N_Selected_Component or else N = Prefix (Parent (N))) then Set_Entity (N, Local); Set_Etype (N, Etype (Local)); end if; return OK; end Replace_Local; procedure Replace_Local_Ref is new Traverse_Proc (Replace_Local); -- Start of processing for Resolve_Declare_Expression begin Decl := First (Actions (N)); while Present (Decl) loop if Nkind (Decl) in N_Object_Declaration | N_Object_Renaming_Declaration and then Comes_From_Source (Defining_Identifier (Decl)) then Local := Defining_Identifier (Decl); Replace_Local_Ref (Expr); -- Traverse the expression to replace references to local -- variables that occur within declarations of the -- declare_expression. declare D : Node_Id := Next (Decl); begin while Present (D) loop Replace_Local_Ref (D); Next (D); end loop; end; end if; Next (Decl); end loop; -- The end of the declarative list is a freeze point for the -- local declarations. if Present (Local) then Decl := Parent (Local); Freeze_All (First_Entity (Scope (Local)), Decl); end if; Resolve (Expr, Typ); Check_Unset_Reference (Expr); end Resolve_Declare_Expression; ----------------------------------- -- Resolve_Dependent_Expression -- ----------------------------------- procedure Resolve_Dependent_Expression (N : Node_Id; Expr : Node_Id; Typ : Entity_Id) is begin -- RM 4.5.7(8/3) says that the expected type of dependent expressions is -- that of the conditional expression but RM 4.5.7(10/3) forces the type -- of the conditional expression without changing the expected type (the -- expected type of the operand of a type conversion is any type), so we -- may have a gap between these two types that is bridged by the dynamic -- semantics specified by RM 4.5.7(20/3) with the associated legality -- rule RM 4.5.7(16/3) that will be automatically enforced. if Nkind (Parent (N)) = N_Type_Conversion and then Nkind (Expr) /= N_Raise_Expression then Convert_To_And_Rewrite (Typ, Expr); Analyze_And_Resolve (Expr); else Resolve (Expr, Typ); end if; end Resolve_Dependent_Expression; ----------------------------------------- -- Resolve_Discrete_Subtype_Indication -- ----------------------------------------- procedure Resolve_Discrete_Subtype_Indication (N : Node_Id; Typ : Entity_Id) is R : Node_Id; S : Entity_Id; begin Analyze (Subtype_Mark (N)); S := Entity (Subtype_Mark (N)); if Nkind (Constraint (N)) /= N_Range_Constraint then Error_Msg_N ("expect range constraint for discrete type", N); Set_Etype (N, Any_Type); else R := Range_Expression (Constraint (N)); if R = Error then return; end if; Analyze (R); if Base_Type (S) /= Base_Type (Typ) then Error_Msg_NE ("expect subtype of }", N, First_Subtype (Typ)); -- Rewrite the constraint as a range of Typ -- to allow compilation to proceed further. Set_Etype (N, Typ); Rewrite (Low_Bound (R), Make_Attribute_Reference (Sloc (Low_Bound (R)), Prefix => New_Occurrence_Of (Typ, Sloc (R)), Attribute_Name => Name_First)); Rewrite (High_Bound (R), Make_Attribute_Reference (Sloc (High_Bound (R)), Prefix => New_Occurrence_Of (Typ, Sloc (R)), Attribute_Name => Name_First)); else Resolve (R, Typ); Set_Etype (N, Etype (R)); -- Additionally, we must check that the bounds are compatible -- with the given subtype, which might be different from the -- type of the context. Apply_Range_Check (R, S); -- ??? If the above check statically detects a Constraint_Error -- it replaces the offending bound(s) of the range R with a -- Constraint_Error node. When the itype which uses these bounds -- is frozen the resulting call to Duplicate_Subexpr generates -- a new temporary for the bounds. -- Unfortunately there are other itypes that are also made depend -- on these bounds, so when Duplicate_Subexpr is called they get -- a forward reference to the newly created temporaries and Gigi -- aborts on such forward references. This is probably sign of a -- more fundamental problem somewhere else in either the order of -- itype freezing or the way certain itypes are constructed. -- To get around this problem we call Remove_Side_Effects right -- away if either bounds of R are a Constraint_Error. declare L : constant Node_Id := Low_Bound (R); H : constant Node_Id := High_Bound (R); begin if Nkind (L) = N_Raise_Constraint_Error then Remove_Side_Effects (L); end if; if Nkind (H) = N_Raise_Constraint_Error then Remove_Side_Effects (H); end if; end; Check_Unset_Reference (Low_Bound (R)); Check_Unset_Reference (High_Bound (R)); end if; end if; end Resolve_Discrete_Subtype_Indication; ------------------------- -- Resolve_Entity_Name -- ------------------------- -- Used to resolve identifiers and expanded names procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is function Is_Assignment_Or_Object_Expression (Context : Node_Id; Expr : Node_Id) return Boolean; -- Determine whether node Context denotes an assignment statement or an -- object declaration whose expression is node Expr. function Is_Attribute_Expression (Expr : Node_Id) return Boolean; -- Determine whether Expr is part of an N_Attribute_Reference -- expression. ---------------------------------------- -- Is_Assignment_Or_Object_Expression -- ---------------------------------------- function Is_Assignment_Or_Object_Expression (Context : Node_Id; Expr : Node_Id) return Boolean is begin if Nkind (Context) in N_Assignment_Statement | N_Object_Declaration and then Expression (Context) = Expr then return True; -- Check whether a construct that yields a name is the expression of -- an assignment statement or an object declaration. elsif (Nkind (Context) in N_Attribute_Reference | N_Explicit_Dereference | N_Indexed_Component | N_Selected_Component | N_Slice and then Prefix (Context) = Expr) or else (Nkind (Context) in N_Type_Conversion | N_Unchecked_Type_Conversion and then Expression (Context) = Expr) then return Is_Assignment_Or_Object_Expression (Context => Parent (Context), Expr => Context); -- Otherwise the context is not an assignment statement or an object -- declaration. else return False; end if; end Is_Assignment_Or_Object_Expression; ----------------------------- -- Is_Attribute_Expression -- ----------------------------- function Is_Attribute_Expression (Expr : Node_Id) return Boolean is N : Node_Id := Expr; begin while Present (N) loop if Nkind (N) = N_Attribute_Reference then return True; -- Prevent the search from going too far elsif Is_Body_Or_Package_Declaration (N) then return False; end if; N := Parent (N); end loop; return False; end Is_Attribute_Expression; -- Local variables E : constant Entity_Id := Entity (N); Par : Node_Id; -- Start of processing for Resolve_Entity_Name begin -- If garbage from errors, set to Any_Type and return if No (E) and then Total_Errors_Detected /= 0 then Set_Etype (N, Any_Type); return; end if; -- Replace named numbers by corresponding literals. Note that this is -- the one case where Resolve_Entity_Name must reset the Etype, since -- it is currently marked as universal. if Ekind (E) = E_Named_Integer then Set_Etype (N, Typ); Eval_Named_Integer (N); elsif Ekind (E) = E_Named_Real then Set_Etype (N, Typ); Eval_Named_Real (N); -- For enumeration literals, we need to make sure that a proper style -- check is done, since such literals are overloaded, and thus we did -- not do a style check during the first phase of analysis. elsif Ekind (E) = E_Enumeration_Literal then Set_Entity_With_Checks (N, E); Eval_Entity_Name (N); -- Case of (sub)type name appearing in a context where an expression -- is expected. This is legal if occurrence is a current instance. -- See RM 8.6 (17/3). It is also legal if the expression is -- part of a choice pattern for a case stmt/expr having a -- non-discrete selecting expression. elsif Is_Type (E) then if Is_Current_Instance (N) or else Is_Case_Choice_Pattern (N) then null; -- Any other use is an error else Error_Msg_N ("invalid use of subtype mark in expression or call", N); end if; -- Check discriminant use if entity is discriminant in current scope, -- i.e. discriminant of record or concurrent type currently being -- analyzed. Uses in corresponding body are unrestricted. elsif Ekind (E) = E_Discriminant and then Scope (E) = Current_Scope and then not Has_Completion (Current_Scope) then Check_Discriminant_Use (N); -- A parameterless generic function cannot appear in a context that -- requires resolution. elsif Ekind (E) = E_Generic_Function then Error_Msg_N ("illegal use of generic function", N); -- In Ada 83 an OUT parameter cannot be read, but attributes of -- array types (i.e. bounds and length) are legal. elsif Ekind (E) = E_Out_Parameter and then (Is_Scalar_Type (Etype (E)) or else not Is_Attribute_Expression (Parent (N))) and then (Nkind (Parent (N)) in N_Op or else Nkind (Parent (N)) = N_Explicit_Dereference or else Is_Assignment_Or_Object_Expression (Context => Parent (N), Expr => N)) then if Ada_Version = Ada_83 then Error_Msg_N ("(Ada 83) illegal reading of out parameter", N); end if; -- In all other cases, just do the possible static evaluation else -- A deferred constant that appears in an expression must have a -- completion, unless it has been removed by in-place expansion of -- an aggregate. A constant that is a renaming does not need -- initialization. if Ekind (E) = E_Constant and then Comes_From_Source (E) and then No (Constant_Value (E)) and then Is_Frozen (Etype (E)) and then not In_Spec_Expression and then not Is_Imported (E) and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration then if No_Initialization (Parent (E)) or else (Present (Full_View (E)) and then No_Initialization (Parent (Full_View (E)))) then null; else Error_Msg_N ("deferred constant is frozen before completion", N); end if; end if; Eval_Entity_Name (N); end if; Par := Parent (N); -- When the entity appears in a parameter association, retrieve the -- related subprogram call. if Nkind (Par) = N_Parameter_Association then Par := Parent (Par); end if; if Comes_From_Source (N) then -- The following checks are only relevant when SPARK_Mode is On as -- they are not standard Ada legality rules. if SPARK_Mode = On then -- Check for possible elaboration issues with respect to reads of -- variables. The act of renaming the variable is not considered a -- read as it simply establishes an alias. if Legacy_Elaboration_Checks and then Ekind (E) = E_Variable and then Dynamic_Elaboration_Checks and then Nkind (Par) /= N_Object_Renaming_Declaration then Check_Elab_Call (N); end if; end if; -- The variable may eventually become a constituent of a single -- protected/task type. Record the reference now and verify its -- legality when analyzing the contract of the variable -- (SPARK RM 9.3). if Ekind (E) = E_Variable then Record_Possible_Part_Of_Reference (E, N); end if; -- A Ghost entity must appear in a specific context if Is_Ghost_Entity (E) then Check_Ghost_Context (E, N); end if; -- We may be resolving an entity within expanded code, so a reference -- to an entity should be ignored when calculating effective use -- clauses to avoid inappropriate marking. Mark_Use_Clauses (E); end if; end Resolve_Entity_Name; ------------------- -- Resolve_Entry -- ------------------- procedure Resolve_Entry (Entry_Name : Node_Id) is Loc : constant Source_Ptr := Sloc (Entry_Name); Nam : Entity_Id; New_N : Node_Id; S : Entity_Id; Tsk : Entity_Id; E_Name : Node_Id; Index : Node_Id; function Actual_Index_Type (E : Entity_Id) return Entity_Id; -- If the bounds of the entry family being called depend on task -- discriminants, build a new index subtype where a discriminant is -- replaced with the value of the discriminant of the target task. -- The target task is the prefix of the entry name in the call. ----------------------- -- Actual_Index_Type -- ----------------------- function Actual_Index_Type (E : Entity_Id) return Entity_Id is Typ : constant Entity_Id := Entry_Index_Type (E); Tsk : constant Entity_Id := Scope (E); Lo : constant Node_Id := Type_Low_Bound (Typ); Hi : constant Node_Id := Type_High_Bound (Typ); New_T : Entity_Id; function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id; -- If the bound is given by a discriminant, replace with a reference -- to the discriminant of the same name in the target task. If the -- entry name is the target of a requeue statement and the entry is -- in the current protected object, the bound to be used is the -- discriminal of the object (see Apply_Range_Check for details of -- the transformation). ----------------------------- -- Actual_Discriminant_Ref -- ----------------------------- function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is Typ : constant Entity_Id := Etype (Bound); Ref : Node_Id; begin Remove_Side_Effects (Bound); if not Is_Entity_Name (Bound) or else Ekind (Entity (Bound)) /= E_Discriminant then return Bound; elsif Is_Protected_Type (Tsk) and then In_Open_Scopes (Tsk) and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement then -- Note: here Bound denotes a discriminant of the corresponding -- record type tskV, whose discriminal is a formal of the -- init-proc tskVIP. What we want is the body discriminal, -- which is associated to the discriminant of the original -- concurrent type tsk. return New_Occurrence_Of (Find_Body_Discriminal (Entity (Bound)), Loc); else Ref := Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))), Selector_Name => New_Occurrence_Of (Entity (Bound), Loc)); Analyze (Ref); Resolve (Ref, Typ); return Ref; end if; end Actual_Discriminant_Ref; -- Start of processing for Actual_Index_Type begin if not Has_Discriminants (Tsk) or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi)) then return Entry_Index_Type (E); else New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name)); Set_Etype (New_T, Base_Type (Typ)); Set_Size_Info (New_T, Typ); Set_RM_Size (New_T, RM_Size (Typ)); Set_Scalar_Range (New_T, Make_Range (Sloc (Entry_Name), Low_Bound => Actual_Discriminant_Ref (Lo), High_Bound => Actual_Discriminant_Ref (Hi))); return New_T; end if; end Actual_Index_Type; -- Start of processing for Resolve_Entry begin -- Find name of entry being called, and resolve prefix of name with its -- own type. The prefix can be overloaded, and the name and signature of -- the entry must be taken into account. if Nkind (Entry_Name) = N_Indexed_Component then -- Case of dealing with entry family within the current tasks E_Name := Prefix (Entry_Name); else E_Name := Entry_Name; end if; if Is_Entity_Name (E_Name) then -- Entry call to an entry (or entry family) in the current task. This -- is legal even though the task will deadlock. Rewrite as call to -- current task. -- This can also be a call to an entry in an enclosing task. If this -- is a single task, we have to retrieve its name, because the scope -- of the entry is the task type, not the object. If the enclosing -- task is a task type, the identity of the task is given by its own -- self variable. -- Finally this can be a requeue on an entry of the same task or -- protected object. S := Scope (Entity (E_Name)); for J in reverse 0 .. Scope_Stack.Last loop if Is_Task_Type (Scope_Stack.Table (J).Entity) and then not Comes_From_Source (S) then -- S is an enclosing task or protected object. The concurrent -- declaration has been converted into a type declaration, and -- the object itself has an object declaration that follows -- the type in the same declarative part. Tsk := Next_Entity (S); while Etype (Tsk) /= S loop Next_Entity (Tsk); end loop; S := Tsk; exit; elsif S = Scope_Stack.Table (J).Entity then -- Call to current task. Will be transformed into call to Self exit; end if; end loop; New_N := Make_Selected_Component (Loc, Prefix => New_Occurrence_Of (S, Loc), Selector_Name => New_Occurrence_Of (Entity (E_Name), Loc)); Rewrite (E_Name, New_N); Analyze (E_Name); elsif Nkind (Entry_Name) = N_Selected_Component and then Is_Overloaded (Prefix (Entry_Name)) then -- Use the entry name (which must be unique at this point) to find -- the prefix that returns the corresponding task/protected type. declare Pref : constant Node_Id := Prefix (Entry_Name); Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name)); I : Interp_Index; It : Interp; begin Get_First_Interp (Pref, I, It); while Present (It.Typ) loop if Scope (Ent) = It.Typ then Set_Etype (Pref, It.Typ); exit; end if; Get_Next_Interp (I, It); end loop; end; end if; if Nkind (Entry_Name) = N_Selected_Component then Resolve (Prefix (Entry_Name)); Resolve_Implicit_Dereference (Prefix (Entry_Name)); else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component); Nam := Entity (Selector_Name (Prefix (Entry_Name))); Resolve (Prefix (Prefix (Entry_Name))); Resolve_Implicit_Dereference (Prefix (Prefix (Entry_Name))); -- We do not resolve the prefix because an Entry_Family has no type, -- although it has the semantics of an array since it can be indexed. -- In order to perform the associated range check, we would need to -- build an array type on the fly and set it on the prefix, but this -- would be wasteful since only the index type matters. Therefore we -- attach this index type directly, so that Actual_Index_Expression -- can pick it up later in order to generate the range check. Set_Etype (Prefix (Entry_Name), Actual_Index_Type (Nam)); Index := First (Expressions (Entry_Name)); Resolve (Index, Entry_Index_Type (Nam)); -- Generate a reference for the index when it denotes an entity if Is_Entity_Name (Index) then Generate_Reference (Entity (Index), Nam); end if; -- Up to this point the expression could have been the actual in a -- simple entry call, and be given by a named association. if Nkind (Index) = N_Parameter_Association then Error_Msg_N ("expect expression for entry index", Index); else Apply_Scalar_Range_Check (Index, Etype (Prefix (Entry_Name))); end if; end if; end Resolve_Entry; ------------------------ -- Resolve_Entry_Call -- ------------------------ procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is Entry_Name : constant Node_Id := Name (N); Loc : constant Source_Ptr := Sloc (Entry_Name); Nam : Entity_Id; Norm_OK : Boolean; Obj : Node_Id; Was_Over : Boolean; begin -- We kill all checks here, because it does not seem worth the effort to -- do anything better, an entry call is a big operation. Kill_All_Checks; -- Processing of the name is similar for entry calls and protected -- operation calls. Once the entity is determined, we can complete -- the resolution of the actuals. -- The selector may be overloaded, in the case of a protected object -- with overloaded functions. The type of the context is used for -- resolution. if Nkind (Entry_Name) = N_Selected_Component and then Is_Overloaded (Selector_Name (Entry_Name)) and then Typ /= Standard_Void_Type then declare I : Interp_Index; It : Interp; begin Get_First_Interp (Selector_Name (Entry_Name), I, It); while Present (It.Typ) loop if Covers (Typ, It.Typ) then Set_Entity (Selector_Name (Entry_Name), It.Nam); Set_Etype (Entry_Name, It.Typ); Generate_Reference (It.Typ, N, ' '); end if; Get_Next_Interp (I, It); end loop; end; end if; Resolve_Entry (Entry_Name); if Nkind (Entry_Name) = N_Selected_Component then -- Simple entry or protected operation call Nam := Entity (Selector_Name (Entry_Name)); Obj := Prefix (Entry_Name); if Is_Subprogram (Nam) then Check_For_Eliminated_Subprogram (Entry_Name, Nam); end if; Was_Over := Is_Overloaded (Selector_Name (Entry_Name)); else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component); -- Call to member of entry family Nam := Entity (Selector_Name (Prefix (Entry_Name))); Obj := Prefix (Prefix (Entry_Name)); Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name))); end if; -- We cannot in general check the maximum depth of protected entry calls -- at compile time. But we can tell that any protected entry call at all -- violates a specified nesting depth of zero. if Is_Protected_Type (Scope (Nam)) then Check_Restriction (Max_Entry_Queue_Length, N); end if; -- Use context type to disambiguate a protected function that can be -- called without actuals and that returns an array type, and where the -- argument list may be an indexing of the returned value. if Ekind (Nam) = E_Function and then Needs_No_Actuals (Nam) and then Present (Parameter_Associations (N)) and then ((Is_Array_Type (Etype (Nam)) and then Covers (Typ, Component_Type (Etype (Nam)))) or else (Is_Access_Type (Etype (Nam)) and then Is_Array_Type (Designated_Type (Etype (Nam))) and then Covers (Typ, Component_Type (Designated_Type (Etype (Nam)))))) then declare Index_Node : Node_Id; begin Index_Node := Make_Indexed_Component (Loc, Prefix => Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)), Expressions => Parameter_Associations (N)); -- Since we are correcting a node classification error made by the -- parser, we call Replace rather than Rewrite. Replace (N, Index_Node); Set_Etype (Prefix (N), Etype (Nam)); Set_Etype (N, Typ); Resolve_Indexed_Component (N, Typ); return; end; end if; if Is_Entry (Nam) and then Present (Contract_Wrapper (Nam)) and then Current_Scope /= Contract_Wrapper (Nam) and then Current_Scope /= Wrapped_Statements (Contract_Wrapper (Nam)) then -- Note the entity being called before rewriting the call, so that -- it appears used at this point. Generate_Reference (Nam, Entry_Name, 'r'); -- Rewrite as call to the precondition wrapper, adding the task -- object to the list of actuals. If the call is to a member of an -- entry family, include the index as well. declare New_Call : Node_Id; New_Actuals : List_Id; begin New_Actuals := New_List (Obj); if Nkind (Entry_Name) = N_Indexed_Component then Append_To (New_Actuals, New_Copy_Tree (First (Expressions (Entry_Name)))); end if; Append_List (Parameter_Associations (N), New_Actuals); New_Call := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Contract_Wrapper (Nam), Loc), Parameter_Associations => New_Actuals); Rewrite (N, New_Call); -- Preanalyze and resolve new call. Current procedure is called -- from Resolve_Call, after which expansion will take place. Preanalyze_And_Resolve (N); return; end; end if; -- The operation name may have been overloaded. Order the actuals -- according to the formals of the resolved entity, and set the return -- type to that of the operation. if Was_Over then Normalize_Actuals (N, Nam, False, Norm_OK); pragma Assert (Norm_OK); Set_Etype (N, Etype (Nam)); -- Reset the Is_Overloaded flag, since resolution is now completed -- Simple entry call if Nkind (Entry_Name) = N_Selected_Component then Set_Is_Overloaded (Selector_Name (Entry_Name), False); -- Call to a member of an entry family else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component); Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False); end if; end if; Resolve_Actuals (N, Nam); Check_Internal_Protected_Use (N, Nam); -- Create a call reference to the entry Generate_Reference (Nam, Entry_Name, 's'); if Is_Entry (Nam) then Check_Potentially_Blocking_Operation (N); end if; -- Verify that a procedure call cannot masquerade as an entry -- call where an entry call is expected. if Ekind (Nam) = E_Procedure then if Nkind (Parent (N)) = N_Entry_Call_Alternative and then N = Entry_Call_Statement (Parent (N)) then Error_Msg_N ("entry call required in select statement", N); elsif Nkind (Parent (N)) = N_Triggering_Alternative and then N = Triggering_Statement (Parent (N)) then Error_Msg_N ("triggering statement cannot be procedure call", N); elsif Ekind (Scope (Nam)) = E_Task_Type and then not In_Open_Scopes (Scope (Nam)) then Error_Msg_N ("task has no entry with this name", Entry_Name); end if; end if; -- After resolution, entry calls and protected procedure calls are -- changed into entry calls, for expansion. The structure of the node -- does not change, so it can safely be done in place. Protected -- function calls must keep their structure because they are -- subexpressions. if Ekind (Nam) /= E_Function then -- A protected operation that is not a function may modify the -- corresponding object, and cannot apply to a constant. If this -- is an internal call, the prefix is the type itself. if Is_Protected_Type (Scope (Nam)) and then not Is_Variable (Obj) and then (not Is_Entity_Name (Obj) or else not Is_Type (Entity (Obj))) then Error_Msg_N ("prefix of protected procedure or entry call must be variable", Entry_Name); end if; declare Entry_Call : Node_Id; begin Entry_Call := Make_Entry_Call_Statement (Loc, Name => Entry_Name, Parameter_Associations => Parameter_Associations (N)); -- Inherit relevant attributes from the original call Set_First_Named_Actual (Entry_Call, First_Named_Actual (N)); Set_Is_Elaboration_Checks_OK_Node (Entry_Call, Is_Elaboration_Checks_OK_Node (N)); Set_Is_Elaboration_Warnings_OK_Node (Entry_Call, Is_Elaboration_Warnings_OK_Node (N)); Set_Is_SPARK_Mode_On_Node (Entry_Call, Is_SPARK_Mode_On_Node (N)); Rewrite (N, Entry_Call); Set_Analyzed (N, True); end; -- Protected functions can return on the secondary stack, in which case -- we must trigger the transient scope mechanism. elsif Expander_Active and then Requires_Transient_Scope (Etype (Nam)) then Establish_Transient_Scope (N, Needs_Secondary_Stack (Etype (Nam))); end if; -- Now we know that this is not a call to a function that returns an -- array type; moreover, we know the name of the called entry. Detect -- overlapping actuals, just like for a subprogram call. Warn_On_Overlapping_Actuals (Nam, N); end Resolve_Entry_Call; ------------------------- -- Resolve_Equality_Op -- ------------------------- -- The operands must have compatible types and the boolean context does not -- participate in the resolution. The first pass verifies that the operands -- are not ambiguous and sets their type correctly, or to Any_Type in case -- of ambiguity. If both operands are strings, aggregates, allocators, or -- null, they are ambiguous even if they carry a single (universal) type. procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is L : constant Node_Id := Left_Opnd (N); R : constant Node_Id := Right_Opnd (N); Implicit_NE_For_User_Defined_Operator : constant Boolean := Nkind (N) = N_Op_Ne and then Ekind (Entity (N)) = E_Function and then not Comes_From_Source (Entity (N)) and then not Is_Intrinsic_Subprogram (Corresponding_Equality (Entity (N))); -- Whether this is a call to the implicit inequality operator created -- for a user-defined operator that is not an intrinsic subprogram, in -- which case we need to skip some processing. T : Entity_Id := Find_Unique_Type (L, R); procedure Check_Access_Attribute (N : Node_Id); -- For any object, '[Unchecked_]Access of such object can never be -- passed as an operand to the Universal_Access equality operators. -- This is so because the expected type for Obj'Access in a call to -- these operators, whose formals are of type Universal_Access, is -- Universal_Access, and Universal_Access does not have a designated -- type. For more details, see RM 3.10.2(2/2) and 6.4.1(3). procedure Check_Designated_Object_Types (T1, T2 : Entity_Id); -- Check RM 4.5.2(9.6/2) on the given designated object types procedure Check_Designated_Subprogram_Types (T1, T2 : Entity_Id); -- Check RM 4.5.2(9.7/2) on the given designated subprogram types procedure Check_If_Expression (Cond : Node_Id); -- The resolution rule for if expressions requires that each such must -- have a unique type. This means that if several dependent expressions -- are of a non-null anonymous access type, and the context does not -- impose an expected type (as can be the case in an equality operation) -- the expression must be rejected. procedure Explain_Redundancy (N : Node_Id); -- Attempt to explain the nature of a redundant comparison with True. If -- the expression N is too complex, this routine issues a general error -- message. function Find_Unique_Access_Type return Entity_Id; -- In the case of allocators and access attributes, the context must -- provide an indication of the specific access type to be used. If -- one operand is of such a "generic" access type, check whether there -- is a specific visible access type that has the same designated type. -- This is semantically dubious, and of no interest to any real code, -- but c48008a makes it all worthwhile. function Suspicious_Prio_For_Equality return Boolean; -- Returns True iff the parent node is a and/or/xor operation that -- could be the cause of confused priorities. Note that if the not is -- in parens, then False is returned. ---------------------------- -- Check_Access_Attribute -- ---------------------------- procedure Check_Access_Attribute (N : Node_Id) is begin if Nkind (N) = N_Attribute_Reference and then Attribute_Name (N) in Name_Access | Name_Unchecked_Access then Error_Msg_N ("access attribute cannot be used as actual for " & "universal_access equality", N); end if; end Check_Access_Attribute; ----------------------------------- -- Check_Designated_Object_Types -- ----------------------------------- procedure Check_Designated_Object_Types (T1, T2 : Entity_Id) is begin if (Is_Elementary_Type (T1) or else Is_Array_Type (T1)) and then (Base_Type (T1) /= Base_Type (T2) or else not Subtypes_Statically_Match (T1, T2)) then Error_Msg_N ("designated subtypes for universal_access equality " & "do not statically match (RM 4.5.2(9.6/2)", N); Error_Msg_NE ("\left operand has}!", N, Etype (L)); Error_Msg_NE ("\right operand has}!", N, Etype (R)); end if; end Check_Designated_Object_Types; --------------------------------------- -- Check_Designated_Subprogram_Types -- --------------------------------------- procedure Check_Designated_Subprogram_Types (T1, T2 : Entity_Id) is begin if not Subtype_Conformant (T1, T2) then Error_Msg_N ("designated subtypes for universal_access equality " & "not subtype conformant (RM 4.5.2(9.7/2)", N); Error_Msg_NE ("\left operand has}!", N, Etype (L)); Error_Msg_NE ("\right operand has}!", N, Etype (R)); end if; end Check_Designated_Subprogram_Types; ------------------------- -- Check_If_Expression -- ------------------------- procedure Check_If_Expression (Cond : Node_Id) is Then_Expr : Node_Id; Else_Expr : Node_Id; begin if Nkind (Cond) = N_If_Expression then Then_Expr := Next (First (Expressions (Cond))); Else_Expr := Next (Then_Expr); if Nkind (Then_Expr) /= N_Null and then Nkind (Else_Expr) /= N_Null then Error_Msg_N ("cannot determine type of if expression", Cond); end if; end if; end Check_If_Expression; ------------------------ -- Explain_Redundancy -- ------------------------ procedure Explain_Redundancy (N : Node_Id) is Error : Name_Id; Val : Node_Id; Val_Id : Entity_Id; begin Val := N; -- Strip the operand down to an entity loop if Nkind (Val) = N_Selected_Component then Val := Selector_Name (Val); else exit; end if; end loop; -- The construct denotes an entity if Is_Entity_Name (Val) and then Present (Entity (Val)) then Val_Id := Entity (Val); -- Do not generate an error message when the comparison is done -- against the enumeration literal Standard.True. if Ekind (Val_Id) /= E_Enumeration_Literal then -- Build a customized error message Name_Len := 0; Add_Str_To_Name_Buffer ("?r?"); if Ekind (Val_Id) = E_Component then Add_Str_To_Name_Buffer ("component "); elsif Ekind (Val_Id) = E_Constant then Add_Str_To_Name_Buffer ("constant "); elsif Ekind (Val_Id) = E_Discriminant then Add_Str_To_Name_Buffer ("discriminant "); elsif Is_Formal (Val_Id) then Add_Str_To_Name_Buffer ("parameter "); elsif Ekind (Val_Id) = E_Variable then Add_Str_To_Name_Buffer ("variable "); end if; Add_Str_To_Name_Buffer ("& is always True!"); Error := Name_Find; Error_Msg_NE (Get_Name_String (Error), Val, Val_Id); end if; -- The construct is too complex to disect, issue a general message else Error_Msg_N ("?r?expression is always True!", Val); end if; end Explain_Redundancy; ----------------------------- -- Find_Unique_Access_Type -- ----------------------------- function Find_Unique_Access_Type return Entity_Id is Acc : Entity_Id; E : Entity_Id; S : Entity_Id; begin if Ekind (Etype (R)) in E_Allocator_Type | E_Access_Attribute_Type then Acc := Designated_Type (Etype (R)); elsif Ekind (Etype (L)) in E_Allocator_Type | E_Access_Attribute_Type then Acc := Designated_Type (Etype (L)); else return Empty; end if; S := Current_Scope; while S /= Standard_Standard loop E := First_Entity (S); while Present (E) loop if Is_Type (E) and then Is_Access_Type (E) and then Ekind (E) /= E_Allocator_Type and then Designated_Type (E) = Base_Type (Acc) then return E; end if; Next_Entity (E); end loop; S := Scope (S); end loop; return Empty; end Find_Unique_Access_Type; ---------------------------------- -- Suspicious_Prio_For_Equality -- ---------------------------------- function Suspicious_Prio_For_Equality return Boolean is Par : constant Node_Id := Parent (N); begin -- Check if parent node is one of and/or/xor, not parenthesized -- explicitly, and its own parent is not of this kind. Otherwise, -- it's a case of chained Boolean conditions which is likely well -- parenthesized. if Nkind (Par) in N_Op_And | N_Op_Or | N_Op_Xor and then Paren_Count (N) = 0 and then Nkind (Parent (Par)) not in N_Op_And | N_Op_Or | N_Op_Xor then declare Compar : Node_Id := (if Left_Opnd (Par) = N then Right_Opnd (Par) else Left_Opnd (Par)); begin -- Compar may have been rewritten, for example from (a /= b) -- into not (a = b). Use the Original_Node instead. Compar := Original_Node (Compar); -- If the other argument of the and/or/xor is also a -- comparison, or another and/or/xor then most likely -- the priorities are correctly set. return Nkind (Compar) not in N_Op_Boolean; end; else return False; end if; end Suspicious_Prio_For_Equality; -- Start of processing for Resolve_Equality_Op begin if T = Any_Fixed then T := Unique_Fixed_Point_Type (L); end if; Set_Etype (N, Base_Type (Typ)); Generate_Reference (T, N, ' '); if T = Any_Type then -- Deal with explicit ambiguity of operands, unless this is a call -- to the implicit inequality operator created for a user-defined -- operator that is not an intrinsic subprogram, since the common -- resolution of operands done here does not apply to it. if not Implicit_NE_For_User_Defined_Operator and then (Is_Overloaded (L) or else Is_Overloaded (R)) then Ambiguous_Operands (N); end if; else -- For Ada 2022, check for user-defined literals when the type has -- the appropriate aspect. if Has_Applicable_User_Defined_Literal (L, Etype (R)) then Resolve (L, Etype (R)); Set_Etype (N, Standard_Boolean); end if; if Has_Applicable_User_Defined_Literal (R, Etype (L)) then Resolve (R, Etype (L)); Set_Etype (N, Standard_Boolean); end if; -- Deal with other error cases if T = Any_String or else T = Any_Composite or else T = Any_Character then if T = Any_Character then Ambiguous_Character (L); else Error_Msg_N ("ambiguous operands for equality", N); end if; Set_Etype (N, Any_Type); return; elsif T = Universal_Access or else Ekind (T) in E_Allocator_Type | E_Access_Attribute_Type then T := Find_Unique_Access_Type; if No (T) then Error_Msg_N ("ambiguous operands for equality", N); Set_Etype (N, Any_Type); return; end if; -- If expressions must have a single type, and if the context does -- not impose one the dependent expressions cannot be anonymous -- access types. -- Why no similar processing for case expressions??? elsif Ada_Version >= Ada_2012 and then Is_Anonymous_Access_Type (Etype (L)) and then Is_Anonymous_Access_Type (Etype (R)) then Check_If_Expression (L); Check_If_Expression (R); end if; -- RM 4.5.2(9.5/2): At least one of the operands of the equality -- operators for universal_access shall be of type universal_access, -- or both shall be of access-to-object types, or both shall be of -- access-to-subprogram types (RM 4.5.2(9.5/2)). if Is_Anonymous_Access_Type (T) and then Etype (L) /= Universal_Access and then Etype (R) /= Universal_Access then -- RM 4.5.2(9.6/2): When both are of access-to-object types, the -- designated types shall be the same or one shall cover the other -- and if the designated types are elementary or array types, then -- the designated subtypes shall statically match. if Is_Access_Object_Type (Etype (L)) and then Is_Access_Object_Type (Etype (R)) then Check_Designated_Object_Types (Designated_Type (Etype (L)), Designated_Type (Etype (R))); -- RM 4.5.2(9.7/2): When both are of access-to-subprogram types, -- the designated profiles shall be subtype conformant. elsif Is_Access_Subprogram_Type (Etype (L)) and then Is_Access_Subprogram_Type (Etype (R)) then Check_Designated_Subprogram_Types (Designated_Type (Etype (L)), Designated_Type (Etype (R))); end if; end if; -- Check another case of equality operators for universal_access if Is_Anonymous_Access_Type (T) and then Comes_From_Source (N) then Check_Access_Attribute (L); Check_Access_Attribute (R); end if; Resolve (L, T); Resolve (R, T); Set_Compare_Type (N, T); -- AI12-0413: user-defined primitive equality of an untagged record -- type hides the predefined equality operator, including within a -- generic, and if it is declared abstract, results in an illegal -- instance if the operator is used in the spec, or in the raising -- of Program_Error if used in the body of an instance. if Nkind (N) = N_Op_Eq and then In_Instance and then Ada_Version >= Ada_2012 then declare U : constant Entity_Id := Underlying_Type (T); Eq : Entity_Id; begin if Present (U) and then Is_Record_Type (U) and then not Is_Tagged_Type (U) then Eq := Get_User_Defined_Equality (T); if Present (Eq) then if Is_Abstract_Subprogram (Eq) then Nondispatching_Call_To_Abstract_Operation (N, Eq); else Rewrite_Operator_As_Call (N, Eq); end if; return; end if; end if; end; end if; -- If the unique type is a class-wide type then it will be expanded -- into a dispatching call to the predefined primitive. Therefore we -- check here for potential violation of such restriction. if Is_Class_Wide_Type (T) then Check_Restriction (No_Dispatching_Calls, N); end if; -- Only warn for redundant equality comparison to True for objects -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For -- other expressions, it may be a matter of preference to write -- "Expr = True" or "Expr". if Warn_On_Redundant_Constructs and then Comes_From_Source (N) and then Comes_From_Source (R) and then Is_Entity_Name (R) and then Entity (R) = Standard_True and then ((Is_Entity_Name (L) and then Is_Object (Entity (L))) or else Nkind (L) in N_Op) then Error_Msg_N -- CODEFIX ("?r?comparison with True is redundant!", N); Explain_Redundancy (Original_Node (R)); end if; -- Warn on a (in)equality between boolean values which is not -- parenthesized when the parent expression is one of and/or/xor, as -- this is interpreted as (a = b) op c where most likely a = (b op c) -- was intended. Do not generate a warning in generic instances, as -- the problematic expression may be implicitly parenthesized in -- the generic itself if one of the operators is a generic formal. -- Also do not generate a warning for generated equality, for -- example from rewritting a membership test. if Warn_On_Questionable_Missing_Parens and then not In_Instance and then Comes_From_Source (N) and then Is_Boolean_Type (T) and then Suspicious_Prio_For_Equality then Error_Msg_N ("?q?equality should be parenthesized here!", N); end if; Check_Unset_Reference (L); Check_Unset_Reference (R); Generate_Operator_Reference (N, T); Check_Low_Bound_Tested (N); -- Unless this is a call to the implicit inequality operator created -- for a user-defined operator that is not an intrinsic subprogram, -- try to fold the operation. if not Implicit_NE_For_User_Defined_Operator then Analyze_Dimension (N); Eval_Relational_Op (N); elsif Nkind (N) = N_Op_Ne and then Is_Abstract_Subprogram (Entity (N)) then Nondispatching_Call_To_Abstract_Operation (N, Entity (N)); end if; end if; end Resolve_Equality_Op; ---------------------------------- -- Resolve_Explicit_Dereference -- ---------------------------------- procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); New_N : Node_Id; P : constant Node_Id := Prefix (N); P_Typ : Entity_Id; -- The candidate prefix type, if overloaded I : Interp_Index; It : Interp; begin Check_Fully_Declared_Prefix (Typ, P); P_Typ := Empty; -- A useful optimization: check whether the dereference denotes an -- element of a container, and if so rewrite it as a call to the -- corresponding Element function. -- Disabled for now, on advice of ARG. A more restricted form of the -- predicate might be acceptable ??? -- if Is_Container_Element (N) then -- return; -- end if; if Is_Overloaded (P) then -- Use the context type to select the prefix that has the correct -- designated type. Keep the first match, which will be the inner- -- most. Get_First_Interp (P, I, It); while Present (It.Typ) loop if Is_Access_Type (It.Typ) and then Covers (Typ, Designated_Type (It.Typ)) then if No (P_Typ) then P_Typ := It.Typ; end if; -- Remove access types that do not match, but preserve access -- to subprogram interpretations, in case a further dereference -- is needed (see below). elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then Remove_Interp (I); end if; Get_Next_Interp (I, It); end loop; if Present (P_Typ) then Resolve (P, P_Typ); Set_Etype (N, Designated_Type (P_Typ)); else -- If no interpretation covers the designated type of the prefix, -- this is the pathological case where not all implementations of -- the prefix allow the interpretation of the node as a call. Now -- that the expected type is known, Remove other interpretations -- from prefix, rewrite it as a call, and resolve again, so that -- the proper call node is generated. Get_First_Interp (P, I, It); while Present (It.Typ) loop if Ekind (It.Typ) /= E_Access_Subprogram_Type then Remove_Interp (I); end if; Get_Next_Interp (I, It); end loop; New_N := Make_Function_Call (Loc, Name => Make_Explicit_Dereference (Loc, Prefix => P), Parameter_Associations => New_List); Save_Interps (N, New_N); Rewrite (N, New_N); Analyze_And_Resolve (N, Typ); return; end if; -- If not overloaded, resolve P with its own type else Resolve (P); end if; -- If the prefix might be null, add an access check if Is_Access_Type (Etype (P)) and then not Can_Never_Be_Null (Etype (P)) then Apply_Access_Check (N); end if; -- If the designated type is a packed unconstrained array type, and the -- explicit dereference is not in the context of an attribute reference, -- then we must compute and set the actual subtype, since it is needed -- by Gigi. The reason we exclude the attribute case is that this is -- handled fine by Gigi, and in fact we use such attributes to build the -- actual subtype. We also exclude generated code (which builds actual -- subtypes directly if they are needed). if Is_Packed_Array (Etype (N)) and then not Is_Constrained (Etype (N)) and then Nkind (Parent (N)) /= N_Attribute_Reference and then Comes_From_Source (N) then Set_Etype (N, Get_Actual_Subtype (N)); end if; Analyze_Dimension (N); -- Note: No Eval processing is required for an explicit dereference, -- because such a name can never be static. end Resolve_Explicit_Dereference; ------------------------------------- -- Resolve_Expression_With_Actions -- ------------------------------------- procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is function OK_For_Static (Act : Node_Id) return Boolean; -- True if Act is an action of a declare_expression that is allowed in a -- static declare_expression. function All_OK_For_Static return Boolean; -- True if all actions of N are allowed in a static declare_expression. function Get_Literal (Expr : Node_Id) return Node_Id; -- Expr is an expression with compile-time-known value. This returns the -- literal node that reprsents that value. ------------------- -- OK_For_Static -- ------------------- function OK_For_Static (Act : Node_Id) return Boolean is begin case Nkind (Act) is when N_Object_Declaration => if Constant_Present (Act) and then Is_Static_Expression (Expression (Act)) then return True; end if; when N_Object_Renaming_Declaration => if Statically_Names_Object (Name (Act)) then return True; end if; when others => -- No other declarations, nor even pragmas, are allowed in a -- declare expression, so if we see something else, it must be -- an internally generated expression_with_actions. null; end case; return False; end OK_For_Static; ----------------------- -- All_OK_For_Static -- ----------------------- function All_OK_For_Static return Boolean is Act : Node_Id := First (Actions (N)); begin while Present (Act) loop if not OK_For_Static (Act) then return False; end if; Next (Act); end loop; return True; end All_OK_For_Static; ----------------- -- Get_Literal -- ----------------- function Get_Literal (Expr : Node_Id) return Node_Id is pragma Assert (Compile_Time_Known_Value (Expr)); Result : Node_Id; begin case Nkind (Expr) is when N_Has_Entity => if Ekind (Entity (Expr)) = E_Enumeration_Literal then Result := Expr; else Result := Constant_Value (Entity (Expr)); end if; when N_Numeric_Or_String_Literal => Result := Expr; when others => raise Program_Error; end case; pragma Assert (Nkind (Result) in N_Numeric_Or_String_Literal or else Ekind (Entity (Result)) = E_Enumeration_Literal); return Result; end Get_Literal; -- Local variables Loc : constant Source_Ptr := Sloc (N); -- Start of processing for Resolve_Expression_With_Actions begin Set_Etype (N, Typ); if Is_Empty_List (Actions (N)) then pragma Assert (All_OK_For_Static); null; end if; -- If the value of the expression is known at compile time, and all -- of the actions (if any) are suitable, then replace the declare -- expression with its expression. This allows the declare expression -- as a whole to be static if appropriate. See AI12-0368. if Compile_Time_Known_Value (Expression (N)) then if Is_Empty_List (Actions (N)) then Rewrite (N, Expression (N)); elsif All_OK_For_Static then Rewrite (N, New_Copy_Tree (Get_Literal (Expression (N)), New_Sloc => Loc)); end if; end if; end Resolve_Expression_With_Actions; ---------------------------------- -- Resolve_Generalized_Indexing -- ---------------------------------- procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is Indexing : constant Node_Id := Generalized_Indexing (N); begin Rewrite (N, Indexing); Resolve (N, Typ); end Resolve_Generalized_Indexing; --------------------------- -- Resolve_If_Expression -- --------------------------- procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is Condition : constant Node_Id := First (Expressions (N)); procedure Apply_Check (Expr : Node_Id; Result_Type : Entity_Id); -- When a dependent expression is of a subtype different from -- the context subtype, then insert a qualification to ensure -- the generation of a constraint check. This was previously -- for scalar types. For array types apply a length check, given -- that the context in general allows sliding, while a qualified -- expression forces equality of bounds. ----------------- -- Apply_Check -- ----------------- procedure Apply_Check (Expr : Node_Id; Result_Type : Entity_Id) is Expr_Typ : constant Entity_Id := Etype (Expr); Loc : constant Source_Ptr := Sloc (Expr); begin if Expr_Typ = Typ or else Is_Tagged_Type (Typ) or else Is_Access_Type (Typ) or else not Is_Constrained (Typ) or else Inside_A_Generic then null; elsif Is_Array_Type (Typ) then Apply_Length_Check (Expr, Typ); else Rewrite (Expr, Make_Qualified_Expression (Loc, Subtype_Mark => New_Occurrence_Of (Result_Type, Loc), Expression => Relocate_Node (Expr))); Analyze_And_Resolve (Expr, Result_Type); end if; end Apply_Check; -- Local variables Else_Expr : Node_Id; Then_Expr : Node_Id; Result_Type : Entity_Id; -- So in most cases the type of the if_expression and of its -- dependent expressions is that of the context. However, if -- the expression is the index of an Indexed_Component, we must -- ensure that a proper index check is applied, rather than a -- range check on the index type (which might be discriminant -- dependent). In this case we resolve with the base type of the -- index type, and the index check is generated in the resolution -- of the indexed_component above. -- Start of processing for Resolve_If_Expression begin -- Defend against malformed expressions if No (Condition) then return; end if; if Present (Parent (N)) and then (Nkind (Parent (N)) = N_Indexed_Component or else Nkind (Parent (Parent (N))) = N_Indexed_Component) then Result_Type := Base_Type (Typ); else Result_Type := Typ; end if; Then_Expr := Next (Condition); if No (Then_Expr) then return; end if; Resolve (Condition, Any_Boolean); Check_Unset_Reference (Condition); Resolve_Dependent_Expression (N, Then_Expr, Result_Type); Check_Unset_Reference (Then_Expr); Apply_Check (Then_Expr, Result_Type); Else_Expr := Next (Then_Expr); -- If ELSE expression present, just resolve using the determined type if Present (Else_Expr) then Resolve_Dependent_Expression (N, Else_Expr, Result_Type); Check_Unset_Reference (Else_Expr); Apply_Check (Else_Expr, Result_Type); -- Apply RM 4.5.7 (17/3): whether the expression is statically or -- dynamically tagged must be known statically. if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then if Is_Dynamically_Tagged (Then_Expr) /= Is_Dynamically_Tagged (Else_Expr) then Error_Msg_N ("all or none of the dependent expressions " & "can be dynamically tagged", N); end if; end if; -- If no ELSE expression is present, root type must be Standard.Boolean -- and we provide a Standard.True result converted to the appropriate -- Boolean type (in case it is a derived boolean type). elsif Root_Type (Typ) = Standard_Boolean then Else_Expr := Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N))); Analyze_And_Resolve (Else_Expr, Result_Type); Append_To (Expressions (N), Else_Expr); else Error_Msg_N ("can only omit ELSE expression in Boolean case", N); Append_To (Expressions (N), Error); end if; Set_Etype (N, Result_Type); if not Error_Posted (N) then Eval_If_Expression (N); end if; Analyze_Dimension (N); end Resolve_If_Expression; ---------------------------------- -- Resolve_Implicit_Dereference -- ---------------------------------- procedure Resolve_Implicit_Dereference (P : Node_Id) is Desig_Typ : Entity_Id; begin if Is_Access_Type (Etype (P)) then Desig_Typ := Implicitly_Designated_Type (Etype (P)); Insert_Explicit_Dereference (P); Analyze_And_Resolve (P, Desig_Typ); end if; end Resolve_Implicit_Dereference; ------------------------------- -- Resolve_Indexed_Component -- ------------------------------- procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is Pref : constant Node_Id := Prefix (N); Expr : Node_Id; Array_Type : Entity_Id := Empty; -- to prevent junk warning Index : Node_Id; begin if Present (Generalized_Indexing (N)) then Resolve_Generalized_Indexing (N, Typ); return; end if; if Is_Overloaded (Pref) then -- Use the context type to select the prefix that yields the correct -- component type. declare I : Interp_Index; It : Interp; I1 : Interp_Index := 0; Found : Boolean := False; begin Get_First_Interp (Pref, I, It); while Present (It.Typ) loop if (Is_Array_Type (It.Typ) and then Covers (Typ, Component_Type (It.Typ))) or else (Is_Access_Type (It.Typ) and then Is_Array_Type (Designated_Type (It.Typ)) and then Covers (Typ, Component_Type (Designated_Type (It.Typ)))) then if Found then It := Disambiguate (Pref, I1, I, Any_Type); if It = No_Interp then Error_Msg_N ("ambiguous prefix for indexing", N); Set_Etype (N, Typ); return; else Found := True; Array_Type := It.Typ; I1 := I; end if; else Found := True; Array_Type := It.Typ; I1 := I; end if; end if; Get_Next_Interp (I, It); end loop; end; else Array_Type := Etype (Pref); end if; Resolve (Pref, Array_Type); Array_Type := Get_Actual_Subtype_If_Available (Pref); -- If the prefix's type is an access type, get to the real array type. -- Note: we do not apply an access check because an explicit dereference -- will be introduced later, and the check will happen there. if Is_Access_Type (Array_Type) then Array_Type := Implicitly_Designated_Type (Array_Type); end if; -- If name was overloaded, set component type correctly now. -- If a misplaced call to an entry family (which has no index types) -- return. Error will be diagnosed from calling context. if Is_Array_Type (Array_Type) then Set_Etype (N, Component_Type (Array_Type)); else return; end if; Index := First_Index (Array_Type); Expr := First (Expressions (N)); -- The prefix may have resolved to a string literal, in which case its -- etype has a special representation. This is only possible currently -- if the prefix is a static concatenation, written in functional -- notation. if Ekind (Array_Type) = E_String_Literal_Subtype then Resolve (Expr, Standard_Positive); else while Present (Index) and then Present (Expr) loop Resolve (Expr, Etype (Index)); Check_Unset_Reference (Expr); Apply_Scalar_Range_Check (Expr, Etype (Index)); Next_Index (Index); Next (Expr); end loop; end if; Resolve_Implicit_Dereference (Pref); Analyze_Dimension (N); -- Do not generate the warning on suspicious index if we are analyzing -- package Ada.Tags; otherwise we will report the warning with the -- Prims_Ptr field of the dispatch table. if Scope (Etype (Pref)) = Standard_Standard or else not Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Pref))), Ada_Tags) then Warn_On_Suspicious_Index (Pref, First (Expressions (N))); Eval_Indexed_Component (N); end if; -- If the array type is atomic and the component is not, then this is -- worth a warning before Ada 2022, since we have a situation where the -- access to the component may cause extra read/writes of the atomic -- object, or partial word accesses, both of which may be unexpected. if Nkind (N) = N_Indexed_Component and then Is_Atomic_Non_VFA_Ref_With_Address (N) and then not (Has_Atomic_Components (Array_Type) or else (Is_Entity_Name (Pref) and then Has_Atomic_Components (Entity (Pref)))) and then not Is_Atomic (Component_Type (Array_Type)) and then Ada_Version < Ada_2022 then Error_Msg_N ("??access to non-atomic component of atomic array", Pref); Error_Msg_N ("??\may cause unexpected accesses to atomic object", Pref); end if; end Resolve_Indexed_Component; ----------------------------- -- Resolve_Integer_Literal -- ----------------------------- procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is begin Set_Etype (N, Typ); Eval_Integer_Literal (N); end Resolve_Integer_Literal; ----------------------------------------- -- Resolve_Interpolated_String_Literal -- ----------------------------------------- procedure Resolve_Interpolated_String_Literal (N : Node_Id; Typ : Entity_Id) is Str_Elem : Node_Id; begin Str_Elem := First (Expressions (N)); pragma Assert (Nkind (Str_Elem) = N_String_Literal); while Present (Str_Elem) loop -- Resolve string elements using the context type; for interpolated -- expressions there is no need to check if their type has a suitable -- image function because under Ada 2022 all the types have such -- function available. if Nkind (Str_Elem) = N_String_Literal and then Is_Interpolated_String_Literal (Str_Elem) then Resolve (Str_Elem, Typ); -- Must have been rejected during analysis elsif Nkind (Str_Elem) in N_Character_Literal | N_Integer_Literal | N_Real_Literal | N_String_Literal then pragma Assert (Error_Posted (Str_Elem)); end if; Next (Str_Elem); end loop; Set_Etype (N, Typ); end Resolve_Interpolated_String_Literal; -------------------------------- -- Resolve_Intrinsic_Operator -- -------------------------------- procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is Is_Stoele_Mod : constant Boolean := Nkind (N) = N_Op_Mod and then Is_RTE (First_Subtype (Typ), RE_Storage_Offset) and then Is_RTE (Etype (Left_Opnd (N)), RE_Address); -- True if this is the special mod operator of System.Storage_Elements, -- which needs to be resolved to the type of the left operand in order -- to implement the correct semantics. Btyp : constant Entity_Id := (if Is_Stoele_Mod then Implementation_Base_Type (Etype (Left_Opnd (N))) else Implementation_Base_Type (Typ)); -- The base type to be used for the operator function Convert_Operand (Opnd : Node_Id) return Node_Id; -- If the operand is a literal, it cannot be the expression in a -- conversion. Use a qualified expression instead. --------------------- -- Convert_Operand -- --------------------- function Convert_Operand (Opnd : Node_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (Opnd); Res : Node_Id; begin if Nkind (Opnd) in N_Integer_Literal | N_Real_Literal then Res := Make_Qualified_Expression (Loc, Subtype_Mark => New_Occurrence_Of (Btyp, Loc), Expression => Relocate_Node (Opnd)); Analyze (Res); else Res := Unchecked_Convert_To (Btyp, Opnd); end if; return Res; end Convert_Operand; -- Local variables Arg1 : Node_Id; Arg2 : Node_Id; Op : Entity_Id; -- Start of processing for Resolve_Intrinsic_Operator begin -- We must preserve the original entity in a generic setting, so that -- the legality of the operation can be verified in an instance. if not Expander_Active then return; end if; Op := Entity (N); while Scope (Op) /= Standard_Standard loop Op := Homonym (Op); pragma Assert (Present (Op)); end loop; Set_Entity (N, Op); Set_Is_Overloaded (N, False); -- If the result or operand types are private, rewrite with unchecked -- conversions on the operands and the result, to expose the proper -- underlying numeric type. Likewise for the special mod operator of -- System.Storage_Elements, to expose the modified base type. if Is_Private_Type (Typ) or else Is_Private_Type (Etype (Left_Opnd (N))) or else Is_Private_Type (Etype (Right_Opnd (N))) or else Is_Stoele_Mod then Arg1 := Convert_Operand (Left_Opnd (N)); if Nkind (N) = N_Op_Expon then Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N)); else Arg2 := Convert_Operand (Right_Opnd (N)); end if; if Nkind (Arg1) = N_Type_Conversion then Save_Interps (Left_Opnd (N), Expression (Arg1)); end if; if Nkind (Arg2) = N_Type_Conversion then Save_Interps (Right_Opnd (N), Expression (Arg2)); end if; Set_Left_Opnd (N, Arg1); Set_Right_Opnd (N, Arg2); Set_Etype (N, Btyp); Rewrite (N, Unchecked_Convert_To (Typ, N)); Resolve (N, Typ); elsif Typ /= Etype (Left_Opnd (N)) or else Typ /= Etype (Right_Opnd (N)) then -- Add explicit conversion where needed, and save interpretations in -- case operands are overloaded. Arg1 := Convert_To (Typ, Left_Opnd (N)); Arg2 := Convert_To (Typ, Right_Opnd (N)); if Nkind (Arg1) = N_Type_Conversion then Save_Interps (Left_Opnd (N), Expression (Arg1)); else Save_Interps (Left_Opnd (N), Arg1); end if; if Nkind (Arg2) = N_Type_Conversion then Save_Interps (Right_Opnd (N), Expression (Arg2)); else Save_Interps (Right_Opnd (N), Arg2); end if; Rewrite (Left_Opnd (N), Arg1); Rewrite (Right_Opnd (N), Arg2); Analyze (Arg1); Analyze (Arg2); Resolve_Arithmetic_Op (N, Typ); else Resolve_Arithmetic_Op (N, Typ); end if; end Resolve_Intrinsic_Operator; -------------------------------------- -- Resolve_Intrinsic_Unary_Operator -- -------------------------------------- procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id) is Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ)); Op : Entity_Id; Arg2 : Node_Id; begin Op := Entity (N); while Scope (Op) /= Standard_Standard loop Op := Homonym (Op); pragma Assert (Present (Op)); end loop; Set_Entity (N, Op); if Is_Private_Type (Typ) then Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N)); Save_Interps (Right_Opnd (N), Expression (Arg2)); Set_Right_Opnd (N, Arg2); Set_Etype (N, Btyp); Rewrite (N, Unchecked_Convert_To (Typ, N)); Resolve (N, Typ); else Resolve_Unary_Op (N, Typ); end if; end Resolve_Intrinsic_Unary_Operator; ------------------------ -- Resolve_Logical_Op -- ------------------------ procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is B_Typ : Entity_Id; begin Check_No_Direct_Boolean_Operators (N); -- Predefined operations on scalar types yield the base type. On the -- other hand, logical operations on arrays yield the type of the -- arguments (and the context). if Is_Array_Type (Typ) then B_Typ := Typ; else B_Typ := Base_Type (Typ); end if; -- The following test is required because the operands of the operation -- may be literals, in which case the resulting type appears to be -- compatible with a signed integer type, when in fact it is compatible -- only with modular types. If the context itself is universal, the -- operation is illegal. if not Valid_Boolean_Arg (Typ) then Error_Msg_N ("invalid context for logical operation", N); Set_Etype (N, Any_Type); return; elsif Typ = Any_Modular then Error_Msg_N ("no modular type available in this context", N); Set_Etype (N, Any_Type); return; elsif Is_Modular_Integer_Type (Typ) and then Etype (Left_Opnd (N)) = Universal_Integer and then Etype (Right_Opnd (N)) = Universal_Integer then Check_For_Visible_Operator (N, B_Typ); end if; -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or -- is active and the result type is standard Boolean (do not mess with -- ops that return a nonstandard Boolean type, because something strange -- is going on). -- Note: you might expect this replacement to be done during expansion, -- but that doesn't work, because when the pragma Short_Circuit_And_Or -- is used, no part of the right operand of an "and" or "or" operator -- should be executed if the left operand would short-circuit the -- evaluation of the corresponding "and then" or "or else". If we left -- the replacement to expansion time, then run-time checks associated -- with such operands would be evaluated unconditionally, due to being -- before the condition prior to the rewriting as short-circuit forms -- during expansion. if Short_Circuit_And_Or and then B_Typ = Standard_Boolean and then Nkind (N) in N_Op_And | N_Op_Or then -- Mark the corresponding putative SCO operator as truly a logical -- (and short-circuit) operator. if Generate_SCO and then Comes_From_Source (N) then Set_SCO_Logical_Operator (N); end if; if Nkind (N) = N_Op_And then Rewrite (N, Make_And_Then (Sloc (N), Left_Opnd => Relocate_Node (Left_Opnd (N)), Right_Opnd => Relocate_Node (Right_Opnd (N)))); Analyze_And_Resolve (N, B_Typ); -- Case of OR changed to OR ELSE else Rewrite (N, Make_Or_Else (Sloc (N), Left_Opnd => Relocate_Node (Left_Opnd (N)), Right_Opnd => Relocate_Node (Right_Opnd (N)))); Analyze_And_Resolve (N, B_Typ); end if; -- Return now, since analysis of the rewritten ops will take care of -- other reference bookkeeping and expression folding. return; end if; Resolve (Left_Opnd (N), B_Typ); Resolve (Right_Opnd (N), B_Typ); Check_Unset_Reference (Left_Opnd (N)); Check_Unset_Reference (Right_Opnd (N)); Set_Etype (N, B_Typ); Generate_Operator_Reference (N, B_Typ); Eval_Logical_Op (N); end Resolve_Logical_Op; --------------------------------- -- Resolve_Membership_Equality -- --------------------------------- procedure Resolve_Membership_Equality (N : Node_Id; Typ : Entity_Id) is Utyp : constant Entity_Id := Underlying_Type (Typ); begin -- RM 4.5.2(4.1/3): if the type is limited, then it shall have a visible -- primitive equality operator. This means that we can use the regular -- visibility-based resolution and reset Entity in order to trigger it. if Is_Limited_Type (Typ) then Set_Entity (N, Empty); -- RM 4.5.2(28.1/3): if the type is a record, then the membership test -- uses the primitive equality for the type [even if it is not visible]. -- We only deal with the untagged case here, because the tagged case is -- handled uniformly in the expander. elsif Is_Record_Type (Utyp) and then not Is_Tagged_Type (Utyp) then declare Eq_Id : constant Entity_Id := Get_User_Defined_Equality (Typ); begin if Present (Eq_Id) then Rewrite_Operator_As_Call (N, Eq_Id); end if; end; end if; end Resolve_Membership_Equality; --------------------------- -- Resolve_Membership_Op -- --------------------------- -- The context can only be a boolean type, and does not determine the -- arguments. Arguments should be unambiguous, but the preference rule for -- universal types applies. procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is pragma Assert (Is_Boolean_Type (Typ)); L : constant Node_Id := Left_Opnd (N); R : constant Node_Id := Right_Opnd (N); T : Entity_Id; procedure Resolve_Set_Membership; -- Analysis has determined a unique type for the left operand. Use it as -- the basis to resolve the disjuncts. ---------------------------- -- Resolve_Set_Membership -- ---------------------------- procedure Resolve_Set_Membership is Alt : Node_Id; begin -- If the left operand is overloaded, find type compatible with not -- overloaded alternative of the right operand. Alt := First (Alternatives (N)); if Is_Overloaded (L) then T := Empty; while Present (Alt) loop if not Is_Overloaded (Alt) then T := Intersect_Types (L, Alt); exit; else Next (Alt); end if; end loop; -- Unclear how to resolve expression if all alternatives are also -- overloaded. if No (T) then Error_Msg_N ("ambiguous expression", N); end if; else T := Intersect_Types (L, Alt); end if; Resolve (L, T); Alt := First (Alternatives (N)); while Present (Alt) loop -- Alternative is an expression, a range -- or a subtype mark. if not Is_Entity_Name (Alt) or else not Is_Type (Entity (Alt)) then Resolve (Alt, T); end if; Next (Alt); end loop; -- Check for duplicates for discrete case if Is_Discrete_Type (T) then declare type Ent is record Alt : Node_Id; Val : Uint; end record; Alts : array (0 .. List_Length (Alternatives (N))) of Ent; Nalts : Nat; begin -- Loop checking duplicates. This is quadratic, but giant sets -- are unlikely in this context so it's a reasonable choice. Nalts := 0; Alt := First (Alternatives (N)); while Present (Alt) loop if Is_OK_Static_Expression (Alt) and then Nkind (Alt) in N_Integer_Literal | N_Character_Literal | N_Has_Entity then Nalts := Nalts + 1; Alts (Nalts) := (Alt, Expr_Value (Alt)); for J in 1 .. Nalts - 1 loop if Alts (J).Val = Alts (Nalts).Val then Error_Msg_Sloc := Sloc (Alts (J).Alt); Error_Msg_N ("duplicate of value given#??", Alt); end if; end loop; end if; Next (Alt); end loop; end; end if; -- RM 4.5.2 (28.1/3) specifies that for types other than records or -- limited types, evaluation of a membership test uses the predefined -- equality for the type. This may be confusing to users, and the -- following warning appears useful for the most common case. if Is_Scalar_Type (Etype (L)) and then Present (Get_User_Defined_Equality (Etype (L))) then Error_Msg_NE ("membership test on& uses predefined equality?", N, Etype (L)); Error_Msg_N ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N); end if; end Resolve_Set_Membership; -- Start of processing for Resolve_Membership_Op begin if L = Error or else R = Error then return; end if; if Present (Alternatives (N)) then Resolve_Set_Membership; goto SM_Exit; elsif not Is_Overloaded (R) and then Is_Universal_Numeric_Type (Etype (R)) and then Is_Overloaded (L) then T := Etype (R); -- If the left operand is of a universal numeric type and the right -- operand is not, we do not resolve the operands to the tested type -- but to the universal type instead. If not conforming to the letter, -- it's conforming to the spirit of the specification of membership -- tests, which are typically used to guard a specific operation and -- ought not to fail a check in doing so. Without this, in the case of -- type Small_Length is range 1 .. 16; -- function Is_Small_String (S : String) return Boolean is -- begin -- return S'Length in Small_Length; -- end; -- the function Is_Small_String would fail a range check for strings -- larger than 127 characters. -- The test on the size is required in GNAT because universal_integer -- does not cover all the values of all the supported integer types, -- for example the large values of Long_Long_Long_Unsigned. elsif not Is_Overloaded (L) and then Is_Universal_Numeric_Type (Etype (L)) and then (Is_Overloaded (R) or else (not Is_Universal_Numeric_Type (Etype (R)) and then (not Is_Integer_Type (Etype (R)) or else RM_Size (Etype (R)) < RM_Size (Universal_Integer)))) then T := Etype (L); -- If the right operand is 'Range, we first need to resolve it (to -- the tested type) so that it is rewritten as an N_Range, before -- converting its bounds and resolving it again below. if Nkind (R) = N_Attribute_Reference and then Attribute_Name (R) = Name_Range then Resolve (R); end if; -- If the right operand is an N_Range, we convert its bounds to the -- universal type before resolving it. if Nkind (R) = N_Range then Rewrite (R, Make_Range (Sloc (R), Low_Bound => Convert_To (T, Low_Bound (R)), High_Bound => Convert_To (T, High_Bound (R)))); Analyze (R); end if; -- Ada 2005 (AI-251): Support the following case: -- type I is interface; -- type T is tagged ... -- function Test (O : I'Class) is -- begin -- return O in T'Class. -- end Test; -- In this case we have nothing else to do. The membership test will be -- done at run time. elsif Ada_Version >= Ada_2005 and then Is_Class_Wide_Type (Etype (L)) and then Is_Interface (Etype (L)) and then not Is_Interface (Etype (R)) then return; else T := Intersect_Types (L, R); end if; -- If mixed-mode operations are present and operands are all literal, -- the only interpretation involves Duration, which is probably not -- the intention of the programmer. if T = Any_Fixed then T := Unique_Fixed_Point_Type (N); if T = Any_Type then return; end if; end if; Resolve (L, T); Check_Unset_Reference (L); if Nkind (R) = N_Range and then not Is_Scalar_Type (T) then Error_Msg_N ("scalar type required for range", R); end if; if Is_Entity_Name (R) then Freeze_Expression (R); else Resolve (R, T); Check_Unset_Reference (R); end if; -- Here after resolving membership operation <> Eval_Membership_Op (N); end Resolve_Membership_Op; ------------------ -- Resolve_Null -- ------------------ procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); begin -- Handle restriction against anonymous null access values This -- restriction can be turned off using -gnatdj. -- Ada 2005 (AI-231): Remove restriction if Ada_Version < Ada_2005 and then not Debug_Flag_J and then Ekind (Typ) = E_Anonymous_Access_Type and then Comes_From_Source (N) then -- In the common case of a call which uses an explicitly null value -- for an access parameter, give specialized error message. if Nkind (Parent (N)) in N_Subprogram_Call then Error_Msg_N ("NULL is not allowed as argument for an access parameter", N); -- Standard message for all other cases (are there any?) else Error_Msg_N ("NULL cannot be of an anonymous access type", N); end if; end if; -- Ada 2005 (AI-231): Generate the null-excluding check in case of -- assignment to a null-excluding object. if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Typ) and then Nkind (Parent (N)) = N_Assignment_Statement then if Inside_Init_Proc then -- Decide whether to generate an if_statement around our -- null-excluding check to avoid them on certain internal object -- declarations by looking at the type the current Init_Proc -- belongs to. -- Generate: -- if T1b_skip_null_excluding_check then -- [constraint_error "access check failed"] -- end if; if Needs_Conditional_Null_Excluding_Check (Etype (First_Formal (Enclosing_Init_Proc))) then Insert_Action (N, Make_If_Statement (Loc, Condition => Make_Identifier (Loc, New_External_Name (Chars (Typ), "_skip_null_excluding_check")), Then_Statements => New_List ( Make_Raise_Constraint_Error (Loc, Reason => CE_Access_Check_Failed)))); -- Otherwise, simply create the check else Insert_Action (N, Make_Raise_Constraint_Error (Loc, Reason => CE_Access_Check_Failed)); end if; else Insert_Action (Compile_Time_Constraint_Error (N, "(Ada 2005) NULL not allowed in null-excluding objects??"), Make_Raise_Constraint_Error (Loc, Reason => CE_Access_Check_Failed)); end if; end if; -- In a distributed context, null for a remote access to subprogram may -- need to be replaced with a special record aggregate. In this case, -- return after having done the transformation. if (Ekind (Typ) = E_Record_Type or else Is_Remote_Access_To_Subprogram_Type (Typ)) and then Remote_AST_Null_Value (N, Typ) then return; end if; -- The null literal takes its type from the context Set_Etype (N, Typ); end Resolve_Null; ----------------------- -- Resolve_Op_Concat -- ----------------------- procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is -- We wish to avoid deep recursion, because concatenations are often -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left -- operands nonrecursively until we find something that is not a simple -- concatenation (A in this case). We resolve that, and then walk back -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest -- to do the rest of the work at each level. The Parent pointers allow -- us to avoid recursion, and thus avoid running out of memory. See also -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used. NN : Node_Id := N; Op1 : Node_Id; begin -- The following code is equivalent to: -- Resolve_Op_Concat_First (NN, Typ); -- Resolve_Op_Concat_Arg (N, ...); -- Resolve_Op_Concat_Rest (N, Typ); -- where the Resolve_Op_Concat_Arg call recurses back here if the left -- operand is a concatenation. -- Walk down left operands loop Resolve_Op_Concat_First (NN, Typ); Op1 := Left_Opnd (NN); exit when not (Nkind (Op1) = N_Op_Concat and then not Is_Array_Type (Component_Type (Typ)) and then Entity (Op1) = Entity (NN)); NN := Op1; end loop; -- Now (given the above example) NN is A&B and Op1 is A -- First resolve Op1 ... Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN)); -- ... then walk NN back up until we reach N (where we started), calling -- Resolve_Op_Concat_Rest along the way. loop Resolve_Op_Concat_Rest (NN, Typ); exit when NN = N; NN := Parent (NN); end loop; end Resolve_Op_Concat; --------------------------- -- Resolve_Op_Concat_Arg -- --------------------------- procedure Resolve_Op_Concat_Arg (N : Node_Id; Arg : Node_Id; Typ : Entity_Id; Is_Comp : Boolean) is Btyp : constant Entity_Id := Base_Type (Typ); Ctyp : constant Entity_Id := Component_Type (Typ); begin if In_Instance then if Is_Comp or else (not Is_Overloaded (Arg) and then Etype (Arg) /= Any_Composite and then Covers (Ctyp, Etype (Arg))) then Resolve (Arg, Ctyp); else Resolve (Arg, Btyp); end if; -- If both Array & Array and Array & Component are visible, there is a -- potential ambiguity that must be reported. elsif Has_Compatible_Type (Arg, Ctyp) then if Nkind (Arg) = N_Aggregate and then Is_Composite_Type (Ctyp) then if Is_Private_Type (Ctyp) then Resolve (Arg, Btyp); -- If the operation is user-defined and not overloaded use its -- profile. The operation may be a renaming, in which case it has -- been rewritten, and we want the original profile. elsif not Is_Overloaded (N) and then Comes_From_Source (Entity (Original_Node (N))) and then Ekind (Entity (Original_Node (N))) = E_Function then Resolve (Arg, Etype (Next_Formal (First_Formal (Entity (Original_Node (N)))))); return; -- Otherwise an aggregate may match both the array type and the -- component type. else Error_Msg_N ("ambiguous aggregate must be qualified", Arg); Set_Etype (Arg, Any_Type); end if; else if Is_Overloaded (Arg) and then Has_Compatible_Type (Arg, Typ) and then Etype (Arg) /= Any_Type then declare I : Interp_Index; It : Interp; Func : Entity_Id; begin Get_First_Interp (Arg, I, It); Func := It.Nam; Get_Next_Interp (I, It); -- Special-case the error message when the overloading is -- caused by a function that yields an array and can be -- called without parameters. if It.Nam = Func then Error_Msg_Sloc := Sloc (Func); Error_Msg_N ("ambiguous call to function#", Arg); Error_Msg_NE ("\\interpretation as call yields&", Arg, Typ); Error_Msg_NE ("\\interpretation as indexing of call yields&", Arg, Ctyp); else Error_Msg_N ("ambiguous operand for concatenation!", Arg); Get_First_Interp (Arg, I, It); while Present (It.Nam) loop Error_Msg_Sloc := Sloc (It.Nam); if Base_Type (It.Typ) = Btyp or else Base_Type (It.Typ) = Base_Type (Ctyp) then Error_Msg_N -- CODEFIX ("\\possible interpretation#", Arg); end if; Get_Next_Interp (I, It); end loop; end if; end; end if; Resolve (Arg, Ctyp); if Nkind (Arg) = N_String_Literal then Set_Etype (Arg, Ctyp); elsif Is_Scalar_Type (Etype (Arg)) and then Compile_Time_Known_Value (Arg) then -- Determine if the out-of-range violation constitutes a -- warning or an error according to the expression base type, -- according to Ada 2022 RM 4.9 (35/2). if Is_Out_Of_Range (Arg, Base_Type (Ctyp)) then Apply_Compile_Time_Constraint_Error (Arg, "value not in range of}", CE_Range_Check_Failed, Ent => Base_Type (Ctyp), Typ => Base_Type (Ctyp)); elsif Is_Out_Of_Range (Arg, Ctyp) then Apply_Compile_Time_Constraint_Error (Arg, "value not in range of}??", CE_Range_Check_Failed, Ent => Ctyp, Typ => Ctyp); end if; end if; if Arg = Left_Opnd (N) then Set_Is_Component_Left_Opnd (N); else Set_Is_Component_Right_Opnd (N); end if; end if; else Resolve (Arg, Btyp); end if; Check_Unset_Reference (Arg); end Resolve_Op_Concat_Arg; ----------------------------- -- Resolve_Op_Concat_First -- ----------------------------- procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is Btyp : constant Entity_Id := Base_Type (Typ); Op1 : constant Node_Id := Left_Opnd (N); Op2 : constant Node_Id := Right_Opnd (N); begin -- The parser folds an enormous sequence of concatenations of string -- literals into "" & "...", where the Is_Folded_In_Parser flag is set -- in the right operand. If the expression resolves to a predefined "&" -- operator, all is well. Otherwise, the parser's folding is wrong, so -- we give an error. See P_Simple_Expression in Par.Ch4. if Nkind (Op2) = N_String_Literal and then Is_Folded_In_Parser (Op2) and then Ekind (Entity (N)) = E_Function then pragma Assert (Nkind (Op1) = N_String_Literal -- should be "" and then String_Length (Strval (Op1)) = 0); Error_Msg_N ("too many user-defined concatenations", N); return; end if; Set_Etype (N, Btyp); if Is_Limited_Composite (Btyp) then Error_Msg_N ("concatenation not available for limited array", N); Explain_Limited_Type (Btyp, N); end if; end Resolve_Op_Concat_First; ---------------------------- -- Resolve_Op_Concat_Rest -- ---------------------------- procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is Op1 : constant Node_Id := Left_Opnd (N); Op2 : constant Node_Id := Right_Opnd (N); begin Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N)); Generate_Operator_Reference (N, Typ); if Is_String_Type (Typ) then Eval_Concatenation (N); end if; -- If this is not a static concatenation, but the result is a string -- type (and not an array of strings) ensure that static string operands -- have their subtypes properly constructed. if Nkind (N) /= N_String_Literal and then Is_Character_Type (Component_Type (Typ)) then Set_String_Literal_Subtype (Op1, Typ); Set_String_Literal_Subtype (Op2, Typ); end if; end Resolve_Op_Concat_Rest; ---------------------- -- Resolve_Op_Expon -- ---------------------- procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is B_Typ : constant Entity_Id := Base_Type (Typ); begin -- Catch attempts to do fixed-point exponentiation with universal -- operands, which is a case where the illegality is not caught during -- normal operator analysis. This is not done in preanalysis mode -- since the tree is not fully decorated during preanalysis. if Full_Analysis then if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then Error_Msg_N ("exponentiation not available for fixed point", N); return; elsif Nkind (Parent (N)) in N_Op and then Present (Etype (Parent (N))) and then Is_Fixed_Point_Type (Etype (Parent (N))) and then Etype (N) = Universal_Real and then Comes_From_Source (N) then Error_Msg_N ("exponentiation not available for fixed point", N); return; end if; end if; if Ekind (Entity (N)) = E_Function and then Is_Imported (Entity (N)) and then Is_Intrinsic_Subprogram (Entity (N)) then Generate_Reference (Entity (N), N); Resolve_Intrinsic_Operator (N, Typ); return; end if; if Is_Universal_Numeric_Type (Etype (Left_Opnd (N))) then Check_For_Visible_Operator (N, B_Typ); end if; -- We do the resolution using the base type, because intermediate values -- in expressions are always of the base type, not a subtype of it. Resolve (Left_Opnd (N), B_Typ); Resolve (Right_Opnd (N), Standard_Integer); -- For integer types, right argument must be in Natural range if Is_Integer_Type (Typ) then Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural); end if; Check_Unset_Reference (Left_Opnd (N)); Check_Unset_Reference (Right_Opnd (N)); Set_Etype (N, B_Typ); Generate_Operator_Reference (N, B_Typ); Analyze_Dimension (N); if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then -- Evaluate the exponentiation operator for dimensioned type Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ); else Eval_Op_Expon (N); end if; -- Set overflow checking bit. Much cleverer code needed here eventually -- and perhaps the Resolve routines should be separated for the various -- arithmetic operations, since they will need different processing. ??? if Nkind (N) in N_Op then if not Overflow_Checks_Suppressed (Etype (N)) then Enable_Overflow_Check (N); end if; end if; end Resolve_Op_Expon; -------------------- -- Resolve_Op_Not -- -------------------- procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is function Parent_Is_Boolean return Boolean; -- This function determines if the parent node is a boolean operator or -- operation (comparison op, membership test, or short circuit form) and -- the not in question is the left operand of this operation. Note that -- if the not is in parens, then false is returned. ----------------------- -- Parent_Is_Boolean -- ----------------------- function Parent_Is_Boolean return Boolean is begin return Paren_Count (N) = 0 and then Nkind (Parent (N)) in N_Membership_Test | N_Op_Boolean | N_Short_Circuit and then Left_Opnd (Parent (N)) = N; end Parent_Is_Boolean; -- Local variables B_Typ : Entity_Id; -- Start of processing for Resolve_Op_Not begin -- Predefined operations on scalar types yield the base type. On the -- other hand, logical operations on arrays yield the type of the -- arguments (and the context). if Is_Array_Type (Typ) then B_Typ := Typ; else B_Typ := Base_Type (Typ); end if; -- Straightforward case of incorrect arguments if not Valid_Boolean_Arg (Typ) then Error_Msg_N ("invalid operand type for operator&", N); Set_Etype (N, Any_Type); return; -- Special case of probable missing parens elsif Typ = Universal_Integer or else Typ = Any_Modular then if Parent_Is_Boolean then Error_Msg_N ("operand of NOT must be enclosed in parentheses", Right_Opnd (N)); else Error_Msg_N ("no modular type available in this context", N); end if; Set_Etype (N, Any_Type); return; -- OK resolution of NOT else -- Warn if non-boolean types involved. This is a case like not a < b -- where a and b are modular, where we will get (not a) < b and most -- likely not (a < b) was intended. if Warn_On_Questionable_Missing_Parens and then not Is_Boolean_Type (Typ) and then Parent_Is_Boolean then Error_Msg_N ("?q?not expression should be parenthesized here!", N); end if; -- Warn on double negation if checking redundant constructs if Warn_On_Redundant_Constructs and then Comes_From_Source (N) and then Comes_From_Source (Right_Opnd (N)) and then Root_Type (Typ) = Standard_Boolean and then Nkind (Right_Opnd (N)) = N_Op_Not then Error_Msg_N ("redundant double negation?r?", N); end if; -- Complete resolution and evaluation of NOT Resolve (Right_Opnd (N), B_Typ); Check_Unset_Reference (Right_Opnd (N)); Set_Etype (N, B_Typ); Generate_Operator_Reference (N, B_Typ); Eval_Op_Not (N); end if; end Resolve_Op_Not; ----------------------------- -- Resolve_Operator_Symbol -- ----------------------------- -- Nothing to be done, all resolved already procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is pragma Warnings (Off, N); pragma Warnings (Off, Typ); begin null; end Resolve_Operator_Symbol; ---------------------------------- -- Resolve_Qualified_Expression -- ---------------------------------- procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is pragma Warnings (Off, Typ); Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N)); Expr : constant Node_Id := Expression (N); begin Resolve (Expr, Target_Typ); Check_Unset_Reference (Expr); -- A qualified expression requires an exact match of the type, class- -- wide matching is not allowed. However, if the qualifying type is -- specific and the expression has a class-wide type, it may still be -- okay, since it can be the result of the expansion of a call to a -- dispatching function, so we also have to check class-wideness of the -- type of the expression's original node. if (Is_Class_Wide_Type (Target_Typ) or else (Is_Class_Wide_Type (Etype (Expr)) and then Is_Class_Wide_Type (Etype (Original_Node (Expr))))) and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ) then Wrong_Type (Expr, Target_Typ); end if; -- If the target type is unconstrained, then we reset the type of the -- result from the type of the expression. For other cases, the actual -- subtype of the expression is the target type. But we avoid doing it -- for an allocator since this is not needed and might be problematic. if Is_Composite_Type (Target_Typ) and then not Is_Constrained (Target_Typ) and then Nkind (Parent (N)) /= N_Allocator then Set_Etype (N, Etype (Expr)); end if; Analyze_Dimension (N); Eval_Qualified_Expression (N); -- If we still have a qualified expression after the static evaluation, -- then apply a scalar range check if needed. The reason that we do this -- after the Eval call is that otherwise, the application of the range -- check may convert an illegal static expression and result in warning -- rather than giving an error (e.g Integer'(Integer'Last + 1)). if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Target_Typ) then Apply_Scalar_Range_Check (Expr, Target_Typ); end if; -- AI12-0100: Once the qualified expression is resolved, check whether -- operand satisfies a static predicate of the target subtype, if any. -- In the static expression case, a predicate check failure is an error. if Has_Predicates (Target_Typ) then Check_Expression_Against_Static_Predicate (Expr, Target_Typ, Static_Failure_Is_Error => True); end if; end Resolve_Qualified_Expression; ------------------------------ -- Resolve_Raise_Expression -- ------------------------------ procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is begin if Typ = Raise_Type then Error_Msg_N ("cannot find unique type for raise expression", N); Set_Etype (N, Any_Type); else Set_Etype (N, Typ); -- Apply check for required parentheses in the enclosing -- context of raise_expressions (RM 11.3 (2)), including default -- expressions in contexts that can include aspect specifications, -- and ancestor parts of extension aggregates. declare Par : Node_Id := Parent (N); Parentheses_Found : Boolean := Paren_Count (N) > 0; begin while Present (Par) and then Nkind (Par) in N_Has_Etype loop if Paren_Count (Par) > 0 then Parentheses_Found := True; end if; if Nkind (Par) = N_Extension_Aggregate and then N = Ancestor_Part (Par) then exit; end if; Par := Parent (Par); end loop; if not Parentheses_Found and then Comes_From_Source (Par) and then (Nkind (Par) in N_Modular_Type_Definition | N_Floating_Point_Definition | N_Ordinary_Fixed_Point_Definition | N_Decimal_Fixed_Point_Definition | N_Extension_Aggregate | N_Discriminant_Specification | N_Parameter_Specification | N_Formal_Object_Declaration or else (Nkind (Par) = N_Object_Declaration and then Nkind (Parent (Par)) /= N_Extended_Return_Statement)) then Error_Msg_N ("raise_expression must be parenthesized in this context", N); end if; end; end if; end Resolve_Raise_Expression; ------------------- -- Resolve_Range -- ------------------- procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is L : constant Node_Id := Low_Bound (N); H : constant Node_Id := High_Bound (N); function First_Last_Ref return Boolean; -- Returns True if N is of the form X'First .. X'Last where X is the -- same entity for both attributes. -------------------- -- First_Last_Ref -- -------------------- function First_Last_Ref return Boolean is Lorig : constant Node_Id := Original_Node (L); Horig : constant Node_Id := Original_Node (H); begin if Nkind (Lorig) = N_Attribute_Reference and then Nkind (Horig) = N_Attribute_Reference and then Attribute_Name (Lorig) = Name_First and then Attribute_Name (Horig) = Name_Last then declare PL : constant Node_Id := Prefix (Lorig); PH : constant Node_Id := Prefix (Horig); begin return Is_Entity_Name (PL) and then Is_Entity_Name (PH) and then Entity (PL) = Entity (PH); end; end if; return False; end First_Last_Ref; -- Start of processing for Resolve_Range begin Set_Etype (N, Typ); Resolve (L, Typ); Resolve (H, Typ); -- Reanalyze the lower bound after both bounds have been analyzed, so -- that the range is known to be static or not by now. This may trigger -- more compile-time evaluation, which is useful for static analysis -- with GNATprove. This is not needed for compilation or static analysis -- with CodePeer, as full expansion does that evaluation then. if GNATprove_Mode then Set_Analyzed (L, False); Resolve (L, Typ); end if; -- Check for inappropriate range on unordered enumeration type if Bad_Unordered_Enumeration_Reference (N, Typ) -- Exclude X'First .. X'Last if X is the same entity for both and then not First_Last_Ref then Error_Msg_Sloc := Sloc (Typ); Error_Msg_NE ("subrange of unordered enumeration type& declared#?.u?", N, Typ); end if; Check_Unset_Reference (L); Check_Unset_Reference (H); -- We have to check the bounds for being within the base range as -- required for a non-static context. Normally this is automatic and -- done as part of evaluating expressions, but the N_Range node is an -- exception, since in GNAT we consider this node to be a subexpression, -- even though in Ada it is not. The circuit in Sem_Eval could check for -- this, but that would put the test on the main evaluation path for -- expressions. Check_Non_Static_Context (L); Check_Non_Static_Context (H); -- Check for an ambiguous range over character literals. This will -- happen with a membership test involving only literals. if Typ = Any_Character then Ambiguous_Character (L); Set_Etype (N, Any_Type); return; end if; -- If bounds are static, constant-fold them, so size computations are -- identical between front-end and back-end. Do not perform this -- transformation while analyzing generic units, as type information -- would be lost when reanalyzing the constant node in the instance. if Is_Discrete_Type (Typ) and then Expander_Active then if Is_OK_Static_Expression (L) then Fold_Uint (L, Expr_Value (L), Static => True); end if; if Is_OK_Static_Expression (H) then Fold_Uint (H, Expr_Value (H), Static => True); end if; end if; -- If we have a compile-time-known null range, we warn, because that is -- likely to be a mistake. (Dynamic null ranges make sense, but often -- compile-time-known ones do not.) Warn only if this is in a subtype -- declaration. We do this here, rather than while analyzing a subtype -- declaration, in case we decide to expand the cases. We do not want to -- warn in all cases, because some are idiomatic, such as an empty -- aggregate (1 .. 0 => <>). -- We don't warn in generics or their instances, because there might be -- some instances where the range is null, and some where it is not, -- which would lead to false alarms. if not (Inside_A_Generic or In_Instance) and then Comes_From_Source (N) and then Compile_Time_Compare (Low_Bound (N), High_Bound (N), Assume_Valid => True) = GT and then Nkind (Parent (N)) = N_Range_Constraint and then Nkind (Parent (Parent (N))) = N_Subtype_Indication and then Nkind (Parent (Parent (Parent (N)))) = N_Subtype_Declaration and then Is_OK_Static_Range (N) then Error_Msg_N ("null range??", N); end if; end Resolve_Range; -------------------------- -- Resolve_Real_Literal -- -------------------------- procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is Actual_Typ : constant Entity_Id := Etype (N); begin -- Special processing for fixed-point literals to make sure that the -- value is an exact multiple of the small where this is required. We -- skip this for the universal real case, and also for generic types. if Is_Fixed_Point_Type (Typ) and then Typ /= Universal_Fixed and then Typ /= Any_Fixed and then not Is_Generic_Type (Typ) then -- We must freeze the base type to get the proper value of the small if not Is_Frozen (Base_Type (Typ)) then Freeze_Fixed_Point_Type (Base_Type (Typ)); end if; declare Val : constant Ureal := Realval (N); Cintr : constant Ureal := Val / Small_Value (Base_Type (Typ)); Cint : constant Uint := UR_Trunc (Cintr); Den : constant Uint := Norm_Den (Cintr); Stat : Boolean; begin -- Case of literal is not an exact multiple of the Small if Den /= 1 then -- For a source program literal for a decimal fixed-point type, -- this is statically illegal (RM 4.9(36)). if Is_Decimal_Fixed_Point_Type (Typ) and then Actual_Typ = Universal_Real and then Comes_From_Source (N) then Error_Msg_N ("value has extraneous low order digits", N); end if; -- Generate a warning if literal from source if Is_OK_Static_Expression (N) and then Warn_On_Bad_Fixed_Value then Error_Msg_N ("?b?static fixed-point value is not a multiple of Small!", N); end if; -- Replace literal by a value that is the exact representation -- of a value of the type, i.e. a multiple of the small value, -- by truncation, since Machine_Rounds is false for all GNAT -- fixed-point types (RM 4.9(38)). Stat := Is_OK_Static_Expression (N); Rewrite (N, Make_Real_Literal (Sloc (N), Realval => Small_Value (Typ) * Cint)); Set_Is_Static_Expression (N, Stat); end if; -- In all cases, set the corresponding integer field Set_Corresponding_Integer_Value (N, Cint); end; end if; -- Now replace the actual type by the expected type as usual Set_Etype (N, Typ); Eval_Real_Literal (N); end Resolve_Real_Literal; ----------------------- -- Resolve_Reference -- ----------------------- procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is P : constant Node_Id := Prefix (N); begin -- Replace general access with specific type if Ekind (Etype (N)) = E_Allocator_Type then Set_Etype (N, Base_Type (Typ)); end if; Resolve (P, Designated_Type (Etype (N))); -- If we are taking the reference of a volatile entity, then treat it as -- a potential modification of this entity. This is too conservative, -- but necessary because remove side effects can cause transformations -- of normal assignments into reference sequences that otherwise fail to -- notice the modification. if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then Note_Possible_Modification (P, Sure => False); end if; end Resolve_Reference; -------------------------------- -- Resolve_Selected_Component -- -------------------------------- procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is Comp : Entity_Id; Comp1 : Entity_Id := Empty; -- prevent junk warning P : constant Node_Id := Prefix (N); S : constant Node_Id := Selector_Name (N); T : Entity_Id := Etype (P); I : Interp_Index; I1 : Interp_Index := 0; -- prevent junk warning It : Interp; It1 : Interp; Found : Boolean; function Init_Component return Boolean; -- Check whether this is the initialization of a component within an -- init proc (by assignment or call to another init proc). If true, -- there is no need for a discriminant check. -------------------- -- Init_Component -- -------------------- function Init_Component return Boolean is begin return Inside_Init_Proc and then Nkind (Prefix (N)) = N_Identifier and then Chars (Prefix (N)) = Name_uInit and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative; end Init_Component; -- Start of processing for Resolve_Selected_Component begin if Is_Overloaded (P) then -- Use the context type to select the prefix that has a selector -- of the correct name and type. Found := False; Get_First_Interp (P, I, It); Search : while Present (It.Typ) loop if Is_Access_Type (It.Typ) then T := Designated_Type (It.Typ); else T := It.Typ; end if; -- Locate selected component. For a private prefix the selector -- can denote a discriminant. if Is_Record_Type (T) or else Is_Private_Type (T) then -- The visible components of a class-wide type are those of -- the root type. if Is_Class_Wide_Type (T) then T := Etype (T); end if; Comp := First_Entity (T); while Present (Comp) loop if Chars (Comp) = Chars (S) and then Covers (Typ, Etype (Comp)) then if not Found then Found := True; I1 := I; It1 := It; Comp1 := Comp; else It := Disambiguate (P, I1, I, Any_Type); if It = No_Interp then Error_Msg_N ("ambiguous prefix for selected component", N); Set_Etype (N, Typ); return; else It1 := It; -- There may be an implicit dereference. Retrieve -- designated record type. if Is_Access_Type (It1.Typ) then T := Designated_Type (It1.Typ); else T := It1.Typ; end if; if Scope (Comp1) /= T then -- Resolution chooses the new interpretation. -- Find the component with the right name. Comp1 := First_Entity (T); while Present (Comp1) and then Chars (Comp1) /= Chars (S) loop