------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- S E M _ C H 1 2 -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Aspects; use Aspects; with Atree; use Atree; with Contracts; use Contracts; with Einfo; use Einfo; with Einfo.Entities; use Einfo.Entities; with Einfo.Utils; use Einfo.Utils; with Elists; use Elists; with Errout; use Errout; with Expander; use Expander; with Fname; use Fname; with Fname.UF; use Fname.UF; with Freeze; use Freeze; with Ghost; use Ghost; with Itypes; use Itypes; with Lib; use Lib; with Lib.Load; use Lib.Load; with Lib.Xref; use Lib.Xref; with Mutably_Tagged; use Mutably_Tagged; with Nlists; use Nlists; with Namet; use Namet; with Nmake; use Nmake; with Opt; use Opt; with Rident; use Rident; with Restrict; use Restrict; with Rtsfind; use Rtsfind; with Sem; use Sem; with Sem_Aux; use Sem_Aux; with Sem_Cat; use Sem_Cat; with Sem_Ch3; use Sem_Ch3; with Sem_Ch6; use Sem_Ch6; with Sem_Ch7; use Sem_Ch7; with Sem_Ch8; use Sem_Ch8; with Sem_Ch10; use Sem_Ch10; with Sem_Ch13; use Sem_Ch13; with Sem_Dim; use Sem_Dim; with Sem_Disp; use Sem_Disp; with Sem_Elab; use Sem_Elab; with Sem_Elim; use Sem_Elim; with Sem_Eval; use Sem_Eval; with Sem_Prag; use Sem_Prag; with Sem_Res; use Sem_Res; with Sem_Type; use Sem_Type; with Sem_Util; use Sem_Util; with Sem_Warn; use Sem_Warn; with Stand; use Stand; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Sinfo.CN; use Sinfo.CN; with Sinput; use Sinput; with Sinput.L; use Sinput.L; with Snames; use Snames; with Stringt; use Stringt; with Uname; use Uname; with Table; with Tbuild; use Tbuild; with Uintp; use Uintp; with Urealp; use Urealp; with Warnsw; use Warnsw; with GNAT.HTable; package body Sem_Ch12 is ---------------------------------------------------------- -- Implementation of Generic Analysis and Instantiation -- ---------------------------------------------------------- -- GNAT implements generics by macro expansion. No attempt is made to share -- generic instantiations (for now). Analysis of a generic definition does -- not perform any expansion action, but the expander must be called on the -- tree for each instantiation, because the expansion may of course depend -- on the generic actuals. All of this is best achieved as follows: -- -- a) Semantic analysis of a generic unit is performed on a copy of the -- tree for the generic unit. All tree modifications that follow analysis -- do not affect the original tree. Links are kept between the original -- tree and the copy, in order to recognize non-local references within -- the generic, and propagate them to each instance (recall that name -- resolution is done on the generic declaration: generics are not really -- macros). This is summarized in the following diagram: -- .-----------. .----------. -- | semantic |<--------------| generic | -- | copy | | unit | -- | |==============>| | -- |___________| global |__________| -- references | | | -- | | | -- .-----|--|. -- | .-----|---. -- | | .----------. -- | | | generic | -- |__| | | -- |__| instance | -- |__________| -- b) Each instantiation copies the original tree, and inserts into it a -- series of declarations that describe the mapping between generic formals -- and actuals. For example, a generic In OUT parameter is an object -- renaming of the corresponding actual, etc. Generic IN parameters are -- constant declarations. -- c) In order to give the right visibility for these renamings, we use -- a different scheme for package and subprogram instantiations. For -- packages, the list of renamings is inserted into the package -- specification, before the visible declarations of the package. The -- renamings are analyzed before any of the text of the instance, and are -- thus visible at the right place. Furthermore, outside of the instance, -- the generic parameters are visible and denote their corresponding -- actuals. -- For subprograms, we create a container package to hold the renamings -- and the subprogram instance itself. Analysis of the package makes the -- renaming declarations visible to the subprogram. After analyzing the -- package, the defining entity for the subprogram is touched-up so that -- it appears declared in the current scope, and not inside the container -- package. -- If the instantiation is a compilation unit, the container package is -- given the same name as the subprogram instance. This ensures that -- the elaboration procedure called by the binder, using the compilation -- unit name, calls in fact the elaboration procedure for the package. -- Not surprisingly, private types complicate this approach. By saving in -- the original generic object the non-local references, we guarantee that -- the proper entities are referenced at the point of instantiation. -- However, for private types, this by itself does not insure that the -- proper VIEW of the entity is used (the full type may be visible at the -- point of generic definition, but not at instantiation, or vice-versa). -- In order to reference the proper view, we special-case any reference -- to private types in the generic object, by saving both views, one in -- the generic and one in the semantic copy. At time of instantiation, we -- check whether the two views are consistent, and exchange declarations if -- necessary, in order to restore the correct visibility. Similarly, if -- the instance view is private when the generic view was not, we perform -- the exchange. After completing the instantiation, we restore the -- current visibility. The flag Has_Private_View marks identifiers in the -- the generic unit that require checking. -- Visibility within nested generic units requires special handling. -- Consider the following scheme: -- type Global is ... -- outside of generic unit. -- generic ... -- package Outer is -- ... -- type Semi_Global is ... -- global to inner. -- generic ... -- 1 -- procedure inner (X1 : Global; X2 : Semi_Global); -- procedure in2 is new inner (...); -- 4 -- end Outer; -- package New_Outer is new Outer (...); -- 2 -- procedure New_Inner is new New_Outer.Inner (...); -- 3 -- The semantic analysis of Outer captures all occurrences of Global. -- The semantic analysis of Inner (at 1) captures both occurrences of -- Global and Semi_Global. -- At point 2 (instantiation of Outer), we also produce a generic copy -- of Inner, even though Inner is, at that point, not being instantiated. -- (This is just part of the semantic analysis of New_Outer). -- Critically, references to Global within Inner must be preserved, while -- references to Semi_Global should not be preserved, because they must now -- resolve to an entity within New_Outer. To distinguish between these, we -- use a global variable, Current_Instantiated_Parent, which is set when -- performing a generic copy during instantiation (at 2). This variable is -- used when performing a generic copy that is not an instantiation, but -- that is nested within one, as the occurrence of 1 within 2. The analysis -- of a nested generic only preserves references that are global to the -- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to -- determine whether a reference is external to the given parent. -- The instantiation at point 3 requires no special treatment. The method -- works as well for further nestings of generic units, but of course the -- variable Current_Instantiated_Parent must be stacked because nested -- instantiations can occur, e.g. the occurrence of 4 within 2. -- The instantiation of package and subprogram bodies is handled in a -- similar manner, except that it is delayed until after semantic -- analysis is complete. In this fashion complex cross-dependencies -- between several package declarations and bodies containing generics -- can be compiled which otherwise would diagnose spurious circularities. -- For example, it is possible to compile two packages A and B that -- have the following structure: -- package A is package B is -- generic ... generic ... -- package G_A is package G_B is -- with B; with A; -- package body A is package body B is -- package N_B is new G_B (..) package N_A is new G_A (..) -- The table Pending_Instantiations in package Inline is used to keep -- track of body instantiations that are delayed in this manner. Inline -- handles the actual calls to do the body instantiations. This activity -- is part of Inline, since the processing occurs at the same point, and -- for essentially the same reason, as the handling of inlined routines. ---------------------------------------------- -- Detection of Instantiation Circularities -- ---------------------------------------------- -- If we have a chain of instantiations that is circular, this is static -- error which must be detected at compile time. The detection of these -- circularities is carried out at the point that we insert a generic -- instance spec or body. If there is a circularity, then the analysis of -- the offending spec or body will eventually result in trying to load the -- same unit again, and we detect this problem as we analyze the package -- instantiation for the second time. -- At least in some cases after we have detected the circularity, we get -- into trouble if we try to keep going. The following flag is set if a -- circularity is detected, and used to abandon compilation after the -- messages have been posted. Circularity_Detected : Boolean := False; -- It should really be reset upon encountering a new main unit, but in -- practice we do not use multiple main units so this is not critical. ----------------------------------------- -- Implementation of Generic Contracts -- ----------------------------------------- -- A "contract" is a collection of aspects and pragmas that either verify a -- property of a construct at runtime or classify the data flow to and from -- the construct in some fashion. -- Generic packages, subprograms and their respective bodies may be subject -- to the following contract-related aspects or pragmas collectively known -- as annotations: -- package subprogram [body] -- Abstract_State Always_Terminates -- Initial_Condition Contract_Cases -- Initializes Depends -- Exceptional_Cases -- Extensions_Visible -- Global -- package body Post -- Refined_State Post_Class -- Postcondition -- Pre -- Pre_Class -- Precondition -- Refined_Depends -- Refined_Global -- Refined_Post -- Subprogram_Variant -- Test_Case -- Most package contract annotations utilize forward references to classify -- data declared within the package [body]. Subprogram annotations then use -- the classifications to further refine them. These inter dependencies are -- problematic with respect to the implementation of generics because their -- analysis, capture of global references and instantiation does not mesh -- well with the existing mechanism. -- 1) Analysis of generic contracts is carried out the same way non-generic -- contracts are analyzed: -- 1.1) General rule - a contract is analyzed after all related aspects -- and pragmas are analyzed. This is done by routines -- Analyze_Package_Body_Contract -- Analyze_Package_Contract -- Analyze_Subprogram_Body_Contract -- Analyze_Subprogram_Contract -- 1.2) Compilation unit - the contract is analyzed after Pragmas_After -- are processed. -- 1.3) Compilation unit body - the contract is analyzed at the end of -- the body declaration list. -- 1.4) Package - the contract is analyzed at the end of the private or -- visible declarations, prior to analyzing the contracts of any nested -- packages or subprograms. -- 1.5) Package body - the contract is analyzed at the end of the body -- declaration list, prior to analyzing the contracts of any nested -- packages or subprograms. -- 1.6) Subprogram - if the subprogram is declared inside a block, a -- package or a subprogram, then its contract is analyzed at the end of -- the enclosing declarations, otherwise the subprogram is a compilation -- unit 1.2). -- 1.7) Subprogram body - if the subprogram body is declared inside a -- block, a package body or a subprogram body, then its contract is -- analyzed at the end of the enclosing declarations, otherwise the -- subprogram is a compilation unit 1.3). -- 2) Capture of global references within contracts is done after capturing -- global references within the generic template. There are two reasons for -- this delay - pragma annotations are not part of the generic template in -- the case of a generic subprogram declaration, and analysis of contracts -- is delayed. -- Contract-related source pragmas within generic templates are prepared -- for delayed capture of global references by routine -- Create_Generic_Contract -- The routine associates these pragmas with the contract of the template. -- In the case of a generic subprogram declaration, the routine creates -- generic templates for the pragmas declared after the subprogram because -- they are not part of the template. -- generic -- template starts -- procedure Gen_Proc (Input : Integer); -- template ends -- pragma Precondition (Input > 0); -- requires own template -- 2.1) The capture of global references with aspect specifications and -- source pragmas that apply to a generic unit must be suppressed when -- the generic template is being processed because the contracts have not -- been analyzed yet. Any attempts to capture global references at that -- point will destroy the Associated_Node linkages and leave the template -- undecorated. This delay is controlled by routine -- Requires_Delayed_Save -- 2.2) The real capture of global references within a contract is done -- after the contract has been analyzed, by routine -- Save_Global_References_In_Contract -- 3) The instantiation of a generic contract occurs as part of the -- instantiation of the contract owner. Generic subprogram declarations -- require additional processing when the contract is specified by pragmas -- because the pragmas are not part of the generic template. This is done -- by routine -- Instantiate_Subprogram_Contract -------------------------------------------------- -- Formal packages and partial parameterization -- -------------------------------------------------- -- When compiling a generic, a formal package is a local instantiation. If -- declared with a box, its generic formals are visible in the enclosing -- generic. If declared with a partial list of actuals, those actuals that -- are defaulted (covered by an Others clause, or given an explicit box -- initialization) are also visible in the enclosing generic, while those -- that have a corresponding actual are not. -- In our source model of instantiation, the same visibility must be -- present in the spec and body of an instance: the names of the formals -- that are defaulted must be made visible within the instance, and made -- invisible (hidden) after the instantiation is complete, so that they -- are not accessible outside of the instance. -- In a generic, a formal package is treated like a special instantiation. -- Our Ada 95 compiler handled formals with and without box in different -- ways. With partial parameterization, we use a single model for both. -- We create a package declaration that consists of the specification of -- the generic package, and a set of declarations that map the actuals -- into local renamings, just as we do for bona fide instantiations. For -- defaulted parameters and formals with a box, we copy directly the -- declarations of the formals into this local package. The result is a -- package whose visible declarations may include generic formals. This -- package is only used for type checking and visibility analysis, and -- never reaches the back end, so it can freely violate the placement -- rules for generic formal declarations. -- The list of declarations (renamings and copies of formals) is built -- by Analyze_Associations, just as for regular instantiations. -- At the point of instantiation, conformance checking must be applied only -- to those parameters that were specified in the formals. We perform this -- checking by creating another internal instantiation, this one including -- only the renamings and the formals (the rest of the package spec is not -- relevant to conformance checking). We can then traverse two lists: the -- list of actuals in the instance that corresponds to the formal package, -- and the list of actuals produced for this bogus instantiation. We apply -- the conformance rules to those actuals that are not defaulted, i.e. -- which still appear as generic formals. -- When we compile an instance body we must make the right parameters -- visible again. The predicate Is_Generic_Formal indicates which of the -- formals should have its Is_Hidden flag reset. ----------------------- -- Local subprograms -- ----------------------- procedure Abandon_Instantiation (N : Node_Id); pragma No_Return (Abandon_Instantiation); -- Posts an error message "instantiation abandoned" at the indicated node -- and then raises the exception Instantiation_Error to do it. procedure Analyze_Formal_Array_Type (T : in out Entity_Id; Def : Node_Id); -- A formal array type is treated like an array type declaration, and -- invokes Array_Type_Declaration (sem_ch3) whose first parameter is -- in-out, because in the case of an anonymous type the entity is -- actually created in the procedure. -- The following procedures treat other kinds of formal parameters procedure Analyze_Formal_Derived_Interface_Type (N : Node_Id; T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Derived_Type (N : Node_Id; T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Interface_Type (N : Node_Id; T : Entity_Id; Def : Node_Id); -- The following subprograms create abbreviated declarations for formal -- scalar types. We introduce an anonymous base of the proper class for -- each of them, and define the formals as constrained first subtypes of -- their bases. The bounds are expressions that are non-static in the -- generic. procedure Analyze_Formal_Decimal_Fixed_Point_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Ordinary_Fixed_Point_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Private_Type (N : Node_Id; T : Entity_Id; Def : Node_Id); -- Creates a new private type, which does not require completion procedure Analyze_Formal_Incomplete_Type (T : Entity_Id; Def : Node_Id); -- Ada 2012: Creates a new incomplete type whose actual does not freeze procedure Analyze_Generic_Formal_Part (N : Node_Id); -- Analyze generic formal part procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id); -- Create a new access type with the given designated type function Analyze_Associations (I_Node : Node_Id; Formals : List_Id; F_Copy : List_Id) return List_Id; -- At instantiation time, build the list of associations between formals -- and actuals. Each association becomes a renaming declaration for the -- formal entity. F_Copy is the analyzed list of formals in the generic -- copy. It is used to apply legality checks to the actuals. I_Node is the -- instantiation node. procedure Analyze_Subprogram_Instantiation (N : Node_Id; K : Entity_Kind); procedure Build_Instance_Compilation_Unit_Nodes (N : Node_Id; Act_Body : Node_Id; Act_Decl : Node_Id); -- This procedure is used in the case where the generic instance of a -- subprogram body or package body is a library unit. In this case, the -- original library unit node for the generic instantiation must be -- replaced by the resulting generic body, and a link made to a new -- compilation unit node for the generic declaration. The argument N is -- the original generic instantiation. Act_Body and Act_Decl are the body -- and declaration of the instance (either package body and declaration -- nodes or subprogram body and declaration nodes depending on the case). -- On return, the node N has been rewritten with the actual body. function Build_Subprogram_Decl_Wrapper (Formal_Subp : Entity_Id) return Node_Id; -- Ada 2022 allows formal subprograms to carry pre/postconditions. -- At the point of instantiation these contracts apply to uses of -- the actual subprogram. This is implemented by creating wrapper -- subprograms instead of the renamings previously used to link -- formal subprograms and the corresponding actuals. If the actual -- is not an entity (e.g. an attribute reference) a renaming is -- created to handle the expansion of the attribute. function Build_Subprogram_Body_Wrapper (Formal_Subp : Entity_Id; Actual_Name : Node_Id) return Node_Id; -- The body of the wrapper is a call to the actual, with the generated -- pre/postconditon checks added. procedure Build_Subprogram_Wrappers (Match, Analyzed_Formal : Node_Id; Renamings : List_Id); -- Ada 2022: AI12-0272 introduces pre/postconditions for formal -- subprograms. The implementation of making the formal into a renaming -- of the actual does not work, given that subprogram renaming cannot -- carry aspect specifications. Instead we must create subprogram -- wrappers whose body is a call to the actual, and whose declaration -- carries the aspects of the formal. -- The wrapper declaration and body are appended to Renamings. -- ???But renaming declarations CAN have aspects specs, -- and that was true from the start (see AI05-0183-1). procedure Check_Abbreviated_Instance (N : Node_Id; Parent_Installed : in out Boolean); -- If the name of the generic unit in an abbreviated instantiation is an -- expanded name, then the prefix may be an instance and the selector may -- designate a child unit. If the parent is installed as a result of this -- call, then Parent_Installed is set True, otherwise Parent_Installed is -- unchanged by the call. -- This routine needs to be called for declaration nodes of formal objects, -- types and subprograms to check whether they are the copy, present in the -- visible part of the abbreviated instantiation of formal packages, of the -- declaration node of their corresponding formal parameter in the template -- of the formal package, as specified by RM 12.7(10/2), so as to establish -- the proper context for their analysis. procedure Check_Access_Definition (N : Node_Id); -- Subsidiary routine to null exclusion processing. Perform an assertion -- check on Ada version and the presence of an access definition in N. procedure Check_Formal_Packages (P_Id : Entity_Id); -- Apply the following to all formal packages in generic associations. -- Restore the visibility of the formals of the instance that are not -- defaulted (see RM 12.7 (10)). Remove the anonymous package declaration -- created for formal instances that are not defaulted. procedure Check_Formal_Package_Instance (Formal_Pack : Entity_Id; Actual_Pack : Entity_Id); -- Verify that the actuals of the actual instance match the actuals of -- the template for a formal package that is not declared with a box. procedure Check_Forward_Instantiation (Decl : Node_Id); -- If the generic is a local entity and the corresponding body has not -- been seen yet, flag enclosing packages to indicate that it will be -- elaborated after the generic body. Subprograms declared in the same -- package cannot be inlined by the front end because front-end inlining -- requires a strict linear order of elaboration. function Check_Hidden_Primitives (Renamings : List_Id) return Elist_Id; -- Check if some association between formals and actuals requires to make -- visible primitives of a tagged type, and make those primitives visible. -- Return the list of primitives whose visibility is modified (to restore -- their visibility later through Restore_Hidden_Primitives). If no -- candidate is found then return No_Elist. procedure Check_Hidden_Child_Unit (N : Node_Id; Gen_Unit : Entity_Id; Act_Decl_Id : Entity_Id); -- If the generic unit is an implicit child instance within a parent -- instance, we need to make an explicit test that it is not hidden by -- a child instance of the same name and parent. procedure Check_Generic_Actuals (Instance : Entity_Id; Is_Formal_Box : Boolean); -- Similar to previous one. Check the actuals in the instantiation, -- whose views can change between the point of instantiation and the point -- of instantiation of the body. In addition, mark the generic renamings -- as generic actuals, so that they are not compatible with other actuals. -- Recurse on an actual that is a formal package whose declaration has -- a box. function Component_Type_For_Private_View (T : Entity_Id) return Entity_Id; -- Return the component type of array type T, with the following addition: -- if this component type itself is an array type which has not been first -- declared as private, then recurse on it. This makes it possible to deal -- with arrays of arrays the same way as multi-dimensional arrays in the -- mechanism handling private views. function Contains_Instance_Of (Inner : Entity_Id; Outer : Entity_Id; N : Node_Id) return Boolean; -- Inner is instantiated within the generic Outer. Check whether Inner -- directly or indirectly contains an instance of Outer or of one of its -- parents, in the case of a subunit. Each generic unit holds a list of -- the entities instantiated within (at any depth). This procedure -- determines whether the set of such lists contains a cycle, i.e. an -- illegal circular instantiation. function Denotes_Formal_Package (Pack : Entity_Id; On_Exit : Boolean := False; Instance : Entity_Id := Empty) return Boolean; -- Returns True if E is a formal package of an enclosing generic, or -- the actual for such a formal in an enclosing instantiation. If such -- a package is used as a formal in an nested generic, or as an actual -- in a nested instantiation, the visibility of ITS formals should not -- be modified. When called from within Restore_Private_Views, the flag -- On_Exit is true, to indicate that the search for a possible enclosing -- instance should ignore the current one. In that case Instance denotes -- the declaration for which this is an actual. This declaration may be -- an instantiation in the source, or the internal instantiation that -- corresponds to the actual for a formal package. function Earlier (N1, N2 : Node_Id) return Boolean; -- Yields True if N1 and N2 appear in the same compilation unit, -- ignoring subunits, and if N1 is to the left of N2 in a left-to-right -- traversal of the tree for the unit. Used to determine the placement -- of freeze nodes for instance bodies that may depend on other instances. function Find_Actual_Type (Typ : Entity_Id; Gen_Type : Entity_Id) return Entity_Id; -- When validating the actual types of a child instance, check whether -- the formal is a formal type of the parent unit, and retrieve the current -- actual for it. Typ is the entity in the analyzed formal type declaration -- (component or index type of an array type, or designated type of an -- access formal) and Gen_Type is the enclosing analyzed formal array -- or access type. The desired actual may be a formal of a parent, or may -- be declared in a formal package of a parent. In both cases it is a -- generic actual type because it appears within a visible instance. -- Finally, it may be declared in a parent unit without being a formal -- of that unit, in which case it must be retrieved by visibility. -- Ambiguities may still arise if two homonyms are declared in two formal -- packages, and the prefix of the formal type may be needed to resolve -- the ambiguity in the instance ??? procedure Freeze_Package_Instance (N : Node_Id; Gen_Body : Node_Id; Gen_Decl : Node_Id; Act_Id : Entity_Id); -- If the instantiation happens textually before the body of the generic, -- the instantiation of the body must be analyzed after the generic body, -- and not at the point of instantiation. Such early instantiations can -- happen if the generic and the instance appear in a package declaration -- because the generic body can only appear in the corresponding package -- body. Early instantiations can also appear if generic, instance and -- body are all in the declarative part of a subprogram or entry. Entities -- of packages that are early instantiations are delayed, and their freeze -- node appears after the generic body. This rather complex machinery is -- needed when nested instantiations are present, because the source does -- not carry any indication of where the corresponding instance bodies must -- be installed and frozen. procedure Freeze_Subprogram_Instance (N : Node_Id; Gen_Body : Node_Id; Pack_Id : Entity_Id); -- The generic body may appear textually after the instance, including -- in the proper body of a stub, or within a different package instance. -- Given that the instance can only be elaborated after the generic, we -- place freeze nodes for the instance and/or for packages that may enclose -- the instance and the generic, so that the back-end can establish the -- proper order of elaboration. function Get_Associated_Entity (Id : Entity_Id) return Entity_Id; -- Similar to Get_Associated_Node below, but for entities function Get_Associated_Node (N : Node_Id) return Node_Id; -- In order to propagate semantic information back from the analyzed copy -- to the original generic, we maintain links between selected nodes in the -- generic and their corresponding copies. At the end of generic analysis, -- the routine Save_Global_References traverses the generic tree, examines -- the semantic information, and preserves the links to those nodes that -- contain global information. At instantiation, the information from the -- associated node is placed on the new copy, so that name resolution is -- not repeated. -- -- Three kinds of source nodes have associated nodes: -- -- a) those that can reference (denote) entities, that is identifiers, -- character literals, expanded_names, operator symbols, operators, -- and attribute reference nodes. These nodes have an Entity field -- and are the set of nodes that are in N_Has_Entity. -- -- b) aggregates (N_Aggregate and N_Extension_Aggregate) -- -- c) selected components (N_Selected_Component) -- -- For the first class, the associated node preserves the entity if it is -- global. If the generic contains nested instantiations, the associated -- node itself has been recopied, and a chain of them must be followed. -- -- For aggregates, the associated node allows retrieval of the type, which -- may otherwise not appear in the generic. The view of this type may be -- different between generic and instantiation, and the full view can be -- installed before the instantiation is analyzed. For aggregates of type -- extensions, the same view exchange may have to be performed for some of -- the ancestor types, if their view is private at the point of -- instantiation. -- -- Nodes that are selected components in the parse tree may be rewritten -- as expanded names after resolution, and must be treated as potential -- entity holders, which is why they also have an Associated_Node. -- -- Nodes that do not come from source, such as freeze nodes, do not appear -- in the generic tree, and need not have an associated node. -- -- The associated node is stored in the Associated_Node field. Note that -- this field overlaps Entity, which is fine, because the whole point is -- that we don't need or want the normal Entity field in this situation. function Has_Been_Exchanged (E : Entity_Id) return Boolean; -- Traverse the Exchanged_Views list to see if a type was private -- and has already been flipped during this phase of instantiation. function Has_Contracts (Decl : Node_Id) return Boolean; -- Determine whether a formal subprogram has a Pre- or Postcondition, -- in which case a subprogram wrapper has to be built for the actual. function Has_Fully_Defined_Profile (Subp : Entity_Id) return Boolean; -- Determine whether the parameter types and the return type of Subp -- are fully defined at the point of instantiation. function Has_Null_Default (N : Node_Id) return Boolean is (Nkind (N) in N_Formal_Subprogram_Declaration and then Nkind (Specification (N)) = N_Procedure_Specification and then Null_Present (Specification (N))); -- True if N is the declaration of a formal procedure with "is null" -- as the default. procedure Hide_Current_Scope; -- When instantiating a generic child unit, the parent context must be -- present, but the instance and all entities that may be generated -- must be inserted in the current scope. We leave the current scope -- on the stack, but make its entities invisible to avoid visibility -- problems. This is reversed at the end of the instantiation. This is -- not done for the instantiation of the bodies, which only require the -- instances of the generic parents to be in scope. function In_Main_Context (E : Entity_Id) return Boolean; -- Check whether an instantiation is in the context of the main unit. -- Used to determine whether its body should be elaborated to allow -- front-end inlining. procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id); -- Add the context clause of the unit containing a generic unit to a -- compilation unit that is, or contains, an instantiation. procedure Init_Env; -- Establish environment for subsequent instantiation. Separated from -- Save_Env because data-structures for visibility handling must be -- initialized before call to Check_Generic_Child_Unit. procedure Inline_Instance_Body (N : Node_Id; Gen_Unit : Entity_Id; Act_Decl : Node_Id); -- If front-end inlining is requested, instantiate the package body, -- and preserve the visibility of its compilation unit, to insure -- that successive instantiations succeed. procedure Insert_Freeze_Node_For_Instance (N : Node_Id; F_Node : Node_Id); -- N denotes a package or a subprogram instantiation and F_Node is the -- associated freeze node. Insert the freeze node before the first source -- body which follows immediately after N. If no such body is found, the -- freeze node is inserted at the end of the declarative region which -- contains N, unless the instantiation is done in a package spec that is -- not at library level, in which case it is inserted at the outer level. -- This can also be invoked to insert the freeze node of a package that -- encloses an instantiation, in which case N may denote an arbitrary node. procedure Install_Formal_Packages (Par : Entity_Id); -- Install the visible part of any formal of the parent that is a formal -- package. Note that for the case of a formal package with a box, this -- includes the formal part of the formal package (12.7(10/2)). procedure Install_Hidden_Primitives (Prims_List : in out Elist_Id; Gen_T : Entity_Id; Act_T : Entity_Id); -- Remove suffix 'P' from hidden primitives of Act_T to match the -- visibility of primitives of Gen_T. The list of primitives to which -- the suffix is removed is added to Prims_List to restore them later. procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False); -- When compiling an instance of a child unit the parent (which is -- itself an instance) is an enclosing scope that must be made -- immediately visible. This procedure is also used to install the non- -- generic parent of a generic child unit when compiling its body, so -- that full views of types in the parent are made visible. -- The functions Instantiate_... perform various legality checks and build -- the declarations for instantiated generic parameters. In all of these -- Formal is the entity in the generic unit, Actual is the entity or -- expression in the generic associations, and Analyzed_Formal is the -- formal in the generic copy, which contains the semantic information to -- be used to validate the actual. function Instantiate_Object (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return List_Id; function Instantiate_Type (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id; Actual_Decls : List_Id) return List_Id; -- Actual_Decls is the list of renamings being built; this is used for -- formal derived types, to determine whether the parent type is another -- formal derived type in the same generic unit. -- Note that the call site appends the result of this function onto -- the same list. function Instantiate_Formal_Subprogram (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return Node_Id; function Instantiate_Formal_Package (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return List_Id; -- If the formal package is declared with a box, special visibility rules -- apply to its formals: they are in the visible part of the package. This -- is true in the declarative region of the formal package, that is to say -- in the enclosing generic or instantiation. For an instantiation, the -- parameters of the formal package are made visible in an explicit step. -- Furthermore, if the actual has a visible USE clause, these formals must -- be made potentially use-visible as well. On exit from the enclosing -- instantiation, the reverse must be done. -- For a formal package declared without a box, there are conformance rules -- that apply to the actuals in the generic declaration and the actuals of -- the actual package in the enclosing instantiation. The simplest way to -- apply these rules is to repeat the instantiation of the formal package -- in the context of the enclosing instance, and compare the generic -- associations of this instantiation with those of the actual package. -- This internal instantiation only needs to contain the renamings of the -- formals: the visible and private declarations themselves need not be -- created. -- In Ada 2005, the formal package may be only partially parameterized. -- In that case the visibility step must make visible those actuals whose -- corresponding formals were given with a box. A final complication -- involves inherited operations from formal derived types, which must -- be visible if the type is. function Is_In_Main_Unit (N : Node_Id) return Boolean; -- Test if given node is in the main unit procedure Load_Parent_Of_Generic (N : Node_Id; Spec : Node_Id; Body_Optional : Boolean := False); -- If the generic appears in a separate non-generic library unit, load the -- corresponding body to retrieve the body of the generic. N is the node -- for the generic instantiation, Spec is the generic package declaration. -- -- Body_Optional is a flag that indicates that the body is being loaded to -- ensure that temporaries are generated consistently when there are other -- instances in the current declarative part that precede the one being -- loaded. In that case a missing body is acceptable. procedure Map_Formal_Package_Entities (Form : Entity_Id; Act : Entity_Id); -- Within the generic part, entities in the formal package are -- visible. To validate subsequent type declarations, indicate -- the correspondence between the entities in the analyzed formal, -- and the entities in the actual package. There are three packages -- involved in the instantiation of a formal package: the parent -- generic P1 which appears in the generic declaration, the fake -- instantiation P2 which appears in the analyzed generic, and whose -- visible entities may be used in subsequent formals, and the actual -- P3 in the instance. To validate subsequent formals, me indicate -- that the entities in P2 are mapped into those of P3. The mapping of -- entities has to be done recursively for nested packages. procedure Move_Freeze_Nodes (Out_Of : Entity_Id; After : Node_Id; L : List_Id); -- Freeze nodes can be generated in the analysis of a generic unit, but -- will not be seen by the back-end. It is necessary to move those nodes -- to the enclosing scope if they freeze an outer entity. We place them -- at the end of the enclosing generic package, which is semantically -- neutral. procedure Preanalyze_Actuals (N : Node_Id; Inst : Entity_Id := Empty); -- Analyze actuals to perform name resolution. Full resolution is done -- later, when the expected types are known, but names have to be captured -- before installing parents of generics, that are not visible for the -- actuals themselves. -- -- If Inst is present, it is the entity of the package instance. This -- entity is marked as having a limited_view actual when some actual is -- a limited view. This is used to place the instance body properly. procedure Provide_Completing_Bodies (N : Node_Id); -- Generate completing bodies for all subprograms found within package or -- subprogram declaration N. procedure Remove_Parent (In_Body : Boolean := False); -- Reverse effect after instantiation of child is complete function Renames_Standard_Subprogram (Subp : Entity_Id) return Boolean; -- Determine whether Subp renames one of the subprograms defined in the -- generated package Standard. function Requires_Conformance_Checking (N : Node_Id) return Boolean; -- Determine whether the formal package declaration N requires conformance -- checking with actuals in instantiations. procedure Restore_Hidden_Primitives (Prims_List : in out Elist_Id); -- Restore suffix 'P' to primitives of Prims_List and leave Prims_List -- set to No_Elist. procedure Set_Instance_Env (Gen_Unit : Entity_Id; Act_Unit : Entity_Id); -- Save current instance on saved environment, to be used to determine -- the global status of entities in nested instances. Part of Save_Env. -- called after verifying that the generic unit is legal for the instance, -- The procedure also examines whether the generic unit is a predefined -- unit, in order to set configuration switches accordingly. As a result -- the procedure must be called after analyzing and freezing the actuals. procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id); -- Associate analyzed generic parameter with corresponding instance. Used -- for semantic checks at instantiation time. function True_Parent (N : Node_Id) return Node_Id; -- For a subunit, return parent of corresponding stub, else return -- parent of node. procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id); -- Verify that an attribute that appears as the default for a formal -- subprogram is a function or procedure with the correct profile. procedure Validate_Formal_Type_Default (Decl : Node_Id); -- Ada_2022 AI12-205: if a default subtype_mark is present, verify -- that it is the name of a type in the same class as the formal. -- The treatment parallels what is done in Instantiate_Type but differs -- in a few ways so that this machinery cannot be reused as is: on one -- hand there are no visibility issues for a default, because it is -- analyzed in the same context as the formal type definition; on the -- other hand the check needs to take into acount the use of a previous -- formal type in the current formal type definition (see details in -- AI12-0205). ------------------------------------------- -- Data Structures for Generic Renamings -- ------------------------------------------- -- The map Generic_Renamings associates generic entities with their -- corresponding actuals. Currently used to validate type instances. It -- will eventually be used for all generic parameters to eliminate the -- need for overload resolution in the instance. type Assoc_Ptr is new Int; Assoc_Null : constant Assoc_Ptr := -1; type Assoc is record Gen_Id : Entity_Id; Act_Id : Entity_Id; Next_In_HTable : Assoc_Ptr; end record; package Generic_Renamings is new Table.Table (Table_Component_Type => Assoc, Table_Index_Type => Assoc_Ptr, Table_Low_Bound => 0, Table_Initial => 10, Table_Increment => 100, Table_Name => "Generic_Renamings"); -- Variable to hold enclosing instantiation. When the environment is -- saved for a subprogram inlining, the corresponding Act_Id is empty. Current_Instantiated_Parent : Assoc := (Empty, Empty, Assoc_Null); -- Hash table for associations HTable_Size : constant := 37; type HTable_Range is range 0 .. HTable_Size - 1; procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr); function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr; function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id; function Hash (F : Entity_Id) return HTable_Range; package Generic_Renamings_HTable is new GNAT.HTable.Static_HTable ( Header_Num => HTable_Range, Element => Assoc, Elmt_Ptr => Assoc_Ptr, Null_Ptr => Assoc_Null, Set_Next => Set_Next_Assoc, Next => Next_Assoc, Key => Entity_Id, Get_Key => Get_Gen_Id, Hash => Hash, Equal => "="); Exchanged_Views : Elist_Id; -- This list holds the private views that have been exchanged during -- instantiation to restore the visibility of the generic declaration. -- (see comments above). After instantiation, the current visibility is -- reestablished by means of a traversal of this list. Hidden_Entities : Elist_Id; -- This list holds the entities of the current scope that are removed -- from immediate visibility when instantiating a child unit. Their -- visibility is restored in Remove_Parent. -- Because instantiations can be recursive, the following must be saved -- on entry and restored on exit from an instantiation (spec or body). -- This is done by the two procedures Save_Env and Restore_Env. For -- package and subprogram instantiations (but not for the body instances) -- the action of Save_Env is done in two steps: Init_Env is called before -- Check_Generic_Child_Unit, because setting the parent instances requires -- that the visibility data structures be properly initialized. Once the -- generic is unit is validated, Set_Instance_Env completes Save_Env. Parent_Unit_Visible : Boolean := False; -- Parent_Unit_Visible is used when the generic is a child unit, and -- indicates whether the ultimate parent of the generic is visible in the -- instantiation environment. It is used to reset the visibility of the -- parent at the end of the instantiation (see Remove_Parent). Instance_Parent_Unit : Entity_Id := Empty; -- This records the ultimate parent unit of an instance of a generic -- child unit and is used in conjunction with Parent_Unit_Visible to -- indicate the unit to which the Parent_Unit_Visible flag corresponds. type Instance_Env is record Instantiated_Parent : Assoc; Exchanged_Views : Elist_Id; Hidden_Entities : Elist_Id; Current_Sem_Unit : Unit_Number_Type; Parent_Unit_Visible : Boolean := False; Instance_Parent_Unit : Entity_Id := Empty; Switches : Config_Switches_Type; end record; package Instance_Envs is new Table.Table ( Table_Component_Type => Instance_Env, Table_Index_Type => Int, Table_Low_Bound => 0, Table_Initial => 32, Table_Increment => 100, Table_Name => "Instance_Envs"); procedure Restore_Private_Views (Pack_Id : Entity_Id; Is_Package : Boolean := True); -- Restore the private views of external types, and unmark the generic -- renamings of actuals, so that they become compatible subtypes again. -- For subprograms, Pack_Id is the package constructed to hold the -- renamings. procedure Switch_View (T : Entity_Id); -- Switch the partial and full views of a type and its private -- dependents (i.e. its subtypes and derived types). ------------------------------------ -- Structures for Error Reporting -- ------------------------------------ Instantiation_Node : Node_Id; -- Used by subprograms that validate instantiation of formal parameters -- where there might be no actual on which to place the error message. -- Also used to locate the instantiation node for generic subunits. Instantiation_Error : exception; -- When there is a semantic error in the generic parameter matching, -- there is no point in continuing the instantiation, because the -- number of cascaded errors is unpredictable. This exception aborts -- the instantiation process altogether. S_Adjustment : Sloc_Adjustment; -- Offset created for each node in an instantiation, in order to keep -- track of the source position of the instantiation in each of its nodes. -- A subsequent semantic error or warning on a construct of the instance -- points to both places: the original generic node, and the point of -- instantiation. See Sinput and Sinput.L for additional details. ------------------------------------------------------------ -- Data structure for keeping track when inside a Generic -- ------------------------------------------------------------ -- The following table is used to save values of the Inside_A_Generic -- flag (see spec of Sem) when they are saved by Start_Generic. package Generic_Flags is new Table.Table ( Table_Component_Type => Boolean, Table_Index_Type => Int, Table_Low_Bound => 0, Table_Initial => 32, Table_Increment => 200, Table_Name => "Generic_Flags"); ------------------ -- Associations -- ------------------ package Associations is type Actual_Kind is (None, None_Use_Clause, -- Used when the "formal" is a use clause; there is no corresponding -- actual. Box_Subp_Default, -- Used for "is <>" as a subprogram default Box_Actual, -- Used for explicit "name => <>" and "others => <>" in formal -- packages. Name_Exp, -- Name or expression or .... -- Used for an explicit_generic_actual_parameter, and also for the -- default_expression of an in-mode formal, the default_subtype_mark -- of a formal type, and the default_name of a formal subprogram. Null_Default, -- Used for "is null" as a subprogram default. Exp_Func_Default, -- Used for "is (expression)" as a subprogram default, -- which is a language extension (and is different from "is name" -- without parentheses). Dummy_Assoc -- Used for the dummy associations that are created in -- Save_Global_Defaults. These have Explicit_Generic_Actual_Parameter -- = Empty and Box_Present = False ); -- ???We wouldn't need this enumeration type if we created new node -- kinds for N_Box_Subp_Default, N_Box_Actual, N_Null_Default, and -- N_Exp_Func_Default. type Generic_Actual_Rec (Kind : Actual_Kind := None) is record -- Representation of one generic actual parameter case Kind is when None | None_Use_Clause | Box_Subp_Default | Box_Actual | Null_Default | Dummy_Assoc => null; when Name_Exp | Exp_Func_Default => Name_Exp : Node_Id; end case; end record; type Actual_Origin_Enum is (None, From_Explicit_Actual, From_Default, From_Others_Box); -- Indication of where the Actual came from -- explicitly in the -- instantiation, or defaulted. type Assoc_Index is new Pos; subtype Assoc_Count is Assoc_Index'Base range 0 .. Assoc_Index'Last; type Assoc_Rec is record -- Association between a single formal/actual pair. But we store both -- the unanalyzed and analyzed formal. Un_Formal, An_Formal : Node_Id; -- unanalyzed and analyzed formals -- An_Formal is the node in the generic copy that corresponds to -- Un_Formal. The semantic information on this node is used to -- perform legality checks on the actuals. Because semantic analysis -- can introduce some anonymous entities or modify the declaration -- node itself, the correspondence between the two lists is not -- one-one. In addition to anonymous types, a formal "=" will -- introduce an implicit equal and opposite "/=". Explicit_Assoc : Opt_N_Generic_Association_Id; -- Explicit association, if any, from the source or generated. Actual : Generic_Actual_Rec; -- Generic actual parameter corresponding to Un_Formal/An_Formal, -- possibly from defaults or others/boxes. Actual_Origin : Actual_Origin_Enum; -- Reason why Actual was set; where it came from end record; type Assoc_Array is array (Assoc_Index range <>) of Assoc_Rec; -- One element for each formal and (if legal) for each corresponding -- actual. type Gen_Assocs_Rec (Num_Assocs : Assoc_Count) is record -- Representation of formal/actual matching. Num_Assocs -- is the number of formals and (if legal) the number -- of actuals. Others_Present : Boolean; -- True if "others => <>" (only for formal packages) Assocs : Assoc_Array (1 .. Num_Assocs); end record; function Match_Assocs (I_Node : Node_Id; Formals : List_Id; F_Copy : List_Id) return Gen_Assocs_Rec; -- I_Node is the instantiation node. Formals is the list of unanalyzed -- formals. F_Copy is the analyzed list of formals in the generic copy. -- Return a Gen_Assocs_Rec with formals, explicit actuals, and default -- actuals filled in. Check legality rules related to formal/actual -- matching. end Associations; procedure Analyze_One_Association (I_Node : Node_Id; -- instantiation node Assoc : Associations.Assoc_Rec; -- Logical 'in out' parameters: Result_Renamings : List_Id; Default_Actuals : List_Id; Actuals_To_Freeze : Elist_Id); -- Called by Analyze_Associations for each association. The renamings -- are appended onto Result_Renamings. Defaulted actuals are appended -- onto Default_Actuals, and actuals that require freezing are -- appended onto Actuals_To_Freeze. procedure Check_Fixed_Point_Warning (Gen_Assocs : Associations.Gen_Assocs_Rec; Renamings : List_Id); -- Warn if any actual is a fixed-point type that has user-defined -- arithmetic operators, but there is no corresponding formal in the -- generic, in which case the predefined operators will be used. This -- merits a warning because of the special semantics of fixed point -- operators. However, do not warn if the formal is private, because there -- can be no arithmetic operators in the generic so there no danger of -- confusion. ------------------ -- Associations -- ------------------ package body Associations is generic with procedure Action (F : Node_Id; Index : Assoc_Index); procedure Formal_Iter (Formals : List_Id); -- Iterate through the unanalyzed formals, calling Action for each one. -- Skip pragmas, but do not skip use clauses. function Num_Formals (Formals : List_Id) return Assoc_Count; -- Note: does not include pragmas that occur in the Formals list; -- it does include use clauses. generic with procedure Action (F : Node_Id; Index : Assoc_Index); procedure An_Formal_Iter (An_Formals : List_Id); -- Iterate through the analyzed formals, calling Action for each one -- that corresponds to an unanalyzed formal. This should call Action -- exactly the same number of times that Formal_Iter calls its Action. -- Skip pragmas, but do not skip use clauses. Skip extraneous -- analyzed formals in cases where there are multiple ones -- corresponding to a particular unanalyzed one. function Num_An_Formals (F_Copy : List_Id) return Assoc_Count; -- Number of analyzed formals that correspond directly to unanalyzed -- formals. There are all sorts of other things in F_Copy, which -- are not counted. procedure Check_Box (I_Node, Actual : Node_Id); -- Check for errors in "others => <>" and "Name => <>" function Default (Un_Formal : Node_Id) return Generic_Actual_Rec; -- Return the default for a given formal, which can be a name, -- expression, box, etc. procedure Match_Positional (Src_Assoc : in out Node_Id; Assoc : in out Assoc_Rec); -- Called by Match_Assocs to match one positional parameter association. -- If the current formal (in Assoc) is not a use clause, then there is a -- match, and we set Assoc.Actual and move Src_Assoc to the next one. procedure Match_Named (Src_Assoc : Node_Id; Assoc : in out Assoc_Rec; Found : in out Boolean); -- Called by Match_Assocs to match one named parameter association. -- If the current formal (in Assoc) is not a use clause, and the -- selector name matches the formal name, then there is a match, -- and we set Assoc.Actual. We also set the Selector_Name to denote -- the matched formal, and set Found to True. ----------------- -- Formal_Iter -- ----------------- -- Formal_Iter is straightforward; An_Formal_Iter is not. procedure Formal_Iter (Formals : List_Id) is F : Node_Id := First (Formals); Index : Assoc_Index := 1; begin while Present (F) loop case Nkind (F) is when N_Formal_Object_Declaration | N_Formal_Type_Declaration | N_Formal_Subprogram_Declaration | N_Formal_Package_Declaration | N_Use_Package_Clause | N_Use_Type_Clause => Action (F, Index); Index := Index + 1; when N_Pragma => null; when others => raise Program_Error; end case; Next (F); end loop; end Formal_Iter; ----------------- -- Num_Formals -- ----------------- function Num_Formals (Formals : List_Id) return Assoc_Count is Result : Assoc_Count := 0; procedure Action (Ignore_F : Node_Id; Ignore : Assoc_Index); procedure Action (Ignore_F : Node_Id; Ignore : Assoc_Index) is begin Result := Result + 1; end Action; procedure Iter is new Formal_Iter (Action); begin Iter (Formals); return Result; end Num_Formals; -------------------- -- An_Formal_Iter -- -------------------- procedure An_Formal_Iter (An_Formals : List_Id) is F : Node_Id := First (An_Formals); Index : Assoc_Index := 1; begin -- The correspondence between unanalyzed and analyzed formals is not -- one-one; hence this needs to do some fancy footwork to skip some -- items in the analyzed formals list. In each case where multiple -- items in An_Formals correspond to a particular unanalyzed formal, -- we must pick the "main" one. while Present (F) loop case Nkind (F) is when N_Use_Package_Clause | N_Use_Type_Clause => Action (F, Index); Index := Index + 1; when N_Formal_Object_Declaration | N_Formal_Type_Declaration | N_Formal_Subprogram_Declaration | N_Package_Declaration | N_Full_Type_Declaration | N_Private_Type_Declaration | N_Private_Extension_Declaration => if Is_Internal_Name (Chars (Defining_Entity (F))) then null; else Action (F, Index); Index := Index + 1; if Nkind (F) = N_Full_Type_Declaration and then Nkind (Type_Definition (F)) = N_Derived_Type_Definition and then Present (Next (F)) and then Nkind (Next (F)) = N_Full_Type_Declaration and then Chars (Defining_Identifier (F)) = Chars (Defining_Identifier (Next (F))) then Next (F); -- Skip full type of derived type end if; end if; when N_Subtype_Declaration => if Nkind (Original_Node (F)) in N_Formal_Type_Declaration then pragma Assert (not Is_Internal_Name (Chars (Defining_Entity (F)))); Action (F, Index); Index := Index + 1; elsif Nkind (Original_Node (F)) in N_Full_Type_Declaration then null; else -- subtype of a formal object pragma Assert (Nkind (Next (F)) = N_Formal_Object_Declaration); end if; when N_Pragma => null; when N_Formal_Package_Declaration => -- If there were no errors, this would have been transformed -- into N_Package_Declaration. Check_Error_Detected; pragma Assert (Error_Posted (F)); Abandon_Instantiation (Instantiation_Node); when others => raise Program_Error; end case; Next (F); end loop; end An_Formal_Iter; -------------------- -- Num_An_Formals -- -------------------- function Num_An_Formals (F_Copy : List_Id) return Assoc_Count is Result : Assoc_Count := 0; procedure Action (Ignore_F : Node_Id; Ignore : Assoc_Index); procedure Action (Ignore_F : Node_Id; Ignore : Assoc_Index) is begin Result := Result + 1; end Action; procedure Iter is new An_Formal_Iter (Action); begin Iter (F_Copy); return Result; end Num_An_Formals; --------------- -- Check_Box -- --------------- procedure Check_Box (I_Node, Actual : Node_Id) is begin -- "... => <>" is allowed only in formal packages, not old-fashioned -- instantiations. if Nkind (I_Node) /= N_Formal_Package_Declaration and then Comes_From_Source (I_Node) then if Actual in N_Others_Choice_Id then Error_Msg_N ("OTHERS association not allowed in an instance", Actual); elsif Box_Present (Actual) then Error_Msg_N ("box association not allowed in an instance", Actual); end if; end if; -- "others => <>" must come last if Actual in N_Others_Choice_Id and then Present (Next (Actual)) then Error_Msg_N ("OTHERS must be last association", Actual); end if; end Check_Box; ------------- -- Default -- ------------- function Default (Un_Formal : Node_Id) return Generic_Actual_Rec is begin return Result : Generic_Actual_Rec do case Nkind (Un_Formal) is when N_Formal_Object_Declaration => if Present (Default_Expression (Un_Formal)) then Result := (Name_Exp, Default_Expression (Un_Formal)); end if; when N_Formal_Type_Declaration => if Present (Default_Subtype_Mark (Un_Formal)) then Result := (Name_Exp, Default_Subtype_Mark (Un_Formal)); end if; when N_Formal_Subprogram_Declaration => if Present (Default_Name (Un_Formal)) then pragma Assert (Result.Kind = None); Result := (Name_Exp, Default_Name (Un_Formal)); end if; if Box_Present (Un_Formal) then pragma Assert (Result.Kind = None); Result := (Kind => Box_Subp_Default); end if; if Present (Expression (Un_Formal)) then pragma Assert (Result.Kind = None); Result := (Exp_Func_Default, Expression (Un_Formal)); end if; if Has_Null_Default (Un_Formal) then pragma Assert (Result.Kind = None); Result := (Kind => Null_Default); end if; when N_Formal_Package_Declaration => null; when others => raise Program_Error; end case; pragma Assert (if Result.Kind in Name_Exp | Exp_Func_Default then Present (Result.Name_Exp)); end return; end Default; ---------------------- -- Match_Positional -- ---------------------- procedure Match_Positional (Src_Assoc : in out Node_Id; Assoc : in out Assoc_Rec) is begin if Nkind (Assoc.Un_Formal) not in N_Use_Package_Clause | N_Use_Type_Clause then pragma Assert (No (Assoc.Explicit_Assoc)); pragma Assert (Assoc.Actual.Kind = None); Assoc.Explicit_Assoc := Src_Assoc; -- A "<>" without "name =>" is illegal syntax if Box_Present (Src_Assoc) then Assoc.Actual := (Kind => Box_Actual); if False then -- ??? -- Disable this for now, because we have various -- code that needs to be updated. Error_Msg_N ("box requires named notation", Src_Assoc); end if; else Assoc.Actual := (Name_Exp, Explicit_Generic_Actual_Parameter (Src_Assoc)); pragma Assert (Present (Assoc.Actual.Name_Exp)); end if; Assoc.Actual_Origin := From_Explicit_Actual; Next (Src_Assoc); end if; end Match_Positional; ----------------- -- Match_Named -- ----------------- procedure Match_Named (Src_Assoc : Node_Id; Assoc : in out Assoc_Rec; Found : in out Boolean) is begin if Nkind (Assoc.Un_Formal) not in N_Use_Package_Clause | N_Use_Type_Clause and then Chars (Selector_Name (Src_Assoc)) = Chars (Defining_Entity (Assoc.Un_Formal)) then if Found then -- second formal with the same name pragma Assert (Comes_From_Source (Src_Assoc)); Error_Msg_N ("named association not allowed for " & "overloaded formal", Src_Assoc); Abandon_Instantiation (Instantiation_Node); end if; if Assoc.Actual.Kind /= None then if Comes_From_Source (Src_Assoc) then Error_Msg_NE ("duplicate actual for &", Src_Assoc, Selector_Name (Src_Assoc)); end if; else Assoc.Explicit_Assoc := Src_Assoc; if Box_Present (Src_Assoc) then Assoc.Actual := (Kind => Box_Actual); else if No (Explicit_Generic_Actual_Parameter (Src_Assoc)) then Assoc.Actual := (Kind => Dummy_Assoc); else Assoc.Actual := (Name_Exp, Explicit_Generic_Actual_Parameter (Src_Assoc)); end if; -- Set Entity (etc.) of the selector name: declare A_F : constant Entity_Id := Defining_Entity (Assoc.An_Formal); Orig_F : constant Node_Id := Original_Node (Assoc.An_Formal); Sel : constant Node_Id := Selector_Name (Assoc.Explicit_Assoc); begin Set_Entity (Sel, A_F); Set_Etype (Sel, Etype (A_F)); if Nkind (Orig_F) = N_Formal_Package_Declaration then Generate_Reference (Defining_Identifier (Orig_F), Sel); -- ???Original_Node makes no sense, but we're -- preserving the old behavior. else Generate_Reference (A_F, Sel); end if; end; end if; Assoc.Actual_Origin := From_Explicit_Actual; Found := True; end if; end if; end Match_Named; ------------------ -- Match_Assocs -- ------------------ function Match_Assocs (I_Node : Node_Id; Formals : List_Id; F_Copy : List_Id) return Gen_Assocs_Rec is Src_Assocs : constant List_Id := Generic_Associations (I_Node); Gen_Unit : constant Entity_Id := Defining_Entity (Parent (F_Copy)); begin pragma Assert (Num_An_Formals (F_Copy) = Num_Formals (Formals) or else Serious_Errors_Detected > 0); return Result : Gen_Assocs_Rec (Num_Assocs => Num_Formals (Formals)) do Result.Others_Present := False; -- Loop through the unanalyzed formals: declare procedure Set_Formal (F : Node_Id; Index : Assoc_Index); procedure Set_Formal (F : Node_Id; Index : Assoc_Index) is Assoc : Assoc_Rec renames Result.Assocs (Index); begin if Nkind (F) in N_Use_Package_Clause | N_Use_Type_Clause then Assoc := (Un_Formal => F, An_Formal => Empty, Explicit_Assoc => Empty, Actual => (Kind => None_Use_Clause), Actual_Origin => None); else Assoc := (Un_Formal => F, An_Formal => Empty, Explicit_Assoc => Empty, Actual => <>, Actual_Origin => None); end if; end Set_Formal; procedure Iter is new Formal_Iter (Set_Formal); begin Iter (Formals); end; -- Loop through the analyzed copy of the formals: declare procedure Set_An_Formal (F : Node_Id; Index : Assoc_Index); procedure Set_An_Formal (F : Node_Id; Index : Assoc_Index) is Assoc : Assoc_Rec renames Result.Assocs (Index); begin Assoc.An_Formal := F; if Nkind (F) in N_Use_Package_Clause | N_Use_Type_Clause then pragma Assert (Nkind (Assoc.Un_Formal) = Nkind (Assoc.An_Formal)); else case Nkind (Assoc.Un_Formal) is when N_Formal_Object_Declaration | N_Formal_Subprogram_Declaration => pragma Assert (Nkind (Assoc.Un_Formal) = Nkind (Assoc.An_Formal)); when N_Formal_Type_Declaration => pragma Assert (Nkind (Original_Node (Assoc.An_Formal)) = N_Formal_Type_Declaration); pragma Assert (Nkind (Assoc.An_Formal) in N_Formal_Type_Declaration | N_Full_Type_Declaration | N_Private_Type_Declaration | N_Private_Extension_Declaration | N_Subtype_Declaration); when N_Formal_Package_Declaration => pragma Assert (Nkind (Original_Node (Assoc.An_Formal)) = N_Formal_Package_Declaration); pragma Assert (Nkind (Assoc.An_Formal) = N_Package_Declaration); when others => pragma Assert (False); end case; pragma Assert (Chars (Defining_Entity (Assoc.Un_Formal)) = Chars (Defining_Entity (Assoc.An_Formal))); end if; end Set_An_Formal; procedure Iter is new An_Formal_Iter (Set_An_Formal); begin pragma Assert (Num_An_Formals (F_Copy) = Result.Assocs'Last or else Serious_Errors_Detected > 0); Iter (F_Copy); end; -- Loop through actual source associations: declare Src_Assoc : Node_Id := First (Src_Assocs); -- Generic association from the source function Positional return Boolean is (Present (Src_Assoc) and then Src_Assoc not in N_Others_Choice_Id and then No (Selector_Name (Src_Assoc))); -- True if Src_Assoc is position; i.e. not named and not others begin -- Loop through positional actuals: for Index in Result.Assocs'Range loop exit when not Positional; Match_Positional (Src_Assoc, Result.Assocs (Index)); end loop; if Positional then Error_Msg_Sloc := Sloc (Gen_Unit); Error_Msg_NE ("unmatched actual in instantiation of & declared#", Src_Assoc, Gen_Unit); else -- Loop through named actuals and "others => <>": while Present (Src_Assoc) loop Check_Box (I_Node, Src_Assoc); if Src_Assoc in N_Others_Choice_Id then Result.Others_Present := True; exit; end if; if Positional then Error_Msg_N ("invalid positional actual after named one", Src_Assoc); else -- For actual "X => ...", find formal whose name is X. -- Complain if X has already been specified (could be -- by a positional association, or by a previous named -- one). Also complain if there's more than one X. -- See RM-12.3(9/3) and 12.7(4.1/3). -- However, this rule does not apply to generated -- code,because for nested instances, we routinely -- generate things like: -- X => ..., X => ... -- where the first one refers to the first formal X, -- and the second one refers to the second formal X, -- and so on. (The X's are formal subprograms in this -- case.) declare Found : Boolean := False; begin for Index in Result.Assocs'Range loop Match_Named (Src_Assoc, Result.Assocs (Index), Found); exit when Found and then not Comes_From_Source (Src_Assoc); end loop; if not Found and then Comes_From_Source (Src_Assoc) then Error_Msg_Sloc := Sloc (Gen_Unit); Error_Msg_NE ("unmatched actual &", Src_Assoc, Selector_Name (Src_Assoc)); Error_Msg_NE ("\in instantiation of & declared#", Src_Assoc, Gen_Unit); end if; end; end if; Next (Src_Assoc); end loop; end if; end; -- Fill in defaults. For each formal F with no associated actual, -- if there is "others => <>", set the actual to "F => <>". -- Otherwise, if the formal has a default, set the actual to -- "F => default". Otherwise leave it Empty. for Index in Result.Assocs'Range loop declare Assoc : Assoc_Rec renames Result.Assocs (Index); begin if Assoc.Actual.Kind = None then pragma Assert (No (Assoc.Explicit_Assoc)); if Result.Others_Present then Assoc.Actual := (Kind => Box_Actual); Assoc.Actual_Origin := From_Others_Box; else Assoc.Actual := Default (Assoc.Un_Formal); if Assoc.Actual.Kind /= None then Assoc.Actual_Origin := From_Default; end if; end if; end if; end; end loop; -- Check for missing actuals for Index in Result.Assocs'Range loop if Result.Assocs (Index).Actual.Kind = None then Error_Msg_Sloc := Sloc (Gen_Unit); Error_Msg_NE ("missing actual &", Instantiation_Node, Defining_Entity (Result.Assocs (Index).Un_Formal)); Error_Msg_NE ("\in instantiation of & declared#", Instantiation_Node, Gen_Unit); Abandon_Instantiation (Instantiation_Node); end if; end loop; end return; end Match_Assocs; end Associations; --------------------------- -- Abandon_Instantiation -- --------------------------- procedure Abandon_Instantiation (N : Node_Id) is begin Error_Msg_N ("\instantiation abandoned!", N); raise Instantiation_Error; end Abandon_Instantiation; ---------------------------------- -- Adjust_Inherited_Pragma_Sloc -- ---------------------------------- procedure Adjust_Inherited_Pragma_Sloc (N : Node_Id) is begin Adjust_Instantiation_Sloc (N, S_Adjustment); end Adjust_Inherited_Pragma_Sloc; -------------------------- -- Analyze_Associations -- -------------------------- function Analyze_Associations (I_Node : Node_Id; Formals : List_Id; F_Copy : List_Id) return List_Id is use Associations; Result_Renamings : constant List_Id := New_List; -- To be returned. Includes "renamings" broadly interpreted -- (e.g. subtypes are used for types). Actuals_To_Freeze : constant Elist_Id := New_Elmt_List; Default_Actuals : constant List_Id := New_List; Gen_Assocs : constant Gen_Assocs_Rec := Match_Assocs (I_Node, Formals, F_Copy); begin for Matching_Actual_Index in Gen_Assocs.Assocs'Range loop declare Assoc : Assoc_Rec renames Gen_Assocs.Assocs (Matching_Actual_Index); begin if Nkind (Assoc.Un_Formal) = N_Formal_Package_Declaration and then Error_Posted (Assoc.An_Formal) then -- Restrict this to N_Formal_Package_Declaration, -- because otherwise many test diffs (and maybe -- many missing errors). Abandon_Instantiation (Instantiation_Node); end if; if Nkind (Assoc.Un_Formal) in N_Use_Package_Clause | N_Use_Type_Clause then -- Copy the use clause to where it belongs: Append (New_Copy_Tree (Assoc.Un_Formal), Result_Renamings); else Analyze_One_Association (I_Node, Assoc, Result_Renamings, Default_Actuals, Actuals_To_Freeze); end if; end; end loop; -- An instantiation freezes all generic actuals, except for incomplete -- types and subprograms that are not fully defined at the point of -- instantiation. declare Elmt : Elmt_Id := First_Elmt (Actuals_To_Freeze); begin while Present (Elmt) loop Freeze_Before (I_Node, Node (Elmt)); Next_Elmt (Elmt); end loop; end; -- If there are defaults, normalize the tree by adding explicit -- associations for them. This is required if the instance appears -- within a generic. if not Is_Empty_List (Default_Actuals) then declare Default : Node_Id; begin Default := First (Default_Actuals); while Present (Default) loop Mark_Rewrite_Insertion (Default); Next (Default); end loop; if No (Generic_Associations (I_Node)) then Set_Generic_Associations (I_Node, Default_Actuals); else Append_List_To (Generic_Associations (I_Node), Default_Actuals); end if; end; end if; Check_Fixed_Point_Warning (Gen_Assocs, Result_Renamings); return Result_Renamings; end Analyze_Associations; ----------------------------- -- Analyze_One_Association -- ----------------------------- procedure Analyze_One_Association (I_Node : Node_Id; Assoc : Associations.Assoc_Rec; -- Logical 'in out' parameters: Result_Renamings : List_Id; Default_Actuals : List_Id; Actuals_To_Freeze : Elist_Id) is use Associations; procedure Process_Box_Actual (Formal : Node_Id); -- Called for "Formal => <>", and also if "Formal => ..." is missing, -- but there is "others => <>". Add a copy of the declaration of the -- generic formal to the Result_Renamings. --------------------- -- Process_Box_Actual -- --------------------- procedure Process_Box_Actual (Formal : Node_Id) is pragma Assert (Assoc.Actual.Kind = Box_Actual); F_Id : constant Entity_Id := Defining_Entity (Formal); Decl : constant Node_Id := New_Copy_Tree (Formal); Id : constant Entity_Id := Make_Defining_Identifier (Sloc (F_Id), Chars (F_Id)); begin if Nkind (Formal) in N_Formal_Subprogram_Declaration then Set_Defining_Unit_Name (Specification (Decl), Id); else Set_Defining_Identifier (Decl, Id); end if; Append (Decl, Result_Renamings); end Process_Box_Actual; Match : Node_Id; -- Start of processing for Analyze_One_Association begin if Assoc.Actual_Origin = From_Explicit_Actual and then Assoc.Actual.Kind = Name_Exp then Match := Assoc.Actual.Name_Exp; if Is_Entity_Name (Match) and then Present (Entity (Match)) then Set_Used_As_Generic_Actual (Entity (Match)); end if; else Match := Empty; end if; case Nkind (Assoc.Un_Formal) is when N_Formal_Object_Declaration => if Assoc.Actual.Kind = Box_Actual then Process_Box_Actual (Assoc.Un_Formal); else Append_List (Instantiate_Object (Assoc.Un_Formal, Match, Assoc.An_Formal), Result_Renamings); -- GNATprove: For a defaulted in-mode parameter, create -- an entry in the list of defaulted actuals, for -- GNATprove use. Do not include these defaults for an -- instance nested within a generic, because the defaults -- are also used in the analysis of the enclosing -- generic, and only defaulted subprograms are relevant -- there. if No (Match) and then not Inside_A_Generic then Append_To (Default_Actuals, Make_Generic_Association (Sloc (I_Node), Selector_Name => New_Occurrence_Of (Defining_Identifier (Assoc.Un_Formal), Sloc (I_Node)), Explicit_Generic_Actual_Parameter => New_Copy_Tree (Default_Expression (Assoc.Un_Formal)))); end if; end if; -- If the object is a call to an expression function, this -- is a freezing point for it. if Is_Entity_Name (Match) and then Present (Entity (Match)) and then Nkind (Original_Node (Unit_Declaration_Node (Entity (Match)))) = N_Expression_Function then Append_Elmt (Entity (Match), Actuals_To_Freeze); end if; when N_Formal_Type_Declaration => if Assoc.Actual.Kind = Box_Actual then Process_Box_Actual (Assoc.Un_Formal); elsif No (Match) then if Present (Default_Subtype_Mark (Assoc.Un_Formal)) then Match := New_Copy (Default_Subtype_Mark (Assoc.Un_Formal)); Append_List (Instantiate_Type (Assoc.Un_Formal, Match, Assoc.An_Formal, Result_Renamings), Result_Renamings); Append_Elmt (Entity (Match), Actuals_To_Freeze); end if; else Analyze (Match); Append_List (Instantiate_Type (Assoc.Un_Formal, Match, Assoc.An_Formal, Result_Renamings), Result_Renamings); -- An instantiation is a freeze point for the actuals, -- unless this is a rewritten formal package, or the -- formal is an Ada 2012 formal incomplete type. if Nkind (I_Node) = N_Formal_Package_Declaration or else (Ada_Version >= Ada_2012 and then Ekind (Defining_Identifier (Assoc.An_Formal)) = E_Incomplete_Type) then null; else Append_Elmt (Entity (Match), Actuals_To_Freeze); end if; end if; -- A remote access-to-class-wide type is not a legal actual -- for a generic formal of an access type (E.2.2(17/2)). -- In GNAT an exception to this rule is introduced when -- the formal is marked as remote using implementation -- defined aspect/pragma Remote_Access_Type. In that case -- the actual must be remote as well. -- If the current instantiation is the construction of a -- local copy for a formal package the actuals may be -- defaulted, and there is no matching actual to check. if Nkind (Assoc.An_Formal) = N_Formal_Type_Declaration and then Nkind (Formal_Type_Definition (Assoc.An_Formal)) = N_Access_To_Object_Definition and then Present (Match) then declare Formal_Ent : constant Entity_Id := Defining_Identifier (Assoc.An_Formal); begin if Is_Remote_Access_To_Class_Wide_Type (Entity (Match)) = Is_Remote_Types (Formal_Ent) then -- Remoteness of formal and actual match null; elsif Is_Remote_Types (Formal_Ent) then -- Remote formal, non-remote actual Error_Msg_NE ("actual for& must be remote", Match, Formal_Ent); else -- Non-remote formal, remote actual Error_Msg_NE ("actual for& may not be remote", Match, Formal_Ent); end if; end; end if; when N_Formal_Subprogram_Declaration => -- If there is no corresponding actual, this may be case -- of partial parameterization, or else the formal has a -- default or a box. if Assoc.Actual.Kind = Box_Actual then Process_Box_Actual (Assoc.Un_Formal); else Append_To (Result_Renamings, Instantiate_Formal_Subprogram (Assoc.Un_Formal, Match, Assoc.An_Formal)); -- If formal subprogram has contracts, create wrappers -- for it. This is an expansion activity that cannot -- take place e.g. within an enclosing generic unit. if Has_Contracts (Assoc.An_Formal) and then (Expander_Active or GNATprove_Mode) then Build_Subprogram_Wrappers (Match, Assoc.An_Formal, Result_Renamings); end if; -- An instantiation is a freeze point for the actuals, -- unless this is a rewritten formal package. if Nkind (I_Node) /= N_Formal_Package_Declaration and then Nkind (Match) = N_Identifier and then Is_Subprogram (Entity (Match)) -- The actual subprogram may rename a routine defined -- in Standard. Avoid freezing such renamings because -- subprograms coming from Standard cannot be frozen. and then not Renames_Standard_Subprogram (Entity (Match)) -- If the actual subprogram comes from a different -- unit, it is already frozen, either by a body in -- that unit or by the end of the declarative part -- of the unit. This check avoids the freezing of -- subprograms defined in Standard which are used -- as generic actuals. and then In_Same_Code_Unit (Entity (Match), I_Node) and then Has_Fully_Defined_Profile (Entity (Match)) then -- Mark the subprogram as having a delayed freeze -- since this may be an out-of-order action. Set_Has_Delayed_Freeze (Entity (Match)); Append_Elmt (Entity (Match), Actuals_To_Freeze); end if; end if; -- If this is a nested generic, preserve default for later -- instantiations. We do this as well for GNATprove use, -- so that the list of generic associations is complete. if No (Match) and then Box_Present (Assoc.Un_Formal) then declare Subp : constant Entity_Id := Defining_Unit_Name (Specification (Last (Result_Renamings))); begin Append_To (Default_Actuals, Make_Generic_Association (Sloc (I_Node), Selector_Name => New_Occurrence_Of (Subp, Sloc (I_Node)), Explicit_Generic_Actual_Parameter => New_Occurrence_Of (Subp, Sloc (I_Node)))); end; end if; when N_Formal_Package_Declaration => if Assoc.Actual.Kind = Box_Actual then Process_Box_Actual (Assoc.Un_Formal); else Analyze (Match); Append_List (Instantiate_Formal_Package (Assoc.Un_Formal, Match, Assoc.An_Formal), Result_Renamings); -- Determine whether the actual package needs an explicit -- freeze node. This is only the case if the actual is -- declared in the same unit and has a body. Normally -- packages do not have explicit freeze nodes, and gigi -- only uses them to elaborate entities in a package -- body. Explicit_Freeze_Check : declare Actual : constant Entity_Id := Entity (Match); Gen_Par : Entity_Id; Needs_Freezing : Boolean; P : Node_Id; procedure Check_Generic_Parent; -- The actual may be an instantiation of a unit -- declared in a previous instantiation. If that -- one is also in the current compilation, it must -- itself be frozen before the actual. The actual -- may be an instantiation of a generic child unit, -- in which case the same applies to the instance -- of the parent which must be frozen before the -- actual. -- Should this itself be recursive ??? -------------------------- -- Check_Generic_Parent -- -------------------------- procedure Check_Generic_Parent is Inst : constant Node_Id := Get_Unit_Instantiation_Node (Actual); Par : Entity_Id; begin Par := Empty; if Nkind (Parent (Actual)) = N_Package_Specification then Par := Scope (Generic_Parent (Parent (Actual))); if Is_Generic_Instance (Par) then null; -- If the actual is a child generic unit, check -- whether the instantiation of the parent is -- also local and must also be frozen now. We -- must retrieve the instance node to locate the -- parent instance if any. elsif Ekind (Par) = E_Generic_Package and then Is_Child_Unit (Gen_Par) and then Ekind (Scope (Gen_Par)) = E_Generic_Package then if Nkind (Inst) = N_Package_Instantiation and then Nkind (Name (Inst)) = N_Expanded_Name then -- Retrieve entity of parent instance Par := Entity (Prefix (Name (Inst))); end if; else Par := Empty; end if; end if; if Present (Par) and then Is_Generic_Instance (Par) and then Scope (Par) = Current_Scope and then (No (Freeze_Node (Par)) or else not Is_List_Member (Freeze_Node (Par))) then Set_Has_Delayed_Freeze (Par); Append_Elmt (Par, Actuals_To_Freeze); end if; end Check_Generic_Parent; -- Start of processing for Explicit_Freeze_Check begin if Present (Renamed_Entity (Actual)) then Gen_Par := Generic_Parent (Specification (Unit_Declaration_Node (Renamed_Entity (Actual)))); else Gen_Par := Generic_Parent (Specification (Unit_Declaration_Node (Actual))); end if; if not Expander_Active or else not Has_Completion (Actual) or else not In_Same_Source_Unit (I_Node, Actual) or else Is_Frozen (Actual) or else (Present (Renamed_Entity (Actual)) and then not In_Same_Source_Unit (I_Node, (Renamed_Entity (Actual)))) then null; else -- Finally we want to exclude such freeze nodes -- from statement sequences, which freeze -- everything before them. -- Is this strictly necessary ??? Needs_Freezing := True; P := Parent (I_Node); while Nkind (P) /= N_Compilation_Unit loop if Nkind (P) = N_Handled_Sequence_Of_Statements then Needs_Freezing := False; exit; end if; P := Parent (P); end loop; if Needs_Freezing then Check_Generic_Parent; -- If the actual is a renaming of a proper -- instance of the formal package, indicate -- that it is the instance that must be frozen. if Nkind (Parent (Actual)) = N_Package_Renaming_Declaration then Set_Has_Delayed_Freeze (Renamed_Entity (Actual)); Append_Elmt (Renamed_Entity (Actual), Actuals_To_Freeze); else Set_Has_Delayed_Freeze (Actual); Append_Elmt (Actual, Actuals_To_Freeze); end if; end if; end if; end Explicit_Freeze_Check; end if; when others => raise Program_Error; end case; -- Check for correct use of Ghost entities in generic -- instantiations (SPARK RM 6.9(10)). Check_Ghost_Context_In_Generic_Association (Actual => Match, Formal => Defining_Entity (Assoc.An_Formal)); end Analyze_One_Association; ------------------------------- -- Analyze_Formal_Array_Type -- ------------------------------- procedure Analyze_Formal_Array_Type (T : in out Entity_Id; Def : Node_Id) is DSS : Node_Id; begin -- Treated like a non-generic array declaration, with additional -- semantic checks. Enter_Name (T); if Nkind (Def) = N_Constrained_Array_Definition then DSS := First (Discrete_Subtype_Definitions (Def)); while Present (DSS) loop if Nkind (DSS) in N_Subtype_Indication | N_Range | N_Attribute_Reference then Error_Msg_N ("only a subtype mark is allowed in a formal", DSS); end if; Next (DSS); end loop; end if; Array_Type_Declaration (T, Def); Set_Is_Generic_Type (Base_Type (T)); if Ekind (Component_Type (T)) = E_Incomplete_Type and then No (Full_View (Component_Type (T))) then Error_Msg_N ("premature usage of incomplete type", Def); -- Check that range constraint is not allowed on the component type -- of a generic formal array type (AARM 12.5.3(3)) elsif Is_Internal (Component_Type (T)) and then Present (Subtype_Indication (Component_Definition (Def))) and then Nkind (Original_Node (Subtype_Indication (Component_Definition (Def)))) = N_Subtype_Indication then Error_Msg_N ("in a formal, a subtype indication can only be " & "a subtype mark (RM 12.5.3(3))", Subtype_Indication (Component_Definition (Def))); end if; end Analyze_Formal_Array_Type; --------------------------------------------- -- Analyze_Formal_Decimal_Fixed_Point_Type -- --------------------------------------------- -- As for other generic types, we create a valid type representation with -- legal but arbitrary attributes, whose values are never considered -- static. For all scalar types we introduce an anonymous base type, with -- the same attributes. We choose the corresponding integer type to be -- Standard_Integer. -- Here and in other similar routines, the Sloc of the generated internal -- type must be the same as the sloc of the defining identifier of the -- formal type declaration, to provide proper source navigation. procedure Analyze_Formal_Decimal_Fixed_Point_Type (T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); Base : constant Entity_Id := New_Internal_Entity (E_Decimal_Fixed_Point_Type, Current_Scope, Sloc (Defining_Identifier (Parent (Def))), 'G'); Int_Base : constant Entity_Id := Standard_Integer; Delta_Val : constant Ureal := Ureal_1; Digs_Val : constant Uint := Uint_6; function Make_Dummy_Bound return Node_Id; -- Return a properly typed universal real literal to use as a bound ---------------------- -- Make_Dummy_Bound -- ---------------------- function Make_Dummy_Bound return Node_Id is Bound : constant Node_Id := Make_Real_Literal (Loc, Ureal_1); begin Set_Etype (Bound, Universal_Real); return Bound; end Make_Dummy_Bound; -- Start of processing for Analyze_Formal_Decimal_Fixed_Point_Type begin Enter_Name (T); Set_Etype (Base, Base); Set_Size_Info (Base, Int_Base); Set_RM_Size (Base, RM_Size (Int_Base)); Set_First_Rep_Item (Base, First_Rep_Item (Int_Base)); Set_Digits_Value (Base, Digs_Val); Set_Delta_Value (Base, Delta_Val); Set_Small_Value (Base, Delta_Val); Set_Scalar_Range (Base, Make_Range (Loc, Low_Bound => Make_Dummy_Bound, High_Bound => Make_Dummy_Bound)); Set_Is_Generic_Type (Base); Set_Parent (Base, Parent (Def)); Mutate_Ekind (T, E_Decimal_Fixed_Point_Subtype); Set_Etype (T, Base); Set_Size_Info (T, Int_Base); Set_RM_Size (T, RM_Size (Int_Base)); Set_First_Rep_Item (T, First_Rep_Item (Int_Base)); Set_Digits_Value (T, Digs_Val); Set_Delta_Value (T, Delta_Val); Set_Small_Value (T, Delta_Val); Set_Scalar_Range (T, Scalar_Range (Base)); Set_Is_Constrained (T); Check_Restriction (No_Fixed_Point, Def); end Analyze_Formal_Decimal_Fixed_Point_Type; ------------------------------------------- -- Analyze_Formal_Derived_Interface_Type -- ------------------------------------------- procedure Analyze_Formal_Derived_Interface_Type (N : Node_Id; T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); begin -- Rewrite as a type declaration of a derived type. This ensures that -- the interface list and primitive operations are properly captured. Rewrite (N, Make_Full_Type_Declaration (Loc, Defining_Identifier => T, Type_Definition => Def)); -- Keep the aspects from the original node Move_Aspects (Original_Node (N), N); Analyze (N); Set_Is_Generic_Type (T); end Analyze_Formal_Derived_Interface_Type; --------------------------------- -- Analyze_Formal_Derived_Type -- --------------------------------- procedure Analyze_Formal_Derived_Type (N : Node_Id; T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); Unk_Disc : constant Boolean := Unknown_Discriminants_Present (N); New_N : Node_Id; begin Set_Is_Generic_Type (T); if Private_Present (Def) then New_N := Make_Private_Extension_Declaration (Loc, Defining_Identifier => T, Discriminant_Specifications => Discriminant_Specifications (N), Unknown_Discriminants_Present => Unk_Disc, Subtype_Indication => Subtype_Mark (Def), Interface_List => Interface_List (Def)); Set_Abstract_Present (New_N, Abstract_Present (Def)); Set_Limited_Present (New_N, Limited_Present (Def)); Set_Synchronized_Present (New_N, Synchronized_Present (Def)); else New_N := Make_Full_Type_Declaration (Loc, Defining_Identifier => T, Discriminant_Specifications => Discriminant_Specifications (Parent (T)), Type_Definition => Make_Derived_Type_Definition (Loc, Subtype_Indication => Subtype_Mark (Def))); Set_Abstract_Present (Type_Definition (New_N), Abstract_Present (Def)); Set_Limited_Present (Type_Definition (New_N), Limited_Present (Def)); end if; Rewrite (N, New_N); -- Keep the aspects from the original node Move_Aspects (Original_Node (N), N); Analyze (N); if Unk_Disc then if not Is_Composite_Type (T) then Error_Msg_N ("unknown discriminants not allowed for elementary types", N); else Set_Has_Unknown_Discriminants (T); Set_Is_Constrained (T, False); end if; end if; if Subtype_Mark (Def) <= Empty_Or_Error then pragma Assert (Serious_Errors_Detected > 0); -- avoid passing bad argument to Entity return; end if; -- If the parent type has a known size, so does the formal, which makes -- legal representation clauses that involve the formal. Set_Size_Known_At_Compile_Time (T, Size_Known_At_Compile_Time (Entity (Subtype_Mark (Def)))); end Analyze_Formal_Derived_Type; ---------------------------------- -- Analyze_Formal_Discrete_Type -- ---------------------------------- -- The operations defined for a discrete types are those of an enumeration -- type. The size is set to an arbitrary value, for use in analyzing the -- generic unit. procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); Lo : Node_Id; Hi : Node_Id; Base : constant Entity_Id := New_Internal_Entity (E_Floating_Point_Type, Current_Scope, Sloc (Defining_Identifier (Parent (Def))), 'G'); begin Enter_Name (T); Mutate_Ekind (T, E_Enumeration_Subtype); Set_Etype (T, Base); Init_Size (T, 8); Reinit_Alignment (T); Set_Is_Generic_Type (T); Set_Is_Constrained (T); -- For semantic analysis, the bounds of the type must be set to some -- non-static value. The simplest is to create attribute nodes for those -- bounds, that refer to the type itself. These bounds are never -- analyzed but serve as place-holders. Lo := Make_Attribute_Reference (Loc, Attribute_Name => Name_First, Prefix => New_Occurrence_Of (T, Loc)); Set_Etype (Lo, T); Hi := Make_Attribute_Reference (Loc, Attribute_Name => Name_Last, Prefix => New_Occurrence_Of (T, Loc)); Set_Etype (Hi, T); Set_Scalar_Range (T, Make_Range (Loc, Low_Bound => Lo, High_Bound => Hi)); Mutate_Ekind (Base, E_Enumeration_Type); Set_Etype (Base, Base); Init_Size (Base, 8); Reinit_Alignment (Base); Set_Is_Generic_Type (Base); Set_Scalar_Range (Base, Scalar_Range (T)); Set_Parent (Base, Parent (Def)); end Analyze_Formal_Discrete_Type; ---------------------------------- -- Analyze_Formal_Floating_Type -- --------------------------------- procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id) is Base : constant Entity_Id := New_Internal_Entity (E_Floating_Point_Type, Current_Scope, Sloc (Defining_Identifier (Parent (Def))), 'G'); begin -- The various semantic attributes are taken from the predefined type -- Float, just so that all of them are initialized. Their values are -- never used because no constant folding or expansion takes place in -- the generic itself. Enter_Name (T); Mutate_Ekind (T, E_Floating_Point_Subtype); Set_Etype (T, Base); Set_Size_Info (T, (Standard_Float)); Set_RM_Size (T, RM_Size (Standard_Float)); Set_Digits_Value (T, Digits_Value (Standard_Float)); Set_Scalar_Range (T, Scalar_Range (Standard_Float)); Set_Is_Constrained (T); Set_Is_Generic_Type (Base); Set_Etype (Base, Base); Set_Size_Info (Base, (Standard_Float)); Set_RM_Size (Base, RM_Size (Standard_Float)); Set_Digits_Value (Base, Digits_Value (Standard_Float)); Set_Scalar_Range (Base, Scalar_Range (Standard_Float)); Set_Parent (Base, Parent (Def)); Check_Restriction (No_Floating_Point, Def); end Analyze_Formal_Floating_Type; ----------------------------------- -- Analyze_Formal_Interface_Type;-- ----------------------------------- procedure Analyze_Formal_Interface_Type (N : Node_Id; T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (N); New_N : Node_Id; begin New_N := Make_Full_Type_Declaration (Loc, Defining_Identifier => T, Type_Definition => Def); Rewrite (N, New_N); -- Keep the aspects from the original node Move_Aspects (Original_Node (N), N); Analyze (N); Set_Is_Generic_Type (T); end Analyze_Formal_Interface_Type; --------------------------------- -- Analyze_Formal_Modular_Type -- --------------------------------- procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id) is begin -- Apart from their entity kind, generic modular types are treated like -- signed integer types, and have the same attributes. Analyze_Formal_Signed_Integer_Type (T, Def); Mutate_Ekind (T, E_Modular_Integer_Subtype); Mutate_Ekind (Etype (T), E_Modular_Integer_Type); end Analyze_Formal_Modular_Type; --------------------------------------- -- Analyze_Formal_Object_Declaration -- --------------------------------------- procedure Analyze_Formal_Object_Declaration (N : Node_Id) is E : constant Node_Id := Default_Expression (N); Id : constant Node_Id := Defining_Identifier (N); K : Entity_Kind; Parent_Installed : Boolean := False; T : Node_Id; begin Enter_Name (Id); Check_Abbreviated_Instance (Parent (N), Parent_Installed); -- Determine the mode of the formal object if Out_Present (N) then K := E_Generic_In_Out_Parameter; if not In_Present (N) then Error_Msg_N ("formal generic objects cannot have mode OUT", N); end if; else K := E_Generic_In_Parameter; end if; if Present (Subtype_Mark (N)) then Find_Type (Subtype_Mark (N)); T := Entity (Subtype_Mark (N)); -- Verify that there is no redundant null exclusion if Null_Exclusion_Present (N) then if not Is_Access_Type (T) then Error_Msg_N ("null exclusion can only apply to an access type", N); elsif Can_Never_Be_Null (T) then Error_Msg_NE ("`NOT NULL` not allowed (& already excludes null)", N, T); end if; end if; -- Ada 2005 (AI-423): Formal object with an access definition else Check_Access_Definition (N); T := Access_Definition (Related_Nod => N, N => Access_Definition (N)); end if; if Ekind (T) = E_Incomplete_Type then declare Error_Node : Node_Id; begin if Present (Subtype_Mark (N)) then Error_Node := Subtype_Mark (N); else Check_Access_Definition (N); Error_Node := Access_Definition (N); end if; Error_Msg_N ("premature usage of incomplete type", Error_Node); end; end if; if K = E_Generic_In_Parameter then -- Ada 2005 (AI-287): Limited aggregates allowed in generic formals if Ada_Version < Ada_2005 and then Is_Limited_Type (T) then Error_Msg_N ("generic formal of mode IN must not be of limited type", N); Explain_Limited_Type (T, N); end if; if Is_Abstract_Type (T) then Error_Msg_N ("generic formal of mode IN must not be of abstract type", N); end if; if Present (E) then Preanalyze_Spec_Expression (E, T); -- The default for a ghost generic formal IN parameter of -- access-to-variable type should be a ghost object (SPARK -- RM 6.9(13)). if Is_Access_Variable (T) then Check_Ghost_Formal_Variable (Actual => E, Formal => Id, Is_Default => True); end if; if Is_Limited_Type (T) and then not OK_For_Limited_Init (T, E) then Error_Msg_N ("initialization not allowed for limited types", E); Explain_Limited_Type (T, E); end if; end if; Mutate_Ekind (Id, K); Set_Etype (Id, T); -- Case of generic IN OUT parameter else -- If the formal has an unconstrained type, construct its actual -- subtype, as is done for subprogram formals. In this fashion, all -- its uses can refer to specific bounds. Mutate_Ekind (Id, K); Set_Etype (Id, T); if (Is_Array_Type (T) and then not Is_Constrained (T)) or else (Ekind (T) = E_Record_Type and then Has_Discriminants (T)) then declare Non_Freezing_Ref : constant Node_Id := New_Occurrence_Of (Id, Sloc (Id)); Decl : Node_Id; begin -- Make sure the actual subtype doesn't generate bogus freezing Set_Must_Not_Freeze (Non_Freezing_Ref); Decl := Build_Actual_Subtype (T, Non_Freezing_Ref); Insert_Before_And_Analyze (N, Decl); Set_Actual_Subtype (Id, Defining_Identifier (Decl)); end; else Set_Actual_Subtype (Id, T); end if; if Present (E) then Error_Msg_N ("initialization not allowed for `IN OUT` formals", N); end if; end if; Analyze_Aspect_Specifications (N, Id); if Parent_Installed then Remove_Parent; end if; end Analyze_Formal_Object_Declaration; ---------------------------------------------- -- Analyze_Formal_Ordinary_Fixed_Point_Type -- ---------------------------------------------- procedure Analyze_Formal_Ordinary_Fixed_Point_Type (T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); Base : constant Entity_Id := New_Internal_Entity (E_Ordinary_Fixed_Point_Type, Current_Scope, Sloc (Defining_Identifier (Parent (Def))), 'G'); begin -- The semantic attributes are set for completeness only, their values -- will never be used, since all properties of the type are non-static. Enter_Name (T); Mutate_Ekind (T, E_Ordinary_Fixed_Point_Subtype); Set_Etype (T, Base); Set_Size_Info (T, Standard_Integer); Set_RM_Size (T, RM_Size (Standard_Integer)); Set_Small_Value (T, Ureal_1); Set_Delta_Value (T, Ureal_1); Set_Scalar_Range (T, Make_Range (Loc, Low_Bound => Make_Real_Literal (Loc, Ureal_1), High_Bound => Make_Real_Literal (Loc, Ureal_1))); Set_Is_Constrained (T); Set_Is_Generic_Type (Base); Set_Etype (Base, Base); Set_Size_Info (Base, Standard_Integer); Set_RM_Size (Base, RM_Size (Standard_Integer)); Set_Small_Value (Base, Ureal_1); Set_Delta_Value (Base, Ureal_1); Set_Scalar_Range (Base, Scalar_Range (T)); Set_Parent (Base, Parent (Def)); Check_Restriction (No_Fixed_Point, Def); end Analyze_Formal_Ordinary_Fixed_Point_Type; ---------------------------------------- -- Analyze_Formal_Package_Declaration -- ---------------------------------------- procedure Analyze_Formal_Package_Declaration (N : Node_Id) is Gen_Id : constant Node_Id := Name (N); Loc : constant Source_Ptr := Sloc (N); Pack_Id : constant Entity_Id := Defining_Identifier (N); Formal : Entity_Id; Gen_Decl : Node_Id; Gen_Unit : Entity_Id; Renaming : Node_Id; Vis_Prims_List : Elist_Id := No_Elist; -- List of primitives made temporarily visible in the instantiation -- to match the visibility of the formal type. function Build_Local_Package return Node_Id; -- The formal package is rewritten so that its parameters are replaced -- with corresponding declarations. For parameters with bona fide -- associations these declarations are created by Analyze_Associations -- as for a regular instantiation. For boxed parameters, we preserve -- the formal declarations and analyze them, in order to introduce -- entities of the right kind in the environment of the formal. ------------------------- -- Build_Local_Package -- ------------------------- function Build_Local_Package return Node_Id is Decls : List_Id; Pack_Decl : Node_Id; begin -- Within the formal, the name of the generic package is a renaming -- of the formal (as for a regular instantiation). Pack_Decl := Make_Package_Declaration (Loc, Specification => Copy_Generic_Node (Specification (Original_Node (Gen_Decl)), Empty, Instantiating => True)); Renaming := Make_Package_Renaming_Declaration (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars (Gen_Unit)), Name => New_Occurrence_Of (Formal, Loc)); if Nkind (Gen_Id) = N_Identifier and then Chars (Gen_Id) = Chars (Pack_Id) then Error_Msg_NE ("& is hidden within declaration of instance", Gen_Id, Gen_Unit); end if; -- If the formal is declared with a box, or with an others choice, -- create corresponding declarations for all entities in the formal -- part, so that names with the proper types are available in the -- specification of the formal package. -- On the other hand, if there are no associations (as in "new G;"), -- then all the formals must have defaults, and this will be checked -- by the call to Analyze_Associations. if Box_Present (N) or else Nkind (First (Generic_Associations (N))) = N_Others_Choice then declare Formal_Decl : Node_Id; begin -- TBA : for a formal package, need to recurse ??? Decls := New_List; Formal_Decl := First (Generic_Formal_Declarations (Original_Node (Gen_Decl))); while Present (Formal_Decl) loop Append_To (Decls, Copy_Generic_Node (Formal_Decl, Empty, Instantiating => True)); Next (Formal_Decl); end loop; end; -- If generic associations are present, use Analyze_Associations to -- create the proper renaming declarations. else declare Act_Tree : constant Node_Id := Copy_Generic_Node (Original_Node (Gen_Decl), Empty, Instantiating => True); begin Generic_Renamings.Set_Last (0); Generic_Renamings_HTable.Reset; Instantiation_Node := N; Decls := Analyze_Associations (I_Node => Original_Node (N), Formals => Generic_Formal_Declarations (Act_Tree), F_Copy => Generic_Formal_Declarations (Gen_Decl)); Vis_Prims_List := Check_Hidden_Primitives (Decls); end; end if; Append (Renaming, To => Decls); -- Add generated declarations ahead of local declarations in -- the package. if No (Visible_Declarations (Specification (Pack_Decl))) then Set_Visible_Declarations (Specification (Pack_Decl), Decls); else Insert_List_Before (First (Visible_Declarations (Specification (Pack_Decl))), Decls); end if; return Pack_Decl; end Build_Local_Package; -- Local variables Save_ISMP : constant Boolean := Ignore_SPARK_Mode_Pragmas_In_Instance; -- Save flag Ignore_SPARK_Mode_Pragmas_In_Instance for restore on exit Associations : Boolean := True; New_N : Node_Id; Parent_Installed : Boolean := False; Parent_Instance : Entity_Id; Renaming_In_Par : Entity_Id; -- Start of processing for Analyze_Formal_Package_Declaration begin Check_Text_IO_Special_Unit (Gen_Id); Init_Env; Check_Generic_Child_Unit (Gen_Id, Parent_Installed); Gen_Unit := Entity (Gen_Id); -- Check for a formal package that is a package renaming if Present (Renamed_Entity (Gen_Unit)) then -- Indicate that unit is used, before replacing it with renamed -- entity for use below. if In_Extended_Main_Source_Unit (N) then Set_Is_Instantiated (Gen_Unit); Generate_Reference (Gen_Unit, N); end if; Gen_Unit := Renamed_Entity (Gen_Unit); end if; if Ekind (Gen_Unit) /= E_Generic_Package then Error_Msg_N ("expect generic package name", Gen_Id); Restore_Env; goto Leave; elsif Gen_Unit = Current_Scope then Error_Msg_N ("generic package cannot be used as a formal package of itself", Gen_Id); Restore_Env; goto Leave; elsif In_Open_Scopes (Gen_Unit) then if Is_Compilation_Unit (Gen_Unit) and then Is_Child_Unit (Current_Scope) then -- Special-case the error when the formal is a parent, and -- continue analysis to minimize cascaded errors. Error_Msg_N ("generic parent cannot be used as formal package of a child " & "unit", Gen_Id); else Error_Msg_N ("generic package cannot be used as a formal package within " & "itself", Gen_Id); Restore_Env; goto Leave; end if; end if; -- Check that name of formal package does not hide name of generic, -- or its leading prefix. This check must be done separately because -- the name of the generic has already been analyzed. declare Gen_Name : Entity_Id; begin Gen_Name := Gen_Id; while Nkind (Gen_Name) = N_Expanded_Name loop Gen_Name := Prefix (Gen_Name); end loop; if Chars (Gen_Name) = Chars (Pack_Id) then Error_Msg_NE ("& is hidden within declaration of formal package", Gen_Id, Gen_Name); end if; end; if Box_Present (N) or else No (Generic_Associations (N)) or else Nkind (First (Generic_Associations (N))) = N_Others_Choice then Associations := False; end if; -- If there are no generic associations, the generic parameters appear -- as local entities and are instantiated like them. We copy the generic -- package declaration as if it were an instantiation, and analyze it -- like a regular package, except that we treat the formals as -- additional visible components. Gen_Decl := Unit_Declaration_Node (Gen_Unit); if In_Extended_Main_Source_Unit (N) then Set_Is_Instantiated (Gen_Unit); Generate_Reference (Gen_Unit, N); end if; Formal := New_Copy (Pack_Id); Create_Instantiation_Source (N, Gen_Unit, S_Adjustment); -- Make local generic without formals. The formals will be replaced with -- internal declarations. begin New_N := Build_Local_Package; -- If there are errors in the parameter list, Analyze_Associations -- raises Instantiation_Error. Patch the declaration to prevent further -- exception propagation. exception when Instantiation_Error => Enter_Name (Formal); Mutate_Ekind (Formal, E_Variable); Set_Etype (Formal, Any_Type); Restore_Hidden_Primitives (Vis_Prims_List); if Parent_Installed then Remove_Parent; end if; goto Leave; end; Rewrite (N, New_N); Set_Defining_Unit_Name (Specification (New_N), Formal); Set_Generic_Parent (Specification (N), Gen_Unit); Set_Instance_Env (Gen_Unit, Formal); Set_Is_Generic_Instance (Formal); Enter_Name (Formal); Mutate_Ekind (Formal, E_Package); Set_Etype (Formal, Standard_Void_Type); Set_Inner_Instances (Formal, New_Elmt_List); -- It is unclear that any aspects can apply to a formal package -- declaration, given that they look like a hidden conformance -- requirement on the corresponding actual. However, Abstract_State -- must be treated specially because it generates declarations that -- must appear before other declarations in the specification and -- must be analyzed at once. if Present (Aspect_Specifications (Gen_Decl)) then if No (Aspect_Specifications (N)) then Set_Aspect_Specifications (N, New_List); end if; declare ASN : Node_Id := First (Aspect_Specifications (Gen_Decl)); New_A : Node_Id; begin while Present (ASN) loop if Get_Aspect_Id (ASN) = Aspect_Abstract_State then New_A := Copy_Generic_Node (ASN, Empty, Instantiating => True); Set_Entity (New_A, Formal); Set_Analyzed (New_A, False); Append (New_A, Aspect_Specifications (N)); Analyze_Aspect_Specifications (N, Formal); exit; end if; Next (ASN); end loop; end; end if; Push_Scope (Formal); -- Manually set the SPARK_Mode from the context because the package -- declaration is never analyzed. Set_SPARK_Pragma (Formal, SPARK_Mode_Pragma); Set_SPARK_Aux_Pragma (Formal, SPARK_Mode_Pragma); Set_SPARK_Pragma_Inherited (Formal); Set_SPARK_Aux_Pragma_Inherited (Formal); if Is_Child_Unit (Gen_Unit) and then Parent_Installed then -- Similarly, we have to make the name of the formal visible in the -- parent instance, to resolve properly fully qualified names that -- may appear in the generic unit. The parent instance has been -- placed on the scope stack ahead of the current scope. Parent_Instance := Scope_Stack.Table (Scope_Stack.Last - 1).Entity; Renaming_In_Par := Make_Defining_Identifier (Loc, Chars (Gen_Unit)); Mutate_Ekind (Renaming_In_Par, E_Package); Set_Is_Not_Self_Hidden (Renaming_In_Par); Set_Etype (Renaming_In_Par, Standard_Void_Type); Set_Scope (Renaming_In_Par, Parent_Instance); Set_Parent (Renaming_In_Par, Parent (Formal)); Set_Renamed_Entity (Renaming_In_Par, Formal); Append_Entity (Renaming_In_Par, Parent_Instance); end if; -- A formal package declaration behaves as a package instantiation with -- respect to SPARK_Mode "off". If the annotation is "off" or altogether -- missing, set the global flag which signals Analyze_Pragma to ingnore -- all SPARK_Mode pragmas within the generic_package_name. if SPARK_Mode /= On then Ignore_SPARK_Mode_Pragmas_In_Instance := True; -- Mark the formal spec in case the body is instantiated at a later -- pass. This preserves the original context in effect for the body. Set_Ignore_SPARK_Mode_Pragmas (Formal); end if; Analyze (Specification (N)); -- The formals for which associations are provided are not visible -- outside of the formal package. The others are still declared by a -- formal parameter declaration. -- If there are no associations, the only local entity to hide is the -- generated package renaming itself. declare E : Entity_Id; begin E := First_Entity (Formal); while Present (E) loop if Associations and then not Is_Generic_Formal (E) then Set_Is_Hidden (E); end if; if Ekind (E) = E_Package and then Renamed_Entity (E) = Formal then Set_Is_Hidden (E); exit; end if; Next_Entity (E); end loop; end; End_Package_Scope (Formal); Restore_Hidden_Primitives (Vis_Prims_List); if Parent_Installed then Remove_Parent; end if; Restore_Env; -- Inside the generic unit, the formal package is a regular package, but -- no body is needed for it. Note that after instantiation, the defining -- unit name we need is in the new tree and not in the original (see -- Package_Instantiation). A generic formal package is an instance, and -- can be used as an actual for an inner instance. Set_Has_Completion (Formal, True); -- Add semantic information to the original defining identifier. Mutate_Ekind (Pack_Id, E_Package); Set_Etype (Pack_Id, Standard_Void_Type); Set_Scope (Pack_Id, Scope (Formal)); Set_Has_Completion (Pack_Id, True); <> -- Unclear that any other aspects may appear here, analyze them -- for completion, given that the grammar allows their appearance. Analyze_Aspect_Specifications (N, Pack_Id); Ignore_SPARK_Mode_Pragmas_In_Instance := Save_ISMP; end Analyze_Formal_Package_Declaration; --------------------------------- -- Analyze_Formal_Private_Type -- --------------------------------- procedure Analyze_Formal_Private_Type (N : Node_Id; T : Entity_Id; Def : Node_Id) is begin New_Private_Type (N, T, Def); -- Set the size to an arbitrary but legal value Set_Size_Info (T, Standard_Integer); Set_RM_Size (T, RM_Size (Standard_Integer)); end Analyze_Formal_Private_Type; ------------------------------------ -- Analyze_Formal_Incomplete_Type -- ------------------------------------ procedure Analyze_Formal_Incomplete_Type (T : Entity_Id; Def : Node_Id) is begin Enter_Name (T); Mutate_Ekind (T, E_Incomplete_Type); Set_Etype (T, T); Set_Private_Dependents (T, New_Elmt_List); if Tagged_Present (Def) then Set_Is_Tagged_Type (T); Make_Class_Wide_Type (T); Set_Direct_Primitive_Operations (T, New_Elmt_List); end if; end Analyze_Formal_Incomplete_Type; ---------------------------------------- -- Analyze_Formal_Signed_Integer_Type -- ---------------------------------------- procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id) is Base : constant Entity_Id := New_Internal_Entity (E_Signed_Integer_Type, Current_Scope, Sloc (Defining_Identifier (Parent (Def))), 'G'); begin Enter_Name (T); Mutate_Ekind (T, E_Signed_Integer_Subtype); Set_Etype (T, Base); Set_Size_Info (T, Standard_Integer); Set_RM_Size (T, RM_Size (Standard_Integer)); Set_Scalar_Range (T, Scalar_Range (Standard_Integer)); Set_Is_Constrained (T); Set_Is_Generic_Type (Base); Set_Size_Info (Base, Standard_Integer); Set_RM_Size (Base, RM_Size (Standard_Integer)); Set_Etype (Base, Base); Set_Scalar_Range (Base, Scalar_Range (Standard_Integer)); Set_Parent (Base, Parent (Def)); end Analyze_Formal_Signed_Integer_Type; ------------------------------------------- -- Analyze_Formal_Subprogram_Declaration -- ------------------------------------------- procedure Analyze_Formal_Subprogram_Declaration (N : Node_Id) is Spec : constant Node_Id := Specification (N); Def : constant Node_Id := Default_Name (N); Expr : constant Node_Id := Expression (N); Nam : constant Entity_Id := Defining_Unit_Name (Spec); Parent_Installed : Boolean := False; Subp : Entity_Id; begin if Nam = Error then return; end if; if Nkind (Nam) = N_Defining_Program_Unit_Name then Error_Msg_N ("name of formal subprogram must be a direct name", Nam); goto Leave; end if; Check_Abbreviated_Instance (Parent (N), Parent_Installed); Analyze_Subprogram_Declaration (N); Set_Is_Formal_Subprogram (Nam); Set_Has_Completion (Nam); if Nkind (N) = N_Formal_Abstract_Subprogram_Declaration then Set_Is_Abstract_Subprogram (Nam); Set_Is_Dispatching_Operation (Nam); -- A formal abstract procedure cannot have a null default -- (RM 12.6(4.1/2)). if Has_Null_Default (N) then Error_Msg_N ("a formal abstract subprogram cannot default to null", Spec); end if; -- A formal abstract function cannot have an expression default -- (expression defaults are allowed for nonabstract formal functions -- when extensions are enabled). if Nkind (Spec) = N_Function_Specification and then Present (Expr) then Error_Msg_N ("a formal abstract subprogram cannot default to an expression", Spec); end if; declare Ctrl_Type : constant Entity_Id := Find_Dispatching_Type (Nam); begin if No (Ctrl_Type) then Error_Msg_N ("abstract formal subprogram must have a controlling type", N); elsif Ada_Version >= Ada_2012 and then Is_Incomplete_Type (Ctrl_Type) then Error_Msg_NE ("controlling type of abstract formal subprogram cannot " & "be incomplete type", N, Ctrl_Type); else Check_Controlling_Formals (Ctrl_Type, Nam); end if; end; end if; -- Default name is resolved at the point of instantiation if Box_Present (N) then null; -- Default name is bound at the point of generic declaration elsif Present (Def) then if Nkind (Def) = N_Operator_Symbol then Find_Direct_Name (Def); elsif Nkind (Def) /= N_Attribute_Reference then Analyze (Def); else -- For an attribute reference, analyze the prefix and verify -- that it has the proper profile for the subprogram. Analyze (Prefix (Def)); Valid_Default_Attribute (Nam, Def); goto Leave; end if; -- The default for a ghost generic formal procedure should be a ghost -- procedure (SPARK RM 6.9(13)). if Ekind (Nam) = E_Procedure then declare Def_E : Entity_Id := Empty; begin if Nkind (Def) in N_Has_Entity then Def_E := Entity (Def); end if; Check_Ghost_Formal_Procedure_Or_Package (N => Def, Actual => Def_E, Formal => Nam, Is_Default => True); end; end if; -- Default name may be overloaded, in which case the interpretation -- with the correct profile must be selected, as for a renaming. -- If the definition is an indexed component, it must denote a -- member of an entry family. If it is a selected component, it -- can be a protected operation. if Etype (Def) = Any_Type then goto Leave; elsif Nkind (Def) = N_Selected_Component then if not Is_Overloadable (Entity (Selector_Name (Def))) then Error_Msg_N ("expect valid subprogram name as default", Def); end if; elsif Nkind (Def) = N_Indexed_Component then if Is_Entity_Name (Prefix (Def)) then if Ekind (Entity (Prefix (Def))) /= E_Entry_Family then Error_Msg_N ("expect valid subprogram name as default", Def); end if; elsif Nkind (Prefix (Def)) = N_Selected_Component then if Ekind (Entity (Selector_Name (Prefix (Def)))) /= E_Entry_Family then Error_Msg_N ("expect valid subprogram name as default", Def); end if; else Error_Msg_N ("expect valid subprogram name as default", Def); goto Leave; end if; elsif Nkind (Def) = N_Character_Literal then -- Needs some type checks: subprogram should be parameterless??? Resolve (Def, (Etype (Nam))); elsif not Is_Entity_Name (Def) or else not Is_Overloadable (Entity (Def)) then Error_Msg_N ("expect valid subprogram name as default", Def); goto Leave; elsif not Is_Overloaded (Def) then Subp := Entity (Def); if Subp = Nam then Error_Msg_N ("premature usage of formal subprogram", Def); elsif not Entity_Matches_Spec (Subp, Nam) then Error_Msg_N ("no visible entity matches specification", Def); end if; -- More than one interpretation, so disambiguate as for a renaming else declare I : Interp_Index; I1 : Interp_Index := 0; It : Interp; It1 : Interp; begin Subp := Any_Id; Get_First_Interp (Def, I, It); while Present (It.Nam) loop if Entity_Matches_Spec (It.Nam, Nam) then if Subp /= Any_Id then It1 := Disambiguate (Def, I1, I, Etype (Subp)); if It1 = No_Interp then Error_Msg_N ("ambiguous default subprogram", Def); else Subp := It1.Nam; end if; exit; else I1 := I; Subp := It.Nam; end if; end if; Get_Next_Interp (I, It); end loop; end; if Subp /= Any_Id then -- Subprogram found, generate reference to it Set_Entity (Def, Subp); Generate_Reference (Subp, Def); if Subp = Nam then Error_Msg_N ("premature usage of formal subprogram", Def); elsif Ekind (Subp) /= E_Operator then Check_Mode_Conformant (Subp, Nam); end if; else Error_Msg_N ("no visible subprogram matches specification", N); end if; end if; -- When extensions are enabled, an expression can be given as default -- for a formal function. The expression must be of the function result -- type and can reference formal parameters of the function. elsif Present (Expr) then Push_Scope (Nam); Install_Formals (Nam); Preanalyze_Spec_Expression (Expr, Etype (Nam)); End_Scope; end if; <> Analyze_Aspect_Specifications (N, Nam); if Parent_Installed then Remove_Parent; end if; end Analyze_Formal_Subprogram_Declaration; ------------------------------------- -- Analyze_Formal_Type_Declaration -- ------------------------------------- procedure Analyze_Formal_Type_Declaration (N : Node_Id) is Def : constant Node_Id := Formal_Type_Definition (N); Parent_Installed : Boolean := False; T : Entity_Id; begin T := Defining_Identifier (N); if Present (Discriminant_Specifications (N)) and then Nkind (Def) /= N_Formal_Private_Type_Definition then Error_Msg_N ("discriminants not allowed for this formal type", T); end if; Check_Abbreviated_Instance (Parent (N), Parent_Installed); -- Enter the new name, and branch to specific routine case Nkind (Def) is when N_Formal_Private_Type_Definition => Analyze_Formal_Private_Type (N, T, Def); when N_Formal_Derived_Type_Definition => Analyze_Formal_Derived_Type (N, T, Def); when N_Formal_Incomplete_Type_Definition => Analyze_Formal_Incomplete_Type (T, Def); when N_Formal_Discrete_Type_Definition => Analyze_Formal_Discrete_Type (T, Def); when N_Formal_Signed_Integer_Type_Definition => Analyze_Formal_Signed_Integer_Type (T, Def); when N_Formal_Modular_Type_Definition => Analyze_Formal_Modular_Type (T, Def); when N_Formal_Floating_Point_Definition => Analyze_Formal_Floating_Type (T, Def); when N_Formal_Ordinary_Fixed_Point_Definition => Analyze_Formal_Ordinary_Fixed_Point_Type (T, Def); when N_Formal_Decimal_Fixed_Point_Definition => Analyze_Formal_Decimal_Fixed_Point_Type (T, Def); when N_Array_Type_Definition => Analyze_Formal_Array_Type (T, Def); when N_Access_Function_Definition | N_Access_Procedure_Definition | N_Access_To_Object_Definition => Analyze_Generic_Access_Type (T, Def); -- Ada 2005: a interface declaration is encoded as an abstract -- record declaration or a abstract type derivation. when N_Record_Definition => Analyze_Formal_Interface_Type (N, T, Def); when N_Derived_Type_Definition => Analyze_Formal_Derived_Interface_Type (N, T, Def); when N_Error => null; when others => raise Program_Error; end case; -- A formal type declaration declares a type and its first -- subtype. Set_Is_Generic_Type (T); Set_Is_First_Subtype (T); if Present (Default_Subtype_Mark (Original_Node (N))) then Validate_Formal_Type_Default (N); end if; Analyze_Aspect_Specifications (N, T); if Parent_Installed then Remove_Parent; end if; end Analyze_Formal_Type_Declaration; ------------------------------------ -- Analyze_Function_Instantiation -- ------------------------------------ procedure Analyze_Function_Instantiation (N : Node_Id) is begin Analyze_Subprogram_Instantiation (N, E_Function); end Analyze_Function_Instantiation; --------------------------------- -- Analyze_Generic_Access_Type -- --------------------------------- procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id) is begin Enter_Name (T); if Nkind (Def) = N_Access_To_Object_Definition then Access_Type_Declaration (T, Def); if Is_Incomplete_Or_Private_Type (Designated_Type (T)) and then No (Full_View (Designated_Type (T))) and then not Is_Generic_Type (Designated_Type (T)) then Error_Msg_N ("premature usage of incomplete type", Def); elsif not Is_Entity_Name (Subtype_Indication (Def)) then Error_Msg_N ("only a subtype mark is allowed in a formal", Def); end if; else Access_Subprogram_Declaration (T, Def); end if; end Analyze_Generic_Access_Type; --------------------------------- -- Analyze_Generic_Formal_Part -- --------------------------------- procedure Analyze_Generic_Formal_Part (N : Node_Id) is Gen_Parm_Decl : Node_Id; begin -- The generic formals are processed in the scope of the generic unit, -- where they are immediately visible. The scope is installed by the -- caller. Gen_Parm_Decl := First (Generic_Formal_Declarations (N)); while Present (Gen_Parm_Decl) loop Analyze (Gen_Parm_Decl); Next (Gen_Parm_Decl); end loop; Generate_Reference_To_Generic_Formals (Current_Scope); -- For Ada 2022, some formal parameters can carry aspects, which must -- be name-resolved at the end of the list of formal parameters (which -- has the semantics of a declaration list). Analyze_Contracts (Generic_Formal_Declarations (N)); end Analyze_Generic_Formal_Part; ------------------------------------------ -- Analyze_Generic_Package_Declaration -- ------------------------------------------ procedure Analyze_Generic_Package_Declaration (N : Node_Id) is Decls : constant List_Id := Visible_Declarations (Specification (N)); Loc : constant Source_Ptr := Sloc (N); Decl : Node_Id; Id : Entity_Id; New_N : Node_Id; Renaming : Node_Id; Save_Parent : Node_Id; begin -- A generic may grant access to its private enclosing context depending -- on the placement of its corresponding body. From elaboration point of -- view, the flow of execution may enter this private context, and then -- reach an external unit, thus producing a dependency on that external -- unit. For such a path to be properly discovered and encoded in the -- ALI file of the main unit, let the ABE mechanism process the body of -- the main unit, and encode all relevant invocation constructs and the -- relations between them. Mark_Save_Invocation_Graph_Of_Body; -- We introduce a renaming of the enclosing package, to have a usable -- entity as the prefix of an expanded name for a local entity of the -- form Par.P.Q, where P is the generic package. This is because a local -- entity named P may hide it, so that the usual visibility rules in -- the instance will not resolve properly. Renaming := Make_Package_Renaming_Declaration (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (Defining_Entity (N)), "GH")), Name => Make_Identifier (Loc, Chars (Defining_Entity (N)))); -- The declaration is inserted before other declarations, but before -- pragmas that may be library-unit pragmas and must appear before other -- declarations. The pragma Compile_Time_Error is not in this class, and -- may contain an expression that includes such a qualified name, so the -- renaming declaration must appear before it. -- Are there other pragmas that require this special handling ??? if Present (Decls) then Decl := First (Decls); while Present (Decl) and then Nkind (Decl) = N_Pragma and then Get_Pragma_Id (Decl) /= Pragma_Compile_Time_Error loop Next (Decl); end loop; if Present (Decl) then Insert_Before (Decl, Renaming); else Append (Renaming, Visible_Declarations (Specification (N))); end if; else Set_Visible_Declarations (Specification (N), New_List (Renaming)); end if; -- Create copy of generic unit, and save for instantiation. If the unit -- is a child unit, do not copy the specifications for the parent, which -- are not part of the generic tree. Save_Parent := Parent_Spec (N); Set_Parent_Spec (N, Empty); New_N := Copy_Generic_Node (N, Empty, Instantiating => False); Set_Parent_Spec (New_N, Save_Parent); Rewrite (N, New_N); -- Collect all contract-related source pragmas found within the template -- and attach them to the contract of the package spec. This contract is -- used in the capture of global references within annotations. Create_Generic_Contract (N); Id := Defining_Entity (N); Generate_Definition (Id); -- Expansion is not applied to generic units Start_Generic; Enter_Name (Id); Mutate_Ekind (Id, E_Generic_Package); Set_Is_Not_Self_Hidden (Id); Set_Etype (Id, Standard_Void_Type); -- Set SPARK_Mode from context Set_SPARK_Pragma (Id, SPARK_Mode_Pragma); Set_SPARK_Aux_Pragma (Id, SPARK_Mode_Pragma); Set_SPARK_Pragma_Inherited (Id); Set_SPARK_Aux_Pragma_Inherited (Id); -- Preserve relevant elaboration-related attributes of the context which -- are no longer available or very expensive to recompute once analysis, -- resolution, and expansion are over. Mark_Elaboration_Attributes (N_Id => Id, Checks => True, Warnings => True); -- Analyze aspects now, so that generated pragmas appear in the -- declarations before building and analyzing the generic copy. Analyze_Aspect_Specifications (N, Id); Push_Scope (Id); Enter_Generic_Scope (Id); Set_Inner_Instances (Id, New_Elmt_List); Set_Categorization_From_Pragmas (N); Set_Is_Pure (Id, Is_Pure (Current_Scope)); -- Link the declaration of the generic homonym in the generic copy to -- the package it renames, so that it is always resolved properly. Set_Generic_Homonym (Id, Defining_Unit_Name (Renaming)); Set_Entity (Associated_Node (Name (Renaming)), Id); -- For a library unit, we have reconstructed the entity for the unit, -- and must reset it in the library tables. if Nkind (Parent (N)) = N_Compilation_Unit then Set_Cunit_Entity (Current_Sem_Unit, Id); end if; Analyze_Generic_Formal_Part (N); -- After processing the generic formals, analysis proceeds as for a -- non-generic package. Analyze (Specification (N)); Validate_Categorization_Dependency (N, Id); End_Generic; End_Package_Scope (Id); Exit_Generic_Scope (Id); -- If the generic appears within a package unit, the body of that unit -- has to be present for instantiation and inlining. if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration then Set_Body_Needed_For_Inlining (Defining_Entity (Unit (Cunit (Current_Sem_Unit)))); end if; if Nkind (Parent (N)) /= N_Compilation_Unit then Move_Freeze_Nodes (Id, N, Visible_Declarations (Specification (N))); Move_Freeze_Nodes (Id, N, Private_Declarations (Specification (N))); Move_Freeze_Nodes (Id, N, Generic_Formal_Declarations (N)); else Set_Body_Required (Parent (N), Unit_Requires_Body (Id)); Validate_RT_RAT_Component (N); -- If this is a spec without a body, check that generic parameters -- are referenced. if not Body_Required (Parent (N)) then Check_References (Id); end if; end if; -- If there is a specified storage pool in the context, create an -- aspect on the package declaration, so that it is used in any -- instance that does not override it. if Present (Default_Pool) then declare ASN : Node_Id; begin ASN := Make_Aspect_Specification (Loc, Identifier => Make_Identifier (Loc, Name_Default_Storage_Pool), Expression => New_Copy (Default_Pool)); if No (Aspect_Specifications (Specification (N))) then Set_Aspect_Specifications (Specification (N), New_List (ASN)); else Append (ASN, Aspect_Specifications (Specification (N))); end if; end; end if; end Analyze_Generic_Package_Declaration; -------------------------------------------- -- Analyze_Generic_Subprogram_Declaration -- -------------------------------------------- procedure Analyze_Generic_Subprogram_Declaration (N : Node_Id) is Formals : List_Id; Id : Entity_Id; New_N : Node_Id; Result_Type : Entity_Id; Save_Parent : Node_Id; Spec : Node_Id; Typ : Entity_Id; begin -- A generic may grant access to its private enclosing context depending -- on the placement of its corresponding body. From elaboration point of -- view, the flow of execution may enter this private context, and then -- reach an external unit, thus producing a dependency on that external -- unit. For such a path to be properly discovered and encoded in the -- ALI file of the main unit, let the ABE mechanism process the body of -- the main unit, and encode all relevant invocation constructs and the -- relations between them. Mark_Save_Invocation_Graph_Of_Body; -- Create copy of generic unit, and save for instantiation. If the unit -- is a child unit, do not copy the specifications for the parent, which -- are not part of the generic tree. Save_Parent := Parent_Spec (N); Set_Parent_Spec (N, Empty); New_N := Copy_Generic_Node (N, Empty, Instantiating => False); Set_Parent_Spec (New_N, Save_Parent); Rewrite (N, New_N); -- Collect all contract-related source pragmas found within the template -- and attach them to the contract of the subprogram spec. This contract -- is used in the capture of global references within annotations. Create_Generic_Contract (N); Spec := Specification (N); Id := Defining_Entity (Spec); Generate_Definition (Id); if Nkind (Id) = N_Defining_Operator_Symbol then Error_Msg_N ("operator symbol not allowed for generic subprogram", Id); end if; Start_Generic; Enter_Name (Id); Set_Scope_Depth_Value (Id, Scope_Depth (Current_Scope) + 1); Push_Scope (Id); Enter_Generic_Scope (Id); Set_Inner_Instances (Id, New_Elmt_List); Set_Is_Pure (Id, Is_Pure (Current_Scope)); Analyze_Generic_Formal_Part (N); if Nkind (Spec) = N_Function_Specification then Mutate_Ekind (Id, E_Generic_Function); else Mutate_Ekind (Id, E_Generic_Procedure); end if; -- Set SPARK_Mode from context Set_SPARK_Pragma (Id, SPARK_Mode_Pragma); Set_SPARK_Pragma_Inherited (Id); -- Preserve relevant elaboration-related attributes of the context which -- are no longer available or very expensive to recompute once analysis, -- resolution, and expansion are over. Mark_Elaboration_Attributes (N_Id => Id, Checks => True, Warnings => True); Formals := Parameter_Specifications (Spec); if Present (Formals) then Process_Formals (Formals, Spec); end if; if Nkind (Spec) = N_Function_Specification then if Nkind (Result_Definition (Spec)) = N_Access_Definition then Result_Type := Access_Definition (Spec, Result_Definition (Spec)); Set_Etype (Id, Result_Type); -- Check restriction imposed by AI05-073: a generic function -- cannot return an abstract type or an access to such. if Is_Abstract_Type (Designated_Type (Result_Type)) then Error_Msg_N ("generic function cannot have an access result " & "that designates an abstract type", Spec); end if; else Find_Type (Result_Definition (Spec)); Typ := Entity (Result_Definition (Spec)); if Is_Abstract_Type (Typ) and then Ada_Version >= Ada_2012 then Error_Msg_N ("generic function cannot have abstract result type", Spec); end if; -- If a null exclusion is imposed on the result type, then create -- a null-excluding itype (an access subtype) and use it as the -- function's Etype. if Is_Access_Type (Typ) and then Null_Exclusion_Present (Spec) then Set_Etype (Id, Create_Null_Excluding_Itype (T => Typ, Related_Nod => Spec, Scope_Id => Defining_Unit_Name (Spec))); else Set_Etype (Id, Typ); end if; end if; else Set_Etype (Id, Standard_Void_Type); end if; Set_Is_Not_Self_Hidden (Id); -- Analyze the aspects of the generic copy to ensure that all generated -- pragmas (if any) perform their semantic effects. Analyze_Aspect_Specifications (N, Id); -- For a library unit, we have reconstructed the entity for the unit, -- and must reset it in the library tables. We also make sure that -- Body_Required is set properly in the original compilation unit node. if Nkind (Parent (N)) = N_Compilation_Unit then Set_Cunit_Entity (Current_Sem_Unit, Id); Set_Body_Required (Parent (N), Unit_Requires_Body (Id)); end if; -- If the generic appears within a package unit, the body of that unit -- has to be present for instantiation and inlining. if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration and then Unit_Requires_Body (Id) then Set_Body_Needed_For_Inlining (Defining_Entity (Unit (Cunit (Current_Sem_Unit)))); end if; Set_Categorization_From_Pragmas (N); Validate_Categorization_Dependency (N, Id); -- Capture all global references that occur within the profile of the -- generic subprogram. Aspects are not part of this processing because -- they must be delayed. If processed now, Save_Global_References will -- destroy the Associated_Node links and prevent the capture of global -- references when the contract of the generic subprogram is analyzed. Save_Global_References (Original_Node (N)); End_Generic; End_Scope; Exit_Generic_Scope (Id); Generate_Reference_To_Formals (Id); List_Inherited_Pre_Post_Aspects (Id); end Analyze_Generic_Subprogram_Declaration; ----------------------------------- -- Analyze_Package_Instantiation -- ----------------------------------- -- WARNING: This routine manages Ghost and SPARK regions. Return statements -- must be replaced by gotos which jump to the end of the routine in order -- to restore the Ghost and SPARK modes. procedure Analyze_Package_Instantiation (N : Node_Id) is Has_Inline_Always : Boolean := False; -- Set if the generic unit contains any subprograms with Inline_Always. -- Only relevant when back-end inlining is not enabled. function Might_Inline_Subp (Gen_Unit : Entity_Id) return Boolean; -- Return True if inlining is active and Gen_Unit contains inlined -- subprograms. In this case, we may either instantiate the body when -- front-end inlining is enabled, or add a pending instantiation when -- back-end inlining is enabled. In the former case, this may cause -- superfluous instantiations, but in either case we need to perform -- the instantiation of the body in the context of the instance and -- not in that of the point of inlining. function Needs_Body_Instantiated (Gen_Unit : Entity_Id) return Boolean; -- Return True if Gen_Unit needs to have its body instantiated in the -- context of N. This in particular excludes generic contexts. ----------------------- -- Might_Inline_Subp -- ----------------------- function Might_Inline_Subp (Gen_Unit : Entity_Id) return Boolean is E : Entity_Id; begin if Inline_Processing_Required then -- No need to recompute the answer if we know it is positive -- and back-end inlining is enabled. if Is_Inlined (Gen_Unit) and then Back_End_Inlining then return True; end if; E := First_Entity (Gen_Unit); while Present (E) loop if Is_Subprogram (E) and then Is_Inlined (E) then -- Remember if there are any subprograms with Inline_Always if Has_Pragma_Inline_Always (E) then Has_Inline_Always := True; end if; Set_Is_Inlined (Gen_Unit); return True; end if; Next_Entity (E); end loop; end if; return False; end Might_Inline_Subp; ------------------------------- -- Needs_Body_Instantiated -- ------------------------------- function Needs_Body_Instantiated (Gen_Unit : Entity_Id) return Boolean is begin -- No need to instantiate bodies in generic units if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then return False; end if; -- If the instantiation is in the main unit, then the body is needed if Is_In_Main_Unit (N) then return True; end if; -- In GNATprove mode, never instantiate bodies outside of the main -- unit, as it does not use frontend/backend inlining in the way that -- GNAT does, so does not benefit from such instantiations. On the -- contrary, such instantiations may bring artificial constraints, -- as for example such bodies may require preprocessing. if GNATprove_Mode then return False; end if; -- If not, then again no need to instantiate bodies in generic units if Is_Generic_Unit (Cunit_Entity (Get_Code_Unit (N))) then return False; end if; -- Here we have a special handling for back-end inlining: if inline -- processing is required, then we unconditionally want to have the -- body instantiated. The reason is that Might_Inline_Subp does not -- catch all the cases (as it does not recurse into nested packages) -- so this avoids the need to patch things up afterwards. Moreover, -- these instantiations are only performed on demand when back-end -- inlining is enabled, so this causes very little extra work. if Inline_Processing_Required and then Back_End_Inlining then return True; end if; -- We want to have the bodies instantiated in non-main units if -- they might contribute inlined subprograms. return Might_Inline_Subp (Gen_Unit); end Needs_Body_Instantiated; -- Local declarations Gen_Id : constant Node_Id := Name (N); Inst_Id : constant Entity_Id := Defining_Entity (N); Is_Actual_Pack : constant Boolean := Is_Internal (Inst_Id); Loc : constant Source_Ptr := Sloc (N); Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; Saved_IGR : constant Node_Id := Ignored_Ghost_Region; Saved_ISMP : constant Boolean := Ignore_SPARK_Mode_Pragmas_In_Instance; Saved_SM : constant SPARK_Mode_Type := SPARK_Mode; Saved_SMP : constant Node_Id := SPARK_Mode_Pragma; -- Save the Ghost and SPARK mode-related data to restore on exit Saved_Style_Check : constant Boolean := Style_Check; -- Save style check mode for restore on exit Act_Decl : Node_Id; Act_Decl_Name : Node_Id; Act_Decl_Id : Entity_Id; Act_Spec : Node_Id; Act_Tree : Node_Id; Env_Installed : Boolean := False; Gen_Decl : Node_Id; Gen_Spec : Node_Id; Gen_Unit : Entity_Id; Inline_Now : Boolean := False; Needs_Body : Boolean; Parent_Installed : Boolean := False; Renamings : List_Id; Unit_Renaming : Node_Id; Vis_Prims_List : Elist_Id := No_Elist; -- List of primitives made temporarily visible in the instantiation -- to match the visibility of the formal type -- Start of processing for Analyze_Package_Instantiation begin -- Preserve relevant elaboration-related attributes of the context which -- are no longer available or very expensive to recompute once analysis, -- resolution, and expansion are over. Mark_Elaboration_Attributes (N_Id => N, Checks => True, Level => True, Modes => True, Warnings => True); -- Very first thing: check for Text_IO special unit in case we are -- instantiating one of the children of [[Wide_]Wide_]Text_IO. Check_Text_IO_Special_Unit (Name (N)); -- Make node global for error reporting Instantiation_Node := N; -- Case of instantiation of a generic package if Nkind (N) = N_Package_Instantiation then Act_Decl_Id := New_Copy (Defining_Entity (N)); if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name then Act_Decl_Name := Make_Defining_Program_Unit_Name (Loc, Name => New_Copy_Tree (Name (Defining_Unit_Name (N))), Defining_Identifier => Act_Decl_Id); else Act_Decl_Name := Act_Decl_Id; end if; -- Case of instantiation of a formal package else Act_Decl_Id := Defining_Identifier (N); Act_Decl_Name := Act_Decl_Id; end if; Generate_Definition (Act_Decl_Id); Mutate_Ekind (Act_Decl_Id, E_Package); Set_Is_Not_Self_Hidden (Act_Decl_Id); -- Initialize list of incomplete actuals before analysis Set_Incomplete_Actuals (Act_Decl_Id, New_Elmt_List); Preanalyze_Actuals (N, Act_Decl_Id); -- Turn off style checking in instances. If the check is enabled on the -- generic unit, a warning in an instance would just be noise. If not -- enabled on the generic, then a warning in an instance is just wrong. -- This must be done after analyzing the actuals, which do come from -- source and are subject to style checking. Style_Check := False; Init_Env; Env_Installed := True; -- Reset renaming map for formal types. The mapping is established -- when analyzing the generic associations, but some mappings are -- inherited from formal packages of parent units, and these are -- constructed when the parents are installed. Generic_Renamings.Set_Last (0); Generic_Renamings_HTable.Reset; -- Except for an abbreviated instance created to check a formal package, -- install the parent if this is a generic child unit. if not Is_Abbreviated_Instance (Inst_Id) then Check_Generic_Child_Unit (Gen_Id, Parent_Installed); end if; Gen_Unit := Entity (Gen_Id); -- A package instantiation is Ghost when it is subject to pragma Ghost -- or the generic template is Ghost. Set the mode now to ensure that -- any nodes generated during analysis and expansion are marked as -- Ghost. Mark_And_Set_Ghost_Instantiation (N, Gen_Unit); -- Verify that it is the name of a generic package -- A visibility glitch: if the instance is a child unit and the generic -- is the generic unit of a parent instance (i.e. both the parent and -- the child units are instances of the same package) the name now -- denotes the renaming within the parent, not the intended generic -- unit. See if there is a homonym that is the desired generic. The -- renaming declaration must be visible inside the instance of the -- child, but not when analyzing the name in the instantiation itself. if Ekind (Gen_Unit) = E_Package and then Present (Renamed_Entity (Gen_Unit)) and then In_Open_Scopes (Renamed_Entity (Gen_Unit)) and then Is_Generic_Instance (Renamed_Entity (Gen_Unit)) and then Present (Homonym (Gen_Unit)) then Gen_Unit := Homonym (Gen_Unit); end if; if Etype (Gen_Unit) = Any_Type then Restore_Env; goto Leave; elsif Ekind (Gen_Unit) /= E_Generic_Package then -- Ada 2005 (AI-50217): Cannot use instance in limited with_clause if From_Limited_With (Gen_Unit) then Error_Msg_N ("cannot instantiate a limited withed package", Gen_Id); else Error_Msg_NE ("& is not the name of a generic package", Gen_Id, Gen_Unit); end if; Restore_Env; goto Leave; end if; if In_Extended_Main_Source_Unit (N) then Set_Is_Instantiated (Gen_Unit); Generate_Reference (Gen_Unit, N); if Present (Renamed_Entity (Gen_Unit)) then Set_Is_Instantiated (Renamed_Entity (Gen_Unit)); Generate_Reference (Renamed_Entity (Gen_Unit), N); end if; end if; if Nkind (Gen_Id) = N_Identifier and then Chars (Gen_Unit) = Chars (Defining_Entity (N)) then Error_Msg_NE ("& is hidden within declaration of instance", Gen_Id, Gen_Unit); elsif Nkind (Gen_Id) = N_Expanded_Name and then Is_Child_Unit (Gen_Unit) and then Nkind (Prefix (Gen_Id)) = N_Identifier and then Chars (Act_Decl_Id) = Chars (Prefix (Gen_Id)) then Error_Msg_N ("& is hidden within declaration of instance", Prefix (Gen_Id)); end if; Set_Entity (Gen_Id, Gen_Unit); -- If generic is a renaming, get original generic unit if Present (Renamed_Entity (Gen_Unit)) and then Ekind (Renamed_Entity (Gen_Unit)) = E_Generic_Package then Gen_Unit := Renamed_Entity (Gen_Unit); end if; -- Verify that there are no circular instantiations if In_Open_Scopes (Gen_Unit) then Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit); Restore_Env; goto Leave; elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then Error_Msg_Node_2 := Current_Scope; Error_Msg_NE ("circular instantiation: & instantiated in &!", N, Gen_Unit); Circularity_Detected := True; Restore_Env; goto Leave; else Mutate_Ekind (Inst_Id, E_Package); Set_Scope (Inst_Id, Current_Scope); -- If the context of the instance is subject to SPARK_Mode "off" or -- the annotation is altogether missing, set the global flag which -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within -- the instance. if SPARK_Mode /= On then Ignore_SPARK_Mode_Pragmas_In_Instance := True; -- Mark the instance spec in case the body is instantiated at a -- later pass. This preserves the original context in effect for -- the body. Set_Ignore_SPARK_Mode_Pragmas (Act_Decl_Id); end if; Gen_Decl := Unit_Declaration_Node (Gen_Unit); Gen_Spec := Specification (Gen_Decl); -- Initialize renamings map, for error checking, and the list that -- holds private entities whose views have changed between generic -- definition and instantiation. If this is the instance created to -- validate an actual package, the instantiation environment is that -- of the enclosing instance. Create_Instantiation_Source (N, Gen_Unit, S_Adjustment); -- Copy original generic tree, to produce text for instantiation Act_Tree := Copy_Generic_Node (Original_Node (Gen_Decl), Empty, Instantiating => True); Act_Spec := Specification (Act_Tree); -- If this is the instance created to validate an actual package, -- only the formals matter, do not examine the package spec itself. if Is_Actual_Pack then Set_Visible_Declarations (Act_Spec, New_List); Set_Private_Declarations (Act_Spec, New_List); end if; Renamings := Analyze_Associations (I_Node => N, Formals => Generic_Formal_Declarations (Act_Tree), F_Copy => Generic_Formal_Declarations (Gen_Decl)); Vis_Prims_List := Check_Hidden_Primitives (Renamings); Set_Instance_Env (Gen_Unit, Act_Decl_Id); Set_Defining_Unit_Name (Act_Spec, Act_Decl_Name); Set_Is_Generic_Instance (Act_Decl_Id); Set_Generic_Parent (Act_Spec, Gen_Unit); -- References to the generic in its own declaration or its body are -- references to the instance. Add a renaming declaration for the -- generic unit itself. This declaration, as well as the renaming -- declarations for the generic formals, must remain private to the -- unit: the formals, because this is the language semantics, and -- the unit because its use is an artifact of the implementation. Unit_Renaming := Make_Package_Renaming_Declaration (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars (Gen_Unit)), Name => New_Occurrence_Of (Act_Decl_Id, Loc)); Append (Unit_Renaming, Renamings); -- The renaming declarations are the first local declarations of the -- new unit. if Is_Non_Empty_List (Visible_Declarations (Act_Spec)) then Insert_List_Before (First (Visible_Declarations (Act_Spec)), Renamings); else Set_Visible_Declarations (Act_Spec, Renamings); end if; Act_Decl := Make_Package_Declaration (Loc, Specification => Act_Spec); -- Propagate the aspect specifications from the package declaration -- template to the instantiated version of the package declaration. if Has_Aspects (Act_Tree) then Set_Aspect_Specifications (Act_Decl, New_Copy_List_Tree (Aspect_Specifications (Act_Tree))); end if; -- The generic may have a generated Default_Storage_Pool aspect, -- set at the point of generic declaration. If the instance has -- that aspect, it overrides the one inherited from the generic. if Has_Aspects (Gen_Spec) then if No (Aspect_Specifications (N)) then Set_Aspect_Specifications (N, (New_Copy_List_Tree (Aspect_Specifications (Gen_Spec)))); else declare Inherited_Aspects : constant List_Id := New_Copy_List_Tree (Aspect_Specifications (Gen_Spec)); ASN1 : Node_Id; ASN2 : Node_Id; Pool_Present : Boolean := False; begin ASN1 := First (Aspect_Specifications (N)); while Present (ASN1) loop if Chars (Identifier (ASN1)) = Name_Default_Storage_Pool then Pool_Present := True; exit; end if; Next (ASN1); end loop; if Pool_Present then -- If generic carries a default storage pool, remove it -- in favor of the instance one. ASN2 := First (Inherited_Aspects); while Present (ASN2) loop if Chars (Identifier (ASN2)) = Name_Default_Storage_Pool then Remove (ASN2); exit; end if; Next (ASN2); end loop; end if; Prepend_List_To (Aspect_Specifications (N), Inherited_Aspects); end; end if; end if; -- Save the instantiation node for a subsequent instantiation of the -- body if there is one and it needs to be instantiated here. -- We instantiate the body only if we are generating code, or if we -- are generating cross-reference information, or for GNATprove use. declare Enclosing_Body_Present : Boolean := False; -- If the generic unit is not a compilation unit, then a body may -- be present in its parent even if none is required. We create a -- tentative pending instantiation for the body, which will be -- discarded if none is actually present. Scop : Entity_Id; begin if Scope (Gen_Unit) /= Standard_Standard and then not Is_Child_Unit (Gen_Unit) then Scop := Scope (Gen_Unit); while Present (Scop) and then Scop /= Standard_Standard loop if Unit_Requires_Body (Scop) then Enclosing_Body_Present := True; exit; elsif In_Open_Scopes (Scop) and then In_Package_Body (Scop) then Enclosing_Body_Present := True; exit; end if; exit when Is_Compilation_Unit (Scop); Scop := Scope (Scop); end loop; end if; -- If front-end inlining is enabled or there are any subprograms -- marked with Inline_Always, and this is a unit for which code -- will be generated, we instantiate the body at once. -- This is done if the instance is not the main unit, and if the -- generic is not a child unit of another generic, to avoid scope -- problems and the reinstallation of parent instances. if Expander_Active and then (not Is_Child_Unit (Gen_Unit) or else not Is_Generic_Unit (Scope (Gen_Unit))) and then Might_Inline_Subp (Gen_Unit) and then not Is_Actual_Pack then if not Back_End_Inlining and then (Front_End_Inlining or else Has_Inline_Always) and then (Is_In_Main_Unit (N) or else In_Main_Context (Current_Scope)) and then Nkind (Parent (N)) /= N_Compilation_Unit then Inline_Now := True; -- In configurable_run_time mode we force the inlining of -- predefined subprograms marked Inline_Always, to minimize -- the use of the run-time library. elsif In_Predefined_Unit (Gen_Decl) and then Configurable_Run_Time_Mode and then Nkind (Parent (N)) /= N_Compilation_Unit then Inline_Now := True; end if; -- If the current scope is itself an instance within a child -- unit, there will be duplications in the scope stack, and the -- unstacking mechanism in Inline_Instance_Body will fail. -- This loses some rare cases of optimization. if Is_Generic_Instance (Current_Scope) then declare Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit); begin if Curr_Unit /= Current_Scope and then Is_Child_Unit (Curr_Unit) then Inline_Now := False; end if; end; end if; end if; Needs_Body := (Unit_Requires_Body (Gen_Unit) or else Enclosing_Body_Present or else Present (Corresponding_Body (Gen_Decl))) and then Needs_Body_Instantiated (Gen_Unit) and then not Is_Actual_Pack and then not Inline_Now and then (Operating_Mode = Generate_Code or else (Operating_Mode = Check_Semantics and then GNATprove_Mode)); -- If front-end inlining is enabled or there are any subprograms -- marked with Inline_Always, do not instantiate body when within -- a generic context. if not Back_End_Inlining and then (Front_End_Inlining or else Has_Inline_Always) and then not Expander_Active then Needs_Body := False; end if; -- If the current context is generic, and the package being -- instantiated is declared within a formal package, there is no -- body to instantiate until the enclosing generic is instantiated -- and there is an actual for the formal package. If the formal -- package has parameters, we build a regular package instance for -- it, that precedes the original formal package declaration. if In_Open_Scopes (Scope (Scope (Gen_Unit))) then declare Decl : constant Node_Id := Original_Node (Unit_Declaration_Node (Scope (Gen_Unit))); begin if Nkind (Decl) = N_Formal_Package_Declaration or else (Nkind (Decl) = N_Package_Declaration and then Is_List_Member (Decl) and then Present (Next (Decl)) and then Nkind (Next (Decl)) = N_Formal_Package_Declaration) then Needs_Body := False; end if; end; end if; end; -- For RCI unit calling stubs, we omit the instance body if the -- instance is the RCI library unit itself. -- However there is a special case for nested instances: in this case -- we do generate the instance body, as it might be required, e.g. -- because it provides stream attributes for some type used in the -- profile of a remote subprogram. This is consistent with 12.3(12), -- which indicates that the instance body occurs at the place of the -- instantiation, and thus is part of the RCI declaration, which is -- present on all client partitions (this is E.2.3(18)). -- Note that AI12-0002 may make it illegal at some point to have -- stream attributes defined in an RCI unit, in which case this -- special case will become unnecessary. In the meantime, there -- is known application code in production that depends on this -- being possible, so we definitely cannot eliminate the body in -- the case of nested instances for the time being. -- When we generate a nested instance body, calling stubs for any -- relevant subprogram will be inserted immediately after the -- subprogram declarations, and will take precedence over the -- subsequent (original) body. (The stub and original body will be -- complete homographs, but this is permitted in an instance). -- (Could we do better and remove the original body???) if Distribution_Stub_Mode = Generate_Caller_Stub_Body and then Comes_From_Source (N) and then Nkind (Parent (N)) = N_Compilation_Unit then Needs_Body := False; end if; -- If the context requires a full instantiation, set things up for -- subsequent construction of the body. if Needs_Body then declare Fin_Scop, S : Entity_Id; begin Check_Forward_Instantiation (Gen_Decl); Fin_Scop := Empty; -- For a package instantiation that is not a compilation unit, -- indicate that cleanup actions of the innermost enclosing -- scope for which they are generated should be delayed until -- after the package body is instantiated. if Nkind (N) = N_Package_Instantiation and then not Is_Compilation_Unit (Act_Decl_Id) then S := Current_Scope; while S /= Standard_Standard loop -- Cleanup actions are not generated within generic units -- or in the formal part of generic units. if not Expander_Active then exit; -- For package scopes, cleanup actions are generated only -- for compilation units, for spec and body separately. elsif Ekind (S) = E_Package then if Is_Compilation_Unit (S) then if In_Package_Body (S) then Fin_Scop := Body_Entity (S); else Fin_Scop := S; end if; Set_Delay_Cleanups (Fin_Scop); exit; else S := Scope (S); end if; -- Cleanup actions are generated for all dynamic scopes else Fin_Scop := S; Set_Delay_Cleanups (Fin_Scop); exit; end if; end loop; end if; Add_Pending_Instantiation (N, Act_Decl, Fin_Scop); end; end if; Set_Categorization_From_Pragmas (Act_Decl); if Parent_Installed then Hide_Current_Scope; end if; Set_Instance_Spec (N, Act_Decl); -- If not a compilation unit, insert the package declaration before -- the original instantiation node. if Nkind (Parent (N)) /= N_Compilation_Unit then Mark_Rewrite_Insertion (Act_Decl); Insert_Before (N, Act_Decl); if Has_Aspects (N) then Analyze_Aspect_Specifications (N, Act_Decl_Id); -- The pragma created for a Default_Storage_Pool aspect must -- appear ahead of the declarations in the instance spec. -- Analysis has placed it after the instance node, so remove -- it and reinsert it properly now. declare ASN : constant Node_Id := First (Aspect_Specifications (N)); A_Name : constant Name_Id := Chars (Identifier (ASN)); Decl : Node_Id; begin if A_Name = Name_Default_Storage_Pool then if No (Visible_Declarations (Act_Spec)) then Set_Visible_Declarations (Act_Spec, New_List); end if; Decl := Next (N); while Present (Decl) loop if Nkind (Decl) = N_Pragma then Remove (Decl); Prepend (Decl, Visible_Declarations (Act_Spec)); exit; end if; Next (Decl); end loop; end if; end; end if; Analyze (Act_Decl); -- For an instantiation that is a compilation unit, place -- declaration on current node so context is complete for analysis -- (including nested instantiations). If this is the main unit, -- the declaration eventually replaces the instantiation node. -- If the instance body is created later, it replaces the -- instance node, and the declaration is attached to it -- (see Build_Instance_Compilation_Unit_Nodes). else if Cunit_Entity (Current_Sem_Unit) = Defining_Entity (N) then -- The entity for the current unit is the newly created one, -- and all semantic information is attached to it. Set_Cunit_Entity (Current_Sem_Unit, Act_Decl_Id); -- If this is the main unit, replace the main entity as well if Current_Sem_Unit = Main_Unit then Main_Unit_Entity := Act_Decl_Id; end if; end if; Set_Unit (Parent (N), Act_Decl); Set_Parent_Spec (Act_Decl, Parent_Spec (N)); Set_Package_Instantiation (Act_Decl_Id, N); -- Process aspect specifications of the instance node, if any, to -- take into account categorization pragmas before analyzing the -- instance. Analyze_Aspect_Specifications (N, Act_Decl_Id); Analyze (Act_Decl); Set_Unit (Parent (N), N); Set_Body_Required (Parent (N), False); -- We never need elaboration checks on instantiations, since by -- definition, the body instantiation is elaborated at the same -- time as the spec instantiation. if Legacy_Elaboration_Checks then Set_Kill_Elaboration_Checks (Act_Decl_Id); Set_Suppress_Elaboration_Warnings (Act_Decl_Id); end if; end if; if Legacy_Elaboration_Checks then Check_Elab_Instantiation (N); end if; -- Save the scenario for later examination by the ABE Processing -- phase. Record_Elaboration_Scenario (N); -- The instantiation results in a guaranteed ABE if Is_Known_Guaranteed_ABE (N) and then Needs_Body then -- Do not instantiate the corresponding body because gigi cannot -- handle certain types of premature instantiations. Remove_Dead_Instance (N); -- Create completing bodies for all subprogram declarations since -- their real bodies will not be instantiated. Provide_Completing_Bodies (Instance_Spec (N)); end if; Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id); Set_First_Private_Entity (Defining_Unit_Name (Unit_Renaming), First_Private_Entity (Act_Decl_Id)); -- If the instantiation needs a body, the unit will be turned into -- a package body and receive its own elaboration entity. Otherwise, -- the nature of the unit is now a package declaration. -- Note that the below rewriting means that Act_Decl, which has been -- analyzed and expanded, will be re-expanded as the rewritten N. if Nkind (Parent (N)) = N_Compilation_Unit and then not Needs_Body then Rewrite (N, Act_Decl); end if; if Present (Corresponding_Body (Gen_Decl)) or else Unit_Requires_Body (Gen_Unit) then Set_Has_Completion (Act_Decl_Id); end if; Check_Formal_Packages (Act_Decl_Id); Restore_Hidden_Primitives (Vis_Prims_List); Restore_Private_Views (Act_Decl_Id); Inherit_Context (Gen_Decl, N); if Parent_Installed then Remove_Parent; end if; Restore_Env; Env_Installed := False; end if; Validate_Categorization_Dependency (N, Act_Decl_Id); -- There used to be a check here to prevent instantiations in local -- contexts if the No_Local_Allocators restriction was active. This -- check was removed by a binding interpretation in AI-95-00130/07, -- but we retain the code for documentation purposes. -- if Ekind (Act_Decl_Id) /= E_Void -- and then not Is_Library_Level_Entity (Act_Decl_Id) -- then -- Check_Restriction (No_Local_Allocators, N); -- end if; if Inline_Now then Inline_Instance_Body (N, Gen_Unit, Act_Decl); end if; -- Check that if N is an instantiation of System.Dim_Float_IO or -- System.Dim_Integer_IO, the formal type has a dimension system. if Nkind (N) = N_Package_Instantiation and then Is_Dim_IO_Package_Instantiation (N) then declare Assoc : constant Node_Id := First (Generic_Associations (N)); begin if not Has_Dimension_System (Etype (Explicit_Generic_Actual_Parameter (Assoc))) then Error_Msg_N ("type with a dimension system expected", Assoc); end if; end; end if; <> if Nkind (Parent (N)) /= N_Compilation_Unit then Analyze_Aspect_Specifications (N, Act_Decl_Id); end if; Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP; Restore_Ghost_Region (Saved_GM, Saved_IGR); Restore_SPARK_Mode (Saved_SM, Saved_SMP); Style_Check := Saved_Style_Check; exception when Instantiation_Error => if Parent_Installed then Remove_Parent; end if; if Env_Installed then Restore_Env; end if; Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP; Restore_Ghost_Region (Saved_GM, Saved_IGR); Restore_SPARK_Mode (Saved_SM, Saved_SMP); Style_Check := Saved_Style_Check; end Analyze_Package_Instantiation; -------------------------- -- Inline_Instance_Body -- -------------------------- -- WARNING: This routine manages SPARK regions. Return statements must be -- replaced by gotos which jump to the end of the routine and restore the -- SPARK mode. procedure Inline_Instance_Body (N : Node_Id; Gen_Unit : Entity_Id; Act_Decl : Node_Id) is Config_Attrs : constant Config_Switches_Type := Save_Config_Switches; Curr_Comp : constant Node_Id := Cunit (Current_Sem_Unit); Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit); Gen_Comp : constant Entity_Id := Cunit_Entity (Get_Source_Unit (Gen_Unit)); Scope_Stack_Depth : constant Pos := Scope_Stack.Last - Scope_Stack.First + 1; Inner_Scopes : array (1 .. Scope_Stack_Depth) of Entity_Id; Instances : array (1 .. Scope_Stack_Depth) of Entity_Id; Use_Clauses : array (1 .. Scope_Stack_Depth) of Node_Id; Curr_Scope : Entity_Id := Empty; List : Elist_Id := No_Elist; -- init to avoid warning N_Instances : Nat := 0; Num_Inner : Nat := 0; Num_Scopes : Nat := 0; Removed : Boolean := False; S : Entity_Id; Vis : Boolean; begin -- Case of generic unit defined in another unit. We must remove the -- complete context of the current unit to install that of the generic. if Gen_Comp /= Cunit_Entity (Current_Sem_Unit) then -- Loop through enclosing scopes until we reach a generic instance, -- package body, or subprogram. S := Current_Scope; while Present (S) and then S /= Standard_Standard loop -- Save use clauses from enclosing scopes into Use_Clauses loop Num_Scopes := Num_Scopes + 1; Use_Clauses (Num_Scopes) := (Scope_Stack.Table (Scope_Stack.Last - Num_Scopes + 1).First_Use_Clause); End_Use_Clauses (Use_Clauses (Num_Scopes)); exit when Scope_Stack.Last - Num_Scopes + 1 = Scope_Stack.First or else Scope_Stack.Table (Scope_Stack.Last - Num_Scopes).Entity = Scope (S); end loop; exit when Is_Generic_Instance (S) and then (In_Package_Body (S) or else Ekind (S) = E_Procedure or else Ekind (S) = E_Function); S := Scope (S); end loop; Vis := Is_Immediately_Visible (Gen_Comp); -- Find and save all enclosing instances S := Current_Scope; while Present (S) and then S /= Standard_Standard loop if Is_Generic_Instance (S) then N_Instances := N_Instances + 1; Instances (N_Instances) := S; exit when In_Package_Body (S); end if; S := Scope (S); end loop; -- Remove context of current compilation unit, unless we are within a -- nested package instantiation, in which case the context has been -- removed previously. -- If current scope is the body of a child unit, remove context of -- spec as well. If an enclosing scope is an instance body, the -- context has already been removed, but the entities in the body -- must be made invisible as well. S := Current_Scope; while Present (S) and then S /= Standard_Standard loop if Is_Generic_Instance (S) and then (In_Package_Body (S) or else Ekind (S) in E_Procedure | E_Function) then -- We still have to remove the entities of the enclosing -- instance from direct visibility. declare E : Entity_Id; begin E := First_Entity (S); while Present (E) loop Set_Is_Immediately_Visible (E, False); Next_Entity (E); end loop; end; exit; end if; if S = Curr_Unit or else (Ekind (Curr_Unit) = E_Package_Body and then S = Spec_Entity (Curr_Unit)) or else (Ekind (Curr_Unit) = E_Subprogram_Body and then S = Corresponding_Spec (Unit_Declaration_Node (Curr_Unit))) then Removed := True; -- Remove entities in current scopes from visibility, so that -- instance body is compiled in a clean environment. List := Save_Scope_Stack (Handle_Use => False); if Is_Child_Unit (S) then -- Remove child unit from stack, as well as inner scopes. -- Removing the context of a child unit removes parent units -- as well. while Current_Scope /= S loop Num_Inner := Num_Inner + 1; Inner_Scopes (Num_Inner) := Current_Scope; Pop_Scope; end loop; Pop_Scope; Remove_Context (Curr_Comp); Curr_Scope := S; else Remove_Context (Curr_Comp); end if; if Ekind (Curr_Unit) = E_Package_Body then Remove_Context (Library_Unit (Curr_Comp)); end if; end if; S := Scope (S); end loop; pragma Assert (Num_Inner < Num_Scopes); Push_Scope (Standard_Standard); Scope_Stack.Table (Scope_Stack.Last).Is_Active_Stack_Base := True; -- The inlined package body is analyzed with the configuration state -- of the context prior to the scope manipulations performed above. -- ??? shouldn't this also use the warning state of the context prior -- to the scope manipulations? Instantiate_Package_Body (Body_Info => ((Inst_Node => N, Act_Decl => Act_Decl, Fin_Scop => Empty, Config_Switches => Config_Attrs, Current_Sem_Unit => Current_Sem_Unit, Expander_Status => Expander_Active, Local_Suppress_Stack_Top => Local_Suppress_Stack_Top, Scope_Suppress => Scope_Suppress, Warnings => Save_Warnings)), Inlined_Body => True); Pop_Scope; -- Restore context Set_Is_Immediately_Visible (Gen_Comp, Vis); -- Reset Generic_Instance flag so that use clauses can be installed -- in the proper order. (See Use_One_Package for effect of enclosing -- instances on processing of use clauses). for J in 1 .. N_Instances loop Set_Is_Generic_Instance (Instances (J), False); end loop; if Removed then Install_Context (Curr_Comp, Chain => False); if Present (Curr_Scope) and then Is_Child_Unit (Curr_Scope) then Push_Scope (Curr_Scope); Set_Is_Immediately_Visible (Curr_Scope); -- Finally, restore inner scopes as well for J in reverse 1 .. Num_Inner loop Push_Scope (Inner_Scopes (J)); end loop; end if; Restore_Scope_Stack (List, Handle_Use => False); if Present (Curr_Scope) and then (In_Private_Part (Curr_Scope) or else In_Package_Body (Curr_Scope)) then -- Install private declaration of ancestor units, which are -- currently available. Restore_Scope_Stack and Install_Context -- only install the visible part of parents. declare Par : Entity_Id; begin Par := Scope (Curr_Scope); while Present (Par) and then Par /= Standard_Standard loop Install_Private_Declarations (Par); Par := Scope (Par); end loop; end; end if; end if; -- Restore use clauses. For a child unit, use clauses in the parents -- are restored when installing the context, so only those in inner -- scopes (and those local to the child unit itself) need to be -- installed explicitly. if Is_Child_Unit (Curr_Unit) and then Removed then for J in reverse 1 .. Num_Inner + 1 loop Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause := Use_Clauses (J); Install_Use_Clauses (Use_Clauses (J)); end loop; else for J in reverse 1 .. Num_Scopes loop Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause := Use_Clauses (J); Install_Use_Clauses (Use_Clauses (J)); end loop; end if; -- Restore status of instances. If one of them is a body, make its -- local entities visible again. declare E : Entity_Id; Inst : Entity_Id; begin for J in 1 .. N_Instances loop Inst := Instances (J); Set_Is_Generic_Instance (Inst, True); if In_Package_Body (Inst) or else Ekind (S) in E_Procedure | E_Function then E := First_Entity (Instances (J)); while Present (E) loop Set_Is_Immediately_Visible (E); Next_Entity (E); end loop; end if; end loop; end; -- If generic unit is in current unit, current context is correct. Note -- that the context is guaranteed to carry the correct SPARK_Mode as no -- enclosing scopes were removed. else Instantiate_Package_Body (Body_Info => ((Inst_Node => N, Act_Decl => Act_Decl, Fin_Scop => Empty, Config_Switches => Save_Config_Switches, Current_Sem_Unit => Current_Sem_Unit, Expander_Status => Expander_Active, Local_Suppress_Stack_Top => Local_Suppress_Stack_Top, Scope_Suppress => Scope_Suppress, Warnings => Save_Warnings)), Inlined_Body => True); end if; end Inline_Instance_Body; ------------------------------------- -- Analyze_Procedure_Instantiation -- ------------------------------------- procedure Analyze_Procedure_Instantiation (N : Node_Id) is begin Analyze_Subprogram_Instantiation (N, E_Procedure); end Analyze_Procedure_Instantiation; ----------------------------------- -- Need_Subprogram_Instance_Body -- ----------------------------------- function Need_Subprogram_Instance_Body (N : Node_Id; Subp : Entity_Id) return Boolean is function Is_Inlined_Or_Child_Of_Inlined (E : Entity_Id) return Boolean; -- Return True if E is an inlined subprogram, an inlined renaming or a -- subprogram nested in an inlined subprogram. The inlining machinery -- totally disregards nested subprograms since it considers that they -- will always be compiled if the parent is (see Inline.Is_Nested). ------------------------------------ -- Is_Inlined_Or_Child_Of_Inlined -- ------------------------------------ function Is_Inlined_Or_Child_Of_Inlined (E : Entity_Id) return Boolean is Scop : Entity_Id; begin if Is_Inlined (E) or else Is_Inlined (Alias (E)) then return True; end if; Scop := Scope (E); while Scop /= Standard_Standard loop if Is_Subprogram (Scop) and then Is_Inlined (Scop) then return True; end if; Scop := Scope (Scop); end loop; return False; end Is_Inlined_Or_Child_Of_Inlined; -- Start of processing for Need_Subprogram_Instance_Body begin -- Must be in the main unit or inlined (or child of inlined) if (Is_In_Main_Unit (N) or else Is_Inlined_Or_Child_Of_Inlined (Subp)) -- Must be generating code or analyzing code in GNATprove mode and then (Operating_Mode = Generate_Code or else (Operating_Mode = Check_Semantics and then GNATprove_Mode)) -- The body is needed when generating code (full expansion) and in -- in GNATprove mode (special expansion) for formal verification of -- the body itself. and then (Expander_Active or GNATprove_Mode) -- No point in inlining if ABE is inevitable and then not Is_Known_Guaranteed_ABE (N) -- Or if subprogram is eliminated and then not Is_Eliminated (Subp) then Add_Pending_Instantiation (N, Unit_Declaration_Node (Subp)); return True; -- Here if not inlined, or we ignore the inlining else return False; end if; end Need_Subprogram_Instance_Body; -------------------------------------- -- Analyze_Subprogram_Instantiation -- -------------------------------------- -- WARNING: This routine manages Ghost and SPARK regions. Return statements -- must be replaced by gotos which jump to the end of the routine in order -- to restore the Ghost and SPARK modes. procedure Analyze_Subprogram_Instantiation (N : Node_Id; K : Entity_Kind) is Errs : constant Nat := Serious_Errors_Detected; Gen_Id : constant Node_Id := Name (N); Inst_Id : constant Entity_Id := Defining_Entity (N); Anon_Id : constant Entity_Id := Make_Defining_Identifier (Sloc (Inst_Id), Chars => New_External_Name (Chars (Inst_Id), 'R')); Loc : constant Source_Ptr := Sloc (N); Act_Decl_Id : Entity_Id := Empty; -- init to avoid warning Act_Decl : Node_Id; Act_Spec : Node_Id; Act_Tree : Node_Id; Env_Installed : Boolean := False; Gen_Unit : Entity_Id; Gen_Decl : Node_Id; Pack_Id : Entity_Id; Parent_Installed : Boolean := False; Renamings : List_Id; -- The list of declarations that link formals and actuals of the -- instance. These are subtype declarations for formal types, and -- renaming declarations for other formals. The subprogram declaration -- for the instance is then appended to the list, and the last item on -- the list is the renaming declaration for the instance. procedure Analyze_Instance_And_Renamings; -- The instance must be analyzed in a context that includes the mappings -- of generic parameters into actuals. We create a package declaration -- for this purpose, and a subprogram with an internal name within the -- package. The subprogram instance is simply an alias for the internal -- subprogram, declared in the current scope. procedure Build_Subprogram_Renaming; -- If the subprogram is recursive, there are occurrences of the name of -- the generic within the body, which must resolve to the current -- instance. We add a renaming declaration after the declaration, which -- is available in the instance body, as well as in the analysis of -- aspects that appear in the generic. This renaming declaration is -- inserted after the instance declaration which it renames. ------------------------------------ -- Analyze_Instance_And_Renamings -- ------------------------------------ procedure Analyze_Instance_And_Renamings is Def_Ent : constant Entity_Id := Defining_Entity (N); Pack_Decl : Node_Id; begin if Nkind (Parent (N)) = N_Compilation_Unit then -- For the case of a compilation unit, the container package has -- the same name as the instantiation, to insure that the binder -- calls the elaboration procedure with the right name. Copy the -- entity of the instance, which may have compilation level flags -- (e.g. Is_Child_Unit) set. Pack_Id := New_Copy (Def_Ent); else -- Otherwise we use the name of the instantiation concatenated -- with its source position to ensure uniqueness if there are -- several instantiations with the same name. Pack_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name (Related_Id => Chars (Def_Ent), Suffix => "GP", Suffix_Index => Source_Offset (Sloc (Def_Ent)))); end if; Pack_Decl := Make_Package_Declaration (Loc, Specification => Make_Package_Specification (Loc, Defining_Unit_Name => Pack_Id, Visible_Declarations => Renamings, End_Label => Empty)); Set_Instance_Spec (N, Pack_Decl); Set_Is_Generic_Instance (Pack_Id); Set_Debug_Info_Needed (Pack_Id); -- Case of not a compilation unit if Nkind (Parent (N)) /= N_Compilation_Unit then Mark_Rewrite_Insertion (Pack_Decl); Insert_Before (N, Pack_Decl); Set_Has_Completion (Pack_Id); -- Case of an instantiation that is a compilation unit -- Place declaration on current node so context is complete for -- analysis (including nested instantiations), and for use in a -- context_clause (see Analyze_With_Clause). else Set_Unit (Parent (N), Pack_Decl); Set_Parent_Spec (Pack_Decl, Parent_Spec (N)); end if; Analyze (Pack_Decl); Check_Formal_Packages (Pack_Id); -- Body of the enclosing package is supplied when instantiating the -- subprogram body, after semantic analysis is completed. if Nkind (Parent (N)) = N_Compilation_Unit then -- Remove package itself from visibility, so it does not -- conflict with subprogram. Set_Name_Entity_Id (Chars (Pack_Id), Homonym (Pack_Id)); -- Set name and scope of internal subprogram so that the proper -- external name will be generated. The proper scope is the scope -- of the wrapper package. We need to generate debugging info for -- the internal subprogram, so set flag accordingly. Set_Chars (Anon_Id, Chars (Defining_Entity (N))); Set_Scope (Anon_Id, Scope (Pack_Id)); -- Mark wrapper package as referenced, to avoid spurious warnings -- if the instantiation appears in various with_ clauses of -- subunits of the main unit. Set_Referenced (Pack_Id); end if; Set_Is_Generic_Instance (Anon_Id); Set_Debug_Info_Needed (Anon_Id); Act_Decl_Id := New_Copy (Anon_Id); Set_Parent (Act_Decl_Id, Parent (Anon_Id)); Set_Chars (Act_Decl_Id, Chars (Defining_Entity (N))); Set_Sloc (Act_Decl_Id, Sloc (Defining_Entity (N))); -- Subprogram instance comes from source only if generic does Preserve_Comes_From_Source (Act_Decl_Id, Gen_Unit); -- If the instance is a child unit, mark the Id accordingly. Mark -- the anonymous entity as well, which is the real subprogram and -- which is used when the instance appears in a context clause. -- Similarly, propagate the Is_Eliminated flag to handle properly -- nested eliminated subprograms. Set_Is_Child_Unit (Act_Decl_Id, Is_Child_Unit (Defining_Entity (N))); Set_Is_Child_Unit (Anon_Id, Is_Child_Unit (Defining_Entity (N))); New_Overloaded_Entity (Act_Decl_Id); Check_Eliminated (Act_Decl_Id); Set_Is_Eliminated (Anon_Id, Is_Eliminated (Act_Decl_Id)); if Nkind (Parent (N)) = N_Compilation_Unit then -- In compilation unit case, kill elaboration checks on the -- instantiation, since they are never needed - the body is -- instantiated at the same point as the spec. if Legacy_Elaboration_Checks then Set_Kill_Elaboration_Checks (Act_Decl_Id); Set_Suppress_Elaboration_Warnings (Act_Decl_Id); end if; Set_Is_Compilation_Unit (Anon_Id); Set_Cunit_Entity (Current_Sem_Unit, Pack_Id); end if; -- The instance is not a freezing point for the new subprogram. -- The anonymous subprogram may have a freeze node, created for -- some delayed aspects. This freeze node must not be inherited -- by the visible subprogram entity. Set_Is_Frozen (Act_Decl_Id, False); Set_Freeze_Node (Act_Decl_Id, Empty); if Nkind (Defining_Entity (N)) = N_Defining_Operator_Symbol then Valid_Operator_Definition (Act_Decl_Id); end if; Set_Alias (Act_Decl_Id, Anon_Id); Set_Has_Completion (Act_Decl_Id); Set_Related_Instance (Pack_Id, Act_Decl_Id); if Nkind (Parent (N)) = N_Compilation_Unit then Set_Body_Required (Parent (N), False); end if; end Analyze_Instance_And_Renamings; ------------------------------- -- Build_Subprogram_Renaming -- ------------------------------- procedure Build_Subprogram_Renaming is Renaming_Decl : Node_Id; Unit_Renaming : Node_Id; begin Unit_Renaming := Make_Subprogram_Renaming_Declaration (Loc, Specification => Copy_Generic_Node (Specification (Original_Node (Gen_Decl)), Empty, Instantiating => True), Name => New_Occurrence_Of (Anon_Id, Loc)); -- The generic may be a child unit. The renaming needs an identifier -- with the proper name. Set_Defining_Unit_Name (Specification (Unit_Renaming), Make_Defining_Identifier (Loc, Chars (Gen_Unit))); -- If there is a formal subprogram with the same name as the unit -- itself, do not add this renaming declaration, to prevent -- ambiguities when there is a call with that name in the body. Renaming_Decl := First (Renamings); while Present (Renaming_Decl) loop if Nkind (Renaming_Decl) = N_Subprogram_Renaming_Declaration and then Chars (Defining_Entity (Renaming_Decl)) = Chars (Gen_Unit) then exit; end if; Next (Renaming_Decl); end loop; if No (Renaming_Decl) then Append (Unit_Renaming, Renamings); end if; end Build_Subprogram_Renaming; -- Local variables Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; Saved_IGR : constant Node_Id := Ignored_Ghost_Region; Saved_ISMP : constant Boolean := Ignore_SPARK_Mode_Pragmas_In_Instance; Saved_SM : constant SPARK_Mode_Type := SPARK_Mode; Saved_SMP : constant Node_Id := SPARK_Mode_Pragma; -- Save the Ghost and SPARK mode-related data to restore on exit Vis_Prims_List : Elist_Id := No_Elist; -- List of primitives made temporarily visible in the instantiation -- to match the visibility of the formal type -- Start of processing for Analyze_Subprogram_Instantiation begin -- Preserve relevant elaboration-related attributes of the context which -- are no longer available or very expensive to recompute once analysis, -- resolution, and expansion are over. Mark_Elaboration_Attributes (N_Id => N, Checks => True, Level => True, Modes => True, Warnings => True); -- Very first thing: check for special Text_IO unit in case we are -- instantiating one of the children of [[Wide_]Wide_]Text_IO. Of course -- such an instantiation is bogus (these are packages, not subprograms), -- but we get a better error message if we do this. Check_Text_IO_Special_Unit (Gen_Id); -- Make node global for error reporting Instantiation_Node := N; -- For package instantiations we turn off style checks, because they -- will have been emitted in the generic. For subprogram instantiations -- we want to apply at least the check on overriding indicators so we -- do not modify the style check status. -- The renaming declarations for the actuals do not come from source and -- will not generate spurious warnings. Preanalyze_Actuals (N); Init_Env; Env_Installed := True; Check_Generic_Child_Unit (Gen_Id, Parent_Installed); Gen_Unit := Entity (Gen_Id); -- A subprogram instantiation is Ghost when it is subject to pragma -- Ghost or the generic template is Ghost. Set the mode now to ensure -- that any nodes generated during analysis and expansion are marked as -- Ghost. Mark_And_Set_Ghost_Instantiation (N, Gen_Unit); Generate_Reference (Gen_Unit, Gen_Id); if Nkind (Gen_Id) = N_Identifier and then Chars (Gen_Unit) = Chars (Defining_Entity (N)) then Error_Msg_NE ("& is hidden within declaration of instance", Gen_Id, Gen_Unit); end if; if Etype (Gen_Unit) = Any_Type then Restore_Env; goto Leave; end if; -- Verify that it is a generic subprogram of the right kind, and that -- it does not lead to a circular instantiation. if K = E_Procedure and then Ekind (Gen_Unit) /= E_Generic_Procedure then Error_Msg_NE ("& is not the name of a generic procedure", Gen_Id, Gen_Unit); elsif K = E_Function and then Ekind (Gen_Unit) /= E_Generic_Function then Error_Msg_NE ("& is not the name of a generic function", Gen_Id, Gen_Unit); elsif In_Open_Scopes (Gen_Unit) then Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit); else Mutate_Ekind (Inst_Id, K); Set_Scope (Inst_Id, Current_Scope); Set_Entity (Gen_Id, Gen_Unit); if In_Extended_Main_Source_Unit (N) then Set_Is_Instantiated (Gen_Unit); Generate_Reference (Gen_Unit, N); end if; -- If renaming, get original unit if Present (Renamed_Entity (Gen_Unit)) and then Is_Generic_Subprogram (Renamed_Entity (Gen_Unit)) then Gen_Unit := Renamed_Entity (Gen_Unit); Set_Is_Instantiated (Gen_Unit); Generate_Reference (Gen_Unit, N); end if; if Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then Error_Msg_Node_2 := Current_Scope; Error_Msg_NE ("circular instantiation: & instantiated in &!", N, Gen_Unit); Circularity_Detected := True; Restore_Hidden_Primitives (Vis_Prims_List); goto Leave; end if; Gen_Decl := Unit_Declaration_Node (Gen_Unit); -- Initialize renamings map, for error checking Generic_Renamings.Set_Last (0); Generic_Renamings_HTable.Reset; Create_Instantiation_Source (N, Gen_Unit, S_Adjustment); -- Copy original generic tree, to produce text for instantiation Act_Tree := Copy_Generic_Node (Original_Node (Gen_Decl), Empty, Instantiating => True); -- Inherit overriding indicator from instance node Act_Spec := Specification (Act_Tree); Set_Must_Override (Act_Spec, Must_Override (N)); Set_Must_Not_Override (Act_Spec, Must_Not_Override (N)); Renamings := Analyze_Associations (I_Node => N, Formals => Generic_Formal_Declarations (Act_Tree), F_Copy => Generic_Formal_Declarations (Gen_Decl)); Vis_Prims_List := Check_Hidden_Primitives (Renamings); -- The subprogram itself cannot contain a nested instance, so the -- current parent is left empty. Set_Instance_Env (Gen_Unit, Empty); -- Build the subprogram declaration, which does not appear in the -- generic template, and give it a sloc consistent with that of the -- template. Set_Defining_Unit_Name (Act_Spec, Anon_Id); Set_Generic_Parent (Act_Spec, Gen_Unit); Act_Decl := Make_Subprogram_Declaration (Sloc (Act_Spec), Specification => Act_Spec); -- The aspects have been copied previously, but they have to be -- linked explicitly to the new subprogram declaration. Explicit -- pre/postconditions on the instance are analyzed below, in a -- separate step. Move_Aspects (Act_Tree, To => Act_Decl); Set_Categorization_From_Pragmas (Act_Decl); if Parent_Installed then Hide_Current_Scope; end if; Append (Act_Decl, Renamings); -- Contract-related source pragmas that follow a generic subprogram -- must be instantiated explicitly because they are not part of the -- subprogram template. Instantiate_Subprogram_Contract (Original_Node (Gen_Decl), Renamings); Build_Subprogram_Renaming; -- If the context of the instance is subject to SPARK_Mode "off" or -- the annotation is altogether missing, set the global flag which -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within -- the instance. This should be done prior to analyzing the instance. if SPARK_Mode /= On then Ignore_SPARK_Mode_Pragmas_In_Instance := True; end if; -- If the context of an instance is not subject to SPARK_Mode "off", -- and the generic spec is subject to an explicit SPARK_Mode pragma, -- the latter should be the one applicable to the instance. if not Ignore_SPARK_Mode_Pragmas_In_Instance and then Saved_SM /= Off and then Present (SPARK_Pragma (Gen_Unit)) then Set_SPARK_Mode (Gen_Unit); end if; -- Need to mark Anon_Id intrinsic before calling -- Analyze_Instance_And_Renamings because this flag may be propagated -- to other nodes. if Is_Intrinsic_Subprogram (Gen_Unit) then Set_Is_Intrinsic_Subprogram (Anon_Id); Set_Interface_Name (Anon_Id, Interface_Name (Gen_Unit)); end if; Analyze_Instance_And_Renamings; -- Restore SPARK_Mode from the context after analysis of the package -- declaration, so that the SPARK_Mode on the generic spec does not -- apply to the pending instance for the instance body. if not Ignore_SPARK_Mode_Pragmas_In_Instance and then Saved_SM /= Off and then Present (SPARK_Pragma (Gen_Unit)) then Restore_SPARK_Mode (Saved_SM, Saved_SMP); end if; -- If the generic is marked Import (Intrinsic), then so is the -- instance; this indicates that there is no body to instantiate. -- We also copy the interface name in case this is handled by the -- back-end and deal with an instance of unchecked conversion. if Is_Intrinsic_Subprogram (Gen_Unit) then Set_Is_Intrinsic_Subprogram (Act_Decl_Id); Set_Interface_Name (Act_Decl_Id, Interface_Name (Gen_Unit)); if Chars (Gen_Unit) = Name_Unchecked_Conversion then Validate_Unchecked_Conversion (N, Act_Decl_Id); end if; end if; -- Inherit convention from generic unit. Intrinsic convention, as for -- an instance of unchecked conversion, is not inherited because an -- explicit Ada instance has been created. if Has_Convention_Pragma (Gen_Unit) and then Convention (Gen_Unit) /= Convention_Intrinsic then Set_Convention (Act_Decl_Id, Convention (Gen_Unit)); Set_Is_Exported (Act_Decl_Id, Is_Exported (Gen_Unit)); end if; Generate_Definition (Act_Decl_Id); -- Inherit all inlining-related flags which apply to the generic in -- the subprogram and its declaration. Set_Is_Inlined (Act_Decl_Id, Is_Inlined (Gen_Unit)); Set_Is_Inlined (Anon_Id, Is_Inlined (Gen_Unit)); Set_Has_Pragma_Inline (Act_Decl_Id, Has_Pragma_Inline (Gen_Unit)); Set_Has_Pragma_Inline (Anon_Id, Has_Pragma_Inline (Gen_Unit)); Set_Has_Pragma_Inline_Always (Act_Decl_Id, Has_Pragma_Inline_Always (Gen_Unit)); Set_Has_Pragma_Inline_Always (Anon_Id, Has_Pragma_Inline_Always (Gen_Unit)); Set_Has_Pragma_No_Inline (Act_Decl_Id, Has_Pragma_No_Inline (Gen_Unit)); Set_Has_Pragma_No_Inline (Anon_Id, Has_Pragma_No_Inline (Gen_Unit)); -- Propagate No_Return if pragma applied to generic unit. This must -- be done explicitly because pragma does not appear in generic -- declaration (unlike the aspect case). if No_Return (Gen_Unit) then Set_No_Return (Act_Decl_Id); Set_No_Return (Anon_Id); end if; -- Mark both the instance spec and the anonymous package in case the -- body is instantiated at a later pass. This preserves the original -- context in effect for the body. if SPARK_Mode /= On then Set_Ignore_SPARK_Mode_Pragmas (Act_Decl_Id); Set_Ignore_SPARK_Mode_Pragmas (Anon_Id); end if; if Legacy_Elaboration_Checks and then not Is_Intrinsic_Subprogram (Gen_Unit) then Check_Elab_Instantiation (N); end if; -- Save the scenario for later examination by the ABE Processing -- phase. Record_Elaboration_Scenario (N); -- The instantiation results in a guaranteed ABE. Create a completing -- body for the subprogram declaration because the real body will not -- be instantiated. if Is_Known_Guaranteed_ABE (N) then Provide_Completing_Bodies (Instance_Spec (N)); end if; if Is_Dispatching_Operation (Act_Decl_Id) and then Ada_Version >= Ada_2005 then declare Formal : Entity_Id; begin Formal := First_Formal (Act_Decl_Id); while Present (Formal) loop if Ekind (Etype (Formal)) = E_Anonymous_Access_Type and then Is_Controlling_Formal (Formal) and then not Can_Never_Be_Null (Formal) then Error_Msg_NE ("access parameter& is controlling,", N, Formal); Error_Msg_NE ("\corresponding parameter of & must be explicitly " & "null-excluding", N, Gen_Id); end if; Next_Formal (Formal); end loop; end; end if; Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id); Validate_Categorization_Dependency (N, Act_Decl_Id); if not Is_Intrinsic_Subprogram (Act_Decl_Id) then Inherit_Context (Gen_Decl, N); Restore_Private_Views (Pack_Id, False); -- If the context requires a full instantiation, mark node for -- subsequent construction of the body. if Need_Subprogram_Instance_Body (N, Act_Decl_Id) then Check_Forward_Instantiation (Gen_Decl); -- The wrapper package is always delayed, because it does not -- constitute a freeze point, but to insure that the freeze node -- is placed properly, it is created directly when instantiating -- the body (otherwise the freeze node might appear to early for -- nested instantiations). elsif Nkind (Parent (N)) = N_Compilation_Unit then Rewrite (N, Unit (Parent (N))); Set_Unit (Parent (N), N); end if; -- Replace instance node for library-level instantiations of -- intrinsic subprograms. elsif Nkind (Parent (N)) = N_Compilation_Unit then Rewrite (N, Unit (Parent (N))); Set_Unit (Parent (N), N); end if; if Parent_Installed then Remove_Parent; end if; Restore_Hidden_Primitives (Vis_Prims_List); Restore_Env; Env_Installed := False; Generic_Renamings.Set_Last (0); Generic_Renamings_HTable.Reset; end if; <> -- Analyze aspects in declaration if no errors appear in the instance. if Has_Aspects (N) and then Serious_Errors_Detected = Errs then Analyze_Aspect_Specifications (N, Act_Decl_Id); end if; Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP; Restore_Ghost_Region (Saved_GM, Saved_IGR); Restore_SPARK_Mode (Saved_SM, Saved_SMP); exception when Instantiation_Error => if Parent_Installed then Remove_Parent; end if; if Env_Installed then Restore_Env; end if; Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP; Restore_Ghost_Region (Saved_GM, Saved_IGR); Restore_SPARK_Mode (Saved_SM, Saved_SMP); end Analyze_Subprogram_Instantiation; --------------------------- -- Get_Associated_Entity -- --------------------------- function Get_Associated_Entity (Id : Entity_Id) return Entity_Id is Assoc : Entity_Id; begin Assoc := Associated_Entity (Id); if Present (Assoc) then while Present (Associated_Entity (Assoc)) loop Assoc := Associated_Entity (Assoc); end loop; end if; return Assoc; end Get_Associated_Entity; ------------------------- -- Get_Associated_Node -- ------------------------- function Get_Associated_Node (N : Node_Id) return Node_Id is Assoc : Node_Id; begin Assoc := Associated_Node (N); if Nkind (Assoc) /= Nkind (N) then return Assoc; elsif Nkind (Assoc) in N_Aggregate | N_Extension_Aggregate then return Assoc; else -- If the node is part of an inner generic, it may itself have been -- remapped into a further generic copy. Associated_Node is otherwise -- used for the entity of the node, and will be of a different node -- kind, or else N has been rewritten as a literal or function call. while Present (Associated_Node (Assoc)) and then Nkind (Associated_Node (Assoc)) = Nkind (Assoc) loop Assoc := Associated_Node (Assoc); end loop; -- Follow an additional link in case the final node was rewritten. -- This can only happen with nested generic units. if (Nkind (Assoc) = N_Identifier or else Nkind (Assoc) in N_Op) and then Present (Associated_Node (Assoc)) and then Nkind (Associated_Node (Assoc)) in N_Function_Call | N_Explicit_Dereference | N_Integer_Literal | N_Real_Literal | N_String_Literal then Assoc := Associated_Node (Assoc); end if; -- An additional special case: an unconstrained type in an object -- declaration may have been rewritten as a local subtype constrained -- by the expression in the declaration. We need to recover the -- original entity, which may be global. if Present (Original_Node (Assoc)) and then Nkind (Parent (N)) = N_Object_Declaration then Assoc := Original_Node (Assoc); end if; return Assoc; end if; end Get_Associated_Node; ----------------------------------- -- Build_Subprogram_Decl_Wrapper -- ----------------------------------- function Build_Subprogram_Decl_Wrapper (Formal_Subp : Entity_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (Current_Scope); Ret_Type : constant Entity_Id := Get_Instance_Of (Etype (Formal_Subp)); Decl : Node_Id; Subp : Entity_Id; Parm_Spec : Node_Id; Profile : List_Id := New_List; Spec : Node_Id; Form_F : Entity_Id; New_F : Entity_Id; begin Subp := Make_Defining_Identifier (Loc, Chars (Formal_Subp)); Mutate_Ekind (Subp, Ekind (Formal_Subp)); Set_Is_Generic_Actual_Subprogram (Subp); Profile := Parameter_Specifications ( New_Copy_Tree (Specification (Unit_Declaration_Node (Formal_Subp)))); Form_F := First_Formal (Formal_Subp); Parm_Spec := First (Profile); -- Create new entities for the formals. Reset entities so that -- parameter types are properly resolved when wrapper declaration -- is analyzed. while Present (Parm_Spec) loop New_F := Make_Defining_Identifier (Loc, Chars (Form_F)); Set_Defining_Identifier (Parm_Spec, New_F); Set_Entity (Parameter_Type (Parm_Spec), Empty); Next (Parm_Spec); Next_Formal (Form_F); end loop; if Ret_Type = Standard_Void_Type then Spec := Make_Procedure_Specification (Loc, Defining_Unit_Name => Subp, Parameter_Specifications => Profile); else Spec := Make_Function_Specification (Loc, Defining_Unit_Name => Subp, Parameter_Specifications => Profile, Result_Definition => New_Occurrence_Of (Ret_Type, Loc)); end if; Decl := Make_Subprogram_Declaration (Loc, Specification => Spec); return Decl; end Build_Subprogram_Decl_Wrapper; ----------------------------------- -- Build_Subprogram_Body_Wrapper -- ----------------------------------- function Build_Subprogram_Body_Wrapper (Formal_Subp : Entity_Id; Actual_Name : Node_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (Current_Scope); Ret_Type : constant Entity_Id := Get_Instance_Of (Etype (Formal_Subp)); Spec_Node : constant Node_Id := Specification (Build_Subprogram_Decl_Wrapper (Formal_Subp)); Act : Node_Id; Actuals : List_Id; Body_Node : Node_Id; Stmt : Node_Id; begin Actuals := New_List; Act := First (Parameter_Specifications (Spec_Node)); while Present (Act) loop Append_To (Actuals, Make_Identifier (Loc, Chars (Defining_Identifier (Act)))); Next (Act); end loop; if Ret_Type = Standard_Void_Type then Stmt := Make_Procedure_Call_Statement (Loc, Name => Actual_Name, Parameter_Associations => Actuals); else Stmt := Make_Simple_Return_Statement (Loc, Expression => Make_Function_Call (Loc, Name => Actual_Name, Parameter_Associations => Actuals)); end if; Body_Node := Make_Subprogram_Body (Loc, Specification => Spec_Node, Declarations => New_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Stmt))); return Body_Node; end Build_Subprogram_Body_Wrapper; ------------------------------- -- Build_Subprogram_Wrappers -- ------------------------------- procedure Build_Subprogram_Wrappers (Match, Analyzed_Formal : Node_Id; Renamings : List_Id) is function Adjust_Aspect_Sloc (N : Node_Id) return Traverse_Result; -- Adjust Sloc so that errors will be reported on the instance rather -- than the generic. ------------------------ -- Adjust_Aspect_Sloc -- ------------------------ function Adjust_Aspect_Sloc (N : Node_Id) return Traverse_Result is begin Adjust_Instantiation_Sloc (N, S_Adjustment); return OK; end Adjust_Aspect_Sloc; procedure Adjust_Aspect_Slocs is new Traverse_Proc (Adjust_Aspect_Sloc); Formal : constant Entity_Id := Defining_Unit_Name (Specification (Analyzed_Formal)); Aspect_Spec : Node_Id; Decl_Node : Node_Id; Actual_Name : Node_Id; -- Start of processing for Build_Subprogram_Wrappers begin -- Create declaration for wrapper subprogram. -- The actual can be overloaded, in which case it will be -- resolved when the call in the wrapper body is analyzed. -- We attach the possible interpretations of the actual to -- the name to be used in the call in the wrapper body. if Is_Entity_Name (Match) then Actual_Name := New_Occurrence_Of (Entity (Match), Sloc (Match)); if Is_Overloaded (Match) then Save_Interps (Match, Actual_Name); end if; else -- Use renaming declaration created when analyzing actual. -- This may be incomplete if there are several formal -- subprograms whose actual is an attribute ??? declare Renaming_Decl : constant Node_Id := Last (Renamings); begin Actual_Name := New_Occurrence_Of (Defining_Entity (Renaming_Decl), Sloc (Match)); Set_Etype (Actual_Name, Get_Instance_Of (Etype (Formal))); end; end if; Decl_Node := Build_Subprogram_Decl_Wrapper (Formal); -- Transfer aspect specifications from formal subprogram to wrapper Set_Aspect_Specifications (Decl_Node, New_Copy_List_Tree (Aspect_Specifications (Analyzed_Formal))); Aspect_Spec := First (Aspect_Specifications (Decl_Node)); while Present (Aspect_Spec) loop Adjust_Aspect_Slocs (Aspect_Spec); Set_Analyzed (Aspect_Spec, False); Next (Aspect_Spec); end loop; Append_To (Renamings, Decl_Node); -- Create corresponding body, and append it to association list -- that appears at the head of the declarations in the instance. -- The subprogram may be called in the analysis of subsequent -- actuals. Append_To (Renamings, Build_Subprogram_Body_Wrapper (Formal, Actual_Name)); end Build_Subprogram_Wrappers; ------------------------------------------- -- Build_Instance_Compilation_Unit_Nodes -- ------------------------------------------- procedure Build_Instance_Compilation_Unit_Nodes (N : Node_Id; Act_Body : Node_Id; Act_Decl : Node_Id) is Decl_Cunit : Node_Id; Body_Cunit : Node_Id; Citem : Node_Id; New_Main : constant Entity_Id := Defining_Entity (Act_Decl); Old_Main : constant Entity_Id := Cunit_Entity (Main_Unit); begin -- A new compilation unit node is built for the instance declaration. -- It relocates the auxiliary declaration node from the compilation unit -- where the instance appeared, so that declarations that originally -- followed the instance will be attached to the spec compilation unit. Decl_Cunit := Make_Compilation_Unit (Sloc (N), Context_Items => Empty_List, Unit => Act_Decl, Aux_Decls_Node => Relocate_Node (Aux_Decls_Node (Parent (N)))); Set_Parent_Spec (Act_Decl, Parent_Spec (N)); -- The new compilation unit is linked to its body, but both share the -- same file, so we do not set Body_Required on the new unit so as not -- to create a spurious dependency on a non-existent body in the ali. -- This simplifies CodePeer unit traversal. -- We use the original instantiation compilation unit as the resulting -- compilation unit of the instance, since this is the main unit. Rewrite (N, Act_Body); Body_Cunit := Parent (N); -- The two compilation unit nodes are linked by the Library_Unit field Set_Library_Unit (Decl_Cunit, Body_Cunit); Set_Library_Unit (Body_Cunit, Decl_Cunit); -- Preserve the private nature of the package if needed Set_Private_Present (Decl_Cunit, Private_Present (Body_Cunit)); -- If the instance is not the main unit, its context, categorization -- and elaboration entity are not relevant to the compilation. if Body_Cunit /= Cunit (Main_Unit) then Make_Instance_Unit (Body_Cunit, In_Main => False); return; end if; -- The context clause items on the instantiation, which are now attached -- to the body compilation unit (since the body overwrote the original -- instantiation node), semantically belong on the spec, so copy them -- there. It's harmless to leave them on the body as well. In fact one -- could argue that they belong in both places. Citem := First (Context_Items (Body_Cunit)); while Present (Citem) loop Append (New_Copy (Citem), Context_Items (Decl_Cunit)); Next (Citem); end loop; -- Propagate categorization flags on packages, so that they appear in -- the ali file for the spec of the unit. if Ekind (New_Main) = E_Package then Set_Is_Pure (Old_Main, Is_Pure (New_Main)); Set_Is_Preelaborated (Old_Main, Is_Preelaborated (New_Main)); Set_Is_Remote_Types (Old_Main, Is_Remote_Types (New_Main)); Set_Is_Shared_Passive (Old_Main, Is_Shared_Passive (New_Main)); Set_Is_Remote_Call_Interface (Old_Main, Is_Remote_Call_Interface (New_Main)); end if; -- Make entry in Units table, so that binder can generate call to -- elaboration procedure for body, if any. Make_Instance_Unit (Body_Cunit, In_Main => True); Main_Unit_Entity := New_Main; Set_Cunit_Entity (Main_Unit, Main_Unit_Entity); -- Build elaboration entity, since the instance may certainly generate -- elaboration code requiring a flag for protection. Build_Elaboration_Entity (Decl_Cunit, New_Main); end Build_Instance_Compilation_Unit_Nodes; -------------------------------- -- Check_Abbreviated_Instance -- -------------------------------- procedure Check_Abbreviated_Instance (N : Node_Id; Parent_Installed : in out Boolean) is Inst_Node : Node_Id; begin if Nkind (N) = N_Package_Specification and then Is_Abbreviated_Instance (Defining_Entity (N)) then Inst_Node := Get_Unit_Instantiation_Node (Defining_Entity (N)); Check_Generic_Child_Unit (Name (Inst_Node), Parent_Installed); end if; end Check_Abbreviated_Instance; ----------------------------- -- Check_Access_Definition -- ----------------------------- procedure Check_Access_Definition (N : Node_Id) is begin pragma Assert (Ada_Version >= Ada_2005 and then Present (Access_Definition (N))); null; end Check_Access_Definition; ----------------------------------- -- Check_Formal_Package_Instance -- ----------------------------------- -- If the formal has specific parameters, they must match those of the -- actual. Both of them are instances, and the renaming declarations for -- their formal parameters appear in the same order in both. The analyzed -- formal has been analyzed in the context of the current instance. procedure Check_Formal_Package_Instance (Formal_Pack : Entity_Id; Actual_Pack : Entity_Id) is E1 : Entity_Id := First_Entity (Actual_Pack); E2 : Entity_Id := First_Entity (Formal_Pack); Prev_E1 : Entity_Id; Expr1 : Node_Id; Expr2 : Node_Id; procedure Check_Mismatch (B : Boolean); -- Common error routine for mismatch between the parameters of the -- actual instance and those of the formal package. function Is_Defaulted (Param : Entity_Id) return Boolean; -- If the formal package has partly box-initialized formals, skip -- conformance check for these formals. Previously the code assumed -- that box initialization for a formal package applied to all its -- formal parameters. function Same_Instantiated_Constant (E1, E2 : Entity_Id) return Boolean; -- The formal may come from a nested formal package, and the actual may -- have been constant-folded. To determine whether the two denote the -- same entity we may have to traverse several definitions to recover -- the ultimate entity that they refer to. function Same_Instantiated_Function (E1, E2 : Entity_Id) return Boolean; -- The formal and the actual must be identical, but if both are -- given by attributes they end up renaming different generated bodies, -- and we must verify that the attributes themselves match. function Same_Instantiated_Variable (E1, E2 : Entity_Id) return Boolean; -- Similarly, if the formal comes from a nested formal package, the -- actual may designate the formal through multiple renamings, which -- have to be followed to determine the original variable in question. -------------------- -- Check_Mismatch -- -------------------- procedure Check_Mismatch (B : Boolean) is -- A Formal_Type_Declaration for a derived private type is rewritten -- as a private extension decl. (see Analyze_Formal_Derived_Type), -- which is why we examine the original node. Kind : constant Node_Kind := Nkind (Original_Node (Parent (E2))); begin if Kind = N_Formal_Type_Declaration then return; elsif Kind in N_Formal_Object_Declaration | N_Formal_Package_Declaration | N_Formal_Subprogram_Declaration then null; -- Ada 2012: If both formal and actual are incomplete types they -- are conformant. elsif Is_Incomplete_Type (E1) and then Is_Incomplete_Type (E2) then null; elsif B then Error_Msg_NE ("actual for & in actual instance does not match formal", Parent (Actual_Pack), E1); end if; end Check_Mismatch; ------------------ -- Is_Defaulted -- ------------------ function Is_Defaulted (Param : Entity_Id) return Boolean is Assoc : Node_Id; begin Assoc := First (Generic_Associations (Parent (Associated_Formal_Package (Actual_Pack)))); while Present (Assoc) loop if Nkind (Assoc) = N_Others_Choice then return True; elsif Nkind (Assoc) = N_Generic_Association and then Chars (Selector_Name (Assoc)) = Chars (Param) then return Box_Present (Assoc); end if; Next (Assoc); end loop; return False; end Is_Defaulted; -------------------------------- -- Same_Instantiated_Constant -- -------------------------------- function Same_Instantiated_Constant (E1, E2 : Entity_Id) return Boolean is Ent : Entity_Id; begin Ent := E2; while Present (Ent) loop if E1 = Ent then return True; elsif Ekind (Ent) /= E_Constant then return False; elsif Is_Entity_Name (Constant_Value (Ent)) then if Entity (Constant_Value (Ent)) = E1 then return True; else Ent := Entity (Constant_Value (Ent)); end if; -- The actual may be a constant that has been folded. Recover -- original name. elsif Is_Entity_Name (Original_Node (Constant_Value (Ent))) then Ent := Entity (Original_Node (Constant_Value (Ent))); else return False; end if; end loop; return False; end Same_Instantiated_Constant; -------------------------------- -- Same_Instantiated_Function -- -------------------------------- function Same_Instantiated_Function (E1, E2 : Entity_Id) return Boolean is U1, U2 : Node_Id; begin if Alias (E1) = Alias (E2) then return True; elsif Present (Alias (E2)) then U1 := Original_Node (Unit_Declaration_Node (E1)); U2 := Original_Node (Unit_Declaration_Node (Alias (E2))); return Nkind (U1) = N_Subprogram_Renaming_Declaration and then Nkind (Name (U1)) = N_Attribute_Reference and then Nkind (U2) = N_Subprogram_Renaming_Declaration and then Nkind (Name (U2)) = N_Attribute_Reference and then Attribute_Name (Name (U1)) = Attribute_Name (Name (U2)); else return False; end if; end Same_Instantiated_Function; -------------------------------- -- Same_Instantiated_Variable -- -------------------------------- function Same_Instantiated_Variable (E1, E2 : Entity_Id) return Boolean is function Original_Entity (E : Entity_Id) return Entity_Id; -- Follow chain of renamings to the ultimate ancestor --------------------- -- Original_Entity -- --------------------- function Original_Entity (E : Entity_Id) return Entity_Id is Orig : Entity_Id; begin Orig := E; while Nkind (Parent (Orig)) = N_Object_Renaming_Declaration and then Present (Renamed_Object (Orig)) and then Is_Entity_Name (Renamed_Object (Orig)) loop Orig := Entity (Renamed_Object (Orig)); end loop; return Orig; end Original_Entity; -- Start of processing for Same_Instantiated_Variable begin return Ekind (E1) = Ekind (E2) and then Original_Entity (E1) = Original_Entity (E2); end Same_Instantiated_Variable; -- Start of processing for Check_Formal_Package_Instance begin Prev_E1 := E1; while Present (E1) and then Present (E2) loop exit when Ekind (E1) = E_Package and then Renamed_Entity (E1) = Renamed_Entity (Actual_Pack); -- If the formal is the renaming of the formal package, this -- is the end of its formal part, which may occur before the -- end of the formal part in the actual in the presence of -- defaulted parameters in the formal package. exit when Nkind (Parent (E2)) = N_Package_Renaming_Declaration and then Renamed_Entity (E2) = Scope (E2); -- The analysis of the actual may generate additional internal -- entities. If the formal is defaulted, there is no corresponding -- analysis and the internal entities must be skipped, until we -- find corresponding entities again. if Comes_From_Source (E2) and then not Comes_From_Source (E1) and then Chars (E1) /= Chars (E2) then while Present (E1) and then Chars (E1) /= Chars (E2) loop Next_Entity (E1); end loop; end if; if No (E1) then return; -- Entities may be declared without full declaration, such as -- itypes and predefined operators (concatenation for arrays, eg). -- Skip it and keep the formal entity to find a later match for it. elsif No (Parent (E2)) and then Ekind (E1) /= Ekind (E2) then E1 := Prev_E1; goto Next_E; -- If the formal entity comes from a formal declaration, it was -- defaulted in the formal package, and no check is needed on it. elsif Nkind (Original_Node (Parent (E2))) in N_Formal_Object_Declaration | N_Formal_Type_Declaration then -- If the formal is a tagged type the corresponding class-wide -- type has been generated as well, and it must be skipped. if Is_Type (E2) and then Is_Tagged_Type (E2) then Next_Entity (E2); end if; goto Next_E; -- Ditto for defaulted formal subprograms. elsif Is_Overloadable (E1) and then Nkind (Unit_Declaration_Node (E2)) in N_Formal_Subprogram_Declaration then goto Next_E; elsif Is_Defaulted (E1) then goto Next_E; elsif Is_Type (E1) then -- Subtypes must statically match. E1, E2 are the local entities -- that are subtypes of the actuals. Itypes generated for other -- parameters need not be checked, the check will be performed -- on the parameters themselves. -- If E2 is a formal type declaration, it is a defaulted parameter -- and needs no checking. if not Is_Itype (E1) and then not Is_Itype (E2) then Check_Mismatch (not Is_Type (E2) or else Etype (E1) /= Etype (E2) or else not Subtypes_Statically_Match (E1, E2)); end if; elsif Ekind (E1) = E_Constant then -- IN parameters must denote the same static value, or the same -- constant, or the literal null. Expr1 := Expression (Parent (E1)); if Ekind (E2) /= E_Constant then Check_Mismatch (True); goto Next_E; else Expr2 := Expression (Parent (E2)); end if; if Is_OK_Static_Expression (Expr1) then if not Is_OK_Static_Expression (Expr2) then Check_Mismatch (True); elsif Is_Discrete_Type (Etype (E1)) then declare V1 : constant Uint := Expr_Value (Expr1); V2 : constant Uint := Expr_Value (Expr2); begin Check_Mismatch (V1 /= V2); end; elsif Is_Real_Type (Etype (E1)) then declare V1 : constant Ureal := Expr_Value_R (Expr1); V2 : constant Ureal := Expr_Value_R (Expr2); begin Check_Mismatch (V1 /= V2); end; elsif Is_String_Type (Etype (E1)) and then Nkind (Expr1) = N_String_Literal then if Nkind (Expr2) /= N_String_Literal then Check_Mismatch (True); else Check_Mismatch (not String_Equal (Strval (Expr1), Strval (Expr2))); end if; end if; elsif Is_Entity_Name (Expr1) then if Is_Entity_Name (Expr2) then if Entity (Expr1) = Entity (Expr2) then null; else Check_Mismatch (not Same_Instantiated_Constant (Entity (Expr1), Entity (Expr2))); end if; else Check_Mismatch (True); end if; elsif Is_Entity_Name (Original_Node (Expr1)) and then Is_Entity_Name (Expr2) and then Same_Instantiated_Constant (Entity (Original_Node (Expr1)), Entity (Expr2)) then null; elsif Nkind (Expr1) = N_Null then Check_Mismatch (Nkind (Expr1) /= N_Null); else Check_Mismatch (True); end if; elsif Ekind (E1) = E_Variable then Check_Mismatch (not Same_Instantiated_Variable (E1, E2)); elsif Ekind (E1) = E_Package then Check_Mismatch (Ekind (E1) /= Ekind (E2) or else (Present (Renamed_Entity (E2)) and then Renamed_Entity (E1) /= Renamed_Entity (E2))); elsif Is_Overloadable (E1) then -- Verify that the actual subprograms match. Note that actuals -- that are attributes are rewritten as subprograms. If the -- subprogram in the formal package is defaulted, no check is -- needed. Note that this can only happen in Ada 2005 when the -- formal package can be partially parameterized. if Nkind (Unit_Declaration_Node (E1)) = N_Subprogram_Renaming_Declaration and then From_Default (Unit_Declaration_Node (E1)) then null; -- If the formal package has an "others" box association that -- covers this formal, there is no need for a check either. elsif Nkind (Unit_Declaration_Node (E2)) in N_Formal_Subprogram_Declaration and then Box_Present (Unit_Declaration_Node (E2)) then null; -- No check needed if subprogram is a defaulted null procedure elsif No (Alias (E2)) and then Ekind (E2) = E_Procedure and then Null_Present (Specification (Unit_Declaration_Node (E2))) then null; -- Otherwise the actual in the formal and the actual in the -- instantiation of the formal must match, up to renamings. else Check_Mismatch (Ekind (E2) /= Ekind (E1) or else not Same_Instantiated_Function (E1, E2)); end if; else raise Program_Error; end if; <> Prev_E1 := E1; Next_Entity (E1); Next_Entity (E2); end loop; end Check_Formal_Package_Instance; ------------------------------- -- Check_Fixed_Point_Warning -- ------------------------------- procedure Check_Fixed_Point_Warning (Gen_Assocs : Associations.Gen_Assocs_Rec; Renamings : List_Id) is use Associations; begin for Type_Index in Gen_Assocs.Assocs'Range loop declare Assoc : Assoc_Rec renames Gen_Assocs.Assocs (Type_Index); begin if Nkind (Assoc.An_Formal) = N_Formal_Type_Declaration and then Is_Fixed_Point_Type (Defining_Entity (Assoc.An_Formal)) and then Assoc.Actual.Kind = Name_Exp then declare Typ : constant Entity_Id := Entity (Assoc.Actual.Name_Exp); pragma Assert (Is_Fixed_Point_Type (Typ)); Prims : constant Elist_Id := Collect_Primitive_Operations (Typ); Elem : Elmt_Id := First_Elmt (Prims); Formal : Node_Id; Op : Entity_Id; begin -- Locate primitive operations of the type that are -- arithmetic operations. while Present (Elem) loop if Nkind (Node (Elem)) = N_Defining_Operator_Symbol then -- Check whether the generic unit has a formal -- subprogram of the same name. This does not check -- types but is good enough to justify a warning. Op := Alias (Node (Elem)); for Op_Index in Type_Index + 1 .. Gen_Assocs.Assocs'Last loop Formal := Gen_Assocs.Assocs (Op_Index).Un_Formal; if Nkind (Formal) = N_Formal_Concrete_Subprogram_Declaration and then Chars (Defining_Entity (Formal)) = Chars (Node (Elem)) then goto OK; elsif Nkind (Formal) = N_Formal_Package_Declaration then declare Assoc : Node_Id; Ent : Entity_Id; begin -- Locate corresponding actual, and check -- whether it includes a fixed-point type. Assoc := First (Renamings); while Present (Assoc) loop exit when Nkind (Assoc) = N_Package_Renaming_Declaration and then Chars (Defining_Unit_Name (Assoc)) = Chars (Defining_Identifier (Formal)); Next (Assoc); end loop; if Present (Assoc) then -- If the formal package declares a -- fixed-point type, and the user-defined -- operator is derived from a generic -- instance package, the fixed-point type -- does not use the corresponding -- predefined op. Ent := First_Entity (Entity (Name (Assoc))); while Present (Ent) loop if Is_Fixed_Point_Type (Ent) and then Present (Op) and then Is_Generic_Instance (Scope (Op)) then goto OK; end if; Next_Entity (Ent); end loop; end if; end; end if; end loop; Error_Msg_Sloc := Sloc (Node (Elem)); Error_Msg_NE ("?instance uses predefined, not primitive, " & "operator&#", Assoc.Actual.Name_Exp, Node (Elem)); <> null; end if; Next_Elmt (Elem); end loop; end; end if; end; end loop; end Check_Fixed_Point_Warning; --------------------------- -- Check_Formal_Packages -- --------------------------- procedure Check_Formal_Packages (P_Id : Entity_Id) is E : Entity_Id; Formal_P : Entity_Id; Formal_Decl : Node_Id; begin -- Iterate through the declarations in the instance, looking for package -- renaming declarations that denote instances of formal packages, until -- we find the renaming of the current package itself. The declaration -- of a formal package that requires conformance checking is followed by -- an internal entity that is the abbreviated instance. E := First_Entity (P_Id); while Present (E) loop if Ekind (E) = E_Package then exit when Renamed_Entity (E) = P_Id; if Nkind (Parent (E)) = N_Package_Renaming_Declaration then Formal_Decl := Parent (Associated_Formal_Package (E)); if Requires_Conformance_Checking (Formal_Decl) then Formal_P := Next_Entity (E); -- If the instance is within an enclosing instance body -- there is no need to verify the legality of current formal -- packages because they were legal in the generic body. -- This optimization may be applicable elsewhere, and it -- also removes spurious errors that may arise with -- on-the-fly inlining and confusion between private and -- full views. if not In_Instance_Body then Check_Formal_Package_Instance (Formal_P, E); end if; -- Restore the visibility of formals of the formal instance -- that are not defaulted, and are hidden within the current -- generic. These formals may be visible within an enclosing -- generic. declare Elmt : Elmt_Id; begin Elmt := First_Elmt (Hidden_In_Formal_Instance (Formal_P)); while Present (Elmt) loop Set_Is_Hidden (Node (Elmt), False); Next_Elmt (Elmt); end loop; end; -- After checking, remove the internal validating package. -- It is only needed for semantic checks, and as it may -- contain generic formal declarations it should not reach -- gigi. Remove (Unit_Declaration_Node (Formal_P)); end if; end if; end if; Next_Entity (E); end loop; end Check_Formal_Packages; --------------------------------- -- Check_Forward_Instantiation -- --------------------------------- procedure Check_Forward_Instantiation (Decl : Node_Id) is S : Entity_Id; Gen_Comp : Entity_Id := Cunit_Entity (Get_Source_Unit (Decl)); begin -- The instantiation appears before the generic body if we are in the -- scope of the unit containing the generic, either in its spec or in -- the package body, and before the generic body. if Ekind (Gen_Comp) = E_Package_Body then Gen_Comp := Spec_Entity (Gen_Comp); end if; if In_Open_Scopes (Gen_Comp) and then No (Corresponding_Body (Decl)) then S := Current_Scope; while Present (S) and then not Is_Compilation_Unit (S) and then not Is_Child_Unit (S) loop if Ekind (S) = E_Package then Set_Has_Forward_Instantiation (S); end if; S := Scope (S); end loop; end if; end Check_Forward_Instantiation; --------------------------- -- Check_Generic_Actuals -- --------------------------- -- The visibility of the actuals may be different between the point of -- generic instantiation and the instantiation of the body. procedure Check_Generic_Actuals (Instance : Entity_Id; Is_Formal_Box : Boolean) is Gen_Id : constant Entity_Id := (if Is_Generic_Unit (Instance) then Instance elsif Is_Wrapper_Package (Instance) then Generic_Parent (Specification (Unit_Declaration_Node (Related_Instance (Instance)))) else Generic_Parent (Package_Specification (Instance))); -- The generic unit Parent_Scope : constant Entity_Id := Scope (Gen_Id); -- The enclosing scope of the generic unit procedure Check_Actual_Type (Typ : Entity_Id); -- If the type of the actual is a private type declared in the enclosing -- scope of the generic, either directly or through packages nested in -- bodies, but not a derived type of a private type declared elsewhere, -- then the body of the generic sees the full view of the type because -- it has to appear in the package body. If the type is private now then -- exchange views to restore the proper visibility in the instance. ----------------------- -- Check_Actual_Type -- ----------------------- procedure Check_Actual_Type (Typ : Entity_Id) is Btyp : constant Entity_Id := Base_Type (Typ); function Scope_Within_Body_Or_Same (Inner : Entity_Id; Outer : Entity_Id) return Boolean; -- Determine whether scope Inner is within the body of scope Outer -- or is Outer itself. ------------------------------- -- Scope_Within_Body_Or_Same -- ------------------------------- function Scope_Within_Body_Or_Same (Inner : Entity_Id; Outer : Entity_Id) return Boolean is Curr : Entity_Id := Inner; begin while Curr /= Standard_Standard loop if Curr = Outer then return True; elsif Is_Package_Body_Entity (Curr) then Curr := Scope (Curr); else exit; end if; end loop; return False; end Scope_Within_Body_Or_Same; -- Start of processing for Check_Actual_Type begin -- The exchange is only needed if the generic is defined -- within a package which is not a common ancestor of the -- scope of the instance, and is not already in scope. if Is_Private_Type (Btyp) and then not Has_Private_Ancestor (Btyp) and then Ekind (Parent_Scope) in E_Package | E_Generic_Package and then Scope_Within_Body_Or_Same (Parent_Scope, Scope (Btyp)) and then Parent_Scope /= Scope (Instance) and then not Is_Child_Unit (Gen_Id) then Switch_View (Btyp); -- If the type of the entity is a subtype, it may also have -- to be made visible, together with the base type of its -- full view, after exchange. if Is_Private_Type (Typ) then Switch_View (Typ); Switch_View (Base_Type (Typ)); end if; end if; end Check_Actual_Type; -- Local variables Astype : Entity_Id; E : Entity_Id; Formal : Node_Id; -- Start of processing for Check_Generic_Actuals begin E := First_Entity (Instance); while Present (E) loop if Is_Type (E) and then Nkind (Parent (E)) = N_Subtype_Declaration and then Scope (Etype (E)) /= Instance and then Is_Entity_Name (Subtype_Indication (Parent (E))) then declare Indic : constant Node_Id := Subtype_Indication (Parent (E)); begin -- Restore the proper view of the actual from the information -- saved earlier by Instantiate_Type. Check_Private_View (Indic); -- If this view is an array type, check its component type. -- This handles the case of an array type whose component -- type is private, used as the actual in an instantiation -- of a generic construct declared in the same package as -- the component type and taking an array type with this -- component type as formal type parameter. if Is_Array_Type (Etype (Indic)) then Check_Actual_Type (Component_Type_For_Private_View (Etype (Indic))); end if; end; -- If the actual is itself the formal of a parent instance, -- then also restore the proper view of its actual and so on. -- That's necessary for nested instantiations of the form -- generic -- type Component is private; -- type Array_Type is array (Positive range <>) of Component; -- procedure Proc; -- when the outermost actuals have inconsistent views, because -- the Component_Type of Array_Type of the inner instantiations -- is the actual of Component of the outermost one and not that -- of the corresponding inner instantiations. Astype := Ancestor_Subtype (E); while Present (Astype) and then Nkind (Parent (Astype)) = N_Subtype_Declaration and then Present (Generic_Parent_Type (Parent (Astype))) and then Is_Entity_Name (Subtype_Indication (Parent (Astype))) loop Check_Private_View (Subtype_Indication (Parent (Astype))); Astype := Ancestor_Subtype (Astype); end loop; Set_Is_Generic_Actual_Type (E); if Is_Private_Type (E) and then Present (Full_View (E)) then Set_Is_Generic_Actual_Type (Full_View (E)); end if; Set_Is_Hidden (E, False); Set_Is_Potentially_Use_Visible (E, In_Use (Instance)); -- We constructed the generic actual type as a subtype of the -- supplied type. This means that it normally would not inherit -- subtype specific attributes of the actual, which is wrong for -- the generic case. Astype := Ancestor_Subtype (E); if No (Astype) then -- This can happen when E is an itype that is the full view of -- a private type completed, e.g. with a constrained array. In -- that case, use the first subtype, which will carry size -- information. The base type itself is unconstrained and will -- not carry it. Astype := First_Subtype (E); end if; Set_Size_Info (E, Astype); Copy_RM_Size (To => E, From => Astype); Set_First_Rep_Item (E, First_Rep_Item (Astype)); if Is_Discrete_Or_Fixed_Point_Type (E) then Set_RM_Size (E, RM_Size (Astype)); end if; elsif Ekind (E) = E_Package then -- If this is the renaming for the current instance, we're done. -- Otherwise it is a formal package. If the corresponding formal -- was declared with a box, the (instantiations of the) generic -- formal part are also visible. Otherwise, ignore the entity -- created to validate the actuals. if Renamed_Entity (E) = Instance then exit; elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then null; -- The visibility of a formal of an enclosing generic is already -- correct. elsif Denotes_Formal_Package (E) then null; elsif Present (Associated_Formal_Package (E)) and then not Is_Generic_Formal (E) then Check_Generic_Actuals (Renamed_Entity (E), Is_Formal_Box => Box_Present (Parent (Associated_Formal_Package (E)))); Set_Is_Hidden (E, False); end if; -- If this is a subprogram instance (in a wrapper package) the -- actual is fully visible. elsif Is_Wrapper_Package (Instance) then Set_Is_Hidden (E, False); -- If the formal package is declared with a box, or if the formal -- parameter is defaulted, it is visible in the body. elsif Is_Formal_Box or else Is_Visible_Formal (E) then Set_Is_Hidden (E, False); end if; -- Check directly the type of the actual objects, including the -- component type for array types. if Ekind (E) in E_Constant | E_Variable then Check_Actual_Type (Etype (E)); if Is_Array_Type (Etype (E)) then Check_Actual_Type (Component_Type (Etype (E))); end if; -- As well as the type of formal parameters of actual subprograms elsif Ekind (E) in E_Function | E_Procedure and then Is_Generic_Actual_Subprogram (E) and then Present (Alias (E)) then Formal := First_Formal (Alias (E)); while Present (Formal) loop Check_Actual_Type (Etype (Formal)); Next_Formal (Formal); end loop; end if; Next_Entity (E); end loop; end Check_Generic_Actuals; ------------------------------ -- Check_Generic_Child_Unit -- ------------------------------ procedure Check_Generic_Child_Unit (Gen_Id : Node_Id; Parent_Installed : in out Boolean) is Loc : constant Source_Ptr := Sloc (Gen_Id); Gen_Par : Entity_Id := Empty; E : Entity_Id; Inst_Par : Entity_Id := Empty; S : Node_Id; function Find_Generic_Child (Scop : Entity_Id; Id : Node_Id) return Entity_Id; -- Search generic parent for possible child unit with the given name function In_Enclosing_Instance return Boolean; -- Within an instance of the parent, the child unit may be denoted by -- a simple name, or an abbreviated expanded name. Examine enclosing -- scopes to locate a possible parent instantiation. ------------------------ -- Find_Generic_Child -- ------------------------ function Find_Generic_Child (Scop : Entity_Id; Id : Node_Id) return Entity_Id is E : Entity_Id; begin -- If entity of name is already set, instance has already been -- resolved, e.g. in an enclosing instantiation. if Present (Entity (Id)) then if Scope (Entity (Id)) = Scop then return Entity (Id); else return Empty; end if; else E := First_Entity (Scop); while Present (E) loop if Chars (E) = Chars (Id) and then Is_Child_Unit (E) then if Is_Child_Unit (E) and then not Is_Visible_Lib_Unit (E) then Error_Msg_NE ("generic child unit& is not visible", Gen_Id, E); end if; Set_Entity (Id, E); return E; end if; Next_Entity (E); end loop; return Empty; end if; end Find_Generic_Child; --------------------------- -- In_Enclosing_Instance -- --------------------------- function In_Enclosing_Instance return Boolean is Enclosing_Instance : Node_Id; Instance_Decl : Node_Id; begin -- We do not inline any call that contains instantiations, except -- for instantiations of Unchecked_Conversion, so if we are within -- an inlined body the current instance does not require parents. if In_Inlined_Body then pragma Assert (Chars (Gen_Id) = Name_Unchecked_Conversion); return False; end if; -- Loop to check enclosing scopes Enclosing_Instance := Current_Scope; while Present (Enclosing_Instance) loop Instance_Decl := Unit_Declaration_Node (Enclosing_Instance); if Ekind (Enclosing_Instance) = E_Package and then Is_Generic_Instance (Enclosing_Instance) and then Present (Generic_Parent (Specification (Instance_Decl))) then -- Check whether the generic we are looking for is a child of -- this instance. E := Find_Generic_Child (Generic_Parent (Specification (Instance_Decl)), Gen_Id); exit when Present (E); else E := Empty; end if; Enclosing_Instance := Scope (Enclosing_Instance); end loop; if No (E) then -- Not a child unit Analyze (Gen_Id); return False; else Rewrite (Gen_Id, Make_Expanded_Name (Loc, Chars => Chars (E), Prefix => New_Occurrence_Of (Enclosing_Instance, Loc), Selector_Name => New_Occurrence_Of (E, Loc))); Set_Entity (Gen_Id, E); Set_Etype (Gen_Id, Etype (E)); Parent_Installed := False; -- Already in scope. return True; end if; end In_Enclosing_Instance; -- Start of processing for Check_Generic_Child_Unit begin -- If the name of the generic is given by a selected component, it may -- be the name of a generic child unit, and the prefix is the name of an -- instance of the parent, in which case the child unit must be visible. -- If this instance is not in scope, it must be placed there and removed -- after instantiation, because what is being instantiated is not the -- original child, but the corresponding child present in the instance -- of the parent. -- If the child is instantiated within the parent, it can be given by -- a simple name. In this case the instance is already in scope, but -- the child generic must be recovered from the generic parent as well. if Nkind (Gen_Id) = N_Selected_Component then S := Selector_Name (Gen_Id); Analyze (Prefix (Gen_Id)); Inst_Par := Entity (Prefix (Gen_Id)); if Ekind (Inst_Par) = E_Package and then Present (Renamed_Entity (Inst_Par)) then Inst_Par := Renamed_Entity (Inst_Par); end if; if Ekind (Inst_Par) = E_Package then if Nkind (Parent (Inst_Par)) = N_Package_Specification then Gen_Par := Generic_Parent (Parent (Inst_Par)); elsif Nkind (Parent (Inst_Par)) = N_Defining_Program_Unit_Name and then Nkind (Parent (Parent (Inst_Par))) = N_Package_Specification then Gen_Par := Generic_Parent (Parent (Parent (Inst_Par))); end if; elsif Ekind (Inst_Par) = E_Generic_Package and then Nkind (Parent (Gen_Id)) = N_Formal_Package_Declaration then -- A formal package may be a real child package, and not the -- implicit instance within a parent. In this case the child is -- not visible and has to be retrieved explicitly as well. Gen_Par := Inst_Par; end if; if Present (Gen_Par) then -- The prefix denotes an instantiation. The entity itself may be a -- nested generic, or a child unit. E := Find_Generic_Child (Gen_Par, S); if Present (E) then Change_Selected_Component_To_Expanded_Name (Gen_Id); Set_Entity (Gen_Id, E); Set_Etype (Gen_Id, Etype (E)); Set_Entity (S, E); Set_Etype (S, Etype (E)); -- Indicate that this is a reference to the parent if In_Extended_Main_Source_Unit (Gen_Id) then Set_Is_Instantiated (Inst_Par); end if; -- A common mistake is to replicate the naming scheme of a -- hierarchy by instantiating a generic child directly, rather -- than the implicit child in a parent instance: -- generic .. package Gpar is .. -- generic .. package Gpar.Child is .. -- package Par is new Gpar (); -- with Gpar.Child; -- package Par.Child is new Gpar.Child (); -- rather than Par.Child -- In this case the instantiation is within Par, which is an -- instance, but Gpar does not denote Par because we are not IN -- the instance of Gpar, so this is illegal. The test below -- recognizes this particular case. declare -- We want to reject the final instantiation in -- generic package G1 is end G1; -- generic package G1.G2 is end G1.G2; -- with G1; package I1 is new G1; -- with G1.G2; package I1.I2 is new G1.G2; -- because the use of G1.G2 should instead be either -- I1.G2 or simply G2. However, the tree that is built -- in this case is wrong. In the expanded copy -- of G2, we need (and therefore generate) a renaming -- package G1 renames I1; -- but this renaming should not participate in resolving -- this occurrence of the name "G1.G2"; unfortunately, -- it does. Rather than correct this error, we compensate -- for it in this function. -- -- We also perform another adjustment here. If we are -- currently inside a generic package, then that -- generic package needs to be treated as a package. -- For example, if a generic Aaa declares a nested generic -- Bbb (perhaps as a child unit) then Aaa can also legally -- declare an instance of Aaa.Bbb. function Adjusted_Inst_Par_Ekind return Entity_Kind; ----------------------------- -- Adjusted_Inst_Par_Ekind -- ----------------------------- function Adjusted_Inst_Par_Ekind return Entity_Kind is Prefix_Entity : Entity_Id; Inst_Par_GP : Node_Id; Inst_Par_Parent : Node_Id := Parent (Inst_Par); begin if Nkind (Inst_Par_Parent) = N_Defining_Program_Unit_Name then Inst_Par_Parent := Parent (Inst_Par_Parent); end if; Inst_Par_GP := Generic_Parent (Inst_Par_Parent); if Nkind (Gen_Id) = N_Expanded_Name and then Present (Inst_Par_GP) and then Ekind (Inst_Par_GP) = E_Generic_Package then Prefix_Entity := Entity (Prefix (Gen_Id)); if Present (Prefix_Entity) and then not Comes_From_Source (Prefix_Entity) and then Nkind (Parent (Prefix_Entity)) = N_Package_Renaming_Declaration and then Chars (Prefix_Entity) = Chars (Inst_Par_GP) then return E_Generic_Package; end if; end if; if Ekind (Inst_Par) = E_Generic_Package and then In_Open_Scopes (Inst_Par) then -- If we are inside a generic package then -- treat it as a package. return E_Package; end if; -- The usual path return Ekind (Inst_Par); end Adjusted_Inst_Par_Ekind; begin if Is_Child_Unit (E) and then (No (Inst_Par) or else Adjusted_Inst_Par_Ekind = E_Generic_Package) and then (not In_Instance or else Nkind (Parent (Parent (Gen_Id))) = N_Compilation_Unit) then Error_Msg_N ("prefix of generic child unit must be " & "instance of parent", Gen_Id); end if; end; if not In_Open_Scopes (Inst_Par) and then Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration then Install_Parent (Inst_Par); Parent_Installed := True; elsif In_Open_Scopes (Inst_Par) then -- If the parent is already installed, install the actuals -- for its formal packages. This is necessary when the child -- instance is a child of the parent instance: in this case, -- the parent is placed on the scope stack but the formal -- packages are not made visible. Install_Formal_Packages (Inst_Par); end if; else -- If the generic parent does not contain an entity that -- corresponds to the selector, the instance doesn't either. -- Analyzing the node will yield the appropriate error message. -- If the entity is not a child unit, then it is an inner -- generic in the parent. Analyze (Gen_Id); end if; else Analyze (Gen_Id); if Is_Child_Unit (Entity (Gen_Id)) and then Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration and then not In_Open_Scopes (Inst_Par) then Install_Parent (Inst_Par); Parent_Installed := True; -- The generic unit may be the renaming of the implicit child -- present in an instance. In that case the parent instance is -- obtained from the name of the renamed entity. elsif Ekind (Entity (Gen_Id)) = E_Generic_Package and then Present (Renamed_Entity (Entity (Gen_Id))) and then Is_Child_Unit (Renamed_Entity (Entity (Gen_Id))) then declare Renamed_Package : constant Node_Id := Name (Parent (Entity (Gen_Id))); begin if Nkind (Renamed_Package) = N_Expanded_Name then Inst_Par := Entity (Prefix (Renamed_Package)); Install_Parent (Inst_Par); Parent_Installed := True; end if; end; end if; end if; elsif Nkind (Gen_Id) = N_Expanded_Name then -- Entity already present, analyze prefix, whose meaning may be an -- instance in the current context. If it is an instance of a -- relative within another, the proper parent may still have to be -- installed, if they are not of the same generation. Analyze (Prefix (Gen_Id)); -- Prevent cascaded errors if Etype (Prefix (Gen_Id)) = Any_Type then return; end if; -- In the unlikely case that a local declaration hides the name of -- the parent package, locate it on the homonym chain. If the context -- is an instance of the parent, the renaming entity is flagged as -- such. Inst_Par := Entity (Prefix (Gen_Id)); while Present (Inst_Par) and then not Is_Package_Or_Generic_Package (Inst_Par) loop Inst_Par := Homonym (Inst_Par); end loop; pragma Assert (Present (Inst_Par)); Set_Entity (Prefix (Gen_Id), Inst_Par); if In_Enclosing_Instance then null; elsif Present (Entity (Gen_Id)) and then No (Renamed_Entity (Entity (Gen_Id))) and then Is_Child_Unit (Entity (Gen_Id)) and then not In_Open_Scopes (Inst_Par) then Install_Parent (Inst_Par); Parent_Installed := True; -- Handle renaming of generic child unit elsif Present (Entity (Gen_Id)) and then Present (Renamed_Entity (Entity (Gen_Id))) and then Is_Child_Unit (Renamed_Entity (Entity (Gen_Id))) then declare E : Entity_Id; Ren_Decl : Node_Id; begin -- The entity of the renamed generic child unit does not -- have any reference to the instantiated parent. In order to -- locate it we traverse the scope containing the renaming -- declaration; the instance of the parent is available in -- the prefix of the renaming declaration. For example: -- package A is -- package Inst_Par is new ... -- generic package Ren_Child renames Ins_Par.Child; -- end; -- with A; -- package B is -- package Inst_Child is new A.Ren_Child; -- end; E := First_Entity (Entity (Prefix (Gen_Id))); while Present (E) loop if not Is_Object (E) and then Present (Renamed_Entity (E)) and then Renamed_Entity (E) = Renamed_Entity (Entity (Gen_Id)) then Ren_Decl := Parent (E); Inst_Par := Entity (Prefix (Name (Ren_Decl))); if not In_Open_Scopes (Inst_Par) then Install_Parent (Inst_Par); Parent_Installed := True; end if; exit; end if; E := Next_Entity (E); end loop; end; end if; elsif In_Enclosing_Instance then -- The child unit is found in some enclosing scope null; else Analyze (Gen_Id); -- If this is the renaming of the implicit child in a parent -- instance, recover the parent name and install it. if Is_Entity_Name (Gen_Id) then E := Entity (Gen_Id); if Is_Generic_Unit (E) and then Nkind (Parent (E)) in N_Generic_Renaming_Declaration and then Is_Child_Unit (Renamed_Entity (E)) and then Is_Generic_Unit (Scope (Renamed_Entity (E))) and then Nkind (Name (Parent (E))) = N_Expanded_Name then Rewrite (Gen_Id, New_Copy_Tree (Name (Parent (E)))); Inst_Par := Entity (Prefix (Gen_Id)); if not In_Open_Scopes (Inst_Par) then Install_Parent (Inst_Par); Parent_Installed := True; end if; -- If it is a child unit of a non-generic parent, it may be -- use-visible and given by a direct name. Install parent as -- for other cases. elsif Is_Generic_Unit (E) and then Is_Child_Unit (E) and then Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration and then not Is_Generic_Unit (Scope (E)) then if not In_Open_Scopes (Scope (E)) then Install_Parent (Scope (E)); Parent_Installed := True; end if; end if; end if; end if; end Check_Generic_Child_Unit; ----------------------------- -- Check_Hidden_Child_Unit -- ----------------------------- procedure Check_Hidden_Child_Unit (N : Node_Id; Gen_Unit : Entity_Id; Act_Decl_Id : Entity_Id) is Gen_Id : constant Node_Id := Name (N); begin if Is_Child_Unit (Gen_Unit) and then Is_Child_Unit (Act_Decl_Id) and then Nkind (Gen_Id) = N_Expanded_Name and then Entity (Prefix (Gen_Id)) = Scope (Act_Decl_Id) and then Chars (Gen_Unit) = Chars (Act_Decl_Id) then Error_Msg_Node_2 := Scope (Act_Decl_Id); Error_Msg_NE ("generic unit & is implicitly declared in &", Defining_Unit_Name (N), Gen_Unit); Error_Msg_N ("\instance must have different name", Defining_Unit_Name (N)); end if; end Check_Hidden_Child_Unit; ------------------------ -- Check_Private_View -- ------------------------ procedure Check_Private_View (N : Node_Id) is Comparison : constant Boolean := Nkind (N) in N_Op_Compare; Typ : constant Entity_Id := (if Comparison then Compare_Type (N) else Etype (N)); procedure Check_Private_Type (T : Entity_Id; Private_View : Boolean); -- Check that the available view of T matches Private_View and, if not, -- switch the view of T or of its base type. procedure Check_Private_Type (T : Entity_Id; Private_View : Boolean) is BT : constant Entity_Id := Base_Type (T); begin -- If the full declaration was not visible in the generic, stop here if Private_View then return; end if; -- Exchange views if the type was not private in the generic but is -- private at the point of instantiation. Do not exchange views if -- the scope of the type is in scope. This can happen if both generic -- and instance are sibling units, or if type is defined in a parent. -- In this case the visibility of the type will be correct for all -- semantic checks. if Is_Private_Type (T) and then Present (Full_View (T)) and then not In_Open_Scopes (Scope (T)) then Switch_View (T); -- Finally, a nonprivate subtype may have a private base type, which -- must be exchanged for consistency. This can happen when a package -- body is instantiated, when the scope stack is empty but in fact -- the subtype and the base type are declared in an enclosing scope. -- Note that in this case we introduce an inconsistency in the view -- set, because we switch the base type BT, but there could be some -- private dependent subtypes of BT which remain unswitched. Such -- subtypes might need to be switched at a later point (see specific -- provision for that case in Switch_View). elsif not Is_Private_Type (T) and then Is_Private_Type (BT) and then Present (Full_View (BT)) and then not In_Open_Scopes (BT) then Prepend_Elmt (Full_View (BT), Exchanged_Views); Exchange_Declarations (BT); end if; end Check_Private_Type; -- Start of processing for Check_Private_View begin if Present (Typ) then -- If the type appears in a subtype declaration, the subtype in -- instance must have a view compatible with that of its parent, -- which must be exchanged (see corresponding code in Restore_ -- Private_Views) so we make an exception to the open scope rule -- implemented by Check_Private_Type above. if Has_Private_View (N) and then not Is_Private_Type (Typ) and then not Has_Been_Exchanged (Typ) and then (not In_Open_Scopes (Scope (Typ)) or else Nkind (Parent (N)) = N_Subtype_Declaration) then declare Assoc : constant Node_Id := Get_Associated_Node (N); begin -- In the generic, only the private declaration was visible Prepend_Elmt (Typ, Exchanged_Views); Exchange_Declarations (if Comparison then Compare_Type (Assoc) else Etype (Assoc)); end; -- Check that the available views of Typ match their respective flag. -- Note that the type of a visible discriminant is never private. else Check_Private_Type (Typ, Has_Private_View (N)); if Is_Access_Type (Typ) then Check_Private_Type (Designated_Type (Typ), Has_Secondary_Private_View (N)); elsif Is_Array_Type (Typ) then Check_Private_Type (Component_Type_For_Private_View (Typ), Has_Secondary_Private_View (N)); elsif (Is_Record_Type (Typ) or else Is_Concurrent_Type (Typ)) and then Has_Discriminants (Typ) then declare Disc : Entity_Id; begin Disc := First_Discriminant (Typ); while Present (Disc) loop Check_Private_Type (Etype (Disc), False); Next_Discriminant (Disc); end loop; end; end if; end if; end if; end Check_Private_View; ----------------------------- -- Check_Hidden_Primitives -- ----------------------------- function Check_Hidden_Primitives (Renamings : List_Id) return Elist_Id is Actual : Node_Id; Gen_T : Entity_Id; Result : Elist_Id := No_Elist; begin if No (Renamings) then return No_Elist; end if; -- Traverse the list of associations between formals and actuals -- searching for renamings of tagged types Actual := First (Renamings); while Present (Actual) loop if Nkind (Actual) = N_Subtype_Declaration then Gen_T := Generic_Parent_Type (Actual); if Present (Gen_T) and then Is_Tagged_Type (Gen_T) then -- Traverse the list of primitives of the actual types -- searching for hidden primitives that are visible in the -- corresponding generic formal; leave them visible and -- append them to Result to restore their decoration later. Install_Hidden_Primitives (Prims_List => Result, Gen_T => Gen_T, Act_T => Entity (Subtype_Indication (Actual))); end if; end if; Next (Actual); end loop; return Result; end Check_Hidden_Primitives; ------------------------------------- -- Component_Type_For_Private_View -- ------------------------------------- function Component_Type_For_Private_View (T : Entity_Id) return Entity_Id is Typ : constant Entity_Id := Component_Type (T); begin if Is_Array_Type (Typ) and then not Has_Private_Declaration (Typ) then return Component_Type_For_Private_View (Typ); else return Typ; end if; end Component_Type_For_Private_View; -------------------------- -- Contains_Instance_Of -- -------------------------- function Contains_Instance_Of (Inner : Entity_Id; Outer : Entity_Id; N : Node_Id) return Boolean is Elmt : Elmt_Id; Scop : Entity_Id; begin Scop := Outer; -- Verify that there are no circular instantiations. We check whether -- the unit contains an instance of the current scope or some enclosing -- scope (in case one of the instances appears in a subunit). Longer -- circularities involving subunits might seem too pathological to -- consider, but they were not too pathological for the authors of -- DEC bc30vsq, so we loop over all enclosing scopes, and mark all -- enclosing generic scopes as containing an instance. loop -- Within a generic subprogram body, the scope is not generic, to -- allow for recursive subprograms. Use the declaration to determine -- whether this is a generic unit. if Ekind (Scop) = E_Generic_Package or else (Is_Subprogram (Scop) and then Nkind (Unit_Declaration_Node (Scop)) = N_Generic_Subprogram_Declaration) then Elmt := First_Elmt (Inner_Instances (Inner)); while Present (Elmt) loop if Node (Elmt) = Scop then Error_Msg_Node_2 := Inner; Error_Msg_NE ("circular instantiation: & instantiated within &!", N, Scop); return True; elsif Node (Elmt) = Inner then return True; elsif Contains_Instance_Of (Node (Elmt), Scop, N) then Error_Msg_Node_2 := Inner; Error_Msg_NE ("circular instantiation: & instantiated within &!", N, Node (Elmt)); return True; end if; Next_Elmt (Elmt); end loop; -- Indicate that Inner is being instantiated within Scop Append_Elmt (Inner, Inner_Instances (Scop)); end if; if Scop = Standard_Standard then exit; else Scop := Scope (Scop); end if; end loop; return False; end Contains_Instance_Of; ----------------------- -- Copy_Generic_Node -- ----------------------- function Copy_Generic_Node (N : Node_Id; Parent_Id : Node_Id; Instantiating : Boolean) return Node_Id is Ent : Entity_Id; New_N : Node_Id; function Copy_Generic_Descendant (D : Union_Id) return Union_Id; -- Check the given value of one of the Fields referenced by the current -- node to determine whether to copy it recursively. The field may hold -- a Node_Id, a List_Id, or an Elist_Id, or a plain value (Sloc, Uint, -- Char) in which case it need not be copied. procedure Copy_Descendants; -- Common utility for various nodes function Copy_Generic_Elist (E : Elist_Id) return Elist_Id; -- Make copy of element list function Copy_Generic_List (L : List_Id; Parent_Id : Node_Id) return List_Id; -- Apply Copy_Generic_Node recursively to the members of a node list function In_Defining_Unit_Name (Nam : Node_Id) return Boolean; -- True if an identifier is part of the defining program unit name of -- a child unit. -- Consider removing this subprogram now that ASIS no longer uses it. ---------------------- -- Copy_Descendants -- ---------------------- procedure Copy_Descendants is procedure Walk is new Walk_Sinfo_Fields_Pairwise (Copy_Generic_Descendant); begin Walk (New_N, N); end Copy_Descendants; ----------------------------- -- Copy_Generic_Descendant -- ----------------------------- function Copy_Generic_Descendant (D : Union_Id) return Union_Id is begin if D = Union_Id (Empty) then return D; elsif D in Node_Range then return Union_Id (Copy_Generic_Node (Node_Id (D), New_N, Instantiating)); elsif D in List_Range then return Union_Id (Copy_Generic_List (List_Id (D), New_N)); elsif D in Elist_Range then return Union_Id (Copy_Generic_Elist (Elist_Id (D))); -- Nothing else is copyable (e.g. Uint values), return as is else return D; end if; end Copy_Generic_Descendant; ------------------------ -- Copy_Generic_Elist -- ------------------------ function Copy_Generic_Elist (E : Elist_Id) return Elist_Id is M : Elmt_Id; L : Elist_Id; begin if Present (E) then L := New_Elmt_List; M := First_Elmt (E); while Present (M) loop Append_Elmt (Copy_Generic_Node (Node (M), Empty, Instantiating), L); Next_Elmt (M); end loop; return L; else return No_Elist; end if; end Copy_Generic_Elist; ----------------------- -- Copy_Generic_List -- ----------------------- function Copy_Generic_List (L : List_Id; Parent_Id : Node_Id) return List_Id is N : Node_Id; New_L : List_Id; begin if Present (L) then New_L := New_List; Set_Parent (New_L, Parent_Id); N := First (L); while Present (N) loop Append (Copy_Generic_Node (N, Empty, Instantiating), New_L); Next (N); end loop; return New_L; else return No_List; end if; end Copy_Generic_List; --------------------------- -- In_Defining_Unit_Name -- --------------------------- function In_Defining_Unit_Name (Nam : Node_Id) return Boolean is begin return Present (Parent (Nam)) and then (Nkind (Parent (Nam)) = N_Defining_Program_Unit_Name or else (Nkind (Parent (Nam)) = N_Expanded_Name and then In_Defining_Unit_Name (Parent (Nam)))); end In_Defining_Unit_Name; -- Start of processing for Copy_Generic_Node begin if N = Empty then return N; end if; New_N := New_Copy (N); -- If we are instantiating, we want to adjust the sloc based on the -- current S_Adjustment. However, if this is the root node of a subunit, -- we need to defer that adjustment to below (see "elsif Instantiating -- and Was_Stub"), so it comes after Create_Instantiation_Source has -- computed the adjustment. if Instantiating and then not (Nkind (N) in N_Proper_Body and then Was_Originally_Stub (N)) then Adjust_Instantiation_Sloc (New_N, S_Adjustment); end if; if not Is_List_Member (N) then Set_Parent (New_N, Parent_Id); end if; -- Special casing for identifiers and other entity names and operators if Nkind (N) in N_Character_Literal | N_Expanded_Name | N_Identifier | N_Operator_Symbol | N_Op then if not Instantiating then -- Link both nodes in order to assign subsequently the entity of -- the copy to the original node, in case this is a global -- reference. Set_Associated_Node (N, New_N); -- If we are within an instantiation, this is a nested generic -- that has already been analyzed at the point of definition. -- We must preserve references that were global to the enclosing -- parent at that point. Other occurrences, whether global or -- local to the current generic, must be resolved anew, so we -- reset the entity in the generic copy. A global reference has a -- smaller depth than the parent, or else the same depth in case -- both are distinct compilation units. -- A child unit is implicitly declared within the enclosing parent -- but is in fact global to it, and must be preserved. -- It is also possible for Current_Instantiated_Parent to be -- defined, and for this not to be a nested generic, namely if -- the unit is loaded through Rtsfind. In that case, the entity of -- New_N is only a link to the associated node, and not a defining -- occurrence. -- The entities for parent units in the defining_program_unit of a -- generic child unit are established when the context of the unit -- is first analyzed, before the generic copy is made. They are -- preserved in the copy for use in e.g. ASIS queries. Ent := Entity (New_N); if No (Current_Instantiated_Parent.Gen_Id) then if No (Ent) or else Nkind (Ent) /= N_Defining_Identifier or else not In_Defining_Unit_Name (N) then Set_Associated_Node (New_N, Empty); end if; elsif No (Ent) or else Nkind (Ent) not in N_Entity or else No (Scope (Ent)) or else (Scope (Ent) = Current_Instantiated_Parent.Gen_Id and then not Is_Child_Unit (Ent)) or else (Scope_Depth_Set (Scope (Ent)) and then Scope_Depth (Scope (Ent)) > Scope_Depth (Current_Instantiated_Parent.Gen_Id) and then Get_Source_Unit (Ent) = Get_Source_Unit (Current_Instantiated_Parent.Gen_Id)) then Set_Associated_Node (New_N, Empty); end if; -- Case of instantiating identifier or some other name or operator else -- If the associated node is still defined, the entity in it -- is global, and must be copied to the instance. If this copy -- is being made for a body to inline, it is applied to an -- instantiated tree, and the entity is already present and -- must be also preserved. declare Assoc : constant Node_Id := Get_Associated_Node (N); begin if Present (Assoc) then if Nkind (Assoc) = Nkind (N) then Set_Entity (New_N, Entity (Assoc)); Check_Private_View (N); -- The node is a reference to a global type and acts as the -- subtype mark of a qualified expression created in order -- to aid resolution of accidental overloading in instances. -- Since N is a reference to a type, the Associated_Node of -- N denotes an entity rather than another identifier. See -- Qualify_Universal_Operands for details. elsif Nkind (N) = N_Identifier and then Nkind (Parent (N)) = N_Qualified_Expression and then Subtype_Mark (Parent (N)) = N and then Is_Qualified_Universal_Literal (Parent (N)) then Set_Entity (New_N, Assoc); -- Cope with the rewriting into expanded name that may have -- occurred in between, e.g. in Check_Generic_Child_Unit for -- generic renaming declarations. elsif Nkind (Assoc) = N_Expanded_Name then Rewrite (N, New_Copy_Tree (Assoc)); Set_Associated_Node (N, Assoc); return Copy_Generic_Node (N, Parent_Id, Instantiating); -- The name in the call may be a selected component if the -- call has not been analyzed yet, as may be the case for -- pre/post conditions in a generic unit. elsif Nkind (Assoc) = N_Function_Call and then Is_Entity_Name (Name (Assoc)) then Set_Entity (New_N, Entity (Name (Assoc))); Check_Private_View (N); elsif Nkind (Assoc) in N_Entity and then (Expander_Active or else (GNATprove_Mode and then not In_Spec_Expression and then not Inside_A_Generic)) then -- Inlining case: we are copying a tree that contains -- global entities, which are preserved in the copy to be -- used for subsequent inlining. null; else Set_Entity (New_N, Empty); end if; end if; end; end if; -- For expanded name, we must copy the Prefix and Selector_Name if Nkind (N) = N_Expanded_Name then Set_Prefix (New_N, Copy_Generic_Node (Prefix (N), New_N, Instantiating)); Set_Selector_Name (New_N, Copy_Generic_Node (Selector_Name (N), New_N, Instantiating)); -- For operators, copy the operands elsif Nkind (N) in N_Op then if Nkind (N) in N_Binary_Op then Set_Left_Opnd (New_N, Copy_Generic_Node (Left_Opnd (N), New_N, Instantiating)); end if; Set_Right_Opnd (New_N, Copy_Generic_Node (Right_Opnd (N), New_N, Instantiating)); end if; -- Establish a link between an entity from the generic template and the -- corresponding entity in the generic copy to be analyzed. elsif Nkind (N) in N_Entity then if not Instantiating then Set_Associated_Entity (N, New_N); end if; -- Clear any existing link the copy may inherit from the replicated -- generic template entity. Set_Associated_Entity (New_N, Empty); -- Special casing for stubs elsif Nkind (N) in N_Body_Stub then -- In any case, we must copy the specification or defining -- identifier as appropriate. if Nkind (N) = N_Subprogram_Body_Stub then Set_Specification (New_N, Copy_Generic_Node (Specification (N), New_N, Instantiating)); else Set_Defining_Identifier (New_N, Copy_Generic_Node (Defining_Identifier (N), New_N, Instantiating)); end if; -- If we are not instantiating, then this is where we load and -- analyze subunits, i.e. at the point where the stub occurs. A -- more permissive system might defer this analysis to the point -- of instantiation, but this seems too complicated for now. if not Instantiating then declare Subunit_Name : constant Unit_Name_Type := Get_Unit_Name (N); Subunit : Node_Id; Unum : Unit_Number_Type; New_Body : Node_Id; begin -- Make sure that, if it is a subunit of the main unit that is -- preprocessed and if -gnateG is specified, the preprocessed -- file will be written. Lib.Analysing_Subunit_Of_Main := Lib.In_Extended_Main_Source_Unit (N); Unum := Load_Unit (Load_Name => Subunit_Name, Required => False, Subunit => True, Error_Node => N); Lib.Analysing_Subunit_Of_Main := False; -- If the proper body is not found, a warning message will be -- emitted when analyzing the stub, or later at the point of -- instantiation. Here we just leave the stub as is. if Unum = No_Unit then Subunits_Missing := True; goto Subunit_Not_Found; end if; Subunit := Cunit (Unum); if Nkind (Unit (Subunit)) /= N_Subunit then Error_Msg_N ("found child unit instead of expected SEPARATE subunit", Subunit); Error_Msg_Sloc := Sloc (N); Error_Msg_N ("\to complete stub #", Subunit); goto Subunit_Not_Found; end if; -- We must create a generic copy of the subunit, in order to -- perform semantic analysis on it, and we must replace the -- stub in the original generic unit with the subunit, in order -- to preserve non-local references within. -- Only the proper body needs to be copied. Library_Unit and -- context clause are simply inherited by the generic copy. -- Note that the copy (which may be recursive if there are -- nested subunits) must be done first, before attaching it to -- the enclosing generic. New_Body := Copy_Generic_Node (Proper_Body (Unit (Subunit)), Empty, Instantiating => False); -- Now place the original proper body in the original generic -- unit. This is a body, not a compilation unit. Rewrite (N, Proper_Body (Unit (Subunit))); Set_Is_Compilation_Unit (Defining_Entity (N), False); Set_Was_Originally_Stub (N); -- Finally replace the body of the subunit with its copy, and -- make this new subunit into the library unit of the generic -- copy, which does not have stubs any longer. Set_Proper_Body (Unit (Subunit), New_Body); Set_Library_Unit (New_N, Subunit); Inherit_Context (Unit (Subunit), N); end; -- If we are instantiating, this must be an error case, since -- otherwise we would have replaced the stub node by the proper body -- that corresponds. So just ignore it in the copy (i.e. we have -- copied it, and that is good enough). else null; end if; <> null; -- If the node is a compilation unit, it is the subunit of a stub, which -- has been loaded already (see code below). In this case, the library -- unit field of N points to the parent unit (which is a compilation -- unit) and need not (and cannot) be copied. -- When the proper body of the stub is analyzed, the library_unit link -- is used to establish the proper context (see sem_ch10). -- The other fields of a compilation unit are copied as usual elsif Nkind (N) = N_Compilation_Unit then -- This code can only be executed when not instantiating, because in -- the copy made for an instantiation, the compilation unit node has -- disappeared at the point that a stub is replaced by its proper -- body. pragma Assert (not Instantiating); Set_Context_Items (New_N, Copy_Generic_List (Context_Items (N), New_N)); Set_Unit (New_N, Copy_Generic_Node (Unit (N), New_N, Instantiating => False)); Set_First_Inlined_Subprogram (New_N, Copy_Generic_Node (First_Inlined_Subprogram (N), New_N, Instantiating => False)); Set_Aux_Decls_Node (New_N, Copy_Generic_Node (Aux_Decls_Node (N), New_N, Instantiating => False)); -- For an assignment node, the assignment is known to be semantically -- legal if we are instantiating the template. This avoids incorrect -- diagnostics in generated code. elsif Nkind (N) = N_Assignment_Statement then -- Copy name and expression fields in usual manner Set_Name (New_N, Copy_Generic_Node (Name (N), New_N, Instantiating)); Set_Expression (New_N, Copy_Generic_Node (Expression (N), New_N, Instantiating)); if Instantiating then Set_Assignment_OK (Name (New_N), True); end if; elsif Nkind (N) in N_Aggregate | N_Extension_Aggregate then if not Instantiating then Set_Associated_Node (N, New_N); else -- If, in the generic, the aggregate has a global composite type -- and, at the point of instantiation, the type has a private view -- then install the full view. declare Assoc : constant Node_Id := Get_Associated_Node (N); begin if Present (Assoc) and then Nkind (Assoc) = Nkind (N) and then Present (Etype (Assoc)) and then Is_Private_Type (Etype (Assoc)) then Switch_View (Etype (Assoc)); end if; end; -- Moreover, for a full aggregate, if the type is a derived tagged -- type and has a global ancestor, then also restore the full view -- of this ancestor and do so up to the root type. Beware that the -- Ancestor_Type field is overloaded, so test that it's an entity. if Nkind (N) = N_Aggregate and then Present (Ancestor_Type (N)) and then Nkind (Ancestor_Type (N)) in N_Entity then declare Root_Typ : constant Entity_Id := Root_Type (Ancestor_Type (N)); Typ : Entity_Id := Ancestor_Type (N); begin loop if Is_Private_Type (Typ) then Switch_View (Typ); end if; exit when Typ = Root_Typ; Typ := Etype (Typ); end loop; end; end if; end if; -- Do not copy the associated node, which points to the generic copy -- of the aggregate. if Nkind (N) = N_Aggregate then Set_Aggregate_Bounds (New_N, Node_Id (Copy_Generic_Descendant (Union_Id (Aggregate_Bounds (N))))); elsif Nkind (N) = N_Extension_Aggregate then Set_Ancestor_Part (New_N, Node_Id (Copy_Generic_Descendant (Union_Id (Ancestor_Part (N))))); else pragma Assert (False); end if; Set_Expressions (New_N, List_Id (Copy_Generic_Descendant (Union_Id (Expressions (N))))); Set_Component_Associations (New_N, List_Id (Copy_Generic_Descendant (Union_Id (Component_Associations (N))))); Set_Etype (New_N, Node_Id (Copy_Generic_Descendant (Union_Id (Etype (N))))); -- Allocators do not have an identifier denoting the access type, so we -- must locate it through the expression to check whether the views are -- consistent. elsif Nkind (N) = N_Allocator and then Nkind (Expression (N)) = N_Qualified_Expression and then Is_Entity_Name (Subtype_Mark (Expression (N))) and then Instantiating then declare T : constant Node_Id := Get_Associated_Node (Subtype_Mark (Expression (N))); Acc_T : Entity_Id; begin if Present (T) then -- Retrieve the allocator node in the generic copy Acc_T := Etype (Parent (Parent (T))); if Present (Acc_T) and then Is_Private_Type (Acc_T) then Switch_View (Acc_T); end if; end if; Copy_Descendants; end; -- Loop parameter specifications do not have an identifier denoting the -- index type, so we must locate it through the defining identifier to -- check whether the views are consistent. elsif Nkind (N) = N_Loop_Parameter_Specification and then Instantiating then declare Id : constant Entity_Id := Get_Associated_Entity (Defining_Identifier (N)); Index_T : Entity_Id; begin if Present (Id) and then Present (Etype (Id)) then Index_T := First_Subtype (Etype (Id)); if Present (Index_T) and then Is_Private_Type (Index_T) then Switch_View (Index_T); end if; end if; Copy_Descendants; end; -- For a proper body, we must catch the case of a proper body that -- replaces a stub. This represents the point at which a separate -- compilation unit, and hence template file, may be referenced, so we -- must make a new source instantiation entry for the template of the -- subunit, and ensure that all nodes in the subunit are adjusted using -- this new source instantiation entry. elsif Nkind (N) in N_Proper_Body then declare Save_Adjustment : constant Sloc_Adjustment := S_Adjustment; begin if Instantiating and then Was_Originally_Stub (N) then Create_Instantiation_Source (Instantiation_Node, Defining_Entity (N), S_Adjustment); Adjust_Instantiation_Sloc (New_N, S_Adjustment); end if; -- Now copy the fields of the proper body, using the new -- adjustment factor if one was needed as per test above. Copy_Descendants; -- Restore the original adjustment factor S_Adjustment := Save_Adjustment; end; elsif Nkind (N) = N_Pragma and then Instantiating then -- Do not copy Comment or Ident pragmas their content is relevant to -- the generic unit, not to the instantiating unit. if Pragma_Name_Unmapped (N) in Name_Comment | Name_Ident then New_N := Make_Null_Statement (Sloc (N)); -- Do not copy pragmas generated from aspects because the pragmas do -- not carry any semantic information, plus they will be regenerated -- in the instance. -- However, generating C we need to copy them since postconditions -- are inlined by the front end, and the front-end inlining machinery -- relies on this routine to perform inlining. elsif From_Aspect_Specification (N) and then not Modify_Tree_For_C then New_N := Make_Null_Statement (Sloc (N)); else Copy_Descendants; end if; elsif Nkind (N) in N_Integer_Literal | N_Real_Literal then -- No descendant fields need traversing null; elsif Nkind (N) = N_String_Literal and then Present (Etype (N)) and then Instantiating then -- If the string is declared in an outer scope, the string_literal -- subtype created for it may have the wrong scope. Force reanalysis -- of the constant to generate a new itype in the proper context. Set_Etype (New_N, Empty); Set_Analyzed (New_N, False); -- For the remaining nodes, copy their descendants recursively else Copy_Descendants; if Instantiating and then Nkind (N) = N_Subprogram_Body then Set_Generic_Parent (Specification (New_N), N); -- Should preserve Corresponding_Spec??? (12.3(14)) end if; end if; -- Propagate dimensions if present, so that they are reflected in the -- instance. if Nkind (N) in N_Has_Etype and then (Nkind (N) in N_Op or else Is_Entity_Name (N)) and then Present (Etype (N)) and then Is_Floating_Point_Type (Etype (N)) and then Has_Dimension_System (Etype (N)) then Copy_Dimensions (N, New_N); end if; return New_N; end Copy_Generic_Node; ---------------------------- -- Denotes_Formal_Package -- ---------------------------- function Denotes_Formal_Package (Pack : Entity_Id; On_Exit : Boolean := False; Instance : Entity_Id := Empty) return Boolean is Par : Entity_Id; Scop : constant Entity_Id := Scope (Pack); E : Entity_Id; function Is_Actual_Of_Previous_Formal (P : Entity_Id) return Boolean; -- The package in question may be an actual for a previous formal -- package P of the current instance, so examine its actuals as well. -- This must be recursive over other formal packages. ---------------------------------- -- Is_Actual_Of_Previous_Formal -- ---------------------------------- function Is_Actual_Of_Previous_Formal (P : Entity_Id) return Boolean is E1 : Entity_Id; begin E1 := First_Entity (P); while Present (E1) and then E1 /= Instance loop if Ekind (E1) = E_Package and then Nkind (Parent (E1)) = N_Package_Renaming_Declaration then if Renamed_Entity (E1) = Pack then return True; elsif E1 = P or else Renamed_Entity (E1) = P then return False; elsif Is_Actual_Of_Previous_Formal (E1) then return True; end if; end if; Next_Entity (E1); end loop; return False; end Is_Actual_Of_Previous_Formal; -- Start of processing for Denotes_Formal_Package begin if On_Exit then Par := Instance_Envs.Table (Instance_Envs.Last).Instantiated_Parent.Act_Id; else Par := Current_Instantiated_Parent.Act_Id; end if; if Ekind (Scop) = E_Generic_Package or else Nkind (Unit_Declaration_Node (Scop)) = N_Generic_Subprogram_Declaration then return True; elsif Nkind (Original_Node (Unit_Declaration_Node (Pack))) = N_Formal_Package_Declaration then return True; elsif No (Par) then return False; else -- Check whether this package is associated with a formal package of -- the enclosing instantiation. Iterate over the list of renamings. E := First_Entity (Par); while Present (E) loop if Ekind (E) /= E_Package or else Nkind (Parent (E)) /= N_Package_Renaming_Declaration then null; elsif Renamed_Entity (E) = Par then return False; elsif Renamed_Entity (E) = Pack then return True; elsif Is_Actual_Of_Previous_Formal (E) then return True; end if; Next_Entity (E); end loop; return False; end if; end Denotes_Formal_Package; ----------------- -- End_Generic -- ----------------- procedure End_Generic is begin -- ??? More things could be factored out in this routine. Should -- probably be done at a later stage. Inside_A_Generic := Generic_Flags.Table (Generic_Flags.Last); Generic_Flags.Decrement_Last; Expander_Mode_Restore; end End_Generic; ------------- -- Earlier -- ------------- function Earlier (N1, N2 : Node_Id) return Boolean is procedure Find_Depth (P : in out Node_Id; D : in out Integer); -- Find distance from given node to enclosing compilation unit ---------------- -- Find_Depth -- ---------------- procedure Find_Depth (P : in out Node_Id; D : in out Integer) is begin while Present (P) and then Nkind (P) /= N_Compilation_Unit