------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              S E M _ C H 6                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Aspects;  use Aspects;
with Atree;    use Atree;
with Checks;   use Checks;
with Debug;    use Debug;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Errout;   use Errout;
with Expander; use Expander;
with Exp_Ch6;  use Exp_Ch6;
with Exp_Ch7;  use Exp_Ch7;
with Exp_Ch9;  use Exp_Ch9;
with Exp_Dbug; use Exp_Dbug;
with Exp_Disp; use Exp_Disp;
with Exp_Tss;  use Exp_Tss;
with Exp_Util; use Exp_Util;
with Fname;    use Fname;
with Freeze;   use Freeze;
with Itypes;   use Itypes;
with Lib.Xref; use Lib.Xref;
with Layout;   use Layout;
with Namet;    use Namet;
with Lib;      use Lib;
with Nlists;   use Nlists;
with Nmake;    use Nmake;
with Opt;      use Opt;
with Output;   use Output;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Aux;  use Sem_Aux;
with Sem_Cat;  use Sem_Cat;
with Sem_Ch3;  use Sem_Ch3;
with Sem_Ch4;  use Sem_Ch4;
with Sem_Ch5;  use Sem_Ch5;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dim;  use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res;  use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinput;   use Sinput;
with Stand;    use Stand;
with Sinfo;    use Sinfo;
with Sinfo.CN; use Sinfo.CN;
with Snames;   use Snames;
with Stringt;  use Stringt;
with Style;
with Stylesw;  use Stylesw;
with Targparm; use Targparm;
with Tbuild;   use Tbuild;
with Uintp;    use Uintp;
with Urealp;   use Urealp;
with Validsw;  use Validsw;

package body Sem_Ch6 is

   May_Hide_Profile : Boolean := False;
   --  This flag is used to indicate that two formals in two subprograms being
   --  checked for conformance differ only in that one is an access parameter
   --  while the other is of a general access type with the same designated
   --  type. In this case, if the rest of the signatures match, a call to
   --  either subprogram may be ambiguous, which is worth a warning. The flag
   --  is set in Compatible_Types, and the warning emitted in
   --  New_Overloaded_Entity.

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Analyze_Null_Procedure
     (N             : Node_Id;
      Is_Completion : out Boolean);
   --  A null procedure can be a declaration or (Ada 2012) a completion.

   procedure Analyze_Return_Statement (N : Node_Id);
   --  Common processing for simple and extended return statements

   procedure Analyze_Function_Return (N : Node_Id);
   --  Subsidiary to Analyze_Return_Statement. Called when the return statement
   --  applies to a [generic] function.

   procedure Analyze_Return_Type (N : Node_Id);
   --  Subsidiary to Process_Formals: analyze subtype mark in function
   --  specification in a context where the formals are visible and hide
   --  outer homographs.

   procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
   --  Does all the real work of Analyze_Subprogram_Body. This is split out so
   --  that we can use RETURN but not skip the debug output at the end.

   procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
   --  Analyze a generic subprogram body. N is the body to be analyzed, and
   --  Gen_Id is the defining entity Id for the corresponding spec.

   procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
   --  If a subprogram has pragma Inline and inlining is active, use generic
   --  machinery to build an unexpanded body for the subprogram. This body is
   --  subsequently used for inline expansions at call sites. If subprogram can
   --  be inlined (depending on size and nature of local declarations) this
   --  function returns true. Otherwise subprogram body is treated normally.
   --  If proper warnings are enabled and the subprogram contains a construct
   --  that cannot be inlined, the offending construct is flagged accordingly.

   function Can_Override_Operator (Subp : Entity_Id) return Boolean;
   --  Returns true if Subp can override a predefined operator.

   procedure Check_And_Build_Body_To_Inline
     (N       : Node_Id;
      Spec_Id : Entity_Id;
      Body_Id : Entity_Id);
   --  Spec_Id and Body_Id are the entities of the specification and body of
   --  the subprogram body N. If N can be inlined by the frontend (supported
   --  cases documented in Check_Body_To_Inline) then build the body-to-inline
   --  associated with N and attach it to the declaration node of Spec_Id.

   procedure Check_Conformance
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Ctype                    : Conformance_Type;
      Errmsg                   : Boolean;
      Conforms                 : out Boolean;
      Err_Loc                  : Node_Id := Empty;
      Get_Inst                 : Boolean := False;
      Skip_Controlling_Formals : Boolean := False);
   --  Given two entities, this procedure checks that the profiles associated
   --  with these entities meet the conformance criterion given by the third
   --  parameter. If they conform, Conforms is set True and control returns
   --  to the caller. If they do not conform, Conforms is set to False, and
   --  in addition, if Errmsg is True on the call, proper messages are output
   --  to complain about the conformance failure. If Err_Loc is non_Empty
   --  the error messages are placed on Err_Loc, if Err_Loc is empty, then
   --  error messages are placed on the appropriate part of the construct
   --  denoted by New_Id. If Get_Inst is true, then this is a mode conformance
   --  against a formal access-to-subprogram type so Get_Instance_Of must
   --  be called.

   procedure Check_Subprogram_Order (N : Node_Id);
   --  N is the N_Subprogram_Body node for a subprogram. This routine applies
   --  the alpha ordering rule for N if this ordering requirement applicable.

   procedure Check_Returns
     (HSS  : Node_Id;
      Mode : Character;
      Err  : out Boolean;
      Proc : Entity_Id := Empty);
   --  Called to check for missing return statements in a function body, or for
   --  returns present in a procedure body which has No_Return set. HSS is the
   --  handled statement sequence for the subprogram body. This procedure
   --  checks all flow paths to make sure they either have return (Mode = 'F',
   --  used for functions) or do not have a return (Mode = 'P', used for
   --  No_Return procedures). The flag Err is set if there are any control
   --  paths not explicitly terminated by a return in the function case, and is
   --  True otherwise. Proc is the entity for the procedure case and is used
   --  in posting the warning message.

   procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
   --  In Ada 2012, a primitive equality operator on an untagged record type
   --  must appear before the type is frozen, and have the same visibility as
   --  that of the type. This procedure checks that this rule is met, and
   --  otherwise emits an error on the subprogram declaration and a warning
   --  on the earlier freeze point if it is easy to locate.

   procedure Enter_Overloaded_Entity (S : Entity_Id);
   --  This procedure makes S, a new overloaded entity, into the first visible
   --  entity with that name.

   function Is_Non_Overriding_Operation
     (Prev_E : Entity_Id;
      New_E  : Entity_Id) return Boolean;
   --  Enforce the rule given in 12.3(18): a private operation in an instance
   --  overrides an inherited operation only if the corresponding operation
   --  was overriding in the generic. This needs to be checked for primitive
   --  operations of types derived (in the generic unit) from formal private
   --  or formal derived types.

   procedure Make_Inequality_Operator (S : Entity_Id);
   --  Create the declaration for an inequality operator that is implicitly
   --  created by a user-defined equality operator that yields a boolean.

   procedure Process_PPCs
     (N       : Node_Id;
      Spec_Id : Entity_Id;
      Body_Id : Entity_Id);
   --  Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
   --  conditions for the body and assembling and inserting the _postconditions
   --  procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
   --  the entities for the body and separate spec (if there is no separate
   --  spec, Spec_Id is Empty). Note that invariants and predicates may also
   --  provide postconditions, and are also handled in this procedure.

   procedure Set_Formal_Validity (Formal_Id : Entity_Id);
   --  Formal_Id is an formal parameter entity. This procedure deals with
   --  setting the proper validity status for this entity, which depends on
   --  the kind of parameter and the validity checking mode.

   ---------------------------------------------
   -- Analyze_Abstract_Subprogram_Declaration --
   ---------------------------------------------

   procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
      Designator : constant Entity_Id :=
                     Analyze_Subprogram_Specification (Specification (N));
      Scop       : constant Entity_Id := Current_Scope;

   begin
      Check_SPARK_Restriction ("abstract subprogram is not allowed", N);

      Generate_Definition (Designator);
      Set_Contract (Designator, Make_Contract (Sloc (Designator)));
      Set_Is_Abstract_Subprogram (Designator);
      New_Overloaded_Entity (Designator);
      Check_Delayed_Subprogram (Designator);

      Set_Categorization_From_Scope (Designator, Scop);

      if Ekind (Scope (Designator)) = E_Protected_Type then
         Error_Msg_N
           ("abstract subprogram not allowed in protected type", N);

      --  Issue a warning if the abstract subprogram is neither a dispatching
      --  operation nor an operation that overrides an inherited subprogram or
      --  predefined operator, since this most likely indicates a mistake.

      elsif Warn_On_Redundant_Constructs
        and then not Is_Dispatching_Operation (Designator)
        and then not Present (Overridden_Operation (Designator))
        and then (not Is_Operator_Symbol_Name (Chars (Designator))
                   or else Scop /= Scope (Etype (First_Formal (Designator))))
      then
         Error_Msg_N
           ("abstract subprogram is not dispatching or overriding?r?", N);
      end if;

      Generate_Reference_To_Formals (Designator);
      Check_Eliminated (Designator);

      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, Designator);
      end if;
   end Analyze_Abstract_Subprogram_Declaration;

   ---------------------------------
   -- Analyze_Expression_Function --
   ---------------------------------

   procedure Analyze_Expression_Function (N : Node_Id) is
      Loc      : constant Source_Ptr := Sloc (N);
      LocX     : constant Source_Ptr := Sloc (Expression (N));
      Expr     : constant Node_Id    := Expression (N);
      Spec     : constant Node_Id    := Specification (N);

      Def_Id :  Entity_Id;

      Prev :  Entity_Id;
      --  If the expression is a completion, Prev is the entity whose
      --  declaration is completed. Def_Id is needed to analyze the spec.

      New_Body : Node_Id;
      New_Decl : Node_Id;
      New_Spec : Node_Id;
      Ret      : Node_Id;

   begin
      --  This is one of the occasions on which we transform the tree during
      --  semantic analysis. If this is a completion, transform the expression
      --  function into an equivalent subprogram body, and analyze it.

      --  Expression functions are inlined unconditionally. The back-end will
      --  determine whether this is possible.

      Inline_Processing_Required := True;

      --  Create a specification for the generated body. Types and defauts in
      --  the profile are copies of the spec, but new entities must be created
      --  for the unit name and the formals.

      New_Spec := New_Copy_Tree (Spec);
      Set_Defining_Unit_Name (New_Spec,
        Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
          Chars (Defining_Unit_Name (Spec))));

      if Present (Parameter_Specifications (New_Spec)) then
         declare
            Formal_Spec : Node_Id;
         begin
            Formal_Spec := First (Parameter_Specifications (New_Spec));
            while Present (Formal_Spec) loop
               Set_Defining_Identifier
                 (Formal_Spec,
                  Make_Defining_Identifier (Sloc (Formal_Spec),
                    Chars => Chars (Defining_Identifier (Formal_Spec))));
               Next (Formal_Spec);
            end loop;
         end;
      end if;

      Prev := Current_Entity_In_Scope (Defining_Entity (Spec));

      --  If there are previous overloadable entities with the same name,
      --  check whether any of them is completed by the expression function.

      if Present (Prev) and then Is_Overloadable (Prev) then
         Def_Id := Analyze_Subprogram_Specification (Spec);
         Prev   := Find_Corresponding_Spec (N);
      end if;

      Ret := Make_Simple_Return_Statement (LocX, Expression (N));

      New_Body :=
        Make_Subprogram_Body (Loc,
          Specification              => New_Spec,
          Declarations               => Empty_List,
          Handled_Statement_Sequence =>
            Make_Handled_Sequence_Of_Statements (LocX,
              Statements => New_List (Ret)));

      if Present (Prev) and then Ekind (Prev) = E_Generic_Function then

         --  If the expression completes a generic subprogram, we must create a
         --  separate node for the body, because at instantiation the original
         --  node of the generic copy must be a generic subprogram body, and
         --  cannot be a expression function. Otherwise we just rewrite the
         --  expression with the non-generic body.

         Insert_After (N, New_Body);
         Rewrite (N, Make_Null_Statement (Loc));
         Set_Has_Completion (Prev, False);
         Analyze (N);
         Analyze (New_Body);
         Set_Is_Inlined (Prev);

      elsif Present (Prev) and then Comes_From_Source (Prev) then
         Set_Has_Completion (Prev, False);

         --  For navigation purposes, indicate that the function is a body

         Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
         Rewrite (N, New_Body);
         Analyze (N);

         --  Prev is the previous entity with the same name, but it is can
         --  be an unrelated spec that is not completed by the expression
         --  function. In that case the relevant entity is the one in the body.
         --  Not clear that the backend can inline it in this case ???

         if Has_Completion (Prev) then
            Set_Is_Inlined (Prev);

            --  The formals of the expression function are body formals,
            --  and do not appear in the ali file, which will only contain
            --  references to the formals of the original subprogram spec.

            declare
               F1 : Entity_Id;
               F2 : Entity_Id;

            begin
               F1 := First_Formal (Def_Id);
               F2 := First_Formal (Prev);

               while Present (F1) loop
                  Set_Spec_Entity (F1, F2);
                  Next_Formal (F1);
                  Next_Formal (F2);
               end loop;
            end;

         else
            Set_Is_Inlined (Defining_Entity (New_Body));
         end if;

      --  If this is not a completion, create both a declaration and a body, so
      --  that the expression can be inlined whenever possible.

      else
         --  An expression function that is not a completion is not a
         --  subprogram declaration, and thus cannot appear in a protected
         --  definition.

         if Nkind (Parent (N)) = N_Protected_Definition then
            Error_Msg_N
              ("an expression function is not a legal protected operation", N);
         end if;

         New_Decl :=
           Make_Subprogram_Declaration (Loc, Specification => Spec);

         Rewrite (N, New_Decl);
         Analyze (N);
         Set_Is_Inlined (Defining_Entity (New_Decl));

         --  To prevent premature freeze action, insert the new body at the end
         --  of the current declarations, or at the end of the package spec.
         --  However, resolve usage names now, to prevent spurious visibility
         --  on later entities.

         declare
            Decls : List_Id            := List_Containing (N);
            Par   : constant Node_Id   := Parent (Decls);
            Id    : constant Entity_Id := Defining_Entity (New_Decl);

         begin
            if Nkind (Par) = N_Package_Specification
              and then Decls = Visible_Declarations (Par)
              and then Present (Private_Declarations (Par))
              and then not Is_Empty_List (Private_Declarations (Par))
            then
               Decls := Private_Declarations (Par);
            end if;

            Insert_After (Last (Decls), New_Body);
            Push_Scope (Id);
            Install_Formals (Id);

            --  Do a preanalysis of the expression on a separate copy, to
            --  prevent visibility issues later with operators in instances.
            --  Attach copy to tree so that parent links are available.

            declare
               Expr : constant Node_Id := New_Copy_Tree (Expression (Ret));
            begin
               Set_Parent (Expr, Ret);
               Preanalyze_Spec_Expression (Expr, Etype (Id));
            end;

            End_Scope;
         end;
      end if;

      --  If the return expression is a static constant, we suppress warning
      --  messages on unused formals, which in most cases will be noise.

      Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
        Is_OK_Static_Expression (Expr));
   end Analyze_Expression_Function;

   ----------------------------------------
   -- Analyze_Extended_Return_Statement  --
   ----------------------------------------

   procedure Analyze_Extended_Return_Statement (N : Node_Id) is
   begin
      Analyze_Return_Statement (N);
   end Analyze_Extended_Return_Statement;

   ----------------------------
   -- Analyze_Function_Call  --
   ----------------------------

   procedure Analyze_Function_Call (N : Node_Id) is
      Actuals  : constant List_Id := Parameter_Associations (N);
      Func_Nam : constant Node_Id := Name (N);
      Actual   : Node_Id;

   begin
      Analyze (Func_Nam);

      --  A call of the form A.B (X) may be an Ada 2005 call, which is
      --  rewritten as B (A, X). If the rewriting is successful, the call
      --  has been analyzed and we just return.

      if Nkind (Func_Nam) = N_Selected_Component
        and then Name (N) /= Func_Nam
        and then Is_Rewrite_Substitution (N)
        and then Present (Etype (N))
      then
         return;
      end if;

      --  If error analyzing name, then set Any_Type as result type and return

      if Etype (Func_Nam) = Any_Type then
         Set_Etype (N, Any_Type);
         return;
      end if;

      --  Otherwise analyze the parameters

      if Present (Actuals) then
         Actual := First (Actuals);
         while Present (Actual) loop
            Analyze (Actual);
            Check_Parameterless_Call (Actual);
            Next (Actual);
         end loop;
      end if;

      Analyze_Call (N);
   end Analyze_Function_Call;

   -----------------------------
   -- Analyze_Function_Return --
   -----------------------------

   procedure Analyze_Function_Return (N : Node_Id) is
      Loc        : constant Source_Ptr := Sloc (N);
      Stm_Entity : constant Entity_Id  := Return_Statement_Entity (N);
      Scope_Id   : constant Entity_Id  := Return_Applies_To (Stm_Entity);

      R_Type : constant Entity_Id := Etype (Scope_Id);
      --  Function result subtype

      procedure Check_Limited_Return (Expr : Node_Id);
      --  Check the appropriate (Ada 95 or Ada 2005) rules for returning
      --  limited types. Used only for simple return statements.
      --  Expr is the expression returned.

      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
      --  Check that the return_subtype_indication properly matches the result
      --  subtype of the function, as required by RM-6.5(5.1/2-5.3/2).

      --------------------------
      -- Check_Limited_Return --
      --------------------------

      procedure Check_Limited_Return (Expr : Node_Id) is
      begin
         --  Ada 2005 (AI-318-02): Return-by-reference types have been
         --  removed and replaced by anonymous access results. This is an
         --  incompatibility with Ada 95. Not clear whether this should be
         --  enforced yet or perhaps controllable with special switch. ???

         --  A limited interface that is not immutably limited is OK.

         if Is_Limited_Interface (R_Type)
           and then
             not (Is_Task_Interface (R_Type)
                   or else Is_Protected_Interface (R_Type)
                   or else Is_Synchronized_Interface (R_Type))
         then
            null;

         elsif Is_Limited_Type (R_Type)
           and then not Is_Interface (R_Type)
           and then Comes_From_Source (N)
           and then not In_Instance_Body
           and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
         then
            --  Error in Ada 2005

            if Ada_Version >= Ada_2005
              and then not Debug_Flag_Dot_L
              and then not GNAT_Mode
            then
               Error_Msg_N
                 ("(Ada 2005) cannot copy object of a limited type " &
                  "(RM-2005 6.5(5.5/2))", Expr);

               if Is_Immutably_Limited_Type (R_Type) then
                  Error_Msg_N
                    ("\return by reference not permitted in Ada 2005", Expr);
               end if;

            --  Warn in Ada 95 mode, to give folks a heads up about this
            --  incompatibility.

            --  In GNAT mode, this is just a warning, to allow it to be
            --  evilly turned off. Otherwise it is a real error.

            --  In a generic context, simplify the warning because it makes
            --  no sense to discuss pass-by-reference or copy.

            elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
               if Inside_A_Generic then
                  Error_Msg_N
                    ("return of limited object not permitted in Ada 2005 "
                     & "(RM-2005 6.5(5.5/2))?y?", Expr);

               elsif Is_Immutably_Limited_Type (R_Type) then
                  Error_Msg_N
                    ("return by reference not permitted in Ada 2005 "
                     & "(RM-2005 6.5(5.5/2))?y?", Expr);
               else
                  Error_Msg_N
                    ("cannot copy object of a limited type in Ada 2005 "
                     & "(RM-2005 6.5(5.5/2))?y?", Expr);
               end if;

            --  Ada 95 mode, compatibility warnings disabled

            else
               return; --  skip continuation messages below
            end if;

            if not Inside_A_Generic then
               Error_Msg_N
                 ("\consider switching to return of access type", Expr);
               Explain_Limited_Type (R_Type, Expr);
            end if;
         end if;
      end Check_Limited_Return;

      -------------------------------------
      -- Check_Return_Subtype_Indication --
      -------------------------------------

      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
         Return_Obj : constant Node_Id   := Defining_Identifier (Obj_Decl);

         R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
         --  Subtype given in the extended return statement (must match R_Type)

         Subtype_Ind : constant Node_Id :=
                         Object_Definition (Original_Node (Obj_Decl));

         R_Type_Is_Anon_Access :
           constant Boolean :=
             Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
               or else
             Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
               or else
             Ekind (R_Type) = E_Anonymous_Access_Type;
         --  True if return type of the function is an anonymous access type
         --  Can't we make Is_Anonymous_Access_Type in einfo ???

         R_Stm_Type_Is_Anon_Access :
           constant Boolean :=
             Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
               or else
             Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
               or else
             Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
         --  True if type of the return object is an anonymous access type

      begin
         --  First, avoid cascaded errors

         if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
            return;
         end if;

         --  "return access T" case; check that the return statement also has
         --  "access T", and that the subtypes statically match:
         --   if this is an access to subprogram the signatures must match.

         if R_Type_Is_Anon_Access then
            if R_Stm_Type_Is_Anon_Access then
               if
                 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
               then
                  if Base_Type (Designated_Type (R_Stm_Type)) /=
                     Base_Type (Designated_Type (R_Type))
                    or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
                  then
                     Error_Msg_N
                      ("subtype must statically match function result subtype",
                       Subtype_Mark (Subtype_Ind));
                  end if;

               else
                  --  For two anonymous access to subprogram types, the
                  --  types themselves must be type conformant.

                  if not Conforming_Types
                    (R_Stm_Type, R_Type, Fully_Conformant)
                  then
                     Error_Msg_N
                      ("subtype must statically match function result subtype",
                         Subtype_Ind);
                  end if;
               end if;

            else
               Error_Msg_N ("must use anonymous access type", Subtype_Ind);
            end if;

         --  If the return object is of an anonymous access type, then report
         --  an error if the function's result type is not also anonymous.

         elsif R_Stm_Type_Is_Anon_Access
           and then not R_Type_Is_Anon_Access
         then
            Error_Msg_N ("anonymous access not allowed for function with " &
                         "named access result", Subtype_Ind);

         --  Subtype indication case: check that the return object's type is
         --  covered by the result type, and that the subtypes statically match
         --  when the result subtype is constrained. Also handle record types
         --  with unknown discriminants for which we have built the underlying
         --  record view. Coverage is needed to allow specific-type return
         --  objects when the result type is class-wide (see AI05-32).

         elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
           or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
                     and then
                       Covers
                         (Base_Type (R_Type),
                          Underlying_Record_View (Base_Type (R_Stm_Type))))
         then
            --  A null exclusion may be present on the return type, on the
            --  function specification, on the object declaration or on the
            --  subtype itself.

            if Is_Access_Type (R_Type)
              and then
               (Can_Never_Be_Null (R_Type)
                 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
                                              Can_Never_Be_Null (R_Stm_Type)
            then
               Error_Msg_N
                 ("subtype must statically match function result subtype",
                  Subtype_Ind);
            end if;

            --  AI05-103: for elementary types, subtypes must statically match

            if Is_Constrained (R_Type)
              or else Is_Access_Type (R_Type)
            then
               if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
                  Error_Msg_N
                    ("subtype must statically match function result subtype",
                     Subtype_Ind);
               end if;
            end if;

         elsif Etype (Base_Type (R_Type)) = R_Stm_Type
           and then Is_Null_Extension (Base_Type (R_Type))
         then
            null;

         else
            Error_Msg_N
              ("wrong type for return_subtype_indication", Subtype_Ind);
         end if;
      end Check_Return_Subtype_Indication;

      ---------------------
      -- Local Variables --
      ---------------------

      Expr : Node_Id;

   --  Start of processing for Analyze_Function_Return

   begin
      Set_Return_Present (Scope_Id);

      if Nkind (N) = N_Simple_Return_Statement then
         Expr := Expression (N);

         --  Guard against a malformed expression. The parser may have tried to
         --  recover but the node is not analyzable.

         if Nkind (Expr) = N_Error then
            Set_Etype (Expr, Any_Type);
            Expander_Mode_Save_And_Set (False);
            return;

         else
            --  The resolution of a controlled [extension] aggregate associated
            --  with a return statement creates a temporary which needs to be
            --  finalized on function exit. Wrap the return statement inside a
            --  block so that the finalization machinery can detect this case.
            --  This early expansion is done only when the return statement is
            --  not part of a handled sequence of statements.

            if Nkind_In (Expr, N_Aggregate,
                               N_Extension_Aggregate)
              and then Needs_Finalization (R_Type)
              and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
            then
               Rewrite (N,
                 Make_Block_Statement (Loc,
                   Handled_Statement_Sequence =>
                     Make_Handled_Sequence_Of_Statements (Loc,
                       Statements => New_List (Relocate_Node (N)))));

               Analyze (N);
               return;
            end if;

            Analyze_And_Resolve (Expr, R_Type);
            Check_Limited_Return (Expr);
         end if;

         --  RETURN only allowed in SPARK as the last statement in function

         if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
           and then
             (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
               or else Present (Next (N)))
         then
            Check_SPARK_Restriction
              ("RETURN should be the last statement in function", N);
         end if;

      else
         Check_SPARK_Restriction ("extended RETURN is not allowed", N);

         --  Analyze parts specific to extended_return_statement:

         declare
            Obj_Decl    : constant Node_Id :=
                            Last (Return_Object_Declarations (N));
            Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
            HSS         : constant Node_Id := Handled_Statement_Sequence (N);

         begin
            Expr := Expression (Obj_Decl);

            --  Note: The check for OK_For_Limited_Init will happen in
            --  Analyze_Object_Declaration; we treat it as a normal
            --  object declaration.

            Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
            Analyze (Obj_Decl);

            Check_Return_Subtype_Indication (Obj_Decl);

            if Present (HSS) then
               Analyze (HSS);

               if Present (Exception_Handlers (HSS)) then

                  --  ???Has_Nested_Block_With_Handler needs to be set.
                  --  Probably by creating an actual N_Block_Statement.
                  --  Probably in Expand.

                  null;
               end if;
            end if;

            --  Mark the return object as referenced, since the return is an
            --  implicit reference of the object.

            Set_Referenced (Defining_Identifier (Obj_Decl));

            Check_References (Stm_Entity);

            --  Check RM 6.5 (5.9/3)

            if Has_Aliased then
               if Ada_Version < Ada_2012 then

                  --  Shouldn't this test Warn_On_Ada_2012_Compatibility ???
                  --  Can it really happen (extended return???)

                  Error_Msg_N
                    ("aliased only allowed for limited"
                     & " return objects in Ada 2012?", N);

               elsif not Is_Immutably_Limited_Type (R_Type) then
                  Error_Msg_N ("aliased only allowed for limited"
                     & " return objects", N);
               end if;
            end if;
         end;
      end if;

      --  Case of Expr present

      if Present (Expr)

        --  Defend against previous errors

        and then Nkind (Expr) /= N_Empty
        and then Present (Etype (Expr))
      then
         --  Apply constraint check. Note that this is done before the implicit
         --  conversion of the expression done for anonymous access types to
         --  ensure correct generation of the null-excluding check associated
         --  with null-excluding expressions found in return statements.

         Apply_Constraint_Check (Expr, R_Type);

         --  Ada 2005 (AI-318-02): When the result type is an anonymous access
         --  type, apply an implicit conversion of the expression to that type
         --  to force appropriate static and run-time accessibility checks.

         if Ada_Version >= Ada_2005
           and then Ekind (R_Type) = E_Anonymous_Access_Type
         then
            Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
            Analyze_And_Resolve (Expr, R_Type);

         --  If this is a local anonymous access to subprogram, the
         --  accessibility check can be applied statically. The return is
         --  illegal if the access type of the return expression is declared
         --  inside of the subprogram (except if it is the subtype indication
         --  of an extended return statement).

         elsif  Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
            if not Comes_From_Source (Current_Scope)
              or else Ekind (Current_Scope) = E_Return_Statement
            then
               null;

            elsif
                Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
            then
               Error_Msg_N ("cannot return local access to subprogram", N);
            end if;
         end if;

         --  If the result type is class-wide, then check that the return
         --  expression's type is not declared at a deeper level than the
         --  function (RM05-6.5(5.6/2)).

         if Ada_Version >= Ada_2005
           and then Is_Class_Wide_Type (R_Type)
         then
            if Type_Access_Level (Etype (Expr)) >
                 Subprogram_Access_Level (Scope_Id)
            then
               Error_Msg_N
                 ("level of return expression type is deeper than " &
                  "class-wide function!", Expr);
            end if;
         end if;

         --  Check incorrect use of dynamically tagged expression

         if Is_Tagged_Type (R_Type) then
            Check_Dynamically_Tagged_Expression
              (Expr => Expr,
               Typ  => R_Type,
               Related_Nod => N);
         end if;

         --  ??? A real run-time accessibility check is needed in cases
         --  involving dereferences of access parameters. For now we just
         --  check the static cases.

         if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
           and then Is_Immutably_Limited_Type (Etype (Scope_Id))
           and then Object_Access_Level (Expr) >
                      Subprogram_Access_Level (Scope_Id)
         then
            --  Suppress the message in a generic, where the rewriting
            --  is irrelevant.

            if Inside_A_Generic then
               null;

            else
               Rewrite (N,
                 Make_Raise_Program_Error (Loc,
                   Reason => PE_Accessibility_Check_Failed));
               Analyze (N);

               Error_Msg_N
                 ("cannot return a local value by reference??", N);
               Error_Msg_NE
                 ("\& will be raised at run time??",
                   N, Standard_Program_Error);
            end if;
         end if;

         if Known_Null (Expr)
           and then Nkind (Parent (Scope_Id)) = N_Function_Specification
           and then Null_Exclusion_Present (Parent (Scope_Id))
         then
            Apply_Compile_Time_Constraint_Error
              (N      => Expr,
               Msg    => "(Ada 2005) null not allowed for "
                         & "null-excluding return??",
               Reason => CE_Null_Not_Allowed);
         end if;
      end if;
   end Analyze_Function_Return;

   -------------------------------------
   -- Analyze_Generic_Subprogram_Body --
   -------------------------------------

   procedure Analyze_Generic_Subprogram_Body
     (N      : Node_Id;
      Gen_Id : Entity_Id)
   is
      Gen_Decl : constant Node_Id     := Unit_Declaration_Node (Gen_Id);
      Kind     : constant Entity_Kind := Ekind (Gen_Id);
      Body_Id  : Entity_Id;
      New_N    : Node_Id;
      Spec     : Node_Id;

   begin
      --  Copy body and disable expansion while analyzing the generic For a
      --  stub, do not copy the stub (which would load the proper body), this
      --  will be done when the proper body is analyzed.

      if Nkind (N) /= N_Subprogram_Body_Stub then
         New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
         Rewrite (N, New_N);
         Start_Generic;
      end if;

      Spec := Specification (N);

      --  Within the body of the generic, the subprogram is callable, and
      --  behaves like the corresponding non-generic unit.

      Body_Id := Defining_Entity (Spec);

      if Kind = E_Generic_Procedure
        and then Nkind (Spec) /= N_Procedure_Specification
      then
         Error_Msg_N ("invalid body for generic procedure ", Body_Id);
         return;

      elsif Kind = E_Generic_Function
        and then Nkind (Spec) /= N_Function_Specification
      then
         Error_Msg_N ("invalid body for generic function ", Body_Id);
         return;
      end if;

      Set_Corresponding_Body (Gen_Decl, Body_Id);

      if Has_Completion (Gen_Id)
        and then Nkind (Parent (N)) /= N_Subunit
      then
         Error_Msg_N ("duplicate generic body", N);
         return;
      else
         Set_Has_Completion (Gen_Id);
      end if;

      if Nkind (N) = N_Subprogram_Body_Stub then
         Set_Ekind (Defining_Entity (Specification (N)), Kind);
      else
         Set_Corresponding_Spec (N, Gen_Id);
      end if;

      if Nkind (Parent (N)) = N_Compilation_Unit then
         Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
      end if;

      --  Make generic parameters immediately visible in the body. They are
      --  needed to process the formals declarations. Then make the formals
      --  visible in a separate step.

      Push_Scope (Gen_Id);

      declare
         E         : Entity_Id;
         First_Ent : Entity_Id;

      begin
         First_Ent := First_Entity (Gen_Id);

         E := First_Ent;
         while Present (E) and then not Is_Formal (E) loop
            Install_Entity (E);
            Next_Entity (E);
         end loop;

         Set_Use (Generic_Formal_Declarations (Gen_Decl));

         --  Now generic formals are visible, and the specification can be
         --  analyzed, for subsequent conformance check.

         Body_Id := Analyze_Subprogram_Specification (Spec);

         --  Make formal parameters visible

         if Present (E) then

            --  E is the first formal parameter, we loop through the formals
            --  installing them so that they will be visible.

            Set_First_Entity (Gen_Id, E);
            while Present (E) loop
               Install_Entity (E);
               Next_Formal (E);
            end loop;
         end if;

         --  Visible generic entity is callable within its own body

         Set_Ekind          (Gen_Id,  Ekind (Body_Id));
         Set_Contract       (Body_Id, Empty);
         Set_Ekind          (Body_Id, E_Subprogram_Body);
         Set_Convention     (Body_Id, Convention (Gen_Id));
         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
         Set_Scope          (Body_Id, Scope (Gen_Id));
         Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);

         if Nkind (N) = N_Subprogram_Body_Stub then

            --  No body to analyze, so restore state of generic unit

            Set_Ekind (Gen_Id, Kind);
            Set_Ekind (Body_Id, Kind);

            if Present (First_Ent) then
               Set_First_Entity (Gen_Id, First_Ent);
            end if;

            End_Scope;
            return;
         end if;

         --  If this is a compilation unit, it must be made visible explicitly,
         --  because the compilation of the declaration, unlike other library
         --  unit declarations, does not. If it is not a unit, the following
         --  is redundant but harmless.

         Set_Is_Immediately_Visible (Gen_Id);
         Reference_Body_Formals (Gen_Id, Body_Id);

         if Is_Child_Unit (Gen_Id) then
            Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
         end if;

         Set_Actual_Subtypes (N, Current_Scope);

         --  Deal with preconditions and postconditions. In formal verification
         --  mode, we keep pre- and postconditions attached to entities rather
         --  than inserted in the code, in order to facilitate a distinct
         --  treatment for them.

         if not SPARK_Mode then
            Process_PPCs (N, Gen_Id, Body_Id);
         end if;

         --  If the generic unit carries pre- or post-conditions, copy them
         --  to the original generic tree, so that they are properly added
         --  to any instantiation.

         declare
            Orig : constant Node_Id := Original_Node (N);
            Cond : Node_Id;

         begin
            Cond := First (Declarations (N));
            while Present (Cond) loop
               if Nkind (Cond) = N_Pragma
                 and then Pragma_Name (Cond) = Name_Check
               then
                  Prepend (New_Copy_Tree (Cond), Declarations (Orig));

               elsif Nkind (Cond) = N_Pragma
                 and then Pragma_Name (Cond) = Name_Postcondition
               then
                  Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
                  Prepend (New_Copy_Tree (Cond), Declarations (Orig));
               else
                  exit;
               end if;

               Next (Cond);
            end loop;
         end;

         Analyze_Declarations (Declarations (N));
         Check_Completion;
         Analyze (Handled_Statement_Sequence (N));

         Save_Global_References (Original_Node (N));

         --  Prior to exiting the scope, include generic formals again (if any
         --  are present) in the set of local entities.

         if Present (First_Ent) then
            Set_First_Entity (Gen_Id, First_Ent);
         end if;

         Check_References (Gen_Id);
      end;

      Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
      End_Scope;
      Check_Subprogram_Order (N);

      --  Outside of its body, unit is generic again

      Set_Ekind (Gen_Id, Kind);
      Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);

      if Style_Check then
         Style.Check_Identifier (Body_Id, Gen_Id);
      end if;

      End_Generic;
   end Analyze_Generic_Subprogram_Body;

   ----------------------------
   -- Analyze_Null_Procedure --
   ----------------------------

   procedure Analyze_Null_Procedure
     (N             : Node_Id;
      Is_Completion : out Boolean)
   is
      Loc        : constant Source_Ptr := Sloc (N);
      Spec       : constant Node_Id    := Specification (N);
      Designator : Entity_Id;
      Form       : Node_Id;
      Null_Body  : Node_Id := Empty;
      Prev       : Entity_Id;

   begin
      --  Capture the profile of the null procedure before analysis, for
      --  expansion at the freeze point and at each point of call. The body is
      --  used if the procedure has preconditions, or if it is a completion. In
      --  the first case the body is analyzed at the freeze point, in the other
      --  it replaces the null procedure declaration.

      Null_Body :=
        Make_Subprogram_Body (Loc,
          Specification => New_Copy_Tree (Spec),
          Declarations => New_List,
          Handled_Statement_Sequence =>
            Make_Handled_Sequence_Of_Statements (Loc,
              Statements => New_List (Make_Null_Statement (Loc))));

      --  Create new entities for body and formals

      Set_Defining_Unit_Name (Specification (Null_Body),
        Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));

      Form := First (Parameter_Specifications (Specification (Null_Body)));
      while Present (Form) loop
         Set_Defining_Identifier (Form,
           Make_Defining_Identifier (Loc, Chars (Defining_Identifier (Form))));
         Next (Form);
      end loop;

      --  Determine whether the null procedure may be a completion of a generic
      --  suprogram, in which case we use the new null body as the completion
      --  and set minimal semantic information on the original declaration,
      --  which is rewritten as a null statement.

      Prev := Current_Entity_In_Scope (Defining_Entity (Spec));

      if Present (Prev) and then Is_Generic_Subprogram (Prev) then
         Insert_Before (N, Null_Body);
         Set_Ekind (Defining_Entity (N), Ekind (Prev));
         Set_Contract (Defining_Entity (N), Make_Contract (Loc));

         Rewrite (N, Make_Null_Statement (Loc));
         Analyze_Generic_Subprogram_Body (Null_Body, Prev);
         Is_Completion := True;
         return;

      else

         --  Resolve the types of the formals now, because the freeze point
         --  may appear in a different context, e.g. an instantiation.

         Form := First (Parameter_Specifications (Specification (Null_Body)));
         while Present (Form) loop
            if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
               Find_Type (Parameter_Type (Form));

            elsif
              No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
            then
               Find_Type (Subtype_Mark (Parameter_Type (Form)));

            else
               --  The case of a null procedure with a formal that is an
               --  access_to_subprogram type, and that is used as an actual
               --  in an instantiation is left to the enthusiastic reader.

               null;
            end if;

            Next (Form);
         end loop;
      end if;

      --  If there are previous overloadable entities with the same name,
      --  check whether any of them is completed by the null procedure.

      if Present (Prev) and then Is_Overloadable (Prev) then
         Designator := Analyze_Subprogram_Specification (Spec);
         Prev       := Find_Corresponding_Spec (N);
      end if;

      if No (Prev) or else not Comes_From_Source (Prev) then
         Designator := Analyze_Subprogram_Specification (Spec);
         Set_Has_Completion (Designator);

         --  Signal to caller that this is a procedure declaration

         Is_Completion := False;

         --  Null procedures are always inlined, but generic formal subprograms
         --  which appear as such in the internal instance of formal packages,
         --  need no completion and are not marked Inline.

         if Expander_Active
           and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
         then
            Set_Corresponding_Body (N, Defining_Entity (Null_Body));
            Set_Body_To_Inline (N, Null_Body);
            Set_Is_Inlined (Designator);
         end if;

      else
         --  The null procedure is a completion

         Is_Completion := True;

         if Expander_Active then
            Rewrite (N, Null_Body);
            Analyze (N);

         else
            Designator := Analyze_Subprogram_Specification (Spec);
            Set_Has_Completion (Designator);
            Set_Has_Completion (Prev);
         end if;
      end if;
   end Analyze_Null_Procedure;

   -----------------------------
   -- Analyze_Operator_Symbol --
   -----------------------------

   --  An operator symbol such as "+" or "and" may appear in context where the
   --  literal denotes an entity name, such as "+"(x, y) or in context when it
   --  is just a string, as in (conjunction = "or"). In these cases the parser
   --  generates this node, and the semantics does the disambiguation. Other
   --  such case are actuals in an instantiation, the generic unit in an
   --  instantiation, and pragma arguments.

   procedure Analyze_Operator_Symbol (N : Node_Id) is
      Par : constant Node_Id := Parent (N);

   begin
      if        (Nkind (Par) = N_Function_Call
                  and then N = Name (Par))
        or else  Nkind (Par) = N_Function_Instantiation
        or else (Nkind (Par) = N_Indexed_Component
                   and then N = Prefix (Par))
        or else (Nkind (Par) = N_Pragma_Argument_Association
                   and then not Is_Pragma_String_Literal (Par))
        or else  Nkind (Par) = N_Subprogram_Renaming_Declaration
        or else (Nkind (Par) = N_Attribute_Reference
                  and then Attribute_Name (Par) /= Name_Value)
      then
         Find_Direct_Name (N);

      else
         Change_Operator_Symbol_To_String_Literal (N);
         Analyze (N);
      end if;
   end Analyze_Operator_Symbol;

   -----------------------------------
   -- Analyze_Parameter_Association --
   -----------------------------------

   procedure Analyze_Parameter_Association (N : Node_Id) is
   begin
      Analyze (Explicit_Actual_Parameter (N));
   end Analyze_Parameter_Association;

   ----------------------------
   -- Analyze_Procedure_Call --
   ----------------------------

   procedure Analyze_Procedure_Call (N : Node_Id) is
      Loc     : constant Source_Ptr := Sloc (N);
      P       : constant Node_Id    := Name (N);
      Actuals : constant List_Id    := Parameter_Associations (N);
      Actual  : Node_Id;
      New_N   : Node_Id;

      procedure Analyze_Call_And_Resolve;
      --  Do Analyze and Resolve calls for procedure call
      --  At end, check illegal order dependence.

      ------------------------------
      -- Analyze_Call_And_Resolve --
      ------------------------------

      procedure Analyze_Call_And_Resolve is
      begin
         if Nkind (N) = N_Procedure_Call_Statement then
            Analyze_Call (N);
            Resolve (N, Standard_Void_Type);
         else
            Analyze (N);
         end if;
      end Analyze_Call_And_Resolve;

   --  Start of processing for Analyze_Procedure_Call

   begin
      --  The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
      --  a procedure call or an entry call. The prefix may denote an access
      --  to subprogram type, in which case an implicit dereference applies.
      --  If the prefix is an indexed component (without implicit dereference)
      --  then the construct denotes a call to a member of an entire family.
      --  If the prefix is a simple name, it may still denote a call to a
      --  parameterless member of an entry family. Resolution of these various
      --  interpretations is delicate.

      Analyze (P);

      --  If this is a call of the form Obj.Op, the call may have been
      --  analyzed and possibly rewritten into a block, in which case
      --  we are done.

      if Analyzed (N) then
         return;
      end if;

      --  If there is an error analyzing the name (which may have been
      --  rewritten if the original call was in prefix notation) then error
      --  has been emitted already, mark node and return.

      if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
         Set_Etype (N, Any_Type);
         return;
      end if;

      --  Otherwise analyze the parameters

      if Present (Actuals) then
         Actual := First (Actuals);

         while Present (Actual) loop
            Analyze (Actual);
            Check_Parameterless_Call (Actual);
            Next (Actual);
         end loop;
      end if;

      --  Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls

      if Nkind (P) = N_Attribute_Reference
        and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
                                             Name_Elab_Body,
                                             Name_Elab_Subp_Body)
      then
         if Present (Actuals) then
            Error_Msg_N
              ("no parameters allowed for this call", First (Actuals));
            return;
         end if;

         Set_Etype (N, Standard_Void_Type);
         Set_Analyzed (N);

      elsif Is_Entity_Name (P)
        and then Is_Record_Type (Etype (Entity (P)))
        and then Remote_AST_I_Dereference (P)
      then
         return;

      elsif Is_Entity_Name (P)
        and then Ekind (Entity (P)) /= E_Entry_Family
      then
         if Is_Access_Type (Etype (P))
           and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
           and then No (Actuals)
           and then Comes_From_Source (N)
         then
            Error_Msg_N ("missing explicit dereference in call", N);
         end if;

         Analyze_Call_And_Resolve;

      --  If the prefix is the simple name of an entry family, this is
      --  a parameterless call from within the task body itself.

      elsif Is_Entity_Name (P)
        and then Nkind (P) = N_Identifier
        and then Ekind (Entity (P)) = E_Entry_Family
        and then Present (Actuals)
        and then No (Next (First (Actuals)))
      then
         --  Can be call to parameterless entry family. What appears to be the
         --  sole argument is in fact the entry index. Rewrite prefix of node
         --  accordingly. Source representation is unchanged by this
         --  transformation.