Next_Entity (Comp1); end loop; end if; exit Search; end if; end if; end if; Next_Entity (Comp); end loop; end if; Get_Next_Interp (I, It); end loop Search; -- There must be a legal interpretation at this point pragma Assert (Found); Resolve (P, It1.Typ); -- In general the expected type is the type of the context, not the -- type of the candidate selected component. Set_Etype (N, Typ); Set_Entity_With_Checks (S, Comp1); -- The type of the context and that of the component are -- compatible and in general identical, but if they are anonymous -- access-to-subprogram types, the relevant type is that of the -- component. This matters in Unnest_Subprograms mode, where the -- relevant context is the one in which the type is declared, not -- the point of use. This determines what activation record to use. if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then Set_Etype (N, Etype (Comp1)); -- When the type of the component is an access to a class-wide type -- the relevant type is that of the component (since in such case we -- may need to generate implicit type conversions or dispatching -- calls). elsif Is_Access_Type (Typ) and then not Is_Class_Wide_Type (Designated_Type (Typ)) and then Is_Class_Wide_Type (Designated_Type (Etype (Comp1))) then Set_Etype (N, Etype (Comp1)); end if; else -- Resolve prefix with its type Resolve (P, T); end if; -- Generate cross-reference. We needed to wait until full overloading -- resolution was complete to do this, since otherwise we can't tell if -- we are an lvalue or not. if Known_To_Be_Assigned (N) then Generate_Reference (Entity (S), S, 'm'); else Generate_Reference (Entity (S), S, 'r'); end if; -- If the prefix's type is an access type, get to the real record type. -- Note: we do not apply an access check because an explicit dereference -- will be introduced later, and the check will happen there. if Is_Access_Type (Etype (P)) then T := Implicitly_Designated_Type (Etype (P)); Check_Fully_Declared_Prefix (T, P); else T := Etype (P); end if; -- Set flag for expander if discriminant check required on a component -- appearing within a variant. if Has_Discriminants (T) and then Ekind (Entity (S)) = E_Component and then Present (Original_Record_Component (Entity (S))) and then Ekind (Original_Record_Component (Entity (S))) = E_Component and then Is_Declared_Within_Variant (Original_Record_Component (Entity (S))) and then not Discriminant_Checks_Suppressed (T) and then not Init_Component then Set_Do_Discriminant_Check (N); end if; if Ekind (Entity (S)) = E_Void then Error_Msg_N ("premature use of component", S); end if; -- If the prefix is a record conversion, this may be a renamed -- discriminant whose bounds differ from those of the original -- one, so we must ensure that a range check is performed. if Nkind (P) = N_Type_Conversion and then Ekind (Entity (S)) = E_Discriminant and then Is_Discrete_Type (Typ) then Set_Etype (N, Base_Type (Typ)); end if; -- Eval_Selected_Component may e.g. fold statically known discriminants. Eval_Selected_Component (N); if Nkind (N) = N_Selected_Component then -- If the record type is atomic and the component is not, then this -- is worth a warning before Ada 2022, since we have a situation -- where the access to the component may cause extra read/writes of -- the atomic object, or partial word accesses, both of which may be -- unexpected. if Is_Atomic_Non_VFA_Ref_With_Address (N) and then not Is_Atomic (Entity (S)) and then not Is_Atomic (Etype (Entity (S))) and then Ada_Version < Ada_2022 then Error_Msg_N ("??access to non-atomic component of atomic record", Prefix (N)); Error_Msg_N ("\??may cause unexpected accesses to atomic object", Prefix (N)); end if; Resolve_Implicit_Dereference (Prefix (N)); Analyze_Dimension (N); end if; end Resolve_Selected_Component; ------------------- -- Resolve_Shift -- ------------------- procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is B_Typ : constant Entity_Id := Base_Type (Typ); L : constant Node_Id := Left_Opnd (N); R : constant Node_Id := Right_Opnd (N); begin -- We do the resolution using the base type, because intermediate values -- in expressions always are of the base type, not a subtype of it. Resolve (L, B_Typ); Resolve (R, Standard_Natural); Check_Unset_Reference (L); Check_Unset_Reference (R); Set_Etype (N, B_Typ); Generate_Operator_Reference (N, B_Typ); Eval_Shift (N); end Resolve_Shift; --------------------------- -- Resolve_Short_Circuit -- --------------------------- procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is B_Typ : constant Entity_Id := Base_Type (Typ); L : constant Node_Id := Left_Opnd (N); R : constant Node_Id := Right_Opnd (N); begin -- Ensure all actions associated with the left operand (e.g. -- finalization of transient objects) are fully evaluated locally within -- an expression with actions. This is particularly helpful for coverage -- analysis at the object level. However this should not happen in -- generics. if Expander_Active then declare Reloc_L : constant Node_Id := Relocate_Node (L); begin Save_Interps (Old_N => L, New_N => Reloc_L); Rewrite (L, Make_Expression_With_Actions (Sloc (L), Actions => New_List, Expression => Reloc_L)); -- Set Comes_From_Source on L to preserve warnings for unset -- reference. Preserve_Comes_From_Source (L, Reloc_L); end; end if; Resolve (L, B_Typ); Resolve (R, B_Typ); -- Check for issuing warning for always False assert/check, this happens -- when assertions are turned off, in which case the pragma Assert/Check -- was transformed into: -- if False and then then ... -- and we detect this pattern if Warn_On_Assertion_Failure and then Is_Entity_Name (R) and then Entity (R) = Standard_False and then Nkind (Parent (N)) = N_If_Statement and then Nkind (N) = N_And_Then and then Is_Entity_Name (L) and then Entity (L) = Standard_False then declare Orig : constant Node_Id := Original_Node (Parent (N)); begin -- Special handling of Asssert pragma if Nkind (Orig) = N_Pragma and then Pragma_Name (Orig) = Name_Assert then declare Expr : constant Node_Id := Original_Node (Expression (First (Pragma_Argument_Associations (Orig)))); begin -- Don't warn if original condition is explicit False, -- since obviously the failure is expected in this case. if Is_Entity_Name (Expr) and then Entity (Expr) = Standard_False then null; -- Issue warning. We do not want the deletion of the -- IF/AND-THEN to take this message with it. We achieve this -- by making sure that the expanded code points to the Sloc -- of the expression, not the original pragma. else -- Note: Use Error_Msg_F here rather than Error_Msg_N. -- The source location of the expression is not usually -- the best choice here. For example, it gets located on -- the last AND keyword in a chain of boolean expressiond -- AND'ed together. It is best to put the message on the -- first character of the assertion, which is the effect -- of the First_Node call here. Error_Msg_F ("?.a?assertion would fail at run time!", Expression (First (Pragma_Argument_Associations (Orig)))); end if; end; -- Similar processing for Check pragma elsif Nkind (Orig) = N_Pragma and then Pragma_Name (Orig) = Name_Check then -- Don't want to warn if original condition is explicit False declare Expr : constant Node_Id := Original_Node (Expression (Next (First (Pragma_Argument_Associations (Orig))))); begin if Is_Entity_Name (Expr) and then Entity (Expr) = Standard_False then null; -- Post warning else -- Again use Error_Msg_F rather than Error_Msg_N, see -- comment above for an explanation of why we do this. Error_Msg_F ("?.a?check would fail at run time!", Expression (Last (Pragma_Argument_Associations (Orig)))); end if; end; end if; end; end if; -- Continue with processing of short circuit Check_Unset_Reference (L); Check_Unset_Reference (R); Set_Etype (N, B_Typ); Eval_Short_Circuit (N); end Resolve_Short_Circuit; ------------------- -- Resolve_Slice -- ------------------- procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is Drange : constant Node_Id := Discrete_Range (N); Pref : constant Node_Id := Prefix (N); Array_Type : Entity_Id := Empty; Dexpr : Node_Id := Empty; Index_Type : Entity_Id; begin if Is_Overloaded (Pref) then -- Use the context type to select the prefix that yields the correct -- array type. declare I : Interp_Index; I1 : Interp_Index := 0; It : Interp; Found : Boolean := False; begin Get_First_Interp (Pref, I, It); while Present (It.Typ) loop if (Is_Array_Type (It.Typ) and then Covers (Typ, It.Typ)) or else (Is_Access_Type (It.Typ) and then Is_Array_Type (Designated_Type (It.Typ)) and then Covers (Typ, Designated_Type (It.Typ))) then if Found then It := Disambiguate (Pref, I1, I, Any_Type); if It = No_Interp then Error_Msg_N ("ambiguous prefix for slicing", N); Set_Etype (N, Typ); return; else Found := True; Array_Type := It.Typ; I1 := I; end if; else Found := True; Array_Type := It.Typ; I1 := I; end if; end if; Get_Next_Interp (I, It); end loop; end; else Array_Type := Etype (Pref); end if; Resolve (Pref, Array_Type); -- If the prefix's type is an access type, get to the real array type. -- Note: we do not apply an access check because an explicit dereference -- will be introduced later, and the check will happen there. if Is_Access_Type (Array_Type) then Array_Type := Implicitly_Designated_Type (Array_Type); -- If the prefix is an access to an unconstrained array, we must use -- the actual subtype of the object to perform the index checks. The -- object denoted by the prefix is implicit in the node, so we build -- an explicit representation for it in order to compute the actual -- subtype. if not Is_Constrained (Array_Type) then Remove_Side_Effects (Pref); declare Obj : constant Node_Id := Make_Explicit_Dereference (Sloc (N), Prefix => New_Copy_Tree (Pref)); begin Set_Etype (Obj, Array_Type); Set_Parent (Obj, Parent (N)); Array_Type := Get_Actual_Subtype (Obj); end; end if; -- In CodePeer mode the attribute Image is not expanded, so when it -- acts as a prefix of a slice, we handle it like a call to function -- returning an unconstrained string. Same for the Wide variants of -- attribute Image. elsif Is_Entity_Name (Pref) or else Nkind (Pref) = N_Explicit_Dereference or else (Nkind (Pref) = N_Function_Call and then not Is_Constrained (Etype (Pref))) or else (CodePeer_Mode and then Nkind (Pref) = N_Attribute_Reference and then Attribute_Name (Pref) in Name_Image | Name_Wide_Image | Name_Wide_Wide_Image) then Array_Type := Get_Actual_Subtype (Pref); -- If the name is a selected component that depends on discriminants, -- build an actual subtype for it. This can happen only when the name -- itself is overloaded; otherwise the actual subtype is created when -- the selected component is analyzed. elsif Nkind (Pref) = N_Selected_Component and then Full_Analysis and then Depends_On_Discriminant (First_Index (Array_Type)) then declare Act_Decl : constant Node_Id := Build_Actual_Subtype_Of_Component (Array_Type, Pref); begin Insert_Action (N, Act_Decl); Array_Type := Defining_Identifier (Act_Decl); end; -- Maybe this should just be "else", instead of checking for the -- specific case of slice??? This is needed for the case where the -- prefix is an Image attribute, which gets expanded to a slice, and so -- has a constrained subtype which we want to use for the slice range -- check applied below (the range check won't get done if the -- unconstrained subtype of the 'Image is used). elsif Nkind (Pref) = N_Slice then Array_Type := Etype (Pref); end if; -- Obtain the type of the array index if Ekind (Array_Type) = E_String_Literal_Subtype then Index_Type := Etype (String_Literal_Low_Bound (Array_Type)); else Index_Type := Etype (First_Index (Array_Type)); end if; -- If name was overloaded, set slice type correctly now Set_Etype (N, Array_Type); -- Handle the generation of a range check that compares the array index -- against the discrete_range. The check is not applied to internally -- built nodes associated with the expansion of dispatch tables. Check -- that Ada.Tags has already been loaded to avoid extra dependencies on -- the unit. if Tagged_Type_Expansion and then RTU_Loaded (Ada_Tags) and then Nkind (Pref) = N_Selected_Component and then Present (Entity (Selector_Name (Pref))) and then Entity (Selector_Name (Pref)) = RTE_Record_Component (RE_Prims_Ptr) then null; -- The discrete_range is specified by a subtype name. Create an -- equivalent range attribute, apply checks to this attribute, but -- insert them into the range expression of the slice itself. elsif Is_Entity_Name (Drange) then Dexpr := Make_Attribute_Reference (Sloc (Drange), Prefix => New_Occurrence_Of (Entity (Drange), Sloc (Drange)), Attribute_Name => Name_Range); Analyze_And_Resolve (Dexpr, Etype (Drange)); elsif Nkind (Drange) = N_Subtype_Indication then Dexpr := Range_Expression (Constraint (Drange)); -- The discrete_range is a regular range (or a range attribute, which -- will be resolved into a regular range). Resolve the bounds and remove -- their side effects. else Resolve (Drange, Base_Type (Index_Type)); if Nkind (Drange) = N_Range then Force_Evaluation (Low_Bound (Drange)); Force_Evaluation (High_Bound (Drange)); Dexpr := Drange; end if; end if; if Present (Dexpr) then Apply_Range_Check (Dexpr, Index_Type, Insert_Node => Drange); end if; Set_Slice_Subtype (N); -- Check bad use of type with predicates declare Subt : Entity_Id; begin if Nkind (Drange) = N_Subtype_Indication and then Has_Predicates (Entity (Subtype_Mark (Drange))) then Subt := Entity (Subtype_Mark (Drange)); else Subt := Etype (Drange); end if; if Has_Predicates (Subt) then Bad_Predicated_Subtype_Use ("subtype& has predicate, not allowed in slice", Drange, Subt); end if; end; -- Otherwise here is where we check suspicious indexes if Nkind (Drange) = N_Range then Warn_On_Suspicious_Index (Pref, Low_Bound (Drange)); Warn_On_Suspicious_Index (Pref, High_Bound (Drange)); end if; Resolve_Implicit_Dereference (Pref); Analyze_Dimension (N); Eval_Slice (N); end Resolve_Slice; ---------------------------- -- Resolve_String_Literal -- ---------------------------- procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is C_Typ : constant Entity_Id := Component_Type (Typ); R_Typ : constant Entity_Id := Root_Type (C_Typ); Loc : constant Source_Ptr := Sloc (N); Str : constant String_Id := Strval (N); Strlen : constant Nat := String_Length (Str); Subtype_Id : Entity_Id; Need_Check : Boolean; begin -- For a string appearing in a concatenation, defer creation of the -- string_literal_subtype until the end of the resolution of the -- concatenation, because the literal may be constant-folded away. This -- is a useful optimization for long concatenation expressions. -- If the string is an aggregate built for a single character (which -- happens in a non-static context) or a is null string to which special -- checks may apply, we build the subtype. Wide strings must also get a -- string subtype if they come from a one character aggregate. Strings -- generated by attributes might be static, but it is often hard to -- determine whether the enclosing context is static, so we generate -- subtypes for them as well, thus losing some rarer optimizations ??? -- Same for strings that come from a static conversion. Need_Check := (Strlen = 0 and then Typ /= Standard_String) or else Nkind (Parent (N)) /= N_Op_Concat or else (N /= Left_Opnd (Parent (N)) and then N /= Right_Opnd (Parent (N))) or else ((Typ = Standard_Wide_String or else Typ = Standard_Wide_Wide_String) and then Nkind (Original_Node (N)) /= N_String_Literal); -- If the resolving type is itself a string literal subtype, we can just -- reuse it, since there is no point in creating another. if Ekind (Typ) = E_String_Literal_Subtype then Subtype_Id := Typ; elsif Nkind (Parent (N)) = N_Op_Concat and then not Need_Check and then Nkind (Original_Node (N)) not in N_Character_Literal | N_Attribute_Reference | N_Qualified_Expression | N_Type_Conversion then Subtype_Id := Typ; -- Do not generate a string literal subtype for the default expression -- of a formal parameter in GNATprove mode. This is because the string -- subtype is associated with the freezing actions of the subprogram, -- however freezing is disabled in GNATprove mode and as a result the -- subtype is unavailable. elsif GNATprove_Mode and then Nkind (Parent (N)) = N_Parameter_Specification then Subtype_Id := Typ; -- Otherwise we must create a string literal subtype. Note that the -- whole idea of string literal subtypes is simply to avoid the need -- for building a full fledged array subtype for each literal. else Set_String_Literal_Subtype (N, Typ); Subtype_Id := Etype (N); end if; if Nkind (Parent (N)) /= N_Op_Concat or else Need_Check then Set_Etype (N, Subtype_Id); Eval_String_Literal (N); end if; if Is_Limited_Composite (Typ) or else Is_Private_Composite (Typ) then Error_Msg_N ("string literal not available for private array", N); Set_Etype (N, Any_Type); return; end if; -- The validity of a null string has been checked in the call to -- Eval_String_Literal. if Strlen = 0 then return; -- Always accept string literal with component type Any_Character, which -- occurs in error situations and in comparisons of literals, both of -- which should accept all literals. elsif R_Typ = Any_Character then return; -- If the type is bit-packed, then we always transform the string -- literal into a full fledged aggregate. elsif Is_Bit_Packed_Array (Typ) then null; -- Deal with cases of Wide_Wide_String, Wide_String, and String else -- For Standard.Wide_Wide_String, or any other type whose component -- type is Standard.Wide_Wide_Character, we know that all the -- characters in the string must be acceptable, since the parser -- accepted the characters as valid character literals. if R_Typ = Standard_Wide_Wide_Character then null; -- For the case of Standard.String, or any other type whose component -- type is Standard.Character, we must make sure that there are no -- wide characters in the string, i.e. that it is entirely composed -- of characters in range of type Character. -- If the string literal is the result of a static concatenation, the -- test has already been performed on the components, and need not be -- repeated. elsif R_Typ = Standard_Character and then Nkind (Original_Node (N)) /= N_Op_Concat then for J in 1 .. Strlen loop if not In_Character_Range (Get_String_Char (Str, J)) then -- If we are out of range, post error. This is one of the -- very few places that we place the flag in the middle of -- a token, right under the offending wide character. Not -- quite clear if this is right wrt wide character encoding -- sequences, but it's only an error message. Error_Msg ("literal out of range of type Standard.Character", Loc + Source_Ptr (J)); return; end if; end loop; -- For the case of Standard.Wide_String, or any other type whose -- component type is Standard.Wide_Character, we must make sure that -- there are no wide characters in the string, i.e. that it is -- entirely composed of characters in range of type Wide_Character. -- If the string literal is the result of a static concatenation, -- the test has already been performed on the components, and need -- not be repeated. elsif R_Typ = Standard_Wide_Character and then Nkind (Original_Node (N)) /= N_Op_Concat then for J in 1 .. Strlen loop if not In_Wide_Character_Range (Get_String_Char (Str, J)) then -- If we are out of range, post error. This is one of the -- very few places that we place the flag in the middle of -- a token, right under the offending wide character. -- This is not quite right, because characters in general -- will take more than one character position ??? Error_Msg ("literal out of range of type Standard.Wide_Character", Loc + Source_Ptr (J)); return; end if; end loop; -- If the root type is not a standard character, then we will convert -- the string into an aggregate and will let the aggregate code do -- the checking. Standard Wide_Wide_Character is also OK here. else null; end if; -- See if the component type of the array corresponding to the string -- has compile time known bounds. If yes we can directly check -- whether the evaluation of the string will raise constraint error. -- Otherwise we need to transform the string literal into the -- corresponding character aggregate and let the aggregate code do -- the checking. We use the same transformation if the component -- type has a static predicate, which will be applied to each -- character when the aggregate is resolved. if Is_Standard_Character_Type (R_Typ) then -- Check for the case of full range, where we are definitely OK if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then return; end if; -- Here the range is not the complete base type range, so check declare Comp_Typ_Lo : constant Node_Id := Type_Low_Bound (Component_Type (Typ)); Comp_Typ_Hi : constant Node_Id := Type_High_Bound (Component_Type (Typ)); Char_Val : Uint; begin if Compile_Time_Known_Value (Comp_Typ_Lo) and then Compile_Time_Known_Value (Comp_Typ_Hi) then for J in 1 .. Strlen loop Char_Val := UI_From_CC (Get_String_Char (Str, J)); if Char_Val < Expr_Value (Comp_Typ_Lo) or else Char_Val > Expr_Value (Comp_Typ_Hi) then Apply_Compile_Time_Constraint_Error (N, "character out of range??", CE_Range_Check_Failed, Loc => Loc + Source_Ptr (J)); end if; end loop; if not Has_Static_Predicate (C_Typ) then return; end if; end if; end; end if; end if; -- If we got here we meed to transform the string literal into the -- equivalent qualified positional array aggregate. This is rather -- heavy artillery for this situation, but it is hard work to avoid. declare Lits : constant List_Id := New_List; P : Source_Ptr := Loc + 1; C : Char_Code; begin -- Build the character literals, we give them source locations that -- correspond to the string positions, which is a bit tricky given -- the possible presence of wide character escape sequences. for J in 1 .. Strlen loop C := Get_String_Char (Str, J); Set_Character_Literal_Name (C); Append_To (Lits, Make_Character_Literal (P, Chars => Name_Find, Char_Literal_Value => UI_From_CC (C))); if In_Character_Range (C) then P := P + 1; -- Should we have a call to Skip_Wide here ??? -- ??? else -- Skip_Wide (P); end if; end loop; Rewrite (N, Make_Qualified_Expression (Loc, Subtype_Mark => New_Occurrence_Of (Typ, Loc), Expression => Make_Aggregate (Loc, Expressions => Lits))); Analyze_And_Resolve (N, Typ); end; end Resolve_String_Literal; ------------------------- -- Resolve_Target_Name -- ------------------------- procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is begin Set_Etype (N, Typ); end Resolve_Target_Name; ----------------------------- -- Resolve_Type_Conversion -- ----------------------------- procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is Conv_OK : constant Boolean := Conversion_OK (N); Operand : constant Node_Id := Expression (N); Operand_Typ : constant Entity_Id := Etype (Operand); Target_Typ : constant Entity_Id := Etype (N); Rop : Node_Id; Orig_N : Node_Id; Orig_T : Node_Id; Test_Redundant : Boolean := Warn_On_Redundant_Constructs; -- Set to False to suppress cases where we want to suppress the test -- for redundancy to avoid possible false positives on this warning. begin if not Conv_OK and then not Valid_Conversion (N, Target_Typ, Operand) then return; end if; -- If the Operand Etype is Universal_Fixed, then the conversion is -- never redundant. We need this check because by the time we have -- finished the rather complex transformation, the conversion looks -- redundant when it is not. if Operand_Typ = Universal_Fixed then Test_Redundant := False; -- If the operand is marked as Any_Fixed, then special processing is -- required. This is also a case where we suppress the test for a -- redundant conversion, since most certainly it is not redundant. elsif Operand_Typ = Any_Fixed then Test_Redundant := False; -- Mixed-mode operation involving a literal. Context must be a fixed -- type which is applied to the literal subsequently. -- Multiplication and division involving two fixed type operands must -- yield a universal real because the result is computed in arbitrary -- precision. if Is_Fixed_Point_Type (Typ) and then Nkind (Operand) in N_Op_Divide | N_Op_Multiply