loop P := True_Parent (P); D := D + 1; end loop; end Find_Depth; -- Local declarations D1 : Integer := 0; D2 : Integer := 0; P1 : Node_Id := N1; P2 : Node_Id := N2; T1 : Source_Ptr; T2 : Source_Ptr; -- Start of processing for Earlier begin Find_Depth (P1, D1); Find_Depth (P2, D2); if P1 /= P2 then return False; else P1 := N1; P2 := N2; end if; while D1 > D2 loop P1 := True_Parent (P1); D1 := D1 - 1; end loop; while D2 > D1 loop P2 := True_Parent (P2); D2 := D2 - 1; end loop; -- At this point P1 and P2 are at the same distance from the root. -- We examine their parents until we find a common declarative list. -- If we reach the root, N1 and N2 do not descend from the same -- declarative list (e.g. one is nested in the declarative part and -- the other is in a block in the statement part) and the earlier -- one is already frozen. while not Is_List_Member (P1) or else not Is_List_Member (P2) or else not In_Same_List (P1, P2) loop P1 := True_Parent (P1); P2 := True_Parent (P2); if Nkind (Parent (P1)) = N_Subunit then P1 := Corresponding_Stub (Parent (P1)); end if; if Nkind (Parent (P2)) = N_Subunit then P2 := Corresponding_Stub (Parent (P2)); end if; if P1 = P2 then return False; end if; end loop; -- Expanded code usually shares the source location of the original -- construct it was generated for. This however may not necessarily -- reflect the true location of the code within the tree. -- Before comparing the slocs of the two nodes, make sure that we are -- working with correct source locations. Assume that P1 is to the left -- of P2. If either one does not come from source, traverse the common -- list heading towards the other node and locate the first source -- statement. -- P1 P2 -- ----+===+===+--------------+===+===+---- -- expanded code expanded code if not Comes_From_Source (P1) then while Present (P1) loop -- Neither P2 nor a source statement were located during the -- search. If we reach the end of the list, then P1 does not -- occur earlier than P2. -- ----> -- start --- P2 ----- P1 --- end if No (Next (P1)) then return False; -- We encounter P2 while going to the right of the list. This -- means that P1 does indeed appear earlier. -- ----> -- start --- P1 ===== P2 --- end -- expanded code in between elsif P1 = P2 then return True; -- No need to look any further since we have located a source -- statement. elsif Comes_From_Source (P1) then exit; end if; -- Keep going right Next (P1); end loop; end if; if not Comes_From_Source (P2) then while Present (P2) loop -- Neither P1 nor a source statement were located during the -- search. If we reach the start of the list, then P1 does not -- occur earlier than P2. -- <---- -- start --- P2 --- P1 --- end if No (Prev (P2)) then return False; -- We encounter P1 while going to the left of the list. This -- means that P1 does indeed appear earlier. -- <---- -- start --- P1 ===== P2 --- end -- expanded code in between elsif P2 = P1 then return True; -- No need to look any further since we have located a source -- statement. elsif Comes_From_Source (P2) then exit; end if; -- Keep going left Prev (P2); end loop; end if; -- At this point either both nodes came from source or we approximated -- their source locations through neighboring source statements. T1 := Top_Level_Location (Sloc (P1)); T2 := Top_Level_Location (Sloc (P2)); -- When two nodes come from the same instance, they have identical top -- level locations. To determine proper relation within the tree, check -- their locations within the template. if T1 = T2 then return Sloc (P1) < Sloc (P2); -- The two nodes either come from unrelated instances or do not come -- from instantiated code at all. else return T1 < T2; end if; end Earlier; ---------------------- -- Find_Actual_Type -- ---------------------- function Find_Actual_Type (Typ : Entity_Id; Gen_Type : Entity_Id) return Entity_Id is Gen_Scope : constant Entity_Id := Scope (Gen_Type); T : Entity_Id; begin -- Special processing only applies to child units if not Is_Child_Unit (Gen_Scope) then return Get_Instance_Of (Typ); -- If designated or component type is itself a formal of the child unit, -- its instance is available. elsif Scope (Typ) = Gen_Scope then return Get_Instance_Of (Typ); -- If the array or access type is not declared in the parent unit, -- no special processing needed. elsif not Is_Generic_Type (Typ) and then Scope (Gen_Scope) /= Scope (Typ) then return Get_Instance_Of (Typ); -- Otherwise, retrieve designated or component type by visibility else T := Current_Entity (Typ); while Present (T) loop if In_Open_Scopes (Scope (T)) then return T; elsif Is_Generic_Actual_Type (T) then return T; end if; T := Homonym (T); end loop; return Typ; end if; end Find_Actual_Type; ----------------------------- -- Freeze_Package_Instance -- ----------------------------- procedure Freeze_Package_Instance (N : Node_Id; Gen_Body : Node_Id; Gen_Decl : Node_Id; Act_Id : Entity_Id) is function In_Same_Scope (Gen_Id, Act_Id : Node_Id) return Boolean; -- Check if the generic definition and the instantiation come from -- a common scope, in which case the instance must be frozen after -- the generic body. function True_Sloc (N, Act_Unit : Node_Id) return Source_Ptr; -- If the instance is nested inside a generic unit, the Sloc of the -- instance indicates the place of the original definition, not the -- point of the current enclosing instance. Pending a better usage of -- Slocs to indicate instantiation places, we determine the place of -- origin of a node by finding the maximum sloc of any ancestor node. -- Why is this not equivalent to Top_Level_Location ??? ------------------- -- In_Same_Scope -- ------------------- function In_Same_Scope (Gen_Id, Act_Id : Node_Id) return Boolean is Act_Scop : Entity_Id := Scope (Act_Id); Gen_Scop : Entity_Id := Scope (Gen_Id); begin while Act_Scop /= Standard_Standard and then Gen_Scop /= Standard_Standard loop if Act_Scop = Gen_Scop then return True; end if; Act_Scop := Scope (Act_Scop); Gen_Scop := Scope (Gen_Scop); end loop; return False; end In_Same_Scope; --------------- -- True_Sloc -- --------------- function True_Sloc (N, Act_Unit : Node_Id) return Source_Ptr is N1 : Node_Id; Res : Source_Ptr; begin Res := Sloc (N); N1 := N; while Present (N1) and then N1 /= Act_Unit loop if Sloc (N1) > Res then Res := Sloc (N1); end if; N1 := Parent (N1); end loop; return Res; end True_Sloc; -- Local variables Gen_Id : constant Entity_Id := Get_Generic_Entity (N); Par_Id : constant Entity_Id := Scope (Gen_Id); Act_Unit : constant Node_Id := Unit (Cunit (Get_Source_Unit (N))); Gen_Unit : constant Node_Id := Unit (Cunit (Get_Source_Unit (Gen_Decl))); Body_Unit : Node_Id; F_Node : Node_Id; Must_Delay : Boolean; Orig_Body : Node_Id; -- Start of processing for Freeze_Package_Instance begin -- If the body is a subunit, the freeze point is the corresponding stub -- in the current compilation, not the subunit itself. if Nkind (Parent (Gen_Body)) = N_Subunit then Orig_Body := Corresponding_Stub (Parent (Gen_Body)); else Orig_Body := Gen_Body; end if; Body_Unit := Unit (Cunit (Get_Source_Unit (Orig_Body))); -- If the instantiation and the generic definition appear in the same -- package declaration, this is an early instantiation. If they appear -- in the same declarative part, it is an early instantiation only if -- the generic body appears textually later, and the generic body is -- also in the main unit. -- If instance is nested within a subprogram, and the generic body -- is not, the instance is delayed because the enclosing body is. If -- instance and body are within the same scope, or the same subprogram -- body, indicate explicitly that the instance is delayed. Must_Delay := (Gen_Unit = Act_Unit and then (Nkind (Gen_Unit) in N_Generic_Package_Declaration | N_Package_Declaration or else (Gen_Unit = Body_Unit and then True_Sloc (N, Act_Unit) < Sloc (Orig_Body))) and then Is_In_Main_Unit (Original_Node (Gen_Unit)) and then In_Same_Scope (Gen_Id, Act_Id)); -- If this is an early instantiation, the freeze node is placed after -- the generic body. Otherwise, if the generic appears in an instance, -- we cannot freeze the current instance until the outer one is frozen. -- This is only relevant if the current instance is nested within some -- inner scope not itself within the outer instance. If this scope is -- a package body in the same declarative part as the outer instance, -- then that body needs to be frozen after the outer instance. Finally, -- if no delay is needed, we place the freeze node at the end of the -- current declarative part. if No (Freeze_Node (Act_Id)) or else not Is_List_Member (Freeze_Node (Act_Id)) then Ensure_Freeze_Node (Act_Id); F_Node := Freeze_Node (Act_Id); if Must_Delay then Insert_After (Orig_Body, F_Node); elsif Is_Generic_Instance (Par_Id) and then Present (Freeze_Node (Par_Id)) and then Scope (Act_Id) /= Par_Id then -- Freeze instance of inner generic after instance of enclosing -- generic. if In_Same_Declarative_Part (Parent (Freeze_Node (Par_Id)), N) then -- Handle the following case: -- package Parent_Inst is new ... -- freeze Parent_Inst [] -- procedure P ... -- this body freezes Parent_Inst -- package Inst is new ... -- In this particular scenario, the freeze node for Inst must -- be inserted in the same manner as that of Parent_Inst, -- before the next source body or at the end of the declarative -- list (body not available). If body P did not exist and -- Parent_Inst was frozen after Inst, either by a body -- following Inst or at the end of the declarative region, -- the freeze node for Inst must be inserted after that of -- Parent_Inst. This relation is established by comparing -- the Slocs of Parent_Inst freeze node and Inst. -- We examine the parents of the enclosing lists to handle -- the case where the parent instance is in the visible part -- of a package declaration, and the inner instance is in -- the corresponding private part. if Parent (List_Containing (Freeze_Node (Par_Id))) = Parent (List_Containing (N)) and then Sloc (Freeze_Node (Par_Id)) <= Sloc (N) then Insert_Freeze_Node_For_Instance (N, F_Node); else Insert_After (Freeze_Node (Par_Id), F_Node); end if; -- Freeze package enclosing instance of inner generic after -- instance of enclosing generic. elsif Nkind (Parent (N)) in N_Package_Body | N_Subprogram_Body and then In_Same_Declarative_Part (Parent (Freeze_Node (Par_Id)), Parent (N)) then declare Enclosing : Entity_Id; begin Enclosing := Corresponding_Spec (Parent (N)); if No (Enclosing) then Enclosing := Defining_Entity (Parent (N)); end if; Insert_Freeze_Node_For_Instance (N, F_Node); Ensure_Freeze_Node (Enclosing); if not Is_List_Member (Freeze_Node (Enclosing)) then -- The enclosing context is a subunit, insert the freeze -- node after the stub. if Nkind (Parent (Parent (N))) = N_Subunit then Insert_Freeze_Node_For_Instance (Corresponding_Stub (Parent (Parent (N))), Freeze_Node (Enclosing)); -- The enclosing context is a package with a stub body -- which has already been replaced by the real body. -- Insert the freeze node after the actual body. elsif Ekind (Enclosing) = E_Package and then Present (Body_Entity (Enclosing)) and then Was_Originally_Stub (Parent (Body_Entity (Enclosing))) then Insert_Freeze_Node_For_Instance (Parent (Body_Entity (Enclosing)), Freeze_Node (Enclosing)); -- The parent instance has been frozen before the body of -- the enclosing package, insert the freeze node after -- the body. elsif In_Same_List (Freeze_Node (Par_Id), Parent (N)) and then Sloc (Freeze_Node (Par_Id)) <= Sloc (Parent (N)) then Insert_Freeze_Node_For_Instance (Parent (N), Freeze_Node (Enclosing)); else Insert_After (Freeze_Node (Par_Id), Freeze_Node (Enclosing)); end if; end if; end; else Insert_Freeze_Node_For_Instance (N, F_Node); end if; else Insert_Freeze_Node_For_Instance (N, F_Node); end if; end if; end Freeze_Package_Instance; -------------------------------- -- Freeze_Subprogram_Instance -- -------------------------------- procedure Freeze_Subprogram_Instance (N : Node_Id; Gen_Body : Node_Id; Pack_Id : Entity_Id) is function Enclosing_Package_Body (N : Node_Id) return Node_Id; -- Find innermost package body that encloses the given node, and which -- is not a compilation unit. Freeze nodes for the instance, or for its -- enclosing body, may be inserted after the enclosing_body of the -- generic unit. Used to determine proper placement of freeze node for -- both package and subprogram instances. function Package_Freeze_Node (B : Node_Id) return Node_Id; -- Find entity for given package body, and locate or create a freeze -- node for it. ---------------------------- -- Enclosing_Package_Body -- ---------------------------- function Enclosing_Package_Body (N : Node_Id) return Node_Id is P : Node_Id; begin P := Parent (N); while Present (P) and then Nkind (Parent (P)) /= N_Compilation_Unit loop if Nkind (P) = N_Package_Body then if Nkind (Parent (P)) = N_Subunit then return Corresponding_Stub (Parent (P)); else return P; end if; end if; P := True_Parent (P); end loop; return Empty; end Enclosing_Package_Body; ------------------------- -- Package_Freeze_Node -- ------------------------- function Package_Freeze_Node (B : Node_Id) return Node_Id is Id : Entity_Id; begin if Nkind (B) = N_Package_Body then Id := Corresponding_Spec (B); else pragma Assert (Nkind (B) = N_Package_Body_Stub); Id := Corresponding_Spec (Proper_Body (Unit (Library_Unit (B)))); end if; Ensure_Freeze_Node (Id); return Freeze_Node (Id); end Package_Freeze_Node; -- Local variables Enc_G : constant Node_Id := Enclosing_Package_Body (Gen_Body); Enc_N : constant Node_Id := Enclosing_Package_Body (N); Par_Id : constant Entity_Id := Scope (Get_Generic_Entity (N)); Enc_G_F : Node_Id; F_Node : Node_Id; -- Start of processing for Freeze_Subprogram_Instance begin -- If the instance and the generic body appear within the same unit, and -- the instance precedes the generic, the freeze node for the instance -- must appear after that of the generic. If the generic is nested -- within another instance I2, then current instance must be frozen -- after I2. In both cases, the freeze nodes are those of enclosing -- packages. Otherwise, the freeze node is placed at the end of the -- current declarative part. Ensure_Freeze_Node (Pack_Id); F_Node := Freeze_Node (Pack_Id); if Is_Generic_Instance (Par_Id) and then Present (Freeze_Node (Par_Id)) and then In_Same_Declarative_Part (Parent (Freeze_Node (Par_Id)), N) then -- The parent was a premature instantiation. Insert freeze node at -- the end the current declarative part. if Is_Known_Guaranteed_ABE (Get_Unit_Instantiation_Node (Par_Id)) then Insert_Freeze_Node_For_Instance (N, F_Node); -- Handle the following case: -- -- package Parent_Inst is new ... -- freeze Parent_Inst [] -- -- procedure P ... -- this body freezes Parent_Inst -- -- procedure Inst is new ... -- -- In this particular scenario, the freeze node for Inst must be -- inserted in the same manner as that of Parent_Inst - before the -- next source body or at the end of the declarative list (body not -- available). If body P did not exist and Parent_Inst was frozen -- after Inst, either by a body following Inst or at the end of the -- declarative region, the freeze node for Inst must be inserted -- after that of Parent_Inst. This relation is established by -- comparing the Slocs of Parent_Inst freeze node and Inst. elsif In_Same_List (Freeze_Node (Par_Id), N) and then Sloc (Freeze_Node (Par_Id)) <= Sloc (N) then Insert_Freeze_Node_For_Instance (N, F_Node); else Insert_After (Freeze_Node (Par_Id), F_Node); end if; -- The body enclosing the instance should be frozen after the body that -- includes the generic, because the body of the instance may make -- references to entities therein. If the two are not in the same -- declarative part, or if the one enclosing the instance is frozen -- already, freeze the instance at the end of the current declarative -- part. elsif Is_Generic_Instance (Par_Id) and then Present (Freeze_Node (Par_Id)) and then Present (Enc_N) then if In_Same_Declarative_Part (Parent (Freeze_Node (Par_Id)), Enc_N) then -- The enclosing package may contain several instances. Rather -- than computing the earliest point at which to insert its freeze -- node, we place it at the end of the declarative part of the -- parent of the generic. Insert_Freeze_Node_For_Instance (Freeze_Node (Par_Id), Package_Freeze_Node (Enc_N)); end if; Insert_Freeze_Node_For_Instance (N, F_Node); elsif Present (Enc_G) and then Present (Enc_N) and then Enc_G /= Enc_N and then Earlier (N, Gen_Body) then -- Freeze package that encloses instance, and place node after the -- package that encloses generic. If enclosing package is already -- frozen we have to assume it is at the proper place. This may be a -- potential ABE that requires dynamic checking. Do not add a freeze -- node if the package that encloses the generic is inside the body -- that encloses the instance, because the freeze node would be in -- the wrong scope. Additional contortions needed if the bodies are -- within a subunit. declare Enclosing_Body : Node_Id; begin if Nkind (Enc_N) = N_Package_Body_Stub then Enclosing_Body := Proper_Body (Unit (Library_Unit (Enc_N))); else Enclosing_Body := Enc_N; end if; if Parent (List_Containing (Enc_G)) /= Enclosing_Body then Insert_Freeze_Node_For_Instance (Enc_G, Package_Freeze_Node (Enc_N)); end if; end; -- Freeze enclosing subunit before instance Enc_G_F := Package_Freeze_Node (Enc_G); if not Is_List_Member (Enc_G_F) then Insert_After (Enc_G, Enc_G_F); end if; Insert_Freeze_Node_For_Instance (N, F_Node); else -- If none of the above, insert freeze node at the end of the current -- declarative part. Insert_Freeze_Node_For_Instance (N, F_Node); end if; end Freeze_Subprogram_Instance; ---------------- -- Get_Gen_Id -- ---------------- function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id is begin return Generic_Renamings.Table (E).Gen_Id; end Get_Gen_Id; --------------------- -- Get_Instance_Of -- --------------------- function Get_Instance_Of (A : Entity_Id) return Entity_Id is Res : constant Assoc_Ptr := Generic_Renamings_HTable.Get (A); begin if Res /= Assoc_Null then return Generic_Renamings.Table (Res).Act_Id; else -- On exit, entity is not instantiated: not a generic parameter, or -- else parameter of an inner generic unit. return A; end if; end Get_Instance_Of; --------------------------------- -- Get_Unit_Instantiation_Node -- --------------------------------- function Get_Unit_Instantiation_Node (A : Entity_Id) return Node_Id is Decl : Node_Id := Unit_Declaration_Node (A); Inst : Node_Id; begin -- If the Package_Instantiation attribute has been set on the package -- entity, then use it directly when it (or its Original_Node) refers -- to an N_Package_Instantiation node. In principle it should be -- possible to have this field set in all cases, which should be -- investigated, and would allow this function to be significantly -- simplified. ??? Inst := Package_Instantiation (A); if Present (Inst) then if Nkind (Inst) = N_Package_Instantiation then return Inst; elsif Nkind (Original_Node (Inst)) = N_Package_Instantiation then return Original_Node (Inst); end if; end if; -- If the instantiation is a compilation unit that does not need body -- then the instantiation node has been rewritten as a package -- declaration for the instance, and we return the original node. -- If it is a compilation unit and the instance node has not been -- rewritten, then it is still the unit of the compilation. Finally, if -- a body is present, this is a parent of the main unit whose body has -- been compiled for inlining purposes, and the instantiation node has -- been rewritten with the instance body. -- Otherwise the instantiation node appears after the declaration. If -- the entity is a formal package, the declaration may have been -- rewritten as a generic declaration (in the case of a formal with box) -- or left as a formal package declaration if it has actuals, and is -- found with a forward search. if Nkind (Parent (Decl)) = N_Compilation_Unit then if Nkind (Decl) = N_Package_Declaration and then Present (Corresponding_Body (Decl)) then Decl := Unit_Declaration_Node (Corresponding_Body (Decl)); end if; if Nkind (Original_Node (Decl)) in N_Generic_Instantiation then return Original_Node (Decl); else return Unit (Parent (Decl)); end if; elsif Nkind (Decl) = N_Package_Declaration and then Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration then return Original_Node (Decl); else Inst := Next (Decl); while Nkind (Inst) not in N_Formal_Package_Declaration | N_Function_Instantiation | N_Package_Instantiation | N_Procedure_Instantiation loop Next (Inst); end loop; return Inst; end if; end Get_Unit_Instantiation_Node; ------------------------ -- Has_Been_Exchanged -- ------------------------ function Has_Been_Exchanged (E : Entity_Id) return Boolean is Next : Elmt_Id; begin Next := First_Elmt (Exchanged_Views); while Present (Next) loop if Full_View (Node (Next)) = E then return True; end if; Next_Elmt (Next); end loop; return False; end Has_Been_Exchanged; ------------------- -- Has_Contracts -- ------------------- function Has_Contracts (Decl : Node_Id) return Boolean is A_List : constant List_Id := Aspect_Specifications (Decl); A_Spec : Node_Id; A_Id : Aspect_Id; begin A_Spec := First (A_List); while Present (A_Spec) loop A_Id := Get_Aspect_Id (A_Spec); if A_Id = Aspect_Pre or else A_Id = Aspect_Post then return True; end if; Next (A_Spec); end loop; return False; end Has_Contracts; ------------------------------- -- Has_Fully_Defined_Profile -- ------------------------------- function Has_Fully_Defined_Profile (Subp : Entity_Id) return Boolean is function Is_Fully_Defined_Type (Typ : Entity_Id) return Boolean; -- Determine whethet type Typ is fully defined --------------------------- -- Is_Fully_Defined_Type -- --------------------------- function Is_Fully_Defined_Type (Typ : Entity_Id) return Boolean is begin -- A private type without a full view is not fully defined if Is_Private_Type (Typ) and then No (Full_View (Typ)) then return False; -- An incomplete type is never fully defined elsif Is_Incomplete_Type (Typ) then return False; -- All other types are fully defined else return True; end if; end Is_Fully_Defined_Type; -- Local declarations Param : Entity_Id; -- Start of processing for Has_Fully_Defined_Profile begin -- Check the parameters Param := First_Formal (Subp); while Present (Param) loop if not Is_Fully_Defined_Type (Etype (Param)) then return False; end if; Next_Formal (Param); end loop; -- Check the return type return Is_Fully_Defined_Type (Etype (Subp)); end Has_Fully_Defined_Profile; ---------- -- Hash -- ---------- function Hash (F : Entity_Id) return HTable_Range is begin return HTable_Range (F mod HTable_Size); end Hash; ------------------------ -- Hide_Current_Scope -- ------------------------ procedure Hide_Current_Scope is C : constant Entity_Id := Current_Scope; E : Entity_Id; begin Set_Is_Hidden_Open_Scope (C); E := First_Entity (C); while Present (E) loop if Is_Immediately_Visible (E) then Set_Is_Immediately_Visible (E, False); Append_Elmt (E, Hidden_Entities); end if; Next_Entity (E); end loop; -- Make the scope name invisible as well. This is necessary, but might -- conflict with calls to Rtsfind later on, in case the scope is a -- predefined one. There is no clean solution to this problem, so for -- now we depend on the user not redefining Standard itself in one of -- the parent units. if Is_Immediately_Visible (C) and then C /= Standard_Standard then Set_Is_Immediately_Visible (C, False); Append_Elmt (C, Hidden_Entities); end if; end Hide_Current_Scope; -------------- -- Init_Env -- -------------- procedure Init_Env is Saved : Instance_Env; begin Saved.Instantiated_Parent := Current_Instantiated_Parent; Saved.Exchanged_Views := Exchanged_Views; Saved.Hidden_Entities := Hidden_Entities; Saved.Current_Sem_Unit := Current_Sem_Unit; Saved.Parent_Unit_Visible := Parent_Unit_Visible; Saved.Instance_Parent_Unit := Instance_Parent_Unit; -- Save configuration switches. These may be reset if the unit is a -- predefined unit, and the current mode is not Ada 2005. Saved.Switches := Save_Config_Switches; Instance_Envs.Append (Saved); Exchanged_Views := New_Elmt_List; Hidden_Entities := New_Elmt_List; -- Make dummy entry for Instantiated parent. If generic unit is legal, -- this is set properly in Set_Instance_Env. Current_Instantiated_Parent := (Current_Scope, Current_Scope, Assoc_Null); end Init_Env; --------------------- -- In_Main_Context -- --------------------- function In_Main_Context (E : Entity_Id) return Boolean is Context : List_Id; Clause : Node_Id; Nam : Node_Id; begin if not Is_Compilation_Unit (E) or else Ekind (E) /= E_Package or else In_Private_Part (E) then return False; end if; Context := Context_Items (Cunit (Main_Unit)); Clause := First (Context); while Present (Clause) loop if Nkind (Clause) = N_With_Clause then Nam := Name (Clause); -- If the current scope is part of the context of the main unit, -- analysis of the corresponding with_clause is not complete, and -- the entity is not set. We use the Chars field directly, which -- might produce false positives in rare cases, but guarantees -- that we produce all the instance bodies we will need. if (Is_Entity_Name (Nam) and then Chars (Nam) = Chars (E)) or else (Nkind (Nam) = N_Selected_Component and then Chars (Selector_Name (Nam)) = Chars (E)) then return True; end if; end if; Next (Clause); end loop; return False; end In_Main_Context; --------------------- -- Inherit_Context -- --------------------- procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id) is Current_Context : List_Id; Current_Unit : Node_Id; Item : Node_Id; New_I : Node_Id; Clause : Node_Id; OK : Boolean; Lib_Unit : Node_Id; begin if Nkind (Parent (Gen_Decl)) = N_Compilation_Unit then -- The inherited context is attached to the enclosing compilation -- unit. This is either the main unit, or the declaration for the -- main unit (in case the instantiation appears within the package -- declaration and the main unit is its body). Current_Unit := Parent (Inst); while Present (Current_Unit) and then Nkind (Current_Unit) /= N_Compilation_Unit loop Current_Unit := Parent (Current_Unit); end loop; Current_Context := Context_Items (Current_Unit); Item := First (Context_Items (Parent (Gen_Decl))); while Present (Item) loop if Nkind (Item) = N_With_Clause then Lib_Unit := Library_Unit (Item); -- Take care to prevent direct cyclic with's if Lib_Unit /= Current_Unit then -- Do not add a unit if it is already in the context Clause := First (Current_Context); OK := True; while Present (Clause) loop if Nkind (Clause) = N_With_Clause and then Library_Unit (Clause) = Lib_Unit then OK := False; exit; end if; Next (Clause); end loop; if OK then New_I := New_Copy (Item); Set_Implicit_With (New_I); Append (New_I, Current_Context); end if; end if; end if; Next (Item); end loop; end if; end Inherit_Context; ---------------- -- Initialize -- ---------------- procedure Initialize is begin Generic_Renamings.Init; Instance_Envs.Init; Generic_Flags.Init; Generic_Renamings_HTable.Reset; Circularity_Detected := False; Exchanged_Views := No_Elist; Hidden_Entities := No_Elist; end Initialize; ------------------------------------- -- Insert_Freeze_Node_For_Instance -- ------------------------------------- procedure Insert_Freeze_Node_For_Instance (N : Node_Id; F_Node : Node_Id) is function Enclosing_Body (N : Node_Id) return Node_Id; -- Find enclosing package or subprogram body, if any. Freeze node may -- be placed at end of current declarative list if previous instance -- and current one have different enclosing bodies. function Previous_Instance (Gen : Entity_Id) return Entity_Id; -- Find the local instance, if any, that declares the generic that is -- being instantiated. If present, the freeze node for this instance -- must follow the freeze node for the previous instance. -------------------- -- Enclosing_Body -- -------------------- function Enclosing_Body (N : Node_Id) return Node_Id is P : Node_Id; begin P := Parent (N); while Present (P) and then Nkind (Parent (P)) /= N_Compilation_Unit loop if Nkind (P) in N_Package_Body | N_Subprogram_Body then if Nkind (Parent (P)) = N_Subunit then return Corresponding_Stub (Parent (P)); else return P; end if; end if; P := True_Parent (P); end loop; return Empty; end Enclosing_Body; ----------------------- -- Previous_Instance -- ----------------------- function Previous_Instance (Gen : Entity_Id) return Entity_Id is S : Entity_Id; begin S := Scope (Gen); while Present (S) and then S /= Standard_Standard loop if Is_Generic_Instance (S) and then In_Same_Source_Unit (S, N) then return S; end if; S := Scope (S); end loop; return Empty; end Previous_Instance; -- Local variables Decl : Node_Id; Decls : List_Id; Inst : Entity_Id; Origin : Entity_Id; Par_Inst : Node_Id; Par_N : Node_Id; -- Start of processing for Insert_Freeze_Node_For_Instance begin -- Nothing to do if the freeze node has already been inserted if Is_List_Member (F_Node) then return; end if; Inst := Entity (F_Node); -- When processing a subprogram instantiation, utilize the actual -- subprogram instantiation rather than its package wrapper as it -- carries all the context information. if Is_Wrapper_Package (Inst) then Inst := Related_Instance (Inst); end if; Par_Inst := Parent (Inst); -- If this is a package instance, check whether the generic is declared -- in a previous instance and the current instance is not within the -- previous one. if Present (Generic_Parent (Par_Inst)) and then Is_In_Main_Unit (N) then declare Enclosing_N : constant Node_Id := Enclosing_Body (N); Par_I : constant Entity_Id := Previous_Instance (Generic_Parent (Par_Inst)); Scop : Entity_Id; begin if Present (Par_I) and then Earlier (N, Freeze_Node (Par_I)) then Scop := Scope (Inst); -- If the current instance is within the one that contains -- the generic, the freeze node for the current one must -- appear in the current declarative part. Ditto, if the -- current instance is within another package instance or -- within a body that does not enclose the current instance. -- In these three cases the freeze node of the previous -- instance is not relevant. while Present (Scop) and then Scop /= Standard_Standard loop exit when Scop = Par_I or else (Is_Generic_Instance (Scop) and then Scope_Depth (Scop) > Scope_Depth (Par_I)); Scop := Scope (Scop); end loop; -- Previous instance encloses current instance if Scop = Par_I then null; -- If the next node is a source body we must freeze in the -- current scope as well. elsif Present (Next (N)) and then Nkind (Next (N)) in N_Subprogram_Body | N_Package_Body and then Comes_From_Source (Next (N)) then null; -- Current instance is within an unrelated instance elsif Is_Generic_Instance (Scop) then null; -- Current instance is within an unrelated body elsif Present (Enclosing_N) and then Enclosing_N /= Enclosing_Body (Par_I) then null; else Insert_After (Freeze_Node (Par_I), F_Node); return; end if; end if; end; end if; Decl := N; Decls := List_Containing (N); Par_N := Parent (Decls); Origin := Empty; -- Determine the proper freeze point of an instantiation if Is_Generic_Instance (Inst) then loop -- When the instantiation occurs in a package spec, append the -- freeze node to the private declarations (if any). if Nkind (Par_N) = N_Package_Specification and then Decls = Visible_Declarations (Par_N) and then not Is_Empty_List (Private_Declarations (Par_N)) then Decls := Private_Declarations (Par_N); Decl := First (Decls); end if; -- We adhere to the general rule of a package or subprogram body -- causing freezing of anything before it in the same declarative -- region. In this respect, the proper freeze point of a package -- instantiation is before the first source body which follows, or -- before a stub. This ensures that entities from the instance are -- already frozen and therefore usable in source bodies. if Nkind (Par_N) /= N_Package_Declaration and then not In_Same_Source_Unit (Generic_Parent (Par_Inst), Inst) then while Present (Decl) loop if ((Nkind (Decl) in N_Unit_Body or else Nkind (Decl) in N_Body_Stub) and then Comes_From_Source (Decl)) or else (Present (Origin) and then Nkind (Decl) in N_Generic_Instantiation and then Instance_Spec (Decl) /= Origin) then Set_Sloc (F_Node, Sloc (Decl)); Insert_Before (Decl, F_Node); return; end if; Next (Decl); end loop; end if; -- When the instantiation occurs in a package spec and there is -- no source body which follows, and the package has a body but -- is delayed, then insert immediately before its freeze node. if Nkind (Par_N) = N_Package_Specification and then Present (Corresponding_Body (Parent (Par_N))) and then Present (Freeze_Node (Defining_Entity (Par_N))) then Set_Sloc (F_Node, Sloc (Freeze_Node (Defining_Entity (Par_N)))); Insert_Before (Freeze_Node (Defining_Entity (Par_N)), F_Node); return; -- When the instantiation occurs in a package spec and there is -- no source body which follows, not even of the package itself, -- then insert into the declaration list of the outer level, but -- do not jump over following instantiations in this list because -- they may have a body that has not materialized yet, see above. elsif Nkind (Par_N) = N_Package_Specification and then No (Corresponding_Body (Parent (Par_N))) and then Is_List_Member (Parent (Par_N)) then Decl := Parent (Par_N); Decls := List_Containing (Decl); Par_N := Parent (Decls); Origin := Decl; -- In a package declaration, or if no source body which follows -- and at library level, then insert at end of list. else exit; end if; end loop; end if; -- Insert and adjust the Sloc of the freeze node Set_Sloc (F_Node, Sloc (Last (Decls))); Insert_After (Last (Decls), F_Node); end Insert_Freeze_Node_For_Instance; ----------------------------- -- Install_Formal_Packages -- ----------------------------- procedure Install_Formal_Packages (Par : Entity_Id) is E : Entity_Id; Gen : Entity_Id; Gen_E : Entity_Id := Empty; begin E := First_Entity (Par); -- If we are installing an instance parent, locate the formal packages -- of its generic parent. if Is_Generic_Instance (Par) then Gen := Generic_Parent (Package_Specification (Par)); Gen_E := First_Entity (Gen); end if; while Present (E) loop if Ekind (E) = E_Package and then Nkind (Parent (E)) = N_Package_Renaming_Declaration then -- If this is the renaming for the parent instance, done if Renamed_Entity (E) = Par then exit; -- The visibility of a formal of an enclosing generic is already -- correct. elsif Denotes_Formal_Package (E) then null; elsif Present (Associated_Formal_Package (E)) then Check_Generic_Actuals (Renamed_Entity (E), True); Set_Is_Hidden (E, False); -- Find formal package in generic unit that corresponds to -- (instance of) formal package in instance. while Present (Gen_E) and then Chars (Gen_E) /= Chars (E) loop Next_Entity (Gen_E); end loop; if Present (Gen_E) then Map_Formal_Package_Entities (Gen_E, E); end if; end if; end if; Next_Entity (E); if Present (Gen_E) then Next_Entity (Gen_E); end if; end loop; end Install_Formal_Packages; -------------------- -- Install_Parent -- -------------------- procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False) is Ancestors : constant Elist_Id := New_Elmt_List; S : constant Entity_Id := Current_Scope; Inst_Par : Entity_Id; First_Par : Entity_Id; Inst_Node : Node_Id; Gen_Par : Entity_Id; First_Gen : Entity_Id; Elmt : Elmt_Id; procedure Install_Noninstance_Specs (Par : Entity_Id); -- Install the scopes of noninstance parent units ending with Par procedure Install_Spec (Par : Entity_Id); -- The child unit is within the declarative part of the parent, so the -- declarations within the parent are immediately visible. ------------------------------- -- Install_Noninstance_Specs -- ------------------------------- procedure Install_Noninstance_Specs (Par : Entity_Id) is begin if Present (Par) and then Par /= Standard_Standard and then not In_Open_Scopes (Par) then Install_Noninstance_Specs (Scope (Par)); Install_Spec (Par); end if; end Install_Noninstance_Specs; ------------------ -- Install_Spec -- ------------------ procedure Install_Spec (Par : Entity_Id) is Spec : constant Node_Id := Package_Specification (Par); begin -- If this parent of the child instance is a top-level unit, -- then record the unit and its visibility for later resetting in -- Remove_Parent. We exclude units that are generic instances, as we -- only want to record this information for the ultimate top-level -- noninstance parent (is that always correct???). if Scope (Par) = Standard_Standard and then not Is_Generic_Instance (Par) then Parent_Unit_Visible := Is_Immediately_Visible (Par); Instance_Parent_Unit := Par; end if; -- Open the parent scope and make it and its declarations visible. -- If this point is not within a body, then only the visible -- declarations should be made visible, and installation of the -- private declarations is deferred until the appropriate point -- within analysis of the spec being instantiated (see the handling -- of parent visibility in Analyze_Package_Specification). This is -- relaxed in the case where the parent unit is Ada.Tags, to avoid -- private view problems that occur when compiling instantiations of -- a generic child of that package (Generic_Dispatching_Constructor). -- If the instance freezes a tagged type, inlinings of operations -- from Ada.Tags may need the full view of type Tag. If inlining took -- proper account of establishing visibility of inlined subprograms' -- parents then it should be possible to remove this -- special check. ??? Push_Scope (Par); Set_Is_Immediately_Visible (Par); Install_Visible_Declarations (Par); Set_Use (Visible_Declarations (Spec)); if In_Body or else Is_RTU (Par, Ada_Tags) then Install_Private_Declarations (Par); Set_Use (Private_Declarations (Spec)); end if; end Install_Spec; -- Start of processing for Install_Parent begin -- We need to install the parent instance to compile the instantiation -- of the child, but the child instance must appear in the current -- scope. Given that we cannot place the parent above the current scope -- in the scope stack, we duplicate the current scope and unstack both -- after the instantiation is complete. -- If the parent is itself the instantiation of a child unit, we must -- also stack the instantiation of its parent, and so on. Each such -- ancestor is the prefix of the name in a prior instantiation. -- If this is a nested instance, the parent unit itself resolves to -- a renaming of the parent instance, whose declaration we need. -- Finally, the parent may be a generic (not an instance) when the -- child unit appears as a formal package. Inst_Par := P; if Present (Renamed_Entity (Inst_Par)) then Inst_Par := Renamed_Entity (Inst_Par); end if; First_Par := Inst_Par; Gen_Par := Generic_Parent (Package_Specification (Inst_Par)); First_Gen := Gen_Par; while Present (Gen_Par) and then Is_Child_Unit (Gen_Par) loop -- Load grandparent instance as well Inst_Node := Get_Unit_Instantiation_Node (Inst_Par); if Nkind (Name (Inst_Node)) = N_Expanded_Name then Inst_Par := Entity (Prefix (Name (Inst_Node))); if Present (Renamed_Entity (Inst_Par)) then Inst_Par := Renamed_Entity (Inst_Par); end if; Gen_Par := Generic_Parent (Package_Specification (Inst_Par)); if Present (Gen_Par) then Prepend_Elmt (Inst_Par, Ancestors); else -- Parent is not the name of an instantiation Install_Noninstance_Specs (Inst_Par); exit; end if; else -- Previous error exit; end if; end loop; if Present (First_Gen) then Append_Elmt (First_Par, Ancestors); else Install_Noninstance_Specs (First_Par); end if; if not Is_Empty_Elmt_List (Ancestors) then Elmt := First_Elmt (Ancestors); while Present (Elmt) loop Install_Spec (Node (Elmt)); Install_Formal_Packages (Node (Elmt)); Next_Elmt (Elmt); end loop; end if; if not In_Body then Push_Scope (S); end if; end Install_Parent; ------------------------------- -- Install_Hidden_Primitives -- ------------------------------- procedure Install_Hidden_Primitives (Prims_List : in out Elist_Id; Gen_T : Entity_Id; Act_T : Entity_Id) is Elmt : Elmt_Id; List : Elist_Id := No_Elist; Prim_G_Elmt : Elmt_Id; Prim_A_Elmt : Elmt_Id; Prim_G : Node_Id; Prim_A : Node_Id; begin -- No action needed in case of serious errors because we cannot trust -- in the order of primitives if Serious_Errors_Detected > 0 then return; -- No action possible if we don't have available the list of primitive -- operations elsif No (Gen_T) or else not Is_Record_Type (Gen_T) or else not Is_Tagged_Type (Gen_T) or else not Is_Record_Type (Act_T) or else not Is_Tagged_Type (Act_T) then return; -- There is no need to handle interface types since their primitives -- cannot be hidden elsif Is_Interface (Gen_T) then return; end if; Prim_G_Elmt := First_Elmt (Primitive_Operations (Gen_T)); if not Is_Class_Wide_Type (Act_T) then Prim_A_Elmt := First_Elmt (Primitive_Operations (Act_T)); else Prim_A_Elmt := First_Elmt (Primitive_Operations (Root_Type (Act_T))); end if; loop -- Skip predefined primitives in the generic formal while Present (Prim_G_Elmt) and then Is_Predefined_Dispatching_Operation (Node (Prim_G_Elmt)) loop Next_Elmt (Prim_G_Elmt); end loop; -- Skip predefined primitives in the generic actual while Present (Prim_A_Elmt) and then Is_Predefined_Dispatching_Operation (Node (Prim_A_Elmt)) loop Next_Elmt (Prim_A_Elmt); end loop; exit when No (Prim_G_Elmt) or else No (Prim_A_Elmt); Prim_G := Node (Prim_G_Elmt); Prim_A := Node (Prim_A_Elmt); -- There is no need to handle interface primitives because their -- primitives are not hidden exit when Present (Interface_Alias (Prim_G)); -- Here we install one hidden primitive if Chars (Prim_G) /= Chars (Prim_A) and then Has_Suffix (Prim_A, 'P') and then Remove_Suffix (Prim_A, 'P') = Chars (Prim_G) then Set_Chars (Prim_A, Chars (Prim_G)); Append_New_Elmt (Prim_A, To => List); end if; Next_Elmt (Prim_A_Elmt); Next_Elmt (Prim_G_Elmt); end loop; -- Append the elements to the list of temporarily visible primitives -- avoiding duplicates. if Present (List) then if No (Prims_List) then Prims_List := New_Elmt_List; end if; Elmt := First_Elmt (List); while Present (Elmt) loop Append_Unique_Elmt (Node (Elmt), Prims_List); Next_Elmt (Elmt); end loop; end if; end Install_Hidden_Primitives; --------------------------------- -- Renames_Standard_Subprogram -- --------------------------------- function Renames_Standard_Subprogram (Subp : Entity_Id) return Boolean is Id : Entity_Id; begin Id := Alias (Subp); while Present (Id) loop if Scope (Id) = Standard_Standard then return True; end if; Id := Alias (Id); end loop; return False; end Renames_Standard_Subprogram; ------------------------------- -- Restore_Hidden_Primitives -- ------------------------------- procedure Restore_Hidden_Primitives (Prims_List : in out Elist_Id) is Prim_Elmt : Elmt_Id; Prim : Node_Id; begin if Present (Prims_List) then Prim_Elmt := First_Elmt (Prims_List); while Present (Prim_Elmt) loop Prim := Node (Prim_Elmt); Set_Chars (Prim, Add_Suffix (Prim, 'P')); Next_Elmt (Prim_Elmt); end loop; Prims_List := No_Elist; end if; end Restore_Hidden_Primitives; -------------------------------- -- Instantiate_Formal_Package -- -------------------------------- function Instantiate_Formal_Package (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return List_Id is Loc : constant Source_Ptr := Sloc (Actual); Hidden_Formals : constant Elist_Id := New_Elmt_List; Actual_Pack : Entity_Id; Formal_Pack : Entity_Id; Gen_Parent : Entity_Id; Decls : List_Id; Nod : Node_Id; Parent_Spec : Node_Id; procedure Find_Matching_Actual (F : Node_Id; Act : in out Entity_Id); -- We need to associate each formal entity in the formal package with -- the corresponding entity in the actual package. The actual package -- has been analyzed and possibly expanded, and as a result there is -- no one-to-one correspondence between the two lists (for example, -- the actual may include subtypes, itypes, and inherited primitive -- operations, interspersed among the renaming declarations for the -- actuals). We retrieve the corresponding actual by name because each -- actual has the same name as the formal, and they do appear in the -- same order. function Get_Formal_Entity (N : Node_Id) return Entity_Id; -- Retrieve entity of defining entity of generic formal parameter. -- Only the declarations of formals need to be considered when -- linking them to actuals, but the declarative list may include -- internal entities generated during analysis, and those are ignored. procedure Match_Formal_Entity (Formal_Node : Node_Id; Formal_Ent : Entity_Id; Actual_Ent : Entity_Id); -- Associates the formal entity with the actual. In the case where -- Formal_Ent is a formal package, this procedure iterates through all -- of its formals and enters associations between the actuals occurring -- in the formal package's corresponding actual package (given by -- Actual_Ent) and the formal package's formal parameters. This -- procedure recurses if any of the parameters is itself a package. function Is_Instance_Of (Act_Spec : Entity_Id; Gen_Anc : Entity_Id) return Boolean; -- The actual can be an instantiation of a generic within another -- instance, in which case there is no direct link from it to the -- original generic ancestor. In that case, we recognize that the -- ultimate ancestor is the same by examining names and scopes. procedure Process_Nested_Formal (Formal : Entity_Id); -- If the current formal is declared with a box, its own formals are -- visible in the instance, as they were in the generic, and their -- Hidden flag must be reset. If some of these formals are themselves -- packages declared with a box, the processing must be recursive. -------------------------- -- Find_Matching_Actual -- -------------------------- procedure Find_Matching_Actual (F : Node_Id; Act : in out Entity_Id) is Formal_Ent : Entity_Id; begin case Nkind (Original_Node (F)) is when N_Formal_Object_Declaration | N_Formal_Type_Declaration => Formal_Ent := Defining_Identifier (F); while Present (Act) and then Chars (Act) /= Chars (Formal_Ent) loop Next_Entity (Act); end loop; when N_Formal_Package_Declaration | N_Formal_Subprogram_Declaration | N_Generic_Package_Declaration | N_Package_Declaration => Formal_Ent := Defining_Entity (F); while Present (Act) and then Chars (Act) /= Chars (Formal_Ent) loop Next_Entity (Act); end loop; when others => raise Program_Error; end case; end Find_Matching_Actual; ------------------------- -- Match_Formal_Entity -- ------------------------- procedure Match_Formal_Entity (Formal_Node : Node_Id; Formal_Ent : Entity_Id; Actual_Ent : Entity_Id) is Act_Pkg : Entity_Id; begin Set_Instance_Of (Formal_Ent, Actual_Ent); if Ekind (Actual_Ent) = E_Package then -- Record associations for each parameter Act_Pkg := Actual_Ent; declare A_Ent : Entity_Id := First_Entity (Act_Pkg); F_Ent : Entity_Id; F_Node : Node_Id; Gen_Decl : Node_Id; Formals : List_Id; Actual : Entity_Id; begin -- Retrieve the actual given in the formal package declaration Actual := Entity (Name (Original_Node (Formal_Node))); -- The actual in the formal package declaration may be a -- renamed generic package, in which case we want to retrieve -- the original generic in order to traverse its formal part. if Present (Renamed_Entity (Actual)) then Gen_Decl := Unit_Declaration_Node (Renamed_Entity (Actual)); else Gen_Decl := Unit_Declaration_Node (Actual); end if; Formals := Generic_Formal_Declarations (Gen_Decl); if Present (Formals) then F_Node := First_Non_Pragma (Formals); else F_Node := Empty; end if; while Present (A_Ent) and then Present (F_Node) and then A_Ent /= First_Private_Entity (Act_Pkg) loop F_Ent := Get_Formal_Entity (F_Node); if Present (F_Ent) then -- This is a formal of the original package. Record -- association and recurse. Find_Matching_Actual (F_Node, A_Ent); Match_Formal_Entity (F_Node, F_Ent, A_Ent); Next_Entity (A_Ent); end if; Next_Non_Pragma (F_Node); end loop; end; end if; end Match_Formal_Entity; ----------------------- -- Get_Formal_Entity -- ----------------------- function Get_Formal_Entity (N : Node_Id) return Entity_Id is Kind : constant Node_Kind := Nkind (Original_Node (N)); begin case Kind is when N_Formal_Object_Declaration => return Defining_Identifier (N); when N_Formal_Type_Declaration => return Defining_Identifier (N); when N_Formal_Subprogram_Declaration => return Defining_Unit_Name (Specification (N)); when N_Formal_Package_Declaration => return Defining_Identifier (Original_Node (N)); when N_Generic_Package_Declaration => return Defining_Identifier (Original_Node (N)); -- All other declarations are introduced by semantic analysis and -- have no match in the actual. when others => return Empty; end case; end Get_Formal_Entity; -------------------- -- Is_Instance_Of -- -------------------- function Is_Instance_Of (Act_Spec : Entity_Id; Gen_Anc : Entity_Id) return Boolean is Gen_Par : constant Entity_Id := Generic_Parent (Act_Spec); begin if No (Gen_Par) then return False; -- Simplest case: the generic parent of the actual is the formal elsif Gen_Par = Gen_Anc then return True; elsif Chars (Gen_Par) /= Chars (Gen_Anc) then return False; -- The actual may be obtained through several instantiations. Its -- scope must itself be an instance of a generic declared in the -- same scope as the formal. Any other case is detected above. elsif not Is_Generic_Instance (Scope (Gen_Par)) then return False; else return Generic_Parent (Parent (Scope (Gen_Par))) = Scope (Gen_Anc); end if; end Is_Instance_Of; --------------------------- -- Process_Nested_Formal -- --------------------------- procedure Process_Nested_Formal (Formal : Entity_Id) is Ent : Entity_Id; begin if Present (Associated_Formal_Package (Formal)) and then Box_Present (Parent (Associated_Formal_Package (Formal))) then Ent := First_Entity (Formal); while Present (Ent) loop Set_Is_Hidden (Ent, False); Set_Is_Visible_Formal (Ent); Set_Is_Potentially_Use_Visible (Ent, Is_Potentially_Use_Visible (Formal)); if Ekind (Ent) = E_Package then exit when Renamed_Entity (Ent) = Renamed_Entity (Formal); Process_Nested_Formal (Ent); end if; Next_Entity (Ent); end loop; end if; end Process_Nested_Formal; -- Start of processing for Instantiate_Formal_Package begin Analyze (Actual); -- The actual must be a package instance, or else a current instance -- such as a parent generic within the body of a generic child. if not Is_Entity_Name (Actual) or else not Is_Package_Or_Generic_Package (Entity (Actual)) then Error_Msg_N ("expect package instance to instantiate formal", Actual); Abandon_Instantiation (Actual); else Actual_Pack := Entity (Actual); Set_Is_Instantiated (Actual_Pack); -- The actual may be a renamed package, or an outer generic formal -- package whose instantiation is converted into a renaming. if Present (Renamed_Entity (Actual_Pack)) then Actual_Pack := Renamed_Entity (Actual_Pack); end if; -- The analyzed formal is expected to be the result of the rewriting -- of the formal package into a regular package by analysis. pragma Assert (Nkind (Analyzed_Formal) = N_Package_Declaration and then Nkind (Original_Node (Analyzed_Formal)) = N_Formal_Package_Declaration); Gen_Parent := Generic_Parent (Specification (Analyzed_Formal)); Formal_Pack := Defining_Unit_Name (Specification (Analyzed_Formal)); -- The actual for a ghost generic formal package should be a ghost -- package (SPARK RM 6.9(14)). Check_Ghost_Formal_Procedure_Or_Package (N => Actual, Actual => Actual_Pack, Formal => Formal_Pack); if Nkind (Parent (Actual_Pack)) = N_Defining_Program_Unit_Name then Parent_Spec := Package_Specification (Actual_Pack); else Parent_Spec := Parent (Actual_Pack); end if; if Gen_Parent = Any_Id then Error_Msg_N ("previous error in declaration of formal package", Actual); Abandon_Instantiation (Actual); elsif Is_Instance_Of (Parent_Spec, Get_Instance_Of (Gen_Parent)) then null; -- If this is the current instance of an enclosing generic, that unit -- is the generic package we need. elsif In_Open_Scopes (Actual_Pack) and then Ekind (Actual_Pack) = E_Generic_Package then null; else Error_Msg_NE ("actual parameter must be instance of&", Actual, Gen_Parent); Abandon_Instantiation (Actual); end if; Set_Instance_Of (Defining_Identifier (Formal), Actual_Pack); Map_Formal_Package_Entities (Formal_Pack, Actual_Pack); Nod := Make_Package_Renaming_Declaration (Loc, Defining_Unit_Name => New_Copy (Defining_Identifier (Formal)), Name => New_Occurrence_Of (Actual_Pack, Loc)); Set_Associated_Formal_Package (Defining_Unit_Name (Nod), Defining_Identifier (Formal)); Decls := New_List (Nod); -- If the formal F has a box, then the generic declarations are -- visible in the generic G. In an instance of G, the corresponding -- entities in the actual for F (which are the actuals for the -- instantiation of the generic that F denotes) must also be made -- visible for analysis