         New_N :=
           Make_Indexed_Component (Loc,
             Prefix =>
               Make_Selected_Component (Loc,
                 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
                 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
             Expressions => Actuals);
         Set_Name (N, New_N);
         Set_Etype (New_N, Standard_Void_Type);
         Set_Parameter_Associations (N, No_List);
         Analyze_Call_And_Resolve;

      elsif Nkind (P) = N_Explicit_Dereference then
         if Ekind (Etype (P)) = E_Subprogram_Type then
            Analyze_Call_And_Resolve;
         else
            Error_Msg_N ("expect access to procedure in call", P);
         end if;

      --  The name can be a selected component or an indexed component that
      --  yields an access to subprogram. Such a prefix is legal if the call
      --  has parameter associations.

      elsif Is_Access_Type (Etype (P))
        and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
      then
         if Present (Actuals) then
            Analyze_Call_And_Resolve;
         else
            Error_Msg_N ("missing explicit dereference in call ", N);
         end if;

      --  If not an access to subprogram, then the prefix must resolve to the
      --  name of an entry, entry family, or protected operation.

      --  For the case of a simple entry call, P is a selected component where
      --  the prefix is the task and the selector name is the entry. A call to
      --  a protected procedure will have the same syntax. If the protected
      --  object contains overloaded operations, the entity may appear as a
      --  function, the context will select the operation whose type is Void.

      elsif Nkind (P) = N_Selected_Component
        and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
                                                       E_Procedure,
                                                       E_Function)
      then
         Analyze_Call_And_Resolve;

      elsif Nkind (P) = N_Selected_Component
        and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
        and then Present (Actuals)
        and then No (Next (First (Actuals)))
      then
         --  Can be call to parameterless entry family. What appears to be the
         --  sole argument is in fact the entry index. Rewrite prefix of node
         --  accordingly. Source representation is unchanged by this
         --  transformation.

         New_N :=
           Make_Indexed_Component (Loc,
             Prefix => New_Copy (P),
             Expressions => Actuals);
         Set_Name (N, New_N);
         Set_Etype (New_N, Standard_Void_Type);
         Set_Parameter_Associations (N, No_List);
         Analyze_Call_And_Resolve;

      --  For the case of a reference to an element of an entry family, P is
      --  an indexed component whose prefix is a selected component (task and
      --  entry family), and whose index is the entry family index.

      elsif Nkind (P) = N_Indexed_Component
        and then Nkind (Prefix (P)) = N_Selected_Component
        and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
      then
         Analyze_Call_And_Resolve;

      --  If the prefix is the name of an entry family, it is a call from
      --  within the task body itself.

      elsif Nkind (P) = N_Indexed_Component
        and then Nkind (Prefix (P)) = N_Identifier
        and then Ekind (Entity (Prefix (P))) = E_Entry_Family
      then
         New_N :=
           Make_Selected_Component (Loc,
             Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
             Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
         Rewrite (Prefix (P), New_N);
         Analyze (P);
         Analyze_Call_And_Resolve;

      --  In Ada 2012. a qualified expression is a name, but it cannot be a
      --  procedure name, so the construct can only be a qualified expression.

      elsif Nkind (P) = N_Qualified_Expression
        and then Ada_Version >= Ada_2012
      then
         Rewrite (N, Make_Code_Statement (Loc, Expression => P));
         Analyze (N);

      --  Anything else is an error

      else
         Error_Msg_N ("invalid procedure or entry call", N);
      end if;
   end Analyze_Procedure_Call;

   ------------------------------
   -- Analyze_Return_Statement --
   ------------------------------

   procedure Analyze_Return_Statement (N : Node_Id) is

      pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
                                  N_Extended_Return_Statement));

      Returns_Object : constant Boolean :=
                         Nkind (N) = N_Extended_Return_Statement
                           or else
                             (Nkind (N) = N_Simple_Return_Statement
                               and then Present (Expression (N)));
      --  True if we're returning something; that is, "return <expression>;"
      --  or "return Result : T [:= ...]". False for "return;". Used for error
      --  checking: If Returns_Object is True, N should apply to a function
      --  body; otherwise N should apply to a procedure body, entry body,
      --  accept statement, or extended return statement.

      function Find_What_It_Applies_To return Entity_Id;
      --  Find the entity representing the innermost enclosing body, accept
      --  statement, or extended return statement. If the result is a callable
      --  construct or extended return statement, then this will be the value
      --  of the Return_Applies_To attribute. Otherwise, the program is
      --  illegal. See RM-6.5(4/2).

      -----------------------------
      -- Find_What_It_Applies_To --
      -----------------------------

      function Find_What_It_Applies_To return Entity_Id is
         Result : Entity_Id := Empty;

      begin
         --  Loop outward through the Scope_Stack, skipping blocks, loops,
         --  and postconditions.

         for J in reverse 0 .. Scope_Stack.Last loop
            Result := Scope_Stack.Table (J).Entity;
            exit when not Ekind_In (Result, E_Block, E_Loop)
              and then Chars (Result) /= Name_uPostconditions;
         end loop;

         pragma Assert (Present (Result));
         return Result;
      end Find_What_It_Applies_To;

      --  Local declarations

      Scope_Id   : constant Entity_Id   := Find_What_It_Applies_To;
      Kind       : constant Entity_Kind := Ekind (Scope_Id);
      Loc        : constant Source_Ptr  := Sloc (N);
      Stm_Entity : constant Entity_Id   :=
                     New_Internal_Entity
                       (E_Return_Statement, Current_Scope, Loc, 'R');

   --  Start of processing for Analyze_Return_Statement

   begin
      Set_Return_Statement_Entity (N, Stm_Entity);

      Set_Etype (Stm_Entity, Standard_Void_Type);
      Set_Return_Applies_To (Stm_Entity, Scope_Id);

      --  Place Return entity on scope stack, to simplify enforcement of 6.5
      --  (4/2): an inner return statement will apply to this extended return.

      if Nkind (N) = N_Extended_Return_Statement then
         Push_Scope (Stm_Entity);
      end if;

      --  Check that pragma No_Return is obeyed. Don't complain about the
      --  implicitly-generated return that is placed at the end.

      if No_Return (Scope_Id) and then Comes_From_Source (N) then
         Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
      end if;

      --  Warn on any unassigned OUT parameters if in procedure

      if Ekind (Scope_Id) = E_Procedure then
         Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
      end if;

      --  Check that functions return objects, and other things do not

      if Kind = E_Function or else Kind = E_Generic_Function then
         if not Returns_Object then
            Error_Msg_N ("missing expression in return from function", N);
         end if;

      elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
         if Returns_Object then
            Error_Msg_N ("procedure cannot return value (use function)", N);
         end if;

      elsif Kind = E_Entry or else Kind = E_Entry_Family then
         if Returns_Object then
            if Is_Protected_Type (Scope (Scope_Id)) then
               Error_Msg_N ("entry body cannot return value", N);
            else
               Error_Msg_N ("accept statement cannot return value", N);
            end if;
         end if;

      elsif Kind = E_Return_Statement then

         --  We are nested within another return statement, which must be an
         --  extended_return_statement.

         if Returns_Object then
            if Nkind (N) = N_Extended_Return_Statement then
               Error_Msg_N
                 ("extended return statement cannot be nested (use `RETURN;`)",
                  N);

            --  Case of a simple return statement with a value inside extended
            --  return statement.

            else
               Error_Msg_N
                 ("return nested in extended return statement cannot return " &
                  "value (use `RETURN;`)", N);
            end if;
         end if;

      else
         Error_Msg_N ("illegal context for return statement", N);
      end if;

      if Ekind_In (Kind, E_Function, E_Generic_Function) then
         Analyze_Function_Return (N);

      elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
         Set_Return_Present (Scope_Id);
      end if;

      if Nkind (N) = N_Extended_Return_Statement then
         End_Scope;
      end if;

      Kill_Current_Values (Last_Assignment_Only => True);
      Check_Unreachable_Code (N);

      Analyze_Dimension (N);
   end Analyze_Return_Statement;

   -------------------------------------
   -- Analyze_Simple_Return_Statement --
   -------------------------------------

   procedure Analyze_Simple_Return_Statement (N : Node_Id) is
   begin
      if Present (Expression (N)) then
         Mark_Coextensions (N, Expression (N));
      end if;

      Analyze_Return_Statement (N);
   end Analyze_Simple_Return_Statement;

   -------------------------
   -- Analyze_Return_Type --
   -------------------------

   procedure Analyze_Return_Type (N : Node_Id) is
      Designator : constant Entity_Id := Defining_Entity (N);
      Typ        : Entity_Id := Empty;

   begin
      --  Normal case where result definition does not indicate an error

      if Result_Definition (N) /= Error then
         if Nkind (Result_Definition (N)) = N_Access_Definition then
            Check_SPARK_Restriction
              ("access result is not allowed", Result_Definition (N));

            --  Ada 2005 (AI-254): Handle anonymous access to subprograms

            declare
               AD : constant Node_Id :=
                      Access_To_Subprogram_Definition (Result_Definition (N));
            begin
               if Present (AD) and then Protected_Present (AD) then
                  Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
               else
                  Typ := Access_Definition (N, Result_Definition (N));
               end if;
            end;

            Set_Parent (Typ, Result_Definition (N));
            Set_Is_Local_Anonymous_Access (Typ);
            Set_Etype (Designator, Typ);

            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion

            Null_Exclusion_Static_Checks (N);

         --  Subtype_Mark case

         else
            Find_Type (Result_Definition (N));
            Typ := Entity (Result_Definition (N));
            Set_Etype (Designator, Typ);

            --  Unconstrained array as result is not allowed in SPARK

            if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
               Check_SPARK_Restriction
                 ("returning an unconstrained array is not allowed",
                  Result_Definition (N));
            end if;

            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion

            Null_Exclusion_Static_Checks (N);

            --  If a null exclusion is imposed on the result type, then create
            --  a null-excluding itype (an access subtype) and use it as the
            --  function's Etype. Note that the null exclusion checks are done
            --  right before this, because they don't get applied to types that
            --  do not come from source.

            if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
               Set_Etype  (Designator,
                 Create_Null_Excluding_Itype
                  (T           => Typ,
                   Related_Nod => N,
                   Scope_Id    => Scope (Current_Scope)));

               --  The new subtype must be elaborated before use because
               --  it is visible outside of the function. However its base
               --  type may not be frozen yet, so the reference that will
               --  force elaboration must be attached to the freezing of
               --  the base type.

               --  If the return specification appears on a proper body,
               --  the subtype will have been created already on the spec.

               if Is_Frozen (Typ) then
                  if Nkind (Parent (N)) = N_Subprogram_Body
                    and then Nkind (Parent (Parent (N))) = N_Subunit
                  then
                     null;
                  else
                     Build_Itype_Reference (Etype (Designator), Parent (N));
                  end if;

               else
                  Ensure_Freeze_Node (Typ);

                  declare
                     IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
                  begin
                     Set_Itype (IR, Etype (Designator));
                     Append_Freeze_Actions (Typ, New_List (IR));
                  end;
               end if;

            else
               Set_Etype (Designator, Typ);
            end if;

            if Ekind (Typ) = E_Incomplete_Type
              and then Is_Value_Type (Typ)
            then
               null;

            elsif Ekind (Typ) = E_Incomplete_Type
              or else (Is_Class_Wide_Type (Typ)
                         and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
            then
               --  AI05-0151: Tagged incomplete types are allowed in all formal
               --  parts. Untagged incomplete types are not allowed in bodies.

               if Ada_Version >= Ada_2012 then
                  if Is_Tagged_Type (Typ) then
                     null;

                  elsif Nkind_In (Parent (Parent (N)),
                     N_Accept_Statement,
                     N_Entry_Body,
                     N_Subprogram_Body)
                  then
                     Error_Msg_NE
                       ("invalid use of untagged incomplete type&",
                          Designator, Typ);
                  end if;

                  --  The type must be completed in the current package. This
                  --  is checked at the end of the package declaraton, when
                  --  Taft-amendment types are identified. If the return type
                  --  is class-wide, there is no required check, the type can
                  --  be a bona fide TAT.

                  if Ekind (Scope (Current_Scope)) = E_Package
                    and then In_Private_Part (Scope (Current_Scope))
                    and then not Is_Class_Wide_Type (Typ)
                  then
                     Append_Elmt (Designator, Private_Dependents (Typ));
                  end if;

               else
                  Error_Msg_NE
                    ("invalid use of incomplete type&", Designator, Typ);
               end if;
            end if;
         end if;

      --  Case where result definition does indicate an error

      else
         Set_Etype (Designator, Any_Type);
      end if;
   end Analyze_Return_Type;

   -----------------------------
   -- Analyze_Subprogram_Body --
   -----------------------------

   procedure Analyze_Subprogram_Body (N : Node_Id) is
      Loc       : constant Source_Ptr := Sloc (N);
      Body_Spec : constant Node_Id    := Specification (N);
      Body_Id   : constant Entity_Id  := Defining_Entity (Body_Spec);

   begin
      if Debug_Flag_C then
         Write_Str ("==> subprogram body ");
         Write_Name (Chars (Body_Id));
         Write_Str (" from ");
         Write_Location (Loc);
         Write_Eol;
         Indent;
      end if;

      Trace_Scope (N, Body_Id, " Analyze subprogram: ");

      --  The real work is split out into the helper, so it can do "return;"
      --  without skipping the debug output:

      Analyze_Subprogram_Body_Helper (N);

      if Debug_Flag_C then
         Outdent;
         Write_Str ("<== subprogram body ");
         Write_Name (Chars (Body_Id));
         Write_Str (" from ");
         Write_Location (Loc);
         Write_Eol;
      end if;
   end Analyze_Subprogram_Body;

   ------------------------------------
   -- Analyze_Subprogram_Body_Helper --
   ------------------------------------

   --  This procedure is called for regular subprogram bodies, generic bodies,
   --  and for subprogram stubs of both kinds. In the case of stubs, only the
   --  specification matters, and is used to create a proper declaration for
   --  the subprogram, or to perform conformance checks.

   procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
      Loc          : constant Source_Ptr := Sloc (N);
      Body_Spec    : constant Node_Id    := Specification (N);
      Body_Id      : Entity_Id           := Defining_Entity (Body_Spec);
      Prev_Id      : constant Entity_Id  := Current_Entity_In_Scope (Body_Id);
      Conformant   : Boolean;
      HSS          : Node_Id;
      Prot_Typ     : Entity_Id := Empty;
      Spec_Id      : Entity_Id;
      Spec_Decl    : Node_Id   := Empty;

      Last_Real_Spec_Entity : Entity_Id := Empty;
      --  When we analyze a separate spec, the entity chain ends up containing
      --  the formals, as well as any itypes generated during analysis of the
      --  default expressions for parameters, or the arguments of associated
      --  precondition/postcondition pragmas (which are analyzed in the context
      --  of the spec since they have visibility on formals).
      --
      --  These entities belong with the spec and not the body. However we do
      --  the analysis of the body in the context of the spec (again to obtain
      --  visibility to the formals), and all the entities generated during
      --  this analysis end up also chained to the entity chain of the spec.
      --  But they really belong to the body, and there is circuitry to move
      --  them from the spec to the body.
      --
      --  However, when we do this move, we don't want to move the real spec
      --  entities (first para above) to the body. The Last_Real_Spec_Entity
      --  variable points to the last real spec entity, so we only move those
      --  chained beyond that point. It is initialized to Empty to deal with
      --  the case where there is no separate spec.

      procedure Check_Anonymous_Return;
      --  Ada 2005: if a function returns an access type that denotes a task,
      --  or a type that contains tasks, we must create a master entity for
      --  the anonymous type, which typically will be used in an allocator
      --  in the body of the function.

      procedure Check_Inline_Pragma (Spec : in out Node_Id);
      --  Look ahead to recognize a pragma that may appear after the body.
      --  If there is a previous spec, check that it appears in the same
      --  declarative part. If the pragma is Inline_Always, perform inlining
      --  unconditionally, otherwise only if Front_End_Inlining is requested.
      --  If the body acts as a spec, and inlining is required, we create a
      --  subprogram declaration for it, in order to attach the body to inline.
      --  If pragma does not appear after the body, check whether there is
      --  an inline pragma before any local declarations.

      procedure Check_Missing_Return;
      --  Checks for a function with a no return statements, and also performs
      --  the warning checks implemented by Check_Returns. In formal mode, also
      --  verify that a function ends with a RETURN and that a procedure does
      --  not contain any RETURN.

      function Disambiguate_Spec return Entity_Id;
      --  When a primitive is declared between the private view and the full
      --  view of a concurrent type which implements an interface, a special
      --  mechanism is used to find the corresponding spec of the primitive
      --  body.

      procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
      --  Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
      --  incomplete types coming from a limited context and swap their limited
      --  views with the non-limited ones.

      function Is_Private_Concurrent_Primitive
        (Subp_Id : Entity_Id) return Boolean;
      --  Determine whether subprogram Subp_Id is a primitive of a concurrent
      --  type that implements an interface and has a private view.

      procedure Set_Trivial_Subprogram (N : Node_Id);
      --  Sets the Is_Trivial_Subprogram flag in both spec and body of the
      --  subprogram whose body is being analyzed. N is the statement node
      --  causing the flag to be set, if the following statement is a return
      --  of an entity, we mark the entity as set in source to suppress any
      --  warning on the stylized use of function stubs with a dummy return.

      procedure Verify_Overriding_Indicator;
      --  If there was a previous spec, the entity has been entered in the
      --  current scope previously. If the body itself carries an overriding
      --  indicator, check that it is consistent with the known status of the
      --  entity.

      ----------------------------
      -- Check_Anonymous_Return --
      ----------------------------

      procedure Check_Anonymous_Return is
         Decl : Node_Id;
         Par  : Node_Id;
         Scop : Entity_Id;

      begin
         if Present (Spec_Id) then
            Scop := Spec_Id;
         else
            Scop := Body_Id;
         end if;

         if Ekind (Scop) = E_Function
           and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
           and then not Is_Thunk (Scop)
           and then (Has_Task (Designated_Type (Etype (Scop)))
                      or else
                       (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
                          and then
                        Is_Limited_Record (Designated_Type (Etype (Scop)))))
           and then Expander_Active

           --  Avoid cases with no tasking support

           and then RTE_Available (RE_Current_Master)
           and then not Restriction_Active (No_Task_Hierarchy)
         then
            Decl :=
              Make_Object_Declaration (Loc,
                Defining_Identifier =>
                  Make_Defining_Identifier (Loc, Name_uMaster),
                Constant_Present => True,
                Object_Definition =>
                  New_Reference_To (RTE (RE_Master_Id), Loc),
                Expression =>
                  Make_Explicit_Dereference (Loc,
                    New_Reference_To (RTE (RE_Current_Master), Loc)));

            if Present (Declarations (N)) then
               Prepend (Decl, Declarations (N));
            else
               Set_Declarations (N, New_List (Decl));
            end if;

            Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
            Set_Has_Master_Entity (Scop);

            --  Now mark the containing scope as a task master

            Par := N;
            while Nkind (Par) /= N_Compilation_Unit loop
               Par := Parent (Par);
               pragma Assert (Present (Par));

               --  If we fall off the top, we are at the outer level, and
               --  the environment task is our effective master, so nothing
               --  to mark.

               if Nkind_In
                   (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
               then
                  Set_Is_Task_Master (Par, True);
                  exit;
               end if;
            end loop;
         end if;
      end Check_Anonymous_Return;

      -------------------------
      -- Check_Inline_Pragma --
      -------------------------

      procedure Check_Inline_Pragma (Spec : in out Node_Id) is
         Prag  : Node_Id;
         Plist : List_Id;

         function Is_Inline_Pragma (N : Node_Id) return Boolean;
         --  True when N is a pragma Inline or Inline_Always that applies
         --  to this subprogram.

         -----------------------
         --  Is_Inline_Pragma --
         -----------------------

         function Is_Inline_Pragma (N : Node_Id) return Boolean is
         begin
            return
              Nkind (N) = N_Pragma
                and then
                  (Pragma_Name (N) = Name_Inline_Always
                    or else
                      (Front_End_Inlining
                        and then Pragma_Name (N) = Name_Inline))
                and then
                  Chars
                    (Expression (First (Pragma_Argument_Associations (N)))) =
                                                              Chars (Body_Id);
         end Is_Inline_Pragma;

      --  Start of processing for Check_Inline_Pragma

      begin
         if not Expander_Active then
            return;
         end if;

         if Is_List_Member (N)
           and then Present (Next (N))
           and then Is_Inline_Pragma (Next (N))
         then
            Prag := Next (N);

         elsif Nkind (N) /= N_Subprogram_Body_Stub
           and then Present (Declarations (N))
           and then Is_Inline_Pragma (First (Declarations (N)))
         then
            Prag := First (Declarations (N));

         else
            Prag := Empty;
         end if;

         if Present (Prag) then
            if Present (Spec_Id) then
               if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
                  Analyze (Prag);
               end if;

            else
               --  Create a subprogram declaration, to make treatment uniform

               declare
                  Subp : constant Entity_Id :=
                           Make_Defining_Identifier (Loc, Chars (Body_Id));
                  Decl : constant Node_Id :=
                           Make_Subprogram_Declaration (Loc,
                             Specification =>
                               New_Copy_Tree (Specification (N)));

               begin
                  Set_Defining_Unit_Name (Specification (Decl), Subp);

                  if Present (First_Formal (Body_Id)) then
                     Plist := Copy_Parameter_List (Body_Id);
                     Set_Parameter_Specifications
                       (Specification (Decl), Plist);
                  end if;

                  Insert_Before (N, Decl);
                  Analyze (Decl);
                  Analyze (Prag);
                  Set_Has_Pragma_Inline (Subp);

                  if Pragma_Name (Prag) = Name_Inline_Always then
                     Set_Is_Inlined (Subp);
                     Set_Has_Pragma_Inline_Always (Subp);
                  end if;

                  Spec := Subp;
               end;
            end if;
         end if;
      end Check_Inline_Pragma;

      --------------------------
      -- Check_Missing_Return --
      --------------------------

      procedure Check_Missing_Return is
         Id          : Entity_Id;
         Missing_Ret : Boolean;

      begin
         if Nkind (Body_Spec) = N_Function_Specification then
            if Present (Spec_Id) then
               Id := Spec_Id;
            else
               Id := Body_Id;
            end if;

            if Return_Present (Id) then
               Check_Returns (HSS, 'F', Missing_Ret);

               if Missing_Ret then
                  Set_Has_Missing_Return (Id);
               end if;

            elsif Is_Generic_Subprogram (Id)
              or else not Is_Machine_Code_Subprogram (Id)
            then
               Error_Msg_N ("missing RETURN statement in function body", N);
            end if;

         --  If procedure with No_Return, check returns

         elsif Nkind (Body_Spec) = N_Procedure_Specification
           and then Present (Spec_Id)
           and then No_Return (Spec_Id)
         then
            Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
         end if;

         --  Special checks in SPARK mode

         if Nkind (Body_Spec) = N_Function_Specification then

            --  In SPARK mode, last statement of a function should be a return

            declare
               Stat : constant Node_Id := Last_Source_Statement (HSS);
            begin
               if Present (Stat)
                 and then not Nkind_In (Stat, N_Simple_Return_Statement,
                                              N_Extended_Return_Statement)
               then
                  Check_SPARK_Restriction
                    ("last statement in function should be RETURN", Stat);
               end if;
            end;

         --  In SPARK mode, verify that a procedure has no return

         elsif Nkind (Body_Spec) = N_Procedure_Specification then
            if Present (Spec_Id) then
               Id := Spec_Id;
            else
               Id := Body_Id;
            end if;

            --  Would be nice to point to return statement here, can we
            --  borrow the Check_Returns procedure here ???

            if Return_Present (Id) then
               Check_SPARK_Restriction
                 ("procedure should not have RETURN", N);
            end if;
         end if;
      end Check_Missing_Return;

      -----------------------
      -- Disambiguate_Spec --
      -----------------------

      function Disambiguate_Spec return Entity_Id is
         Priv_Spec : Entity_Id;
         Spec_N    : Entity_Id;

         procedure Replace_Types (To_Corresponding : Boolean);
         --  Depending on the flag, replace the type of formal parameters of
         --  Body_Id if it is a concurrent type implementing interfaces with
         --  the corresponding record type or the other way around.

         procedure Replace_Types (To_Corresponding : Boolean) is
            Formal     : Entity_Id;
            Formal_Typ : Entity_Id;

         begin
            Formal := First_Formal (Body_Id);
            while Present (Formal) loop
               Formal_Typ := Etype (Formal);

               if Is_Class_Wide_Type (Formal_Typ) then
                  Formal_Typ := Root_Type (Formal_Typ);
               end if;

               --  From concurrent type to corresponding record

               if To_Corresponding then
                  if Is_Concurrent_Type (Formal_Typ)
                    and then Present (Corresponding_Record_Type (Formal_Typ))
                    and then Present (Interfaces (
                               Corresponding_Record_Type (Formal_Typ)))
                  then
                     Set_Etype (Formal,
                       Corresponding_Record_Type (Formal_Typ));
                  end if;

               --  From corresponding record to concurrent type

               else
                  if Is_Concurrent_Record_Type (Formal_Typ)
                    and then Present (Interfaces (Formal_Typ))
                  then
                     Set_Etype (Formal,
                       Corresponding_Concurrent_Type (Formal_Typ));
                  end if;
               end if;

               Next_Formal (Formal);
            end loop;
         end Replace_Types;

      --  Start of processing for Disambiguate_Spec

      begin
         --  Try to retrieve the specification of the body as is. All error
         --  messages are suppressed because the body may not have a spec in
         --  its current state.

         Spec_N := Find_Corresponding_Spec (N, False);

         --  It is possible that this is the body of a primitive declared
         --  between a private and a full view of a concurrent type. The
         --  controlling parameter of the spec carries the concurrent type,
         --  not the corresponding record type as transformed by Analyze_
         --  Subprogram_Specification. In such cases, we undo the change
         --  made by the analysis of the specification and try to find the
         --  spec again.

         --  Note that wrappers already have their corresponding specs and
         --  bodies set during their creation, so if the candidate spec is
         --  a wrapper, then we definitely need to swap all types to their
         --  original concurrent status.

         if No (Spec_N)
           or else Is_Primitive_Wrapper (Spec_N)
         then
            --  Restore all references of corresponding record types to the
            --  original concurrent types.

            Replace_Types (To_Corresponding => False);
            Priv_Spec := Find_Corresponding_Spec (N, False);

            --  The current body truly belongs to a primitive declared between
            --  a private and a full view. We leave the modified body as is,
            --  and return the true spec.

            if Present (Priv_Spec)
              and then Is_Private_Primitive (Priv_Spec)
            then
               return Priv_Spec;
            end if;

            --  In case that this is some sort of error, restore the original
            --  state of the body.

            Replace_Types (To_Corresponding => True);
         end if;

         return Spec_N;
      end Disambiguate_Spec;

      ----------------------------
      -- Exchange_Limited_Views --
      ----------------------------

      procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
         procedure Detect_And_Exchange (Id : Entity_Id);
         --  Determine whether Id's type denotes an incomplete type associated
         --  with a limited with clause and exchange the limited view with the
         --  non-limited one.

         -------------------------
         -- Detect_And_Exchange --
         -------------------------

         procedure Detect_And_Exchange (Id : Entity_Id) is
            Typ : constant Entity_Id := Etype (Id);

         begin
            if Ekind (Typ) = E_Incomplete_Type
              and then From_With_Type (Typ)
              and then Present (Non_Limited_View (Typ))
            then
               Set_Etype (Id, Non_Limited_View (Typ));
            end if;
         end Detect_And_Exchange;

         --  Local variables

         Formal : Entity_Id;

      --  Start of processing for Exchange_Limited_Views

      begin
         if No (Subp_Id) then
            return;

         --  Do not process subprogram bodies as they already use the non-
         --  limited view of types.

         elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
            return;
         end if;

         --  Examine all formals and swap views when applicable

         Formal := First_Formal (Subp_Id);
         while Present (Formal) loop
            Detect_And_Exchange (Formal);

            Next_Formal (Formal);
         end loop;

         --  Process the return type of a function

         if Ekind (Subp_Id) = E_Function then
            Detect_And_Exchange (Subp_Id);
         end if;
      end Exchange_Limited_Views;

      -------------------------------------
      -- Is_Private_Concurrent_Primitive --
      -------------------------------------

      function Is_Private_Concurrent_Primitive
        (Subp_Id : Entity_Id) return Boolean
      is
         Formal_Typ : Entity_Id;

      begin
         if Present (First_Formal (Subp_Id)) then
            Formal_Typ := Etype (First_Formal (Subp_Id));

            if Is_Concurrent_Record_Type (Formal_Typ) then
               if Is_Class_Wide_Type (Formal_Typ) then
                  Formal_Typ := Root_Type (Formal_Typ);
               end if;

               Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
            end if;

            --  The type of the first formal is a concurrent tagged type with
            --  a private view.

            return
              Is_Concurrent_Type (Formal_Typ)
                and then Is_Tagged_Type (Formal_Typ)
                and then Has_Private_Declaration (Formal_Typ);
         end if;

         return False;
      end Is_Private_Concurrent_Primitive;

      ----------------------------
      -- Set_Trivial_Subprogram --
      ----------------------------

      procedure Set_Trivial_Subprogram (N : Node_Id) is
         Nxt : constant Node_Id := Next (N);

      begin
         Set_Is_Trivial_Subprogram (Body_Id);

         if Present (Spec_Id) then
            Set_Is_Trivial_Subprogram (Spec_Id);
         end if;

         if Present (Nxt)
           and then Nkind (Nxt) = N_Simple_Return_Statement
           and then No (Next (Nxt))
           and then Present (Expression (Nxt))
           and then Is_Entity_Name (Expression (Nxt))
         then
            Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
         end if;
      end Set_Trivial_Subprogram;

      ---------------------------------
      -- Verify_Overriding_Indicator --
      ---------------------------------

      procedure Verify_Overriding_Indicator is
      begin
         if Must_Override (Body_Spec) then
            if Nkind (Spec_Id) = N_Defining_Operator_Symbol
              and then  Operator_Matches_Spec (Spec_Id, Spec_Id)
            then
               null;

            elsif not Present (Overridden_Operation (Spec_Id)) then
               Error_Msg_NE
                 ("subprogram& is not overriding", Body_Spec, Spec_Id);
            end if;

         elsif Must_Not_Override (Body_Spec) then
            if Present (Overridden_Operation (Spec_Id)) then
               Error_Msg_NE
                 ("subprogram& overrides inherited operation",
                  Body_Spec, Spec_Id);

            elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
              and then  Operator_Matches_Spec (Spec_Id, Spec_Id)
            then
               Error_Msg_NE
                 ("subprogram & overrides predefined operator ",
                    Body_Spec, Spec_Id);

            --  If this is not a primitive operation or protected subprogram,
            --  then the overriding indicator is altogether illegal.

            elsif not Is_Primitive (Spec_Id)
              and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
            then
               Error_Msg_N
                 ("overriding indicator only allowed " &
                  "if subprogram is primitive",
                  Body_Spec);
            end if;

         elsif Style_Check
           and then Present (Overridden_Operation (Spec_Id))
         then
            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
            Style.Missing_Overriding (N, Body_Id);

         elsif Style_Check
           and then Can_Override_Operator (Spec_Id)
           and then not Is_Predefined_File_Name
                          (Unit_File_Name (Get_Source_Unit (Spec_Id)))
         then
            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
            Style.Missing_Overriding (N, Body_Id);
         end if;
      end Verify_Overriding_Indicator;

   --  Start of processing for Analyze_Subprogram_Body_Helper

   begin
      --  Generic subprograms are handled separately. They always have a
      --  generic specification. Determine whether current scope has a
      --  previous declaration.

      --  If the subprogram body is defined within an instance of the same
      --  name, the instance appears as a package renaming, and will be hidden
      --  within the subprogram.

      if Present (Prev_Id)
        and then not Is_Overloadable (Prev_Id)
        and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
                   or else Comes_From_Source (Prev_Id))
      then
         if Is_Generic_Subprogram (Prev_Id) then
            Spec_Id := Prev_Id;
            Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
            Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));

            Analyze_Generic_Subprogram_Body (N, Spec_Id);

            if Nkind (N) = N_Subprogram_Body then
               HSS := Handled_Statement_Sequence (N);
               Check_Missing_Return;
            end if;

            return;

         else
            --  Previous entity conflicts with subprogram name. Attempting to
            --  enter name will post error.

            Enter_Name (Body_Id);
            return;
         end if;

      --  Non-generic case, find the subprogram declaration, if one was seen,
      --  or enter new overloaded entity in the current scope. If the
      --  Current_Entity is the Body_Id itself, the unit is being analyzed as
      --  part of the context of one of its subunits. No need to redo the
      --  analysis.

      elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
         return;

      else
         Body_Id := Analyze_Subprogram_Specification (Body_Spec);

         if Nkind (N) = N_Subprogram_Body_Stub
           or else No (Corresponding_Spec (N))
         then
            if Is_Private_Concurrent_Primitive (Body_Id) then
               Spec_Id := Disambiguate_Spec;
            else
               Spec_Id := Find_Corresponding_Spec (N);
            end if;

            --  If this is a duplicate body, no point in analyzing it

            if Error_Posted (N) then
               return;
            end if;

            --  A subprogram body should cause freezing of its own declaration,
            --  but if there was no previous explicit declaration, then the
            --  subprogram will get frozen too late (there may be code within
            --  the body that depends on the subprogram having been frozen,
            --  such as uses of extra formals), so we force it to be frozen
            --  here. Same holds if the body and spec are compilation units.
            --  Finally, if the return type is an anonymous access to protected
            --  subprogram, it must be frozen before the body because its
            --  expansion has generated an equivalent type that is used when
            --  elaborating the body.

            --  An exception in the case of Ada 2012, AI05-177: The bodies
            --  created for expression functions do not freeze.

            if No (Spec_Id)
              and then Nkind (Original_Node (N)) /= N_Expression_Function
            then
               Freeze_Before (N, Body_Id);

            elsif Nkind (Parent (N)) = N_Compilation_Unit then
               Freeze_Before (N, Spec_Id);

            elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
               Freeze_Before (N, Etype (Body_Id));
            end if;

         else
            Spec_Id := Corresponding_Spec (N);
         end if;
      end if;

      --  Language-defined aspects cannot appear in a subprogram body [stub] if
      --  the corresponding spec already has aspects. An exception to this rule
      --  are certain user-defined aspects.

      if Has_Aspects (N) then
         if Present (Spec_Id)
           and then not Aspects_On_Body_Or_Stub_OK (N)

            --  Do not emit an error on a subprogram body stub that act as
            --  its own spec.

           and then Nkind (Parent (Parent (Spec_Id))) /= N_Subprogram_Body_Stub
         then
            Error_Msg_N
              ("aspect specifications must appear in subprogram declaration",
                N);

         --  Delay the analysis of aspect specifications that apply to a body
         --  stub until the proper body is analyzed. If the corresponding body
         --  is missing, the aspects are still analyzed in Analyze_Proper_Body.

         elsif Nkind (N) in N_Body_Stub then
            null;

         else
            Analyze_Aspect_Specifications (N, Body_Id);
         end if;
      end if;

      --  Previously we scanned the body to look for nested subprograms, and
      --  rejected an inline directive if nested subprograms were present,
      --  because the back-end would generate conflicting symbols for the
      --  nested bodies. This is now unnecessary.

      --  Look ahead to recognize a pragma Inline that appears after the body

      Check_Inline_Pragma (Spec_Id);

      --  Deal with special case of a fully private operation in the body of
      --  the protected type. We must create a declaration for the subprogram,
      --  in order to attach the protected subprogram that will be used in
      --  internal calls. We exclude compiler generated bodies from the
      --  expander since the issue does not arise for those cases.

      if No (Spec_Id)
        and then Comes_From_Source (N)
        and then Is_Protected_Type (Current_Scope)
      then
         Spec_Id := Build_Private_Protected_Declaration (N);
      end if;

      --  If a separate spec is present, then deal with freezing issues

      if Present (Spec_Id) then
         Spec_Decl := Unit_Declaration_Node (Spec_Id);
         Verify_Overriding_Indicator;

         --  In general, the spec will be frozen when we start analyzing the
         --  body. However, for internally generated operations, such as
         --  wrapper functions for inherited operations with controlling
         --  results, the spec may not have been frozen by the time we expand
         --  the freeze actions that include the bodies. In particular, extra
         --  formals for accessibility or for return-in-place may need to be
         --  generated. Freeze nodes, if any, are inserted before the current
         --  body. These freeze actions are also needed in ASIS mode to enable
         --  the proper back-annotations.

         if not Is_Frozen (Spec_Id)
           and then (Expander_Active or ASIS_Mode)
         then
            --  Force the generation of its freezing node to ensure proper
            --  management of access types in the backend.

            --  This is definitely needed for some cases, but it is not clear
            --  why, to be investigated further???

            Set_Has_Delayed_Freeze (Spec_Id);
            Freeze_Before (N, Spec_Id);
         end if;
      end if;

      --  Mark presence of postcondition procedure in current scope and mark
      --  the procedure itself as needing debug info. The latter is important
      --  when analyzing decision coverage (for example, for MC/DC coverage).

      if Chars (Body_Id) = Name_uPostconditions then
         Set_Has_Postconditions (Current_Scope);
         Set_Debug_Info_Needed (Body_Id);
      end if;

      --  Place subprogram on scope stack, and make formals visible. If there
      --  is a spec, the visible entity remains that of the spec.

      if Present (Spec_Id) then
         Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);

         if Is_Child_Unit (Spec_Id) then
            Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
         end if;

         if Style_Check then
            Style.Check_Identifier (Body_Id, Spec_Id);
         end if;

         Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
         Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));

         if Is_Abstract_Subprogram (Spec_Id) then
            Error_Msg_N ("an abstract subprogram cannot have a body", N);
            return;

         else
            Set_Convention (Body_Id, Convention (Spec_Id));
            Set_Has_Completion (Spec_Id);

            if Is_Protected_Type (Scope (Spec_Id)) then
               Prot_Typ := Scope (Spec_Id);
            end if;

            --  If this is a body generated for a renaming, do not check for
            --  full conformance. The check is redundant, because the spec of
            --  the body is a copy of the spec in the renaming declaration,
            --  and the test can lead to spurious errors on nested defaults.

            if Present (Spec_Decl)
              and then not Comes_From_Source (N)
              and then
                (Nkind (Original_Node (Spec_Decl)) =
                                        N_Subprogram_Renaming_Declaration
                  or else (Present (Corresponding_Body (Spec_Decl))
                            and then
                              Nkind (Unit_Declaration_Node
                                       (Corresponding_Body (Spec_Decl))) =
                                          N_Subprogram_Renaming_Declaration))
            then
               Conformant := True;

            --  Conversely, the spec may have been generated for specless body
            --  with an inline pragma.

            elsif Comes_From_Source (N)
              and then not Comes_From_Source (Spec_Id)
              and then Has_Pragma_Inline (Spec_Id)
            then
               Conformant := True;

            else
               Check_Conformance
                 (Body_Id, Spec_Id,
                  Fully_Conformant, True, Conformant, Body_Id);
            end if;

            --  If the body is not fully conformant, we have to decide if we
            --  should analyze it or not. If it has a really messed up profile
            --  then we probably should not analyze it, since we will get too
            --  many bogus messages.

            --  Our decision is to go ahead in the non-fully conformant case
            --  only if it is at least mode conformant with the spec. Note
            --  that the call to Check_Fully_Conformant has issued the proper
            --  error messages to complain about the lack of conformance.

            if not Conformant
              and then not Mode_Conformant (Body_Id, Spec_Id)
            then
               return;
            end if;
         end if;

         if Spec_Id /= Body_Id then
            Reference_Body_Formals (Spec_Id, Body_Id);
         end if;

         if Nkind (N) = N_Subprogram_Body_Stub then
            Set_Corresponding_Spec_Of_Stub (N, Spec_Id);

         --  Regular body

         else
            Set_Corresponding_Spec (N, Spec_Id);

            --  Ada 2005 (AI-345): If the operation is a primitive operation
            --  of a concurrent type, the type of the first parameter has been
            --  replaced with the corresponding record, which is the proper
            --  run-time structure to use. However, within the body there may
            --  be uses of the formals that depend on primitive operations
            --  of the type (in particular calls in prefixed form) for which
            --  we need the original concurrent type. The operation may have
            --  several controlling formals, so the replacement must be done
            --  for all of them.

            if Comes_From_Source (Spec_Id)
              and then Present (First_Entity (Spec_Id))
              and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
              and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
              and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
              and then Present (Corresponding_Concurrent_Type
                                  (Etype (First_Entity (Spec_Id))))
            then
               declare
                  Typ  : constant Entity_Id := Etype (First_Entity (Spec_Id));
                  Form : Entity_Id;

               begin
                  Form := First_Formal (Spec_Id);
                  while Present (Form) loop
                     if Etype (Form) = Typ then
                        Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
                     end if;

                     Next_Formal (Form);
                  end loop;
               end;
            end if;

            --  Make the formals visible, and place subprogram on scope stack.
            --  This is also the point at which we set Last_Real_Spec_Entity
            --  to mark the entities which will not be moved to the body.

            Install_Formals (Spec_Id);
            Last_Real_Spec_Entity := Last_Entity (Spec_Id);

            --  Within an instance, add local renaming declarations so that
            --  gdb can retrieve the values of actuals more easily. This is
            --  only relevant if generating code (and indeed we definitely
            --  do not want these definitions -gnatc mode, because that would
            --  confuse ASIS).

            if Is_Generic_Instance (Spec_Id)
              and then Is_Wrapper_Package (Current_Scope)
              and then Expander_Active
            then
               Build_Subprogram_Instance_Renamings (N, Current_Scope);
            end if;

            Push_Scope (Spec_Id);

            --  Make sure that the subprogram is immediately visible. For
            --  child units that have no separate spec this is indispensable.
            --  Otherwise it is safe albeit redundant.

            Set_Is_Immediately_Visible (Spec_Id);
         end if;

         Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
         Set_Contract (Body_Id, Empty);
         Set_Ekind (Body_Id, E_Subprogram_Body);
         Set_Scope (Body_Id, Scope (Spec_Id));
         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));

      --  Case of subprogram body with no previous spec

      else
         --  Check for style warning required

         if Style_Check

           --  Only apply check for source level subprograms for which checks
           --  have not been suppressed.

           and then Comes_From_Source (Body_Id)
           and then not Suppress_Style_Checks (Body_Id)

           --  No warnings within an instance

           and then not In_Instance

           --  No warnings for expression functions

           and then Nkind (Original_Node (N)) /= N_Expression_Function
         then
            Style.Body_With_No_Spec (N);
         end if;

         New_Overloaded_Entity (Body_Id);

         if Nkind (N) /= N_Subprogram_Body_Stub then
            Set_Acts_As_Spec (N);
            Generate_Definition (Body_Id);
            Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
            Generate_Reference
              (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
            Install_Formals (Body_Id);
            Push_Scope (Body_Id);
         end if;

         --  For stubs and bodies with no previous spec, generate references to
         --  formals.

         Generate_Reference_To_Formals (Body_Id);
      end if;

      --  If the return type is an anonymous access type whose designated type
      --  is the limited view of a class-wide type and the non-limited view is
      --  available, update the return type accordingly.

      if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
         declare
            Etyp : Entity_Id;
            Rtyp : Entity_Id;

         begin
            Rtyp := Etype (Current_Scope);

            if Ekind (Rtyp) = E_Anonymous_Access_Type then
               Etyp := Directly_Designated_Type (Rtyp);

               if Is_Class_Wide_Type (Etyp) and then From_With_Type (Etyp) then
                  Set_Directly_Designated_Type
                    (Etype (Current_Scope), Available_View (Etyp));
               end if;
            end if;
         end;
      end if;

      --  If this is the proper body of a stub, we must verify that the stub
      --  conforms to the body, and to the previous spec if one was present.
      --  We know already that the body conforms to that spec. This test is
      --  only required for subprograms that come from source.

      if Nkind (Parent (N)) = N_Subunit
        and then Comes_From_Source (N)
        and then not Error_Posted (Body_Id)
        and then Nkind (Corresponding_Stub (Parent (N))) =
                                                N_Subprogram_Body_Stub
      then
         declare
            Old_Id : constant Entity_Id :=
                       Defining_Entity
                         (Specification (Corresponding_Stub (Parent (N))));

            Conformant : Boolean := False;

         begin
            if No (Spec_Id) then
               Check_Fully_Conformant (Body_Id, Old_Id);

            else
               Check_Conformance
                 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);

               if not Conformant then

                  --  The stub was taken to be a new declaration. Indicate that
                  --  it lacks a body.

                  Set_Has_Completion (Old_Id, False);
               end if;
            end if;
         end;
      end if;

      Set_Has_Completion (Body_Id);
      Check_Eliminated (Body_Id);

      if Nkind (N) = N_Subprogram_Body_Stub then
         return;
      end if;

      --  Handle frontend inlining. There is no need to prepare us for inlining
      --  if we will not generate the code.