and then Etype (Left_Opnd (Operand)) = Any_Fixed and then Etype (Right_Opnd (Operand)) = Any_Fixed then Set_Etype (Operand, Universal_Real); elsif Is_Numeric_Type (Typ) and then Nkind (Operand) in N_Op_Multiply | N_Op_Divide and then (Etype (Right_Opnd (Operand)) = Universal_Real or else Etype (Left_Opnd (Operand)) = Universal_Real) then -- Return if expression is ambiguous if Unique_Fixed_Point_Type (N) = Any_Type then return; -- If nothing else, the available fixed type is Duration else Set_Etype (Operand, Standard_Duration); end if; -- Resolve the real operand with largest available precision if Etype (Right_Opnd (Operand)) = Universal_Real then Rop := New_Copy_Tree (Right_Opnd (Operand)); else Rop := New_Copy_Tree (Left_Opnd (Operand)); end if; Resolve (Rop, Universal_Real); -- If the operand is a literal (it could be a non-static and -- illegal exponentiation) check whether the use of Duration -- is potentially inaccurate. if Nkind (Rop) = N_Real_Literal and then Realval (Rop) /= Ureal_0 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration) then Error_Msg_N ("??universal real operand can only " & "be interpreted as Duration!", Rop); Error_Msg_N ("\??precision will be lost in the conversion!", Rop); end if; elsif Is_Numeric_Type (Typ) and then Nkind (Operand) in N_Op and then Unique_Fixed_Point_Type (N) /= Any_Type then Set_Etype (Operand, Standard_Duration); else Error_Msg_N ("invalid context for mixed mode operation", N); Set_Etype (Operand, Any_Type); return; end if; end if; Resolve (Operand); Analyze_Dimension (N); -- Note: we do the Eval_Type_Conversion call before applying the -- required checks for a subtype conversion. This is important, since -- both are prepared under certain circumstances to change the type -- conversion to a constraint error node, but in the case of -- Eval_Type_Conversion this may reflect an illegality in the static -- case, and we would miss the illegality (getting only a warning -- message), if we applied the type conversion checks first. Eval_Type_Conversion (N); -- Even when evaluation is not possible, we may be able to simplify the -- conversion or its expression. This needs to be done before applying -- checks, since otherwise the checks may use the original expression -- and defeat the simplifications. This is specifically the case for -- elimination of the floating-point Truncation attribute in -- float-to-int conversions. Simplify_Type_Conversion (N); -- If after evaluation we still have a type conversion, then we may need -- to apply checks required for a subtype conversion. But skip them if -- universal fixed operands are involved, since range checks are handled -- separately for these cases, after the expansion done by Exp_Fixd. if Nkind (N) = N_Type_Conversion and then not Is_Generic_Type (Root_Type (Target_Typ)) and then Target_Typ /= Universal_Fixed and then Etype (Operand) /= Universal_Fixed then Apply_Type_Conversion_Checks (N); end if; -- Issue warning for conversion of simple object to its own type. We -- have to test the original nodes, since they may have been rewritten -- by various optimizations. Orig_N := Original_Node (N); -- Here we test for a redundant conversion if the warning mode is -- active (and was not locally reset), and we have a type conversion -- from source not appearing in a generic instance. if Test_Redundant and then Nkind (Orig_N) = N_Type_Conversion and then Comes_From_Source (Orig_N) and then not In_Instance then Orig_N := Original_Node (Expression (Orig_N)); Orig_T := Target_Typ; -- If the node is part of a larger expression, the Target_Type -- may not be the original type of the node if the context is a -- condition. Recover original type to see if conversion is needed. if Is_Boolean_Type (Orig_T) and then Nkind (Parent (N)) in N_Op then Orig_T := Etype (Parent (N)); end if; -- If we have an entity name, then give the warning if the entity -- is the right type, or if it is a loop parameter covered by the -- original type (that's needed because loop parameters have an -- odd subtype coming from the bounds). if (Is_Entity_Name (Orig_N) and then Present (Entity (Orig_N)) and then (Etype (Entity (Orig_N)) = Orig_T or else (Ekind (Entity (Orig_N)) = E_Loop_Parameter and then Covers (Orig_T, Etype (Entity (Orig_N)))))) -- If not an entity, then type of expression must match or else Etype (Orig_N) = Orig_T then -- One more check, do not give warning if the analyzed conversion -- has an expression with non-static bounds, and the bounds of the -- target are static. This avoids junk warnings in cases where the -- conversion is necessary to establish staticness, for example in -- a case statement. if not Is_OK_Static_Subtype (Operand_Typ) and then Is_OK_Static_Subtype (Target_Typ) then null; -- Never give a warning if the operand is a conditional expression -- because RM 4.5.7(10/3) forces its type to be the target type. elsif Nkind (Orig_N) in N_Case_Expression | N_If_Expression then null; -- Finally, if this type conversion occurs in a context requiring -- a prefix, and the expression is a qualified expression then the -- type conversion is not redundant, since a qualified expression -- is not a prefix, whereas a type conversion is. For example, "X -- := T'(Funx(...)).Y;" is illegal because a selected component -- requires a prefix, but a type conversion makes it legal: "X := -- T(T'(Funx(...))).Y;" -- In Ada 2012, a qualified expression is a name, so this idiom is -- no longer needed, but we still suppress the warning because it -- seems unfriendly for warnings to pop up when you switch to the -- newer language version. elsif Nkind (Orig_N) = N_Qualified_Expression and then Nkind (Parent (N)) in N_Attribute_Reference | N_Indexed_Component | N_Selected_Component | N_Slice | N_Explicit_Dereference then null; -- Never warn on conversion to Long_Long_Integer'Base since -- that is most likely an artifact of the extended overflow -- checking and comes from complex expanded code. elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then null; -- Do not warn on conversion to class-wide type on helpers of -- class-wide preconditions because in this context the warning -- would be spurious (since the class-wide precondition has been -- installed in the return statement of the helper, which has a -- class-wide formal type instead of a regular tagged type). elsif Is_Class_Wide_Type (Orig_T) and then Is_Subprogram_Or_Generic_Subprogram (Current_Scope) and then Present (Class_Preconditions_Subprogram (Current_Scope)) then null; -- Here we give the redundant conversion warning. If it is an -- entity, give the name of the entity in the message. If not, -- just mention the expression. else if Is_Entity_Name (Orig_N) then Error_Msg_Node_2 := Orig_T; Error_Msg_NE -- CODEFIX ("?r?redundant conversion, & is of type &!", N, Entity (Orig_N)); else Error_Msg_NE ("?r?redundant conversion, expression is of type&!", N, Orig_T); end if; end if; end if; end if; -- Ada 2005 (AI-251): Handle class-wide interface type conversions. -- No need to perform any interface conversion if the type of the -- expression coincides with the target type. if Ada_Version >= Ada_2005 and then Expander_Active and then Operand_Typ /= Target_Typ then declare Opnd : Entity_Id := Operand_Typ; Target : Entity_Id := Target_Typ; begin -- If the type of the operand is a limited view, use nonlimited -- view when available. If it is a class-wide type, recover the -- class-wide type of the nonlimited view. if From_Limited_With (Opnd) and then Has_Non_Limited_View (Opnd) then Opnd := Non_Limited_View (Opnd); Set_Etype (Expression (N), Opnd); end if; -- It seems that Non_Limited_View should also be applied for -- Target when it has a limited view, but that leads to missing -- error checks on interface conversions further below. ??? if Is_Access_Type (Opnd) then Opnd := Designated_Type (Opnd); -- If the type of the operand is a limited view, use nonlimited -- view when available. If it is a class-wide type, recover the -- class-wide type of the nonlimited view. if From_Limited_With (Opnd) and then Has_Non_Limited_View (Opnd) then Opnd := Non_Limited_View (Opnd); end if; end if; if Is_Access_Type (Target_Typ) then Target := Designated_Type (Target); -- If the target type is a limited view, use nonlimited view -- when available. if From_Limited_With (Target) and then Has_Non_Limited_View (Target) then Target := Non_Limited_View (Target); end if; end if; if Opnd = Target then null; -- Conversion from interface type -- It seems that it would be better for the error checks below -- to be performed as part of Validate_Conversion (and maybe some -- of the error checks above could be moved as well?). ??? elsif Is_Interface (Opnd) then -- Ada 2005 (AI-217): Handle entities from limited views if From_Limited_With (Opnd) then Error_Msg_Qual_Level := 99; Error_Msg_NE -- CODEFIX ("missing WITH clause on package &", N, Cunit_Entity (Get_Source_Unit (Base_Type (Opnd)))); Error_Msg_N ("type conversions require visibility of the full view", N); elsif From_Limited_With (Target) and then not (Is_Access_Type (Target_Typ) and then Present (Non_Limited_View (Etype (Target)))) then Error_Msg_Qual_Level := 99; Error_Msg_NE -- CODEFIX ("missing WITH clause on package &", N, Cunit_Entity (Get_Source_Unit (Base_Type (Target)))); Error_Msg_N ("type conversions require visibility of the full view", N); else Expand_Interface_Conversion (N); end if; -- Conversion to interface type elsif Is_Interface (Target) then Expand_Interface_Conversion (N); end if; end; end if; -- Ada 2012: Once the type conversion is resolved, check whether the -- operand satisfies a static predicate of the target subtype, if any. -- In the static expression case, a predicate check failure is an error. if Has_Predicates (Target_Typ) then Check_Expression_Against_Static_Predicate (N, Target_Typ, Static_Failure_Is_Error => True); end if; -- If at this stage we have a fixed to integer conversion, make sure the -- Do_Range_Check flag is set, because such conversions in general need -- a range check. We only need this if expansion is off, see above why. if Nkind (N) = N_Type_Conversion and then not Expander_Active and then Is_Integer_Type (Target_Typ) and then Is_Fixed_Point_Type (Operand_Typ) and then not Range_Checks_Suppressed (Target_Typ) and then not Range_Checks_Suppressed (Operand_Typ) then Set_Do_Range_Check (Operand); end if; end Resolve_Type_Conversion; ---------------------- -- Resolve_Unary_Op -- ---------------------- procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is B_Typ : constant Entity_Id := Base_Type (Typ); R : constant Node_Id := Right_Opnd (N); OK : Boolean; Lo : Uint; Hi : Uint; begin -- Deal with intrinsic unary operators if Comes_From_Source (N) and then Ekind (Entity (N)) = E_Function and then Is_Imported (Entity (N)) and then Is_Intrinsic_Subprogram (Entity (N)) then Resolve_Intrinsic_Unary_Operator (N, Typ); return; end if; -- Deal with universal cases if Is_Universal_Numeric_Type (Etype (R)) then Check_For_Visible_Operator (N, B_Typ); end if; Set_Etype (N, B_Typ); Resolve (R, B_Typ); -- Generate warning for negative literal of a modular type, unless it is -- enclosed directly in a type qualification or a type conversion, as it -- is likely not what the user intended. We don't issue the warning for -- the common use of -1 to denote OxFFFF_FFFF... if Warn_On_Suspicious_Modulus_Value and then Nkind (N) = N_Op_Minus and then Nkind (R) = N_Integer_Literal and then Comes_From_Source (R) and then Is_Modular_Integer_Type (B_Typ) and then Nkind (Parent (N)) not in N_Qualified_Expression | N_Type_Conversion and then Expr_Value (R) > Uint_1 then Error_Msg_N ("?.m?negative literal of modular type is in fact positive", N); Error_Msg_Uint_1 := (-Expr_Value (R)) mod Modulus (B_Typ); Error_Msg_Uint_2 := Expr_Value (R); Error_Msg_N ("\do you really mean^ when writing -^ '?", N); Error_Msg_N ("\if you do, use qualification to avoid this warning", N); end if; -- Generate warning for expressions like abs (x mod 2) if Warn_On_Redundant_Constructs and then Nkind (N) = N_Op_Abs then Determine_Range (Right_Opnd (N), OK, Lo, Hi); if OK and then Hi >= Lo and then Lo >= 0 then Error_Msg_N -- CODEFIX ("?r?abs applied to known non-negative value has no effect", N); end if; end if; -- Deal with reference generation Check_Unset_Reference (R); Generate_Operator_Reference (N, B_Typ); Analyze_Dimension (N); Eval_Unary_Op (N); -- Set overflow checking bit. Much cleverer code needed here eventually -- and perhaps the Resolve routines should be separated for the various -- arithmetic operations, since they will need different processing ??? if Nkind (N) in N_Op then if not Overflow_Checks_Suppressed (Etype (N)) then Enable_Overflow_Check (N); end if; end if; -- Generate warning for expressions like -5 mod 3 for integers. No need -- to worry in the floating-point case, since parens do not affect the -- result so there is no point in giving in a warning. declare Norig : constant Node_Id := Original_Node (N); Rorig : Node_Id; Val : Uint; HB : Uint; LB : Uint; Lval : Uint; Opnd : Node_Id; begin if Warn_On_Questionable_Missing_Parens and then Comes_From_Source (Norig) and then Is_Integer_Type (Typ) and then Nkind (Norig) = N_Op_Minus then Rorig := Original_Node (Right_Opnd (Norig)); -- We are looking for cases where the right operand is not -- parenthesized, and is a binary operator, multiply, divide, or -- mod. These are the cases where the grouping can affect results. if Paren_Count (Rorig) = 0 and then Nkind (Rorig) in N_Op_Mod | N_Op_Multiply | N_Op_Divide then -- For mod, we always give the warning, since the value is -- affected by the parenthesization (e.g. (-5) mod 315 /= -- -(5 mod 315)). But for the other cases, the only concern is -- overflow, e.g. for the case of 8 big signed (-(2 * 64) -- overflows, but (-2) * 64 does not). So we try to give the -- message only when overflow is possible. if Nkind (Rorig) /= N_Op_Mod and then Compile_Time_Known_Value (R) then Val := Expr_Value (R); if Compile_Time_Known_Value (Type_High_Bound (Typ)) then HB := Expr_Value (Type_High_Bound (Typ)); else HB := Expr_Value (Type_High_Bound (Base_Type (Typ))); end if; if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then LB := Expr_Value (Type_Low_Bound (Typ)); else LB := Expr_Value (Type_Low_Bound (Base_Type (Typ))); end if; -- Note that the test below is deliberately excluding the -- largest negative number, since that is a potentially -- troublesome case (e.g. -2 * x, where the result is the -- largest negative integer has an overflow with 2 * x). if Val > LB and then Val <= HB then return; end if; end if; -- For the multiplication case, the only case we have to worry -- about is when (-a)*b is exactly the largest negative number -- so that -(a*b) can cause overflow. This can only happen if -- a is a power of 2, and more generally if any operand is a -- constant that is not a power of 2, then the parentheses -- cannot affect whether overflow occurs. We only bother to -- test the left most operand -- Loop looking at left operands for one that has known value Opnd := Rorig; Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop if Compile_Time_Known_Value (Left_Opnd (Opnd)) then Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd))); -- Operand value of 0 or 1 skips warning if Lval <= 1 then return; -- Otherwise check power of 2, if power of 2, warn, if -- anything else, skip warning. else while Lval /= 2 loop if Lval mod 2 = 1 then return; else Lval := Lval / 2; end if; end loop; exit Opnd_Loop; end if; end if; -- Keep looking at left operands Opnd := Left_Opnd (Opnd); end loop Opnd_Loop; -- For rem or "/" we can only have a problematic situation -- if the divisor has a value of minus one or one. Otherwise -- overflow is impossible (divisor > 1) or we have a case of -- division by zero in any case. if Nkind (Rorig) in N_Op_Divide | N_Op_Rem and then Compile_Time_Known_Value (Right_Opnd (Rorig)) and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1 then return; end if; -- If we fall through warning should be issued -- Shouldn't we test Warn_On_Questionable_Missing_Parens ??? Error_Msg_N ("??unary minus expression should be parenthesized here!", N); end if; end if; end; end Resolve_Unary_Op; ---------------------------------- -- Resolve_Unchecked_Expression -- ---------------------------------- procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id) is begin Resolve (Expression (N), Typ, Suppress => All_Checks); Set_Etype (N, Typ); end Resolve_Unchecked_Expression; --------------------------------------- -- Resolve_Unchecked_Type_Conversion -- --------------------------------------- procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id) is pragma Warnings (Off, Typ); Operand : constant Node_Id := Expression (N); Opnd_Type : constant Entity_Id := Etype (Operand); begin -- Resolve operand using its own type Resolve (Operand, Opnd_Type); -- If the expression is a conversion to universal integer of an -- an expression with an integer type, then we can eliminate the -- intermediate conversion to universal integer. if Nkind (Operand) = N_Type_Conversion and then Entity (Subtype_Mark (Operand)) = Universal_Integer and then Is_Integer_Type (Etype (Expression (Operand))) then Rewrite (Operand, Relocate_Node (Expression (Operand))); Analyze_And_Resolve (Operand); end if; -- In an inlined context, the unchecked conversion may be applied -- to a literal, in which case its type is the type of the context. -- (In other contexts conversions cannot apply to literals). if In_Inlined_Body and then (Opnd_Type = Any_Character or else Opnd_Type = Any_Integer or else Opnd_Type = Any_Real) then Set_Etype (Operand, Typ); end if; Analyze_Dimension (N); Eval_Unchecked_Conversion (N); end Resolve_Unchecked_Type_Conversion; ------------------------------ -- Rewrite_Operator_As_Call -- ------------------------------ procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); Actuals : constant List_Id := New_List; New_N : Node_Id; begin if Nkind (N) in N_Binary_Op then Append (Left_Opnd (N), Actuals); end if; Append (Right_Opnd (N), Actuals); New_N := Make_Function_Call (Sloc => Loc, Name => New_Occurrence_Of (Nam, Loc), Parameter_Associations => Actuals); Preserve_Comes_From_Source (New_N, N); Preserve_Comes_From_Source (Name (New_N), N); Rewrite (N, New_N); Set_Etype (N, Etype (Nam)); end Rewrite_Operator_As_Call; ------------------------------ -- Rewrite_Renamed_Operator -- ------------------------------ procedure Rewrite_Renamed_Operator (N : Node_Id; Op : Entity_Id; Typ : Entity_Id) is Nam : constant Name_Id := Chars (Op); Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op; Op_Node : Node_Id; begin -- Do not perform this transformation within a pre/postcondition, -- because the expression will be reanalyzed, and the transformation -- might affect the visibility of the operator, e.g. in an instance. -- Note that fully analyzed and expanded pre/postconditions appear as -- pragma Check equivalents. if In_Pre_Post_Condition (N) then return; end if; -- Likewise when an expression function is being preanalyzed, since the -- expression will be reanalyzed as part of the generated body. if In_Spec_Expression then declare S : constant Entity_Id := Current_Scope_No_Loops; begin if Ekind (S) = E_Function and then Nkind (Original_Node (Unit_Declaration_Node (S))) = N_Expression_Function then return; end if; end; end if; Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N)); Set_Chars (Op_Node, Nam); Set_Etype (Op_Node, Etype (N)); Set_Entity (Op_Node, Op); Set_Right_Opnd (Op_Node, Right_Opnd (N)); if Is_Binary then Set_Left_Opnd (Op_Node, Left_Opnd (N)); end if; -- Indicate that both the original entity and its renaming are -- referenced at this point. Generate_Reference (Entity (N), N); Generate_Reference (Op, N); Rewrite (N, Op_Node); -- If the context type is private, add the appropriate conversions so -- that the operator is applied to the full view. This is done in the -- routines that resolve intrinsic operators. if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then case Nkind (N) is when N_Op_Add | N_Op_Divide | N_Op_Expon | N_Op_Mod | N_Op_Multiply | N_Op_Rem | N_Op_Subtract => Resolve_Intrinsic_Operator (N, Typ); when N_Op_Abs | N_Op_Minus | N_Op_Plus => Resolve_Intrinsic_Unary_Operator (N, Typ); when others => Resolve (N, Typ); end case; end if; end Rewrite_Renamed_Operator; ----------------------- -- Set_Slice_Subtype -- ----------------------- -- Build an implicit subtype declaration to represent the type delivered by -- the slice. This is an abbreviated version of an array subtype. We define -- an index subtype for the slice, using either the subtype name or the -- discrete range of the slice. To be consistent with index usage elsewhere -- we create a list header to hold the single index. This list is not -- otherwise attached to the syntax tree. procedure Set_Slice_Subtype (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Index_List : constant List_Id := New_List; Index : Node_Id; Index_Subtype : Entity_Id; Index_Type : Entity_Id; Slice_Subtype : Entity_Id; Drange : constant Node_Id := Discrete_Range (N); begin Index_Type := Base_Type (Etype (Drange)); if Is_Entity_Name (Drange) then Index_Subtype := Entity (Drange); else -- We force the evaluation of a range. This is definitely needed in -- the renamed case, and seems safer to do unconditionally. Note in -- any case that since we will create and insert an Itype referring -- to this range, we must make sure any side effect removal actions -- are inserted before the Itype definition. if Nkind (Drange) = N_Range then Force_Evaluation (Low_Bound (Drange)); Force_Evaluation (High_Bound (Drange)); -- If the discrete range is given by a subtype indication, the -- type of the slice is the base of the subtype mark. elsif Nkind (Drange) = N_Subtype_Indication then declare R : constant Node_Id := Range_Expression (Constraint (Drange)); begin Index_Type := Base_Type (Entity (Subtype_Mark (Drange))); Force_Evaluation (Low_Bound (R)); Force_Evaluation (High_Bound (R)); end; end if; Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N); -- Take a new copy of Drange (where bounds have been rewritten to -- reference side-effect-free names). Using a separate tree ensures -- that further expansion (e.g. while rewriting a slice assignment -- into a FOR loop) does not attempt to remove side effects on the -- bounds again (which would cause the bounds in the index subtype -- definition to refer to temporaries before they are defined) (the -- reason is that some names are considered side effect free here -- for the subtype, but not in the context of a loop iteration -- scheme). Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange)); Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype); Set_Etype (Index_Subtype, Index_Type); Set_Size_Info (Index_Subtype, Index_Type); Set_RM_Size (Index_Subtype, RM_Size (Index_Type)); Set_Is_Constrained (Index_Subtype); end if; Slice_Subtype := Create_Itype (E_Array_Subtype, N); Index := New_Occurrence_Of (Index_Subtype, Loc); Set_Etype (Index, Index_Subtype); Append (Index, Index_List); Set_First_Index (Slice_Subtype, Index); Set_Etype (Slice_Subtype, Base_Type (Etype (N))); Set_Is_Constrained (Slice_Subtype, True); Check_Compile_Time_Size (Slice_Subtype); -- The Etype of the existing Slice node is reset to this slice subtype. -- Its bounds are obtained from its first index. Set_Etype (N, Slice_Subtype); -- For bit-packed slice subtypes, freeze immediately (except in the case -- of being in a "spec expression" where we never freeze when we first -- see the expression). if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then Freeze_Itype (Slice_Subtype, N); -- For all other cases insert an itype reference in the slice's actions -- so that the itype is frozen at the proper place in the tree (i.e. at -- the point where actions for the slice are analyzed). Note that this -- is different from freezing the itype immediately, which might be -- premature (e.g. if the slice is within a transient scope). This needs -- to be done only if expansion is enabled. elsif Expander_Active then Ensure_Defined (Typ => Slice_Subtype, N => N); end if; end Set_Slice_Subtype; -------------------------------- -- Set_String_Literal_Subtype -- -------------------------------- procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); Low_Bound : constant Node_Id := Type_Low_Bound (Etype (First_Index (Typ))); Subtype_Id : Entity_Id; begin if Nkind (N) /= N_String_Literal then return; end if; Subtype_Id := Create_Itype (E_String_Literal_Subtype, N); Set_String_Literal_Length (Subtype_Id, UI_From_Int (String_Length (Strval (N)))); Set_Etype (Subtype_Id, Base_Type (Typ)); Set_Is_Constrained (Subtype_Id); Set_Etype (N, Subtype_Id); -- The low bound is set from the low bound of the corresponding index -- type. Note that we do not store the high bound in the string literal -- subtype, but it can be deduced if necessary from the length and the -- low bound. if Is_OK_Static_Expression (Low_Bound) then Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound); -- If the lower bound is not static we create a range for the string -- literal, using the index type and the known length of the literal. -- If the length is 1, then the upper bound is set to a mere copy of -- the lower bound; or else, if the index type is a signed integer, -- then the upper bound is computed as Low_Bound + L - 1; otherwise, -- the upper bound is computed as T'Val (T'Pos (Low_Bound) + L - 1). else declare Length : constant Nat := String_Length (Strval (N)); Index_List : constant List_Id := New_List; Index_Type : constant Entity_Id := Etype (First_Index (Typ)); Array_Subtype : Entity_Id; Drange : Node_Id; High_Bound : Node_Id; Index : Node_Id; Index_Subtype : Entity_Id; begin if Length = 1 then High_Bound := New_Copy_Tree (Low_Bound); elsif Is_Signed_Integer_Type (Index_Type) then High_Bound := Make_Op_Add (Loc, Left_Opnd => New_Copy_Tree (Low_Bound), Right_Opnd => Make_Integer_Literal (Loc, Length - 1)); else High_Bound := Make_Attribute_Reference (Loc, Attribute_Name => Name_Val, Prefix => New_Occurrence_Of (Index_Type, Loc), Expressions => New_List ( Make_Op_Add (Loc, Left_Opnd => Make_Attribute_Reference (Loc, Attribute_Name => Name_Pos, Prefix => New_Occurrence_Of (Index_Type, Loc), Expressions => New_List (New_Copy_Tree (Low_Bound))), Right_Opnd => Make_Integer_Literal (Loc, Length - 1)))); end if; if Is_Integer_Type (Index_Type) then Set_String_Literal_Low_Bound (Subtype_Id, Make_Integer_Literal (Loc, 1)); else -- If the index type is an enumeration type, build bounds -- expression with attributes. Set_String_Literal_Low_Bound (Subtype_Id, Make_Attribute_Reference (Loc, Attribute_Name => Name_First, Prefix => New_Occurrence_Of (Base_Type (Index_Type), Loc))); end if; Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id), Base_Type (Index_Type)); -- Build bona fide subtype for the string, and wrap it in an -- unchecked conversion, because the back end expects the -- String_Literal_Subtype to have a static lower bound. Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N); Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound); Set_Scalar_Range (Index_Subtype, Drange); Set_Parent (Drange, N); Analyze_And_Resolve (Drange, Index_Type); -- In this context, the Index_Type may already have a constraint, -- so use common base type on string subtype. The base type may -- be used when generating attributes of the string, for example -- in the context of a slice assignment. Set_Etype (Index_Subtype, Base_Type (Index_Type)); Set_Size_Info (Index_Subtype, Index_Type); Set_RM_Size (Index_Subtype, RM_Size (Index_Type)); Array_Subtype := Create_Itype (E_Array_Subtype, N); Index := New_Occurrence_Of (Index_Subtype, Loc); Set_Etype (Index, Index_Subtype); Append (Index, Index_List); Set_First_Index (Array_Subtype, Index); Set_Etype (Array_Subtype, Base_Type (Typ)); Set_Is_Constrained (Array_Subtype, True); Rewrite (N, Unchecked_Convert_To (Array_Subtype, N)); Set_Etype (N, Array_Subtype); end; end if; end Set_String_Literal_Subtype; ------------------------------ -- Simplify_Type_Conversion -- ------------------------------ procedure Simplify_Type_Conversion (N : Node_Id) is begin if Nkind (N) = N_Type_Conversion then declare Operand : constant Node_Id := Expression (N); Target_Typ : constant Entity_Id := Etype (N); Opnd_Typ : constant Entity_Id := Etype (Operand); begin -- Special processing if the conversion is the expression of a -- Rounding or Truncation attribute reference. In this case we -- replace: -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x)) -- by -- ityp (x) -- with the Float_Truncate flag set to False or True respectively, -- which is more efficient. We reuse Rounding for Machine_Rounding -- as System.Fat_Gen, which is a permissible behavior. if Is_Floating_Point_Type (Opnd_Typ) and then (Is_Integer_Type (Target_Typ) or else (Is_Fixed_Point_Type (Target_Typ) and then Conversion_OK (N))) and then Nkind (Operand) = N_Attribute_Reference and then Attribute_Name (Operand) in Name_Rounding | Name_Machine_Rounding | Name_Truncation then declare Truncate : constant Boolean := Attribute_Name (Operand) = Name_Truncation; begin Rewrite (Operand, Relocate_Node (First (Expressions (Operand)))); Set_Float_Truncate (N, Truncate); end; -- Special processing for the conversion of an integer literal to -- a dynamic type: we first convert the literal to the root type -- and then convert the result to the target type, the goal being -- to avoid doing range checks in universal integer. elsif Is_Integer_Type (Target_Typ) and then not Is_Generic_Type (Root_Type (Target_Typ)) and then Nkind (Operand) = N_Integer_Literal and then Opnd_Typ = Universal_Integer then Convert_To_And_Rewrite (Root_Type (Target_Typ), Operand); Analyze_And_Resolve (Operand); -- If the expression is a conversion to universal integer of an -- an expression with an integer type, then we can eliminate the -- intermediate conversion to universal integer. elsif Nkind (Operand) = N_Type_Conversion and then Entity (Subtype_Mark (Operand)) = Universal_Integer and then Is_Integer_Type (Etype (Expression (Operand))) then Rewrite (Operand, Relocate_Node (Expression (Operand))); Analyze_And_Resolve (Operand); end if; end; end if; end Simplify_Type_Conversion; ------------------------------ -- Try_User_Defined_Literal -- ------------------------------ function Try_User_Defined_Literal (N : Node_Id; Typ : Entity_Id) return Boolean is begin if Has_Applicable_User_Defined_Literal (N, Typ) then return True; elsif Nkind (N) = N_If_Expression then -- Both dependent expressions must have the same type as the context declare Condition : constant Node_Id := First (Expressions (N)); Then_Expr : constant Node_Id := Next (Condition); Else_Expr : constant Node_Id := Next (Then_Expr); begin if Has_Applicable_User_Defined_Literal (Then_Expr, Typ) then Resolve (Else_Expr, Typ); Analyze_And_Resolve (N, Typ); return True; elsif Has_Applicable_User_Defined_Literal (Else_Expr, Typ) then Resolve (Then_Expr, Typ); Analyze_And_Resolve (N, Typ); return True; end if; end; elsif Nkind (N) = N_Case_Expression then -- All dependent expressions must have the same type as the context declare Alt : Node_Id; begin Alt := First (Alternatives (N)); while Present (Alt) loop if Has_Applicable_User_Defined_Literal (Expression (Alt), Typ) then declare Other_Alt : Node_Id; begin Other_Alt := First (Alternatives (N)); while Present (Other_Alt) loop if Other_Alt /= Alt then Resolve (Expression (Other_Alt), Typ); end if; Next (Other_Alt); end loop; Analyze_And_Resolve (N, Typ); return True; end; end if; Next (Alt); end loop; end; end if; return False; end Try_User_Defined_Literal; ------------------------------------------- -- Try_User_Defined_Literal_For_Operator -- ------------------------------------------- function Try_User_Defined_Literal_For_Operator (N : Node_Id; Typ : Entity_Id) return Boolean is begin if Nkind (N) in N_Op_Add | N_Op_Divide | N_Op_Mod | N_Op_Multiply | N_Op_Rem | N_Op_Subtract then -- Both operands must have the same type as the context -- (ignoring for now fixed-point and exponentiation ops). if Has_Applicable_User_Defined_Literal (Right_Opnd (N), Typ) or else (Nkind (Left_Opnd (N)) in N_Op and then Covers (Typ, Etype (Right_Opnd (N)))) then Resolve (Left_Opnd (N), Typ); Analyze_And_Resolve (N, Typ); return True; elsif Has_Applicable_User_Defined_Literal (Left_Opnd (N), Typ) or else (Nkind (Right_Opnd (N)) in N_Op and then Covers (Typ, Etype (Left_Opnd (N)))) then Resolve (Right_Opnd (N), Typ); Analyze_And_Resolve (N, Typ); return True; end if; elsif Nkind (N) in N_Binary_Op then -- For other binary operators the context does not impose a type on -- the operands, but their types must match. if Nkind (Left_Opnd (N)) not in N_Integer_Literal | N_String_Literal | N_Real_Literal and then Has_Applicable_User_Defined_Literal (Right_Opnd (N), Etype (Left_Opnd (N))) then Analyze_And_Resolve (N, Typ); return True; elsif Nkind (Right_Opnd (N)) not in N_Integer_Literal | N_String_Literal | N_Real_Literal and then Has_Applicable_User_Defined_Literal (Left_Opnd (N), Etype (Right_Opnd (N))) then Analyze_And_Resolve (N, Typ); return True; end if; elsif Nkind (N) in N_Unary_Op and then Has_Applicable_User_Defined_Literal (Right_Opnd (N), Typ) then Analyze_And_Resolve (N, Typ); return True; end if; return False; end Try_User_Defined_Literal_For_Operator; ----------------------------- -- Unique_Fixed_Point_Type -- ----------------------------- function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id); -- Give error messages for true ambiguity. Messages are posted on node -- N, and entities T1, T2 are the possible interpretations. ----------------------- -- Fixed_Point_Error -- ----------------------- procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is begin Error_Msg_N ("ambiguous universal_fixed_expression", N); Error_Msg_NE ("\\possible interpretation as}", N, T1); Error_Msg_NE ("\\possible interpretation as}", N, T2); end Fixed_Point_Error; -- Local variables ErrN : Node_Id; Item : Node_Id; Scop : Entity_Id; T1 : Entity_Id; T2 : Entity_Id; -- Start of processing for Unique_Fixed_Point_Type begin -- The operations on Duration are visible, so Duration is always a -- possible interpretation. T1 := Standard_Duration; -- Look for fixed-point types in enclosing scopes Scop := Current_Scope; while Scop /= Standard_Standard loop T2 := First_Entity (Scop); while Present (T2) loop if Is_Fixed_Point_Type (T2) and then Current_Entity (T2) = T2 and then Scope (Base_Type (T2)) = Scop then if Present (T1) then Fixed_Point_Error (T1, T2); return Any_Type; else T1 := T2; end if; end if; Next_Entity (T2); end loop; Scop := Scope (Scop); end loop; -- Look for visible fixed type declarations in the context Item := First (Context_Items (Cunit (Current_Sem_Unit))); while Present (Item) loop if Nkind (Item) = N_With_Clause then Scop := Entity (Name (Item)); T2 := First_Entity (Scop); while Present (T2) loop if Is_Fixed_Point_Type (T2) and then Scope (Base_Type (T2)) = Scop and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2)) then if Present (T1) then Fixed_Point_Error (T1, T2); return Any_Type; else T1 := T2; end if; end if; Next_Entity (T2); end loop; end if; Next (Item); end loop; if Nkind (N) = N_Real_Literal then Error_Msg_NE ("??real literal interpreted as }!", N, T1); else -- When the context is a type conversion, issue the warning on the -- expression of the conversion because it is the actual operation. if Nkind (N) in N_Type_Conversion | N_Unchecked_Type_Conversion then ErrN := Expression (N); else ErrN := N; end if; Error_Msg_NE ("??universal_fixed expression interpreted as }!", ErrN, T1); end if; return T1; end Unique_Fixed_Point_Type; ---------------------- -- Valid_Conversion -- ---------------------- function Valid_Conversion (N : Node_Id; Target : Entity_Id; Operand : Node_Id; Report_Errs : Boolean := True) return Boolean is Target_Type : constant Entity_Id := Base_Type (Target); Opnd_Type : Entity_Id := Etype (Operand); Inc_Ancestor : Entity_Id; function Conversion_Check (Valid : Boolean; Msg : String) return Boolean; -- Little routine to post Msg if Valid is False, returns Valid value procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id); -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments procedure Conversion_Error_NE (Msg : String; N : Node_Or_Entity_Id; E : Node_Or_Entity_Id); -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments function In_Instance_Code return Boolean; -- Return True if expression is within an instance but is not in one of -- the actuals of the instantiation. Type conversions within an instance -- are not rechecked because type visibility may lead to spurious errors -- but conversions in an actual for a formal object must be checked. function Is_Discrim_Of_Bad_Access_Conversion_Argument (Expr : Node_Id) return Boolean; -- Implicit anonymous-to-named access type conversions are not allowed -- if the "statically deeper than" relationship does not apply to the -- type of the conversion operand. See RM 8.6(28.1) and AARM 8.6(28.d). -- We deal with most such cases elsewhere so that we can emit more -- specific error messages (e.g., if the operand is an access parameter -- or a saooaaat (stand-alone object of an anonymous access type)), but -- here is where we catch the case where the operand is an access -- discriminant selected from a dereference of another such "bad" -- conversion argument. function Valid_Tagged_Conversion (Target_Type : Entity_Id; Opnd_Type : Entity_Id) return Boolean; -- Specifically test for validity of tagged conversions function Valid_Array_Conversion return Boolean; -- Check index and component conformance, and accessibility levels if -- the component types are anonymous access types (Ada 2005). ---------------------- -- Conversion_Check -- ---------------------- function Conversion_Check (Valid : Boolean; Msg : String) return Boolean is begin if not Valid -- A generic unit has already been analyzed and we have verified -- that a particular conversion is OK in that context. Since the -- instance is reanalyzed without relying on the relationships -- established during the analysis of the generic, it is possible -- to end up with inconsistent views of private types. Do not emit -- the error message in such cases. The rest of the machinery in -- Valid_Conversion still ensures the proper compatibility of -- target and operand types. and then not In_Instance_Code then Conversion_Error_N (Msg, Operand); end if; return Valid; end Conversion_Check; ------------------------ -- Conversion_Error_N -- ------------------------ procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is begin if Report_Errs then Error_Msg_N (Msg, N); end if; end Conversion_Error_N; ------------------------- -- Conversion_Error_NE -- ------------------------- procedure Conversion_Error_NE (Msg : String; N : Node_Or_Entity_Id; E : Node_Or_Entity_Id) is begin if Report_Errs then Error_Msg_NE (Msg, N, E); end if; end Conversion_Error_NE; ---------------------- -- In_Instance_Code -- ---------------------- function In_Instance_Code return Boolean is Par : Node_Id; begin if not In_Instance then return False; else Par := Parent (N); while Present (Par) loop -- The expression is part of an actual object if it appears in -- the generated object declaration in the instance. if Nkind (Par) = N_Object_Declaration and then Present (Corresponding_Generic_Association (Par)) then return False; else exit when Nkind (Par) in N_Statement_Other_Than_Procedure_Call or else Nkind (Par) in N_Subprogram_Call or else Nkind (Par) in N_Declaration; end if; Par := Parent (Par); end loop; -- Otherwise the expression appears within the instantiated unit return True; end if; end In_Instance_Code; -------------------------------------------------- -- Is_Discrim_Of_Bad_Access_Conversion_Argument -- -------------------------------------------------- function Is_Discrim_Of_Bad_Access_Conversion_Argument (Expr : Node_Id) return Boolean is Exp_Type : Entity_Id := Base_Type (Etype (Expr)); pragma Assert (Is_Access_Type (Exp_Type)); Associated_Node : Node_Id; Deref_Prefix : Node_Id; begin if not Is_Anonymous_Access_Type (Exp_Type) then return False; end if; pragma Assert (Is_Itype (Exp_Type)); Associated_Node := Associated_Node_For_Itype (Exp_Type); if Nkind (Associated_Node) /= N_Discriminant_Specification then return False; -- not the type of an access discriminant end if; -- return False if Expr not of form .all.Some_Component if Nkind (Expr) /= N_Selected_Component or else Nkind (Prefix (Expr)) /= N_Explicit_Dereference then -- conditional expressions, declare expressions ??? return False; end if; Deref_Prefix := Prefix (Prefix (Expr)); Exp_Type := Base_Type (Etype (Deref_Prefix)); -- The "statically deeper relationship" does not apply -- to generic formal access types, so a prefix of such -- a type is a "bad" prefix. if Is_Generic_Formal (Exp_Type) then return True; -- The "statically deeper relationship" does apply to -- any other named access type. elsif not Is_Anonymous_Access_Type (Exp_Type) then return False; end if; pragma Assert (Is_Itype (Exp_Type)); Associated_Node := Associated_Node_For_Itype (Exp_Type); -- The "statically deeper relationship" applies to some -- anonymous access types and not to others. Return -- True for the cases where it does not apply. Also check -- recursively for the -- .all.Access_Discrim.all.Access_Discrim case, -- where the correct result depends on . return Nkind (Associated_Node) in N_Procedure_Specification | -- access parameter N_Function_Specification | -- access parameter N_Object_Declaration -- saooaaat or else Is_Discrim_Of_Bad_Access_Conversion_Argument (Deref_Prefix); end Is_Discrim_Of_Bad_Access_Conversion_Argument; ---------------------------- -- Valid_Array_Conversion -- ---------------------------- function Valid_Array_Conversion return Boolean is Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type); Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type); Opnd_Index : Node_Id; Opnd_Index_Type : Entity_Id; Target_Comp_Type : constant Entity_Id := Component_Type (Target_Type); Target_Comp_Base : constant Entity_Id := Base_Type (Target_Comp_Type); Target_Index : Node_Id; Target_Index_Type : Entity_Id; begin -- Error if wrong number of dimensions if Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type) then Conversion_Error_N ("incompatible number of dimensions for conversion", Operand); return False; -- Number of dimensions matches else -- Loop through indexes of the two arrays Target_Index := First_Index (Target_Type); Opnd_Index := First_Index (Opnd_Type); while Present (Target_Index) and then Present (Opnd_Index) loop Target_Index_Type := Etype (Target_Index); Opnd_Index_Type := Etype (Opnd_Index); -- Error if index types are incompatible if not (Is_Integer_Type (Target_Index_Type) and then Is_Integer_Type (Opnd_Index_Type)) and then Root_Type (Target_Index_Type) /= Root_Type (Opnd_Index_Type) then Conversion_Error_N ("incompatible index types for array conversion", Operand); return False; end if; Next_Index (Target_Index); Next_Index (Opnd_Index); end loop; -- If component types have same base type, all set if Target_Comp_Base = Opnd_Comp_Base then null; -- Here if base types of components are not the same. The only -- time this is allowed is if we have anonymous access types. -- The conversion of arrays of anonymous access types can lead -- to dangling pointers. AI-392 formalizes the accessibility -- checks that must be applied to such conversions to prevent -- out-of-scope references. elsif Ekind (Target_Comp_Base) in E_Anonymous_Access_Type | E_Anonymous_Access_Subprogram_Type and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base) and then Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type) then if Type_Access_Level (Target_Type) < Deepest_Type_Access_Level (Opnd_Type) then if In_Instance_Body then Error_Msg_Warn := SPARK_Mode /= On; Conversion_Error_N ("source array type has deeper accessibility " & "level than target<<", Operand); Conversion_Error_N ("\Program_Error [<<", Operand); Rewrite (N, Make_Raise_Program_Error (Sloc (N), Reason => PE_Accessibility_Check_Failed)); Set_Etype (N, Target_Type); return False; -- Conversion not allowed because of accessibility levels else Conversion_Error_N ("source array type has deeper accessibility " & "level than target", Operand); return False; end if; else null; end if; -- All other cases where component base types do not match else Conversion_Error_N ("incompatible component types for array conversion", Operand); return False; end if; -- Check that component subtypes statically match. For numeric -- types this means that both must be either constrained or -- unconstrained. For enumeration types the bounds must match. -- All of this is checked in Subtypes_Statically_Match. if not Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type) then Conversion_Error_N ("component subtypes must statically match", Operand); return False; end if; end if; return True; end Valid_Array_Conversion; ----------------------------- -- Valid_Tagged_Conversion -- ----------------------------- function Valid_Tagged_Conversion (Target_Type : Entity_Id; Opnd_Type : Entity_Id) return Boolean is begin -- Upward conversions are allowed (RM 4.6(22)) if Covers (Target_Type, Opnd_Type) or else Is_Ancestor (Target_Type, Opnd_Type) then return True; -- Downward conversion are allowed if the operand is class-wide -- (RM 4.6(23)). elsif Is_Class_Wide_Type (Opnd_Type) and then Covers (Opnd_Type, Target_Type) then return True; elsif Covers (Opnd_Type, Target_Type) or else Is_Ancestor (Opnd_Type, Target_Type) then -- Deal with non-extension derivation involving an -- untagged view of a tagged type. if not Is_Tagged_Type (Target_Type) then return True; end if; return Conversion_Check (False, "downward conversion of tagged objects not allowed"); -- Ada 2005 (AI-251): A conversion is valid if the operand and target -- types are both class-wide types and the specific type associated -- with at least one of them is an interface type (RM 4.6 (23.1/2)); -- at run-time a check will verify the validity of this interface -- type conversion. elsif Is_Class_Wide_Type (Target_Type) and then Is_Class_Wide_Type (Opnd_Type) and then (Is_Interface (Target_Type) or else Is_Interface (Opnd_Type)) then return True; -- Report errors elsif Is_Class_Wide_Type (Target_Type) and then Is_Interface (Target_Type) and then not Is_Interface (Opnd_Type) and then not Interface_Present_In_Ancestor (Typ => Opnd_Type, Iface => Target_Type) then Error_Msg_Name_1 := Chars (Etype (Target_Type)); Error_Msg_Name_2 := Chars (Opnd_Type); Conversion_Error_N ("wrong interface conversion (% is not a progenitor " & "of %)", N); return False; elsif Is_Class_Wide_Type (Opnd_Type) and then Is_Interface (Opnd_Type) and then not Is_Interface (Target_Type) and then not Interface_Present_In_Ancestor (Typ => Target_Type, Iface => Opnd_Type) then Error_Msg_Name_1 := Chars (Etype (Opnd_Type)); Error_Msg_Name_2 := Chars (Target_Type); Conversion_Error_N ("wrong interface conversion (% is not a progenitor " & "of %)", N); -- Search for interface types shared between the target type and -- the operand interface type to complete the text of the error -- since the source of this error is a missing type conversion -- to such interface type. if Has_Interfaces (Target_Type) then declare Operand_Ifaces_List : Elist_Id; Operand_Iface_Elmt : Elmt_Id; Target_Ifaces_List : Elist_Id; Target_Iface_Elmt : Elmt_Id; First_Candidate : Boolean := True; begin Collect_Interfaces (Base_Type (Target_Type), Target_Ifaces_List); Collect_Interfaces (Root_Type (Base_Type (Opnd_Type)), Operand_Ifaces_List); Operand_Iface_Elmt := First_Elmt (Operand_Ifaces_List); while Present (Operand_Iface_Elmt) loop Target_Iface_Elmt := First_Elmt (Target_Ifaces_List); while Present (Target_Iface_Elmt) loop if Node (Operand_Iface_Elmt) = Node (Target_Iface_Elmt) then Error_Msg_Name_1 := Chars (Node (Target_Iface_Elmt)); if First_Candidate then First_Candidate := False; Conversion_Error_N ("\must convert to `%''Class` before downward " & "conversion", Operand); else Conversion_Error_N ("\or must convert to `%''Class` before " & "downward conversion", Operand); end if; end if; Next_Elmt (Target_Iface_Elmt); end loop; Next_Elmt (Operand_Iface_Elmt); end loop; end; end if; return False; elsif not Is_Class_Wide_Type (Target_Type) and then Is_Interface (Target_Type) then Conversion_Error_N ("wrong use of interface type in tagged conversion", N); Conversion_Error_N ("\add ''Class to the target interface type", N); return False; elsif not Is_Class_Wide_Type (Opnd_Type) and then Is_Interface (Opnd_Type) then Conversion_Error_N ("must convert to class-wide interface type before downward " & "conversion", Operand); return False; else Conversion_Error_NE ("invalid tagged conversion, not compatible with}", N, First_Subtype (Opnd_Type)); return False; end if; end Valid_Tagged_Conversion; -- Start of processing for Valid_Conversion begin Check_Parameterless_Call (Operand); if Is_Overloaded (Operand) then declare I : Interp_Index; I1 : Interp_Index; It : Interp; It1 : Interp; N1 : Entity_Id; T1 : Entity_Id; begin -- Remove procedure calls, which syntactically cannot appear in -- this context, but which cannot be removed by type checking, -- because the context does not impose a type. -- The node may be labelled overloaded, but still contain only one -- interpretation because others were discarded earlier. If this -- is the case, retain the single interpretation if legal. Get_First_Interp (Operand, I, It); Opnd_Type := It.Typ; Get_Next_Interp (I, It); if Present (It.Typ) and then Opnd_Type /= Standard_Void_Type then -- More than one candidate interpretation is available Get_First_Interp (Operand, I, It); while Present (It.Typ) loop if It.Typ = Standard_Void_Type then Remove_Interp (I); end if; -- When compiling for a system where Address is of a visible -- integer type, spurious ambiguities can be produced when -- arithmetic operations have a literal operand and return -- System.Address or a descendant of it. These ambiguities -- are usually resolved by the context, but for conversions -- there is no context type and the removal of the spurious -- operations must be done explicitly here. if not Address_Is_Private and then Is_Descendant_Of_Address (It.Typ) then Remove_Interp (I); end if; Get_Next_Interp (I, It); end loop; end if; Get_First_Interp (Operand, I, It); I1 := I; It1 := It; if No (It.Typ) then Conversion_Error_N ("illegal operand in conversion", Operand); return False; end if; Get_Next_Interp (I, It); if Present (It.Typ) then N1 := It1.Nam; T1 := It1.Typ; It1 := Disambiguate (Operand, I1, I, Any_Type); if It1 = No_Interp then Conversion_Error_N ("ambiguous operand in conversion", Operand); -- If the interpretation involves a standard operator, use -- the location of the type, which may be user-defined. if Sloc (It.Nam) = Standard_Location then Error_Msg_Sloc := Sloc (It.Typ); else Error_Msg_Sloc := Sloc (It.Nam); end if; Conversion_Error_N -- CODEFIX ("\\possible interpretation#!", Operand); if Sloc (N1) = Standard_Location then Error_Msg_Sloc := Sloc (T1); else Error_Msg_Sloc := Sloc (N1); end if; Conversion_Error_N -- CODEFIX ("\\possible interpretation#!", Operand); return False; end if; end if; Set_Etype (Operand, It1.Typ); Opnd_Type := It1.Typ; end; end if; -- When we encounter a class-wide equivalent type used to represent -- a fully sized mutably tagged type, pretend we are actually looking -- at the class-wide mutably tagged type instead. Opnd_Type := Get_Corresponding_Mutably_Tagged_Type_If_Present (Opnd_Type); -- Deal with conversion of integer type to address if the pragma -- Allow_Integer_Address is in effect. We convert the conversion to -- an unchecked conversion in this case and we are all done. if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N))); Analyze_And_Resolve (N, Target_Type); return True; end if; -- If we are within a child unit, check whether the type of the -- expression has an ancestor in a parent unit, in which case it -- belongs to its derivation class even if the ancestor is private. -- See RM 7.3.1 (5.2/3). Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type); -- Numeric types if Is_Numeric_Type (Target_Type) then -- A universal fixed expression can be converted to any numeric type if Opnd_Type = Universal_Fixed then return True; -- Also no need to check when in an instance or inlined body, because -- the legality has been established when the template was analyzed. -- Furthermore, numeric conversions may occur where only a private -- view of the operand type is visible at the instantiation point. -- This results in a spurious error if we check that the operand type -- is a numeric type. -- Note: in a previous version of this unit, the following tests were -- applied only for generated code (Comes_From_Source set to False), -- but in fact the test is required for source code as well, since -- this situation can arise in source code. elsif In_Instance_Code or else In_Inlined_Body then return True; -- Otherwise we need the conversion check else return Conversion_Check (Is_Numeric_Type (Opnd_Type) or else (Present (Inc_Ancestor) and then Is_Numeric_Type (Inc_Ancestor)), "illegal operand for numeric conversion"); end if; -- Array types elsif Is_Array_Type (Target_Type) then if not Is_Array_Type (Opnd_Type) or else Opnd_Type = Any_Composite or else Opnd_Type = Any_String then if not Comes_From_Source (N) and then Implementation_Base_Type (Target_Type) = Implementation_Base_Type (Opnd_Type) then return True; end if; Conversion_Error_N ("illegal operand for array conversion", Operand); return False; else return Valid_Array_Conversion; end if; -- Ada 2005 (AI-251): Internally generated conversions of access to -- interface types added to force the displacement of the pointer to -- reference the corresponding dispatch table. elsif not Comes_From_Source (N) and then Is_Access_Type (Target_Type) and then Is_Interface (Designated_Type (Target_Type)) then return True; -- Ada 2005 (AI-251): Anonymous access types where target references an -- interface type. elsif Is_Access_Type (Opnd_Type) and then Ekind (Target_Type) in E_General_Access_Type | E_Anonymous_Access_Type and then Is_Interface (Directly_Designated_Type (Target_Type)) then -- Check the static accessibility rule of 4.6(17). Note that the -- check is not enforced when within an instance body, since the -- RM requires such cases to be caught at run time. -- If the operand is a rewriting of an allocator no check is needed -- because there are no accessibility issues. if Nkind (Original_Node (N)) = N_Allocator then null; elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then if Type_Access_Level (Opnd_Type) > Deepest_Type_Access_Level (Target_Type) then -- In an instance, this is a run-time check, but one we know -- will fail, so generate an appropriate warning. The raise -- will be generated by Expand_N_Type_Conversion. if In_Instance_Body then Error_Msg_Warn := SPARK_Mode /= On; Conversion_Error_N ("cannot convert local pointer to non-local access type<<", Operand); Conversion_Error_N ("\Program_Error [<<", Operand); else Conversion_Error_N ("cannot convert local pointer to non-local access type", Operand); return False; end if; -- Special accessibility checks are needed in the case of access -- discriminants declared for a limited type. elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type and then not Is_Local_Anonymous_Access (Opnd_Type) then -- When the operand is a selected access discriminant the check -- needs to be made against the level of the object denoted by -- the prefix of the selected name (Accessibility_Level handles -- checking the prefix of the operand for this case). if Nkind (Operand) = N_Selected_Component and then Static_Accessibility_Level (Operand, Zero_On_Dynamic_Level) > Deepest_Type_Access_Level (Target_Type) then -- In an instance, this is a run-time check, but one we know -- will fail, so generate an appropriate warning. The raise -- will be generated by Expand_N_Type_Conversion. if In_Instance_Body then Error_Msg_Warn := SPARK_Mode /= On; Conversion_Error_N ("cannot convert access discriminant to non-local " & "access type<<", Operand); Conversion_Error_N ("\Program_Error [<<", Operand); -- Real error if not in instance body else Conversion_Error_N ("cannot convert access discriminant to non-local " & "access type", Operand); return False; end if; end if; -- The case of a reference to an access discriminant from -- within a limited type declaration (which will appear as -- a discriminal) is always illegal because the level of the -- discriminant is considered to be deeper than any (nameable) -- access type. if Is_Entity_Name (Operand) and then not Is_Local_Anonymous_Access (Opnd_Type) and then Ekind (Entity (Operand)) in E_In_Parameter | E_Constant and then Present (Discriminal_Link (Entity (Operand))) then Conversion_Error_N ("discriminant has deeper accessibility level than target", Operand); return False; end if; end if; end if; return True; -- General and anonymous access types elsif Ekind (Target_Type) in E_General_Access_Type | E_Anonymous_Access_Type and then Conversion_Check (Is_Access_Type (Opnd_Type) and then Ekind (Opnd_Type) not in E_Access_Subprogram_Type | E_Access_Protected_Subprogram_Type, "must be an access-to-object type") then if Is_Access_Constant (Opnd_Type) and then not Is_Access_Constant (Target_Type) then Conversion_Error_N ("access-to-constant operand type not allowed", Operand); return False; end if; -- Check the static accessibility rule of 4.6(17). Note that the -- check is not enforced when within an instance body, since the RM -- requires such cases to be caught at run time. if Ekind (Target_Type) /= E_Anonymous_Access_Type or else Is_Local_Anonymous_Access (Target_Type) or else Nkind (Associated_Node_For_Itype (Target_Type)) = N_Object_Declaration then -- Ada 2012 (AI05-0149): Perform legality checking on implicit -- conversions from an anonymous access type to a named general -- access type. Such conversions are not allowed in the case of -- access parameters and stand-alone objects of an anonymous -- access type. The implicit conversion case is recognized by -- testing that Comes_From_Source is False and that it's been -- rewritten. The Comes_From_Source test isn't sufficient because -- nodes in inlined calls to predefined library routines can have -- Comes_From_Source set to False. (Is there a better way to test -- for implicit conversions???). -- -- Do not treat a rewritten 'Old attribute reference like other -- rewrite substitutions. This makes a difference, for example, -- in the case where we are generating the expansion of a -- membership test of the form -- Saooaaat'Old in Named_Access_Type -- because in this case Valid_Conversion needs to return True -- (otherwise the expansion will be False - see the call site -- in exp_ch4.adb). if Ada_Version >= Ada_2012 and then not Comes_From_Source (N) and then Is_Rewrite_Substitution (N) and then not Is_Attribute_Old (Original_Node (N)) and then Ekind (Base_Type (Target_Type)) = E_General_Access_Type and then Ekind (Opnd_Type) = E_Anonymous_Access_Type then if Is_Itype (Opnd_Type) then -- When applying restriction No_Dynamic_Accessibility_Check, -- implicit conversions are allowed when the operand type is -- not deeper than the target type. if No_Dynamic_Accessibility_Checks_Enabled (N) then if Type_Access_Level (Opnd_Type) > Deepest_Type_Access_Level (Target_Type) then Conversion_Error_N ("operand has deeper level than target", Operand); end if; -- Implicit conversions aren't allowed for objects of an -- anonymous access type, since such objects have nonstatic -- levels in Ada 2012. elsif Nkind (Associated_Node_For_Itype (Opnd_Type)) = N_Object_Declaration then Conversion_Error_N ("implicit conversion of stand-alone anonymous " & "access object not allowed", Operand); return False; -- Implicit conversions aren't allowed for anonymous access -- parameters. We exclude anonymous access results as well -- as universal_access "=". elsif not Is_Local_Anonymous_Access (Opnd_Type) and then Nkind (Associated_Node_For_Itype (Opnd_Type)) in N_Function_Specification | N_Procedure_Specification and then Nkind (Parent (N)) not in N_Op_Eq | N_Op_Ne then Conversion_Error_N ("implicit conversion of anonymous access parameter " & "not allowed", Operand); return False; -- Detect access discriminant values that are illegal -- implicit anonymous-to-named access conversion operands. elsif Is_Discrim_Of_Bad_Access_Conversion_Argument (Operand) then Conversion_Error_N ("implicit conversion of anonymous access value " & "not allowed", Operand); return False; -- In other cases, the level of the operand's type must be -- statically less deep than that of the target type, else -- implicit conversion is disallowed (by RM12-8.6(27.1/3)). elsif Type_Access_Level (Opnd_Type) > Deepest_Type_Access_Level (Target_Type) then Conversion_Error_N ("implicit conversion of anonymous access value " & "violates accessibility", Operand); return False; end if; end if; -- Check if the operand is deeper than the target type, taking -- care to avoid the case where we are converting a result of a -- function returning an anonymous access type since the "master -- of the call" would be target type of the conversion unless -- the target type is anonymous access as well - see RM 3.10.2 -- (10.3/3). -- Note that when the restriction No_Dynamic_Accessibility_Checks -- is in effect wei also want to proceed with the conversion check -- described above. elsif Type_Access_Level (Opnd_Type, Assoc_Ent => Operand) > Deepest_Type_Access_Level (Target_Type) and then (Nkind (Associated_Node_For_Itype (Opnd_Type)) /= N_Function_Specification or else Ekind (Target_Type) in Anonymous_Access_Kind or else No_Dynamic_Accessibility_Checks_Enabled (N)) -- Check we are not in a return value ??? and then (not In_Return_Value (N) or else Nkind (Associated_Node_For_Itype (Target_Type)) = N_Component_Declaration) then -- In an instance, this is a run-time check, but one we know -- will fail, so generate an appropriate warning. The raise -- will be generated by Expand_N_Type_Conversion. if In_Instance_Body then Error_Msg_Warn := SPARK_Mode /= On; Conversion_Error_N ("cannot convert local pointer to non-local access type<<", Operand); Conversion_Error_N ("\Program_Error [<<", Operand); -- If not in an instance body, this is a real error else -- Avoid generation of spurious error message if not Error_Posted (N) then Conversion_Error_N ("cannot convert local pointer to non-local access type", Operand); end if; return False; end if; -- Special accessibility checks are needed in the case of access -- discriminants declared for a limited type. elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type and then not Is_Local_Anonymous_Access (Opnd_Type) then -- When the operand is a selected access discriminant the check -- needs to be made against the level of the object denoted by -- the prefix of the selected name (Accessibility_Level handles -- checking the prefix of the operand for this case). if Nkind (Operand) = N_Selected_Component and then Static_Accessibility_Level (Operand, Zero_On_Dynamic_Level) > Deepest_Type_Access_Level (Target_Type) then -- In an instance, this is a run-time check, but one we know -- will fail, so generate an appropriate warning. The raise -- will be generated by Expand_N_Type_Conversion. if In_Instance_Body then Error_Msg_Warn := SPARK_Mode /= On; Conversion_Error_N ("cannot convert access discriminant to non-local " & "access type<<", Operand); Conversion_Error_N ("\Program_Error [<<", Operand); -- If not in an instance body, this is a real error else Conversion_Error_N ("cannot convert access discriminant to non-local " & "access type", Operand); return False; end if; end if; -- The case of a reference to an access discriminant from -- within a limited type declaration (which will appear as -- a discriminal) is always illegal because the level of the -- discriminant is considered to be deeper than any (nameable) -- access type. if Is_Entity_Name (Operand) and then Ekind (Entity (Operand)) in E_In_Parameter | E_Constant and then Present (Discriminal_Link (Entity (Operand))) then Conversion_Error_N ("discriminant has deeper accessibility level than target", Operand); return False; end if; end if; end if; -- In the presence of limited_with clauses we have to use nonlimited -- views, if available. Check_Limited : declare function Full_Designated_Type (T : Entity_Id) return Entity_Id; -- Helper function to handle limited views -------------------------- -- Full_Designated_Type -- -------------------------- function Full_Designated_Type (T : Entity_Id) return Entity_Id is Desig : constant Entity_Id := Designated_Type (T); begin -- Handle the limited view of a type if From_Limited_With (Desig) and then Has_Non_Limited_View (Desig) then return Available_View (Desig); else return Desig; end if; end Full_Designated_Type; -- Local Declarations Target : constant Entity_Id := Full_Designated_Type (Target_Type); Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type); Same_Base : constant Boolean := Base_Type (Target) = Base_Type (Opnd); -- Start of processing for Check_Limited begin if Is_Tagged_Type (Target) then return Valid_Tagged_Conversion (Target, Opnd); else if not Same_Base then Conversion_Error_NE ("target designated type not compatible with }", N, Base_Type (Opnd)); return False; -- Ada 2005 AI-384: legality rule is symmetric in both -- designated types. The conversion is legal (with possible -- constraint check) if either designated type is -- unconstrained. elsif Subtypes_Statically_Match (Target, Opnd) or else (Has_Discriminants (Target) and then (not Is_Constrained (Opnd) or else not Is_Constrained (Target))) then -- Special case, if Value_Size has been used to make the -- sizes different, the conversion is not allowed even -- though the subtypes statically match. if Known_Static_RM_Size (Target) and then Known_Static_RM_Size (Opnd) and then RM_Size (Target) /= RM_Size (Opnd) then Conversion_Error_NE ("target designated subtype not compatible with }", N, Opnd); Conversion_Error_NE ("\because sizes of the two designated subtypes differ", N, Opnd); return False; -- Normal case where conversion is allowed else return True; end if; else Error_Msg_NE ("target designated subtype not compatible with }", N, Opnd); return False; end if; end if; end Check_Limited; -- Access to subprogram types. If the operand is an access parameter, -- the type has a deeper accessibility that any master, and cannot be -- assigned. We must make an exception if the conversion is part of an -- assignment and the target is the return object of an extended return -- statement, because in that case the accessibility check takes place -- after the return. elsif Is_Access_Subprogram_Type (Target_Type) -- Note: this test of Opnd_Type is there to prevent entering this -- branch in the case of a remote access to subprogram type, which -- is internally represented as an E_Record_Type. and then Is_Access_Type (Opnd_Type) then if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type and then Is_Entity_Name (Operand) and then Ekind (Entity (Operand)) = E_In_Parameter and then (Nkind (Parent (N)) /= N_Assignment_Statement or else not Is_Entity_Name (Name (Parent (N))) or else not Is_Return_Object (Entity (Name (Parent (N))))) then Conversion_Error_N ("illegal attempt to store anonymous access to subprogram", Operand); Conversion_Error_N ("\value has deeper accessibility than any master " & "(RM 3.10.2 (13))", Operand); Error_Msg_NE ("\use named access type for& instead of access parameter", Operand, Entity (Operand)); end if; -- Check that the designated types are subtype conformant Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type), Old_Id => Designated_Type (Opnd_Type), Err_Loc => N); -- Check the static accessibility rule of 4.6(20) if Type_Access_Level (Opnd_Type) > Deepest_Type_Access_Level (Target_Type) then Conversion_Error_N ("operand type has deeper accessibility level than target", Operand); -- Check that if the operand type is declared in a generic body, -- then the target type must be declared within that same body -- (enforces last sentence of 4.6(20)). elsif Present (Enclosing_Generic_Body (Opnd_Type)) then declare O_Gen : constant Node_Id := Enclosing_Generic_Body (Opnd_Type); T_Gen : Node_Id; begin T_Gen := Enclosing_Generic_Body (Target_Type); while Present (T_Gen) and then T_Gen /= O_Gen loop T_Gen := Enclosing_Generic_Body (T_Gen); end loop; if T_Gen /= O_Gen then Conversion_Error_N ("target type must be declared in same generic body " & "as operand type", N); end if; end; end if; -- Check that the strub modes are compatible. -- We wish to reject explicit conversions only for -- incompatible modes. return Conversion_Check (Compatible_Strub_Modes (Designated_Type (Target_Type), Designated_Type (Opnd_Type)), "incompatible `strub` modes"); -- Remote access to subprogram types elsif Is_Remote_Access_To_Subprogram_Type (Target_Type) and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type) then -- It is valid to convert from one RAS type to another provided -- that their specification statically match. -- Note: at this point, remote access to subprogram types have been -- expanded to their E_Record_Type representation, and we need to -- go back to the original access type definition using the -- Corresponding_Remote_Type attribute in order to check that the -- designated profiles match. pragma Assert (Ekind (Target_Type) = E_Record_Type); pragma Assert (Ekind (Opnd_Type) = E_Record_Type); Check_Subtype_Conformant (New_Id => Designated_Type (Corresponding_Remote_Type (Target_Type)), Old_Id => Designated_Type (Corresponding_Remote_Type (Opnd_Type)), Err_Loc => N); -- Check that the strub modes are compatible. -- We wish to reject explicit conversions only for -- incompatible modes. return Conversion_Check (Compatible_Strub_Modes (Designated_Type (Target_Type), Designated_Type (Opnd_Type)), "incompatible `strub` modes"); -- If it was legal in the generic, it's legal in the instance elsif In_Instance then return True; -- Ignore privacy for streaming or Put_Image routines elsif not Comes_From_Source (N) and then Original_Implementation_Base_Type (Target_Type) = Original_Implementation_Base_Type (Opnd_Type) then return True; -- If both are tagged types, check legality of view conversions elsif (Is_Tagged_Type (Target_Type) and then Is_Tagged_Type (Opnd_Type)) or else (not Comes_From_Source (N) and then Is_Tagged_Type (Implementation_Base_Type (Target_Type)) and then Is_Tagged_Type (Implementation_Base_Type (Opnd_Type))) then return Valid_Tagged_Conversion (Target_Type, Opnd_Type); -- Types derived from the same root type are convertible elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then return True; -- In an instance or an inlined body, there may be inconsistent views of -- the same type, or of types derived from a common root. Similarly -- for compiler-generated streaming or Put_Image subprograms. elsif (In_Instance or In_Inlined_Body or not Comes_From_Source (N)) and then Root_Type (Underlying_Type (Target_Type)) = Root_Type (Underlying_Type (Opnd_Type)) then return True; -- Special check for common access type error case elsif Ekind (Target_Type) = E_Access_Type and then Is_Access_Type (Opnd_Type) then Conversion_Error_N ("target type must be general access type!", N); Conversion_Error_NE -- CODEFIX ("\add ALL to }!", N, Target_Type); return False; -- Here we have a real conversion error else -- Check for missing regular with_clause when only a limited view of -- target is available. if From_Limited_With (Opnd_Type) and then In_Package_Body then Conversion_Error_NE ("invalid conversion, not compatible with limited view of }", N, Opnd_Type); Conversion_Error_NE ("\add with_clause for& to current unit!", N, Scope (Opnd_Type)); elsif Is_Access_Type (Opnd_Type) and then From_Limited_With (Designated_Type (Opnd_Type)) and then In_Package_Body then Conversion_Error_NE ("invalid conversion, not compatible with }", N, Opnd_Type); Conversion_Error_NE ("\add with_clause for& to current unit!", N, Scope (Designated_Type (Opnd_Type))); else Conversion_Error_NE ("invalid conversion, not compatible with }", N, Opnd_Type); end if; return False; end if; end Valid_Conversion; end Sem_Res;