      --  Old semantics

      if not Debug_Flag_Dot_K then
         if Present (Spec_Id)
           and then Expander_Active
           and then
             (Has_Pragma_Inline_Always (Spec_Id)
               or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
         then
            Build_Body_To_Inline (N, Spec_Id);
         end if;

      --  New semantics

      elsif Expander_Active
        and then Serious_Errors_Detected = 0
        and then Present (Spec_Id)
        and then Has_Pragma_Inline (Spec_Id)
      then
         Check_And_Build_Body_To_Inline (N, Spec_Id, Body_Id);
      end if;

      --  Ada 2005 (AI-262): In library subprogram bodies, after the analysis
      --  of the specification we have to install the private withed units.
      --  This holds for child units as well.

      if Is_Compilation_Unit (Body_Id)
        or else Nkind (Parent (N)) = N_Compilation_Unit
      then
         Install_Private_With_Clauses (Body_Id);
      end if;

      Check_Anonymous_Return;

      --  Set the Protected_Formal field of each extra formal of the protected
      --  subprogram to reference the corresponding extra formal of the
      --  subprogram that implements it. For regular formals this occurs when
      --  the protected subprogram's declaration is expanded, but the extra
      --  formals don't get created until the subprogram is frozen. We need to
      --  do this before analyzing the protected subprogram's body so that any
      --  references to the original subprogram's extra formals will be changed
      --  refer to the implementing subprogram's formals (see Expand_Formal).

      if Present (Spec_Id)
        and then Is_Protected_Type (Scope (Spec_Id))
        and then Present (Protected_Body_Subprogram (Spec_Id))
      then
         declare
            Impl_Subp       : constant Entity_Id :=
                                Protected_Body_Subprogram (Spec_Id);
            Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
            Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
         begin
            while Present (Prot_Ext_Formal) loop
               pragma Assert (Present (Impl_Ext_Formal));
               Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
               Next_Formal_With_Extras (Prot_Ext_Formal);
               Next_Formal_With_Extras (Impl_Ext_Formal);
            end loop;
         end;
      end if;

      --  Now we can go on to analyze the body

      HSS := Handled_Statement_Sequence (N);
      Set_Actual_Subtypes (N, Current_Scope);

      --  Deal with preconditions and postconditions. In formal verification
      --  mode, we keep pre- and postconditions attached to entities rather
      --  than inserted in the code, in order to facilitate a distinct
      --  treatment for them.

      if not SPARK_Mode then
         Process_PPCs (N, Spec_Id, Body_Id);
      end if;

      --  Add a declaration for the Protection object, renaming declarations
      --  for discriminals and privals and finally a declaration for the entry
      --  family index (if applicable). This form of early expansion is done
      --  when the Expander is active because Install_Private_Data_Declarations
      --  references entities which were created during regular expansion. The
      --  body may be the rewritting of an expression function, and we need to
      --  verify that the original node is in the source.

      if Full_Expander_Active
        and then Comes_From_Source (Original_Node (N))
        and then Present (Prot_Typ)
        and then Present (Spec_Id)
        and then not Is_Eliminated (Spec_Id)
      then
         Install_Private_Data_Declarations
           (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
      end if;

      --  Ada 2012 (AI05-0151): Incomplete types coming from a limited context
      --  may now appear in parameter and result profiles. Since the analysis
      --  of a subprogram body may use the parameter and result profile of the
      --  spec, swap any limited views with their non-limited counterpart.

      if Ada_Version >= Ada_2012 then
         Exchange_Limited_Views (Spec_Id);
      end if;

      --  Analyze the declarations (this call will analyze the precondition
      --  Check pragmas we prepended to the list, as well as the declaration
      --  of the _Postconditions procedure).

      Analyze_Declarations (Declarations (N));

      --  Check completion, and analyze the statements

      Check_Completion;
      Inspect_Deferred_Constant_Completion (Declarations (N));
      Analyze (HSS);

      --  Deal with end of scope processing for the body

      Process_End_Label (HSS, 't', Current_Scope);
      End_Scope;
      Check_Subprogram_Order (N);
      Set_Analyzed (Body_Id);

      --  If we have a separate spec, then the analysis of the declarations
      --  caused the entities in the body to be chained to the spec id, but
      --  we want them chained to the body id. Only the formal parameters
      --  end up chained to the spec id in this case.

      if Present (Spec_Id) then

         --  We must conform to the categorization of our spec

         Validate_Categorization_Dependency (N, Spec_Id);

         --  And if this is a child unit, the parent units must conform

         if Is_Child_Unit (Spec_Id) then
            Validate_Categorization_Dependency
              (Unit_Declaration_Node (Spec_Id), Spec_Id);
         end if;

         --  Here is where we move entities from the spec to the body

         --  Case where there are entities that stay with the spec

         if Present (Last_Real_Spec_Entity) then

            --  No body entities (happens when the only real spec entities come
            --  from precondition and postcondition pragmas).

            if No (Last_Entity (Body_Id)) then
               Set_First_Entity
                 (Body_Id, Next_Entity (Last_Real_Spec_Entity));

            --  Body entities present (formals), so chain stuff past them

            else
               Set_Next_Entity
                 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
            end if;

            Set_Next_Entity (Last_Real_Spec_Entity, Empty);
            Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
            Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);

         --  Case where there are no spec entities, in this case there can be
         --  no body entities either, so just move everything.

         else
            pragma Assert (No (Last_Entity (Body_Id)));
            Set_First_Entity (Body_Id, First_Entity (Spec_Id));
            Set_Last_Entity  (Body_Id, Last_Entity (Spec_Id));
            Set_First_Entity (Spec_Id, Empty);
            Set_Last_Entity  (Spec_Id, Empty);
         end if;
      end if;

      Check_Missing_Return;

      --  Now we are going to check for variables that are never modified in
      --  the body of the procedure. But first we deal with a special case
      --  where we want to modify this check. If the body of the subprogram
      --  starts with a raise statement or its equivalent, or if the body
      --  consists entirely of a null statement, then it is pretty obvious
      --  that it is OK to not reference the parameters. For example, this
      --  might be the following common idiom for a stubbed function:
      --  statement of the procedure raises an exception. In particular this
      --  deals with the common idiom of a stubbed function, which might
      --  appear as something like:

      --     function F (A : Integer) return Some_Type;
      --        X : Some_Type;
      --     begin
      --        raise Program_Error;
      --        return X;
      --     end F;

      --  Here the purpose of X is simply to satisfy the annoying requirement
      --  in Ada that there be at least one return, and we certainly do not
      --  want to go posting warnings on X that it is not initialized! On
      --  the other hand, if X is entirely unreferenced that should still
      --  get a warning.

      --  What we do is to detect these cases, and if we find them, flag the
      --  subprogram as being Is_Trivial_Subprogram and then use that flag to
      --  suppress unwanted warnings. For the case of the function stub above
      --  we have a special test to set X as apparently assigned to suppress
      --  the warning.

      declare
         Stm : Node_Id;

      begin
         --  Skip initial labels (for one thing this occurs when we are in
         --  front end ZCX mode, but in any case it is irrelevant), and also
         --  initial Push_xxx_Error_Label nodes, which are also irrelevant.

         Stm := First (Statements (HSS));
         while Nkind (Stm) = N_Label
           or else Nkind (Stm) in N_Push_xxx_Label
         loop
            Next (Stm);
         end loop;

         --  Do the test on the original statement before expansion

         declare
            Ostm : constant Node_Id := Original_Node (Stm);

         begin
            --  If explicit raise statement, turn on flag

            if Nkind (Ostm) = N_Raise_Statement then
               Set_Trivial_Subprogram (Stm);

            --  If null statement, and no following statements, turn on flag

            elsif Nkind (Stm) = N_Null_Statement
              and then Comes_From_Source (Stm)
              and then No (Next (Stm))
            then
               Set_Trivial_Subprogram (Stm);

            --  Check for explicit call cases which likely raise an exception

            elsif Nkind (Ostm) = N_Procedure_Call_Statement then
               if Is_Entity_Name (Name (Ostm)) then
                  declare
                     Ent : constant Entity_Id := Entity (Name (Ostm));

                  begin
                     --  If the procedure is marked No_Return, then likely it
                     --  raises an exception, but in any case it is not coming
                     --  back here, so turn on the flag.

                     if Present (Ent)
                       and then Ekind (Ent) = E_Procedure
                       and then No_Return (Ent)
                     then
                        Set_Trivial_Subprogram (Stm);
                     end if;
                  end;
               end if;
            end if;
         end;
      end;

      --  Check for variables that are never modified

      declare
         E1, E2 : Entity_Id;

      begin
         --  If there is a separate spec, then transfer Never_Set_In_Source
         --  flags from out parameters to the corresponding entities in the
         --  body. The reason we do that is we want to post error flags on
         --  the body entities, not the spec entities.

         if Present (Spec_Id) then
            E1 := First_Entity (Spec_Id);
            while Present (E1) loop
               if Ekind (E1) = E_Out_Parameter then
                  E2 := First_Entity (Body_Id);
                  while Present (E2) loop
                     exit when Chars (E1) = Chars (E2);
                     Next_Entity (E2);
                  end loop;

                  if Present (E2) then
                     Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
                  end if;
               end if;

               Next_Entity (E1);
            end loop;
         end if;

         --  Check references in body

         Check_References (Body_Id);
      end;
   end Analyze_Subprogram_Body_Helper;

   ---------------------------------
   -- Analyze_Subprogram_Contract --
   ---------------------------------

   procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
      Result_Seen : Boolean := False;
      --  A flag which keeps track of whether at least one postcondition or
      --  contract-case mentions attribute 'Result (set True if so).

      procedure Check_Result_And_Post_State
        (Prag      : Node_Id;
         Error_Nod : in out Node_Id);
      --  Determine whether pragma Prag mentions attribute 'Result and whether
      --  the pragma contains an expression that evaluates differently in pre-
      --  and post-state. Prag is a postcondition or a contract-cases pragma.
      --  Error_Nod denotes the proper error node.

      ---------------------------------
      -- Check_Result_And_Post_State --
      ---------------------------------

      procedure Check_Result_And_Post_State
        (Prag      : Node_Id;
         Error_Nod : in out Node_Id)
      is
         procedure Check_Expression (Expr : Node_Id);
         --  Perform the 'Result and post-state checks on a given expression

         function Is_Function_Result (N : Node_Id) return Traverse_Result;
         --  Attempt to find attribute 'Result in a subtree denoted by N

         function Is_Trivial_Boolean (N : Node_Id) return Boolean;
         --  Determine whether source node N denotes "True" or "False"

         function Mentions_Post_State (N : Node_Id) return Boolean;
         --  Determine whether a subtree denoted by N mentions any construct
         --  that denotes a post-state.

         procedure Check_Function_Result is
           new Traverse_Proc (Is_Function_Result);

         ----------------------
         -- Check_Expression --
         ----------------------

         procedure Check_Expression (Expr : Node_Id) is
         begin
            if not Is_Trivial_Boolean (Expr) then
               Check_Function_Result (Expr);

               if not Mentions_Post_State (Expr) then
                  if Pragma_Name (Prag) = Name_Contract_Cases then
                     Error_Msg_N
                       ("contract case refers only to pre-state?T?", Expr);
                  else
                     Error_Msg_N
                       ("postcondition refers only to pre-state?T?", Prag);
                  end if;
               end if;
            end if;
         end Check_Expression;

         ------------------------
         -- Is_Function_Result --
         ------------------------

         function Is_Function_Result (N : Node_Id) return Traverse_Result is
         begin
            if Nkind (N) = N_Attribute_Reference
              and then Attribute_Name (N) = Name_Result
            then
               Result_Seen := True;
               return Abandon;

            --  Continue the traversal

            else
               return OK;
            end if;
         end Is_Function_Result;

         ------------------------
         -- Is_Trivial_Boolean --
         ------------------------

         function Is_Trivial_Boolean (N : Node_Id) return Boolean is
         begin
            return
              Comes_From_Source (N)
                and then Is_Entity_Name (N)
                and then (Entity (N) = Standard_True
                            or else Entity (N) = Standard_False);
         end Is_Trivial_Boolean;

         -------------------------
         -- Mentions_Post_State --
         -------------------------

         function Mentions_Post_State (N : Node_Id) return Boolean is
            Post_State_Seen : Boolean := False;

            function Is_Post_State (N : Node_Id) return Traverse_Result;
            --  Attempt to find a construct that denotes a post-state. If this
            --  is the case, set flag Post_State_Seen.

            -------------------
            -- Is_Post_State --
            -------------------

            function Is_Post_State (N : Node_Id) return Traverse_Result is
               Ent : Entity_Id;

            begin
               if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
                  Post_State_Seen := True;
                  return Abandon;

               elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
                  Ent := Entity (N);

                  if No (Ent) or else Ekind (Ent) in Assignable_Kind then
                     Post_State_Seen := True;
                     return Abandon;
                  end if;

               elsif Nkind (N) = N_Attribute_Reference then
                  if Attribute_Name (N) = Name_Old then
                     return Skip;
                  elsif Attribute_Name (N) = Name_Result then
                     Post_State_Seen := True;
                     return Abandon;
                  end if;
               end if;

               return OK;
            end Is_Post_State;

            procedure Find_Post_State is new Traverse_Proc (Is_Post_State);

         --  Start of processing for Mentions_Post_State

         begin
            Find_Post_State (N);
            return Post_State_Seen;
         end Mentions_Post_State;

         --  Local variables

         Expr  : constant Node_Id :=
                   Expression (First (Pragma_Argument_Associations (Prag)));
         Nam   : constant Name_Id := Pragma_Name (Prag);
         CCase : Node_Id;

      --  Start of processing for Check_Result_And_Post_State

      begin
         if No (Error_Nod) then
            Error_Nod := Prag;
         end if;

         --  Examine all consequences

         if Nam = Name_Contract_Cases then
            CCase := First (Component_Associations (Expr));
            while Present (CCase) loop
               Check_Expression (Expression (CCase));

               Next (CCase);
            end loop;

         --  Examine the expression of a postcondition

         else
            pragma Assert (Nam = Name_Postcondition);
            Check_Expression (Expr);
         end if;
      end Check_Result_And_Post_State;

      --  Local variables

      Items       : constant Node_Id := Contract (Subp);
      Error_CCase : Node_Id;
      Error_Post  : Node_Id;
      Prag        : Node_Id;

   --  Start of processing for Analyze_Subprogram_Contract

   begin
      Error_CCase := Empty;
      Error_Post  := Empty;

      if Present (Items) then

         --  Analyze pre- and postconditions

         Prag := Pre_Post_Conditions (Items);
         while Present (Prag) loop
            Analyze_PPC_In_Decl_Part (Prag, Subp);

            --  Verify whether a postcondition mentions attribute 'Result and
            --  its expression introduces a post-state.

            if Warn_On_Suspicious_Contract
              and then Pragma_Name (Prag) = Name_Postcondition
            then
               Check_Result_And_Post_State (Prag, Error_Post);
            end if;

            Prag := Next_Pragma (Prag);
         end loop;

         --  Analyze contract-cases and test-cases

         Prag := Contract_Test_Cases (Items);
         while Present (Prag) loop
            if Pragma_Name (Prag) = Name_Contract_Cases then
               Analyze_Contract_Cases_In_Decl_Part (Prag);

               --  Verify whether contract-cases mention attribute 'Result and
               --  its expression introduces a post-state. Perform the check
               --  only when the pragma is legal.

               if Warn_On_Suspicious_Contract
                 and then not Error_Posted (Prag)
               then
                  Check_Result_And_Post_State (Prag, Error_CCase);
               end if;

            else
               pragma Assert (Pragma_Name (Prag) = Name_Test_Case);
               Analyze_Test_Case_In_Decl_Part (Prag, Subp);
            end if;

            Prag := Next_Pragma (Prag);
         end loop;

         --  Analyze classification pragmas

         Prag := Classifications (Contract (Subp));
         while Present (Prag) loop
            if Pragma_Name (Prag) = Name_Depends then
               Analyze_Depends_In_Decl_Part (Prag);
            else
               pragma Assert (Pragma_Name (Prag) = Name_Global);
               Analyze_Global_In_Decl_Part (Prag);
            end if;

            Prag := Next_Pragma (Prag);
         end loop;
      end if;

      --  Emit an error when none of the postconditions or contract-cases
      --  mention attribute 'Result in the context of a function.

      if Warn_On_Suspicious_Contract
        and then Ekind_In (Subp, E_Function, E_Generic_Function)
        and then not Result_Seen
      then
         if Present (Error_Post) and then Present (Error_CCase) then
            Error_Msg_N
              ("neither function postcondition nor contract cases mention "
               & "result?T?", Error_Post);

         elsif Present (Error_Post) then
            Error_Msg_N
              ("function postcondition does not mention result?T?",
               Error_Post);

         elsif Present (Error_CCase) then
            Error_Msg_N
              ("contract cases do not mention result?T?", Error_CCase);
         end if;
      end if;
   end Analyze_Subprogram_Contract;

   ------------------------------------
   -- Analyze_Subprogram_Declaration --
   ------------------------------------

   procedure Analyze_Subprogram_Declaration (N : Node_Id) is
      Scop       : constant Entity_Id  := Current_Scope;
      Designator : Entity_Id;
      Is_Completion : Boolean;
      --  Indicates whether a null procedure declaration is a completion

   begin
      --  Null procedures are not allowed in SPARK

      if Nkind (Specification (N)) = N_Procedure_Specification
        and then Null_Present (Specification (N))
      then
         Check_SPARK_Restriction ("null procedure is not allowed", N);

         if Is_Protected_Type (Current_Scope) then
            Error_Msg_N ("protected operation cannot be a null procedure", N);
         end if;

         Analyze_Null_Procedure (N, Is_Completion);

         if Is_Completion then

            --  The null procedure acts as a body, nothing further is needed.

            return;
         end if;
      end if;

      Designator := Analyze_Subprogram_Specification (Specification (N));

      --  A reference may already have been generated for the unit name, in
      --  which case the following call is redundant. However it is needed for
      --  declarations that are the rewriting of an expression function.

      Generate_Definition (Designator);

      if Debug_Flag_C then
         Write_Str ("==> subprogram spec ");
         Write_Name (Chars (Designator));
         Write_Str (" from ");
         Write_Location (Sloc (N));
         Write_Eol;
         Indent;
      end if;

      Validate_RCI_Subprogram_Declaration (N);
      New_Overloaded_Entity (Designator);
      Check_Delayed_Subprogram (Designator);

      --  If the type of the first formal of the current subprogram is a
      --  non-generic tagged private type, mark the subprogram as being a
      --  private primitive. Ditto if this is a function with controlling
      --  result, and the return type is currently private. In both cases,
      --  the type of the controlling argument or result must be in the
      --  current scope for the operation to be primitive.

      if Has_Controlling_Result (Designator)
        and then Is_Private_Type (Etype (Designator))
        and then Scope (Etype (Designator)) = Current_Scope
        and then not Is_Generic_Actual_Type (Etype (Designator))
      then
         Set_Is_Private_Primitive (Designator);

      elsif Present (First_Formal (Designator)) then
         declare
            Formal_Typ : constant Entity_Id :=
                           Etype (First_Formal (Designator));
         begin
            Set_Is_Private_Primitive (Designator,
              Is_Tagged_Type (Formal_Typ)
                and then Scope (Formal_Typ) = Current_Scope
                and then Is_Private_Type (Formal_Typ)
                and then not Is_Generic_Actual_Type (Formal_Typ));
         end;
      end if;

      --  Ada 2005 (AI-251): Abstract interface primitives must be abstract
      --  or null.

      if Ada_Version >= Ada_2005
        and then Comes_From_Source (N)
        and then Is_Dispatching_Operation (Designator)
      then
         declare
            E    : Entity_Id;
            Etyp : Entity_Id;

         begin
            if Has_Controlling_Result (Designator) then
               Etyp := Etype (Designator);

            else
               E := First_Entity (Designator);
               while Present (E)
                 and then Is_Formal (E)
                 and then not Is_Controlling_Formal (E)
               loop
                  Next_Entity (E);
               end loop;

               Etyp := Etype (E);
            end if;

            if Is_Access_Type (Etyp) then
               Etyp := Directly_Designated_Type (Etyp);
            end if;

            if Is_Interface (Etyp)
              and then not Is_Abstract_Subprogram (Designator)
              and then not (Ekind (Designator) = E_Procedure
                             and then Null_Present (Specification (N)))
            then
               Error_Msg_Name_1 := Chars (Defining_Entity (N));

               --  Specialize error message based on procedures vs. functions,
               --  since functions can't be null subprograms.

               if Ekind (Designator) = E_Procedure then
                  Error_Msg_N
                    ("interface procedure % must be abstract or null", N);
               else
                  Error_Msg_N ("interface function % must be abstract", N);
               end if;
            end if;
         end;
      end if;

      --  What is the following code for, it used to be

      --  ???   Set_Suppress_Elaboration_Checks
      --  ???     (Designator, Elaboration_Checks_Suppressed (Designator));

      --  The following seems equivalent, but a bit dubious

      if Elaboration_Checks_Suppressed (Designator) then
         Set_Kill_Elaboration_Checks (Designator);
      end if;

      if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
         Set_Categorization_From_Scope (Designator, Scop);

      else
         --  For a compilation unit, check for library-unit pragmas

         Push_Scope (Designator);
         Set_Categorization_From_Pragmas (N);
         Validate_Categorization_Dependency (N, Designator);
         Pop_Scope;
      end if;

      --  For a compilation unit, set body required. This flag will only be
      --  reset if a valid Import or Interface pragma is processed later on.

      if Nkind (Parent (N)) = N_Compilation_Unit then
         Set_Body_Required (Parent (N), True);

         if Ada_Version >= Ada_2005
           and then Nkind (Specification (N)) = N_Procedure_Specification
           and then Null_Present (Specification (N))
         then
            Error_Msg_N
              ("null procedure cannot be declared at library level", N);
         end if;
      end if;

      Generate_Reference_To_Formals (Designator);
      Check_Eliminated (Designator);

      if Debug_Flag_C then
         Outdent;
         Write_Str ("<== subprogram spec ");
         Write_Name (Chars (Designator));
         Write_Str (" from ");
         Write_Location (Sloc (N));
         Write_Eol;
      end if;

      if Is_Protected_Type (Current_Scope) then

         --  Indicate that this is a protected operation, because it may be
         --  used in subsequent declarations within the protected type.

         Set_Convention (Designator, Convention_Protected);
      end if;

      List_Inherited_Pre_Post_Aspects (Designator);

      if Has_Aspects (N) then
         Analyze_Aspect_Specifications (N, Designator);
      end if;
   end Analyze_Subprogram_Declaration;

   --------------------------------------
   -- Analyze_Subprogram_Specification --
   --------------------------------------

   --  Reminder: N here really is a subprogram specification (not a subprogram
   --  declaration). This procedure is called to analyze the specification in
   --  both subprogram bodies and subprogram declarations (specs).

   function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
      Designator : constant Entity_Id := Defining_Entity (N);
      Formals    : constant List_Id   := Parameter_Specifications (N);

   --  Start of processing for Analyze_Subprogram_Specification

   begin
      --  User-defined operator is not allowed in SPARK, except as a renaming

      if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
        and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
      then
         Check_SPARK_Restriction ("user-defined operator is not allowed", N);
      end if;

      --  Proceed with analysis. Do not emit a cross-reference entry if the
      --  specification comes from an expression function, because it may be
      --  the completion of a previous declaration. It is is not, the cross-
      --  reference entry will be emitted for the new subprogram declaration.

      if Nkind (Parent (N)) /= N_Expression_Function then
         Generate_Definition (Designator);
      end if;

      Set_Contract (Designator, Make_Contract (Sloc (Designator)));

      if Nkind (N) = N_Function_Specification then
         Set_Ekind (Designator, E_Function);
         Set_Mechanism (Designator, Default_Mechanism);
      else
         Set_Ekind (Designator, E_Procedure);
         Set_Etype (Designator, Standard_Void_Type);
      end if;

      --  Introduce new scope for analysis of the formals and the return type

      Set_Scope (Designator, Current_Scope);

      if Present (Formals) then
         Push_Scope (Designator);
         Process_Formals (Formals, N);

         --  Check dimensions in N for formals with default expression

         Analyze_Dimension_Formals (N, Formals);

         --  Ada 2005 (AI-345): If this is an overriding operation of an
         --  inherited interface operation, and the controlling type is
         --  a synchronized type, replace the type with its corresponding
         --  record, to match the proper signature of an overriding operation.
         --  Same processing for an access parameter whose designated type is
         --  derived from a synchronized interface.

         if Ada_Version >= Ada_2005 then
            declare
               Formal     : Entity_Id;
               Formal_Typ : Entity_Id;
               Rec_Typ    : Entity_Id;
               Desig_Typ  : Entity_Id;

            begin
               Formal := First_Formal (Designator);
               while Present (Formal) loop
                  Formal_Typ := Etype (Formal);

                  if Is_Concurrent_Type (Formal_Typ)
                    and then Present (Corresponding_Record_Type (Formal_Typ))
                  then
                     Rec_Typ := Corresponding_Record_Type (Formal_Typ);

                     if Present (Interfaces (Rec_Typ)) then
                        Set_Etype (Formal, Rec_Typ);
                     end if;

                  elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
                     Desig_Typ := Designated_Type (Formal_Typ);

                     if Is_Concurrent_Type (Desig_Typ)
                       and then Present (Corresponding_Record_Type (Desig_Typ))
                     then
                        Rec_Typ := Corresponding_Record_Type (Desig_Typ);

                        if Present (Interfaces (Rec_Typ)) then
                           Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
                        end if;
                     end if;
                  end if;

                  Next_Formal (Formal);
               end loop;
            end;
         end if;

         End_Scope;

      --  The subprogram scope is pushed and popped around the processing of
      --  the return type for consistency with call above to Process_Formals
      --  (which itself can call Analyze_Return_Type), and to ensure that any
      --  itype created for the return type will be associated with the proper
      --  scope.

      elsif Nkind (N) = N_Function_Specification then
         Push_Scope (Designator);
         Analyze_Return_Type (N);
         End_Scope;
      end if;

      --  Function case

      if Nkind (N) = N_Function_Specification then

         --  Deal with operator symbol case

         if Nkind (Designator) = N_Defining_Operator_Symbol then
            Valid_Operator_Definition (Designator);
         end if;

         May_Need_Actuals (Designator);

         --  Ada 2005 (AI-251): If the return type is abstract, verify that
         --  the subprogram is abstract also. This does not apply to renaming
         --  declarations, where abstractness is inherited, and to subprogram
         --  bodies generated for stream operations, which become renamings as
         --  bodies.

         --  In case of primitives associated with abstract interface types
         --  the check is applied later (see Analyze_Subprogram_Declaration).

         if not Nkind_In (Original_Node (Parent (N)),
                            N_Subprogram_Renaming_Declaration,
                            N_Abstract_Subprogram_Declaration,
                            N_Formal_Abstract_Subprogram_Declaration)
         then
            if Is_Abstract_Type (Etype (Designator))
              and then not Is_Interface (Etype (Designator))
            then
               Error_Msg_N
                 ("function that returns abstract type must be abstract", N);

            --  Ada 2012 (AI-0073): Extend this test to subprograms with an
            --  access result whose designated type is abstract.

            elsif Nkind (Result_Definition (N)) = N_Access_Definition
              and then
                not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
              and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
              and then Ada_Version >= Ada_2012
            then
               Error_Msg_N ("function whose access result designates "
                 & "abstract type must be abstract", N);
            end if;
         end if;
      end if;

      return Designator;
   end Analyze_Subprogram_Specification;

   --------------------------
   -- Build_Body_To_Inline --
   --------------------------

   procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
      Decl            : constant Node_Id := Unit_Declaration_Node (Subp);
      Original_Body   : Node_Id;
      Body_To_Analyze : Node_Id;
      Max_Size        : constant := 10;
      Stat_Count      : Integer := 0;

      function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
      --  Check for declarations that make inlining not worthwhile

      function Has_Excluded_Statement   (Stats : List_Id) return Boolean;
      --  Check for statements that make inlining not worthwhile: any tasking
      --  statement, nested at any level. Keep track of total number of
      --  elementary statements, as a measure of acceptable size.

      function Has_Pending_Instantiation return Boolean;
      --  If some enclosing body contains instantiations that appear before the
      --  corresponding generic body, the enclosing body has a freeze node so
      --  that it can be elaborated after the generic itself. This might
      --  conflict with subsequent inlinings, so that it is unsafe to try to
      --  inline in such a case.

      function Has_Single_Return return Boolean;
      --  In general we cannot inline functions that return unconstrained type.
      --  However, we can handle such functions if all return statements return
      --  a local variable that is the only declaration in the body of the
      --  function. In that case the call can be replaced by that local
      --  variable as is done for other inlined calls.

      procedure Remove_Pragmas;
      --  A pragma Unreferenced or pragma Unmodified that mentions a formal
      --  parameter has no meaning when the body is inlined and the formals
      --  are rewritten. Remove it from body to inline. The analysis of the
      --  non-inlined body will handle the pragma properly.

      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
      --  If the body of the subprogram includes a call that returns an
      --  unconstrained type, the secondary stack is involved, and it
      --  is not worth inlining.

      ------------------------------
      -- Has_Excluded_Declaration --
      ------------------------------

      function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
         D : Node_Id;

         function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
         --  Nested subprograms make a given body ineligible for inlining, but
         --  we make an exception for instantiations of unchecked conversion.
         --  The body has not been analyzed yet, so check the name, and verify
         --  that the visible entity with that name is the predefined unit.

         -----------------------------
         -- Is_Unchecked_Conversion --
         -----------------------------

         function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
            Id   : constant Node_Id := Name (D);
            Conv : Entity_Id;

         begin
            if Nkind (Id) = N_Identifier
              and then Chars (Id) = Name_Unchecked_Conversion
            then
               Conv := Current_Entity (Id);

            elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
              and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
            then
               Conv := Current_Entity (Selector_Name (Id));
            else
               return False;
            end if;

            return Present (Conv)
              and then Is_Predefined_File_Name
                         (Unit_File_Name (Get_Source_Unit (Conv)))
              and then Is_Intrinsic_Subprogram (Conv);
         end Is_Unchecked_Conversion;

      --  Start of processing for Has_Excluded_Declaration

      begin
         D := First (Decls);
         while Present (D) loop
            if (Nkind (D) = N_Function_Instantiation
                  and then not Is_Unchecked_Conversion (D))
              or else Nkind_In (D, N_Protected_Type_Declaration,
                                   N_Package_Declaration,
                                   N_Package_Instantiation,
                                   N_Subprogram_Body,
                                   N_Procedure_Instantiation,
                                   N_Task_Type_Declaration)
            then
               Cannot_Inline
                 ("cannot inline & (non-allowed declaration)?", D, Subp);
               return True;
            end if;

            Next (D);
         end loop;

         return False;
      end Has_Excluded_Declaration;

      ----------------------------
      -- Has_Excluded_Statement --
      ----------------------------

      function Has_Excluded_Statement (Stats : List_Id) return Boolean is
         S : Node_Id;
         E : Node_Id;

      begin
         S := First (Stats);
         while Present (S) loop
            Stat_Count := Stat_Count + 1;

            if Nkind_In (S, N_Abort_Statement,
                            N_Asynchronous_Select,
                            N_Conditional_Entry_Call,
                            N_Delay_Relative_Statement,
                            N_Delay_Until_Statement,
                            N_Selective_Accept,
                            N_Timed_Entry_Call)
            then
               Cannot_Inline
                 ("cannot inline & (non-allowed statement)?", S, Subp);
               return True;

            elsif Nkind (S) = N_Block_Statement then
               if Present (Declarations (S))
                 and then Has_Excluded_Declaration (Declarations (S))
               then
                  return True;

               elsif Present (Handled_Statement_Sequence (S))
                  and then
                    (Present
                      (Exception_Handlers (Handled_Statement_Sequence (S)))
                     or else
                       Has_Excluded_Statement
                         (Statements (Handled_Statement_Sequence (S))))
               then
                  return True;
               end if;

            elsif Nkind (S) = N_Case_Statement then
               E := First (Alternatives (S));
               while Present (E) loop
                  if Has_Excluded_Statement (Statements (E)) then
                     return True;
                  end if;

                  Next (E);
               end loop;

            elsif Nkind (S) = N_If_Statement then
               if Has_Excluded_Statement (Then_Statements (S)) then
                  return True;
               end if;

               if Present (Elsif_Parts (S)) then
                  E := First (Elsif_Parts (S));
                  while Present (E) loop
                     if Has_Excluded_Statement (Then_Statements (E)) then
                        return True;
                     end if;

                     Next (E);
                  end loop;
               end if;

               if Present (Else_Statements (S))
                 and then Has_Excluded_Statement (Else_Statements (S))
               then
                  return True;
               end if;

            elsif Nkind (S) = N_Loop_Statement
              and then Has_Excluded_Statement (Statements (S))
            then
               return True;

            elsif Nkind (S) = N_Extended_Return_Statement then
               if Has_Excluded_Statement
                  (Statements (Handled_Statement_Sequence (S)))
                 or else Present
                   (Exception_Handlers (Handled_Statement_Sequence (S)))
               then
                  return True;
               end if;
            end if;

            Next (S);
         end loop;

         return False;
      end Has_Excluded_Statement;

      -------------------------------
      -- Has_Pending_Instantiation --
      -------------------------------

      function Has_Pending_Instantiation return Boolean is
         S : Entity_Id;

      begin
         S := Current_Scope;
         while Present (S) loop
            if Is_Compilation_Unit (S)
              or else Is_Child_Unit (S)
            then
               return False;

            elsif Ekind (S) = E_Package
              and then Has_Forward_Instantiation (S)
            then
               return True;
            end if;

            S := Scope (S);
         end loop;

         return False;
      end Has_Pending_Instantiation;

      ------------------------
      --  Has_Single_Return --
      ------------------------

      function Has_Single_Return return Boolean is
         Return_Statement : Node_Id := Empty;

         function Check_Return (N : Node_Id) return Traverse_Result;

         ------------------
         -- Check_Return --
         ------------------

         function Check_Return (N : Node_Id) return Traverse_Result is
         begin
            if Nkind (N) = N_Simple_Return_Statement then
               if Present (Expression (N))
                 and then Is_Entity_Name (Expression (N))
               then
                  if No (Return_Statement) then
                     Return_Statement := N;
                     return OK;

                  elsif Chars (Expression (N)) =
                        Chars (Expression (Return_Statement))
                  then
                     return OK;

                  else
                     return Abandon;
                  end if;

               --  A return statement within an extended return is a noop
               --  after inlining.

               elsif No (Expression (N))
                 and then Nkind (Parent (Parent (N))) =
                                         N_Extended_Return_Statement
               then
                  return OK;

               else
                  --  Expression has wrong form

                  return Abandon;
               end if;

            --  We can only inline a build-in-place function if
            --  it has a single extended return.

            elsif Nkind (N) = N_Extended_Return_Statement then
               if No (Return_Statement) then
                  Return_Statement := N;
                  return OK;

               else
                  return Abandon;
               end if;

            else
               return OK;
            end if;
         end Check_Return;

         function Check_All_Returns is new Traverse_Func (Check_Return);

      --  Start of processing for Has_Single_Return

      begin
         if Check_All_Returns (N) /= OK then
            return False;

         elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
            return True;

         else
            return Present (Declarations (N))
              and then Present (First (Declarations (N)))
              and then Chars (Expression (Return_Statement)) =
                       Chars (Defining_Identifier (First (Declarations (N))));
         end if;
      end Has_Single_Return;

      --------------------
      -- Remove_Pragmas --
      --------------------

      procedure Remove_Pragmas is
         Decl : Node_Id;
         Nxt  : Node_Id;

      begin
         Decl := First (Declarations (Body_To_Analyze));
         while Present (Decl) loop
            Nxt := Next (Decl);

            if Nkind (Decl) = N_Pragma
              and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
                                                   Name_Unmodified)
            then
               Remove (Decl);
            end if;

            Decl := Nxt;
         end loop;
      end Remove_Pragmas;

      --------------------------
      -- Uses_Secondary_Stack --
      --------------------------

      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
         function Check_Call (N : Node_Id) return Traverse_Result;
         --  Look for function calls that return an unconstrained type

         ----------------
         -- Check_Call --
         ----------------

         function Check_Call (N : Node_Id) return Traverse_Result is
         begin
            if Nkind (N) = N_Function_Call
              and then Is_Entity_Name (Name (N))
              and then Is_Composite_Type (Etype (Entity (Name (N))))
              and then not Is_Constrained (Etype (Entity (Name (N))))
            then
               Cannot_Inline
                 ("cannot inline & (call returns unconstrained type)?",
                  N, Subp);
               return Abandon;
            else
               return OK;
            end if;
         end Check_Call;

         function Check_Calls is new Traverse_Func (Check_Call);

      begin
         return Check_Calls (Bod) = Abandon;
      end Uses_Secondary_Stack;

   --  Start of processing for Build_Body_To_Inline

   begin
      --  Return immediately if done already

      if Nkind (Decl) = N_Subprogram_Declaration
        and then Present (Body_To_Inline (Decl))
      then
         return;

      --  Functions that return unconstrained composite types require
      --  secondary stack handling, and cannot currently be inlined, unless
      --  all return statements return a local variable that is the first
      --  local declaration in the body.

      elsif Ekind (Subp) = E_Function
        and then not Is_Scalar_Type (Etype (Subp))
        and then not Is_Access_Type (Etype (Subp))
        and then not Is_Constrained (Etype (Subp))
      then
         if not Has_Single_Return then
            Cannot_Inline
              ("cannot inline & (unconstrained return type)?", N, Subp);
            return;
         end if;

      --  Ditto for functions that return controlled types, where controlled
      --  actions interfere in complex ways with inlining.

      elsif Ekind (Subp) = E_Function
        and then Needs_Finalization (Etype (Subp))
      then
         Cannot_Inline
           ("cannot inline & (controlled return type)?", N, Subp);
         return;
      end if;

      if Present (Declarations (N))
        and then Has_Excluded_Declaration (Declarations (N))
      then
         return;
      end if;

      if Present (Handled_Statement_Sequence (N)) then
         if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
            Cannot_Inline
              ("cannot inline& (exception handler)?",
               First (Exception_Handlers (Handled_Statement_Sequence (N))),
               Subp);
            return;
         elsif
           Has_Excluded_Statement
             (Statements (Handled_Statement_Sequence (N)))
         then
            return;
         end if;
      end if;

      --  We do not inline a subprogram  that is too large, unless it is
      --  marked Inline_Always. This pragma does not suppress the other
      --  checks on inlining (forbidden declarations, handlers, etc).

      if Stat_Count > Max_Size
        and then not Has_Pragma_Inline_Always (Subp)
      then
         Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
         return;
      end if;

      if Has_Pending_Instantiation then
         Cannot_Inline
           ("cannot inline& (forward instance within enclosing body)?",
             N, Subp);
         return;
      end if;

      --  Within an instance, the body to inline must be treated as a nested
      --  generic, so that the proper global references are preserved.

      --  Note that we do not do this at the library level, because it is not
      --  needed, and furthermore this causes trouble if front end inlining
      --  is activated (-gnatN).

      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
         Save_Env (Scope (Current_Scope), Scope (Current_Scope));
         Original_Body := Copy_Generic_Node (N, Empty, True);
      else
         Original_Body := Copy_Separate_Tree (N);
      end if;

      --  We need to capture references to the formals in order to substitute
      --  the actuals at the point of inlining, i.e. instantiation. To treat
      --  the formals as globals to the body to inline, we nest it within
      --  a dummy parameterless subprogram, declared within the real one.
      --  To avoid generating an internal name (which is never public, and
      --  which affects serial numbers of other generated names), we use
      --  an internal symbol that cannot conflict with user declarations.

      Set_Parameter_Specifications (Specification (Original_Body), No_List);
      Set_Defining_Unit_Name
        (Specification (Original_Body),
          Make_Defining_Identifier (Sloc (N), Name_uParent));
      Set_Corresponding_Spec (Original_Body, Empty);

      Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);

      --  Set return type of function, which is also global and does not need
      --  to be resolved.

      if Ekind (Subp) = E_Function then
         Set_Result_Definition (Specification (Body_To_Analyze),
           New_Occurrence_Of (Etype (Subp), Sloc (N)));
      end if;

      if No (Declarations (N)) then
         Set_Declarations (N, New_List (Body_To_Analyze));
      else
         Append (Body_To_Analyze, Declarations (N));
      end if;

      Expander_Mode_Save_And_Set (False);
      Remove_Pragmas;

      Analyze (Body_To_Analyze);
      Push_Scope (Defining_Entity (Body_To_Analyze));
      Save_Global_References (Original_Body);
      End_Scope;
      Remove (Body_To_Analyze);

      Expander_Mode_Restore;

      --  Restore environment if previously saved

      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
         Restore_Env;
      end if;

      --  If secondary stk used there is no point in inlining. We have
      --  already issued the warning in this case, so nothing to do.

      if Uses_Secondary_Stack (Body_To_Analyze) then
         return;
      end if;

      Set_Body_To_Inline (Decl, Original_Body);
      Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
      Set_Is_Inlined (Subp);
   end Build_Body_To_Inline;

   -------------------
   -- Cannot_Inline --
   -------------------

   procedure Cannot_Inline
     (Msg        : String;
      N          : Node_Id;
      Subp       : Entity_Id;
      Is_Serious : Boolean := False)
   is
   begin
      pragma Assert (Msg (Msg'Last) = '?');

      --  Old semantics

      if not Debug_Flag_Dot_K then

         --  Do not emit warning if this is a predefined unit which is not
         --  the main unit. With validity checks enabled, some predefined
         --  subprograms may contain nested subprograms and become ineligible
         --  for inlining.

         if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
           and then not In_Extended_Main_Source_Unit (Subp)
         then
            null;

         elsif Has_Pragma_Inline_Always (Subp) then

            --  Remove last character (question mark) to make this into an
            --  error, because the Inline_Always pragma cannot be obeyed.

            Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);

         elsif Ineffective_Inline_Warnings then
            Error_Msg_NE (Msg & "p?", N, Subp);
         end if;

         return;

      --  New semantics

      elsif Is_Serious then

         --  Remove last character (question mark) to make this into an error.

         Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);

      elsif Optimization_Level = 0 then

         --  Do not emit warning if this is a predefined unit which is not
         --  the main unit. This behavior is currently provided for backward
         --  compatibility but it will be removed when we enforce the
         --  strictness of the new rules.

         if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
           and then not In_Extended_Main_Source_Unit (Subp)
         then
            null;

         elsif Has_Pragma_Inline_Always (Subp) then

            --  Emit a warning if this is a call to a runtime subprogram
            --  which is located inside a generic. Previously this call
            --  was silently skipped!

            if Is_Generic_Instance (Subp) then
               declare
                  Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
               begin
                  if Is_Predefined_File_Name
                    (Unit_File_Name (Get_Source_Unit (Gen_P)))
                  then
                     Set_Is_Inlined (Subp, False);
                     Error_Msg_NE (Msg & "p?", N, Subp);
                     return;
                  end if;
               end;
            end if;

            --  Remove last character (question mark) to make this into an
            --  error, because the Inline_Always pragma cannot be obeyed.

            Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);

         else pragma Assert (Front_End_Inlining);
            Set_Is_Inlined (Subp, False);

            --  When inlining cannot take place we must issue an error.
            --  For backward compatibility we still report a warning.

            if Ineffective_Inline_Warnings then
               Error_Msg_NE (Msg & "p?", N, Subp);
            end if;
         end if;

      --  Compiling with optimizations enabled it is too early to report
      --  problems since the backend may still perform inlining. In order
      --  to report unhandled inlinings the program must be compiled with
      --  -Winline and the error is reported by the backend.

      else
         null;
      end if;
   end Cannot_Inline;

   ------------------------------------
   -- Check_And_Build_Body_To_Inline --
   ------------------------------------

   procedure Check_And_Build_Body_To_Inline
     (N       : Node_Id;
      Spec_Id : Entity_Id;
      Body_Id : Entity_Id)
   is
      procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
      --  Use generic machinery to build an unexpanded body for the subprogram.
      --  This body is subsequently used for inline expansions at call sites.

      function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
      --  Return true if we generate code for the function body N, the function
      --  body N has no local declarations and its unique statement is a single
      --  extended return statement with a handled statements sequence.

      function Check_Body_To_Inline
        (N    : Node_Id;
         Subp : Entity_Id) return Boolean;
      --  N is the N_Subprogram_Body of Subp. Return true if Subp can be
      --  inlined by the frontend. These are the rules:
      --    * At -O0 use fe inlining when inline_always is specified except if
      --      the function returns a controlled type.
      --    * At other optimization levels use the fe inlining for both inline
      --      and inline_always in the following cases:
      --       - function returning a known at compile time constant
      --       - function returning a call to an intrinsic function
      --       - function returning an unconstrained type (see Can_Split
      --         Unconstrained_Function).
      --       - function returning a call to a frontend-inlined function
      --      Use the back-end mechanism otherwise
      --
      --  In addition, in the following cases the function cannot be inlined by
      --  the frontend:
      --    - functions that uses the secondary stack
      --    - functions that have declarations of:
      --         - Concurrent types
      --         - Packages
      --         - Instantiations
      --         - Subprograms
      --    - functions that have some of the following statements:
      --         - abort
      --         - asynchronous-select
      --         - conditional-entry-call
      --         - delay-relative
      --         - delay-until
      --         - selective-accept
      --         - timed-entry-call
      --    - functions that have exception handlers
      --    - functions that have some enclosing body containing instantiations
      --      that appear before the corresponding generic body.

      procedure Generate_Body_To_Inline
        (N              : Node_Id;
         Body_To_Inline : out Node_Id);
      --  Generate a parameterless duplicate of subprogram body N. Occurrences
      --  of pragmas referencing the formals are removed since they have no
      --  meaning when the body is inlined and the formals are rewritten (the
      --  analysis of the non-inlined body will handle these pragmas properly).
      --  A new internal name is associated with Body_To_Inline.

      procedure Split_Unconstrained_Function
        (N       : Node_Id;
         Spec_Id : Entity_Id);
      --  N is an inlined function body that returns an unconstrained type and
      --  has a single extended return statement. Split N in two subprograms:
      --  a procedure P' and a function F'. The formals of P' duplicate the
      --  formals of N plus an extra formal which is used return a value;
      --  its body is composed by the declarations and list of statements
      --  of the extended return statement of N.

      --------------------------
      -- Build_Body_To_Inline --
      --------------------------

      procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
         Decl            : constant Node_Id := Unit_Declaration_Node (Spec_Id);
         Original_Body   : Node_Id;
         Body_To_Analyze : Node_Id;

      begin
         pragma Assert (Current_Scope = Spec_Id);

         --  Within an instance, the body to inline must be treated as a nested
         --  generic, so that the proper global references are preserved. We
         --  do not do this at the library level, because it is not needed, and
         --  furthermore this causes trouble if front end inlining is activated
         --  (-gnatN).

         if In_Instance
           and then Scope (Current_Scope) /= Standard_Standard
         then
            Save_Env (Scope (Current_Scope), Scope (Current_Scope));
         end if;

         --  We need to capture references to the formals in order
         --  to substitute the actuals at the point of inlining, i.e.
         --  instantiation. To treat the formals as globals to the body to
         --  inline, we nest it within a dummy parameterless subprogram,
         --  declared within the real one.

         Generate_Body_To_Inline (N, Original_Body);
         Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);

         --  Set return type of function, which is also global and does not
         --  need to be resolved.

         if Ekind (Spec_Id) = E_Function then
            Set_Result_Definition (Specification (Body_To_Analyze),
              New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
         end if;

         if No (Declarations (N)) then
            Set_Declarations (N, New_List (Body_To_Analyze));
         else
            Append_To (Declarations (N), Body_To_Analyze);
         end if;

         Preanalyze (Body_To_Analyze);

         Push_Scope (Defining_Entity (Body_To_Analyze));
         Save_Global_References (Original_Body);
         End_Scope;
         Remove (Body_To_Analyze);

         --  Restore environment if previously saved

         if In_Instance
           and then Scope (Current_Scope) /= Standard_Standard
         then
            Restore_Env;
         end if;

         pragma Assert (No (Body_To_Inline (Decl)));
         Set_Body_To_Inline (Decl, Original_Body);
         Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
      end Build_Body_To_Inline;

      --------------------------
      -- Check_Body_To_Inline --
      --------------------------

      function Check_Body_To_Inline
        (N    : Node_Id;
         Subp : Entity_Id) return Boolean
      is
         Max_Size   : constant := 10;
         Stat_Count : Integer := 0;

         function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
         --  Check for declarations that make inlining not worthwhile

         function Has_Excluded_Statement   (Stats : List_Id) return Boolean;
         --  Check for statements that make inlining not worthwhile: any
         --  tasking statement, nested at any level. Keep track of total
         --  number of elementary statements, as a measure of acceptable size.

         function Has_Pending_Instantiation return Boolean;
         --  Return True if some enclosing body contains instantiations that
         --  appear before the corresponding generic body.

         function Returns_Compile_Time_Constant (N : Node_Id) return Boolean;
         --  Return True if all the return statements of the function body N
         --  are simple return statements and return a compile time constant

         function Returns_Intrinsic_Function_Call (N : Node_Id) return Boolean;
         --  Return True if all the return statements of the function body N
         --  are simple return statements and return an intrinsic function call

         function Uses_Secondary_Stack (N : Node_Id) return Boolean;
         --  If the body of the subprogram includes a call that returns an
         --  unconstrained type, the secondary stack is involved, and it
         --  is not worth inlining.

         ------------------------------
         -- Has_Excluded_Declaration --
         ------------------------------

         function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
            D : Node_Id;

            function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
            --  Nested subprograms make a given body ineligible for inlining,
            --  but we make an exception for instantiations of unchecked
            --  conversion. The body has not been analyzed yet, so check the
            --  name, and verify that the visible entity with that name is the
            --  predefined unit.

            -----------------------------
            -- Is_Unchecked_Conversion --
            -----------------------------

            function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
               Id   : constant Node_Id := Name (D);
               Conv : Entity_Id;

            begin
               if Nkind (Id) = N_Identifier
                 and then Chars (Id) = Name_Unchecked_Conversion
               then
                  Conv := Current_Entity (Id);

               elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
                 and then
                   Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
               then
                  Conv := Current_Entity (Selector_Name (Id));
               else
                  return False;
               end if;

               return Present (Conv)
                 and then Is_Predefined_File_Name
                            (Unit_File_Name (Get_Source_Unit (Conv)))
                 and then Is_Intrinsic_Subprogram (Conv);
            end Is_Unchecked_Conversion;

         --  Start of processing for Has_Excluded_Declaration

         begin
            D := First (Decls);
            while Present (D) loop
               if (Nkind (D) = N_Function_Instantiation
                   and then not Is_Unchecked_Conversion (D))
                 or else Nkind_In (D, N_Protected_Type_Declaration,
                                   N_Package_Declaration,
                                   N_Package_Instantiation,
                                   N_Subprogram_Body,
                                   N_Procedure_Instantiation,
                                   N_Task_Type_Declaration)
               then
                  Cannot_Inline
                    ("cannot inline & (non-allowed declaration)?", D, Subp);

                  return True;
               end if;

               Next (D);
            end loop;

            return False;
         end Has_Excluded_Declaration;

         ----------------------------
         -- Has_Excluded_Statement --
         ----------------------------

         function Has_Excluded_Statement (Stats : List_Id) return Boolean is
            S : Node_Id;
            E : Node_Id;

         begin
            S := First (Stats);
            while Present (S) loop
               Stat_Count := Stat_Count + 1;

               if Nkind_In (S, N_Abort_Statement,
                            N_Asynchronous_Select,
                            N_Conditional_Entry_Call,
                            N_Delay_Relative_Statement,
                            N_Delay_Until_Statement,
                            N_Selective_Accept,
                            N_Timed_Entry_Call)
               then
                  Cannot_Inline
                    ("cannot inline & (non-allowed statement)?", S, Subp);
                  return True;

               elsif Nkind (S) = N_Block_Statement then
                  if Present (Declarations (S))
                    and then Has_Excluded_Declaration (Declarations (S))
                  then
                     return True;

                  elsif Present (Handled_Statement_Sequence (S)) then
                     if Present
                       (Exception_Handlers (Handled_Statement_Sequence (S)))
                     then
                        Cannot_Inline
                          ("cannot inline& (exception handler)?",
                           First (Exception_Handlers
                             (Handled_Statement_Sequence (S))),
                           Subp);
                        return True;

                     elsif Has_Excluded_Statement
                       (Statements (Handled_Statement_Sequence (S)))
                     then
                        return True;
                     end if;
                  end if;

               elsif Nkind (S) = N_Case_Statement then
                  E := First (Alternatives (S));
                  while Present (E) loop
                     if Has_Excluded_Statement (Statements (E)) then
                        return True;
                     end if;

                     Next (E);
                  end loop;

               elsif Nkind (S) = N_If_Statement then
                  if Has_Excluded_Statement (Then_Statements (S)) then
                     return True;
                  end if;

                  if Present (Elsif_Parts (S)) then
                     E := First (Elsif_Parts (S));
                     while Present (E) loop
                        if Has_Excluded_Statement (Then_Statements (E)) then
                           return True;
                        end if;
                        Next (E);
                     end loop;
                  end if;

                  if Present (Else_Statements (S))
                    and then Has_Excluded_Statement (Else_Statements (S))
                  then
                     return True;
                  end if;

               elsif Nkind (S) = N_Loop_Statement
                 and then Has_Excluded_Statement (Statements (S))
               then
                  return True;

               elsif Nkind (S) = N_Extended_Return_Statement then
                  if Present (Handled_Statement_Sequence (S))
                    and then
                      Has_Excluded_Statement
                        (Statements (Handled_Statement_Sequence (S)))
                  then
                     return True;

                  elsif Present (Handled_Statement_Sequence (S))
                    and then
                      Present (Exception_Handlers
                               (Handled_Statement_Sequence (S)))
                  then
                     Cannot_Inline
                       ("cannot inline& (exception handler)?",
                        First (Exception_Handlers
                          (Handled_Statement_Sequence (S))),
                        Subp);
                     return True;
                  end if;
               end if;

               Next (S);
            end loop;

            return False;
         end Has_Excluded_Statement;

         -------------------------------
         -- Has_Pending_Instantiation --
         -------------------------------

         function Has_Pending_Instantiation return Boolean is
            S : Entity_Id;

         begin
            S := Current_Scope;
            while Present (S) loop
               if Is_Compilation_Unit (S)
                 or else Is_Child_Unit (S)
               then
                  return False;

               elsif Ekind (S) = E_Package
                 and then Has_Forward_Instantiation (S)
               then
                  return True;
               end if;

               S := Scope (S);
            end loop;

            return False;
         end Has_Pending_Instantiation;

         ------------------------------------
         --  Returns_Compile_Time_Constant --
         ------------------------------------

         function Returns_Compile_Time_Constant (N : Node_Id) return Boolean is

            function Check_Return (N : Node_Id) return Traverse_Result;

            ------------------
            -- Check_Return --
            ------------------

            function Check_Return (N : Node_Id) return Traverse_Result is
            begin
               if Nkind (N) = N_Extended_Return_Statement then
                  return Abandon;

               elsif Nkind (N) = N_Simple_Return_Statement then
                  if Present (Expression (N)) then
                     declare
                        Orig_Expr : constant Node_Id :=
                          Original_Node (Expression (N));

                     begin
                        if Nkind_In (Orig_Expr, N_Integer_Literal,
                                     N_Real_Literal,
                                     N_Character_Literal)
                        then
                           return OK;

                        elsif Is_Entity_Name (Orig_Expr)
                          and then Ekind (Entity (Orig_Expr)) = E_Constant
                          and then Is_Static_Expression (Orig_Expr)
                        then
                           return OK;
                        else
                           return Abandon;
                        end if;
                     end;

                  --  Expression has wrong form

                  else
                     return Abandon;
                  end if;

               --  Continue analyzing statements

               else
                  return OK;
               end if;
            end Check_Return;

            function Check_All_Returns is new Traverse_Func (Check_Return);

            --  Start of processing for Returns_Compile_Time_Constant

         begin
            return Check_All_Returns (N) = OK;
         end Returns_Compile_Time_Constant;

         --------------------------------------
         --  Returns_Intrinsic_Function_Call --
         --------------------------------------

         function Returns_Intrinsic_Function_Call
           (N : Node_Id) return Boolean
         is
            function Check_Return (N : Node_Id) return Traverse_Result;

            ------------------
            -- Check_Return --
            ------------------

            function Check_Return (N : Node_Id) return Traverse_Result is
            begin
               if Nkind (N) = N_Extended_Return_Statement then
                  return Abandon;

               elsif Nkind (N) = N_Simple_Return_Statement then
                  if Present (Expression (N)) then
                     declare
                        Orig_Expr : constant Node_Id :=
                                      Original_Node (Expression (N));

                     begin
                        if Nkind (Orig_Expr) in N_Op
                          and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
                        then
                           return OK;

                        elsif Nkind (Orig_Expr) in N_Has_Entity
                          and then Present (Entity (Orig_Expr))
                          and then Ekind (Entity (Orig_Expr)) = E_Function
                          and then Is_Inlined (Entity (Orig_Expr))
                        then
                           return OK;

                        elsif Nkind (Orig_Expr) in N_Has_Entity
                          and then Present (Entity (Orig_Expr))
                          and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
                        then
                           return OK;

                        else
                           return Abandon;
                        end if;
                     end;

                  --  Expression has wrong form

                  else
                     return Abandon;
                  end if;

               --  Continue analyzing statements

               else
                  return OK;
               end if;
            end Check_Return;

            function Check_All_Returns is new Traverse_Func (Check_Return);

         --  Start of processing for Returns_Intrinsic_Function_Call

         begin
            return Check_All_Returns (N) = OK;
         end Returns_Intrinsic_Function_Call;

         --------------------------
         -- Uses_Secondary_Stack --
         --------------------------

         function Uses_Secondary_Stack (N : Node_Id) return Boolean is

            function Check_Call (N : Node_Id) return Traverse_Result;
            --  Look for function calls that return an unconstrained type

            ----------------
            -- Check_Call --
            ----------------

            function Check_Call (N : Node_Id) return Traverse_Result is
            begin
               if Nkind (N) = N_Function_Call
                 and then Is_Entity_Name (Name (N))
                 and then Is_Composite_Type (Etype (Entity (Name (N))))
                 and then not Is_Constrained (Etype (Entity (Name (N))))
               then
                  Cannot_Inline
                    ("cannot inline & (call returns unconstrained type)?",
                     N, Subp);

                  return Abandon;
               else
                  return OK;
               end if;
            end Check_Call;

            function Check_Calls is new Traverse_Func (Check_Call);

         --  Start of processing for Uses_Secondary_Stack

         begin
            return Check_Calls (N) = Abandon;
         end Uses_Secondary_Stack;

         --  Local variables

         Decl       : constant Node_Id := Unit_Declaration_Node (Spec_Id);
         May_Inline : constant Boolean :=
                        Has_Pragma_Inline_Always (Spec_Id)
                          or else (Has_Pragma_Inline (Spec_Id)
                                    and then ((Optimization_Level > 0
                                                and then Ekind (Spec_Id)
                                                             = E_Function)
                                               or else Front_End_Inlining));
         Body_To_Analyze : Node_Id;

      --  Start of processing for Check_Body_To_Inline

      begin
         --  No action needed in stubs since the attribute Body_To_Inline
         --  is not available

         if Nkind (Decl) = N_Subprogram_Body_Stub then
            return False;

         --  Cannot build the body to inline if the attribute is already set.
         --  This attribute may have been set if this is a subprogram renaming
         --  declarations (see Freeze.Build_Renamed_Body).

         elsif Present (Body_To_Inline (Decl)) then
            return False;

         --  No action needed if the subprogram does not fulfill the minimum
         --  conditions to be inlined by the frontend

         elsif not May_Inline then
            return False;
         end if;

         --  Check excluded declarations

         if Present (Declarations (N))
           and then Has_Excluded_Declaration (Declarations (N))
         then
            return False;
         end if;

         --  Check excluded statements

         if Present (Handled_Statement_Sequence (N)) then
            if Present
                 (Exception_Handlers (Handled_Statement_Sequence (N)))
            then
               Cannot_Inline
                 ("cannot inline& (exception handler)?",
                  First
                    (Exception_Handlers (Handled_Statement_Sequence (N))),
                  Subp);

               return False;

            elsif Has_Excluded_Statement
              (Statements (Handled_Statement_Sequence (N)))
            then
               return False;
            end if;
         end if;

         --  For backward compatibility, compiling under -gnatN we do not
         --  inline a subprogram that is too large, unless it is marked
         --  Inline_Always. This pragma does not suppress the other checks
         --  on inlining (forbidden declarations, handlers, etc).

         if Front_End_Inlining
           and then not Has_Pragma_Inline_Always (Subp)
           and then Stat_Count > Max_Size
         then
            Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
            return False;
         end if;

         --  If some enclosing body contains instantiations that appear before
         --  the corresponding generic body, the enclosing body has a freeze
         --  node so that it can be elaborated after the generic itself. This
         --  might conflict with subsequent inlinings, so that it is unsafe to
         --  try to inline in such a case.

         if Has_Pending_Instantiation then
            Cannot_Inline
              ("cannot inline& (forward instance within enclosing body)?",
               N, Subp);

            return False;
         end if;

         --  Generate and preanalyze the body to inline (needed to perform
         --  the rest of the checks)

         Generate_Body_To_Inline (N, Body_To_Analyze);

         if Ekind (Subp) = E_Function then
            Set_Result_Definition (Specification (Body_To_Analyze),
              New_Occurrence_Of (Etype (Subp), Sloc (N)));
         end if;

         --  Nest the body to analyze within the real one

         if No (Declarations (N)) then
            Set_Declarations (N, New_List (Body_To_Analyze));
         else
            Append_To (Declarations (N), Body_To_Analyze);
         end if;

         Preanalyze (Body_To_Analyze);
         Remove (Body_To_Analyze);

         --  Keep separate checks needed when compiling without optimizations

         if Optimization_Level = 0

           --  AAMP and VM targets have no support for inlining in the backend
           --  and hence we use frontend inlining at all optimization levels.

           or else AAMP_On_Target
           or else VM_Target /= No_VM
         then
            --  Cannot inline functions whose body has a call that returns an
            --  unconstrained type since the secondary stack is involved, and
            --  it is not worth inlining.

            if Uses_Secondary_Stack (Body_To_Analyze) then
               return False;

            --  Cannot inline functions that return controlled types since
            --  controlled actions interfere in complex ways with inlining.

            elsif Ekind (Subp) = E_Function
              and then Needs_Finalization (Etype (Subp))
            then
               Cannot_Inline
                 ("cannot inline & (controlled return type)?", N, Subp);
               return False;

            elsif Returns_Unconstrained_Type (Subp) then
               Cannot_Inline
                 ("cannot inline & (unconstrained return type)?", N, Subp);
               return False;
            end if;

         --  Compiling with optimizations enabled

         else
            --  Procedures are never frontend inlined in this case!

            if Ekind (Subp) /= E_Function then
               return False;

            --  Functions returning unconstrained types are tested
            --  separately (see Can_Split_Unconstrained_Function).

            elsif Returns_Unconstrained_Type (Subp) then
               null;

            --  Check supported cases

            elsif not Returns_Compile_Time_Constant (Body_To_Analyze)
              and then Convention (Subp) /= Convention_Intrinsic
              and then not Returns_Intrinsic_Function_Call (Body_To_Analyze)
            then
               return False;
            end if;
         end if;

         return True;
      end Check_Body_To_Inline;

      --------------------------------------
      -- Can_Split_Unconstrained_Function --
      --------------------------------------

      function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
      is
         Ret_Node : constant Node_Id :=
                      First (Statements (Handled_Statement_Sequence (N)));
         D : Node_Id;

      begin
         --  No user defined declarations allowed in the function except inside
         --  the unique return statement; implicit labels are the only allowed
         --  declarations.

         if not Is_Empty_List (Declarations (N)) then
            D := First (Declarations (N));
            while Present (D) loop
               if Nkind (D) /= N_Implicit_Label_Declaration then
                  return False;
               end if;

               Next (D);
            end loop;
         end if;

         --  We only split the inlined function when we are generating the code
         --  of its body; otherwise we leave duplicated split subprograms in
         --  the tree which (if referenced) generate wrong references at link
         --  time.

         return In_Extended_Main_Code_Unit (N)
           and then Present (Ret_Node)
           and then Nkind (Ret_Node) = N_Extended_Return_Statement
           and then No (Next (Ret_Node))
           and then Present (Handled_Statement_Sequence (Ret_Node));
      end Can_Split_Unconstrained_Function;

      -----------------------------
      -- Generate_Body_To_Inline --
      -----------------------------

      procedure Generate_Body_To_Inline
        (N              : Node_Id;
         Body_To_Inline : out Node_Id)
      is
         procedure Remove_Pragmas (N : Node_Id);
         --  Remove occurrences of pragmas that may reference the formals of
         --  N. The analysis of the non-inlined body will handle these pragmas
         --  properly.

         --------------------
         -- Remove_Pragmas --
         --------------------

         procedure Remove_Pragmas (N : Node_Id) is
            Decl : Node_Id;
            Nxt  : Node_Id;

         begin
            Decl := First (Declarations (N));
            while Present (Decl) loop
               Nxt := Next (Decl);

               if Nkind (Decl) = N_Pragma
                 and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
                                                      Name_Unmodified)
               then
                  Remove (Decl);
               end if;

               Decl := Nxt;
            end loop;
         end Remove_Pragmas;

      --  Start of processing for Generate_Body_To_Inline

      begin
         --  Within an instance, the body to inline must be treated as a nested
         --  generic, so that the proper global references are preserved.

         --  Note that we do not do this at the library level, because it
         --  is not needed, and furthermore this causes trouble if front
         --  end inlining is activated (-gnatN).

         if In_Instance
           and then Scope (Current_Scope) /= Standard_Standard
         then
            Body_To_Inline := Copy_Generic_Node (N, Empty, True);
         else
            Body_To_Inline := Copy_Separate_Tree (N);
         end if;

         --  A pragma Unreferenced or pragma Unmodified that mentions a formal
         --  parameter has no meaning when the body is inlined and the formals
         --  are rewritten. Remove it from body to inline. The analysis of the
         --  non-inlined body will handle the pragma properly.

         Remove_Pragmas (Body_To_Inline);

         --  We need to capture references to the formals in order
         --  to substitute the actuals at the point of inlining, i.e.
         --  instantiation. To treat the formals as globals to the body to
         --  inline, we nest it within a dummy parameterless subprogram,
         --  declared within the real one.

         Set_Parameter_Specifications
           (Specification (Body_To_Inline), No_List);

         --  A new internal name is associated with Body_To_Inline to avoid
         --  conflicts when the non-inlined body N is analyzed.

         Set_Defining_Unit_Name (Specification (Body_To_Inline),
            Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
         Set_Corresponding_Spec (Body_To_Inline, Empty);
      end Generate_Body_To_Inline;

      ----------------------------------
      -- Split_Unconstrained_Function --
      ----------------------------------

      procedure Split_Unconstrained_Function
        (N        : Node_Id;
         Spec_Id  : Entity_Id)
      is
         Loc      : constant Source_Ptr := Sloc (N);
         Ret_Node : constant Node_Id :=
                      First (Statements (Handled_Statement_Sequence (N)));
         Ret_Obj  : constant Node_Id :=
                      First (Return_Object_Declarations (Ret_Node));

         procedure Build_Procedure
           (Proc_Id   : out Entity_Id;
            Decl_List : out List_Id);
         --  Build a procedure containing the statements found in the extended
         --  return statement of the unconstrained function body N.

         procedure Build_Procedure
           (Proc_Id   : out Entity_Id;
            Decl_List : out List_Id)
         is
            Formal      : Entity_Id;
            Formal_List : constant List_Id := New_List;
            Proc_Spec   : Node_Id;
            Proc_Body   : Node_Id;
            Subp_Name   : constant Name_Id := New_Internal_Name ('F');
            Body_Decl_List : List_Id := No_List;
            Param_Type  : Node_Id;

         begin
            if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
               Param_Type := New_Copy (Object_Definition (Ret_Obj));
            else
               Param_Type :=
                 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
            end if;

            Append_To (Formal_List,
              Make_Parameter_Specification (Loc,
                Defining_Identifier =>
                  Make_Defining_Identifier (Loc,
                    Chars => Chars (Defining_Identifier (Ret_Obj))),
                In_Present  => False,
                Out_Present => True,
                Null_Exclusion_Present => False,
                Parameter_Type => Param_Type));

            Formal := First_Formal (Spec_Id);
            while Present (Formal) loop
               Append_To (Formal_List,
                 Make_Parameter_Specification (Loc,
                   Defining_Identifier =>
                     Make_Defining_Identifier (Sloc (Formal),
                       Chars => Chars (Formal)),
                   In_Present  => In_Present (Parent (Formal)),
                   Out_Present => Out_Present (Parent (Formal)),
                   Null_Exclusion_Present =>
                     Null_Exclusion_Present (Parent (Formal)),
                   Parameter_Type =>
                     New_Reference_To (Etype (Formal), Loc),
                   Expression =>
                     Copy_Separate_Tree (Expression (Parent (Formal)))));

               Next_Formal (Formal);
            end loop;

            Proc_Id :=
              Make_Defining_Identifier (Loc, Chars => Subp_Name);

            Proc_Spec :=
              Make_Procedure_Specification (Loc,
                Defining_Unit_Name => Proc_Id,
                Parameter_Specifications => Formal_List);

            Decl_List := New_List;

            Append_To (Decl_List,
              Make_Subprogram_Declaration (Loc, Proc_Spec));

            --  Can_Convert_Unconstrained_Function checked that the function
            --  has no local declarations except implicit label declarations.
            --  Copy these declarations to the built procedure.

            if Present (Declarations (N)) then
               Body_Decl_List := New_List;

               declare
                  D     : Node_Id;
                  New_D : Node_Id;

               begin
                  D := First (Declarations (N));
                  while Present (D) loop
                     pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);

                     New_D :=
                       Make_Implicit_Label_Declaration (Loc,
                         Make_Defining_Identifier (Loc,
                           Chars => Chars (Defining_Identifier (D))),
                         Label_Construct => Empty);
                     Append_To (Body_Decl_List, New_D);

                     Next (D);
                  end loop;
               end;
            end if;

            pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));

            Proc_Body :=
              Make_Subprogram_Body (Loc,
                Specification => Copy_Separate_Tree (Proc_Spec),
                Declarations  => Body_Decl_List,
                Handled_Statement_Sequence =>
                  Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));

            Set_Defining_Unit_Name (Specification (Proc_Body),
               Make_Defining_Identifier (Loc, Subp_Name));

            Append_To (Decl_List, Proc_Body);
         end Build_Procedure;

         --  Local variables

         New_Obj   : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
         Blk_Stmt  : Node_Id;
         Proc_Id   : Entity_Id;
         Proc_Call : Node_Id;

      --  Start of processing for Split_Unconstrained_Function

      begin
         --  Build the associated procedure, analyze it and insert it before
         --  the function body N

         declare
            Scope     : constant Entity_Id := Current_Scope;
            Decl_List : List_Id;
         begin
            Pop_Scope;
            Build_Procedure (Proc_Id, Decl_List);
            Insert_Actions (N, Decl_List);
            Push_Scope (Scope);
         end;

         --  Build the call to the generated procedure

         declare
            Actual_List : constant List_Id := New_List;
            Formal      : Entity_Id;

         begin
            Append_To (Actual_List,
              New_Reference_To (Defining_Identifier (New_Obj), Loc));

            Formal := First_Formal (Spec_Id);
            while Present (Formal) loop
               Append_To (Actual_List, New_Reference_To (Formal, Loc));

               --  Avoid spurious warning on unreferenced formals

               Set_Referenced (Formal);
               Next_Formal (Formal);
            end loop;

            Proc_Call :=
              Make_Procedure_Call_Statement (Loc,
                Name => New_Reference_To (Proc_Id, Loc),
                Parameter_Associations => Actual_List);
         end;

         --  Generate

         --    declare
         --       New_Obj : ...
         --    begin
         --       main_1__F1b (New_Obj, ...);
         --       return Obj;
         --    end B10b;

         Blk_Stmt :=
           Make_Block_Statement (Loc,
             Declarations => New_List (New_Obj),
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => New_List (

                   Proc_Call,

                   Make_Simple_Return_Statement (Loc,
                     Expression =>
                       New_Reference_To
                         (Defining_Identifier (New_Obj), Loc)))));

         Rewrite (Ret_Node, Blk_Stmt);
      end Split_Unconstrained_Function;

   --  Start of processing for Check_And_Build_Body_To_Inline

   begin
      --  Do not inline any subprogram that contains nested subprograms, since
      --  the backend inlining circuit seems to generate uninitialized
      --  references in this case. We know this happens in the case of front
      --  end ZCX support, but it also appears it can happen in other cases as
      --  well. The backend often rejects attempts to inline in the case of
      --  nested procedures anyway, so little if anything is lost by this.
      --  Note that this is test is for the benefit of the back-end. There is
      --  a separate test for front-end inlining that also rejects nested
      --  subprograms.

      --  Do not do this test if errors have been detected, because in some
      --  error cases, this code blows up, and we don't need it anyway if
      --  there have been errors, since we won't get to the linker anyway.

      if Comes_From_Source (Body_Id)
        and then (Has_Pragma_Inline_Always (Spec_Id)
                    or else Optimization_Level > 0)
        and then Serious_Errors_Detected = 0
      then
         declare
            P_Ent : Node_Id;

         begin
            P_Ent := Body_Id;
            loop
               P_Ent := Scope (P_Ent);
               exit when No (P_Ent) or else P_Ent = Standard_Standard;

               if Is_Subprogram (P_Ent) then
                  Set_Is_Inlined (P_Ent, False);

                  if Comes_From_Source (P_Ent)
                    and then Has_Pragma_Inline (P_Ent)
                  then
                     Cannot_Inline
                       ("cannot inline& (nested subprogram)?", N, P_Ent,
                        Is_Serious => True);
                  end if;
               end if;
            end loop;
         end;
      end if;

      --  Build the body to inline only if really needed!

      if Check_Body_To_Inline (N, Spec_Id)
        and then Serious_Errors_Detected = 0
      then
         if Returns_Unconstrained_Type (Spec_Id) then
            if Can_Split_Unconstrained_Function (N) then
               Split_Unconstrained_Function (N, Spec_Id);
               Build_Body_To_Inline (N, Spec_Id);
               Set_Is_Inlined (Spec_Id);
            end if;
         else
            Build_Body_To_Inline (N, Spec_Id);
            Set_Is_Inlined (Spec_Id);
         end if;
      end if;
   end Check_And_Build_Body_To_Inline;

   -----------------------
   -- Check_Conformance --
   -----------------------

   procedure Check_Conformance
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Ctype                    : Conformance_Type;
      Errmsg                   : Boolean;
      Conforms                 : out Boolean;
      Err_Loc                  : Node_Id := Empty;
      Get_Inst                 : Boolean := False;
      Skip_Controlling_Formals : Boolean := False)
   is
      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
      --  Sets Conforms to False. If Errmsg is False, then that's all it does.
      --  If Errmsg is True, then processing continues to post an error message
      --  for conformance error on given node. Two messages are output. The
      --  first message points to the previous declaration with a general "no
      --  conformance" message. The second is the detailed reason, supplied as
      --  Msg. The parameter N provide information for a possible & insertion
      --  in the message, and also provides the location for posting the
      --  message in the absence of a specified Err_Loc location.

      -----------------------
      -- Conformance_Error --
      -----------------------

      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
         Enode : Node_Id;

      begin
         Conforms := False;

         if Errmsg then
            if No (Err_Loc) then
               Enode := N;
            else
               Enode := Err_Loc;
            end if;

            Error_Msg_Sloc := Sloc (Old_Id);

            case Ctype is
               when Type_Conformant =>
                  Error_Msg_N -- CODEFIX
                    ("not type conformant with declaration#!", Enode);

               when Mode_Conformant =>
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
                     Error_Msg_N
                       ("not mode conformant with operation inherited#!",
                         Enode);
                  else
                     Error_Msg_N
                       ("not mode conformant with declaration#!", Enode);
                  end if;

               when Subtype_Conformant =>
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
                     Error_Msg_N
                       ("not subtype conformant with operation inherited#!",
                         Enode);
                  else
                     Error_Msg_N
                       ("not subtype conformant with declaration#!", Enode);
                  end if;

               when Fully_Conformant =>
                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
                     Error_Msg_N -- CODEFIX
                       ("not fully conformant with operation inherited#!",
                         Enode);
                  else
                     Error_Msg_N -- CODEFIX
                       ("not fully conformant with declaration#!", Enode);
                  end if;
            end case;

            Error_Msg_NE (Msg, Enode, N);
         end if;
      end Conformance_Error;

      --  Local Variables

      Old_Type           : constant Entity_Id := Etype (Old_Id);
      New_Type           : constant Entity_Id := Etype (New_Id);
      Old_Formal         : Entity_Id;
      New_Formal         : Entity_Id;
      Access_Types_Match : Boolean;
      Old_Formal_Base    : Entity_Id;
      New_Formal_Base    : Entity_Id;

   --  Start of processing for Check_Conformance

   begin
      Conforms := True;

      --  We need a special case for operators, since they don't appear
      --  explicitly.

      if Ctype = Type_Conformant then
         if Ekind (New_Id) = E_Operator
           and then Operator_Matches_Spec (New_Id, Old_Id)
         then
            return;
         end if;
      end if;

      --  If both are functions/operators, check return types conform

      if Old_Type /= Standard_Void_Type
        and then New_Type /= Standard_Void_Type
      then

         --  If we are checking interface conformance we omit controlling
         --  arguments and result, because we are only checking the conformance
         --  of the remaining parameters.

         if Has_Controlling_Result (Old_Id)
           and then Has_Controlling_Result (New_Id)
           and then Skip_Controlling_Formals
         then
            null;

         elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
            Conformance_Error ("\return type does not match!", New_Id);
            return;
         end if;

         --  Ada 2005 (AI-231): In case of anonymous access types check the
         --  null-exclusion and access-to-constant attributes match.

         if Ada_Version >= Ada_2005
           and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
           and then
             (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
               or else Is_Access_Constant (Etype (Old_Type)) /=
                       Is_Access_Constant (Etype (New_Type)))
         then
            Conformance_Error ("\return type does not match!", New_Id);
            return;
         end if;

      --  If either is a function/operator and the other isn't, error

      elsif Old_Type /= Standard_Void_Type
        or else New_Type /= Standard_Void_Type
      then
         Conformance_Error ("\functions can only match functions!", New_Id);
         return;
      end if;

      --  In subtype conformant case, conventions must match (RM 6.3.1(16)).
      --  If this is a renaming as body, refine error message to indicate that
      --  the conflict is with the original declaration. If the entity is not
      --  frozen, the conventions don't have to match, the one of the renamed
      --  entity is inherited.

      if Ctype >= Subtype_Conformant then
         if Convention (Old_Id) /= Convention (New_Id) then
            if not Is_Frozen (New_Id) then
               null;

            elsif Present (Err_Loc)
              and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
              and then Present (Corresponding_Spec (Err_Loc))
            then
               Error_Msg_Name_1 := Chars (New_Id);
               Error_Msg_Name_2 :=
                 Name_Ada + Convention_Id'Pos (Convention (New_Id));
               Conformance_Error ("\prior declaration for% has convention %!");

            else
               Conformance_Error ("\calling conventions do not match!");
            end if;

            return;

         elsif Is_Formal_Subprogram (Old_Id)
           or else Is_Formal_Subprogram (New_Id)
         then
            Conformance_Error ("\formal subprograms not allowed!");
            return;
         end if;
      end if;

      --  Deal with parameters

      --  Note: we use the entity information, rather than going directly
      --  to the specification in the tree. This is not only simpler, but
      --  absolutely necessary for some cases of conformance tests between
      --  operators, where the declaration tree simply does not exist!

      Old_Formal := First_Formal (Old_Id);
      New_Formal := First_Formal (New_Id);
      while Present (Old_Formal) and then Present (New_Formal) loop
         if Is_Controlling_Formal (Old_Formal)
           and then Is_Controlling_Formal (New_Formal)
           and then Skip_Controlling_Formals
         then
            --  The controlling formals will have different types when
            --  comparing an interface operation with its match, but both
            --  or neither must be access parameters.

            if Is_Access_Type (Etype (Old_Formal))
                 =
               Is_Access_Type (Etype (New_Formal))
            then
               goto Skip_Controlling_Formal;
            else
               Conformance_Error
                 ("\access parameter does not match!", New_Formal);
            end if;
         end if;

         --  Ada 2012: Mode conformance also requires that formal parameters
         --  be both aliased, or neither.

         if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
            if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
               Conformance_Error
                 ("\aliased parameter mismatch!", New_Formal);
            end if;
         end if;

         if Ctype = Fully_Conformant then

            --  Names must match. Error message is more accurate if we do
            --  this before checking that the types of the formals match.

            if Chars (Old_Formal) /= Chars (New_Formal) then
               Conformance_Error ("\name & does not match!", New_Formal);

               --  Set error posted flag on new formal as well to stop
               --  junk cascaded messages in some cases.

               Set_Error_Posted (New_Formal);
               return;
            end if;

            --  Null exclusion must match

            if Null_Exclusion_Present (Parent (Old_Formal))
                 /=
               Null_Exclusion_Present (Parent (New_Formal))
            then
               --  Only give error if both come from source. This should be
               --  investigated some time, since it should not be needed ???

               if Comes_From_Source (Old_Formal)
                    and then
                  Comes_From_Source (New_Formal)
               then
                  Conformance_Error
                    ("\null exclusion for & does not match", New_Formal);

                  --  Mark error posted on the new formal to avoid duplicated
                  --  complaint about types not matching.

                  Set_Error_Posted (New_Formal);
               end if;
            end if;
         end if;

         --  Ada 2005 (AI-423): Possible access [sub]type and itype match. This
         --  case occurs whenever a subprogram is being renamed and one of its
         --  parameters imposes a null exclusion. For example:

         --     type T is null record;
         --     type Acc_T is access T;
         --     subtype Acc_T_Sub is Acc_T;

         --     procedure P     (Obj : not null Acc_T_Sub);  --  itype
         --     procedure Ren_P (Obj :          Acc_T_Sub)   --  subtype
         --       renames P;

         Old_Formal_Base := Etype (Old_Formal);
         New_Formal_Base := Etype (New_Formal);

         if Get_Inst then
            Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
            New_Formal_Base := Get_Instance_Of (New_Formal_Base);
         end if;

         Access_Types_Match := Ada_Version >= Ada_2005

           --  Ensure that this rule is only applied when New_Id is a
           --  renaming of Old_Id.

           and then Nkind (Parent (Parent (New_Id))) =
                      N_Subprogram_Renaming_Declaration
           and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
           and then Present (Entity (Name (Parent (Parent (New_Id)))))
           and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id

           --  Now handle the allowed access-type case

           and then Is_Access_Type (Old_Formal_Base)
           and then Is_Access_Type (New_Formal_Base)

           --  The type kinds must match. The only exception occurs with
           --  multiple generics of the form:

           --   generic                    generic
           --     type F is private;         type A is private;
           --     type F_Ptr is access F;    type A_Ptr is access A;
           --     with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
           --   package F_Pack is ...      package A_Pack is
           --                                package F_Inst is
           --                                  new F_Pack (A, A_Ptr, A_P);

           --  When checking for conformance between the parameters of A_P
           --  and F_P, the type kinds of F_Ptr and A_Ptr will not match
           --  because the compiler has transformed A_Ptr into a subtype of
           --  F_Ptr. We catch this case in the code below.

           and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
                  or else
                    (Is_Generic_Type (Old_Formal_Base)
                       and then Is_Generic_Type (New_Formal_Base)
                       and then Is_Internal (New_Formal_Base)
                       and then Etype (Etype (New_Formal_Base)) =
                                  Old_Formal_Base))
           and then Directly_Designated_Type (Old_Formal_Base) =
                    Directly_Designated_Type (New_Formal_Base)
           and then ((Is_Itype (Old_Formal_Base)
                       and then Can_Never_Be_Null (Old_Formal_Base))
                    or else
                     (Is_Itype (New_Formal_Base)
                       and then Can_Never_Be_Null (New_Formal_Base)));

         --  Types must always match. In the visible part of an instance,
         --  usual overloading rules for dispatching operations apply, and
         --  we check base types (not the actual subtypes).

         if In_Instance_Visible_Part
           and then Is_Dispatching_Operation (New_Id)
         then
            if not Conforming_Types
                     (T1       => Base_Type (Etype (Old_Formal)),
                      T2       => Base_Type (Etype (New_Formal)),
                      Ctype    => Ctype,
                      Get_Inst => Get_Inst)
               and then not Access_Types_Match
            then
               Conformance_Error ("\type of & does not match!", New_Formal);
               return;
            end if;

         elsif not Conforming_Types
                     (T1       => Old_Formal_Base,
                      T2       => New_Formal_Base,
                      Ctype    => Ctype,
                      Get_Inst => Get_Inst)
           and then not Access_Types_Match
         then
            --  Don't give error message if old type is Any_Type. This test
            --  avoids some cascaded errors, e.g. in case of a bad spec.

            if Errmsg and then Old_Formal_Base = Any_Type then
               Conforms := False;
            else
               Conformance_Error ("\type of & does not match!", New_Formal);
            end if;

            return;
         end if;

         --  For mode conformance, mode must match

         if Ctype >= Mode_Conformant then
            if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
               if not Ekind_In (New_Id, E_Function, E_Procedure)
                 or else not Is_Primitive_Wrapper (New_Id)
               then
                  Conformance_Error ("\mode of & does not match!", New_Formal);

               else
                  declare
                     T : constant  Entity_Id := Find_Dispatching_Type (New_Id);
                  begin
                     if Is_Protected_Type
                          (Corresponding_Concurrent_Type (T))
                     then
                        Error_Msg_PT (T, New_Id);
                     else
                        Conformance_Error
                          ("\mode of & does not match!", New_Formal);
                     end if;
                  end;
               end if;

               return;

            --  Part of mode conformance for access types is having the same
            --  constant modifier.

            elsif Access_Types_Match
              and then Is_Access_Constant (Old_Formal_Base) /=
                       Is_Access_Constant (New_Formal_Base)
            then
               Conformance_Error
                 ("\constant modifier does not match!", New_Formal);
               return;
            end if;
         end if;

         if Ctype >= Subtype_Conformant then

            --  Ada 2005 (AI-231): In case of anonymous access types check
            --  the null-exclusion and access-to-constant attributes must
            --  match. For null exclusion, we test the types rather than the
            --  formals themselves, since the attribute is only set reliably
            --  on the formals in the Ada 95 case, and we exclude the case
            --  where Old_Formal is marked as controlling, to avoid errors
            --  when matching completing bodies with dispatching declarations
            --  (access formals in the bodies aren't marked Can_Never_Be_Null).

            if Ada_Version >= Ada_2005
              and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
              and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
              and then
                ((Can_Never_Be_Null (Etype (Old_Formal)) /=
                  Can_Never_Be_Null (Etype (New_Formal))
                    and then
                      not Is_Controlling_Formal (Old_Formal))
                   or else
                 Is_Access_Constant (Etype (Old_Formal)) /=
                 Is_Access_Constant (Etype (New_Formal)))

              --  Do not complain if error already posted on New_Formal. This
              --  avoids some redundant error messages.

              and then not Error_Posted (New_Formal)
            then
               --  It is allowed to omit the null-exclusion in case of stream
               --  attribute subprograms. We recognize stream subprograms
               --  through their TSS-generated suffix.

               declare
                  TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);

               begin
                  if TSS_Name /= TSS_Stream_Read
                    and then TSS_Name /= TSS_Stream_Write
                    and then TSS_Name /= TSS_Stream_Input
                    and then TSS_Name /= TSS_Stream_Output
                  then
                     --  Here we have a definite conformance error. It is worth
                     --  special casing the error message for the case of a
                     --  controlling formal (which excludes null).

                     if Is_Controlling_Formal (New_Formal) then
                        Error_Msg_Node_2 := Scope (New_Formal);
                        Conformance_Error
                         ("\controlling formal& of& excludes null, "
                           & "declaration must exclude null as well",
                            New_Formal);

                     --  Normal case (couldn't we give more detail here???)

                     else
                        Conformance_Error
                          ("\type of & does not match!", New_Formal);
                     end if;

                     return;
                  end if;
               end;
            end if;
         end if;

         --  Full conformance checks

         if Ctype = Fully_Conformant then

            --  We have checked already that names match

            if Parameter_Mode (Old_Formal) = E_In_Parameter then

               --  Check default expressions for in parameters

               declare
                  NewD : constant Boolean :=
                           Present (Default_Value (New_Formal));
                  OldD : constant Boolean :=
                           Present (Default_Value (Old_Formal));
               begin
                  if NewD or OldD then

                     --  The old default value has been analyzed because the
                     --  current full declaration will have frozen everything
                     --  before. The new default value has not been analyzed,
                     --  so analyze it now before we check for conformance.

                     if NewD then
                        Push_Scope (New_Id);
                        Preanalyze_Spec_Expression
                          (Default_Value (New_Formal), Etype (New_Formal));
                        End_Scope;
                     end if;

                     if not (NewD and OldD)
                       or else not Fully_Conformant_Expressions
                                    (Default_Value (Old_Formal),
                                     Default_Value (New_Formal))
                     then
                        Conformance_Error
                          ("\default expression for & does not match!",
                           New_Formal);
                        return;
                     end if;
                  end if;
               end;
            end if;
         end if;

         --  A couple of special checks for Ada 83 mode. These checks are
         --  skipped if either entity is an operator in package Standard,
         --  or if either old or new instance is not from the source program.

         if Ada_Version = Ada_83
           and then Sloc (Old_Id) > Standard_Location
           and then Sloc (New_Id) > Standard_Location
           and then Comes_From_Source (Old_Id)
           and then Comes_From_Source (New_Id)
         then
            declare
               Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
               New_Param : constant Node_Id := Declaration_Node (New_Formal);

            begin
               --  Explicit IN must be present or absent in both cases. This
               --  test is required only in the full conformance case.

               if In_Present (Old_Param) /= In_Present (New_Param)
                 and then Ctype = Fully_Conformant
               then
                  Conformance_Error
                    ("\(Ada 83) IN must appear in both declarations",
                     New_Formal);
                  return;
               end if;

               --  Grouping (use of comma in param lists) must be the same
               --  This is where we catch a misconformance like:

               --    A, B : Integer
               --    A : Integer; B : Integer

               --  which are represented identically in the tree except
               --  for the setting of the flags More_Ids and Prev_Ids.

               if More_Ids (Old_Param) /= More_Ids (New_Param)
                 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
               then
                  Conformance_Error
                    ("\grouping of & does not match!", New_Formal);
                  return;
               end if;
            end;
         end if;

         --  This label is required when skipping controlling formals

         <<Skip_Controlling_Formal>>

         Next_Formal (Old_Formal);
         Next_Formal (New_Formal);
      end loop;

      if Present (Old_Formal) then
         Conformance_Error ("\too few parameters!");
         return;

      elsif Present (New_Formal) then
         Conformance_Error ("\too many parameters!", New_Formal);
         return;
      end if;
   end Check_Conformance;

   -----------------------
   -- Check_Conventions --
   -----------------------

   procedure Check_Conventions (Typ : Entity_Id) is
      Ifaces_List : Elist_Id;

      procedure Check_Convention (Op : Entity_Id);
      --  Verify that the convention of inherited dispatching operation Op is
      --  consistent among all subprograms it overrides. In order to minimize
      --  the search, Search_From is utilized to designate a specific point in
      --  the list rather than iterating over the whole list once more.

      ----------------------
      -- Check_Convention --
      ----------------------

      procedure Check_Convention (Op : Entity_Id) is
         function Convention_Of (Id : Entity_Id) return Convention_Id;
         --  Given an entity, return its convention. The function treats Ghost
         --  as convention Ada because the two have the same dynamic semantics.

         -------------------
         -- Convention_Of --
         -------------------

         function Convention_Of (Id : Entity_Id) return Convention_Id is
            Conv : constant Convention_Id := Convention (Id);
         begin
            if Conv = Convention_Ghost then
               return Convention_Ada;
            else
               return Conv;
            end if;
         end Convention_Of;

         --  Local variables

         Op_Conv         : constant Convention_Id := Convention_Of (Op);
         Iface_Conv      : Convention_Id;
         Iface_Elmt      : Elmt_Id;
         Iface_Prim_Elmt : Elmt_Id;
         Iface_Prim      : Entity_Id;

      --  Start of processing for Check_Convention

      begin
         Iface_Elmt := First_Elmt (Ifaces_List);
         while Present (Iface_Elmt) loop
            Iface_Prim_Elmt :=
              First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
            while Present (Iface_Prim_Elmt) loop
               Iface_Prim := Node (Iface_Prim_Elmt);
               Iface_Conv := Convention_Of (Iface_Prim);

               if Is_Interface_Conformant (Typ, Iface_Prim, Op)
                 and then Iface_Conv /= Op_Conv
               then
                  Error_Msg_N
                    ("inconsistent conventions in primitive operations", Typ);

                  Error_Msg_Name_1 := Chars (Op);
                  Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
                  Error_Msg_Sloc   := Sloc (Op);

                  if Comes_From_Source (Op) or else No (Alias (Op)) then
                     if not Present (Overridden_Operation (Op)) then
                        Error_Msg_N ("\\primitive % defined #", Typ);
                     else
                        Error_Msg_N
                          ("\\overriding operation % with " &
                           "convention % defined #", Typ);
                     end if;

                  else pragma Assert (Present (Alias (Op)));
                     Error_Msg_Sloc := Sloc (Alias (Op));
                     Error_Msg_N
                       ("\\inherited operation % with " &
                        "convention % defined #", Typ);
                  end if;

                  Error_Msg_Name_1 := Chars (Op);
                  Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
                  Error_Msg_Sloc   := Sloc (Iface_Prim);
                  Error_Msg_N
                    ("\\overridden operation % with " &
                     "convention % defined #", Typ);

                  --  Avoid cascading errors

                  return;
               end if;

               Next_Elmt (Iface_Prim_Elmt);
            end loop;

            Next_Elmt (Iface_Elmt);
         end loop;
      end Check_Convention;

      --  Local variables

      Prim_Op      : Entity_Id;
      Prim_Op_Elmt : Elmt_Id;

   --  Start of processing for Check_Conventions

   begin
      if not Has_Interfaces (Typ) then
         return;
      end if;

      Collect_Interfaces (Typ, Ifaces_List);

      --  The algorithm checks every overriding dispatching operation against
      --  all the corresponding overridden dispatching operations, detecting
      --  differences in conventions.

      Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
      while Present (Prim_Op_Elmt) loop
         Prim_Op := Node (Prim_Op_Elmt);

         --  A small optimization: skip the predefined dispatching operations
         --  since they always have the same convention.

         if not Is_Predefined_Dispatching_Operation (Prim_Op) then
            Check_Convention (Prim_Op);
         end if;

         Next_Elmt (Prim_Op_Elmt);
      end loop;
   end Check_Conventions;

   ------------------------------
   -- Check_Delayed_Subprogram --
   ------------------------------

   procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
      F : Entity_Id;

      procedure Possible_Freeze (T : Entity_Id);
      --  T is the type of either a formal parameter or of the return type.
      --  If T is not yet frozen and needs a delayed freeze, then the
      --  subprogram itself must be delayed. If T is the limited view of an
      --  incomplete type the subprogram must be frozen as well, because
      --  T may depend on local types that have not been frozen yet.

      ---------------------
      -- Possible_Freeze --
      ---------------------

      procedure Possible_Freeze (T : Entity_Id) is
      begin
         if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
            Set_Has_Delayed_Freeze (Designator);

         elsif Is_Access_Type (T)
           and then Has_Delayed_Freeze (Designated_Type (T))
           and then not Is_Frozen (Designated_Type (T))
         then
            Set_Has_Delayed_Freeze (Designator);

         elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
            Set_Has_Delayed_Freeze (Designator);

         --  AI05-0151: In Ada 2012, Incomplete types can appear in the profile
         --  of a subprogram or entry declaration.

         elsif Ekind (T) = E_Incomplete_Type
           and then Ada_Version >= Ada_2012
         then
            Set_Has_Delayed_Freeze (Designator);
         end if;

      end Possible_Freeze;

   --  Start of processing for Check_Delayed_Subprogram

   begin
      --  All subprograms, including abstract subprograms, may need a freeze
      --  node if some formal type or the return type needs one.

      Possible_Freeze (Etype (Designator));
      Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???

      --  Need delayed freeze if any of the formal types themselves need
      --  a delayed freeze and are not yet frozen.

      F := First_Formal (Designator);
      while Present (F) loop
         Possible_Freeze (Etype (F));
         Possible_Freeze (Base_Type (Etype (F))); -- needed ???
         Next_Formal (F);
      end loop;

      --  Mark functions that return by reference. Note that it cannot be
      --  done for delayed_freeze subprograms because the underlying
      --  returned type may not be known yet (for private types)

      if not Has_Delayed_Freeze (Designator) and then Expander_Active then
         declare
            Typ  : constant Entity_Id := Etype (Designator);
            Utyp : constant Entity_Id := Underlying_Type (Typ);
         begin
            if Is_Immutably_Limited_Type (Typ) then
               Set_Returns_By_Ref (Designator);
            elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
               Set_Returns_By_Ref (Designator);
            end if;
         end;
      end if;
   end Check_Delayed_Subprogram;

   ------------------------------------
   -- Check_Discriminant_Conformance --
   ------------------------------------

   procedure Check_Discriminant_Conformance
     (N        : Node_Id;
      Prev     : Entity_Id;
      Prev_Loc : Node_Id)
   is
      Old_Discr      : Entity_Id := First_Discriminant (Prev);
      New_Discr      : Node_Id   := First (Discriminant_Specifications (N));
      New_Discr_Id   : Entity_Id;
      New_Discr_Type : Entity_Id;

      procedure Conformance_Error (Msg : String; N : Node_Id);
      --  Post error message for conformance error on given node. Two messages
      --  are output. The first points to the previous declaration with a
      --  general "no conformance" message. The second is the detailed reason,
      --  supplied as Msg. The parameter N provide information for a possible
      --  & insertion in the message.

      -----------------------
      -- Conformance_Error --
      -----------------------

      procedure Conformance_Error (Msg : String; N : Node_Id) is
      begin
         Error_Msg_Sloc := Sloc (Prev_Loc);
         Error_Msg_N -- CODEFIX
           ("not fully conformant with declaration#!", N);
         Error_Msg_NE (Msg, N, N);
      end Conformance_Error;

   --  Start of processing for Check_Discriminant_Conformance

   begin
      while Present (Old_Discr) and then Present (New_Discr) loop
         New_Discr_Id := Defining_Identifier (New_Discr);

         --  The subtype mark of the discriminant on the full type has not
         --  been analyzed so we do it here. For an access discriminant a new
         --  type is created.

         if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
            New_Discr_Type :=
              Access_Definition (N, Discriminant_Type (New_Discr));

         else
            Analyze (Discriminant_Type (New_Discr));
            New_Discr_Type := Etype (Discriminant_Type (New_Discr));

            --  Ada 2005: if the discriminant definition carries a null
            --  exclusion, create an itype to check properly for consistency
            --  with partial declaration.

            if Is_Access_Type (New_Discr_Type)
              and then Null_Exclusion_Present (New_Discr)
            then
               New_Discr_Type :=
                 Create_Null_Excluding_Itype
                   (T           => New_Discr_Type,
                    Related_Nod => New_Discr,
                    Scope_Id    => Current_Scope);
            end if;
         end if;

         if not Conforming_Types
                  (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
         then
            Conformance_Error ("type of & does not match!", New_Discr_Id);
            return;
         else
            --  Treat the new discriminant as an occurrence of the old one,
            --  for navigation purposes, and fill in some semantic
            --  information, for completeness.

            Generate_Reference (Old_Discr, New_Discr_Id, 'r');
            Set_Etype (New_Discr_Id, Etype (Old_Discr));
            Set_Scope (New_Discr_Id, Scope (Old_Discr));
         end if;

         --  Names must match

         if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
            Conformance_Error ("name & does not match!", New_Discr_Id);
            return;
         end if;

         --  Default expressions must match

         declare
            NewD : constant Boolean :=
                     Present (Expression (New_Discr));
            OldD : constant Boolean :=
                     Present (Expression (Parent (Old_Discr)));

         begin
            if NewD or OldD then

               --  The old default value has been analyzed and expanded,
               --  because the current full declaration will have frozen
               --  everything before. The new default values have not been
               --  expanded, so expand now to check conformance.

               if NewD then
                  Preanalyze_Spec_Expression
                    (Expression (New_Discr), New_Discr_Type);
               end if;

               if not (NewD and OldD)
                 or else not Fully_Conformant_Expressions
                              (Expression (Parent (Old_Discr)),
                               Expression (New_Discr))

               then
                  Conformance_Error
                    ("default expression for & does not match!",
                     New_Discr_Id);
                  return;
               end if;
            end if;
         end;

         --  In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)

         if Ada_Version = Ada_83 then
            declare
               Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);

            begin
               --  Grouping (use of comma in param lists) must be the same
               --  This is where we catch a misconformance like:

               --    A, B : Integer
               --    A : Integer; B : Integer

               --  which are represented identically in the tree except
               --  for the setting of the flags More_Ids and Prev_Ids.

               if More_Ids (Old_Disc) /= More_Ids (New_Discr)
                 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
               then
                  Conformance_Error
                    ("grouping of & does not match!", New_Discr_Id);
                  return;
               end if;
            end;
         end if;

         Next_Discriminant (Old_Discr);
         Next (New_Discr);
      end loop;

      if Present (Old_Discr) then
         Conformance_Error ("too few discriminants!", Defining_Identifier (N));
         return;

      elsif Present (New_Discr) then
         Conformance_Error
           ("too many discriminants!", Defining_Identifier (New_Discr));
         return;
      end if;
   end Check_Discriminant_Conformance;

   ----------------------------
   -- Check_Fully_Conformant --
   ----------------------------

   procedure Check_Fully_Conformant
     (New_Id  : Entity_Id;
      Old_Id  : Entity_Id;
      Err_Loc : Node_Id := Empty)
   is
      Result : Boolean;
      pragma Warnings (Off, Result);
   begin
      Check_Conformance
        (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
   end Check_Fully_Conformant;

   ---------------------------
   -- Check_Mode_Conformant --
   ---------------------------

   procedure Check_Mode_Conformant
     (New_Id   : Entity_Id;
      Old_Id   : Entity_Id;
      Err_Loc  : Node_Id := Empty;
      Get_Inst : Boolean := False)
   is
      Result : Boolean;
      pragma Warnings (Off, Result);
   begin
      Check_Conformance
        (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
   end Check_Mode_Conformant;

   --------------------------------
   -- Check_Overriding_Indicator --
   --------------------------------

   procedure Check_Overriding_Indicator
     (Subp            : Entity_Id;
      Overridden_Subp : Entity_Id;
      Is_Primitive    : Boolean)
   is
      Decl : Node_Id;
      Spec : Node_Id;

   begin
      --  No overriding indicator for literals

      if Ekind (Subp) = E_Enumeration_Literal then
         return;

      elsif Ekind (Subp) = E_Entry then
         Decl := Parent (Subp);

         --  No point in analyzing a malformed operator

      elsif Nkind (Subp) = N_Defining_Operator_Symbol
        and then Error_Posted (Subp)
      then
         return;

      else
         Decl := Unit_Declaration_Node (Subp);
      end if;

      if Nkind_In (Decl, N_Subprogram_Body,
                         N_Subprogram_Body_Stub,
                         N_Subprogram_Declaration,
                         N_Abstract_Subprogram_Declaration,
                         N_Subprogram_Renaming_Declaration)
      then
         Spec := Specification (Decl);

      elsif Nkind (Decl) = N_Entry_Declaration then
         Spec := Decl;

      else
         return;
      end if;

      --  The overriding operation is type conformant with the overridden one,
      --  but the names of the formals are not required to match. If the names
      --  appear permuted in the overriding operation, this is a possible
      --  source of confusion that is worth diagnosing. Controlling formals
      --  often carry names that reflect the type, and it is not worthwhile
      --  requiring that their names match.

      if Present (Overridden_Subp)
        and then Nkind (Subp) /= N_Defining_Operator_Symbol
      then
         declare
            Form1 : Entity_Id;
            Form2 : Entity_Id;

         begin
            Form1 := First_Formal (Subp);
            Form2 := First_Formal (Overridden_Subp);

            --  If the overriding operation is a synchronized operation, skip
            --  the first parameter of the overridden operation, which is
            --  implicit in the new one. If the operation is declared in the
            --  body it is not primitive and all formals must match.

            if Is_Concurrent_Type (Scope (Subp))
              and then Is_Tagged_Type (Scope (Subp))
              and then not Has_Completion (Scope (Subp))
            then
               Form2 := Next_Formal (Form2);
            end if;

            if Present (Form1) then
               Form1 := Next_Formal (Form1);
               Form2 := Next_Formal (Form2);
            end if;

            while Present (Form1) loop
               if not Is_Controlling_Formal (Form1)
                 and then Present (Next_Formal (Form2))
                 and then Chars (Form1) = Chars (Next_Formal (Form2))
               then
                  Error_Msg_Node_2 := Alias (Overridden_Subp);
                  Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
                  Error_Msg_NE
                    ("& does not match corresponding formal of&#",
                     Form1, Form1);
                  exit;
               end if;

               Next_Formal (Form1);
               Next_Formal (Form2);
            end loop;
         end;
      end if;

      --  If there is an overridden subprogram, then check that there is no
      --  "not overriding" indicator, and mark the subprogram as overriding.
      --  This is not done if the overridden subprogram is marked as hidden,
      --  which can occur for the case of inherited controlled operations
      --  (see Derive_Subprogram), unless the inherited subprogram's parent
      --  subprogram is not itself hidden. (Note: This condition could probably
      --  be simplified, leaving out the testing for the specific controlled
      --  cases, but it seems safer and clearer this way, and echoes similar
      --  special-case tests of this kind in other places.)

      if Present (Overridden_Subp)
        and then (not Is_Hidden (Overridden_Subp)
                   or else
                     (Nam_In (Chars (Overridden_Subp), Name_Initialize,
                                                       Name_Adjust,
                                                       Name_Finalize)
                      and then Present (Alias (Overridden_Subp))
                      and then not Is_Hidden (Alias (Overridden_Subp))))
      then
         if Must_Not_Override (Spec) then
            Error_Msg_Sloc := Sloc (Overridden_Subp);

            if Ekind (Subp) = E_Entry then
               Error_Msg_NE
                 ("entry & overrides inherited operation #", Spec, Subp);
            else
               Error_Msg_NE
                 ("subprogram & overrides inherited operation #", Spec, Subp);
            end if;

         --  Special-case to fix a GNAT oddity: Limited_Controlled is declared
         --  as an extension of Root_Controlled, and thus has a useless Adjust
         --  operation. This operation should not be inherited by other limited
         --  controlled types. An explicit Adjust for them is not overriding.

         elsif Must_Override (Spec)
           and then Chars (Overridden_Subp) = Name_Adjust
           and then Is_Limited_Type (Etype (First_Formal (Subp)))
           and then Present (Alias (Overridden_Subp))
           and then
             Is_Predefined_File_Name
               (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
         then
            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);

         elsif Is_Subprogram (Subp) then
            if Is_Init_Proc (Subp) then
               null;

            elsif No (Overridden_Operation (Subp)) then

               --  For entities generated by Derive_Subprograms the overridden
               --  operation is the inherited primitive (which is available
               --  through the attribute alias)

               if (Is_Dispatching_Operation (Subp)
                    or else Is_Dispatching_Operation (Overridden_Subp))
                 and then not Comes_From_Source (Overridden_Subp)
                 and then Find_Dispatching_Type (Overridden_Subp) =
                          Find_Dispatching_Type (Subp)
                 and then Present (Alias (Overridden_Subp))
                 and then Comes_From_Source (Alias (Overridden_Subp))
               then
                  Set_Overridden_Operation (Subp, Alias (Overridden_Subp));

               else
                  Set_Overridden_Operation (Subp, Overridden_Subp);
               end if;
            end if;
         end if;

         --  If primitive flag is set or this is a protected operation, then
         --  the operation is overriding at the point of its declaration, so
         --  warn if necessary. Otherwise it may have been declared before the
         --  operation it overrides and no check is required.

         if Style_Check
           and then not Must_Override (Spec)
           and then (Is_Primitive
                      or else Ekind (Scope (Subp)) = E_Protected_Type)
         then
            Style.Missing_Overriding (Decl, Subp);
         end if;

      --  If Subp is an operator, it may override a predefined operation, if
      --  it is defined in the same scope as the type to which it applies.
      --  In that case Overridden_Subp is empty because of our implicit
      --  representation for predefined operators. We have to check whether the
      --  signature of Subp matches that of a predefined operator. Note that
      --  first argument provides the name of the operator, and the second
      --  argument the signature that may match that of a standard operation.
      --  If the indicator is overriding, then the operator must match a
      --  predefined signature, because we know already that there is no
      --  explicit overridden operation.

      elsif Nkind (Subp) = N_Defining_Operator_Symbol then
         if Must_Not_Override (Spec) then

            --  If this is not a primitive or a protected subprogram, then
            --  "not overriding" is illegal.

            if not Is_Primitive
              and then Ekind (Scope (Subp)) /= E_Protected_Type
            then
               Error_Msg_N
                 ("overriding indicator only allowed "
                  & "if subprogram is primitive", Subp);

            elsif Can_Override_Operator (Subp) then
               Error_Msg_NE
                 ("subprogram& overrides predefined operator ", Spec, Subp);
            end if;

         elsif Must_Override (Spec) then
            if No (Overridden_Operation (Subp))
              and then not Can_Override_Operator (Subp)
            then
               Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
            end if;

         elsif not Error_Posted (Subp)
           and then Style_Check
           and then Can_Override_Operator (Subp)
           and then
             not Is_Predefined_File_Name
                   (Unit_File_Name (Get_Source_Unit (Subp)))
         then
            --  If style checks are enabled, indicate that the indicator is
            --  missing. However, at the point of declaration, the type of
            --  which this is a primitive operation may be private, in which
            --  case the indicator would be premature.

            if Has_Private_Declaration (Etype (Subp))
              or else Has_Private_Declaration (Etype (First_Formal (Subp)))
            then
               null;
            else
               Style.Missing_Overriding (Decl, Subp);
            end if;
         end if;

      elsif Must_Override (Spec) then
         if Ekind (Subp) = E_Entry then
            Error_Msg_NE ("entry & is not overriding", Spec, Subp);
         else
            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
         end if;

      --  If the operation is marked "not overriding" and it's not primitive
      --  then an error is issued, unless this is an operation of a task or
      --  protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
      --  has been specified have already been checked above.

      elsif Must_Not_Override (Spec)
        and then not Is_Primitive
        and then Ekind (Subp) /= E_Entry
        and then Ekind (Scope (Subp)) /= E_Protected_Type
      then
         Error_Msg_N
           ("overriding indicator only allowed if subprogram is primitive",
            Subp);
         return;
      end if;
   end Check_Overriding_Indicator;

   -------------------
   -- Check_Returns --
   -------------------

   --  Note: this procedure needs to know far too much about how the expander
   --  messes with exceptions. The use of the flag Exception_Junk and the
   --  incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
   --  works, but is not very clean. It would be better if the expansion
   --  routines would leave Original_Node working nicely, and we could use
   --  Original_Node here to ignore all the peculiar expander messing ???

   procedure Check_Returns
     (HSS  : Node_Id;
      Mode : Character;
      Err  : out Boolean;
      Proc : Entity_Id := Empty)
   is
      Handler : Node_Id;

      procedure Check_Statement_Sequence (L : List_Id);
      --  Internal recursive procedure to check a list of statements for proper
      --  termination by a return statement (or a transfer of control or a
      --  compound statement that is itself internally properly terminated).

      ------------------------------
      -- Check_Statement_Sequence --
      ------------------------------

      procedure Check_Statement_Sequence (L : List_Id) is
         Last_Stm : Node_Id;
         Stm      : Node_Id;
         Kind     : Node_Kind;

         Raise_Exception_Call : Boolean;
         --  Set True if statement sequence terminated by Raise_Exception call
         --  or a Reraise_Occurrence call.

      begin
         Raise_Exception_Call := False;

         --  Get last real statement

         Last_Stm := Last (L);

         --  Deal with digging out exception handler statement sequences that
         --  have been transformed by the local raise to goto optimization.
         --  See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
         --  optimization has occurred, we are looking at something like:

         --  begin
         --     original stmts in block

         --  exception            \
         --     when excep1 =>     |
         --        goto L1;        | omitted if No_Exception_Propagation
         --     when excep2 =>     |
         --        goto L2;       /
         --  end;

         --  goto L3;      -- skip handler when exception not raised

         --  <<L1>>        -- target label for local exception
         --     begin
         --        estmts1
         --     end;

         --     goto L3;

         --  <<L2>>
         --     begin
         --        estmts2
         --     end;

         --  <<L3>>

         --  and what we have to do is to dig out the estmts1 and estmts2
         --  sequences (which were the original sequences of statements in
         --  the exception handlers) and check them.

         if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
            Stm := Last_Stm;
            loop
               Prev (Stm);
               exit when No (Stm);
               exit when Nkind (Stm) /= N_Block_Statement;
               exit when not Exception_Junk (Stm);
               Prev (Stm);
               exit when No (Stm);
               exit when Nkind (Stm) /= N_Label;
               exit when not Exception_Junk (Stm);
               Check_Statement_Sequence
                 (Statements (Handled_Statement_Sequence (Next (Stm))));

               Prev (Stm);
               Last_Stm := Stm;
               exit when No (Stm);
               exit when Nkind (Stm) /= N_Goto_Statement;
               exit when not Exception_Junk (Stm);
            end loop;
         end if;

         --  Don't count pragmas

         while Nkind (Last_Stm) = N_Pragma

         --  Don't count call to SS_Release (can happen after Raise_Exception)

           or else
             (Nkind (Last_Stm) = N_Procedure_Call_Statement
                and then
              Nkind (Name (Last_Stm)) = N_Identifier
                and then
              Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))

         --  Don't count exception junk

           or else
             (Nkind_In (Last_Stm, N_Goto_Statement,
                                   N_Label,
                                   N_Object_Declaration)
               and then Exception_Junk (Last_Stm))
           or else Nkind (Last_Stm) in N_Push_xxx_Label
           or else Nkind (Last_Stm) in N_Pop_xxx_Label

         --  Inserted code, such as finalization calls, is irrelevant: we only
         --  need to check original source.

           or else Is_Rewrite_Insertion (Last_Stm)
         loop
            Prev (Last_Stm);
         end loop;

         --  Here we have the "real" last statement

         Kind := Nkind (Last_Stm);

         --  Transfer of control, OK. Note that in the No_Return procedure
         --  case, we already diagnosed any explicit return statements, so
         --  we can treat them as OK in this context.

         if Is_Transfer (Last_Stm) then
            return;

         --  Check cases of explicit non-indirect procedure calls

         elsif Kind = N_Procedure_Call_Statement
           and then Is_Entity_Name (Name (Last_Stm))
         then
            --  Check call to Raise_Exception procedure which is treated
            --  specially, as is a call to Reraise_Occurrence.

            --  We suppress the warning in these cases since it is likely that
            --  the programmer really does not expect to deal with the case
            --  of Null_Occurrence, and thus would find a warning about a
            --  missing return curious, and raising Program_Error does not
            --  seem such a bad behavior if this does occur.

            --  Note that in the Ada 2005 case for Raise_Exception, the actual
            --  behavior will be to raise Constraint_Error (see AI-329).

            if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
                 or else
               Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
            then
               Raise_Exception_Call := True;

               --  For Raise_Exception call, test first argument, if it is
               --  an attribute reference for a 'Identity call, then we know
               --  that the call cannot possibly return.

               declare
                  Arg : constant Node_Id :=
                          Original_Node (First_Actual (Last_Stm));
               begin
                  if Nkind (Arg) = N_Attribute_Reference
                    and then Attribute_Name (Arg) = Name_Identity
                  then
                     return;
                  end if;
               end;
            end if;

         --  If statement, need to look inside if there is an else and check
         --  each constituent statement sequence for proper termination.

         elsif Kind = N_If_Statement
           and then Present (Else_Statements (Last_Stm))
         then
            Check_Statement_Sequence (Then_Statements (Last_Stm));
            Check_Statement_Sequence (Else_Statements (Last_Stm));

            if Present (Elsif_Parts (Last_Stm)) then
               declare
                  Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));

               begin
                  while Present (Elsif_Part) loop
                     Check_Statement_Sequence (Then_Statements (Elsif_Part));
                     Next (Elsif_Part);
                  end loop;
               end;
            end if;

            return;

         --  Case statement, check each case for proper termination

         elsif Kind = N_Case_Statement then
            declare
               Case_Alt : Node_Id;
            begin
               Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
               while Present (Case_Alt) loop
                  Check_Statement_Sequence (Statements (Case_Alt));
                  Next_Non_Pragma (Case_Alt);
               end loop;
            end;

            return;

         --  Block statement, check its handled sequence of statements

         elsif Kind = N_Block_Statement then
            declare
               Err1 : Boolean;

            begin
               Check_Returns
                 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);

               if Err1 then
                  Err := True;
               end if;

               return;
            end;

         --  Loop statement. If there is an iteration scheme, we can definitely
         --  fall out of the loop. Similarly if there is an exit statement, we
         --  can fall out. In either case we need a following return.

         elsif Kind = N_Loop_Statement then
            if Present (Iteration_Scheme (Last_Stm))
              or else Has_Exit (Entity (Identifier (Last_Stm)))
            then
               null;

            --  A loop with no exit statement or iteration scheme is either
            --  an infinite loop, or it has some other exit (raise/return).
            --  In either case, no warning is required.

            else
               return;
            end if;

         --  Timed entry call, check entry call and delay alternatives

         --  Note: in expanded code, the timed entry call has been converted
         --  to a set of expanded statements on which the check will work
         --  correctly in any case.

         elsif Kind = N_Timed_Entry_Call then
            declare
               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
               DCA : constant Node_Id := Delay_Alternative      (Last_Stm);

            begin
               --  If statement sequence of entry call alternative is missing,
               --  then we can definitely fall through, and we post the error
               --  message on the entry call alternative itself.

               if No (Statements (ECA)) then
                  Last_Stm := ECA;

               --  If statement sequence of delay alternative is missing, then
               --  we can definitely fall through, and we post the error
               --  message on the delay alternative itself.

               --  Note: if both ECA and DCA are missing the return, then we
               --  post only one message, should be enough to fix the bugs.
               --  If not we will get a message next time on the DCA when the
               --  ECA is fixed!

               elsif No (Statements (DCA)) then
                  Last_Stm := DCA;

               --  Else check both statement sequences

               else
                  Check_Statement_Sequence (Statements (ECA));
                  Check_Statement_Sequence (Statements (DCA));
                  return;
               end if;
            end;

         --  Conditional entry call, check entry call and else part

         --  Note: in expanded code, the conditional entry call has been
         --  converted to a set of expanded statements on which the check
         --  will work correctly in any case.

         elsif Kind = N_Conditional_Entry_Call then
            declare
               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);

            begin
               --  If statement sequence of entry call alternative is missing,
               --  then we can definitely fall through, and we post the error
               --  message on the entry call alternative itself.

               if No (Statements (ECA)) then
                  Last_Stm := ECA;

               --  Else check statement sequence and else part

               else
                  Check_Statement_Sequence (Statements (ECA));
                  Check_Statement_Sequence (Else_Statements (Last_Stm));
                  return;
               end if;
            end;
         end if;

         --  If we fall through, issue appropriate message

         if Mode = 'F' then
            if not Raise_Exception_Call then
               Error_Msg_N
                 ("RETURN statement missing following this statement??!",
                  Last_Stm);
               Error_Msg_N
                 ("\Program_Error may be raised at run time??!",
                  Last_Stm);
            end if;

            --  Note: we set Err even though we have not issued a warning
            --  because we still have a case of a missing return. This is
            --  an extremely marginal case, probably will never be noticed
            --  but we might as well get it right.

            Err := True;

         --  Otherwise we have the case of a procedure marked No_Return

         else
            if not Raise_Exception_Call then
               Error_Msg_N
                 ("implied return after this statement " &
                  "will raise Program_Error??",
                  Last_Stm);
               Error_Msg_NE
                 ("\procedure & is marked as No_Return??!",
                  Last_Stm, Proc);
            end if;

            declare
               RE : constant Node_Id :=
                      Make_Raise_Program_Error (Sloc (Last_Stm),
                        Reason => PE_Implicit_Return);
            begin
               Insert_After (Last_Stm, RE);
               Analyze (RE);
            end;
         end if;
      end Check_Statement_Sequence;

   --  Start of processing for Check_Returns

   begin
      Err := False;
      Check_Statement_Sequence (Statements (HSS));

      if Present (Exception_Handlers (HSS)) then
         Handler := First_Non_Pragma (Exception_Handlers (HSS));
         while Present (Handler) loop
            Check_Statement_Sequence (Statements (Handler));
            Next_Non_Pragma (Handler);
         end loop;
      end if;
   end Check_Returns;

   ----------------------------
   -- Check_Subprogram_Order --
   ----------------------------

   procedure Check_Subprogram_Order (N : Node_Id) is

      function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
      --  This is used to check if S1 > S2 in the sense required by this test,
      --  for example nameab < namec, but name2 < name10.

      -----------------------------
      -- Subprogram_Name_Greater --
      -----------------------------

      function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
         L1, L2 : Positive;
         N1, N2 : Natural;

      begin
         --  Deal with special case where names are identical except for a
         --  numerical suffix. These are handled specially, taking the numeric
         --  ordering from the suffix into account.

         L1 := S1'Last;
         while S1 (L1) in '0' .. '9' loop
            L1 := L1 - 1;
         end loop;

         L2 := S2'Last;
         while S2 (L2) in '0' .. '9' loop
            L2 := L2 - 1;
         end loop;

         --  If non-numeric parts non-equal, do straight compare

         if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
            return S1 > S2;

         --  If non-numeric parts equal, compare suffixed numeric parts. Note
         --  that a missing suffix is treated as numeric zero in this test.

         else
            N1 := 0;
            while L1 < S1'Last loop
               L1 := L1 + 1;
               N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
            end loop;

            N2 := 0;
            while L2 < S2'Last loop
               L2 := L2 + 1;
               N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
            end loop;

            return N1 > N2;
         end if;
      end Subprogram_Name_Greater;

   --  Start of processing for Check_Subprogram_Order

   begin
      --  Check body in alpha order if this is option

      if Style_Check
        and then Style_Check_Order_Subprograms
        and then Nkind (N) = N_Subprogram_Body
        and then Comes_From_Source (N)
        and then In_Extended_Main_Source_Unit (N)
      then
         declare
            LSN : String_Ptr
                    renames Scope_Stack.Table
                              (Scope_Stack.Last).Last_Subprogram_Name;

            Body_Id : constant Entity_Id :=
                        Defining_Entity (Specification (N));

         begin
            Get_Decoded_Name_String (Chars (Body_Id));

            if LSN /= null then
               if Subprogram_Name_Greater
                    (LSN.all, Name_Buffer (1 .. Name_Len))
               then
                  Style.Subprogram_Not_In_Alpha_Order (Body_Id);
               end if;

               Free (LSN);
            end if;

            LSN := new String'(Name_Buffer (1 .. Name_Len));
         end;
      end if;
   end Check_Subprogram_Order;

   ------------------------------
   -- Check_Subtype_Conformant --
   ------------------------------

   procedure Check_Subtype_Conformant
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Err_Loc                  : Node_Id := Empty;
      Skip_Controlling_Formals : Boolean := False;
      Get_Inst                 : Boolean := False)
   is
      Result : Boolean;
      pragma Warnings (Off, Result);
   begin
      Check_Conformance
        (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
         Skip_Controlling_Formals => Skip_Controlling_Formals,
         Get_Inst                 => Get_Inst);
   end Check_Subtype_Conformant;

   ---------------------------
   -- Check_Type_Conformant --
   ---------------------------

   procedure Check_Type_Conformant
     (New_Id  : Entity_Id;
      Old_Id  : Entity_Id;
      Err_Loc : Node_Id := Empty)
   is
      Result : Boolean;
      pragma Warnings (Off, Result);
   begin
      Check_Conformance
        (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
   end Check_Type_Conformant;

   ---------------------------
   -- Can_Override_Operator --
   ---------------------------

   function Can_Override_Operator (Subp : Entity_Id) return Boolean is
      Typ : Entity_Id;

   begin
      if Nkind (Subp) /= N_Defining_Operator_Symbol then
         return False;

      else
         Typ := Base_Type (Etype (First_Formal (Subp)));

         --  Check explicitly that the operation is a primitive of the type

         return Operator_Matches_Spec (Subp, Subp)
           and then not Is_Generic_Type (Typ)
           and then Scope (Subp) = Scope (Typ)
           and then not Is_Class_Wide_Type (Typ);
      end if;
   end Can_Override_Operator;

   ----------------------
   -- Conforming_Types --
   ----------------------

   function Conforming_Types
     (T1       : Entity_Id;
      T2       : Entity_Id;
      Ctype    : Conformance_Type;
      Get_Inst : Boolean := False) return Boolean
   is
      Type_1 : Entity_Id := T1;
      Type_2 : Entity_Id := T2;
      Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;

      function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
      --  If neither T1 nor T2 are generic actual types, or if they are in
      --  different scopes (e.g. parent and child instances), then verify that
      --  the base types are equal. Otherwise T1 and T2 must be on the same
      --  subtype chain. The whole purpose of this procedure is to prevent
      --  spurious ambiguities in an instantiation that may arise if two
      --  distinct generic types are instantiated with the same actual.

      function Find_Designated_Type (T : Entity_Id) return Entity_Id;
      --  An access parameter can designate an incomplete type. If the
      --  incomplete type is the limited view of a type from a limited_
      --  with_clause, check whether the non-limited view is available. If
      --  it is a (non-limited) incomplete type, get the full view.

      function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
      --  Returns True if and only if either T1 denotes a limited view of T2
      --  or T2 denotes a limited view of T1. This can arise when the limited
      --  with view of a type is used in a subprogram declaration and the
      --  subprogram body is in the scope of a regular with clause for the
      --  same unit. In such a case, the two type entities can be considered
      --  identical for purposes of conformance checking.

      ----------------------
      -- Base_Types_Match --
      ----------------------

      function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
         BT1 : constant Entity_Id := Base_Type (T1);
         BT2 : constant Entity_Id := Base_Type (T2);

      begin
         if T1 = T2 then
            return True;

         elsif BT1 = BT2 then

            --  The following is too permissive. A more precise test should
            --  check that the generic actual is an ancestor subtype of the
            --  other ???.

            --  See code in Find_Corresponding_Spec that applies an additional
            --  filter to handle accidental amiguities in instances.

            return not Is_Generic_Actual_Type (T1)
              or else not Is_Generic_Actual_Type (T2)
              or else Scope (T1) /= Scope (T2);

         --  If T2 is a generic actual type it is declared as the subtype of
         --  the actual. If that actual is itself a subtype we need to use its
         --  own base type to check for compatibility.

         elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
            return True;

         elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
            return True;

         else
            return False;
         end if;
      end Base_Types_Match;

      --------------------------
      -- Find_Designated_Type --
      --------------------------

      function Find_Designated_Type (T : Entity_Id) return Entity_Id is
         Desig : Entity_Id;

      begin
         Desig := Directly_Designated_Type (T);

         if Ekind (Desig) = E_Incomplete_Type then

            --  If regular incomplete type, get full view if available

            if Present (Full_View (Desig)) then
               Desig := Full_View (Desig);

            --  If limited view of a type, get non-limited view if available,
            --  and check again for a regular incomplete type.

            elsif Present (Non_Limited_View (Desig)) then
               Desig := Get_Full_View (Non_Limited_View (Desig));
            end if;
         end if;

         return Desig;
      end Find_Designated_Type;

      -------------------------------
      -- Matches_Limited_With_View --
      -------------------------------

      function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
      begin
         --  In some cases a type imported through a limited_with clause, and
         --  its nonlimited view are both visible, for example in an anonymous
         --  access-to-class-wide type in a formal. Both entities designate the
         --  same type.

         if From_With_Type (T1) and then T2 = Available_View (T1) then
            return True;

         elsif From_With_Type (T2) and then T1 = Available_View (T2) then
            return True;

         elsif From_With_Type (T1)
           and then From_With_Type (T2)
           and then Available_View (T1) = Available_View (T2)
         then
            return True;

         else
            return False;
         end if;
      end Matches_Limited_With_View;

   --  Start of processing for Conforming_Types

   begin
      --  The context is an instance association for a formal access-to-
      --  subprogram type; the formal parameter types require mapping because
      --  they may denote other formal parameters of the generic unit.

      if Get_Inst then
         Type_1 := Get_Instance_Of (T1);
         Type_2 := Get_Instance_Of (T2);
      end if;

      --  If one of the types is a view of the other introduced by a limited
      --  with clause, treat these as conforming for all purposes.

      if Matches_Limited_With_View (T1, T2) then
         return True;

      elsif Base_Types_Match (Type_1, Type_2) then
         return Ctype <= Mode_Conformant
           or else Subtypes_Statically_Match (Type_1, Type_2);

      elsif Is_Incomplete_Or_Private_Type (Type_1)
        and then Present (Full_View (Type_1))
        and then Base_Types_Match (Full_View (Type_1), Type_2)
      then
         return Ctype <= Mode_Conformant
           or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);

      elsif Ekind (Type_2) = E_Incomplete_Type
        and then Present (Full_View (Type_2))
        and then Base_Types_Match (Type_1, Full_View (Type_2))
      then
         return Ctype <= Mode_Conformant
           or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));

      elsif Is_Private_Type (Type_2)
        and then In_Instance
        and then Present (Full_View (Type_2))
        and then Base_Types_Match (Type_1, Full_View (Type_2))
      then
         return Ctype <= Mode_Conformant
           or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
      end if;

      --  Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
      --  treated recursively because they carry a signature. As far as
      --  conformance is concerned, convention plays no role, and either
      --  or both could be access to protected subprograms.

      Are_Anonymous_Access_To_Subprogram_Types :=
        Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
                          E_Anonymous_Access_Protected_Subprogram_Type)
          and then
        Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
                          E_Anonymous_Access_Protected_Subprogram_Type);

      --  Test anonymous access type case. For this case, static subtype
      --  matching is required for mode conformance (RM 6.3.1(15)). We check
      --  the base types because we may have built internal subtype entities
      --  to handle null-excluding types (see Process_Formals).

      if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
            and then
          Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)

        -- Ada 2005 (AI-254)

        or else Are_Anonymous_Access_To_Subprogram_Types
      then
         declare
            Desig_1 : Entity_Id;
            Desig_2 : Entity_Id;

         begin
            --  In Ada 2005, access constant indicators must match for
            --  subtype conformance.

            if Ada_Version >= Ada_2005
              and then Ctype >= Subtype_Conformant
              and then
                Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
            then
               return False;
            end if;

            Desig_1 := Find_Designated_Type (Type_1);
            Desig_2 := Find_Designated_Type (Type_2);

            --  If the context is an instance association for a formal
            --  access-to-subprogram type; formal access parameter designated
            --  types require mapping because they may denote other formal
            --  parameters of the generic unit.

            if Get_Inst then
               Desig_1 := Get_Instance_Of (Desig_1);
               Desig_2 := Get_Instance_Of (Desig_2);
            end if;

            --  It is possible for a Class_Wide_Type to be introduced for an
            --  incomplete type, in which case there is a separate class_ wide
            --  type for the full view. The types conform if their Etypes
            --  conform, i.e. one may be the full view of the other. This can
            --  only happen in the context of an access parameter, other uses
            --  of an incomplete Class_Wide_Type are illegal.

            if Is_Class_Wide_Type (Desig_1)
                 and then
               Is_Class_Wide_Type (Desig_2)
            then
               return
                 Conforming_Types
                   (Etype (Base_Type (Desig_1)),
                    Etype (Base_Type (Desig_2)), Ctype);

            elsif Are_Anonymous_Access_To_Subprogram_Types then
               if Ada_Version < Ada_2005 then
                  return Ctype = Type_Conformant
                    or else
                      Subtypes_Statically_Match (Desig_1, Desig_2);

               --  We must check the conformance of the signatures themselves

               else
                  declare
                     Conformant : Boolean;
                  begin
                     Check_Conformance
                       (Desig_1, Desig_2, Ctype, False, Conformant);
                     return Conformant;
                  end;
               end if;

            else
               return Base_Type (Desig_1) = Base_Type (Desig_2)
                and then (Ctype = Type_Conformant
                           or else
                             Subtypes_Statically_Match (Desig_1, Desig_2));
            end if;
         end;

      --  Otherwise definitely no match

      else
         if ((Ekind (Type_1) = E_Anonymous_Access_Type
               and then Is_Access_Type (Type_2))
            or else (Ekind (Type_2) = E_Anonymous_Access_Type
                      and then Is_Access_Type (Type_1)))
           and then
             Conforming_Types
               (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
         then
            May_Hide_Profile := True;
         end if;

         return False;
      end if;
   end Conforming_Types;

   --------------------------
   -- Create_Extra_Formals --
   --------------------------

   procedure Create_Extra_Formals (E : Entity_Id) is
      Formal      : Entity_Id;
      First_Extra : Entity_Id := Empty;
      Last_Extra  : Entity_Id;
      Formal_Type : Entity_Id;
      P_Formal    : Entity_Id := Empty;

      function Add_Extra_Formal
        (Assoc_Entity : Entity_Id;
         Typ          : Entity_Id;
         Scope        : Entity_Id;
         Suffix       : String) return Entity_Id;
      --  Add an extra formal to the current list of formals and extra formals.
      --  The extra formal is added to the end of the list of extra formals,
      --  and also returned as the result. These formals are always of mode IN.
      --  The new formal has the type Typ, is declared in Scope, and its name
      --  is given by a concatenation of the name of Assoc_Entity and Suffix.
      --  The following suffixes are currently used. They should not be changed
      --  without coordinating with CodePeer, which makes use of these to
      --  provide better messages.

      --  O denotes the Constrained bit.
      --  L denotes the accessibility level.
      --  BIP_xxx denotes an extra formal for a build-in-place function. See
      --  the full list in exp_ch6.BIP_Formal_Kind.

      ----------------------
      -- Add_Extra_Formal --
      ----------------------

      function Add_Extra_Formal
        (Assoc_Entity : Entity_Id;
         Typ          : Entity_Id;
         Scope        : Entity_Id;
         Suffix       : String) return Entity_Id
      is
         EF : constant Entity_Id :=
                Make_Defining_Identifier (Sloc (Assoc_Entity),
                  Chars  => New_External_Name (Chars (Assoc_Entity),
                                               Suffix => Suffix));

      begin
         --  A little optimization. Never generate an extra formal for the
         --  _init operand of an initialization procedure, since it could
         --  never be used.

         if Chars (Formal) = Name_uInit then
            return Empty;
         end if;

         Set_Ekind           (EF, E_In_Parameter);
         Set_Actual_Subtype  (EF, Typ);
         Set_Etype           (EF, Typ);
         Set_Scope           (EF, Scope);
         Set_Mechanism       (EF, Default_Mechanism);
         Set_Formal_Validity (EF);

         if No (First_Extra) then
            First_Extra := EF;
            Set_Extra_Formals (Scope, First_Extra);
         end if;

         if Present (Last_Extra) then
            Set_Extra_Formal (Last_Extra, EF);
         end if;

         Last_Extra := EF;

         return EF;
      end Add_Extra_Formal;

   --  Start of processing for Create_Extra_Formals

   begin
      --  We never generate extra formals if expansion is not active because we
      --  don't need them unless we are generating code.

      if not Expander_Active then
         return;
      end if;

      --  No need to generate extra formals in interface thunks whose target
      --  primitive has no extra formals.

      if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
         return;
      end if;

      --  If this is a derived subprogram then the subtypes of the parent
      --  subprogram's formal parameters will be used to determine the need
      --  for extra formals.

      if Is_Overloadable (E) and then Present (Alias (E)) then
         P_Formal := First_Formal (Alias (E));
      end if;

      Last_Extra := Empty;
      Formal := First_Formal (E);
      while Present (Formal) loop
         Last_Extra := Formal;
         Next_Formal (Formal);
      end loop;

      --  If Extra_formals were already created, don't do it again. This
      --  situation may arise for subprogram types created as part of
      --  dispatching calls (see Expand_Dispatching_Call)

      if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
         return;
      end if;

      --  If the subprogram is a predefined dispatching subprogram then don't
      --  generate any extra constrained or accessibility level formals. In
      --  general we suppress these for internal subprograms (by not calling
      --  Freeze_Subprogram and Create_Extra_Formals at all), but internally
      --  generated stream attributes do get passed through because extra
      --  build-in-place formals are needed in some cases (limited 'Input).

      if Is_Predefined_Internal_Operation (E) then
         goto Test_For_Func_Result_Extras;
      end if;

      Formal := First_Formal (E);
      while Present (Formal) loop

         --  Create extra formal for supporting the attribute 'Constrained.
         --  The case of a private type view without discriminants also
         --  requires the extra formal if the underlying type has defaulted
         --  discriminants.

         if Ekind (Formal) /= E_In_Parameter then
            if Present (P_Formal) then
               Formal_Type := Etype (P_Formal);
            else
               Formal_Type := Etype (Formal);
            end if;

            --  Do not produce extra formals for Unchecked_Union parameters.
            --  Jump directly to the end of the loop.

            if Is_Unchecked_Union (Base_Type (Formal_Type)) then
               goto Skip_Extra_Formal_Generation;
            end if;

            if not Has_Discriminants (Formal_Type)
              and then Ekind (Formal_Type) in Private_Kind
              and then Present (Underlying_Type (Formal_Type))
            then
               Formal_Type := Underlying_Type (Formal_Type);
            end if;

            --  Suppress the extra formal if formal's subtype is constrained or
            --  indefinite, or we're compiling for Ada 2012 and the underlying
            --  type is tagged and limited. In Ada 2012, a limited tagged type
            --  can have defaulted discriminants, but 'Constrained is required
            --  to return True, so the formal is never needed (see AI05-0214).
            --  Note that this ensures consistency of calling sequences for
            --  dispatching operations when some types in a class have defaults
            --  on discriminants and others do not (and requiring the extra
            --  formal would introduce distributed overhead).

            --  If the type does not have a completion yet, treat as prior to
            --  Ada 2012 for consistency.

            if Has_Discriminants (Formal_Type)
              and then not Is_Constrained (Formal_Type)
              and then not Is_Indefinite_Subtype (Formal_Type)
              and then (Ada_Version < Ada_2012
                         or else No (Underlying_Type (Formal_Type))
                         or else not
                           (Is_Limited_Type (Formal_Type)
                             and then
                               (Is_Tagged_Type
                                  (Underlying_Type (Formal_Type)))))
            then
               Set_Extra_Constrained
                 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
            end if;
         end if;

         --  Create extra formal for supporting accessibility checking. This
         --  is done for both anonymous access formals and formals of named
         --  access types that are marked as controlling formals. The latter
         --  case can occur when Expand_Dispatching_Call creates a subprogram
         --  type and substitutes the types of access-to-class-wide actuals
         --  for the anonymous access-to-specific-type of controlling formals.
         --  Base_Type is applied because in cases where there is a null
         --  exclusion the formal may have an access subtype.

         --  This is suppressed if we specifically suppress accessibility
         --  checks at the package level for either the subprogram, or the
         --  package in which it resides. However, we do not suppress it
         --  simply if the scope has accessibility checks suppressed, since
         --  this could cause trouble when clients are compiled with a
         --  different suppression setting. The explicit checks at the
         --  package level are safe from this point of view.

         if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
              or else (Is_Controlling_Formal (Formal)
                        and then Is_Access_Type (Base_Type (Etype (Formal)))))
           and then not
             (Explicit_Suppress (E, Accessibility_Check)
               or else
              Explicit_Suppress (Scope (E), Accessibility_Check))
           and then
             (No (P_Formal)
               or else Present (Extra_Accessibility (P_Formal)))
         then
            Set_Extra_Accessibility
              (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
         end if;

         --  This label is required when skipping extra formal generation for
         --  Unchecked_Union parameters.

         <<Skip_Extra_Formal_Generation>>

         if Present (P_Formal) then
            Next_Formal (P_Formal);
         end if;

         Next_Formal (Formal);
      end loop;

      <<Test_For_Func_Result_Extras>>

      --  Ada 2012 (AI05-234): "the accessibility level of the result of a
      --  function call is ... determined by the point of call ...".

      if Needs_Result_Accessibility_Level (E) then
         Set_Extra_Accessibility_Of_Result
           (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
      end if;

      --  Ada 2005 (AI-318-02): In the case of build-in-place functions, add
      --  appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.

      if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
         declare
            Result_Subt : constant Entity_Id := Etype (E);
            Full_Subt   : constant Entity_Id := Available_View (Result_Subt);
            Formal_Typ  : Entity_Id;

            Discard : Entity_Id;
            pragma Warnings (Off, Discard);

         begin
            --  In the case of functions with unconstrained result subtypes,
            --  add a 4-state formal indicating whether the return object is
            --  allocated by the caller (1), or should be allocated by the
            --  callee on the secondary stack (2), in the global heap (3), or
            --  in a user-defined storage pool (4). For the moment we just use
            --  Natural for the type of this formal. Note that this formal
            --  isn't usually needed in the case where the result subtype is
            --  constrained, but it is needed when the function has a tagged
            --  result, because generally such functions can be called in a
            --  dispatching context and such calls must be handled like calls
            --  to a class-wide function.

            if Needs_BIP_Alloc_Form (E) then
               Discard :=
                 Add_Extra_Formal
                   (E, Standard_Natural,
                    E, BIP_Formal_Suffix (BIP_Alloc_Form));

               --  Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
               --  use a user-defined pool. This formal is not added on
               --  .NET/JVM/ZFP as those targets do not support pools.

               if VM_Target = No_VM
                 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
               then
                  Discard :=
                    Add_Extra_Formal
                      (E, RTE (RE_Root_Storage_Pool_Ptr),
                       E, BIP_Formal_Suffix (BIP_Storage_Pool));
               end if;
            end if;

            --  In the case of functions whose result type needs finalization,
            --  add an extra formal which represents the finalization master.

            if Needs_BIP_Finalization_Master (E) then
               Discard :=
                 Add_Extra_Formal
                   (E, RTE (RE_Finalization_Master_Ptr),
                    E, BIP_Formal_Suffix (BIP_Finalization_Master));
            end if;

            --  When the result type contains tasks, add two extra formals: the
            --  master of the tasks to be created, and the caller's activation
            --  chain.

            if Has_Task (Full_Subt) then
               Discard :=
                 Add_Extra_Formal
                   (E, RTE (RE_Master_Id),
                    E, BIP_Formal_Suffix (BIP_Task_Master));
               Discard :=
                 Add_Extra_Formal
                   (E, RTE (RE_Activation_Chain_Access),
                    E, BIP_Formal_Suffix (BIP_Activation_Chain));
            end if;

            --  All build-in-place functions get an extra formal that will be
            --  passed the address of the return object within the caller.

            Formal_Typ :=
              Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));

            Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
            Set_Etype (Formal_Typ, Formal_Typ);
            Set_Depends_On_Private
              (Formal_Typ, Has_Private_Component (Formal_Typ));
            Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
            Set_Is_Access_Constant (Formal_Typ, False);

            --  Ada 2005 (AI-50217): Propagate the attribute that indicates
            --  the designated type comes from the limited view (for back-end
            --  purposes).

            Set_From_With_Type (Formal_Typ, From_With_Type (Result_Subt));

            Layout_Type (Formal_Typ);

            Discard :=
              Add_Extra_Formal
                (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
         end;
      end if;
   end Create_Extra_Formals;

   -----------------------------
   -- Enter_Overloaded_Entity --
   -----------------------------

   procedure Enter_Overloaded_Entity (S : Entity_Id) is
      E   : Entity_Id := Current_Entity_In_Scope (S);
      C_E : Entity_Id := Current_Entity (S);

   begin
      if Present (E) then
         Set_Has_Homonym (E);
         Set_Has_Homonym (S);
      end if;

      Set_Is_Immediately_Visible (S);
      Set_Scope (S, Current_Scope);

      --  Chain new entity if front of homonym in current scope, so that
      --  homonyms are contiguous.

      if Present (E) and then E /= C_E then
         while Homonym (C_E) /= E loop
            C_E := Homonym (C_E);
         end loop;

         Set_Homonym (C_E, S);

      else
         E := C_E;
         Set_Current_Entity (S);
      end if;

      Set_Homonym (S, E);

      if Is_Inherited_Operation (S) then
         Append_Inherited_Subprogram (S);
      else
         Append_Entity (S, Current_Scope);
      end if;

      Set_Public_Status (S);

      if Debug_Flag_E then
         Write_Str ("New overloaded entity chain: ");
         Write_Name (Chars (S));

         E := S;
         while Present (E) loop
            Write_Str (" "); Write_Int (Int (E));
            E := Homonym (E);
         end loop;

         Write_Eol;
      end if;

      --  Generate warning for hiding

      if Warn_On_Hiding
        and then Comes_From_Source (S)
        and then In_Extended_Main_Source_Unit (S)
      then
         E := S;
         loop
            E := Homonym (E);
            exit when No (E);

            --  Warn unless genuine overloading. Do not emit warning on
            --  hiding predefined operators in Standard (these are either an
            --  (artifact of our implicit declarations, or simple noise) but
            --  keep warning on a operator defined on a local subtype, because
            --  of the real danger that different operators may be applied in
            --  various parts of the program.

            --  Note that if E and S have the same scope, there is never any
            --  hiding. Either the two conflict, and the program is illegal,
            --  or S is overriding an implicit inherited subprogram.

            if Scope (E) /= Scope (S)
                  and then (not Is_Overloadable (E)
                             or else Subtype_Conformant (E, S))
                  and then (Is_Immediately_Visible (E)
                              or else
                            Is_Potentially_Use_Visible (S))
            then
               if Scope (E) /= Standard_Standard then
                  Error_Msg_Sloc := Sloc (E);
                  Error_Msg_N ("declaration of & hides one#?h?", S);

               elsif Nkind (S) = N_Defining_Operator_Symbol
                 and then
                   Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
               then
                  Error_Msg_N
                    ("declaration of & hides predefined operator?h?", S);
               end if;
            end if;
         end loop;
      end if;
   end Enter_Overloaded_Entity;

   -----------------------------
   -- Check_Untagged_Equality --
   -----------------------------

   procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
      Typ      : constant Entity_Id := Etype (First_Formal (Eq_Op));
      Decl     : constant Node_Id   := Unit_Declaration_Node (Eq_Op);
      Obj_Decl : Node_Id;

   begin
      if Nkind (Decl) = N_Subprogram_Declaration
        and then Is_Record_Type (Typ)
        and then not Is_Tagged_Type (Typ)
      then
         --  If the type is not declared in a package, or if we are in the
         --  body of the package or in some other scope, the new operation is
         --  not primitive, and therefore legal, though suspicious. If the
         --  type is a generic actual (sub)type, the operation is not primitive
         --  either because the base type is declared elsewhere.

         if Is_Frozen (Typ) then
            if Ekind (Scope (Typ)) /= E_Package
              or else Scope (Typ) /= Current_Scope
            then
               null;

            elsif Is_Generic_Actual_Type (Typ) then
               null;

            elsif In_Package_Body (Scope (Typ)) then
               Error_Msg_NE
                 ("equality operator must be declared "
                   & "before type& is frozen", Eq_Op, Typ);
               Error_Msg_N
                 ("\move declaration to package spec", Eq_Op);

            else
               Error_Msg_NE
                 ("equality operator must be declared "
                   & "before type& is frozen", Eq_Op, Typ);

               Obj_Decl := Next (Parent (Typ));
               while Present (Obj_Decl) and then Obj_Decl /= Decl loop
                  if Nkind (Obj_Decl) = N_Object_Declaration
                    and then Etype (Defining_Identifier (Obj_Decl)) = Typ
                  then
                     Error_Msg_NE
                       ("type& is frozen by declaration??", Obj_Decl, Typ);
                     Error_Msg_N
                       ("\an equality operator cannot be declared after this "
                         & "point (RM 4.5.2 (9.8)) (Ada 2012))??", Obj_Decl);
                     exit;
                  end if;

                  Next (Obj_Decl);
               end loop;
            end if;

         elsif not In_Same_List (Parent (Typ), Decl)
           and then not Is_Limited_Type (Typ)
         then

            --  This makes it illegal to have a primitive equality declared in
            --  the private part if the type is visible.

            Error_Msg_N ("equality operator appears too late", Eq_Op);
         end if;
      end if;
   end Check_Untagged_Equality;

   -----------------------------
   -- Find_Corresponding_Spec --
   -----------------------------

   function Find_Corresponding_Spec
     (N          : Node_Id;
      Post_Error : Boolean := True) return Entity_Id
   is
      Spec       : constant Node_Id   := Specification (N);
      Designator : constant Entity_Id := Defining_Entity (Spec);

      E : Entity_Id;

      function Different_Generic_Profile (E : Entity_Id) return Boolean;
      --  Even if fully conformant, a body may depend on a generic actual when
      --  the spec does not, or vice versa, in which case they were distinct
      --  entities in the generic.

      -------------------------------
      -- Different_Generic_Profile --
      -------------------------------

      function Different_Generic_Profile (E : Entity_Id) return Boolean is
         F1, F2 : Entity_Id;

         function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
         --  Check that the types of corresponding formals have the same
         --  generic actual if any. We have to account for subtypes of a
         --  generic formal, declared between a spec and a body, which may
         --  appear distinct in an instance but matched in the generic.

         -------------------------
         -- Same_Generic_Actual --
         -------------------------

         function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
         begin
            return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
              or else
                (Present (Parent (T1))
                  and then Comes_From_Source (Parent (T1))
                  and then Nkind (Parent (T1)) = N_Subtype_Declaration
                  and then Is_Entity_Name (Subtype_Indication (Parent (T1)))
                  and then Entity (Subtype_Indication (Parent (T1))) = T2);
         end Same_Generic_Actual;

      --  Start of processing for Different_Generic_Profile

      begin
         if not In_Instance then
            return False;

         elsif Ekind (E) = E_Function
           and then not Same_Generic_Actual (Etype (E), Etype (Designator))
         then
            return True;
         end if;

         F1 := First_Formal (Designator);
         F2 := First_Formal (E);
         while Present (F1) loop
            if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
               return True;
            end if;

            Next_Formal (F1);
            Next_Formal (F2);
         end loop;

         return False;
      end Different_Generic_Profile;

   --  Start of processing for Find_Corresponding_Spec

   begin
      E := Current_Entity (Designator);
      while Present (E) loop

         --  We are looking for a matching spec. It must have the same scope,
         --  and the same name, and either be type conformant, or be the case
         --  of a library procedure spec and its body (which belong to one
         --  another regardless of whether they are type conformant or not).

         if Scope (E) = Current_Scope then
            if Current_Scope = Standard_Standard
              or else (Ekind (E) = Ekind (Designator)
                        and then Type_Conformant (E, Designator))
            then
               --  Within an instantiation, we know that spec and body are
               --  subtype conformant, because they were subtype conformant in
               --  the generic. We choose the subtype-conformant entity here as
               --  well, to resolve spurious ambiguities in the instance that
               --  were not present in the generic (i.e. when two different
               --  types are given the same actual). If we are looking for a
               --  spec to match a body, full conformance is expected.

               if In_Instance then
                  Set_Convention (Designator, Convention (E));

                  --  Skip past subprogram bodies and subprogram renamings that
                  --  may appear to have a matching spec, but that aren't fully
                  --  conformant with it. That can occur in cases where an
                  --  actual type causes unrelated homographs in the instance.

                  if Nkind_In (N, N_Subprogram_Body,
                                  N_Subprogram_Renaming_Declaration)
                    and then Present (Homonym (E))
                    and then not Fully_Conformant (Designator, E)
                  then
                     goto Next_Entity;

                  elsif not Subtype_Conformant (Designator, E) then
                     goto Next_Entity;

                  elsif Different_Generic_Profile (E) then
                     goto Next_Entity;
                  end if;
               end if;

               --  Ada 2012 (AI05-0165): For internally generated bodies of
               --  null procedures locate the internally generated spec. We
               --  enforce mode conformance since a tagged type may inherit
               --  from interfaces several null primitives which differ only
               --  in the mode of the formals.

               if not (Comes_From_Source (E))
                 and then Is_Null_Procedure (E)
                 and then not Mode_Conformant (Designator, E)
               then
                  null;

               --  For null procedures coming from source that are completions,
               --  analysis of the generated body will establish the link.

               elsif Comes_From_Source (E)
                 and then Nkind (Spec) = N_Procedure_Specification
                 and then Null_Present (Spec)
               then
                  return E;

               elsif not Has_Completion (E) then
                  if Nkind (N) /= N_Subprogram_Body_Stub then
                     Set_Corresponding_Spec (N, E);
                  end if;

                  Set_Has_Completion (E);
                  return E;

               elsif Nkind (Parent (N)) = N_Subunit then

                  --  If this is the proper body of a subunit, the completion
                  --  flag is set when analyzing the stub.

                  return E;

               --  If E is an internal function with a controlling result that
               --  was created for an operation inherited by a null extension,
               --  it may be overridden by a body without a previous spec (one
               --  more reason why these should be shunned). In that case we
               --  remove the generated body if present, because the current
               --  one is the explicit overriding.

               elsif Ekind (E) = E_Function
                 and then Ada_Version >= Ada_2005
                 and then not Comes_From_Source (E)
                 and then Has_Controlling_Result (E)
                 and then Is_Null_Extension (Etype (E))
                 and then Comes_From_Source (Spec)
               then
                  Set_Has_Completion (E, False);

                  if Expander_Active
                    and then Nkind (Parent (E)) = N_Function_Specification
                  then
                     Remove
                       (Unit_Declaration_Node
                          (Corresponding_Body (Unit_Declaration_Node (E))));

                     return E;

                  --  If expansion is disabled, or if the wrapper function has
                  --  not been generated yet, this a late body overriding an
                  --  inherited operation, or it is an overriding by some other
                  --  declaration before the controlling result is frozen. In
                  --  either case this is a declaration of a new entity.

                  else
                     return Empty;
                  end if;

               --  If the body already exists, then this is an error unless
               --  the previous declaration is the implicit declaration of a
               --  derived subprogram. It is also legal for an instance to
               --  contain type conformant overloadable declarations (but the
               --  generic declaration may not), per 8.3(26/2).

               elsif No (Alias (E))
                 and then not Is_Intrinsic_Subprogram (E)
                 and then not In_Instance
                 and then Post_Error
               then
                  Error_Msg_Sloc := Sloc (E);

                  if Is_Imported (E) then
                     Error_Msg_NE
                      ("body not allowed for imported subprogram & declared#",
                        N, E);
                  else
                     Error_Msg_NE ("duplicate body for & declared#", N, E);
                  end if;
               end if;

            --  Child units cannot be overloaded, so a conformance mismatch
            --  between body and a previous spec is an error.

            elsif Is_Child_Unit (E)
              and then
                Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
              and then
                Nkind (Parent (Unit_Declaration_Node (Designator))) =
                  N_Compilation_Unit
              and then Post_Error
            then
               Error_Msg_N
                 ("body of child unit does not match previous declaration", N);
            end if;
         end if;

         <<Next_Entity>>
            E := Homonym (E);
      end loop;

      --  On exit, we know that no previous declaration of subprogram exists

      return Empty;
   end Find_Corresponding_Spec;

   ----------------------
   -- Fully_Conformant --
   ----------------------

   function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
      Result : Boolean;
   begin
      Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
      return Result;
   end Fully_Conformant;

   ----------------------------------
   -- Fully_Conformant_Expressions --
   ----------------------------------

   function Fully_Conformant_Expressions
     (Given_E1 : Node_Id;
      Given_E2 : Node_Id) return Boolean
   is
      E1 : constant Node_Id := Original_Node (Given_E1);
      E2 : constant Node_Id := Original_Node (Given_E2);
      --  We always test conformance on original nodes, since it is possible
      --  for analysis and/or expansion to make things look as though they
      --  conform when they do not, e.g. by converting 1+2 into 3.

      function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
        renames Fully_Conformant_Expressions;

      function FCL (L1, L2 : List_Id) return Boolean;
      --  Compare elements of two lists for conformance. Elements have to be
      --  conformant, and actuals inserted as default parameters do not match
      --  explicit actuals with the same value.

      function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
      --  Compare an operator node with a function call

      ---------
      -- FCL --
      ---------

      function FCL (L1, L2 : List_Id) return Boolean is
         N1, N2 : Node_Id;

      begin
         if L1 = No_List then
            N1 := Empty;
         else
            N1 := First (L1);
         end if;

         if L2 = No_List then
            N2 := Empty;
         else
            N2 := First (L2);
         end if;

         --  Compare two lists, skipping rewrite insertions (we want to compare
         --  the original trees, not the expanded versions!)

         loop
            if Is_Rewrite_Insertion (N1) then
               Next (N1);
            elsif Is_Rewrite_Insertion (N2) then
               Next (N2);
            elsif No (N1) then
               return No (N2);
            elsif No (N2) then
               return False;
            elsif not FCE (N1, N2) then
               return False;
            else
               Next (N1);
               Next (N2);
            end if;
         end loop;
      end FCL;

      ---------
      -- FCO --
      ---------

      function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
         Actuals : constant List_Id := Parameter_Associations (Call_Node);
         Act     : Node_Id;

      begin
         if No (Actuals)
            or else Entity (Op_Node) /= Entity (Name (Call_Node))
         then
            return False;

         else
            Act := First (Actuals);

            if Nkind (Op_Node) in N_Binary_Op then
               if not FCE (Left_Opnd (Op_Node), Act) then
                  return False;
               end if;

               Next (Act);
            end if;

            return Present (Act)
              and then FCE (Right_Opnd (Op_Node), Act)
              and then No (Next (Act));
         end if;
      end FCO;

   --  Start of processing for Fully_Conformant_Expressions

   begin
      --  Non-conformant if paren count does not match. Note: if some idiot
      --  complains that we don't do this right for more than 3 levels of
      --  parentheses, they will be treated with the respect they deserve!

      if Paren_Count (E1) /= Paren_Count (E2) then
         return False;

      --  If same entities are referenced, then they are conformant even if
      --  they have different forms (RM 8.3.1(19-20)).

      elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
         if Present (Entity (E1)) then
            return Entity (E1) = Entity (E2)
              or else (Chars (Entity (E1)) = Chars (Entity (E2))
                        and then Ekind (Entity (E1)) = E_Discriminant
                        and then Ekind (Entity (E2)) = E_In_Parameter);

         elsif Nkind (E1) = N_Expanded_Name
           and then Nkind (E2) = N_Expanded_Name
           and then Nkind (Selector_Name (E1)) = N_Character_Literal
           and then Nkind (Selector_Name (E2)) = N_Character_Literal
         then
            return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));

         else
            --  Identifiers in component associations don't always have
            --  entities, but their names must conform.

            return Nkind  (E1) = N_Identifier
              and then Nkind (E2) = N_Identifier
              and then Chars (E1) = Chars (E2);
         end if;

      elsif Nkind (E1) = N_Character_Literal
        and then Nkind (E2) = N_Expanded_Name
      then
         return Nkind (Selector_Name (E2)) = N_Character_Literal
           and then Chars (E1) = Chars (Selector_Name (E2));

      elsif Nkind (E2) = N_Character_Literal
        and then Nkind (E1) = N_Expanded_Name
      then
         return Nkind (Selector_Name (E1)) = N_Character_Literal
           and then Chars (E2) = Chars (Selector_Name (E1));

      elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
         return FCO (E1, E2);

      elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
         return FCO (E2, E1);

      --  Otherwise we must have the same syntactic entity

      elsif Nkind (E1) /= Nkind (E2) then
         return False;

      --  At this point, we specialize by node type

      else
         case Nkind (E1) is

            when N_Aggregate =>
               return
                 FCL (Expressions (E1), Expressions (E2))
                   and then
                 FCL (Component_Associations (E1),
                      Component_Associations (E2));

            when N_Allocator =>
               if Nkind (Expression (E1)) = N_Qualified_Expression
                    or else
                  Nkind (Expression (E2)) = N_Qualified_Expression
               then
                  return FCE (Expression (E1), Expression (E2));

               --  Check that the subtype marks and any constraints
               --  are conformant

               else
                  declare
                     Indic1 : constant Node_Id := Expression (E1);
                     Indic2 : constant Node_Id := Expression (E2);
                     Elt1   : Node_Id;
                     Elt2   : Node_Id;

                  begin
                     if Nkind (Indic1) /= N_Subtype_Indication then
                        return
                          Nkind (Indic2) /= N_Subtype_Indication
                            and then Entity (Indic1) = Entity (Indic2);

                     elsif Nkind (Indic2) /= N_Subtype_Indication then
                        return
                          Nkind (Indic1) /= N_Subtype_Indication
                            and then Entity (Indic1) = Entity (Indic2);

                     else
                        if Entity (Subtype_Mark (Indic1)) /=
                          Entity (Subtype_Mark (Indic2))
                        then
                           return False;
                        end if;

                        Elt1 := First (Constraints (Constraint (Indic1)));
                        Elt2 := First (Constraints (Constraint (Indic2)));
                        while Present (Elt1) and then Present (Elt2) loop
                           if not FCE (Elt1, Elt2) then
                              return False;
                           end if;

                           Next (Elt1);
                           Next (Elt2);
                        end loop;

                        return True;
                     end if;
                  end;
               end if;

            when N_Attribute_Reference =>
               return
                 Attribute_Name (E1) = Attribute_Name (E2)
                   and then FCL (Expressions (E1), Expressions (E2));

            when N_Binary_Op =>
               return
                 Entity (E1) = Entity (E2)
                   and then FCE (Left_Opnd  (E1), Left_Opnd  (E2))
                   and then FCE (Right_Opnd (E1), Right_Opnd (E2));

            when N_Short_Circuit | N_Membership_Test =>
               return
                 FCE (Left_Opnd  (E1), Left_Opnd  (E2))
                   and then
                 FCE (Right_Opnd (E1), Right_Opnd (E2));

            when N_Case_Expression =>
               declare
                  Alt1 : Node_Id;
                  Alt2 : Node_Id;

               begin
                  if not FCE (Expression (E1), Expression (E2)) then
                     return False;

                  else
                     Alt1 := First (Alternatives (E1));
                     Alt2 := First (Alternatives (E2));
                     loop
                        if Present (Alt1) /= Present (Alt2) then
                           return False;
                        elsif No (Alt1) then
                           return True;
                        end if;

                        if not FCE (Expression (Alt1), Expression (Alt2))
                          or else not FCL (Discrete_Choices (Alt1),
                                           Discrete_Choices (Alt2))
                        then
                           return False;
                        end if;

                        Next (Alt1);
                        Next (Alt2);
                     end loop;
                  end if;
               end;

            when N_Character_Literal =>
               return
                 Char_Literal_Value (E1) = Char_Literal_Value (E2);

            when N_Component_Association =>
               return
                 FCL (Choices (E1), Choices (E2))
                   and then
                 FCE (Expression (E1), Expression (E2));

            when N_Explicit_Dereference =>
               return
                 FCE (Prefix (E1), Prefix (E2));

            when N_Extension_Aggregate =>
               return
                 FCL (Expressions (E1), Expressions (E2))
                   and then Null_Record_Present (E1) =
                            Null_Record_Present (E2)
                   and then FCL (Component_Associations (E1),
                               Component_Associations (E2));

            when N_Function_Call =>
               return
                 FCE (Name (E1), Name (E2))
                   and then
                 FCL (Parameter_Associations (E1),
                      Parameter_Associations (E2));

            when N_If_Expression =>
               return
                 FCL (Expressions (E1), Expressions (E2));

            when N_Indexed_Component =>
               return
                 FCE (Prefix (E1), Prefix (E2))
                   and then
                 FCL (Expressions (E1), Expressions (E2));

            when N_Integer_Literal =>
               return (Intval (E1) = Intval (E2));

            when N_Null =>
               return True;

            when N_Operator_Symbol =>
               return
                 Chars (E1) = Chars (E2);

            when N_Others_Choice =>
               return True;

            when N_Parameter_Association =>
               return
                 Chars (Selector_Name (E1))  = Chars (Selector_Name (E2))
                   and then FCE (Explicit_Actual_Parameter (E1),
                                 Explicit_Actual_Parameter (E2));

            when N_Qualified_Expression =>
               return
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
                   and then
                 FCE (Expression (E1), Expression (E2));

            when N_Quantified_Expression =>
               if not FCE (Condition (E1), Condition (E2)) then
                  return False;
               end if;

               if Present (Loop_Parameter_Specification (E1))
                 and then Present (Loop_Parameter_Specification (E2))
               then
                  declare
                     L1 : constant Node_Id :=
                       Loop_Parameter_Specification (E1);
                     L2 : constant Node_Id :=
                       Loop_Parameter_Specification (E2);

                  begin
                     return
                       Reverse_Present (L1) = Reverse_Present (L2)
                         and then
                           FCE (Defining_Identifier (L1),
                                Defining_Identifier (L2))
                         and then
                           FCE (Discrete_Subtype_Definition (L1),
                                Discrete_Subtype_Definition (L2));
                  end;

               elsif Present (Iterator_Specification (E1))
                 and then Present (Iterator_Specification (E2))
               then
                  declare
                     I1 : constant Node_Id := Iterator_Specification (E1);
                     I2 : constant Node_Id := Iterator_Specification (E2);

                  begin
                     return
                       FCE (Defining_Identifier (I1),
                            Defining_Identifier (I2))
                       and then
                         Of_Present (I1) = Of_Present (I2)
                       and then
                         Reverse_Present (I1) = Reverse_Present (I2)
                       and then FCE (Name (I1), Name (I2))
                       and then FCE (Subtype_Indication (I1),
                                      Subtype_Indication (I2));
                  end;

               --  The quantified expressions used different specifications to
               --  walk their respective ranges.

               else
                  return False;
               end if;

            when N_Range =>
               return
                 FCE (Low_Bound (E1), Low_Bound (E2))
                   and then
                 FCE (High_Bound (E1), High_Bound (E2));

            when N_Real_Literal =>
               return (Realval (E1) = Realval (E2));

            when N_Selected_Component =>
               return
                 FCE (Prefix (E1), Prefix (E2))
                   and then
                 FCE (Selector_Name (E1), Selector_Name (E2));

            when N_Slice =>
               return
                 FCE (Prefix (E1), Prefix (E2))
                   and then
                 FCE (Discrete_Range (E1), Discrete_Range (E2));

            when N_String_Literal =>
               declare
                  S1 : constant String_Id := Strval (E1);
                  S2 : constant String_Id := Strval (E2);
                  L1 : constant Nat       := String_Length (S1);
                  L2 : constant Nat       := String_Length (S2);

               begin
                  if L1 /= L2 then
                     return False;

                  else
                     for J in 1 .. L1 loop
                        if Get_String_Char (S1, J) /=
                           Get_String_Char (S2, J)
                        then
                           return False;
                        end if;
                     end loop;

                     return True;
                  end if;
               end;

            when N_Type_Conversion =>
               return
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
                   and then
                 FCE (Expression (E1), Expression (E2));

            when N_Unary_Op =>
               return
                 Entity (E1) = Entity (E2)
                   and then
                 FCE (Right_Opnd (E1), Right_Opnd (E2));

            when N_Unchecked_Type_Conversion =>
               return
                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
                   and then
                 FCE (Expression (E1), Expression (E2));

            --  All other node types cannot appear in this context. Strictly
            --  we should raise a fatal internal error. Instead we just ignore
            --  the nodes. This means that if anyone makes a mistake in the
            --  expander and mucks an expression tree irretrievably, the result
            --  will be a failure to detect a (probably very obscure) case
            --  of non-conformance, which is better than bombing on some
            --  case where two expressions do in fact conform.

            when others =>
               return True;

         end case;
      end if;
   end Fully_Conformant_Expressions;

   ----------------------------------------
   -- Fully_Conformant_Discrete_Subtypes --
   ----------------------------------------

   function Fully_Conformant_Discrete_Subtypes
     (Given_S1 : Node_Id;
      Given_S2 : Node_Id) return Boolean
   is
      S1 : constant Node_Id := Original_Node (Given_S1);
      S2 : constant Node_Id := Original_Node (Given_S2);

      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
      --  Special-case for a bound given by a discriminant, which in the body
      --  is replaced with the discriminal of the enclosing type.

      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
      --  Check both bounds

      -----------------------
      -- Conforming_Bounds --
      -----------------------

      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
      begin
         if Is_Entity_Name (B1)
           and then Is_Entity_Name (B2)
           and then Ekind (Entity (B1)) = E_Discriminant
         then
            return Chars (B1) = Chars (B2);

         else
            return Fully_Conformant_Expressions (B1, B2);
         end if;
      end Conforming_Bounds;

      -----------------------
      -- Conforming_Ranges --
      -----------------------

      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
      begin
         return
           Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
             and then
           Conforming_Bounds (High_Bound (R1), High_Bound (R2));
      end Conforming_Ranges;

   --  Start of processing for Fully_Conformant_Discrete_Subtypes

   begin
      if Nkind (S1) /= Nkind (S2) then
         return False;

      elsif Is_Entity_Name (S1) then
         return Entity (S1) = Entity (S2);

      elsif Nkind (S1) = N_Range then
         return Conforming_Ranges (S1, S2);

      elsif Nkind (S1) = N_Subtype_Indication then
         return
            Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
              and then
            Conforming_Ranges
              (Range_Expression (Constraint (S1)),
               Range_Expression (Constraint (S2)));
      else
         return True;
      end if;
   end Fully_Conformant_Discrete_Subtypes;

   --------------------
   -- Install_Entity --
   --------------------

   procedure Install_Entity (E : Entity_Id) is
      Prev : constant Entity_Id := Current_Entity (E);
   begin
      Set_Is_Immediately_Visible (E);
      Set_Current_Entity (E);
      Set_Homonym (E, Prev);
   end Install_Entity;

   ---------------------
   -- Install_Formals --
   ---------------------

   procedure Install_Formals (Id : Entity_Id) is
      F : Entity_Id;
   begin
      F := First_Formal (Id);
      while Present (F) loop
         Install_Entity (F);
         Next_Formal (F);
      end loop;
   end Install_Formals;

   -----------------------------
   -- Is_Interface_Conformant --
   -----------------------------

   function Is_Interface_Conformant
     (Tagged_Type : Entity_Id;
      Iface_Prim  : Entity_Id;
      Prim        : Entity_Id) return Boolean
   is
      --  The operation may in fact be an inherited (implicit) operation
      --  rather than the original interface primitive, so retrieve the
      --  ultimate ancestor.

      Iface : constant Entity_Id :=
                Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
      Typ   : constant Entity_Id := Find_Dispatching_Type (Prim);

      function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
      --  Return the controlling formal of Prim

      ------------------------
      -- Controlling_Formal --
      ------------------------

      function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
         E : Entity_Id;

      begin
         E := First_Entity (Prim);
         while Present (E) loop
            if Is_Formal (E) and then Is_Controlling_Formal (E) then
               return E;
            end if;

            Next_Entity (E);
         end loop;

         return Empty;
      end Controlling_Formal;

      --  Local variables

      Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
      Prim_Ctrl_F  : constant Entity_Id := Controlling_Formal (Prim);

   --  Start of processing for Is_Interface_Conformant

   begin
      pragma Assert (Is_Subprogram (Iface_Prim)
        and then Is_Subprogram (Prim)
        and then Is_Dispatching_Operation (Iface_Prim)
        and then Is_Dispatching_Operation (Prim));

      pragma Assert (Is_Interface (Iface)
        or else (Present (Alias (Iface_Prim))
                   and then
                     Is_Interface
                       (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));

      if Prim = Iface_Prim
        or else not Is_Subprogram (Prim)
        or else Ekind (Prim) /= Ekind (Iface_Prim)
        or else not Is_Dispatching_Operation (Prim)
        or else Scope (Prim) /= Scope (Tagged_Type)
        or else No (Typ)
        or else Base_Type (Typ) /= Base_Type (Tagged_Type)
        or else not Primitive_Names_Match (Iface_Prim, Prim)
      then
         return False;

      --  The mode of the controlling formals must match

      elsif Present (Iface_Ctrl_F)
        and then Present (Prim_Ctrl_F)
        and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
      then
         return False;

      --  Case of a procedure, or a function whose result type matches the
      --  result type of the interface primitive, or a function that has no
      --  controlling result (I or access I).

      elsif Ekind (Iface_Prim) = E_Procedure
        or else Etype (Prim) = Etype (Iface_Prim)
        or else not Has_Controlling_Result (Prim)
      then
         return Type_Conformant
                  (Iface_Prim, Prim, Skip_Controlling_Formals => True);

      --  Case of a function returning an interface, or an access to one. Check
      --  that the return types correspond.

      elsif Implements_Interface (Typ, Iface) then
         if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
              /=
            (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
         then
            return False;
         else
            return
              Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
                Skip_Controlling_Formals => True);
         end if;

      else
         return False;
      end if;
   end Is_Interface_Conformant;

   ---------------------------------
   -- Is_Non_Overriding_Operation --
   ---------------------------------

   function Is_Non_Overriding_Operation
     (Prev_E : Entity_Id;
      New_E  : Entity_Id) return Boolean
   is
      Formal : Entity_Id;
      F_Typ  : Entity_Id;
      G_Typ  : Entity_Id := Empty;

      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
      --  If F_Type is a derived type associated with a generic actual subtype,
      --  then return its Generic_Parent_Type attribute, else return Empty.

      function Types_Correspond
        (P_Type : Entity_Id;
         N_Type : Entity_Id) return Boolean;
      --  Returns true if and only if the types (or designated types in the
      --  case of anonymous access types) are the same or N_Type is derived
      --  directly or indirectly from P_Type.

      -----------------------------
      -- Get_Generic_Parent_Type --
      -----------------------------

      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
         G_Typ : Entity_Id;
         Defn  : Node_Id;
         Indic : Node_Id;

      begin
         if Is_Derived_Type (F_Typ)
           and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
         then
            --  The tree must be traversed to determine the parent subtype in
            --  the generic unit, which unfortunately isn't always available
            --  via semantic attributes. ??? (Note: The use of Original_Node
            --  is needed for cases where a full derived type has been
            --  rewritten.)

            Defn := Type_Definition (Original_Node (Parent (F_Typ)));
            if Nkind (Defn) = N_Derived_Type_Definition then
               Indic := Subtype_Indication (Defn);

               if Nkind (Indic) = N_Subtype_Indication then
                  G_Typ := Entity (Subtype_Mark (Indic));
               else
                  G_Typ := Entity (Indic);
               end if;

               if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
                 and then Present (Generic_Parent_Type (Parent (G_Typ)))
               then
                  return Generic_Parent_Type (Parent (G_Typ));
               end if;
            end if;
         end if;

         return Empty;
      end Get_Generic_Parent_Type;

      ----------------------
      -- Types_Correspond --
      ----------------------

      function Types_Correspond
        (P_Type : Entity_Id;
         N_Type : Entity_Id) return Boolean
      is
         Prev_Type : Entity_Id := Base_Type (P_Type);
         New_Type  : Entity_Id := Base_Type (N_Type);

      begin
         if Ekind (Prev_Type) = E_Anonymous_Access_Type then
            Prev_Type := Designated_Type (Prev_Type);
         end if;

         if Ekind (New_Type) = E_Anonymous_Access_Type then
            New_Type := Designated_Type (New_Type);
         end if;

         if Prev_Type = New_Type then
            return True;

         elsif not Is_Class_Wide_Type (New_Type) then
            while Etype (New_Type) /= New_Type loop
               New_Type := Etype (New_Type);
               if New_Type = Prev_Type then
                  return True;
               end if;
            end loop;
         end if;
         return False;
      end Types_Correspond;

   --  Start of processing for Is_Non_Overriding_Operation

   begin
      --  In the case where both operations are implicit derived subprograms
      --  then neither overrides the other. This can only occur in certain
      --  obscure cases (e.g., derivation from homographs created in a generic
      --  instantiation).

      if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
         return True;

      elsif Ekind (Current_Scope) = E_Package
        and then Is_Generic_Instance (Current_Scope)
        and then In_Private_Part (Current_Scope)
        and then Comes_From_Source (New_E)
      then
         --  We examine the formals and result type of the inherited operation,
         --  to determine whether their type is derived from (the instance of)
         --  a generic type. The first such formal or result type is the one
         --  tested.

         Formal := First_Formal (Prev_E);
         while Present (Formal) loop
            F_Typ := Base_Type (Etype (Formal));

            if Ekind (F_Typ) = E_Anonymous_Access_Type then
               F_Typ := Designated_Type (F_Typ);
            end if;

            G_Typ := Get_Generic_Parent_Type (F_Typ);
            exit when Present (G_Typ);

            Next_Formal (Formal);
         end loop;

         if No (G_Typ) and then Ekind (Prev_E) = E_Function then
            G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
         end if;

         if No (G_Typ) then
            return False;
         end if;

         --  If the generic type is a private type, then the original operation
         --  was not overriding in the generic, because there was no primitive
         --  operation to override.

         if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
           and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
                      N_Formal_Private_Type_Definition
         then
            return True;

         --  The generic parent type is the ancestor of a formal derived
         --  type declaration. We need to check whether it has a primitive
         --  operation that should be overridden by New_E in the generic.

         else
            declare
               P_Formal : Entity_Id;
               N_Formal : Entity_Id;
               P_Typ    : Entity_Id;
               N_Typ    : Entity_Id;
               P_Prim   : Entity_Id;
               Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));

            begin
               while Present (Prim_Elt) loop
                  P_Prim := Node (Prim_Elt);

                  if Chars (P_Prim) = Chars (New_E)
                    and then Ekind (P_Prim) = Ekind (New_E)
                  then
                     P_Formal := First_Formal (P_Prim);
                     N_Formal := First_Formal (New_E);
                     while Present (P_Formal) and then Present (N_Formal) loop
                        P_Typ := Etype (P_Formal);
                        N_Typ := Etype (N_Formal);

                        if not Types_Correspond (P_Typ, N_Typ) then
                           exit;
                        end if;

                        Next_Entity (P_Formal);
                        Next_Entity (N_Formal);
                     end loop;

                     --  Found a matching primitive operation belonging to the
                     --  formal ancestor type, so the new subprogram is
                     --  overriding.

                     if No (P_Formal)
                       and then No (N_Formal)
                       and then (Ekind (New_E) /= E_Function
                                  or else
                                    Types_Correspond
                                      (Etype (P_Prim), Etype (New_E)))
                     then
                        return False;
                     end if;
                  end if;

                  Next_Elmt (Prim_Elt);
               end loop;

               --  If no match found, then the new subprogram does not override
               --  in the generic (nor in the instance).

               --  If the type in question is not abstract, and the subprogram
               --  is, this will be an error if the new operation is in the
               --  private part of the instance. Emit a warning now, which will
               --  make the subsequent error message easier to understand.

               if not Is_Abstract_Type (F_Typ)
                 and then Is_Abstract_Subprogram (Prev_E)
                 and then In_Private_Part (Current_Scope)
               then
                  Error_Msg_Node_2 := F_Typ;
                  Error_Msg_NE
                    ("private operation& in generic unit does not override " &
                     "any primitive operation of& (RM 12.3 (18))??",
                     New_E, New_E);
               end if;

               return True;
            end;
         end if;
      else
         return False;
      end if;
   end Is_Non_Overriding_Operation;

   -------------------------------------
   -- List_Inherited_Pre_Post_Aspects --
   -------------------------------------

   procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
   begin
      if Opt.List_Inherited_Aspects
        and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
      then
         declare
            Inherited : constant Subprogram_List := Inherited_Subprograms (E);
            P         : Node_Id;

         begin
            for J in Inherited'Range loop
               P := Pre_Post_Conditions (Contract (Inherited (J)));
               while Present (P) loop
                  Error_Msg_Sloc := Sloc (P);

                  if Class_Present (P) and then not Split_PPC (P) then
                     if Pragma_Name (P) = Name_Precondition then
                        Error_Msg_N
                          ("info: & inherits `Pre''Class` aspect from #?L?",
                           E);
                     else
                        Error_Msg_N
                          ("info: & inherits `Post''Class` aspect from #?L?",
                           E);
                     end if;
                  end if;

                  P := Next_Pragma (P);
               end loop;
            end loop;
         end;
      end if;
   end List_Inherited_Pre_Post_Aspects;

   ------------------------------
   -- Make_Inequality_Operator --
   ------------------------------

   --  S is the defining identifier of an equality operator. We build a
   --  subprogram declaration with the right signature. This operation is
   --  intrinsic, because it is always expanded as the negation of the
   --  call to the equality function.

   procedure Make_Inequality_Operator (S : Entity_Id) is
      Loc     : constant Source_Ptr := Sloc (S);
      Decl    : Node_Id;
      Formals : List_Id;
      Op_Name : Entity_Id;

      FF : constant Entity_Id := First_Formal (S);
      NF : constant Entity_Id := Next_Formal (FF);

   begin
      --  Check that equality was properly defined, ignore call if not

      if No (NF) then
         return;
      end if;

      declare
         A : constant Entity_Id :=
               Make_Defining_Identifier (Sloc (FF),
                 Chars => Chars (FF));

         B : constant Entity_Id :=
               Make_Defining_Identifier (Sloc (NF),
                 Chars => Chars (NF));

      begin
         Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);

         Formals := New_List (
           Make_Parameter_Specification (Loc,
             Defining_Identifier => A,
             Parameter_Type      =>
               New_Reference_To (Etype (First_Formal (S)),
                 Sloc (Etype (First_Formal (S))))),

           Make_Parameter_Specification (Loc,
             Defining_Identifier => B,
             Parameter_Type      =>
               New_Reference_To (Etype (Next_Formal (First_Formal (S))),
                 Sloc (Etype (Next_Formal (First_Formal (S)))))));

         Decl :=
           Make_Subprogram_Declaration (Loc,
             Specification =>
               Make_Function_Specification (Loc,
                 Defining_Unit_Name       => Op_Name,
                 Parameter_Specifications => Formals,
                 Result_Definition        =>
                   New_Reference_To (Standard_Boolean, Loc)));

         --  Insert inequality right after equality if it is explicit or after
         --  the derived type when implicit. These entities are created only
         --  for visibility purposes, and eventually replaced in the course
         --  of expansion, so they do not need to be attached to the tree and
         --  seen by the back-end. Keeping them internal also avoids spurious
         --  freezing problems. The declaration is inserted in the tree for
         --  analysis, and removed afterwards. If the equality operator comes
         --  from an explicit declaration, attach the inequality immediately
         --  after. Else the equality is inherited from a derived type
         --  declaration, so insert inequality after that declaration.

         if No (Alias (S)) then
            Insert_After (Unit_Declaration_Node (S), Decl);
         elsif Is_List_Member (Parent (S)) then
            Insert_After (Parent (S), Decl);
         else
            Insert_After (Parent (Etype (First_Formal (S))), Decl);
         end if;

         Mark_Rewrite_Insertion (Decl);
         Set_Is_Intrinsic_Subprogram (Op_Name);
         Analyze (Decl);
         Remove (Decl);
         Set_Has_Completion (Op_Name);
         Set_Corresponding_Equality (Op_Name, S);
         Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
      end;
   end Make_Inequality_Operator;

   ----------------------
   -- May_Need_Actuals --
   ----------------------

   procedure May_Need_Actuals (Fun : Entity_Id) is
      F : Entity_Id;
      B : Boolean;

   begin
      F := First_Formal (Fun);
      B := True;
      while Present (F) loop
         if No (Default_Value (F)) then
            B := False;
            exit;
         end if;

         Next_Formal (F);
      end loop;

      Set_Needs_No_Actuals (Fun, B);
   end May_Need_Actuals;

   ---------------------
   -- Mode_Conformant --
   ---------------------

   function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
      Result : Boolean;
   begin
      Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
      return Result;
   end Mode_Conformant;

   ---------------------------
   -- New_Overloaded_Entity --
   ---------------------------

   procedure New_Overloaded_Entity
     (S            : Entity_Id;
      Derived_Type : Entity_Id := Empty)
   is
      Overridden_Subp : Entity_Id := Empty;
      --  Set if the current scope has an operation that is type-conformant
      --  with S, and becomes hidden by S.

      Is_Primitive_Subp : Boolean;
      --  Set to True if the new subprogram is primitive

      E : Entity_Id;
      --  Entity that S overrides

      Prev_Vis : Entity_Id := Empty;
      --  Predecessor of E in Homonym chain

      procedure Check_For_Primitive_Subprogram
        (Is_Primitive  : out Boolean;
         Is_Overriding : Boolean := False);
      --  If the subprogram being analyzed is a primitive operation of the type
      --  of a formal or result, set the Has_Primitive_Operations flag on the
      --  type, and set Is_Primitive to True (otherwise set to False). Set the
      --  corresponding flag on the entity itself for later use.

      procedure Check_Synchronized_Overriding
        (Def_Id          : Entity_Id;
         Overridden_Subp : out Entity_Id);
      --  First determine if Def_Id is an entry or a subprogram either defined
      --  in the scope of a task or protected type, or is a primitive of such
      --  a type. Check whether Def_Id overrides a subprogram of an interface
      --  implemented by the synchronized type, return the overridden entity
      --  or Empty.

      function Is_Private_Declaration (E : Entity_Id) return Boolean;
      --  Check that E is declared in the private part of the current package,
      --  or in the package body, where it may hide a previous declaration.
      --  We can't use In_Private_Part by itself because this flag is also
      --  set when freezing entities, so we must examine the place of the
      --  declaration in the tree, and recognize wrapper packages as well.

      function Is_Overriding_Alias
        (Old_E : Entity_Id;
         New_E : Entity_Id) return Boolean;
      --  Check whether new subprogram and old subprogram are both inherited
      --  from subprograms that have distinct dispatch table entries. This can
      --  occur with derivations from instances with accidental homonyms. The
      --  function is conservative given that the converse is only true within
      --  instances that contain accidental overloadings.

      ------------------------------------
      -- Check_For_Primitive_Subprogram --
      ------------------------------------

      procedure Check_For_Primitive_Subprogram
        (Is_Primitive  : out Boolean;
         Is_Overriding : Boolean := False)
      is
         Formal : Entity_Id;
         F_Typ  : Entity_Id;
         B_Typ  : Entity_Id;

         function Visible_Part_Type (T : Entity_Id) return Boolean;
         --  Returns true if T is declared in the visible part of the current
         --  package scope; otherwise returns false. Assumes that T is declared
         --  in a package.

         procedure Check_Private_Overriding (T : Entity_Id);
         --  Checks that if a primitive abstract subprogram of a visible
         --  abstract type is declared in a private part, then it must override
         --  an abstract subprogram declared in the visible part. Also checks
         --  that if a primitive function with a controlling result is declared
         --  in a private part, then it must override a function declared in
         --  the visible part.

         ------------------------------
         -- Check_Private_Overriding --
         ------------------------------

         procedure Check_Private_Overriding (T : Entity_Id) is
         begin
            if Is_Package_Or_Generic_Package (Current_Scope)
              and then In_Private_Part (Current_Scope)
              and then Visible_Part_Type (T)
              and then not In_Instance
            then
               if Is_Abstract_Type (T)
                 and then Is_Abstract_Subprogram (S)
                 and then (not Is_Overriding
                            or else not Is_Abstract_Subprogram (E))
               then
                  Error_Msg_N
                    ("abstract subprograms must be visible "
                     & "(RM 3.9.3(10))!", S);

               elsif Ekind (S) = E_Function and then not Is_Overriding then
                  if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
                     Error_Msg_N
                       ("private function with tagged result must"
                        & " override visible-part function", S);
                     Error_Msg_N
                       ("\move subprogram to the visible part"
                        & " (RM 3.9.3(10))", S);

                  --  AI05-0073: extend this test to the case of a function
                  --  with a controlling access result.

                  elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
                    and then Is_Tagged_Type (Designated_Type (Etype (S)))
                    and then
                      not Is_Class_Wide_Type (Designated_Type (Etype (S)))
                    and then Ada_Version >= Ada_2012
                  then
                     Error_Msg_N
                       ("private function with controlling access result "
                          & "must override visible-part function", S);
                     Error_Msg_N
                       ("\move subprogram to the visible part"
                          & " (RM 3.9.3(10))", S);
                  end if;
               end if;
            end if;
         end Check_Private_Overriding;

         -----------------------
         -- Visible_Part_Type --
         -----------------------

         function Visible_Part_Type (T : Entity_Id) return Boolean is
            P : constant Node_Id := Unit_Declaration_Node (Scope (T));
            N : Node_Id;

         begin
            --  If the entity is a private type, then it must be declared in a
            --  visible part.

            if Ekind (T) in Private_Kind then
               return True;
            end if;

            --  Otherwise, we traverse the visible part looking for its
            --  corresponding declaration. We cannot use the declaration
            --  node directly because in the private part the entity of a
            --  private type is the one in the full view, which does not
            --  indicate that it is the completion of something visible.

            N := First (Visible_Declarations (Specification (P)));
            while Present (N) loop
               if Nkind (N) = N_Full_Type_Declaration
                 and then Present (Defining_Identifier (N))
                 and then T = Defining_Identifier (N)
               then
                  return True;

               elsif Nkind_In (N, N_Private_Type_Declaration,
                                  N_Private_Extension_Declaration)
                 and then Present (Defining_Identifier (N))
                 and then T = Full_View (Defining_Identifier (N))
               then
                  return True;
               end if;

               Next (N);
            end loop;

            return False;
         end Visible_Part_Type;

      --  Start of processing for Check_For_Primitive_Subprogram

      begin
         Is_Primitive := False;

         if not Comes_From_Source (S) then
            null;

         --  If subprogram is at library level, it is not primitive operation

         elsif Current_Scope = Standard_Standard then
            null;

         elsif (Is_Package_Or_Generic_Package (Current_Scope)
                 and then not In_Package_Body (Current_Scope))
           or else Is_Overriding
         then
            --  For function, check return type

            if Ekind (S) = E_Function then
               if Ekind (Etype (S)) = E_Anonymous_Access_Type then
                  F_Typ := Designated_Type (Etype (S));
               else
                  F_Typ := Etype (S);
               end if;

               B_Typ := Base_Type (F_Typ);

               if Scope (B_Typ) = Current_Scope
                 and then not Is_Class_Wide_Type (B_Typ)
                 and then not Is_Generic_Type (B_Typ)
               then
                  Is_Primitive := True;
                  Set_Has_Primitive_Operations (B_Typ);
                  Set_Is_Primitive (S);
                  Check_Private_Overriding (B_Typ);
               end if;
            end if;

            --  For all subprograms, check formals

            Formal := First_Formal (S);
            while Present (Formal) loop
               if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
                  F_Typ := Designated_Type (Etype (Formal));
               else
                  F_Typ := Etype (Formal);
               end if;

               B_Typ := Base_Type (F_Typ);

               if Ekind (B_Typ) = E_Access_Subtype then
                  B_Typ := Base_Type (B_Typ);
               end if;

               if Scope (B_Typ) = Current_Scope
                 and then not Is_Class_Wide_Type (B_Typ)
                 and then not Is_Generic_Type (B_Typ)
               then
                  Is_Primitive := True;
                  Set_Is_Primitive (S);
                  Set_Has_Primitive_Operations (B_Typ);
                  Check_Private_Overriding (B_Typ);
               end if;

               Next_Formal (Formal);
            end loop;

         --  Special case: An equality function can be redefined for a type
         --  occurring in a declarative part, and won't otherwise be treated as
         --  a primitive because it doesn't occur in a package spec and doesn't
         --  override an inherited subprogram. It's important that we mark it
         --  primitive so it can be returned by Collect_Primitive_Operations
         --  and be used in composing the equality operation of later types
         --  that have a component of the type.

         elsif Chars (S) = Name_Op_Eq
           and then Etype (S) = Standard_Boolean
         then
            B_Typ := Base_Type (Etype (First_Formal (S)));

            if Scope (B_Typ) = Current_Scope
              and then
                Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
              and then not Is_Limited_Type (B_Typ)
            then
               Is_Primitive := True;
               Set_Is_Primitive (S);
               Set_Has_Primitive_Operations (B_Typ);
               Check_Private_Overriding (B_Typ);
            end if;
         end if;
      end Check_For_Primitive_Subprogram;

      -----------------------------------
      -- Check_Synchronized_Overriding --
      -----------------------------------

      procedure Check_Synchronized_Overriding
        (Def_Id          : Entity_Id;
         Overridden_Subp : out Entity_Id)
      is
         Ifaces_List : Elist_Id;
         In_Scope    : Boolean;
         Typ         : Entity_Id;

         function Matches_Prefixed_View_Profile
           (Prim_Params  : List_Id;
            Iface_Params : List_Id) return Boolean;
         --  Determine whether a subprogram's parameter profile Prim_Params
         --  matches that of a potentially overridden interface subprogram
         --  Iface_Params. Also determine if the type of first parameter of
         --  Iface_Params is an implemented interface.

         -----------------------------------
         -- Matches_Prefixed_View_Profile --
         -----------------------------------

         function Matches_Prefixed_View_Profile
           (Prim_Params  : List_Id;
            Iface_Params : List_Id) return Boolean
         is
            Iface_Id     : Entity_Id;
            Iface_Param  : Node_Id;
            Iface_Typ    : Entity_Id;
            Prim_Id      : Entity_Id;
            Prim_Param   : Node_Id;
            Prim_Typ     : Entity_Id;

            function Is_Implemented
              (Ifaces_List : Elist_Id;
               Iface       : Entity_Id) return Boolean;
            --  Determine if Iface is implemented by the current task or
            --  protected type.

            --------------------
            -- Is_Implemented --
            --------------------

            function Is_Implemented
              (Ifaces_List : Elist_Id;
               Iface       : Entity_Id) return Boolean
            is
               Iface_Elmt : Elmt_Id;

            begin
               Iface_Elmt := First_Elmt (Ifaces_List);
               while Present (Iface_Elmt) loop
                  if Node (Iface_Elmt) = Iface then
                     return True;
                  end if;

                  Next_Elmt (Iface_Elmt);
               end loop;

               return False;
            end Is_Implemented;

         --  Start of processing for Matches_Prefixed_View_Profile

         begin
            Iface_Param := First (Iface_Params);
            Iface_Typ   := Etype (Defining_Identifier (Iface_Param));

            if Is_Access_Type (Iface_Typ) then
               Iface_Typ := Designated_Type (Iface_Typ);
            end if;

            Prim_Param := First (Prim_Params);

            --  The first parameter of the potentially overridden subprogram
            --  must be an interface implemented by Prim.

            if not Is_Interface (Iface_Typ)
              or else not Is_Implemented (Ifaces_List, Iface_Typ)
            then
               return False;
            end if;

            --  The checks on the object parameters are done, move onto the
            --  rest of the parameters.

            if not In_Scope then
               Prim_Param := Next (Prim_Param);
            end if;

            Iface_Param := Next (Iface_Param);
            while Present (Iface_Param) and then Present (Prim_Param) loop
               Iface_Id  := Defining_Identifier (Iface_Param);
               Iface_Typ := Find_Parameter_Type (Iface_Param);

               Prim_Id  := Defining_Identifier (Prim_Param);
               Prim_Typ := Find_Parameter_Type (Prim_Param);

               if Ekind (Iface_Typ) = E_Anonymous_Access_Type
                 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
                 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
               then
                  Iface_Typ := Designated_Type (Iface_Typ);
                  Prim_Typ := Designated_Type (Prim_Typ);
               end if;

               --  Case of multiple interface types inside a parameter profile

               --     (Obj_Param : in out Iface; ...; Param : Iface)

               --  If the interface type is implemented, then the matching type
               --  in the primitive should be the implementing record type.

               if Ekind (Iface_Typ) = E_Record_Type
                 and then Is_Interface (Iface_Typ)
                 and then Is_Implemented (Ifaces_List, Iface_Typ)
               then
                  if Prim_Typ /= Typ then
                     return False;
                  end if;

               --  The two parameters must be both mode and subtype conformant

               elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
                 or else not
                   Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
               then
                  return False;
               end if;

               Next (Iface_Param);
               Next (Prim_Param);
            end loop;

            --  One of the two lists contains more parameters than the other

            if Present (Iface_Param) or else Present (Prim_Param) then
               return False;
            end if;

            return True;
         end Matches_Prefixed_View_Profile;

      --  Start of processing for Check_Synchronized_Overriding

      begin
         Overridden_Subp := Empty;

         --  Def_Id must be an entry or a subprogram. We should skip predefined
         --  primitives internally generated by the frontend; however at this
         --  stage predefined primitives are still not fully decorated. As a
         --  minor optimization we skip here internally generated subprograms.

         if (Ekind (Def_Id) /= E_Entry
              and then Ekind (Def_Id) /= E_Function
              and then Ekind (Def_Id) /= E_Procedure)
           or else not Comes_From_Source (Def_Id)
         then
            return;
         end if;

         --  Search for the concurrent declaration since it contains the list
         --  of all implemented interfaces. In this case, the subprogram is
         --  declared within the scope of a protected or a task type.

         if Present (Scope (Def_Id))
           and then Is_Concurrent_Type (Scope (Def_Id))
           and then not Is_Generic_Actual_Type (Scope (Def_Id))
         then
            Typ := Scope (Def_Id);
            In_Scope := True;

         --  The enclosing scope is not a synchronized type and the subprogram
         --  has no formals.

         elsif No (First_Formal (Def_Id)) then
            return;

         --  The subprogram has formals and hence it may be a primitive of a
         --  concurrent type.

         else
            Typ := Etype (First_Formal (Def_Id));

            if Is_Access_Type (Typ) then
               Typ := Directly_Designated_Type (Typ);
            end if;

            if Is_Concurrent_Type (Typ)
              and then not Is_Generic_Actual_Type (Typ)
            then
               In_Scope := False;

            --  This case occurs when the concurrent type is declared within
            --  a generic unit. As a result the corresponding record has been
            --  built and used as the type of the first formal, we just have
            --  to retrieve the corresponding concurrent type.

            elsif Is_Concurrent_Record_Type (Typ)
              and then not Is_Class_Wide_Type (Typ)
              and then Present (Corresponding_Concurrent_Type (Typ))
            then
               Typ := Corresponding_Concurrent_Type (Typ);
               In_Scope := False;

            else
               return;
            end if;
         end if;

         --  There is no overriding to check if is an inherited operation in a
         --  type derivation on for a generic actual.

         Collect_Interfaces (Typ, Ifaces_List);

         if Is_Empty_Elmt_List (Ifaces_List) then
            return;
         end if;

         --  Determine whether entry or subprogram Def_Id overrides a primitive
         --  operation that belongs to one of the interfaces in Ifaces_List.

         declare
            Candidate : Entity_Id := Empty;
            Hom       : Entity_Id := Empty;
            Iface_Typ : Entity_Id;
            Subp      : Entity_Id := Empty;

         begin
            --  Traverse the homonym chain, looking for a potentially
            --  overridden subprogram that belongs to an implemented
            --  interface.

            Hom := Current_Entity_In_Scope (Def_Id);
            while Present (Hom) loop
               Subp := Hom;

               if Subp = Def_Id
                 or else not Is_Overloadable (Subp)
                 or else not Is_Primitive (Subp)
                 or else not Is_Dispatching_Operation (Subp)
                 or else not Present (Find_Dispatching_Type (Subp))
                 or else not Is_Interface (Find_Dispatching_Type (Subp))
               then
                  null;

               --  Entries and procedures can override abstract or null
               --  interface procedures.

               elsif (Ekind (Def_Id) = E_Procedure
                       or else Ekind (Def_Id) = E_Entry)
                 and then Ekind (Subp) = E_Procedure
                 and then Matches_Prefixed_View_Profile
                            (Parameter_Specifications (Parent (Def_Id)),
                             Parameter_Specifications (Parent (Subp)))
               then
                  Candidate := Subp;

                  --  For an overridden subprogram Subp, check whether the mode
                  --  of its first parameter is correct depending on the kind
                  --  of synchronized type.

                  declare
                     Formal : constant Node_Id := First_Formal (Candidate);

                  begin
                     --  In order for an entry or a protected procedure to
                     --  override, the first parameter of the overridden
                     --  routine must be of mode "out", "in out" or
                     --  access-to-variable.

                     if Ekind_In (Candidate, E_Entry, E_Procedure)
                       and then Is_Protected_Type (Typ)
                       and then Ekind (Formal) /= E_In_Out_Parameter
                       and then Ekind (Formal) /= E_Out_Parameter
                       and then Nkind (Parameter_Type (Parent (Formal))) /=
                                                          N_Access_Definition
                     then
                        null;

                     --  All other cases are OK since a task entry or routine
                     --  does not have a restriction on the mode of the first
                     --  parameter of the overridden interface routine.

                     else
                        Overridden_Subp := Candidate;
                        return;
                     end if;
                  end;

               --  Functions can override abstract interface functions

               elsif Ekind (Def_Id) = E_Function
                 and then Ekind (Subp) = E_Function
                 and then Matches_Prefixed_View_Profile
                            (Parameter_Specifications (Parent (Def_Id)),
                             Parameter_Specifications (Parent (Subp)))
                 and then Etype (Result_Definition (Parent (Def_Id))) =
                          Etype (Result_Definition (Parent (Subp)))
               then
                  Overridden_Subp := Subp;
                  return;
               end if;

               Hom := Homonym (Hom);
            end loop;

            --  After examining all candidates for overriding, we are left with
            --  the best match which is a mode incompatible interface routine.
            --  Do not emit an error if the Expander is active since this error
            --  will be detected later on after all concurrent types are
            --  expanded and all wrappers are built. This check is meant for
            --  spec-only compilations.

            if Present (Candidate) and then not Expander_Active then
               Iface_Typ :=
                 Find_Parameter_Type (Parent (First_Formal (Candidate)));

               --  Def_Id is primitive of a protected type, declared inside the
               --  type, and the candidate is primitive of a limited or
               --  synchronized interface.

               if In_Scope
                 and then Is_Protected_Type (Typ)
                 and then
                   (Is_Limited_Interface (Iface_Typ)
                     or else Is_Protected_Interface (Iface_Typ)
                     or else Is_Synchronized_Interface (Iface_Typ)
                     or else Is_Task_Interface (Iface_Typ))
               then
                  Error_Msg_PT (Parent (Typ), Candidate);
               end if;
            end if;

            Overridden_Subp := Candidate;
            return;
         end;
      end Check_Synchronized_Overriding;

      ----------------------------
      -- Is_Private_Declaration --
      ----------------------------

      function Is_Private_Declaration (E : Entity_Id) return Boolean is
         Priv_Decls : List_Id;
         Decl       : constant Node_Id := Unit_Declaration_Node (E);

      begin
         if Is_Package_Or_Generic_Package (Current_Scope)
           and then In_Private_Part (Current_Scope)
         then
            Priv_Decls :=
              Private_Declarations
                (Specification (Unit_Declaration_Node (Current_Scope)));

            return In_Package_Body (Current_Scope)
              or else
                (Is_List_Member (Decl)
                  and then List_Containing (Decl) = Priv_Decls)
              or else (Nkind (Parent (Decl)) = N_Package_Specification
                        and then not
                          Is_Compilation_Unit
                            (Defining_Entity (Parent (Decl)))
                        and then List_Containing (Parent (Parent (Decl))) =
                                                                Priv_Decls);
         else
            return False;
         end if;
      end Is_Private_Declaration;

      --------------------------
      -- Is_Overriding_Alias --
      --------------------------

      function Is_Overriding_Alias
        (Old_E : Entity_Id;
         New_E : Entity_Id) return Boolean
      is
         AO : constant Entity_Id := Alias (Old_E);
         AN : constant Entity_Id := Alias (New_E);

      begin
         return Scope (AO) /= Scope (AN)
           or else No (DTC_Entity (AO))
           or else No (DTC_Entity (AN))
           or else DT_Position (AO) = DT_Position (AN);
      end Is_Overriding_Alias;

   --  Start of processing for New_Overloaded_Entity

   begin
      --  We need to look for an entity that S may override. This must be a
      --  homonym in the current scope, so we look for the first homonym of
      --  S in the current scope as the starting point for the search.

      E := Current_Entity_In_Scope (S);

      --  Ada 2005 (AI-251): Derivation of abstract interface primitives.
      --  They are directly added to the list of primitive operations of
      --  Derived_Type, unless this is a rederivation in the private part
      --  of an operation that was already derived in the visible part of
      --  the current package.

      if Ada_Version >= Ada_2005
        and then Present (Derived_Type)
        and then Present (Alias (S))
        and then Is_Dispatching_Operation (Alias (S))
        and then Present (Find_Dispatching_Type (Alias (S)))
        and then Is_Interface (Find_Dispatching_Type (Alias (S)))
      then
         --  For private types, when the full-view is processed we propagate to
         --  the full view the non-overridden entities whose attribute "alias"
         --  references an interface primitive. These entities were added by
         --  Derive_Subprograms to ensure that interface primitives are
         --  covered.

         --  Inside_Freeze_Actions is non zero when S corresponds with an
         --  internal entity that links an interface primitive with its
         --  covering primitive through attribute Interface_Alias (see
         --  Add_Internal_Interface_Entities).

         if Inside_Freezing_Actions = 0
           and then Is_Package_Or_Generic_Package (Current_Scope)
           and then In_Private_Part (Current_Scope)
           and then Nkind (Parent (E)) = N_Private_Extension_Declaration
           and then Nkind (Parent (S)) = N_Full_Type_Declaration
           and then Full_View (Defining_Identifier (Parent (E)))
                      = Defining_Identifier (Parent (S))
           and then Alias (E) = Alias (S)
         then
            Check_Operation_From_Private_View (S, E);
            Set_Is_Dispatching_Operation (S);

         --  Common case

         else
            Enter_Overloaded_Entity (S);
            Check_Dispatching_Operation (S, Empty);
            Check_For_Primitive_Subprogram (Is_Primitive_Subp);
         end if;

         return;
      end if;

      --  If there is no homonym then this is definitely not overriding

      if No (E) then
         Enter_Overloaded_Entity (S);
         Check_Dispatching_Operation (S, Empty);
         Check_For_Primitive_Subprogram (Is_Primitive_Subp);

         --  If subprogram has an explicit declaration, check whether it has an
         --  overriding indicator.

         if Comes_From_Source (S) then
            Check_Synchronized_Overriding (S, Overridden_Subp);

            --  (Ada 2012: AI05-0125-1): If S is a dispatching operation then
            --  it may have overridden some hidden inherited primitive. Update
            --  Overridden_Subp to avoid spurious errors when checking the
            --  overriding indicator.

            if Ada_Version >= Ada_2012
              and then No (Overridden_Subp)
              and then Is_Dispatching_Operation (S)
              and then Present (Overridden_Operation (S))
            then
               Overridden_Subp := Overridden_Operation (S);
            end if;

            Check_Overriding_Indicator
              (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
         end if;

      --  If there is a homonym that is not overloadable, then we have an
      --  error, except for the special cases checked explicitly below.

      elsif not Is_Overloadable (E) then

         --  Check for spurious conflict produced by a subprogram that has the
         --  same name as that of the enclosing generic package. The conflict
         --  occurs within an instance, between the subprogram and the renaming
         --  declaration for the package. After the subprogram, the package
         --  renaming declaration becomes hidden.

         if Ekind (E) = E_Package
           and then Present (Renamed_Object (E))
           and then Renamed_Object (E) = Current_Scope
           and then Nkind (Parent (Renamed_Object (E))) =
                                                     N_Package_Specification
           and then Present (Generic_Parent (Parent (Renamed_Object (E))))
         then
            Set_Is_Hidden (E);
            Set_Is_Immediately_Visible (E, False);
            Enter_Overloaded_Entity (S);
            Set_Homonym (S, Homonym (E));
            Check_Dispatching_Operation (S, Empty);
            Check_Overriding_Indicator (S, Empty, Is_Primitive => False);

         --  If the subprogram is implicit it is hidden by the previous
         --  declaration. However if it is dispatching, it must appear in the
         --  dispatch table anyway, because it can be dispatched to even if it
         --  cannot be called directly.

         elsif Present (Alias (S)) and then not Comes_From_Source (S) then
            Set_Scope (S, Current_Scope);

            if Is_Dispatching_Operation (Alias (S)) then
               Check_Dispatching_Operation (S, Empty);
            end if;

            return;

         else
            Error_Msg_Sloc := Sloc (E);

            --  Generate message, with useful additional warning if in generic

            if Is_Generic_Unit (E) then
               Error_Msg_N ("previous generic unit cannot be overloaded", S);
               Error_Msg_N ("\& conflicts with declaration#", S);
            else
               Error_Msg_N ("& conflicts with declaration#", S);
            end if;

            return;
         end if;

      --  E exists and is overloadable

      else
         Check_Synchronized_Overriding (S, Overridden_Subp);

         --  Loop through E and its homonyms to determine if any of them is
         --  the candidate for overriding by S.

         while Present (E) loop

            --  Definitely not interesting if not in the current scope

            if Scope (E) /= Current_Scope then
               null;

            --  Ada 2012 (AI05-0165): For internally generated bodies of null
            --  procedures locate the internally generated spec. We enforce
            --  mode conformance since a tagged type may inherit from
            --  interfaces several null primitives which differ only in
            --  the mode of the formals.

            elsif not Comes_From_Source (S)
              and then Is_Null_Procedure (S)
              and then not Mode_Conformant (E, S)
            then
               null;

            --  Check if we have type conformance

            elsif Type_Conformant (E, S) then

               --  If the old and new entities have the same profile and one
               --  is not the body of the other, then this is an error, unless
               --  one of them is implicitly declared.

               --  There are some cases when both can be implicit, for example
               --  when both a literal and a function that overrides it are
               --  inherited in a derivation, or when an inherited operation
               --  of a tagged full type overrides the inherited operation of
               --  a private extension. Ada 83 had a special rule for the
               --  literal case. In Ada 95, the later implicit operation hides
               --  the former, and the literal is always the former. In the
               --  odd case where both are derived operations declared at the
               --  same point, both operations should be declared, and in that
               --  case we bypass the following test and proceed to the next
               --  part. This can only occur for certain obscure cases in
               --  instances, when an operation on a type derived from a formal
               --  private type does not override a homograph inherited from
               --  the actual. In subsequent derivations of such a type, the
               --  DT positions of these operations remain distinct, if they
               --  have been set.

               if Present (Alias (S))
                 and then (No (Alias (E))
                            or else Comes_From_Source (E)
                            or else Is_Abstract_Subprogram (S)
                            or else
                              (Is_Dispatching_Operation (E)
                                 and then Is_Overriding_Alias (E, S)))
                 and then Ekind (E) /= E_Enumeration_Literal
               then
                  --  When an derived operation is overloaded it may be due to
                  --  the fact that the full view of a private extension
                  --  re-inherits. It has to be dealt with.

                  if Is_Package_Or_Generic_Package (Current_Scope)
                    and then In_Private_Part (Current_Scope)
                  then
                     Check_Operation_From_Private_View (S, E);
                  end if;

                  --  In any case the implicit operation remains hidden by the
                  --  existing declaration, which is overriding. Indicate that
                  --  E overrides the operation from which S is inherited.

                  if Present (Alias (S)) then
                     Set_Overridden_Operation (E, Alias (S));
                  else
                     Set_Overridden_Operation (E, S);
                  end if;

                  if Comes_From_Source (E) then
                     Check_Overriding_Indicator (E, S, Is_Primitive => False);
                  end if;

                  return;

               --  Within an instance, the renaming declarations for actual
               --  subprograms may become ambiguous, but they do not hide each
               --  other.

               elsif Ekind (E) /= E_Entry
                 and then not Comes_From_Source (E)
                 and then not Is_Generic_Instance (E)
                 and then (Present (Alias (E))
                            or else Is_Intrinsic_Subprogram (E))
                 and then (not In_Instance
                            or else No (Parent (E))
                            or else Nkind (Unit_Declaration_Node (E)) /=
                                      N_Subprogram_Renaming_Declaration)
               then
                  --  A subprogram child unit is not allowed to override an
                  --  inherited subprogram (10.1.1(20)).

                  if Is_Child_Unit (S) then
                     Error_Msg_N
                       ("child unit overrides inherited subprogram in parent",
                        S);
                     return;
                  end if;

                  if Is_Non_Overriding_Operation (E, S) then
                     Enter_Overloaded_Entity (S);

                     if No (Derived_Type)
                       or else Is_Tagged_Type (Derived_Type)
                     then
                        Check_Dispatching_Operation (S, Empty);
                     end if;

                     return;
                  end if;

                  --  E is a derived operation or an internal operator which
                  --  is being overridden. Remove E from further visibility.
                  --  Furthermore, if E is a dispatching operation, it must be
                  --  replaced in the list of primitive operations of its type
                  --  (see Override_Dispatching_Operation).

                  Overridden_Subp := E;

                  declare
                     Prev : Entity_Id;

                  begin
                     Prev := First_Entity (Current_Scope);
                     while Present (Prev) and then Next_Entity (Prev) /= E loop
                        Next_Entity (Prev);
                     end loop;

                     --  It is possible for E to be in the current scope and
                     --  yet not in the entity chain. This can only occur in a
                     --  generic context where E is an implicit concatenation
                     --  in the formal part, because in a generic body the
                     --  entity chain starts with the formals.

                     pragma Assert
                       (Present (Prev) or else Chars (E) = Name_Op_Concat);

                     --  E must be removed both from the entity_list of the
                     --  current scope, and from the visibility chain

                     if Debug_Flag_E then
                        Write_Str ("Override implicit operation ");
                        Write_Int (Int (E));
                        Write_Eol;
                     end if;

                     --  If E is a predefined concatenation, it stands for four
                     --  different operations. As a result, a single explicit
                     --  declaration does not hide it. In a possible ambiguous
                     --  situation, Disambiguate chooses the user-defined op,
                     --  so it is correct to retain the previous internal one.

                     if Chars (E) /= Name_Op_Concat
                       or else Ekind (E) /= E_Operator
                     then
                        --  For nondispatching derived operations that are
                        --  overridden by a subprogram declared in the private
                        --  part of a package, we retain the derived subprogram
                        --  but mark it as not immediately visible. If the
                        --  derived operation was declared in the visible part
                        --  then this ensures that it will still be visible
                        --  outside the package with the proper signature
                        --  (calls from outside must also be directed to this
                        --  version rather than the overriding one, unlike the
                        --  dispatching case). Calls from inside the package
                        --  will still resolve to the overriding subprogram
                        --  since the derived one is marked as not visible
                        --  within the package.

                        --  If the private operation is dispatching, we achieve
                        --  the overriding by keeping the implicit operation
                        --  but setting its alias to be the overriding one. In
                        --  this fashion the proper body is executed in all
                        --  cases, but the original signature is used outside
                        --  of the package.

                        --  If the overriding is not in the private part, we
                        --  remove the implicit operation altogether.

                        if Is_Private_Declaration (S) then
                           if not Is_Dispatching_Operation (E) then
                              Set_Is_Immediately_Visible (E, False);
                           else
                              --  Work done in Override_Dispatching_Operation,
                              --  so nothing else needs to be done here.

                              null;
                           end if;

                        else
                           --  Find predecessor of E in Homonym chain

                           if E = Current_Entity (E) then
                              Prev_Vis := Empty;
                           else
                              Prev_Vis := Current_Entity (E);
                              while Homonym (Prev_Vis) /= E loop
                                 Prev_Vis := Homonym (Prev_Vis);
                              end loop;
                           end if;

                           if Prev_Vis /= Empty then

                              --  Skip E in the visibility chain

                              Set_Homonym (Prev_Vis, Homonym (E));

                           else
                              Set_Name_Entity_Id (Chars (E), Homonym (E));
                           end if;

                           Set_Next_Entity (Prev, Next_Entity (E));

                           if No (Next_Entity (Prev)) then
                              Set_Last_Entity (Current_Scope, Prev);
                           end if;
                        end if;
                     end if;

                     Enter_Overloaded_Entity (S);

                     --  For entities generated by Derive_Subprograms the
                     --  overridden operation is the inherited primitive
                     --  (which is available through the attribute alias).

                     if not (Comes_From_Source (E))
                       and then Is_Dispatching_Operation (E)
                       and then Find_Dispatching_Type (E) =
                                Find_Dispatching_Type (S)
                       and then Present (Alias (E))
                       and then Comes_From_Source (Alias (E))
                     then
                        Set_Overridden_Operation (S, Alias (E));

                     --  Normal case of setting entity as overridden

                     --  Note: Static_Initialization and Overridden_Operation
                     --  attributes use the same field in subprogram entities.
                     --  Static_Initialization is only defined for internal
                     --  initialization procedures, where Overridden_Operation
                     --  is irrelevant. Therefore the setting of this attribute
                     --  must check whether the target is an init_proc.

                     elsif not Is_Init_Proc (S) then
                        Set_Overridden_Operation (S, E);
                     end if;

                     Check_Overriding_Indicator (S, E, Is_Primitive => True);

                     --  If S is a user-defined subprogram or a null procedure
                     --  expanded to override an inherited null procedure, or a
                     --  predefined dispatching primitive then indicate that E
                     --  overrides the operation from which S is inherited.

                     if Comes_From_Source (S)
                       or else
                         (Present (Parent (S))
                           and then
                             Nkind (Parent (S)) = N_Procedure_Specification
                           and then
                             Null_Present (Parent (S)))
                       or else
                         (Present (Alias (E))
                           and then
                             Is_Predefined_Dispatching_Operation (Alias (E)))
                     then
                        if Present (Alias (E)) then
                           Set_Overridden_Operation (S, Alias (E));
                        end if;
                     end if;

                     if Is_Dispatching_Operation (E) then

                        --  An overriding dispatching subprogram inherits the
                        --  convention of the overridden subprogram (AI-117).

                        Set_Convention (S, Convention (E));
                        Check_Dispatching_Operation (S, E);

                     else
                        Check_Dispatching_Operation (S, Empty);
                     end if;

                     Check_For_Primitive_Subprogram
                       (Is_Primitive_Subp, Is_Overriding => True);
                     goto Check_Inequality;
                  end;

               --  Apparent redeclarations in instances can occur when two
               --  formal types get the same actual type. The subprograms in
               --  in the instance are legal,  even if not callable from the
               --  outside. Calls from within are disambiguated elsewhere.
               --  For dispatching operations in the visible part, the usual
               --  rules apply, and operations with the same profile are not
               --  legal (B830001).

               elsif (In_Instance_Visible_Part
                       and then not Is_Dispatching_Operation (E))
                 or else In_Instance_Not_Visible
               then
                  null;

               --  Here we have a real error (identical profile)

               else
                  Error_Msg_Sloc := Sloc (E);

                  --  Avoid cascaded errors if the entity appears in
                  --  subsequent calls.

                  Set_Scope (S, Current_Scope);

                  --  Generate error, with extra useful warning for the case
                  --  of a generic instance with no completion.

                  if Is_Generic_Instance (S)
                    and then not Has_Completion (E)
                  then
                     Error_Msg_N
                       ("instantiation cannot provide body for&", S);
                     Error_Msg_N ("\& conflicts with declaration#", S);
                  else
                     Error_Msg_N ("& conflicts with declaration#", S);
                  end if;

                  return;
               end if;

            else
               --  If one subprogram has an access parameter and the other
               --  a parameter of an access type, calls to either might be
               --  ambiguous. Verify that parameters match except for the
               --  access parameter.

               if May_Hide_Profile then
                  declare
                     F1 : Entity_Id;
                     F2 : Entity_Id;

                  begin
                     F1 := First_Formal (S);
                     F2 := First_Formal (E);
                     while Present (F1) and then Present (F2) loop
                        if Is_Access_Type (Etype (F1)) then
                           if not Is_Access_Type (Etype (F2))
                              or else not Conforming_Types
                                (Designated_Type (Etype (F1)),
                                 Designated_Type (Etype (F2)),
                                 Type_Conformant)
                           then
                              May_Hide_Profile := False;
                           end if;

                        elsif
                          not Conforming_Types
                            (Etype (F1), Etype (F2), Type_Conformant)
                        then
                           May_Hide_Profile := False;
                        end if;

                        Next_Formal (F1);
                        Next_Formal (F2);
                     end loop;

                     if May_Hide_Profile
                       and then No (F1)
                       and then No (F2)
                     then
                        Error_Msg_NE ("calls to& may be ambiguous??", S, S);
                     end if;
                  end;
               end if;
            end if;

            E := Homonym (E);
         end loop;

         --  On exit, we know that S is a new entity

         Enter_Overloaded_Entity (S);
         Check_For_Primitive_Subprogram (Is_Primitive_Subp);
         Check_Overriding_Indicator
           (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);

         --  Overloading is not allowed in SPARK, except for operators

         if Nkind (S) /= N_Defining_Operator_Symbol then
            Error_Msg_Sloc := Sloc (Homonym (S));
            Check_SPARK_Restriction
              ("overloading not allowed with entity#", S);
         end if;

         --  If S is a derived operation for an untagged type then by
         --  definition it's not a dispatching operation (even if the parent
         --  operation was dispatching), so Check_Dispatching_Operation is not
         --  called in that case.

         if No (Derived_Type)
           or else Is_Tagged_Type (Derived_Type)
         then
            Check_Dispatching_Operation (S, Empty);
         end if;
      end if;

      --  If this is a user-defined equality operator that is not a derived
      --  subprogram, create the corresponding inequality. If the operation is
      --  dispatching, the expansion is done elsewhere, and we do not create
      --  an explicit inequality operation.

      <<Check_Inequality>>
         if Chars (S) = Name_Op_Eq
           and then Etype (S) = Standard_Boolean
           and then Present (Parent (S))
           and then not Is_Dispatching_Operation (S)
         then
            Make_Inequality_Operator (S);

            if Ada_Version >= Ada_2012 then
               Check_Untagged_Equality (S);
            end if;
         end if;
   end New_Overloaded_Entity;

   ---------------------
   -- Process_Formals --
   ---------------------

   procedure Process_Formals
     (T           : List_Id;
      Related_Nod : Node_Id)
   is
      Param_Spec  : Node_Id;
      Formal      : Entity_Id;
      Formal_Type : Entity_Id;
      Default     : Node_Id;
      Ptype       : Entity_Id;

      Num_Out_Params  : Nat       := 0;
      First_Out_Param : Entity_Id := Empty;
      --  Used for setting Is_Only_Out_Parameter

      function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
      --  Determine whether an access type designates a type coming from a
      --  limited view.

      function Is_Class_Wide_Default (D : Node_Id) return Boolean;
      --  Check whether the default has a class-wide type. After analysis the
      --  default has the type of the formal, so we must also check explicitly
      --  for an access attribute.

      -------------------------------
      -- Designates_From_With_Type --
      -------------------------------

      function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
         Desig : Entity_Id := Typ;

      begin
         if Is_Access_Type (Desig) then
            Desig := Directly_Designated_Type (Desig);
         end if;

         if Is_Class_Wide_Type (Desig) then
            Desig := Root_Type (Desig);
         end if;

         return
           Ekind (Desig) = E_Incomplete_Type and then From_With_Type (Desig);
      end Designates_From_With_Type;

      ---------------------------
      -- Is_Class_Wide_Default --
      ---------------------------

      function Is_Class_Wide_Default (D : Node_Id) return Boolean is
      begin
         return Is_Class_Wide_Type (Designated_Type (Etype (D)))
           or else (Nkind (D) =  N_Attribute_Reference
                     and then Attribute_Name (D) = Name_Access
                     and then Is_Class_Wide_Type (Etype (Prefix (D))));
      end Is_Class_Wide_Default;

   --  Start of processing for Process_Formals

   begin
      --  In order to prevent premature use of the formals in the same formal
      --  part, the Ekind is left undefined until all default expressions are
      --  analyzed. The Ekind is established in a separate loop at the end.

      Param_Spec := First (T);
      while Present (Param_Spec) loop
         Formal := Defining_Identifier (Param_Spec);
         Set_Never_Set_In_Source (Formal, True);
         Enter_Name (Formal);

         --  Case of ordinary parameters

         if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
            Find_Type (Parameter_Type (Param_Spec));
            Ptype := Parameter_Type (Param_Spec);

            if Ptype = Error then
               goto Continue;
            end if;

            Formal_Type := Entity (Ptype);

            if Is_Incomplete_Type (Formal_Type)
              or else
               (Is_Class_Wide_Type (Formal_Type)
                 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
            then
               --  Ada 2005 (AI-326): Tagged incomplete types allowed in
               --  primitive operations, as long as their completion is
               --  in the same declarative part. If in the private part
               --  this means that the type cannot be a Taft-amendment type.
               --  Check is done on package exit. For access to subprograms,
               --  the use is legal for Taft-amendment types.

               --  Ada 2012: tagged incomplete types are allowed as generic
               --  formal types. They do not introduce dependencies and the
               --  corresponding generic subprogram does not have a delayed
               --  freeze, because it does not need a freeze node.

               if Is_Tagged_Type (Formal_Type) then
                  if Ekind (Scope (Current_Scope)) = E_Package
                    and then not From_With_Type (Formal_Type)
                    and then not Is_Generic_Type (Formal_Type)
                    and then not Is_Class_Wide_Type (Formal_Type)
                  then
                     if not Nkind_In
                       (Parent (T), N_Access_Function_Definition,
                                    N_Access_Procedure_Definition)
                     then
                        Append_Elmt
                          (Current_Scope,
                             Private_Dependents (Base_Type (Formal_Type)));

                        --  Freezing is delayed to ensure that Register_Prim
                        --  will get called for this operation, which is needed
                        --  in cases where static dispatch tables aren't built.
                        --  (Note that the same is done for controlling access
                        --  parameter cases in function Access_Definition.)

                        Set_Has_Delayed_Freeze (Current_Scope);
                     end if;
                  end if;

               --  Special handling of Value_Type for CIL case

               elsif Is_Value_Type (Formal_Type) then
                  null;

               elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
                                               N_Access_Procedure_Definition)
               then
                  --  AI05-0151: Tagged incomplete types are allowed in all
                  --  formal parts. Untagged incomplete types are not allowed
                  --  in bodies.

                  if Ada_Version >= Ada_2012 then
                     if Is_Tagged_Type (Formal_Type) then
                        null;

                     elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
                                                          N_Entry_Body,
                                                          N_Subprogram_Body)
                     then
                        Error_Msg_NE
                          ("invalid use of untagged incomplete type&",
                           Ptype, Formal_Type);
                     end if;

                  else
                     Error_Msg_NE
                       ("invalid use of incomplete type&",
                        Param_Spec, Formal_Type);

                     --  Further checks on the legality of incomplete types
                     --  in formal parts are delayed until the freeze point
                     --  of the enclosing subprogram or access to subprogram.
                  end if;
               end if;

            elsif Ekind (Formal_Type) = E_Void then
               Error_Msg_NE
                 ("premature use of&",
                  Parameter_Type (Param_Spec), Formal_Type);
            end if;

            --  Ada 2012 (AI-142): Handle aliased parameters

            if Ada_Version >= Ada_2012
              and then Aliased_Present (Param_Spec)
            then
               Set_Is_Aliased (Formal);
            end if;

            --  Ada 2005 (AI-231): Create and decorate an internal subtype
            --  declaration corresponding to the null-excluding type of the
            --  formal in the enclosing scope. Finally, replace the parameter
            --  type of the formal with the internal subtype.

            if Ada_Version >= Ada_2005
              and then Null_Exclusion_Present (Param_Spec)
            then
               if not Is_Access_Type (Formal_Type) then
                  Error_Msg_N
                    ("`NOT NULL` allowed only for an access type", Param_Spec);

               else
                  if Can_Never_Be_Null (Formal_Type)
                    and then Comes_From_Source (Related_Nod)
                  then
                     Error_Msg_NE
                       ("`NOT NULL` not allowed (& already excludes null)",
                        Param_Spec, Formal_Type);
                  end if;

                  Formal_Type :=
                    Create_Null_Excluding_Itype
                      (T           => Formal_Type,
                       Related_Nod => Related_Nod,
                       Scope_Id    => Scope (Current_Scope));

                  --  If the designated type of the itype is an itype that is
                  --  not frozen yet, we set the Has_Delayed_Freeze attribute
                  --  on the access subtype, to prevent order-of-elaboration
                  --  issues in the backend.

                  --  Example:
                  --     type T is access procedure;
                  --     procedure Op (O : not null T);

                  if Is_Itype (Directly_Designated_Type (Formal_Type))
                    and then
                      not Is_Frozen (Directly_Designated_Type (Formal_Type))
                  then
                     Set_Has_Delayed_Freeze (Formal_Type);
                  end if;
               end if;
            end if;

         --  An access formal type

         else
            Formal_Type :=
              Access_Definition (Related_Nod, Parameter_Type (Param_Spec));

            --  No need to continue if we already notified errors

            if not Present (Formal_Type) then
               return;
            end if;

            --  Ada 2005 (AI-254)

            declare
               AD : constant Node_Id :=
                      Access_To_Subprogram_Definition
                        (Parameter_Type (Param_Spec));
            begin
               if Present (AD) and then Protected_Present (AD) then
                  Formal_Type :=
                    Replace_Anonymous_Access_To_Protected_Subprogram
                      (Param_Spec);
               end if;
            end;
         end if;

         Set_Etype (Formal, Formal_Type);

         --  Deal with default expression if present

         Default := Expression (Param_Spec);

         if Present (Default) then
            Check_SPARK_Restriction
              ("default expression is not allowed", Default);

            if Out_Present (Param_Spec) then
               Error_Msg_N
                 ("default initialization only allowed for IN parameters",
                  Param_Spec);
            end if;

            --  Do the special preanalysis of the expression (see section on
            --  "Handling of Default Expressions" in the spec of package Sem).

            Preanalyze_Spec_Expression (Default, Formal_Type);

            --  An access to constant cannot be the default for
            --  an access parameter that is an access to variable.

            if Ekind (Formal_Type) = E_Anonymous_Access_Type
              and then not Is_Access_Constant (Formal_Type)
              and then Is_Access_Type (Etype (Default))
              and then Is_Access_Constant (Etype (Default))
            then
               Error_Msg_N
                 ("formal that is access to variable cannot be initialized " &
                    "with an access-to-constant expression", Default);
            end if;

            --  Check that the designated type of an access parameter's default
            --  is not a class-wide type unless the parameter's designated type
            --  is also class-wide.

            if Ekind (Formal_Type) = E_Anonymous_Access_Type
              and then not Designates_From_With_Type (Formal_Type)
              and then Is_Class_Wide_Default (Default)
              and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
            then
               Error_Msg_N
                 ("access to class-wide expression not allowed here", Default);
            end if;

            --  Check incorrect use of dynamically tagged expressions

            if Is_Tagged_Type (Formal_Type) then
               Check_Dynamically_Tagged_Expression
                 (Expr        => Default,
                  Typ         => Formal_Type,
                  Related_Nod => Default);
            end if;
         end if;

         --  Ada 2005 (AI-231): Static checks

         if Ada_Version >= Ada_2005
           and then Is_Access_Type (Etype (Formal))
           and then Can_Never_Be_Null (Etype (Formal))
         then
            Null_Exclusion_Static_Checks (Param_Spec);
         end if;

      <<Continue>>
         Next (Param_Spec);
      end loop;

      --  If this is the formal part of a function specification, analyze the
      --  subtype mark in the context where the formals are visible but not
      --  yet usable, and may hide outer homographs.

      if Nkind (Related_Nod) = N_Function_Specification then
         Analyze_Return_Type (Related_Nod);
      end if;

      --  Now set the kind (mode) of each formal

      Param_Spec := First (T);
      while Present (Param_Spec) loop
         Formal := Defining_Identifier (Param_Spec);
         Set_Formal_Mode (Formal);

         if Ekind (Formal) = E_In_Parameter then
            Set_Default_Value (Formal, Expression (Param_Spec));

            if Present (Expression (Param_Spec)) then
               Default :=  Expression (Param_Spec);

               if Is_Scalar_Type (Etype (Default)) then
                  if Nkind (Parameter_Type (Param_Spec)) /=
                                              N_Access_Definition
                  then
                     Formal_Type := Entity (Parameter_Type (Param_Spec));
                  else
                     Formal_Type :=
                       Access_Definition
                         (Related_Nod, Parameter_Type (Param_Spec));
                  end if;

                  Apply_Scalar_Range_Check (Default, Formal_Type);
               end if;
            end if;

         elsif Ekind (Formal) = E_Out_Parameter then
            Num_Out_Params := Num_Out_Params + 1;

            if Num_Out_Params = 1 then
               First_Out_Param := Formal;
            end if;

         elsif Ekind (Formal) = E_In_Out_Parameter then
            Num_Out_Params := Num_Out_Params + 1;
         end if;

         --  Skip remaining processing if formal type was in error

         if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
            goto Next_Parameter;
         end if;

         --  Force call by reference if aliased

         if Is_Aliased (Formal) then
            Set_Mechanism (Formal, By_Reference);

            --  Warn if user asked this to be passed by copy

            if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
               Error_Msg_N
                 ("cannot pass aliased parameter & by copy?", Formal);
            end if;

         --  Force mechanism if type has Convention Ada_Pass_By_Ref/Copy

         elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
            Set_Mechanism (Formal, By_Copy);

         elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
            Set_Mechanism (Formal, By_Reference);
         end if;

      <<Next_Parameter>>
         Next (Param_Spec);
      end loop;

      if Present (First_Out_Param) and then Num_Out_Params = 1 then
         Set_Is_Only_Out_Parameter (First_Out_Param);
      end if;
   end Process_Formals;

   ------------------
   -- Process_PPCs --
   ------------------

   procedure Process_PPCs
     (N       : Node_Id;
      Spec_Id : Entity_Id;
      Body_Id : Entity_Id)
   is
      Loc   : constant Source_Ptr := Sloc (N);
      Prag  : Node_Id;
      Parms : List_Id;

      Designator : Entity_Id;
      --  Subprogram designator, set from Spec_Id if present, else Body_Id

      Precond : Node_Id := Empty;
      --  Set non-Empty if we prepend precondition to the declarations. This
      --  is used to hook up inherited preconditions (adding the condition
      --  expression with OR ELSE, and adding the message).

      Inherited_Precond : Node_Id;
      --  Precondition inherited from parent subprogram

      Inherited : constant Subprogram_List :=
                     Inherited_Subprograms (Spec_Id);
      --  List of subprograms inherited by this subprogram

      Plist : List_Id := No_List;
      --  List of generated postconditions

      procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
      --  Append a node to a list. If there is no list, create a new one. When
      --  the item denotes a pragma, it is added to the list only when it is
      --  enabled.

      procedure Check_Access_Invariants (E : Entity_Id);
      --  If the subprogram returns an access to a type with invariants, or
      --  has access parameters whose designated type has an invariant, then
      --  under the same visibility conditions as for other invariant checks,
      --  the type invariant must be applied to the returned value.

      function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id;
      --  Prag contains an analyzed precondition or postcondition pragma. This
      --  function copies the pragma, changes it to the corresponding Check
      --  pragma and returns the Check pragma as the result. If Pspec is non-
      --  empty, this is the case of inheriting a PPC, where we must change
      --  references to parameters of the inherited subprogram to point to the
      --  corresponding parameters of the current subprogram.

      function Has_Checked_Predicate (Typ : Entity_Id) return Boolean;
      --  Determine whether type Typ has or inherits at least one predicate
      --  aspect or pragma, for which the applicable policy is Checked.

      function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
      --  Determine whether the body of procedure Proc_Id contains a sole null
      --  statement, possibly followed by an optional return.

      procedure Insert_After_Last_Declaration (Nod : Node_Id);
      --  Insert node Nod after the last declaration of the context

      function Is_Public_Subprogram_For (T : Entity_Id) return Boolean;
      --  T is the entity for a private type for which invariants are defined.
      --  This function returns True if the procedure corresponding to the
      --  value of Designator is a public procedure from the point of view of
      --  this type (i.e. its spec is in the visible part of the package that
      --  contains the declaration of the private type). A True value means
      --  that an invariant check is required (for an IN OUT parameter, or
      --  the returned value of a function.

      -------------------------
      -- Append_Enabled_Item --
      -------------------------

      procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
      begin
         --  Do not chain ignored or disabled pragmas

         if Nkind (Item) = N_Pragma
           and then (Is_Ignored (Item) or else Is_Disabled (Item))
         then
            null;

         --  Add the item

         else
            if No (List) then
               List := New_List;
            end if;

            Append (Item, List);
         end if;
      end Append_Enabled_Item;

      -----------------------------
      -- Check_Access_Invariants --
      -----------------------------

      procedure Check_Access_Invariants (E : Entity_Id) is
         Call : Node_Id;
         Obj  : Node_Id;
         Typ  : Entity_Id;

      begin
         if Is_Access_Type (Etype (E))
           and then not Is_Access_Constant (Etype (E))
         then
            Typ := Designated_Type (Etype (E));

            if Has_Invariants (Typ)
              and then Present (Invariant_Procedure (Typ))
              and then not Has_Null_Body (Invariant_Procedure (Typ))
              and then Is_Public_Subprogram_For (Typ)
            then
               Obj :=
                 Make_Explicit_Dereference (Loc,
                   Prefix => New_Occurrence_Of (E, Loc));
               Set_Etype (Obj, Typ);

               Call := Make_Invariant_Call (Obj);

               Append_Enabled_Item
                 (Make_If_Statement (Loc,
                    Condition =>
                      Make_Op_Ne (Loc,
                        Left_Opnd   => Make_Null (Loc),
                        Right_Opnd  => New_Occurrence_Of (E, Loc)),
                    Then_Statements => New_List (Call)),
                  List => Plist);
            end if;
         end if;
      end Check_Access_Invariants;

      --------------
      -- Grab_PPC --
      --------------

      function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id is
         Nam : constant Name_Id := Pragma_Name (Prag);
         Map : Elist_Id;
         CP  : Node_Id;

         Ename : Name_Id;
         --  Effective name of pragma (maybe Pre/Post rather than Precondition/
         --  Postcodition if the pragma came from a Pre/Post aspect). We need
         --  the name right when we generate the Check pragma, since we want
         --  the right set of check policies to apply.

      begin
         --  Prepare map if this is the case where we have to map entities of
         --  arguments in the overridden subprogram to corresponding entities
         --  of the current subprogram.

         if No (Pspec) then
            Map := No_Elist;

         else
            declare
               PF : Entity_Id;
               CF : Entity_Id;

            begin
               Map := New_Elmt_List;
               PF := First_Formal (Pspec);
               CF := First_Formal (Designator);
               while Present (PF) loop
                  Append_Elmt (PF, Map);
                  Append_Elmt (CF, Map);
                  Next_Formal (PF);
                  Next_Formal (CF);
               end loop;
            end;
         end if;

         --  Now we can copy the tree, doing any required substitutions

         CP := New_Copy_Tree (Prag, Map => Map, New_Scope => Current_Scope);

         --  Set Analyzed to false, since we want to reanalyze the check
         --  procedure. Note that it is only at the outer level that we
         --  do this fiddling, for the spec cases, the already preanalyzed
         --  parameters are not affected.

         Set_Analyzed (CP, False);

         --  We also make sure Comes_From_Source is False for the copy

         Set_Comes_From_Source (CP, False);

         --  For a postcondition pragma within a generic, preserve the pragma
         --  for later expansion. This is also used when an error was detected,
         --  thus setting Expander_Active to False.

         if Nam = Name_Postcondition
           and then not Expander_Active
         then
            return CP;
         end if;

         --  Get effective name of aspect

         if Present (Corresponding_Aspect (Prag)) then
            Ename := Chars (Identifier (Corresponding_Aspect (Prag)));
         else
            Ename := Nam;
         end if;

         --  Change copy of pragma into corresponding pragma Check

         Prepend_To (Pragma_Argument_Associations (CP),
           Make_Pragma_Argument_Association (Sloc (Prag),
             Expression => Make_Identifier (Loc, Ename)));
         Set_Pragma_Identifier (CP, Make_Identifier (Sloc (Prag), Name_Check));

         --  If this is inherited case and the current message starts with
         --  "failed p", we change it to "failed inherited p...".

         if Present (Pspec) then
            declare
               Msg : constant Node_Id :=
                       Last (Pragma_Argument_Associations (CP));

            begin
               if Chars (Msg) = Name_Message then
                  String_To_Name_Buffer (Strval (Expression (Msg)));

                  if Name_Buffer (1 .. 8) = "failed p" then
                     Insert_Str_In_Name_Buffer ("inherited ", 8);
                     Set_Strval
                       (Expression (Last (Pragma_Argument_Associations (CP))),
                        String_From_Name_Buffer);
                  end if;
               end if;
            end;
         end if;

         --  Return the check pragma

         return CP;
      end Grab_PPC;

      ---------------------------
      -- Has_Checked_Predicate --
      ---------------------------

      function Has_Checked_Predicate (Typ : Entity_Id) return Boolean is
         Anc  : Entity_Id;
         Pred : Node_Id;

      begin
         --  Climb the ancestor type chain staring from the input. This is done
         --  because the input type may lack aspect/pragma predicate and simply
         --  inherit those from its ancestor.

         --  Note that predicate pragmas include all three cases of predicate
         --  aspects (Predicate, Dynamic_Predicate, Static_Predicate), so this
         --  routine checks for all three cases.

         Anc := Typ;
         while Present (Anc) loop
            Pred := Get_Pragma (Anc, Pragma_Predicate);

            if Present (Pred) and then not Is_Ignored (Pred) then
               return True;
            end if;

            Anc := Nearest_Ancestor (Anc);
         end loop;

         return False;
      end Has_Checked_Predicate;

      -------------------
      -- Has_Null_Body --
      -------------------

      function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
         Body_Id : Entity_Id;
         Decl    : Node_Id;
         Spec    : Node_Id;
         Stmt1   : Node_Id;
         Stmt2   : Node_Id;

      begin
         Spec := Parent (Proc_Id);
         Decl := Parent (Spec);

         --  Retrieve the entity of the invariant procedure body

         if Nkind (Spec) = N_Procedure_Specification
           and then Nkind (Decl) = N_Subprogram_Declaration
         then
            Body_Id := Corresponding_Body (Decl);

         --  The body acts as a spec

         else
            Body_Id := Proc_Id;
         end if;

         --  The body will be generated later

         if No (Body_Id) then
            return False;
         end if;

         Spec := Parent (Body_Id);
         Decl := Parent (Spec);

         pragma Assert
           (Nkind (Spec) = N_Procedure_Specification
              and then Nkind (Decl) = N_Subprogram_Body);

         Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));

         --  Look for a null statement followed by an optional return statement

         if Nkind (Stmt1) = N_Null_Statement then
            Stmt2 := Next (Stmt1);

            if Present (Stmt2) then
               return Nkind (Stmt2) = N_Simple_Return_Statement;
            else
               return True;
            end if;
         end if;

         return False;
      end Has_Null_Body;

      -----------------------------------
      -- Insert_After_Last_Declaration --
      -----------------------------------

      procedure Insert_After_Last_Declaration (Nod : Node_Id) is
         Decls : constant List_Id := Declarations (N);

      begin
         if No (Decls) then
            Set_Declarations (N, New_List (Nod));
         else
            Append_To (Decls, Nod);
         end if;
      end Insert_After_Last_Declaration;

      ------------------------------
      -- Is_Public_Subprogram_For --
      ------------------------------

      --  The type T is a private type, its declaration is therefore in
      --  the list of public declarations of some package. The test for a
      --  public subprogram is that its declaration is in this same list
      --  of declarations for the same package (note that all the public
      --  declarations are in one list, and all the private declarations
      --  in another, so this deals with the public/private distinction).

      function Is_Public_Subprogram_For (T : Entity_Id) return Boolean is
         DD : constant Node_Id := Unit_Declaration_Node (Designator);
         --  The subprogram declaration for the subprogram in question

         TL : constant List_Id :=
                Visible_Declarations
                  (Specification (Unit_Declaration_Node (Scope (T))));
         --  The list of declarations containing the private declaration of
         --  the type. We know it is a private type, so we know its scope is
         --  the package in question, and we know it must be in the visible
         --  declarations of this package.

      begin
         --  If the subprogram declaration is not a list member, it must be
         --  an Init_Proc, in which case we want to consider it to be a
         --  public subprogram, since we do get initializations to deal with.
         --  Other internally generated subprograms are not public.

         if not Is_List_Member (DD)
           and then Is_Init_Proc (Defining_Entity (DD))
         then
            return True;

         --  The declaration may have been generated for an expression function
         --  so check whether that function comes from source.

         elsif not Comes_From_Source (DD)
           and then
             (Nkind (Original_Node (DD)) /= N_Expression_Function
               or else not Comes_From_Source (Defining_Entity (DD)))
         then
            return False;

         --  Otherwise we test whether the subprogram is declared in the
         --  visible declarations of the package containing the type.

         else
            return TL = List_Containing (DD);
         end if;
      end Is_Public_Subprogram_For;

      --  Local variables

      Formal     : Node_Id;
      Formal_Typ : Entity_Id;
      Func_Typ   : Entity_Id;
      Post_Proc  : Entity_Id;
      Result     : Node_Id;

   --  Start of processing for Process_PPCs

   begin
      --  Capture designator from spec if present, else from body

      if Present (Spec_Id) then
         Designator := Spec_Id;
      else
         Designator := Body_Id;
      end if;

      --  Do not process a predicate function as its body will contain a
      --  recursive call to itself and blow up the stack.

      if Ekind (Designator) = E_Function
        and then Is_Predicate_Function (Designator)
      then
         return;

      --  Internally generated subprograms, such as type-specific functions,
      --  don't get assertion checks.

      elsif Get_TSS_Name (Designator) /= TSS_Null then
         return;
      end if;

      --  Grab preconditions from spec

      if Present (Spec_Id) then

         --  Loop through PPC pragmas from spec. Note that preconditions from
         --  the body will be analyzed and converted when we scan the body
         --  declarations below.

         Prag := Pre_Post_Conditions (Contract (Spec_Id));
         while Present (Prag) loop
            if Pragma_Name (Prag) = Name_Precondition then

               --  For Pre (or Precondition pragma), we simply prepend the
               --  pragma to the list of declarations right away so that it
               --  will be executed at the start of the procedure. Note that
               --  this processing reverses the order of the list, which is
               --  what we want since new entries were chained to the head of
               --  the list. There can be more than one precondition when we
               --  use pragma Precondition.

               if not Class_Present (Prag) then
                  Prepend (Grab_PPC, Declarations (N));

               --  For Pre'Class there can only be one pragma, and we save
               --  it in Precond for now. We will add inherited Pre'Class
               --  stuff before inserting this pragma in the declarations.
               else
                  Precond := Grab_PPC;
               end if;
            end if;

            Prag := Next_Pragma (Prag);
         end loop;

         --  Now deal with inherited preconditions

         for J in Inherited'Range loop
            Prag := Pre_Post_Conditions (Contract (Inherited (J)));

            while Present (Prag) loop
               if Pragma_Name (Prag) = Name_Precondition
                 and then Class_Present (Prag)
               then
                  Inherited_Precond := Grab_PPC (Inherited (J));

                  --  No precondition so far, so establish this as the first

                  if No (Precond) then
                     Precond := Inherited_Precond;

                  --  Here we already have a precondition, add inherited one

                  else
                     --  Add new precondition to old one using OR ELSE

                     declare
                        New_Expr : constant Node_Id :=
                          Get_Pragma_Arg
                            (Next (First (Pragma_Argument_Associations
                                            (Inherited_Precond))));
                        Old_Expr : constant Node_Id :=
                          Get_Pragma_Arg
                            (Next (First (Pragma_Argument_Associations
                                             (Precond))));

                     begin
                        if Paren_Count (Old_Expr) = 0 then
                           Set_Paren_Count (Old_Expr, 1);
                        end if;

                        if Paren_Count (New_Expr) = 0 then
                           Set_Paren_Count (New_Expr, 1);
                        end if;

                        Rewrite (Old_Expr,
                          Make_Or_Else (Sloc (Old_Expr),
                            Left_Opnd  => Relocate_Node (Old_Expr),
                            Right_Opnd => New_Expr));
                     end;

                     --  Add new message in the form:

                     --     failed precondition from bla
                     --       also failed inherited precondition from bla
                     --       ...

                     --  Skip this if exception locations are suppressed

                     if not Exception_Locations_Suppressed then
                        declare
                           New_Msg : constant Node_Id :=
                                       Get_Pragma_Arg
                                         (Last
                                            (Pragma_Argument_Associations
                                               (Inherited_Precond)));
                           Old_Msg : constant Node_Id :=
                                       Get_Pragma_Arg
                                         (Last
                                            (Pragma_Argument_Associations
                                               (Precond)));
                        begin
                           Start_String (Strval (Old_Msg));
                           Store_String_Chars (ASCII.LF & "  also ");
                           Store_String_Chars (Strval (New_Msg));
                           Set_Strval (Old_Msg, End_String);
                        end;
                     end if;
                  end if;
               end if;

               Prag := Next_Pragma (Prag);
            end loop;
         end loop;

         --  If we have built a precondition for Pre'Class (including any
         --  Pre'Class aspects inherited from parent subprograms), then we
         --  insert this composite precondition at this stage.

         if Present (Precond) then
            Prepend (Precond, Declarations (N));
         end if;
      end if;

      --  Build postconditions procedure if needed and prepend the following
      --  declaration to the start of the declarations for the subprogram.

      --     procedure _postconditions [(_Result : resulttype)] is
      --     begin
      --        pragma Check (Postcondition, condition [,message]);
      --        pragma Check (Postcondition, condition [,message]);
      --        ...
      --        Invariant_Procedure (_Result) ...
      --        Invariant_Procedure (Arg1)
      --        ...
      --     end;

      --  First we deal with the postconditions in the body

      if Is_Non_Empty_List (Declarations (N)) then

         --  Loop through declarations

         Prag := First (Declarations (N));
         while Present (Prag) loop
            if Nkind (Prag) = N_Pragma then

               --  Capture postcondition pragmas

               if Pragma_Name (Prag) = Name_Postcondition then
                  Analyze (Prag);

                  --  If expansion is disabled, as in a generic unit, save
                  --  pragma for later expansion.

                  if not Expander_Active then
                     Prepend (Grab_PPC, Declarations (N));
                  else
                     Append_Enabled_Item (Grab_PPC, Plist);
                  end if;
               end if;

               Next (Prag);

            --  Not a pragma, if comes from source, then end scan

            elsif Comes_From_Source (Prag) then
               exit;

            --  Skip stuff not coming from source

            else
               Next (Prag);
            end if;
         end loop;
      end if;

      --  Now deal with any postconditions from the spec

      if Present (Spec_Id) then
         Spec_Postconditions : declare
            procedure Process_Contract_Cases (Spec : Node_Id);
            --  This processes the Contract_Test_Cases from Spec, processing
            --  any contract-cases from the list. The caller has checked that
            --  Contract_Test_Cases is non-Empty.

            procedure Process_Post_Conditions
              (Spec  : Node_Id;
               Class : Boolean);
            --  This processes the Pre_Post_Conditions from Spec, processing
            --  any postconditions from the list. If Class is True, then only
            --  postconditions marked with Class_Present are considered. The
            --  caller has checked that Pre_Post_Conditions is non-Empty.

            ----------------------------
            -- Process_Contract_Cases --
            ----------------------------

            procedure Process_Contract_Cases (Spec : Node_Id) is
            begin
               --  Loop through Contract_Cases pragmas from spec

               Prag := Contract_Test_Cases (Contract (Spec));
               loop
                  if Pragma_Name (Prag) = Name_Contract_Cases then
                     Expand_Contract_Cases
                       (CCs     => Prag,
                        Subp_Id => Spec_Id,
                        Decls   => Declarations (N),
                        Stmts   => Plist);
                  end if;

                  Prag := Next_Pragma (Prag);
                  exit when No (Prag);
               end loop;
            end Process_Contract_Cases;

            -----------------------------
            -- Process_Post_Conditions --
            -----------------------------

            procedure Process_Post_Conditions
              (Spec  : Node_Id;
               Class : Boolean)
            is
               Pspec : Node_Id;

            begin
               if Class then
                  Pspec := Spec;
               else
                  Pspec := Empty;
               end if;

               --  Loop through PPC pragmas from spec

               Prag := Pre_Post_Conditions (Contract (Spec));
               loop
                  if Pragma_Name (Prag) = Name_Postcondition
                    and then (not Class or else Class_Present (Prag))
                  then
                     if not Expander_Active then
                        Prepend (Grab_PPC (Pspec), Declarations (N));
                     else
                        Append_Enabled_Item (Grab_PPC (Pspec), Plist);
                     end if;
                  end if;

                  Prag := Next_Pragma (Prag);
                  exit when No (Prag);
               end loop;
            end Process_Post_Conditions;

         --  Start of processing for Spec_Postconditions

         begin
            --  Process postconditions expressed as contract-cases

            if Present (Contract_Test_Cases (Contract (Spec_Id))) then
               Process_Contract_Cases (Spec_Id);
            end if;

            --  Process spec postconditions

            if Present (Pre_Post_Conditions (Contract (Spec_Id))) then
               Process_Post_Conditions (Spec_Id, Class => False);
            end if;

            --  Process inherited postconditions

            for J in Inherited'Range loop
               if Present (Pre_Post_Conditions (Contract (Inherited (J)))) then
                  Process_Post_Conditions (Inherited (J), Class => True);
               end if;
            end loop;
         end Spec_Postconditions;
      end if;

      --  Add an invariant call to check the result of a function

      if Ekind (Designator) /= E_Procedure and then Expander_Active then
         Func_Typ := Etype (Designator);
         Result   := Make_Defining_Identifier (Loc, Name_uResult);

         Set_Etype (Result, Func_Typ);

         --  Add argument for return

         Parms := New_List (
           Make_Parameter_Specification (Loc,
             Defining_Identifier => Result,
             Parameter_Type      => New_Occurrence_Of (Func_Typ, Loc)));

         --  Add invariant call if returning type with invariants and this is a
         --  public function, i.e. a function declared in the visible part of
         --  the package defining the private type.

         if Has_Invariants (Func_Typ)
           and then Present (Invariant_Procedure (Func_Typ))
           and then not Has_Null_Body (Invariant_Procedure (Func_Typ))
           and then Is_Public_Subprogram_For (Func_Typ)
         then
            Append_Enabled_Item
              (Make_Invariant_Call (New_Occurrence_Of (Result, Loc)), Plist);
         end if;

         --  Same if return value is an access to type with invariants

         Check_Access_Invariants (Result);

      --  Procedure case

      else
         Parms := No_List;
      end if;

      --  Add invariant calls and predicate calls for parameters. Note that
      --  this is done for functions as well, since in Ada 2012 they can have
      --  IN OUT args.

      if Expander_Active then
         Formal := First_Formal (Designator);
         while Present (Formal) loop
            if Ekind (Formal) /= E_In_Parameter
              or else Is_Access_Type (Etype (Formal))
            then
               Formal_Typ := Etype (Formal);

               if Has_Invariants (Formal_Typ)
                 and then Present (Invariant_Procedure (Formal_Typ))
                 and then not Has_Null_Body (Invariant_Procedure (Formal_Typ))
                 and then Is_Public_Subprogram_For (Formal_Typ)
               then
                  Append_Enabled_Item
                    (Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
                     Plist);
               end if;

               Check_Access_Invariants (Formal);

               if Has_Predicates (Formal_Typ)
                 and then Present (Predicate_Function (Formal_Typ))
                 and then Has_Checked_Predicate (Formal_Typ)
               then
                  Append_Enabled_Item
                    (Make_Predicate_Check
                      (Formal_Typ, New_Occurrence_Of (Formal, Loc)),
                     Plist);
               end if;
            end if;

            Next_Formal (Formal);
         end loop;
      end if;

      --  Build and insert postcondition procedure

      if Expander_Active and then Present (Plist) then
         Post_Proc :=
           Make_Defining_Identifier (Loc, Chars => Name_uPostconditions);

         --  Insert the corresponding body of a post condition pragma after the
         --  last declaration of the context. This ensures that the body will
         --  not cause any premature freezing as it may mention types:

         --    procedure Proc (Obj : Array_Typ) is
         --       procedure _postconditions is
         --       begin
         --          ... Obj ...
         --       end _postconditions;

         --       subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
         --    begin

         --  In the example above, Obj is of type T but the incorrect placement
         --  of _postconditions will cause a crash in gigi due to an out of
         --  order reference. The body of _postconditions must be placed after
         --  the declaration of Temp to preserve correct visibility.

         Insert_After_Last_Declaration (
           Make_Subprogram_Body (Loc,
             Specification              =>
               Make_Procedure_Specification (Loc,
                 Defining_Unit_Name       => Post_Proc,
                 Parameter_Specifications => Parms),

             Declarations               => Empty_List,

             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements => Plist)));

         Set_Ekind (Post_Proc, E_Procedure);

         --  If this is a procedure, set the Postcondition_Proc attribute on
         --  the proper defining entity for the subprogram.

         if Ekind (Designator) = E_Procedure then
            Set_Postcondition_Proc (Designator, Post_Proc);
         end if;

         Set_Has_Postconditions (Designator);
      end if;
   end Process_PPCs;

   ----------------------------
   -- Reference_Body_Formals --
   ----------------------------

   procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
      Fs : Entity_Id;
      Fb : Entity_Id;

   begin
      if Error_Posted (Spec) then
         return;
      end if;

      --  Iterate over both lists. They may be of different lengths if the two
      --  specs are not conformant.

      Fs := First_Formal (Spec);
      Fb := First_Formal (Bod);
      while Present (Fs) and then Present (Fb) loop
         Generate_Reference (Fs, Fb, 'b');

         if Style_Check then
            Style.Check_Identifier (Fb, Fs);
         end if;

         Set_Spec_Entity (Fb, Fs);
         Set_Referenced (Fs, False);
         Next_Formal (Fs);
         Next_Formal (Fb);
      end loop;
   end Reference_Body_Formals;

   -------------------------
   -- Set_Actual_Subtypes --
   -------------------------

   procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
      Decl           : Node_Id;
      Formal         : Entity_Id;
      T              : Entity_Id;
      First_Stmt     : Node_Id := Empty;
      AS_Needed      : Boolean;

   begin
      --  If this is an empty initialization procedure, no need to create
      --  actual subtypes (small optimization).

      if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
         return;
      end if;

      Formal := First_Formal (Subp);
      while Present (Formal) loop
         T := Etype (Formal);

         --  We never need an actual subtype for a constrained formal

         if Is_Constrained (T) then
            AS_Needed := False;

         --  If we have unknown discriminants, then we do not need an actual
         --  subtype, or more accurately we cannot figure it out! Note that
         --  all class-wide types have unknown discriminants.

         elsif Has_Unknown_Discriminants (T) then
            AS_Needed := False;

         --  At this stage we have an unconstrained type that may need an
         --  actual subtype. For sure the actual subtype is needed if we have
         --  an unconstrained array type.

         elsif Is_Array_Type (T) then
            AS_Needed := True;

         --  The only other case needing an actual subtype is an unconstrained
         --  record type which is an IN parameter (we cannot generate actual
         --  subtypes for the OUT or IN OUT case, since an assignment can
         --  change the discriminant values. However we exclude the case of
         --  initialization procedures, since discriminants are handled very
         --  specially in this context, see the section entitled "Handling of
         --  Discriminants" in Einfo.

         --  We also exclude the case of Discrim_SO_Functions (functions used
         --  in front end layout mode for size/offset values), since in such
         --  functions only discriminants are referenced, and not only are such
         --  subtypes not needed, but they cannot always be generated, because
         --  of order of elaboration issues.

         elsif Is_Record_Type (T)
           and then Ekind (Formal) = E_In_Parameter
           and then Chars (Formal) /= Name_uInit
           and then not Is_Unchecked_Union (T)
           and then not Is_Discrim_SO_Function (Subp)
         then
            AS_Needed := True;

         --  All other cases do not need an actual subtype

         else
            AS_Needed := False;
         end if;

         --  Generate actual subtypes for unconstrained arrays and
         --  unconstrained discriminated records.

         if AS_Needed then
            if Nkind (N) = N_Accept_Statement then

               --  If expansion is active, the formal is replaced by a local
               --  variable that renames the corresponding entry of the
               --  parameter block, and it is this local variable that may
               --  require an actual subtype.

               if Full_Expander_Active then
                  Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
               else
                  Decl := Build_Actual_Subtype (T, Formal);
               end if;

               if Present (Handled_Statement_Sequence (N)) then
                  First_Stmt :=
                    First (Statements (Handled_Statement_Sequence (N)));
                  Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
                  Mark_Rewrite_Insertion (Decl);
               else
                  --  If the accept statement has no body, there will be no
                  --  reference to the actuals, so no need to compute actual
                  --  subtypes.

                  return;
               end if;

            else
               Decl := Build_Actual_Subtype (T, Formal);
               Prepend (Decl, Declarations (N));
               Mark_Rewrite_Insertion (Decl);
            end if;

            --  The declaration uses the bounds of an existing object, and
            --  therefore needs no constraint checks.

            Analyze (Decl, Suppress => All_Checks);

            --  We need to freeze manually the generated type when it is
            --  inserted anywhere else than in a declarative part.

            if Present (First_Stmt) then
               Insert_List_Before_And_Analyze (First_Stmt,
                 Freeze_Entity (Defining_Identifier (Decl), N));
            end if;

            if Nkind (N) = N_Accept_Statement
              and then Full_Expander_Active
            then
               Set_Actual_Subtype (Renamed_Object (Formal),
                 Defining_Identifier (Decl));
            else
               Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
            end if;
         end if;

         Next_Formal (Formal);
      end loop;
   end Set_Actual_Subtypes;

   ---------------------
   -- Set_Formal_Mode --
   ---------------------

   procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
      Spec : constant Node_Id := Parent (Formal_Id);

   begin
      --  Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
      --  since we ensure that corresponding actuals are always valid at the
      --  point of the call.

      if Out_Present (Spec) then
         if Ekind (Scope (Formal_Id)) = E_Function
           or else Ekind (Scope (Formal_Id)) = E_Generic_Function
         then
            --  [IN] OUT parameters allowed for functions in Ada 2012

            if Ada_Version >= Ada_2012 then

               --  Even in Ada 2012 operators can only have IN parameters

               if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
                  Error_Msg_N ("operators can only have IN parameters", Spec);
               end if;

               if In_Present (Spec) then
                  Set_Ekind (Formal_Id, E_In_Out_Parameter);
               else
                  Set_Ekind (Formal_Id, E_Out_Parameter);
               end if;

            --  But not in earlier versions of Ada

            else
               Error_Msg_N ("functions can only have IN parameters", Spec);
               Set_Ekind (Formal_Id, E_In_Parameter);
            end if;

         elsif In_Present (Spec) then
            Set_Ekind (Formal_Id, E_In_Out_Parameter);

         else
            Set_Ekind               (Formal_Id, E_Out_Parameter);
            Set_Never_Set_In_Source (Formal_Id, True);
            Set_Is_True_Constant    (Formal_Id, False);
            Set_Current_Value       (Formal_Id, Empty);
         end if;

      else
         Set_Ekind (Formal_Id, E_In_Parameter);
      end if;

      --  Set Is_Known_Non_Null for access parameters since the language
      --  guarantees that access parameters are always non-null. We also set
      --  Can_Never_Be_Null, since there is no way to change the value.

      if Nkind (Parameter_Type (Spec)) = N_Access_Definition then

         --  Ada 2005 (AI-231): In Ada 95, access parameters are always non-
         --  null; In Ada 2005, only if then null_exclusion is explicit.

         if Ada_Version < Ada_2005
           or else Can_Never_Be_Null (Etype (Formal_Id))
         then
            Set_Is_Known_Non_Null (Formal_Id);
            Set_Can_Never_Be_Null (Formal_Id);
         end if;

      --  Ada 2005 (AI-231): Null-exclusion access subtype

      elsif Is_Access_Type (Etype (Formal_Id))
        and then Can_Never_Be_Null (Etype (Formal_Id))
      then
         Set_Is_Known_Non_Null (Formal_Id);

         --  We can also set Can_Never_Be_Null (thus preventing some junk
         --  access checks) for the case of an IN parameter, which cannot
         --  be changed, or for an IN OUT parameter, which can be changed but
         --  not to a null value. But for an OUT parameter, the initial value
         --  passed in can be null, so we can't set this flag in that case.

         if Ekind (Formal_Id) /= E_Out_Parameter then
            Set_Can_Never_Be_Null (Formal_Id);
         end if;
      end if;

      Set_Mechanism (Formal_Id, Default_Mechanism);
      Set_Formal_Validity (Formal_Id);
   end Set_Formal_Mode;

   -------------------------
   -- Set_Formal_Validity --
   -------------------------

   procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
   begin
      --  If no validity checking, then we cannot assume anything about the
      --  validity of parameters, since we do not know there is any checking
      --  of the validity on the call side.

      if not Validity_Checks_On then
         return;

      --  If validity checking for parameters is enabled, this means we are
      --  not supposed to make any assumptions about argument values.

      elsif Validity_Check_Parameters then
         return;

      --  If we are checking in parameters, we will assume that the caller is
      --  also checking parameters, so we can assume the parameter is valid.

      elsif Ekind (Formal_Id) = E_In_Parameter
        and then Validity_Check_In_Params
      then
         Set_Is_Known_Valid (Formal_Id, True);

      --  Similar treatment for IN OUT parameters

      elsif Ekind (Formal_Id) = E_In_Out_Parameter
        and then Validity_Check_In_Out_Params
      then
         Set_Is_Known_Valid (Formal_Id, True);
      end if;
   end Set_Formal_Validity;

   ------------------------
   -- Subtype_Conformant --
   ------------------------

   function Subtype_Conformant
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Skip_Controlling_Formals : Boolean := False) return Boolean
   is
      Result : Boolean;
   begin
      Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
        Skip_Controlling_Formals => Skip_Controlling_Formals);
      return Result;
   end Subtype_Conformant;

   ---------------------
   -- Type_Conformant --
   ---------------------

   function Type_Conformant
     (New_Id                   : Entity_Id;
      Old_Id                   : Entity_Id;
      Skip_Controlling_Formals : Boolean := False) return Boolean
   is
      Result : Boolean;
   begin
      May_Hide_Profile := False;

      Check_Conformance
        (New_Id, Old_Id, Type_Conformant, False, Result,
         Skip_Controlling_Formals => Skip_Controlling_Formals);
      return Result;
   end Type_Conformant;

   -------------------------------
   -- Valid_Operator_Definition --
   -------------------------------

   procedure Valid_Operator_Definition (Designator : Entity_Id) is
      N    : Integer := 0;
      F    : Entity_Id;
      Id   : constant Name_Id := Chars (Designator);
      N_OK : Boolean;

   begin
      F := First_Formal (Designator);
      while Present (F) loop
         N := N + 1;

         if Present (Default_Value (F)) then
            Error_Msg_N
              ("default values not allowed for operator parameters",
               Parent (F));
         end if;

         Next_Formal (F);
      end loop;

      --  Verify that user-defined operators have proper number of arguments
      --  First case of operators which can only be unary

      if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
         N_OK := (N = 1);

      --  Case of operators which can be unary or binary

      elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
         N_OK := (N in 1 .. 2);

      --  All other operators can only be binary

      else
         N_OK := (N = 2);
      end if;

      if not N_OK then
         Error_Msg_N
           ("incorrect number of arguments for operator", Designator);
      end if;

      if Id = Name_Op_Ne
        and then Base_Type (Etype (Designator)) = Standard_Boolean
        and then not Is_Intrinsic_Subprogram (Designator)
      then
         Error_Msg_N
            ("explicit definition of inequality not allowed", Designator);
      end if;
   end Valid_Operator_Definition;

end Sem_Ch6;