of the current instance. On exit from the -- current instance, those entities are made private again. If the -- actual is currently in use, these entities are also use-visible. -- The loop through the actual entities also steps through the formal -- entities and enters associations from formals to actuals into the -- renaming map. This is necessary to properly handle checking of -- actual parameter associations for later formals that depend on -- actuals declared in the formal package. -- In Ada 2005, partial parameterization requires that we make -- visible the actuals corresponding to formals that were defaulted -- in the formal package. There formals are identified because they -- remain formal generics within the formal package, rather than -- being renamings of the actuals supplied. declare Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Parent); Formals : constant List_Id := Generic_Formal_Declarations (Gen_Decl); Actual_Ent : Entity_Id; Actual_Of_Formal : Node_Id; Formal_Node : Node_Id; Formal_Ent : Entity_Id; begin if Present (Formals) then Formal_Node := First_Non_Pragma (Formals); else Formal_Node := Empty; end if; Actual_Ent := First_Entity (Actual_Pack); Actual_Of_Formal := First (Visible_Declarations (Specification (Analyzed_Formal))); while Present (Actual_Ent) and then Actual_Ent /= First_Private_Entity (Actual_Pack) loop if Present (Formal_Node) then Formal_Ent := Get_Formal_Entity (Formal_Node); if Present (Formal_Ent) then Find_Matching_Actual (Formal_Node, Actual_Ent); Match_Formal_Entity (Formal_Node, Formal_Ent, Actual_Ent); -- We iterate at the same time over the actuals of the -- local package created for the formal, to determine -- which one of the formals of the original generic were -- defaulted in the formal. The corresponding actual -- entities are visible in the enclosing instance. if Box_Present (Formal) or else (Present (Actual_Of_Formal) and then Is_Generic_Formal (Get_Formal_Entity (Actual_Of_Formal))) then Set_Is_Hidden (Actual_Ent, False); Set_Is_Visible_Formal (Actual_Ent); Set_Is_Potentially_Use_Visible (Actual_Ent, In_Use (Actual_Pack)); if Ekind (Actual_Ent) = E_Package then Process_Nested_Formal (Actual_Ent); end if; else if not Is_Hidden (Actual_Ent) then Append_Elmt (Actual_Ent, Hidden_Formals); end if; Set_Is_Hidden (Actual_Ent); Set_Is_Potentially_Use_Visible (Actual_Ent, False); end if; end if; Next_Non_Pragma (Formal_Node); Next (Actual_Of_Formal); -- A formal subprogram may be overloaded, so advance in -- the list of actuals to make sure we do not match two -- successive formals to the same actual. This is only -- relevant for overloadable entities, others have -- distinct names. if Is_Overloadable (Actual_Ent) then Next_Entity (Actual_Ent); end if; else -- No further formals to match, but the generic part may -- contain inherited operation that are not hidden in the -- enclosing instance. Next_Entity (Actual_Ent); end if; end loop; -- Inherited subprograms generated by formal derived types are -- also visible if the types are. Actual_Ent := First_Entity (Actual_Pack); while Present (Actual_Ent) and then Actual_Ent /= First_Private_Entity (Actual_Pack) loop if Is_Overloadable (Actual_Ent) and then Nkind (Parent (Actual_Ent)) = N_Subtype_Declaration and then not Is_Hidden (Defining_Identifier (Parent (Actual_Ent))) then Set_Is_Hidden (Actual_Ent, False); Set_Is_Potentially_Use_Visible (Actual_Ent, In_Use (Actual_Pack)); end if; Next_Entity (Actual_Ent); end loop; end; -- If the formal requires conformance checking, reanalyze it as an -- abbreviated instantiation, to verify the matching rules of 12.7. -- The actual checks are performed after the generic associations -- have been analyzed, to guarantee the same visibility for this -- instantiation and for the actuals. -- In Ada 2005, the generic associations for the formal can include -- defaulted parameters. These are ignored during check. This -- internal instantiation is removed from the tree after conformance -- checking, because it contains formal declarations for those -- defaulted parameters, and those should not reach the back-end. if Requires_Conformance_Checking (Formal) then declare I_Pack : constant Entity_Id := Make_Temporary (Loc, 'P'); I_Nam : Node_Id; begin Set_Is_Internal (I_Pack); Mutate_Ekind (I_Pack, E_Package); -- Insert the package into the list of its hidden entities so -- that the list is not empty for Is_Abbreviated_Instance. Append_Elmt (I_Pack, Hidden_Formals); Set_Hidden_In_Formal_Instance (I_Pack, Hidden_Formals); -- If the generic is a child unit, Check_Generic_Child_Unit -- needs its original name in case it is qualified. if Is_Child_Unit (Gen_Parent) then I_Nam := New_Copy_Tree (Name (Original_Node (Analyzed_Formal))); pragma Assert (Entity (I_Nam) = Gen_Parent or else Renamed_Entity (Entity (I_Nam)) = Gen_Parent); else I_Nam := New_Occurrence_Of (Get_Instance_Of (Gen_Parent), Loc); end if; Append_To (Decls, Make_Package_Instantiation (Loc, Defining_Unit_Name => I_Pack, Name => I_Nam, Generic_Associations => Generic_Associations (Formal))); end; end if; return Decls; end if; end Instantiate_Formal_Package; ----------------------------------- -- Instantiate_Formal_Subprogram -- ----------------------------------- function Instantiate_Formal_Subprogram (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return Node_Id is Analyzed_S : constant Entity_Id := Defining_Unit_Name (Specification (Analyzed_Formal)); Formal_Sub : constant Entity_Id := Defining_Unit_Name (Specification (Formal)); function From_Parent_Scope (Subp : Entity_Id) return Boolean; -- If the generic is a child unit, the parent has been installed on the -- scope stack, but a default subprogram cannot resolve to something -- on the parent because that parent is not really part of the visible -- context (it is there to resolve explicit local entities). If the -- default has resolved in this way, we remove the entity from immediate -- visibility and analyze the node again to emit an error message or -- find another visible candidate. procedure Valid_Actual_Subprogram (Act : Node_Id); -- Perform legality check and raise exception on failure ----------------------- -- From_Parent_Scope -- ----------------------- function From_Parent_Scope (Subp : Entity_Id) return Boolean is Gen_Scope : Node_Id; begin Gen_Scope := Scope (Analyzed_S); while Present (Gen_Scope) and then Is_Child_Unit (Gen_Scope) loop if Scope (Subp) = Scope (Gen_Scope) then return True; end if; Gen_Scope := Scope (Gen_Scope); end loop; return False; end From_Parent_Scope; ----------------------------- -- Valid_Actual_Subprogram -- ----------------------------- procedure Valid_Actual_Subprogram (Act : Node_Id) is Act_E : Entity_Id; begin if Is_Entity_Name (Act) then Act_E := Entity (Act); elsif Nkind (Act) = N_Selected_Component and then Is_Entity_Name (Selector_Name (Act)) then Act_E := Entity (Selector_Name (Act)); else Act_E := Empty; end if; -- The actual for a ghost generic formal procedure should be a ghost -- procedure (SPARK RM 6.9(14)). if Present (Act_E) and then Ekind (Act_E) = E_Procedure then Check_Ghost_Formal_Procedure_Or_Package (N => Act, Actual => Act_E, Formal => Analyzed_S); end if; if (Present (Act_E) and then Is_Overloadable (Act_E)) or else Nkind (Act) in N_Attribute_Reference | N_Indexed_Component | N_Character_Literal | N_Explicit_Dereference then return; end if; Error_Msg_NE ("expect subprogram or entry name in instantiation of &", Instantiation_Node, Formal_Sub); Abandon_Instantiation (Instantiation_Node); end Valid_Actual_Subprogram; -- Local variables Decl_Node : Node_Id; Loc : Source_Ptr; Nam : Node_Id; New_Spec : Node_Id; New_Subp : Entity_Id; -- Start of processing for Instantiate_Formal_Subprogram begin New_Spec := New_Copy_Tree (Specification (Formal)); -- The tree copy has created the proper instantiation sloc for the -- new specification. Use this location for all other constructed -- declarations. Loc := Sloc (Defining_Unit_Name (New_Spec)); -- Create new entity for the actual (New_Copy_Tree does not), and -- indicate that it is an actual. -- If the actual is not an entity (i.e. an attribute reference) -- and the formal includes aspect specifications for contracts, -- we create an internal name for the renaming declaration. The -- constructed wrapper contains a call to the entity in the renaming. -- This is an expansion activity, as is the wrapper creation. if Ada_Version >= Ada_2022 and then Has_Contracts (Analyzed_Formal) and then not Is_Entity_Name (Actual) and then Expander_Active then New_Subp := Make_Temporary (Sloc (Actual), 'S'); else New_Subp := Make_Defining_Identifier (Loc, Chars (Formal_Sub)); end if; Mutate_Ekind (New_Subp, Ekind (Analyzed_S)); Set_Is_Generic_Actual_Subprogram (New_Subp); Set_Defining_Unit_Name (New_Spec, New_Subp); -- Create new entities for the each of the formals in the specification -- of the renaming declaration built for the actual. if Present (Parameter_Specifications (New_Spec)) then declare F : Node_Id; F_Id : Entity_Id; begin F := First (Parameter_Specifications (New_Spec)); while Present (F) loop F_Id := Defining_Identifier (F); Set_Defining_Identifier (F, Make_Defining_Identifier (Sloc (F_Id), Chars (F_Id))); Next (F); end loop; end; end if; -- Find entity of actual. If the actual is an attribute reference, it -- cannot be resolved here (its formal is missing) but is handled -- instead in Attribute_Renaming. If the actual is overloaded, it is -- fully resolved subsequently, when the renaming declaration for the -- formal is analyzed. If it is an explicit dereference, resolve the -- prefix but not the actual itself, to prevent interpretation as call. if Present (Actual) then Loc := Sloc (Actual); Set_Sloc (New_Spec, Loc); if Nkind (Actual) = N_Operator_Symbol then Find_Direct_Name (Actual); elsif Nkind (Actual) = N_Explicit_Dereference then Analyze (Prefix (Actual)); elsif Nkind (Actual) /= N_Attribute_Reference then Analyze (Actual); end if; Valid_Actual_Subprogram (Actual); Nam := Actual; elsif Present (Default_Name (Formal)) then if Nkind (Default_Name (Formal)) not in N_Attribute_Reference | N_Selected_Component | N_Indexed_Component | N_Character_Literal and then Present (Entity (Default_Name (Formal))) then Nam := New_Occurrence_Of (Entity (Default_Name (Formal)), Loc); else Nam := New_Copy (Default_Name (Formal)); Set_Sloc (Nam, Loc); end if; elsif Box_Present (Formal) then -- Actual is resolved at the point of instantiation. Create an -- identifier or operator with the same name as the formal. if Nkind (Formal_Sub) = N_Defining_Operator_Symbol then Nam := Make_Operator_Symbol (Loc, Chars => Chars (Formal_Sub), Strval => No_String); else Nam := Make_Identifier (Loc, Chars (Formal_Sub)); end if; elsif Has_Null_Default (Formal) then -- Generate null body for procedure, for use in the instance Decl_Node := Make_Subprogram_Body (Loc, Specification => New_Spec, Declarations => New_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Make_Null_Statement (Loc)))); -- RM 12.6 (16.2/2): The procedure has convention Intrinsic Set_Convention (Defining_Unit_Name (New_Spec), Convention_Intrinsic); Copy_Ghost_Aspect (Formal, To => Decl_Node); -- Eliminate the calls to it when optimization is enabled Set_Is_Inlined (Defining_Unit_Name (New_Spec)); return Decl_Node; -- Handle case of a formal function with an expression default (allowed -- when extensions are enabled). elsif Nkind (Specification (Formal)) = N_Function_Specification and then Present (Expression (Formal)) then -- Generate body for function, for use in the instance declare Expr : constant Node_Id := New_Copy (Expression (Formal)); Stmt : constant Node_Id := Make_Simple_Return_Statement (Loc); begin Set_Sloc (Expr, Loc); Set_Expression (Stmt, Expr); Decl_Node := Make_Subprogram_Body (Loc, Specification => New_Spec, Declarations => New_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Stmt))); end; -- RM 12.6 (16.2/2): Like a null procedure default, the function -- has convention Intrinsic. Set_Convention (Defining_Unit_Name (New_Spec), Convention_Intrinsic); -- Inline calls to it when optimization is enabled Set_Is_Inlined (Defining_Unit_Name (New_Spec)); return Decl_Node; else pragma Assert (False); end if; Decl_Node := Make_Subprogram_Renaming_Declaration (Loc, Specification => New_Spec, Name => Nam); -- If we do not have an actual and the formal specified <> then set to -- get proper default. if No (Actual) and then Box_Present (Formal) then Set_From_Default (Decl_Node); end if; -- Gather possible interpretations for the actual before analyzing the -- instance. If overloaded, it will be resolved when analyzing the -- renaming declaration. if Box_Present (Formal) and then No (Actual) then Analyze (Nam); if Is_Child_Unit (Scope (Analyzed_S)) and then Present (Entity (Nam)) then if not Is_Overloaded (Nam) then if From_Parent_Scope (Entity (Nam)) then Set_Is_Immediately_Visible (Entity (Nam), False); Set_Entity (Nam, Empty); Set_Etype (Nam, Empty); Analyze (Nam); Set_Is_Immediately_Visible (Entity (Nam)); end if; else declare I : Interp_Index; It : Interp; begin Get_First_Interp (Nam, I, It); while Present (It.Nam) loop if From_Parent_Scope (It.Nam) then Remove_Interp (I); end if; Get_Next_Interp (I, It); end loop; end; end if; end if; end if; -- The generic instantiation freezes the actual. This can only be done -- once the actual is resolved, in the analysis of the renaming -- declaration. To make the formal subprogram entity available, we set -- Corresponding_Formal_Spec to point to the formal subprogram entity. -- This is also needed in Analyze_Subprogram_Renaming for the processing -- of formal abstract subprograms. Set_Corresponding_Formal_Spec (Decl_Node, Analyzed_S); -- We cannot analyze the renaming declaration, and thus find the actual, -- until all the actuals are assembled in the instance. For subsequent -- checks of other actuals, indicate the node that will hold the -- instance of this formal. Set_Instance_Of (Analyzed_S, Nam); if Nkind (Actual) = N_Selected_Component and then Is_Task_Type (Etype (Prefix (Actual))) and then not Is_Frozen (Etype (Prefix (Actual))) then -- The renaming declaration will create a body, which must appear -- outside of the instantiation, We move the renaming declaration -- out of the instance, and create an additional renaming inside, -- to prevent freezing anomalies. declare Anon_Id : constant Entity_Id := Make_Temporary (Loc, 'E'); begin Set_Defining_Unit_Name (New_Spec, Anon_Id); Insert_Before (Instantiation_Node, Decl_Node); Analyze (Decl_Node); -- Now create renaming within the instance Decl_Node := Make_Subprogram_Renaming_Declaration (Loc, Specification => New_Copy_Tree (New_Spec), Name => New_Occurrence_Of (Anon_Id, Loc)); Set_Defining_Unit_Name (Specification (Decl_Node), Make_Defining_Identifier (Loc, Chars (Formal_Sub))); end; end if; return Decl_Node; end Instantiate_Formal_Subprogram; ------------------------ -- Instantiate_Object -- ------------------------ function Instantiate_Object (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return List_Id is Gen_Obj : constant Entity_Id := Defining_Identifier (Formal); A_Gen_Obj : constant Entity_Id := Defining_Identifier (Analyzed_Formal); Acc_Def : Node_Id := Empty; Act_Assoc : constant Node_Id := (if No (Actual) then Empty else Parent (Actual)); Actual_Decl : Node_Id := Empty; Decl_Node : Node_Id; Def : Node_Id; Ftyp : Entity_Id; List : constant List_Id := New_List; Loc : constant Source_Ptr := Sloc (Actual); Orig_Ftyp : constant Entity_Id := Etype (A_Gen_Obj); Subt_Decl : Node_Id := Empty; Subt_Mark : Node_Id := Empty; -- Start of processing for Instantiate_Object begin -- Formal may be an anonymous access if Present (Subtype_Mark (Formal)) then Subt_Mark := Subtype_Mark (Formal); else Check_Access_Definition (Formal); Acc_Def := Access_Definition (Formal); end if; Set_Parent (List, Act_Assoc); -- OUT present if Out_Present (Formal) then -- An IN OUT generic actual must be a name. The instantiation is a -- renaming declaration. The actual is the name being renamed. We -- use the actual directly, rather than a copy, because it is not -- used further in the list of actuals, and because a copy or a use -- of Relocate_Node is incorrect if the instance is nested within a -- generic. In order to simplify e.g. ASIS queries, the -- Generic_Parent field links the declaration to the generic -- association. if Present (Subt_Mark) then Decl_Node := Make_Object_Renaming_Declaration (Loc, Defining_Identifier => New_Copy (Gen_Obj), Subtype_Mark => New_Copy_Tree (Subt_Mark), Name => Actual); else pragma Assert (Present (Acc_Def)); Decl_Node := Make_Object_Renaming_Declaration (Loc, Defining_Identifier => New_Copy (Gen_Obj), Access_Definition => New_Copy_Tree (Acc_Def), Name => Actual); end if; Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc); -- The analysis of the actual may produce Insert_Action nodes, so -- the declaration must have a context in which to attach them. Append (Decl_Node, List); Analyze (Actual); -- Return if the analysis of the actual reported some error if Etype (Actual) = Any_Type then return List; end if; -- This check is performed here because Analyze_Object_Renaming will -- not check it when Comes_From_Source is False. Note though that the -- check for the actual being the name of an object will be performed -- in Analyze_Object_Renaming. if Is_Object_Reference (Actual) and then Is_Dependent_Component_Of_Mutable_Object (Actual) then Error_Msg_N ("illegal discriminant-dependent component for in out parameter", Actual); elsif Depends_On_Mutably_Tagged_Ext_Comp (Actual) then Error_Msg_N ("illegal mutably tagged component for in out parameter", Actual); end if; -- The actual has to be resolved in order to check that it is a -- variable (due to cases such as F (1), where F returns access to -- an array, and for overloaded prefixes). Ftyp := Get_Instance_Of (Etype (A_Gen_Obj)); -- If the type of the formal is not itself a formal, and the current -- unit is a child unit, the formal type must be declared in a -- parent, and must be retrieved by visibility. if Ftyp = Orig_Ftyp and then Is_Generic_Unit (Scope (Ftyp)) and then Is_Child_Unit (Scope (A_Gen_Obj)) then declare Temp : constant Node_Id := New_Copy_Tree (Subtype_Mark (Analyzed_Formal)); begin Set_Entity (Temp, Empty); Find_Type (Temp); Ftyp := Entity (Temp); end; end if; if Is_Private_Type (Ftyp) and then not Is_Private_Type (Etype (Actual)) and then (Base_Type (Full_View (Ftyp)) = Base_Type (Etype (Actual)) or else Base_Type (Etype (Actual)) = Ftyp) then -- If the actual has the type of the full view of the formal, or -- else a non-private subtype of the formal, then the visibility -- of the formal type has changed. Add to the actuals a subtype -- declaration that will force the exchange of views in the body -- of the instance as well. Subt_Decl := Make_Subtype_Declaration (Loc, Defining_Identifier => Make_Temporary (Loc, 'P'), Subtype_Indication => New_Occurrence_Of (Ftyp, Loc)); Prepend (Subt_Decl, List); Prepend_Elmt (Full_View (Ftyp), Exchanged_Views); Exchange_Declarations (Ftyp); end if; Resolve (Actual, Ftyp); if not Denotes_Variable (Actual) then Error_Msg_NE ("actual for& must be a variable", Actual, Gen_Obj); elsif Base_Type (Ftyp) /= Base_Type (Etype (Actual)) then -- Ada 2005 (AI-423): For a generic formal object of mode in out, -- the type of the actual shall resolve to a specific anonymous -- access type. if Ada_Version < Ada_2005 or else not Is_Anonymous_Access_Type (Base_Type (Ftyp)) or else not Is_Anonymous_Access_Type (Base_Type (Etype (Actual))) then Error_Msg_NE ("type of actual does not match type of&", Actual, Gen_Obj); end if; end if; Note_Possible_Modification (Actual, Sure => True); -- Check for instantiation with atomic/volatile/VFA object actual for -- nonatomic/nonvolatile/nonVFA formal (RM C.6 (12)). if Is_Atomic_Object (Actual) and then not Is_Atomic (Orig_Ftyp) then Error_Msg_NE ("cannot instantiate nonatomic formal & of mode in out", Actual, Gen_Obj); Error_Msg_N ("\with atomic object actual (RM C.6(12))", Actual); elsif Is_Volatile_Object_Ref (Actual) and then not Is_Volatile (Orig_Ftyp) then Error_Msg_NE ("cannot instantiate nonvolatile formal & of mode in out", Actual, Gen_Obj); Error_Msg_N ("\with volatile object actual (RM C.6(12))", Actual); elsif Is_Volatile_Full_Access_Object_Ref (Actual) and then not Is_Volatile_Full_Access (Orig_Ftyp) then Error_Msg_NE ("cannot instantiate nonfull access formal & of mode in out", Actual, Gen_Obj); Error_Msg_N ("\with full access object actual (RM C.6(12))", Actual); end if; -- Check for instantiation on nonatomic subcomponent of a full access -- object in Ada 2022 (RM C.6 (12)). if Ada_Version >= Ada_2022 and then Is_Subcomponent_Of_Full_Access_Object (Actual) and then not Is_Atomic_Object (Actual) then Error_Msg_NE ("cannot instantiate formal & of mode in out with actual", Actual, Gen_Obj); Error_Msg_N ("\nonatomic subcomponent of full access object (RM C.6(12))", Actual); end if; -- The actual for a ghost generic formal IN OUT parameter should be a -- ghost object (SPARK RM 6.9(14)). Check_Ghost_Formal_Variable (Actual => Actual, Formal => A_Gen_Obj); -- Formal in-mode parameter else -- The instantiation of a generic formal in-mode parameter is a -- constant declaration. The actual is the expression for that -- declaration. Its type is a full copy of the type of the -- formal. This may be an access to subprogram, for which we need -- to generate entities for the formals in the new signature. if Present (Actual) then if Present (Subt_Mark) then Def := New_Copy_Tree (Subt_Mark); else pragma Assert (Present (Acc_Def)); Def := New_Copy_Tree (Acc_Def); end if; Decl_Node := Make_Object_Declaration (Loc, Defining_Identifier => New_Copy (Gen_Obj), Constant_Present => True, Null_Exclusion_Present => Null_Exclusion_Present (Formal), Object_Definition => Def, Expression => Actual); Copy_Ghost_Aspect (Formal, To => Decl_Node); Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc); -- A generic formal object of a tagged type is defined to be -- aliased so the new constant must also be treated as aliased. if Is_Tagged_Type (Etype (A_Gen_Obj)) then Set_Aliased_Present (Decl_Node); end if; Append (Decl_Node, List); -- The actual for a ghost generic formal IN parameter of -- access-to-variable type should be a ghost object (SPARK -- RM 6.9(14)). if Is_Access_Variable (Etype (A_Gen_Obj)) then Check_Ghost_Formal_Variable (Actual => Actual, Formal => A_Gen_Obj); end if; -- No need to repeat (pre-)analysis of some expression nodes -- already handled in Preanalyze_Actuals. if Nkind (Actual) /= N_Allocator then Analyze (Actual); -- Return if the analysis of the actual reported some error if Etype (Actual) = Any_Type then return List; end if; end if; declare Formal_Type : constant Entity_Id := Etype (A_Gen_Obj); Typ : Entity_Id; begin Typ := Get_Instance_Of (Formal_Type); -- If the actual appears in the current or an enclosing scope, -- use its type directly. This is relevant if it has an actual -- subtype that is distinct from its nominal one. This cannot -- be done in general because the type of the actual may -- depend on other actuals, and only be fully determined when -- the enclosing instance is analyzed. if Present (Etype (Actual)) and then Is_Constr_Subt_For_U_Nominal (Etype (Actual)) then Freeze_Before (Instantiation_Node, Etype (Actual)); else Freeze_Before (Instantiation_Node, Typ); end if; -- If the actual is an aggregate, perform name resolution on -- its components (the analysis of an aggregate does not do it) -- to capture local names that may be hidden if the generic is -- a child unit. if Nkind (Actual) = N_Aggregate then Preanalyze_And_Resolve (Actual, Typ); end if; if Is_Limited_Type (Typ) and then not OK_For_Limited_Init (Typ, Actual) then Error_Msg_N ("initialization not allowed for limited types", Actual); Explain_Limited_Type (Typ, Actual); end if; end; elsif Present (Default_Expression (Formal)) then -- Use default to construct declaration if Present (Subt_Mark) then Def := New_Copy_Tree (Subt_Mark); else pragma Assert (Present (Acc_Def)); Def := New_Copy_Tree (Acc_Def); end if; Decl_Node := Make_Object_Declaration (Sloc (Formal), Defining_Identifier => New_Copy (Gen_Obj), Constant_Present => True, Null_Exclusion_Present => Null_Exclusion_Present (Formal), Object_Definition => Def, Expression => New_Copy_Tree (Default_Expression (Formal))); Copy_Ghost_Aspect (Formal, To => Decl_Node); Set_Corresponding_Generic_Association (Decl_Node, Expression (Decl_Node)); Append (Decl_Node, List); Set_Analyzed (Expression (Decl_Node), False); else pragma Assert (False); end if; end if; if Nkind (Actual) in N_Has_Entity and then Present (Entity (Actual)) then Actual_Decl := Parent (Entity (Actual)); end if; -- Ada 2005 (AI-423) refined by AI12-0287: -- For an object_renaming_declaration with a null_exclusion or an -- access_definition that has a null_exclusion, the subtype of the -- object_name shall exclude null. In addition, if the -- object_renaming_declaration occurs within the body of a generic unit -- G or within the body of a generic unit declared within the -- declarative region of generic unit G, then: -- * if the object_name statically denotes a generic formal object of -- mode in out of G, then the declaration of that object shall have a -- null_exclusion; -- * if the object_name statically denotes a call of a generic formal -- function of G, then the declaration of the result of that function -- shall have a null_exclusion. if Ada_Version >= Ada_2005 and then Present (Actual_Decl) and then Nkind (Actual_Decl) in N_Formal_Object_Declaration | N_Object_Declaration and then Nkind (Analyzed_Formal) = N_Formal_Object_Declaration and then not Has_Null_Exclusion (Actual_Decl) and then Has_Null_Exclusion (Analyzed_Formal) and then Ekind (Defining_Identifier (Analyzed_Formal)) = E_Generic_In_Out_Parameter and then ((In_Generic_Scope (Entity (Actual)) and then In_Package_Body (Scope (Entity (Actual)))) or else not Can_Never_Be_Null (Etype (Actual))) then Error_Msg_Sloc := Sloc (Analyzed_Formal); Error_Msg_N ("actual must exclude null to match generic formal#", Actual); end if; return List; end Instantiate_Object; ------------------------------ -- Instantiate_Package_Body -- ------------------------------ -- WARNING: This routine manages Ghost and SPARK regions. Return statements -- must be replaced by gotos which jump to the end of the routine in order -- to restore the Ghost and SPARK modes. procedure Instantiate_Package_Body (Body_Info : Pending_Body_Info; Inlined_Body : Boolean := False; Body_Optional : Boolean := False) is Act_Decl : constant Node_Id := Body_Info.Act_Decl; Act_Decl_Id : constant Entity_Id := Defining_Entity (Act_Decl); Act_Spec : constant Node_Id := Specification (Act_Decl); Ctx_Parents : Elist_Id := No_Elist; Ctx_Top : Int := 0; Inst_Node : constant Node_Id := Body_Info.Inst_Node; Gen_Id : constant Node_Id := Name (Inst_Node); Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node); Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit); Loc : constant Source_Ptr := Sloc (Inst_Node); procedure Check_Initialized_Types; -- In a generic package body, an entity of a generic private type may -- appear uninitialized. This is suspicious, unless the actual is a -- fully initialized type. procedure Install_Parents_Of_Generic_Context (Inst_Scope : Entity_Id; Ctx_Parents : out Elist_Id); -- Inst_Scope is the scope where the instance appears within; when it -- appears within a generic child package G, this routine collects and -- installs the enclosing packages of G in the scopes stack; installed -- packages are returned in Ctx_Parents. procedure Remove_Parents_Of_Generic_Context (Ctx_Parents : Elist_Id); -- Reverse effect after instantiation is complete ----------------------------- -- Check_Initialized_Types -- ----------------------------- procedure Check_Initialized_Types is Decl : Node_Id; Formal : Entity_Id; Actual : Entity_Id; Uninit_Var : Entity_Id; begin Decl := First (Generic_Formal_Declarations (Gen_Decl)); while Present (Decl) loop Uninit_Var := Empty; if Nkind (Decl) = N_Private_Extension_Declaration then Uninit_Var := Uninitialized_Variable (Decl); elsif Nkind (Decl) = N_Formal_Type_Declaration and then Nkind (Formal_Type_Definition (Decl)) = N_Formal_Private_Type_Definition then Uninit_Var := Uninitialized_Variable (Formal_Type_Definition (Decl)); end if; if Present (Uninit_Var) then Formal := Defining_Identifier (Decl); Actual := First_Entity (Act_Decl_Id); -- For each formal there is a subtype declaration that renames -- the actual and has the same name as the formal. Locate the -- formal for warning message about uninitialized variables -- in the generic, for which the actual type should be a fully -- initialized type. while Present (Actual) loop exit when Ekind (Actual) = E_Package and then Present (Renamed_Entity (Actual)); if Chars (Actual) = Chars (Formal) and then not Is_Scalar_Type (Actual) and then not Is_Fully_Initialized_Type (Actual) and then Warn_On_No_Value_Assigned then Error_Msg_Node_2 := Formal; Error_Msg_NE ("generic unit has uninitialized variable& of " & "formal private type &?v?", Actual, Uninit_Var); Error_Msg_NE ("actual type for& should be fully initialized type?v?", Actual, Formal); exit; end if; Next_Entity (Actual); end loop; end if; Next (Decl); end loop; end Check_Initialized_Types; ---------------------------------------- -- Install_Parents_Of_Generic_Context -- ---------------------------------------- procedure Install_Parents_Of_Generic_Context (Inst_Scope : Entity_Id; Ctx_Parents : out Elist_Id) is Elmt : Elmt_Id; S : Entity_Id; begin Ctx_Parents := New_Elmt_List; -- Collect context parents (ie. parents where the instantiation -- appears within). S := Inst_Scope; while S /= Standard_Standard loop Prepend_Elmt (S, Ctx_Parents); S := Scope (S); end loop; -- Install enclosing parents Elmt := First_Elmt (Ctx_Parents); while Present (Elmt) loop Push_Scope (Node (Elmt)); Set_Is_Immediately_Visible (Node (Elmt)); Next_Elmt (Elmt); end loop; end Install_Parents_Of_Generic_Context; --------------------------------------- -- Remove_Parents_Of_Generic_Context -- --------------------------------------- procedure Remove_Parents_Of_Generic_Context (Ctx_Parents : Elist_Id) is Elmt : Elmt_Id; begin -- Traverse Ctx_Parents in LIFO order to check the removed scopes Elmt := Last_Elmt (Ctx_Parents); while Present (Elmt) loop pragma Assert (Current_Scope = Node (Elmt)); Set_Is_Immediately_Visible (Current_Scope, False); Pop_Scope; Remove_Last_Elmt (Ctx_Parents); Elmt := Last_Elmt (Ctx_Parents); end loop; end Remove_Parents_Of_Generic_Context; -- Local variables -- The following constants capture the context prior to instantiating -- the package body. Saved_CS : constant Config_Switches_Type := Save_Config_Switches; Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; Saved_IGR : constant Node_Id := Ignored_Ghost_Region; Saved_ISMP : constant Boolean := Ignore_SPARK_Mode_Pragmas_In_Instance; Saved_LSST : constant Suppress_Stack_Entry_Ptr := Local_Suppress_Stack_Top; Saved_SC : constant Boolean := Style_Check; Saved_SM : constant SPARK_Mode_Type := SPARK_Mode; Saved_SMP : constant Node_Id := SPARK_Mode_Pragma; Saved_SS : constant Suppress_Record := Scope_Suppress; Saved_Warn : constant Warnings_State := Save_Warnings; Act_Body : Node_Id; Act_Body_Id : Entity_Id; Act_Body_Name : Node_Id; Gen_Body : Node_Id; Gen_Body_Id : Node_Id; Par_Ent : Entity_Id := Empty; Par_Installed : Boolean := False; Par_Vis : Boolean := False; Scope_Check_Id : Entity_Id; Scope_Check_Last : Nat; -- Value of Current_Scope before calls to Install_Parents; used to check -- that scopes are correctly removed after instantiation. Vis_Prims_List : Elist_Id := No_Elist; -- List of primitives made temporarily visible in the instantiation -- to match the visibility of the formal type. -- Start of processing for Instantiate_Package_Body begin Gen_Body_Id := Corresponding_Body (Gen_Decl); -- The instance body may already have been processed, as the parent of -- another instance that is inlined (Load_Parent_Of_Generic). if Present (Corresponding_Body (Instance_Spec (Inst_Node))) then return; end if; Expander_Mode_Save_And_Set (Body_Info.Expander_Status); -- Re-establish the state of information on which checks are suppressed. -- This information was set in Body_Info at the point of instantiation, -- and now we restore it so that the instance is compiled using the -- check status at the instantiation (RM 11.5(7.2/2), AI95-00224-01). Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top; Scope_Suppress := Body_Info.Scope_Suppress; Restore_Config_Switches (Body_Info.Config_Switches); Restore_Warnings (Body_Info.Warnings); if No (Gen_Body_Id) then -- Do not look for parent of generic body if none is required. -- This may happen when the routine is called as part of the -- Pending_Instantiations processing, when nested instances -- may precede the one generated from the main unit. if not Unit_Requires_Body (Defining_Entity (Gen_Decl)) and then Body_Optional then goto Leave; else Load_Parent_Of_Generic (Inst_Node, Specification (Gen_Decl), Body_Optional); -- Surprisingly enough, loading the body of the parent can cause -- the body to be instantiated and the double instantiation needs -- to be prevented in order to avoid giving bogus semantic errors. -- This case can occur because of the Collect_Previous_Instances -- machinery of Load_Parent_Of_Generic, which will instantiate -- bodies that are deemed to be ahead of the body of the parent -- in the compilation unit. But the relative position of these -- bodies is computed using the mere comparison of their Sloc. -- Now suppose that you have two generic packages G and H, with -- G containing a mere instantiation of H: -- generic -- package H is -- generic -- package Nested_G is -- ... -- end Nested_G; -- end H; -- with H; -- generic -- package G is -- package My_H is new H; -- end G; -- and a third package Q instantiating G and Nested_G: -- with G; -- package Q is -- package My_G is new G; -- package My_Nested_G is new My_G.My_H.Nested_G; -- end Q; -- The body to be instantiated is that of My_Nested_G and its -- parent is the instance My_G.My_H. This latter instantiation -- is done when My_G is analyzed, i.e. after the declarations -- of My_G and My_Nested_G have been parsed; as a result, the -- Sloc of My_G.My_H is greater than the Sloc of My_Nested_G. -- Therefore loading the body of My_G.My_H will cause the body -- of My_Nested_G to be instantiated because it is deemed to be -- ahead of My_G.My_H. This means that Load_Parent_Of_Generic -- will again be invoked on My_G.My_H, but this time with the -- Collect_Previous_Instances machinery disabled, so there is -- no endless mutual recursion and things are done in order. if Present (Corresponding_Body (Instance_Spec (Inst_Node))) then goto Leave; end if; Gen_Body_Id := Corresponding_Body (Gen_Decl); end if; end if; -- Establish global variable for sloc adjustment and for error recovery -- In the case of an instance body for an instantiation with actuals -- from a limited view, the instance body is placed at the beginning -- of the enclosing package body: use the body entity as the source -- location for nodes of the instance body. if not Is_Empty_Elmt_List (Incomplete_Actuals (Act_Decl_Id)) then declare Scop : constant Entity_Id := Scope (Act_Decl_Id); Body_Id : constant Node_Id := Corresponding_Body (Unit_Declaration_Node (Scop)); begin Instantiation_Node := Body_Id; end; else Instantiation_Node := Inst_Node; end if; -- The package being instantiated may be subject to pragma Ghost. Set -- the mode now to ensure that any nodes generated during instantiation -- are properly marked as Ghost. Set_Ghost_Mode (Act_Decl_Id); if Present (Gen_Body_Id) then Save_Env (Gen_Unit, Act_Decl_Id); Style_Check := False; -- If the context of the instance is subject to SPARK_Mode "off", the -- annotation is missing, or the body is instantiated at a later pass -- and its spec ignored SPARK_Mode pragma, set the global flag which -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within the -- instance. if SPARK_Mode /= On or else Ignore_SPARK_Mode_Pragmas (Act_Decl_Id) then Ignore_SPARK_Mode_Pragmas_In_Instance := True; end if; Current_Sem_Unit := Body_Info.Current_Sem_Unit; Gen_Body := Unit_Declaration_Node (Gen_Body_Id); Create_Instantiation_Source (Inst_Node, Gen_Body_Id, S_Adjustment); Act_Body := Copy_Generic_Node (Original_Node (Gen_Body), Empty, Instantiating => True); -- Create proper (possibly qualified) defining name for the body, to -- correspond to the one in the spec. Act_Body_Id := Make_Defining_Identifier (Sloc (Act_Decl_Id), Chars (Act_Decl_Id)); Preserve_Comes_From_Source (Act_Body_Id, Act_Decl_Id); -- Some attributes of spec entity are not inherited by body entity Set_Handler_Records (Act_Body_Id, No_List); if Nkind (Defining_Unit_Name (Act_Spec)) = N_Defining_Program_Unit_Name then Act_Body_Name := Make_Defining_Program_Unit_Name (Loc, Name => New_Copy_Tree (Name (Defining_Unit_Name (Act_Spec))), Defining_Identifier => Act_Body_Id); else Act_Body_Name := Act_Body_Id; end if; Set_Defining_Unit_Name (Act_Body, Act_Body_Name); Set_Corresponding_Spec (Act_Body, Act_Decl_Id); Check_Generic_Actuals (Act_Decl_Id, False); Check_Initialized_Types; -- Install primitives hidden at the point of the instantiation but -- visible when processing the generic formals declare E : Entity_Id; begin E := First_Entity (Act_Decl_Id); while Present (E) loop if Is_Type (E) and then not Is_Itype (E) and then Is_Generic_Actual_Type (E) and then Is_Tagged_Type (E) then Install_Hidden_Primitives (Prims_List => Vis_Prims_List, Gen_T => Generic_Parent_Type (Parent (E)), Act_T => E); end if; Next_Entity (E); end loop; end; Scope_Check_Id := Current_Scope; Scope_Check_Last := Scope_Stack.Last; -- If the instantiation appears within a generic child some actual -- parameter may be the current instance of the enclosing generic -- parent. declare Inst_Scope : constant Entity_Id := Scope (Act_Decl_Id); begin if Is_Child_Unit (Inst_Scope) and then Ekind (Inst_Scope) = E_Generic_Package and then Present (Generic_Associations (Inst_Node)) then Install_Parents_Of_Generic_Context (Inst_Scope, Ctx_Parents); -- Hide them from visibility; required to avoid conflicts -- installing the parent instance. if Present (Ctx_Parents) then Push_Scope (Standard_Standard); Ctx_Top := Scope_Stack.Last; Scope_Stack.Table (Ctx_Top).Is_Active_Stack_Base := True; end if; end if; end; -- If it is a child unit, make the parent instance (which is an -- instance of the parent of the generic) visible. -- 1) The child unit's parent is an explicit parent instance (the -- prefix of the name of the generic unit): -- package Child_Package is new Parent_Instance.Child_Unit; -- 2) The child unit's parent is an implicit parent instance (e.g. -- when instantiating a sibling package): -- generic -- package Parent.Second_Child is -- ... -- generic -- package Parent.First_Child is -- package Sibling_Package is new Second_Child; -- 3) The child unit's parent is not an instance, so the scope is -- simply the one of the unit. if Ekind (Scope (Gen_Unit)) = E_Generic_Package and then Nkind (Gen_Id) = N_Expanded_Name then Par_Ent := Entity (Prefix (Gen_Id)); elsif Ekind (Scope (Gen_Unit)) = E_Generic_Package and then Ekind (Scope (Act_Decl_Id)) = E_Package and then Is_Generic_Instance (Scope (Act_Decl_Id)) and then Nkind (Name (Get_Unit_Instantiation_Node (Scope (Act_Decl_Id)))) = N_Expanded_Name then Par_Ent := Entity (Prefix (Name (Get_Unit_Instantiation_Node (Scope (Act_Decl_Id))))); elsif Is_Child_Unit (Gen_Unit) then Par_Ent := Scope (Gen_Unit); end if; if Present (Par_Ent) then Par_Vis := Is_Immediately_Visible (Par_Ent); Install_Parent (Par_Ent, In_Body => True); Par_Installed := True; end if; -- If the instantiation is a library unit, and this is the main unit, -- then build the resulting compilation unit nodes for the instance. -- If this is a compilation unit but it is not the main unit, then it -- is the body of a unit in the context, that is being compiled -- because it is encloses some inlined unit or another generic unit -- being instantiated. In that case, this body is not part of the -- current compilation, and is not attached to the tree, but its -- parent must be set for analysis. if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then -- Replace instance node with body of instance, and create new -- node for corresponding instance declaration. Build_Instance_Compilation_Unit_Nodes (Inst_Node, Act_Body, Act_Decl); -- If the instantiation appears within a generic child package -- enable visibility of current instance of enclosing generic -- parents. if Present (Ctx_Parents) then Scope_Stack.Table (Ctx_Top).Is_Active_Stack_Base := False; Analyze (Inst_Node); Scope_Stack.Table (Ctx_Top).Is_Active_Stack_Base := True; else Analyze (Inst_Node); end if; if Parent (Inst_Node) = Cunit (Main_Unit) then -- If the instance is a child unit itself, then set the scope -- of the expanded body to be the parent of the instantiation -- (ensuring that the fully qualified name will be generated -- for the elaboration subprogram). if Nkind (Defining_Unit_Name (Act_Spec)) = N_Defining_Program_Unit_Name then Set_Scope (Defining_Entity (Inst_Node), Scope (Act_Decl_Id)); end if; end if; -- Case where instantiation is not a library unit else -- Handle the case of an instance with incomplete actual types. -- The instance body cannot be placed just after the declaration -- because full views have not been seen yet. Any use of the non- -- limited views in the instance body requires the presence of a -- regular with_clause in the enclosing unit. Therefore we place -- the instance body at the beginning of the enclosing body, and -- the freeze node for the instance is then placed after the body. if not Is_Empty_Elmt_List (Incomplete_Actuals (Act_Decl_Id)) and then Ekind (Scope (Act_Decl_Id)) = E_Package then declare Scop : constant Entity_Id := Scope (Act_Decl_Id); Body_Id : constant Node_Id := Corresponding_Body (Unit_Declaration_Node (Scop)); F_Node : Node_Id; begin pragma Assert (Present (Body_Id)); Prepend (Act_Body, Declarations (Parent (Body_Id))); if Expander_Active then Ensure_Freeze_Node (Act_Decl_Id); F_Node := Freeze_Node (Act_Decl_Id); Set_Is_Frozen (Act_Decl_Id, False); if Is_List_Member (F_Node) then Remove (F_Node); end if; Insert_After (Act_Body, F_Node); end if; end; else Insert_Before (Inst_Node, Act_Body); Mark_Rewrite_Insertion (Act_Body); -- Insert the freeze node for the instance if need be if Expander_Active then Freeze_Package_Instance (Inst_Node, Gen_Body, Gen_Decl, Act_Decl_Id); Set_Is_Frozen (Act_Decl_Id); end if; end if; -- If the instantiation appears within a generic child package -- enable visibility of current instance of enclosing generic -- parents. if Present (Ctx_Parents) then Scope_Stack.Table (Ctx_Top).Is_Active_Stack_Base := False; Analyze (Act_Body); Scope_Stack.Table (Ctx_Top).Is_Active_Stack_Base := True; else Analyze (Act_Body); end if; end if; Inherit_Context (Gen_Body, Inst_Node); if Par_Installed then Remove_Parent (In_Body => True); -- Restore the previous visibility of the parent Set_Is_Immediately_Visible (Par_Ent, Par_Vis); end if; -- Remove the parent instances if they have been placed on the scope -- stack to compile the body. if Present (Ctx_Parents) then pragma Assert (Scope_Stack.Last = Ctx_Top and then Current_Scope = Standard_Standard); Pop_Scope; Remove_Parents_Of_Generic_Context (Ctx_Parents); end if; pragma Assert (Current_Scope = Scope_Check_Id); pragma Assert (Scope_Stack.Last = Scope_Check_Last); Restore_Hidden_Primitives (Vis_Prims_List); -- Restore the private views that were made visible when the body of -- the instantiation was created. Note that, in the case where one of -- these private views is declared in the parent, there is a nesting -- issue with the calls to Install_Parent and Remove_Parent made in -- between above with In_Body set to True, because these calls also -- want to swap and restore this private view respectively. In this -- case, the call to Install_Parent does nothing, but the call to -- Remove_Parent does restore the private view, thus undercutting the -- call to Restore_Private_Views. That's OK under the condition that -- the two mechanisms swap exactly the same entities, in particular -- the private entities dependent on the primary private entities. Restore_Private_Views (Act_Decl_Id); -- Remove the current unit from visibility if this is an instance -- that is not elaborated on the fly for inlining purposes. if not Inlined_Body then Set_Is_Immediately_Visible (Act_Decl_Id, False); end if; Restore_Env; -- If we have no body, and the unit requires a body, then complain. This -- complaint is suppressed if we have detected other errors (since a -- common reason for missing the body is that it had errors). -- In CodePeer mode, a warning has been emitted already, no need for -- further messages. elsif Unit_Requires_Body (Gen_Unit) and then not Body_Optional then if CodePeer_Mode then null; elsif Serious_Errors_Detected = 0 then Error_Msg_NE ("cannot find body of generic package &", Inst_Node, Gen_Unit); -- Don't attempt to perform any cleanup actions if some other error -- was already detected, since this can cause blowups. else goto Leave; end if; -- Case of package that does not need a body else -- If the instantiation of the declaration is a library unit, rewrite -- the original package instantiation as a package declaration in the -- compilation unit node. if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then Set_Parent_Spec (Act_Decl, Parent_Spec (Inst_Node)); Rewrite (Inst_Node, Act_Decl); -- Generate elaboration entity, in case spec has elaboration code. -- This cannot be done when the instance is analyzed, because it -- is not known yet whether the body exists. Set_Elaboration_Entity_Required (Act_Decl_Id, False); Build_Elaboration_Entity (Parent (Inst_Node), Act_Decl_Id); -- If the instantiation is not a library unit, then append the -- declaration to the list of implicitly generated entities, unless -- it is already a list member which means that it was already -- processed elsif not Is_List_Member (Act_Decl) then Mark_Rewrite_Insertion (Act_Decl); Insert_Before (Inst_Node, Act_Decl); end if; end if; <> -- Restore the context that was in effect prior to instantiating the -- package body. Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP; Local_Suppress_Stack_Top := Saved_LSST; Scope_Suppress := Saved_SS; Style_Check := Saved_SC; Expander_Mode_Restore; Restore_Config_Switches (Saved_CS); Restore_Ghost_Region (Saved_GM, Saved_IGR); Restore_SPARK_Mode (Saved_SM, Saved_SMP); Restore_Warnings (Saved_Warn); end Instantiate_Package_Body; --------------------------------- -- Instantiate_Subprogram_Body -- --------------------------------- -- WARNING: This routine manages Ghost and SPARK regions. Return statements -- must be replaced by gotos which jump to the end of the routine in order -- to restore the Ghost and SPARK modes. procedure Instantiate_Subprogram_Body (Body_Info : Pending_Body_Info; Body_Optional : Boolean := False) is Act_Decl : constant Node_Id := Body_Info.Act_Decl; Act_Decl_Id : constant Entity_Id := Defining_Entity (Act_Decl); Inst_Node : constant Node_Id := Body_Info.Inst_Node; Gen_Id : constant Node_Id := Name (Inst_Node); Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node); Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit); Loc : constant Source_Ptr := Sloc (Inst_Node); Pack_Id : constant Entity_Id := Defining_Unit_Name (Parent (Act_Decl)); -- The following constants capture the context prior to instantiating -- the subprogram body. Saved_CS : constant Config_Switches_Type := Save_Config_Switches; Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; Saved_IGR : constant Node_Id := Ignored_Ghost_Region; Saved_ISMP : constant Boolean := Ignore_SPARK_Mode_Pragmas_In_Instance; Saved_LSST : constant Suppress_Stack_Entry_Ptr := Local_Suppress_Stack_Top; Saved_SC : constant Boolean := Style_Check; Saved_SM : constant SPARK_Mode_Type := SPARK_Mode; Saved_SMP : constant Node_Id := SPARK_Mode_Pragma; Saved_SS : constant Suppress_Record := Scope_Suppress; Saved_Warn : constant Warnings_State := Save_Warnings; Act_Body : Node_Id; Act_Body_Id : Entity_Id; Gen_Body : Node_Id; Gen_Body_Id : Node_Id; Pack_Body : Node_Id; Par_Ent : Entity_Id := Empty; Par_Installed : Boolean := False; Par_Vis : Boolean := False; Ret_Expr : Node_Id; begin Gen_Body_Id := Corresponding_Body (Gen_Decl); -- Subprogram body may have been created already because of an inline -- pragma, or because of multiple elaborations of the enclosing package -- when several instances of the subprogram appear in the main unit. if Present (Corresponding_Body (Act_Decl)) then return; end if; Expander_Mode_Save_And_Set (Body_Info.Expander_Status); -- Re-establish the state of information on which checks are suppressed. -- This information was set in Body_Info at the point of instantiation, -- and now we restore it so that the instance is compiled using the -- check status at the instantiation (RM 11.5(7.2/2), AI95-00224-01). Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top; Scope_Suppress := Body_Info.Scope_Suppress; Restore_Config_Switches (Body_Info.Config_Switches); Restore_Warnings (Body_Info.Warnings); if No (Gen_Body_Id) then -- For imported generic subprogram, no body to compile, complete -- the spec entity appropriately. if Is_Imported (Gen_Unit) then Set_Is_Imported (Act_Decl_Id); Set_First_Rep_Item (Act_Decl_Id, First_Rep_Item (Gen_Unit)); Set_Interface_Name (Act_Decl_Id, Interface_Name (Gen_Unit)); Set_Convention (Act_Decl_Id, Convention (Gen_Unit)); Set_Has_Completion (Act_Decl_Id); goto Leave; -- For other cases, compile the body else Load_Parent_Of_Generic (Inst_Node, Specification (Gen_Decl), Body_Optional); Gen_Body_Id := Corresponding_Body (Gen_Decl); end if; end if; Instantiation_Node := Inst_Node; -- The subprogram being instantiated may be subject to pragma Ghost. Set -- the mode now to ensure that any nodes generated during instantiation -- are properly marked as Ghost. Set_Ghost_Mode (Act_Decl_Id); if Present (Gen_Body_Id) then Gen_Body := Unit_Declaration_Node (Gen_Body_Id); if Nkind (Gen_Body) = N_Subprogram_Body_Stub then -- Either body is not present, or context is non-expanding, as -- when compiling a subunit. Mark the instance as completed, and -- diagnose a missing body when needed. if Expander_Active and then Operating_Mode = Generate_Code then Error_Msg_N ("missing proper body for instantiation", Gen_Body); end if; Set_Has_Completion (Act_Decl_Id); goto Leave; end if; Save_Env (Gen_Unit, Act_Decl_Id); Style_Check := False; -- If the context of the instance is subject to SPARK_Mode "off", the -- annotation is missing, or the body is instantiated at a later pass -- and its spec ignored SPARK_Mode pragma, set the global flag which -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within the -- instance. if SPARK_Mode /= On or else Ignore_SPARK_Mode_Pragmas (Act_Decl_Id) then Ignore_SPARK_Mode_Pragmas_In_Instance := True; end if; -- If the context of an instance is not subject to SPARK_Mode "off", -- and the generic body is subject to an explicit SPARK_Mode pragma, -- the latter should be the one applicable to the instance. if not Ignore_SPARK_Mode_Pragmas_In_Instance and then SPARK_Mode /= Off and then Present (SPARK_Pragma (Gen_Body_Id)) then Set_SPARK_Mode (Gen_Body_Id); end if; Current_Sem_Unit := Body_Info.Current_Sem_Unit; Create_Instantiation_Source (Inst_Node, Gen_Body_Id, S_Adjustment); Act_Body := Copy_Generic_Node (Original_Node (Gen_Body), Empty, Instantiating => True); -- Create proper defining name for the body, to correspond to the one -- in the spec. Act_Body_Id := Make_Defining_Identifier (Sloc (Act_Decl_Id), Chars (Act_Decl_Id)); Preserve_Comes_From_Source (Act_Body_Id, Act_Decl_Id); Set_Defining_Unit_Name (Specification (Act_Body), Act_Body_Id); Set_Corresponding_Spec (Act_Body, Act_Decl_Id); Set_Has_Completion (Act_Decl_Id); Check_Generic_Actuals (Pack_Id, False); -- Generate a reference to link the visible subprogram instance to -- the generic body, which for navigation purposes is the only -- available source for the instance. Generate_Reference (Related_Instance (Pack_Id), Gen_Body_Id, 'b', Set_Ref => False, Force => True); -- If it is a child unit, make the parent instance (which is an -- instance of the parent of the generic) visible. The parent -- instance is the prefix of the name of the generic unit. if Ekind (Scope (Gen_Unit)) = E_Generic_Package and then Nkind (Gen_Id) = N_Expanded_Name then Par_Ent := Entity (Prefix (Gen_Id)); elsif Is_Child_Unit (Gen_Unit) then Par_Ent := Scope (Gen_Unit); end if; if Present (Par_Ent) then Par_Vis := Is_Immediately_Visible (Par_Ent); Install_Parent (Par_Ent, In_Body => True); Par_Installed := True; end if; -- Subprogram body is placed in the body of wrapper package, -- whose spec contains the subprogram declaration as well as -- the renaming declarations for the generic parameters. Pack_Body := Make_Package_Body (Loc, Defining_Unit_Name => New_Copy (Pack_Id), Declarations => New_List (Act_Body)); Set_Corresponding_Spec (Pack_Body, Pack_Id); -- If the instantiation is a library unit, then build resulting -- compilation unit nodes for the instance. The declaration of -- the enclosing package is the grandparent of the subprogram -- declaration. First replace the instantiation node as the unit -- of the corresponding compilation. if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then if Parent (Inst_Node) = Cunit (Main_Unit) then Set_Unit (Parent (Inst_Node), Inst_Node); Build_Instance_Compilation_Unit_Nodes (Inst_Node, Pack_Body, Parent (Parent (Act_Decl))); Analyze (Inst_Node); else Set_Parent (Pack_Body, Parent (Inst_Node)); Analyze (Pack_Body); end if; else Insert_Before (Inst_Node, Pack_Body); Mark_Rewrite_Insertion (Pack_Body); -- Insert the freeze node for the instance if need be if Expander_Active then Freeze_Subprogram_Instance (Inst_Node, Gen_Body, Pack_Id); end if; Analyze (Pack_Body); end if; Inherit_Context (Gen_Body, Inst_Node); Restore_Private_Views (Pack_Id, False); if Par_Installed then Remove_Parent (In_Body => True); -- Restore the previous visibility of the parent Set_Is_Immediately_Visible (Par_Ent, Par_Vis); end if; Restore_Env; -- Body not found. Error was emitted already. If there were no previous -- errors, this may be an instance whose scope is a premature instance. -- In that case we must insure that the (legal) program does raise -- program error if executed. We generate a subprogram body for this -- purpose. elsif Serious_Errors_Detected = 0 and then Nkind (Parent (Inst_Node)) /= N_Compilation_Unit then if Body_Optional then goto Leave; elsif Ekind (Act_Decl_Id) = E_Procedure then Act_Body := Make_Subprogram_Body (Loc, Specification => Make_Procedure_Specification (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars (Act_Decl_Id)), Parameter_Specifications => New_Copy_List (Parameter_Specifications (Parent (Act_Decl_Id)))), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Raise_Program_Error (Loc, Reason => PE_Access_Before_Elaboration)))); else Ret_Expr := Make_Raise_Program_Error (Loc, Reason => PE_Access_Before_Elaboration); Set_Etype (Ret_Expr, (Etype (Act_Decl_Id))); Set_Analyzed (Ret_Expr); Act_Body := Make_Subprogram_Body (Loc, Specification => Make_Function_Specification (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars (Act_Decl_Id)), Parameter_Specifications => New_Copy_List (Parameter_Specifications (Parent (Act_Decl_Id))), Result_Definition => New_Occurrence_Of (Etype (Act_Decl_Id), Loc)), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Simple_Return_Statement (Loc, Ret_Expr)))); end if; Pack_Body := Make_Package_Body (Loc, Defining_Unit_Name => New_Copy (Pack_Id), Declarations => New_List (Act_Body)); Insert_After (Inst_Node, Pack_Body); Set_Corresponding_Spec (Pack_Body, Pack_Id); Analyze (Pack_Body); end if; <> -- Restore the context that was in effect prior to instantiating the -- subprogram body. Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP; Local_Suppress_Stack_Top := Saved_LSST; Scope_Suppress := Saved_SS; Style_Check := Saved_SC; Expander_Mode_Restore; Restore_Config_Switches (Saved_CS); Restore_Ghost_Region (Saved_GM, Saved_IGR); Restore_SPARK_Mode (Saved_SM, Saved_SMP); Restore_Warnings (Saved_Warn); end Instantiate_Subprogram_Body; ---------------------- -- Instantiate_Type -- ---------------------- function Instantiate_Type (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id; Actual_Decls : List_Id) return List_Id is A_Gen_T : constant Entity_Id := Defining_Identifier (Analyzed_Formal); Def : constant Node_Id := Formal_Type_Definition (Formal); Gen_T : constant Entity_Id := Defining_Identifier (Formal); Act_T : Entity_Id; Ancestor : Entity_Id := Empty; Decl_Node : Node_Id; Decl_Nodes : List_Id; -- result Loc : Source_Ptr; Subt : Entity_Id; procedure Check_Shared_Variable_Control_Aspects; -- Ada 2022: Verify that shared variable control aspects (RM C.6) -- that may be specified for a formal type are obeyed by the actual. procedure Diagnose_Predicated_Actual; -- There are a number of constructs in which a discrete type with -- predicates is illegal, e.g. as an index in an array type declaration. -- If a generic type is used is such a construct in a generic package -- declaration, it carries the flag No_Predicate_On_Actual. It is part -- of the generic contract that the actual cannot have predicates. function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean; -- Check that base types are the same and that the subtypes match -- statically. Used in several of the validation subprograms for -- actuals in instantiations. procedure Validate_Array_Type_Instance; procedure Validate_Access_Subprogram_Instance; procedure Validate_Access_Type_Instance; procedure Validate_Derived_Type_Instance; procedure Validate_Derived_Interface_Type_Instance; procedure Validate_Discriminated_Formal_Type; procedure Validate_Interface_Type_Instance; procedure Validate_Private_Type_Instance; procedure Validate_Incomplete_Type_Instance; -- These procedures perform validation tests for the named case. -- Validate_Discriminated_Formal_Type is shared by formal private -- types and Ada 2012 formal incomplete types. -------------------------------------------- -- Check_Shared_Variable_Control_Aspects -- -------------------------------------------- -- Ada 2022: Verify that shared variable control aspects (RM C.6) -- that may be specified for the formal are obeyed by the actual. -- If the formal is a derived type the aspect specifications must match. -- NOTE: AI12-0282 implies that matching of aspects is required between -- formal and actual in all cases, but this is too restrictive. -- In particular it violates a language design rule: a limited private -- indefinite formal can be matched by any actual. The current code -- reflects an older and more permissive version of RM C.6 (12/5). procedure Check_Shared_Variable_Control_Aspects is begin if Ada_Version >= Ada_2022 then if Is_Atomic (A_Gen_T) and then not Is_Atomic (Act_T) then Error_Msg_NE ("actual for& must have Atomic aspect", Actual, A_Gen_T); elsif Is_Derived_Type (A_Gen_T) and then Is_Atomic (A_Gen_T) /= Is_Atomic (Act_T) then Error_Msg_NE ("actual for& has different Atomic aspect", Actual, A_Gen_T); end if; if Is_Volatile (A_Gen_T) and then not Is_Volatile (Act_T) then Error_Msg_NE ("actual for& must have Volatile aspect", Actual, A_Gen_T); elsif Is_Derived_Type (A_Gen_T) and then Is_Volatile (A_Gen_T) /= Is_Volatile (Act_T) then Error_Msg_NE ("actual for& has different Volatile aspect", Actual, A_Gen_T); end if; -- We assume that an array type whose atomic component type -- is Atomic is equivalent to an array type with the explicit -- aspect Has_Atomic_Components. This is a reasonable inference -- from the intent of AI12-0282, and makes it legal to use an -- actual that does not have the identical aspect as the formal. -- Ditto for volatile components. declare Actual_Atomic_Comp : constant Boolean := Has_Atomic_Components (Act_T) or else (Is_Array_Type (Act_T) and then Is_Atomic (Component_Type (Act_T))); begin if Has_Atomic_Components (A_Gen_T) /= Actual_Atomic_Comp then Error_Msg_NE ("formal and actual for& must agree on atomic components", Actual, A_Gen_T); end if; end; declare Actual_Volatile_Comp : constant Boolean := Has_Volatile_Components (Act_T) or else (Is_Array_Type (Act_T) and then Is_Volatile (Component_Type (Act_T))); begin if Has_Volatile_Components (A_Gen_T) /= Actual_Volatile_Comp then Error_Msg_NE ("actual for& must have volatile components", Actual, A_Gen_T); end if; end; -- The following two aspects do not require exact matching, -- but only one-way agreement. See RM C.6. if Is_Independent (A_Gen_T) and then not Is_Independent (Act_T) then Error_Msg_NE ("actual for& must have Independent aspect specified", Actual, A_Gen_T); end if; if Has_Independent_Components (A_Gen_T) and then not Has_Independent_Components (Act_T) then Error_Msg_NE ("actual for& must have Independent_Components specified", Actual, A_Gen_T); end if; end if; end Check_Shared_Variable_Control_Aspects; --------------------------------- -- Diagnose_Predicated_Actual -- --------------------------------- procedure Diagnose_Predicated_Actual is begin if No_Predicate_On_Actual (A_Gen_T) and then Has_Predicates (Act_T) then Error_Msg_NE ("actual for& cannot be a type with predicate", Instantiation_Node, A_Gen_T); elsif No_Dynamic_Predicate_On_Actual (A_Gen_T) and then Has_Predicates (Act_T) and then not Has_Static_Predicate_Aspect (Act_T) then Error_Msg_NE ("actual for& cannot be a type with a dynamic predicate", Instantiation_Node, A_Gen_T); end if; end Diagnose_Predicated_Actual; -------------------- -- Subtypes_Match -- -------------------- function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean is T : constant Entity_Id := Get_Instance_Of (Gen_T); begin -- Check that the base types, root types (when dealing with class -- wide types), or designated types (when dealing with anonymous -- access types) of Gen_T and Act_T are statically matching subtypes. return (Base_Type (Base_Type (T)) = Base_Type (Act_T) and then Subtypes_Statically_Match (T, Act_T)) or else (Is_Class_Wide_Type (Gen_T) and then Is_Class_Wide_Type (Act_T) and then Subtypes_Match (Get_Instance_Of (Root_Type (Gen_T)), Root_Type (Act_T))) or else (Is_Anonymous_Access_Type (Gen_T) and then Ekind (Act_T) = Ekind (Gen_T) and then Subtypes_Statically_Match (Designated_Type (Gen_T), Designated_Type (Act_T))); end Subtypes_Match; ----------------------------------------- -- Validate_Access_Subprogram_Instance -- ----------------------------------------- procedure Validate_Access_Subprogram_Instance is begin if not Is_Access_Type (Act_T) or else Ekind (Designated_Type (Act_T)) /= E_Subprogram_Type then Error_Msg_NE ("expect access type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; -- According to AI05-288, actuals for access_to_subprograms must be -- subtype conformant with the generic formal. Previous to AI05-288 -- only mode conformance was required. -- This is a binding interpretation that applies to previous versions -- of the language, no need to maintain previous weaker checks. Check_Subtype_Conformant (Designated_Type (Act_T), Designated_Type (A_Gen_T), Actual, Get_Inst => True); if Ekind (Base_Type (Act_T)) = E_Access_Protected_Subprogram_Type then if Ekind (A_Gen_T) = E_Access_Subprogram_Type then Error_Msg_NE ("protected access type not allowed for formal &", Actual, Gen_T); end if; elsif Ekind (A_Gen_T) = E_Access_Protected_Subprogram_Type then Error_Msg_NE ("expect protected access type for formal &", Actual, Gen_T); end if; -- If the formal has a specified convention (which in most cases -- will be StdCall) verify that the actual has the same convention. if Has_Convention_Pragma (A_Gen_T) and then Convention (A_Gen_T) /= Convention (Act_T) then Error_Msg_Name_1 := Get_Convention_Name (Convention (A_Gen_T)); Error_Msg_NE ("actual for formal & must have convention %", Actual, Gen_T); end if; if Can_Never_Be_Null (A_Gen_T) /= Can_Never_Be_Null (Act_T) then Error_Msg_NE ("non null exclusion of actual and formal & do not match", Actual, Gen_T); end if; end Validate_Access_Subprogram_Instance; ----------------------------------- -- Validate_Access_Type_Instance -- ----------------------------------- procedure Validate_Access_Type_Instance is Desig_Type : constant Entity_Id := Find_Actual_Type (Designated_Type (A_Gen_T), A_Gen_T); Desig_Act : Entity_Id; begin if not Is_Access_Type (Act_T) then Error_Msg_NE ("expect access type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; if Is_Access_Constant (A_Gen_T) then if not Is_Access_Constant (Act_T) then Error_Msg_N ("actual type must be access-to-constant type", Actual); Abandon_Instantiation (Actual); end if; else if Is_Access_Constant (Act_T) then Error_Msg_N ("actual type must be access-to-variable type", Actual); Abandon_Instantiation (Actual); elsif Ekind (A_Gen_T) = E_General_Access_Type and then Ekind (Base_Type (Act_T)) /= E_General_Access_Type then Error_Msg_N ("actual must be general access type!", Actual); Error_Msg_NE -- CODEFIX ("\add ALL to }!", Actual, Act_T); Abandon_Instantiation (Actual); end if; end if; -- The designated subtypes, that is to say the subtypes introduced -- by an access type declaration (and not by a subtype declaration) -- must match. Desig_Act := Designated_Type (Base_Type (Act_T)); -- The designated type may have been introduced through a limited_ -- with clause, in which case retrieve the non-limited view. This -- applies to incomplete types as well as to class-wide types. if From_Limited_With (Desig_Act) then Desig_Act := Available_View (Desig_Act); end if; if not Subtypes_Match (Desig_Type, Desig_Act) then Error_Msg_NE ("designated type of actual does not match that of formal &", Actual, Gen_T); if not Predicates_Match (Desig_Type, Desig_Act) then Error_Msg_N ("\predicates do not match", Actual); end if; Abandon_Instantiation (Actual); end if; -- Ada 2005: null-exclusion indicators of the two types must agree if Can_Never_Be_Null (A_Gen_T) /= Can_Never_Be_Null (Act_T) then Error_Msg_NE ("non null exclusion of actual and formal & do not match", Actual, Gen_T); end if; end Validate_Access_Type_Instance; ---------------------------------- -- Validate_Array_Type_Instance -- ---------------------------------- procedure Validate_Array_Type_Instance is I1 : Node_Id; I2 : Node_Id; T2 : Entity_Id; function Formal_Dimensions return Nat; -- Count number of dimensions in array type formal ----------------------- -- Formal_Dimensions -- ----------------------- function Formal_Dimensions return Nat is Num : Nat := 0; Index : Node_Id; begin if Nkind (Def) = N_Constrained_Array_Definition then Index := First (Discrete_Subtype_Definitions (Def)); else Index := First (Subtype_Marks (Def)); end if; while Present (Index) loop Num := Num + 1; Next (Index); end loop; return Num; end Formal_Dimensions; -- Start of processing for Validate_Array_Type_Instance begin if not Is_Array_Type (Act_T) then Error_Msg_NE ("expect array type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); elsif Nkind (Def) = N_Constrained_Array_Definition then if not Is_Constrained (Act_T) then Error_Msg_NE ("expect constrained array in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; else if Is_Constrained (Act_T) then Error_Msg_NE ("expect unconstrained array in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; end if; if Formal_Dimensions /= Number_Dimensions (Act_T) then Error_Msg_NE ("dimensions of actual do not match formal &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; I1 := First_Index (A_Gen_T); I2 := First_Index (Act_T); for J in 1 .. Formal_Dimensions loop -- If the indexes of the actual were given by a subtype_mark, -- the index was transformed into a range attribute. Retrieve -- the original type mark for checking. if Is_Entity_Name (Original_Node (I2)) then T2 := Entity (Original_Node (I2)); else T2 := Etype (I2); end if; if not Subtypes_Match (Find_Actual_Type (Etype (I1), A_Gen_T), T2) then Error_Msg_NE ("index types of actual do not match those of formal &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Next_Index (I1); Next_Index (I2); end loop; -- Check matching subtypes. Note that there are complex visibility -- issues when the generic is a child unit and some aspect of the -- generic type is declared in a parent unit of the generic. We do -- the test to handle this special case only after a direct check -- for static matching has failed. The case where both the component -- type and the array type are separate formals, and the component -- type is a private view may also require special checking in -- Subtypes_Match. Finally, we assume that a child instance where -- the component type comes from a formal of a parent instance is -- correct because the generic was correct. A more precise check -- seems too complex to install??? if Subtypes_Match (Component_Type (A_Gen_T), Component_Type (Act_T)) or else Subtypes_Match (Find_Actual_Type (Component_Type (A_Gen_T), A_Gen_T), Component_Type (Act_T)) or else (not Inside_A_Generic and then Is_Child_Unit (Scope (Component_Type (A_Gen_T)))) then null; else Error_Msg_NE ("component subtype of actual does not match that of formal &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; if Has_Aliased_Components (A_Gen_T) and then not Has_Aliased_Components (Act_T) then Error_Msg_NE ("actual must have aliased components to match formal type &", Actual, Gen_T); end if; end Validate_Array_Type_Instance; ----------------------------------------------- -- Validate_Derived_Interface_Type_Instance -- ----------------------------------------------- procedure Validate_Derived_Interface_Type_Instance is Par : constant Entity_Id := Entity (Subtype_Indication (Def)); Elmt : Elmt_Id; begin -- First apply interface instance checks Validate_Interface_Type_Instance; -- Verify that immediate parent interface is an ancestor of -- the actual. if Present (Par) and then not Interface_Present_In_Ancestor (Act_T, Par) then Error_Msg_NE ("interface actual must include progenitor&", Actual, Par); end if; -- Now verify that the actual includes all other ancestors of -- the formal. Elmt := First_Elmt (Interfaces (A_Gen_T)); while Present (Elmt) loop if not Interface_Present_In_Ancestor (Act_T, Get_Instance_Of (Node (Elmt))) then Error_Msg_NE ("interface actual must include progenitor&", Actual, Node (Elmt)); end if; Next_Elmt (Elmt); end loop; end Validate_Derived_Interface_Type_Instance; ------------------------------------ -- Validate_Derived_Type_Instance -- ------------------------------------ procedure Validate_Derived_Type_Instance is Actual_Discr : Entity_Id; Ancestor_Discr : Entity_Id; begin -- Verify that the actual includes the progenitors of the formal, -- if any. The formal may depend on previous formals and their -- instance, so we must examine instance of interfaces if present. -- The actual may be an extension of an interface, in which case -- it does not appear in the interface list, so this must be -- checked separately. if Present (Interface_List (Def)) then if not Has_Interfaces (Act_T) then Error_Msg_NE ("actual must implement all interfaces of formal&", Actual, A_Gen_T); else declare Act_Iface_List : Elist_Id; Iface : Node_Id; Iface_Ent : Entity_Id; function Instance_Exists (I : Entity_Id) return Boolean; -- If the interface entity is declared in a generic unit, -- this can only be legal if we are within an instantiation -- of a child of that generic. There is currently no -- mechanism to relate an interface declared within a -- generic to the corresponding interface in an instance, -- so we traverse the list of interfaces of the actual, -- looking for a name match. --------------------- -- Instance_Exists -- --------------------- function Instance_Exists (I : Entity_Id) return Boolean is Iface_Elmt : Elmt_Id; begin Iface_Elmt := First_Elmt (Act_Iface_List); while Present (Iface_Elmt) loop if Is_Generic_Instance (Scope (Node (Iface_Elmt))) and then Chars (Node (Iface_Elmt)) = Chars (I) then return True; end if; Next_Elmt (Iface_Elmt); end loop; return False; end Instance_Exists; begin Iface := First (Abstract_Interface_List (A_Gen_T)); Collect_Interfaces (Act_T, Act_Iface_List); while Present (Iface) loop Iface_Ent := Get_Instance_Of (Entity (Iface)); if Is_Ancestor (Iface_Ent, Act_T) or else Is_Progenitor (Iface_Ent, Act_T) then null; elsif Ekind (Scope (Iface_Ent)) = E_Generic_Package and then Instance_Exists (Iface_Ent) then null; else Error_Msg_Name_1 := Chars (Act_T); Error_Msg_NE ("actual% must implement interface&", Actual, Etype (Iface)); end if; Next (Iface); end loop; end; end if; end if; -- If the parent type in the generic declaration is itself a previous -- formal type, then it is local to the generic and absent from the -- analyzed generic definition. In that case the ancestor is the -- instance of the formal (which must have been instantiated -- previously), unless the ancestor is itself a formal derived type. -- In this latter case (which is the subject of Corrigendum 8652/0038 -- (AI-202) the ancestor of the formals is the ancestor of its -- parent. Otherwise, the analyzed generic carries the parent type. -- If the parent type is defined in a previous formal package, then -- the scope of that formal package is that of the generic type -- itself, and it has already been mapped into the corresponding type -- in the actual package. -- Common case: parent type defined outside of the generic if Is_Entity_Name (Subtype_Mark (Def)) and then Present (Entity (Subtype_Mark (Def))) then Ancestor := Get_Instance_Of (Entity (Subtype_Mark (Def))); -- Check whether parent is defined in a previous formal package elsif Scope (Scope (Base_Type (Etype (A_Gen_T)))) = Scope (A_Gen_T) then Ancestor := Get_Instance_Of (Base_Type (Etype (A_Gen_T))); -- The type may be a local derivation, or a type extension of a -- previous formal, or of a formal of a parent package. elsif Is_Derived_Type (Get_Instance_Of (A_Gen_T)) or else Ekind (Get_Instance_Of (A_Gen_T)) = E_Record_Type_With_Private then -- Check whether the parent is another formal derived type in the -- same generic unit. if Etype (A_Gen_T) /= A_Gen_T and then Is_Generic_Type (Etype (A_Gen_T)) and then Scope (Etype (A_Gen_T)) = Scope (A_Gen_T) and then Etype (Etype (A_Gen_T)) /= Etype (A_Gen_T) then -- Locate ancestor of parent from the subtype declaration -- created for the actual. declare Decl : Node_Id; begin Decl := First (Actual_Decls); while Present (Decl) loop if Nkind (Decl) = N_Subtype_Declaration and then Chars (Defining_Identifier (Decl)) = Chars (Etype (A_Gen_T)) then Ancestor := Generic_Parent_Type (Decl); exit; else Next (Decl); end if; end loop; end; pragma Assert (Present (Ancestor)); -- The ancestor itself may be a previous formal that has been -- instantiated. Ancestor := Get_Instance_Of (Ancestor); else Ancestor := Get_Instance_Of (Etype (Get_Instance_Of (A_Gen_T))); end if; -- Check whether parent is a previous formal of the current generic elsif Is_Derived_Type (A_Gen_T) and then Is_Generic_Type (Etype (A_Gen_T)) and then Scope (A_Gen_T) = Scope (Etype (A_Gen_T)) then Ancestor := Get_Instance_Of (First_Subtype (Etype (A_Gen_T))); -- An unusual case: the actual is a type declared in a parent unit, -- but is not a formal type so there is no instance_of for it. -- Retrieve it by analyzing the record extension. elsif Is_Child_Unit (Scope (A_Gen_T)) and then In_Open_Scopes (Scope (Act_T)) and then Is_Generic_Instance (Scope (Act_T)) then Analyze (Subtype_Mark (Def)); Ancestor := Entity (Subtype_Mark (Def)); else Ancestor := Get_Instance_Of (Etype (Base_Type (A_Gen_T))); end if; -- If the formal derived type has pragma Preelaborable_Initialization -- then the actual type must have preelaborable initialization. if Known_To_Have_Preelab_Init (A_Gen_T) and then not Has_Preelaborable_Initialization (Act_T) then Error_Msg_NE ("actual for & must have preelaborable initialization", Actual, Gen_T); end if; -- Ada 2005 (AI-251) if Ada_Version >= Ada_2005 and then Is_Interface (Ancestor) then if not Interface_Present_In_Ancestor (Act_T, Ancestor) then Error_Msg_NE ("(Ada 2005) expected type implementing & in instantiation", Actual, Ancestor); end if; -- Finally verify that the (instance of) the ancestor is an ancestor -- of the actual. elsif not Is_Ancestor (Base_Type (Ancestor), Act_T) then Error_Msg_NE ("expect type derived from & in instantiation", Actual, First_Subtype (Ancestor)); Abandon_Instantiation (Actual); end if; -- Ada 2005 (AI-443): Synchronized formal derived type checks. Note -- that the formal type declaration has been rewritten as a private -- extension. if Ada_Version >= Ada_2005 and then Nkind (Parent (A_Gen_T)) = N_Private_Extension_Declaration and then Synchronized_Present (Parent (A_Gen_T)) then -- The actual must be a synchronized tagged type if not Is_Tagged_Type (Act_T) then Error_Msg_N ("actual of synchronized type must be tagged", Actual); Abandon_Instantiation (Actual); elsif Nkind (Parent (Act_T)) = N_Full_Type_Declaration and then Nkind (Type_Definition (Parent (Act_T))) = N_Derived_Type_Definition and then not Synchronized_Present (Type_Definition (Parent (Act_T))) then Error_Msg_N ("actual of synchronized type must be synchronized", Actual); Abandon_Instantiation (Actual); end if; end if; -- Perform atomic/volatile checks (RM C.6(12)). Note that AI05-0218-1 -- removes the second instance of the phrase "or allow pass by copy". -- For Ada 2022, the aspect may be specified explicitly for the -- formal regardless of whether an ancestor obeys it. if Is_Atomic (Act_T) and then not Is_Atomic (Ancestor) and then not Is_Atomic (A_Gen_T) then Error_Msg_N ("cannot have atomic actual type for non-atomic formal type", Actual); elsif Is_Volatile (Act_T) and then not Is_Volatile (Ancestor) and then not Is_Volatile (A_Gen_T) then Error_Msg_N ("cannot have volatile actual type for non-volatile formal type", Actual); end if; -- It should not be necessary to check for unknown discriminants on -- Formal, but for some reason Has_Unknown_Discriminants is false for -- A_Gen_T, so Is_Definite_Subtype incorrectly returns True. This -- needs fixing. ??? if Is_Definite_Subtype (A_Gen_T) and then not Unknown_Discriminants_Present (Formal) and then not Is_Definite_Subtype (Act_T) then Error_Msg_N ("actual subtype must be constrained", Actual); Abandon_Instantiation (Actual); end if; if not Unknown_Discriminants_Present (Formal) then if Is_Constrained (Ancestor) then if not Is_Constrained (Act_T) then Error_Msg_N ("actual subtype must be constrained", Actual); Abandon_Instantiation (Actual); end if; -- Ancestor is unconstrained, Check if generic formal and actual -- agree on constrainedness. The check only applies to array types -- and discriminated types. elsif Is_Constrained (Act_T) then if Ekind (Ancestor) = E_Access_Type or else (not Is_Constrained (A_Gen_T) and then Is_Composite_Type (A_Gen_T)) then Error_Msg_N ("actual subtype must be unconstrained", Actual); Abandon_Instantiation (Actual); end if; -- A class-wide type is only allowed if the formal has unknown -- discriminants. elsif Is_Class_Wide_Type (Act_T) and then not Has_Unknown_Discriminants (Ancestor) then Error_Msg_NE ("actual for & cannot be a class-wide type", Actual, Gen_T); Abandon_Instantiation (Actual); -- Otherwise, the formal and actual must have the same number -- of discriminants and each discriminant of the actual must -- correspond to a discriminant of the formal. elsif Has_Discriminants (Act_T) and then not Has_Unknown_Discriminants (Act_T) and then Has_Discriminants (Ancestor) then Actual_Discr := First_Discriminant (Act_T); Ancestor_Discr := First_Discriminant (Ancestor); while Present (Actual_Discr) and then Present (Ancestor_Discr) loop if Base_Type (Act_T) /= Base_Type (Ancestor) and then No (Corresponding_Discriminant (Actual_Discr)) then Error_Msg_NE ("discriminant & does not correspond " & "to ancestor discriminant", Actual, Actual_Discr); Abandon_Instantiation (Actual); end if; Next_Discriminant (Actual_Discr); Next_Discriminant (Ancestor_Discr); end loop; if Present (Actual_Discr) or else Present (Ancestor_Discr) then Error_Msg_NE ("actual for & must have same number of discriminants", Actual, Gen_T); Abandon_Instantiation (Actual); end if; -- This case should be caught by the earlier check for -- constrainedness, but the check here is added for completeness. elsif Has_Discriminants (Act_T) and then not Has_Unknown_Discriminants (Act_T) then Error_Msg_NE ("actual for & must not have discriminants", Actual, Gen_T); Abandon_Instantiation (Actual); elsif Has_Discriminants (Ancestor) then Error_Msg_NE ("actual for & must have known discriminants", Actual, Gen_T); Abandon_Instantiation (Actual); end if; if not Subtypes_Statically_Compatible (Act_T, Ancestor, Formal_Derived_Matching => True) then Error_Msg_NE ("actual for & must be statically compatible with ancestor", Actual, Gen_T); if not Predicates_Compatible (Act_T, Ancestor) then Error_Msg_N ("\predicate on actual is not compatible with ancestor", Actual); end if; Abandon_Instantiation (Actual); end if; end if; -- If the formal and actual types are abstract, check that there -- are no abstract primitives of the actual type that correspond to -- nonabstract primitives of the formal type (second sentence of -- RM95 3.9.3(9)). if Is_Abstract_Type (A_Gen_T) and then Is_Abstract_Type (Act_T) then Check_Abstract_Primitives : declare Gen_Prims : constant Elist_Id := Primitive_Operations (A_Gen_T); Gen_Elmt : Elmt_Id; Gen_Subp : Entity_Id; Anc_Subp : Entity_Id; Anc_Formal : Entity_Id; Anc_F_Type : Entity_Id; Act_Prims : constant Elist_Id := Primitive_Operations (Act_T); Act_Elmt : Elmt_Id; Act_Subp : Entity_Id; Act_Formal : Entity_Id; Act_F_Type : Entity_Id; Subprograms_Correspond : Boolean; function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean; -- Returns true if T2 is derived directly or indirectly from -- T1, including derivations from interfaces. T1 and T2 are -- required to be specific tagged base types. ------------------------ -- Is_Tagged_Ancestor -- ------------------------ function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean is Intfc_Elmt : Elmt_Id; begin -- The predicate is satisfied if the types are the same if T1 = T2 then return True; -- If we've reached the top of the derivation chain then -- we know that T1 is not an ancestor of T2. elsif Etype (T2) = T2 then return False; -- Proceed to check T2's immediate parent elsif Is_Ancestor (T1, Base_Type (Etype (T2))) then return True; -- Finally, check to see if T1 is an ancestor of any of T2's -- progenitors. else Intfc_Elmt := First_Elmt (Interfaces (T2)); while Present (Intfc_Elmt) loop if Is_Ancestor (T1, Node (Intfc_Elmt)) then return True; end if; Next_Elmt (Intfc_Elmt); end loop; end if; return False; end Is_Tagged_Ancestor; -- Start of processing for Check_Abstract_Primitives begin -- Loop over all of the formal derived type's primitives Gen_Elmt := First_Elmt (Gen_Prims); while Present (Gen_Elmt) loop Gen_Subp := Node (Gen_Elmt); -- If the primitive of the formal is not abstract, then -- determine whether there is a corresponding primitive of -- the actual type that's abstract. if not Is_Abstract_Subprogram (Gen_Subp) then Act_Elmt := First_Elmt (Act_Prims); while Present (Act_Elmt) loop Act_Subp := Node (Act_Elmt); -- If we find an abstract primitive of the actual, -- then we need to test whether it corresponds to the -- subprogram from which the generic formal primitive -- is inherited. if Is_Abstract_Subprogram (Act_Subp) then Anc_Subp := Alias (Gen_Subp); -- Test whether we have a corresponding primitive -- by comparing names, kinds, formal types, and -- result types. if Chars (Anc_Subp) = Chars (Act_Subp) and then Ekind (Anc_Subp) = Ekind (Act_Subp) then Anc_Formal := First_Formal (Anc_Subp); Act_Formal := First_Formal (Act_Subp); while Present (Anc_Formal) and then Present (Act_Formal) loop Anc_F_Type := Etype (Anc_Formal); Act_F_Type := Etype (Act_Formal); if Ekind (Anc_F_Type) = E_Anonymous_Access_Type then Anc_F_Type := Designated_Type (Anc_F_Type); if Ekind (Act_F_Type) = E_Anonymous_Access_Type then Act_F_Type := Designated_Type (Act_F_Type); else exit; end if; elsif Ekind (Act_F_Type) = E_Anonymous_Access_Type then exit; end if; Anc_F_Type := Base_Type (Anc_F_Type); Act_F_Type := Base_Type (Act_F_Type); -- If the formal is controlling, then the -- the type of the actual primitive's formal -- must be derived directly or indirectly -- from the type of the ancestor primitive's -- formal. if Is_Controlling_Formal (Anc_Formal) then if not Is_Tagged_Ancestor (Anc_F_Type, Act_F_Type) then exit; end if; -- Otherwise the types of the formals must -- be the same. elsif Anc_F_Type /= Act_F_Type then exit; end if; Next_Formal (Anc_Formal); Next_Formal (Act_Formal); end loop; -- If we traversed through all of the formals -- then so far the subprograms correspond, so -- now check that any result types correspond. if No (Anc_Formal) and then No (Act_Formal) then Subprograms_Correspond := True; if Ekind (Act_Subp) = E_Function then Anc_F_Type := Etype (Anc_Subp); Act_F_Type := Etype (Act_Subp); if Ekind (Anc_F_Type) = E_Anonymous_Access_Type then Anc_F_Type := Designated_Type (Anc_F_Type); if Ekind (Act_F_Type) = E_Anonymous_Access_Type then Act_F_Type := Designated_Type (Act_F_Type); else Subprograms_Correspond := False; end if; elsif Ekind (Act_F_Type) = E_Anonymous_Access_Type then Subprograms_Correspond := False; end if; Anc_F_Type := Base_Type (Anc_F_Type); Act_F_Type := Base_Type (Act_F_Type); -- Now either the result types must be -- the same or, if the result type is -- controlling, the result type of the -- actual primitive must descend from the -- result type of the ancestor primitive. if Subprograms_Correspond and then Anc_F_Type /= Act_F_Type and then Has_Controlling_Result (Anc_Subp) and then not Is_Tagged_Ancestor (Anc_F_Type, Act_F_Type) then Subprograms_Correspond := False; end if; end if; -- Found a matching subprogram belonging to -- formal ancestor type, so actual subprogram -- corresponds and this violates 3.9.3(9). if Subprograms_Correspond then Error_Msg_NE ("abstract subprogram & overrides " & "nonabstract subprogram of ancestor", Actual, Act_Subp); end if; end if; end if; end if; Next_Elmt (Act_Elmt); end loop; end if; Next_Elmt (Gen_Elmt); end loop; end Check_Abstract_Primitives; end if; -- Verify that limitedness matches. If parent is a limited -- interface then the generic formal is not unless declared -- explicitly so. If not declared limited, the actual cannot be -- limited (see AI05-0087). if Is_Limited_Type (Act_T) and then not Is_Limited_Type (A_Gen_T) then if not In_Instance then Error_Msg_NE ("actual for non-limited & cannot be a limited type", Actual, Gen_T); Explain_Limited_Type (Act_T, Actual); Abandon_Instantiation (Actual); end if; end if; -- Check for AI12-0036 declare Formal_Is_Private_Extension : constant Boolean := Nkind (Parent (A_Gen_T)) = N_Private_Extension_Declaration; Actual_Is_Tagged : constant Boolean := Is_Tagged_Type (Act_T); begin if Actual_Is_Tagged /= Formal_Is_Private_Extension then if not In_Instance then if Actual_Is_Tagged then Error_Msg_NE ("actual for & cannot be a tagged type", Actual, Gen_T); else Error_Msg_NE ("actual for & must be a tagged type", Actual, Gen_T); end if; Abandon_Instantiation (Actual); end if; end if; end; end Validate_Derived_Type_Instance; ---------------------------------------- -- Validate_Discriminated_Formal_Type -- ---------------------------------------- procedure Validate_Discriminated_Formal_Type is Formal_Discr : Entity_Id; Actual_Discr : Entity_Id; Formal_Subt : Entity_Id; begin if Has_Discriminants (A_Gen_T) then if not Has_Discriminants (Act_T) then Error_Msg_NE ("actual for & must have discriminants", Actual, Gen_T); Abandon_Instantiation (Actual); elsif Is_Constrained (Act_T) then Error_Msg_NE ("actual for & must be unconstrained", Actual, Gen_T); Abandon_Instantiation (Actual); else Formal_Discr := First_Discriminant (A_Gen_T); Actual_Discr := First_Discriminant (Act_T); while Formal_Discr /= Empty loop if Actual_Discr = Empty then Error_Msg_N ("discriminants on actual do not match formal", Actual); Abandon_Instantiation (Actual); end if; Formal_Subt := Get_Instance_Of (Etype (Formal_Discr)); -- Access discriminants match if designated types do if Ekind (Base_Type (Formal_Subt)) = E_Anonymous_Access_Type and then (Ekind (Base_Type (Etype (Actual_Discr)))) = E_Anonymous_Access_Type and then Subtypes_Match (Get_Instance_Of (Designated_Type (Base_Type (Formal_Subt))), Designated_Type (Base_Type (Etype (Actual_Discr)))) then null; elsif Base_Type (Formal_Subt) /= Base_Type (Etype (Actual_Discr)) then Error_Msg_N ("types of actual discriminants must match formal", Actual); Abandon_Instantiation (Actual); elsif not Subtypes_Statically_Match (Formal_Subt, Etype (Actual_Discr)) and then Ada_Version >= Ada_95 then Error_Msg_N ("subtypes of actual discriminants must match formal", Actual); Abandon_Instantiation (Actual); end if; Next_Discriminant (Formal_Discr); Next_Discriminant (Actual_Discr); end loop; if Actual_Discr /= Empty then Error_Msg_NE ("discriminants on actual do not match formal", Actual, Gen_T); Abandon_Instantiation (Actual); end if; end if; end if; end Validate_Discriminated_Formal_Type; --------------------------------------- -- Validate_Incomplete_Type_Instance -- --------------------------------------- procedure Validate_Incomplete_Type_Instance is begin if not Is_Tagged_Type (Act_T) and then Is_Tagged_Type (A_Gen_T) then Error_Msg_NE ("actual for & must be a tagged type", Actual, Gen_T); end if; Validate_Discriminated_Formal_Type; end Validate_Incomplete_Type_Instance; -------------------------------------- -- Validate_Interface_Type_Instance -- -------------------------------------- procedure Validate_Interface_Type_Instance is begin if not Is_Interface (Act_T) then Error_Msg_NE ("actual for formal interface type must be an interface", Actual, Gen_T); elsif Is_Limited_Type (Act_T) /= Is_Limited_Type (A_Gen_T) or else Is_Task_Interface (A_Gen_T) /= Is_Task_Interface (Act_T) or else Is_Protected_Interface (A_Gen_T) /= Is_Protected_Interface (Act_T) or else Is_Synchronized_Interface (A_Gen_T) /= Is_Synchronized_Interface (Act_T) then Error_Msg_NE ("actual for interface& does not match (RM 12.5.5(4))", Actual, Gen_T); end if; end Validate_Interface_Type_Instance; ------------------------------------ -- Validate_Private_Type_Instance -- ------------------------------------ procedure Validate_Private_Type_Instance is begin if Is_Limited_Type (Act_T) and then not Is_Limited_Type (A_Gen_T) then if In_Instance then null; else Error_Msg_NE ("actual for non-limited & cannot be a limited type", Actual, Gen_T); Explain_Limited_Type (Act_T, Actual); Abandon_Instantiation (Actual); end if; elsif Known_To_Have_Preelab_Init (A_Gen_T) and then not Has_Preelaborable_Initialization (Act_T) then Error_Msg_NE ("actual for & must have preelaborable initialization", Actual, Gen_T); elsif not Is_Definite_Subtype (Act_T) and then Is_Definite_Subtype (A_Gen_T) and then Ada_Version >= Ada_95 then Error_Msg_NE ("actual for & must be a definite subtype", Actual, Gen_T); elsif not Is_Tagged_Type (Act_T) and then Is_Tagged_Type (A_Gen_T) then Error_Msg_NE ("actual for & must be a tagged type", Actual, Gen_T); end if; Validate_Discriminated_Formal_Type; Ancestor := Gen_T; end Validate_Private_Type_Instance; -- Start of processing for Instantiate_Type begin if not Is_Entity_Name (Actual) or else not Is_Type (Entity (Actual)) then Error_Msg_NE ("expect valid subtype mark to instantiate &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Act_T := Entity (Actual); -- Ada 2005 (AI-216): An Unchecked_Union subtype shall only be passed -- as a generic actual parameter if the corresponding formal type -- does not have a known_discriminant_part, or is a formal derived -- type that is an Unchecked_Union type. if Is_Unchecked_Union (Base_Type (Act_T)) then if not Has_Discriminants (A_Gen_T) or else (Is_Derived_Type (A_Gen_T) and then Is_Unchecked_Union (A_Gen_T)) then null; else Error_Msg_N ("unchecked union cannot be the actual for a " & "discriminated formal type", Act_T); end if; end if; -- Deal with fixed/floating restrictions if Is_Floating_Point_Type (Act_T) then Check_Restriction (No_Floating_Point, Actual); elsif Is_Fixed_Point_Type (Act_T) then Check_Restriction (No_Fixed_Point, Actual); end if; -- Deal with error of using incomplete type as generic actual. -- This includes limited views of a type, even if the non-limited -- view may be available. if Ekind (Act_T) = E_Incomplete_Type or else (Is_Class_Wide_Type (Act_T) and then Ekind (Root_Type (Act_T)) = E_Incomplete_Type) then -- If the formal is an incomplete type, the actual can be -- incomplete as well, but if an actual incomplete type has -- a full view, then we'll retrieve that. if Ekind (A_Gen_T) = E_Incomplete_Type and then No (Full_View (Act_T)) then null; elsif Is_Class_Wide_Type (Act_T) or else No (Full_View (Act_T)) then Error_Msg_N ("premature use of incomplete type", Actual); Abandon_Instantiation (Actual); else Act_T := Full_View (Act_T); Set_Entity (Actual, Act_T); if Has_Private_Component (Act_T) then Error_Msg_N ("premature use of type with private component", Actual); end if; end if; -- Deal with error of premature use of private type as generic actual, -- which is allowed for incomplete formals. elsif Ekind (A_Gen_T) /= E_Incomplete_Type then if Is_Private_Type (Act_T) and then Is_Private_Type (Base_Type (Act_T)) and then not Is_Generic_Type (Act_T) and then not Is_Derived_Type (Act_T) and then No (Full_View (Root_Type (Act_T))) then Error_Msg_N ("premature use of private type", Actual); elsif Has_Private_Component (Act_T) then Error_Msg_N ("premature use of type with private component", Actual); end if; end if; Set_Instance_Of (A_Gen_T, Act_T); -- If the type is generic, the class-wide type may also be used if Is_Tagged_Type (A_Gen_T) and then Is_Tagged_Type (Act_T) and then not Is_Class_Wide_Type (A_Gen_T) then Set_Instance_Of (Class_Wide_Type (A_Gen_T), Class_Wide_Type (Act_T)); end if; if not Is_Abstract_Type (A_Gen_T) and then Is_Abstract_Type (Act_T) then Error_Msg_N ("actual of non-abstract formal cannot be abstract", Actual); end if; -- A generic scalar type is a first subtype for which we generate -- an anonymous base type. Indicate that the instance of this base -- is the base type of the actual. if Is_Scalar_Type (A_Gen_T) then Set_Instance_Of (Etype (A_Gen_T), Etype (Act_T)); end if; Check_Shared_Variable_Control_Aspects; if not Error_Posted (Act_T) then case Nkind (Def) is when N_Formal_Private_Type_Definition => Validate_Private_Type_Instance; when N_Formal_Incomplete_Type_Definition => Validate_Incomplete_Type_Instance; when N_Formal_Derived_Type_Definition => Validate_Derived_Type_Instance; when N_Formal_Discrete_Type_Definition => if not Is_Discrete_Type (Act_T) then Error_Msg_NE ("expect discrete type in instantiation of&", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Diagnose_Predicated_Actual; when N_Formal_Signed_Integer_Type_Definition => if not Is_Signed_Integer_Type (Act_T) then Error_Msg_NE ("expect signed integer type in instantiation of&", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Diagnose_Predicated_Actual; when N_Formal_Modular_Type_Definition => if not Is_Modular_Integer_Type (Act_T) then Error_Msg_NE ("expect modular type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Diagnose_Predicated_Actual; when N_Formal_Floating_Point_Definition => if not Is_Floating_Point_Type (Act_T) then Error_Msg_NE ("expect float type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Formal_Ordinary_Fixed_Point_Definition => if not Is_Ordinary_Fixed_Point_Type (Act_T) then Error_Msg_NE ("expect ordinary fixed point type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Formal_Decimal_Fixed_Point_Definition => if not Is_Decimal_Fixed_Point_Type (Act_T) then Error_Msg_NE ("expect decimal type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Array_Type_Definition => Validate_Array_Type_Instance; when N_Access_To_Object_Definition => Validate_Access_Type_Instance; when N_Access_Function_Definition | N_Access_Procedure_Definition => Validate_Access_Subprogram_Instance; when N_Record_Definition => Validate_Interface_Type_Instance; when N_Derived_Type_Definition => Validate_Derived_Interface_Type_Instance; when others => raise Program_Error; end case; end if; Subt := New_Copy (Gen_T); -- Use adjusted sloc of subtype name as the location for other nodes in -- the subtype declaration. Loc := Sloc (Subt); Decl_Node := Make_Subtype_Declaration (Loc, Defining_Identifier => Subt, Subtype_Indication => New_Occurrence_Of (Act_T, Loc)); Copy_Ghost_Aspect (Formal, To => Decl_Node); -- Record whether the actual is private at this point, so that -- Check_Generic_Actuals can restore its proper view before the -- semantic analysis of the instance. if Is_Private_Type (Act_T) then Set_Has_Private_View (Subtype_Indication (Decl_Node)); elsif (Is_Access_Type (Act_T) and then Is_Private_Type (Designated_Type (Act_T))) or else (Is_Array_Type (Act_T) and then Is_Private_Type (Component_Type_For_Private_View (Act_T))) then Set_Has_Secondary_Private_View (Subtype_Indication (Decl_Node)); end if; -- In Ada 2012 the actual may be a limited view. Indicate that -- the local subtype must be treated as such. if From_Limited_With (Act_T) then Mutate_Ekind (Subt, E_Incomplete_Subtype); Set_From_Limited_With (Subt); end if; Decl_Nodes := New_List (Decl_Node); -- Flag actual derived types so their elaboration produces the -- appropriate renamings for the primitive operations of the ancestor. -- Flag actual for formal private types as well, to determine whether -- operations in the private part may override inherited operations. -- If the formal has an interface list, the ancestor is not the -- parent, but the analyzed formal that includes the interface -- operations of all its progenitors. -- Same treatment for formal private types, so we can check whether the -- type is tagged limited when validating derivations in the private -- part. (See AI05-096). if Nkind (Def) = N_Formal_Derived_Type_Definition then if Present (Interface_List (Def)) then Set_Generic_Parent_Type (Decl_Node, A_Gen_T); else Set_Generic_Parent_Type (Decl_Node, Ancestor); end if; elsif Nkind (Def) in N_Formal_Private_Type_Definition | N_Formal_Incomplete_Type_Definition then Set_Generic_Parent_Type (Decl_Node, A_Gen_T); end if; -- If the actual is a synchronized type that implements an interface, -- the primitive operations are attached to the corresponding record, -- and we have to treat it as an additional generic actual, so that its -- primitive operations become visible in the instance. The task or -- protected type itself does not carry primitive operations. if Is_Concurrent_Type (Act_T) and then Is_Tagged_Type (Act_T) and then Present (Corresponding_Record_Type (Act_T)) and then Present (Ancestor) and then Is_Interface (Ancestor) then declare Corr_Rec : constant Entity_Id := Corresponding_Record_Type (Act_T); New_Corr : Entity_Id; Corr_Decl : Node_Id; begin New_Corr := Make_Temporary (Loc, 'S'); Corr_Decl := Make_Subtype_Declaration (Loc, Defining_Identifier => New_Corr, Subtype_Indication => New_Occurrence_Of (Corr_Rec, Loc)); Append_To (Decl_Nodes, Corr_Decl); if Ekind (Act_T) = E_Task_Type then Mutate_Ekind (Subt, E_Task_Subtype); else Mutate_Ekind (Subt, E_Protected_Subtype); end if; Set_Corresponding_Record_Type (Subt, Corr_Rec); Set_Generic_Parent_Type (Corr_Decl, Ancestor); Set_Generic_Parent_Type (Decl_Node, Empty); end; end if; -- For a floating-point type, capture dimension info if any, because -- the generated subtype declaration does not come from source and -- will not process dimensions. if Is_Floating_Point_Type (Act_T) then Copy_Dimensions (Act_T, Subt); end if; return Decl_Nodes; end Instantiate_Type; ----------------------------- -- Is_Abbreviated_Instance -- ----------------------------- function Is_Abbreviated_Instance (E : Entity_Id) return Boolean is begin return Ekind (E) = E_Package and then Present (Hidden_In_Formal_Instance (E)); end Is_Abbreviated_Instance; --------------------- -- Is_In_Main_Unit -- --------------------- function Is_In_Main_Unit (N : Node_Id) return Boolean is Unum : constant Unit_Number_Type := Get_Source_Unit (N); Current_Unit : Node_Id; begin if Unum = Main_Unit then return True; -- If the current unit is a subunit then it is either the main unit or -- is being compiled as part of the main unit. elsif Nkind (N) = N_Compilation_Unit then return Nkind (Unit (N)) = N_Subunit; end if; Current_Unit := Parent (N); while Present (Current_Unit) and then Nkind (Current_Unit) /= N_Compilation_Unit loop Current_Unit := Parent (Current_Unit); end loop; -- The instantiation node is in the main unit, or else the current node -- (perhaps as the result of nested instantiations) is in the main unit, -- or in the declaration of the main unit, which in this last case must -- be a body. return Current_Unit = Cunit (Main_Unit) or else Current_Unit = Library_Unit (Cunit (Main_Unit)) or else (Present (Current_Unit) and then Present (Library_Unit (Current_Unit)) and then Is_In_Main_Unit (Library_Unit (Current_Unit))); end Is_In_Main_Unit; ---------------------------- -- Load_Parent_Of_Generic -- ---------------------------- procedure Load_Parent_Of_Generic (N : Node_Id; Spec : Node_Id; Body_Optional : Boolean := False) is Comp_Unit : constant Node_Id := Cunit (Get_Source_Unit (Spec)); Saved_Style_Check : constant Boolean := Style_Check; Saved_Warn : constant Warnings_State := Save_Warnings; True_Parent : Node_Id; Inst_Node : Node_Id; OK : Boolean; Previous_Instances : constant Elist_Id := New_Elmt_List; procedure Collect_Previous_Instances (Decls : List_Id); -- Collect all instantiations in the given list of declarations, that -- precede the generic that we need to load. If the bodies of these -- instantiations are available, we must analyze them, to ensure that -- the public symbols generated are the same when the unit is compiled -- to generate code, and when it is compiled in the context of a unit -- that needs a particular nested instance. This process is applied to -- both package and subprogram instances. -------------------------------- -- Collect_Previous_Instances -- -------------------------------- procedure Collect_Previous_Instances (Decls : List_Id) is Decl : Node_Id; begin Decl := First (Decls); while Present (Decl) loop if Sloc (Decl) >= Sloc (Inst_Node) then return; -- If Decl is an instantiation, then record it as requiring -- instantiation of the corresponding body, except if it is an -- abbreviated instantiation generated internally for conformance -- checking purposes only for the case of a formal package -- declared without a box (see Instantiate_Formal_Package). Such -- an instantiation does not generate any code (the actual code -- comes from actual) and thus does not need to be analyzed here. -- If the instantiation appears with a generic package body it is -- not analyzed here either. elsif Nkind (Decl) = N_Package_Instantiation and then not Is_Abbreviated_Instance (Defining_Entity (Decl)) then Append_Elmt (Decl, Previous_Instances); -- For a subprogram instantiation, omit instantiations intrinsic -- operations (Unchecked_Conversions, etc.) that have no bodies. elsif Nkind (Decl) in N_Function_Instantiation | N_Procedure_Instantiation and then not Is_Intrinsic_Subprogram (Entity (Name (Decl))) then Append_Elmt (Decl, Previous_Instances); elsif Nkind (Decl) = N_Package_Declaration then Collect_Previous_Instances (Visible_Declarations (Specification (Decl))); Collect_Previous_Instances (Private_Declarations (Specification (Decl))); -- Previous non-generic bodies may contain instances as well elsif Nkind (Decl) = N_Package_Body and then Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package then Collect_Previous_Instances (Declarations (Decl)); elsif Nkind (Decl) = N_Subprogram_Body and then not Acts_As_Spec (Decl) and then not Is_Generic_Subprogram (Corresponding_Spec (Decl)) then Collect_Previous_Instances (Declarations (Decl)); end if; Next (Decl); end loop; end Collect_Previous_Instances; -- Start of processing for Load_Parent_Of_Generic begin if not In_Same_Source_Unit (N, Spec) or else Nkind (Unit (Comp_Unit)) = N_Package_Declaration or else (Nkind (Unit (Comp_Unit)) = N_Package_Body and then not Is_In_Main_Unit (Spec)) then -- Find body of parent of spec, and analyze it. A special case arises -- when the parent is an instantiation, that is to say when we are -- currently instantiating a nested generic. In that case, there is -- no separate file for the body of the enclosing instance. Instead, -- the enclosing body must be instantiated as if it were a pending -- instantiation, in order to produce the body for the nested generic -- we require now. Note that in that case the generic may be defined -- in a package body, the instance defined in the same package body, -- and the original enclosing body may not be in the main unit. Inst_Node := Empty; True_Parent := Parent (Spec); while Present (True_Parent) and then Nkind (True_Parent) /= N_Compilation_Unit loop if Nkind (True_Parent) = N_Package_Declaration and then Nkind (Original_Node (True_Parent)) = N_Package_Instantiation then -- Parent is a compilation unit that is an instantiation, and -- instantiation node has been replaced with package decl. Inst_Node := Original_Node (True_Parent); exit; elsif Nkind (True_Parent) = N_Package_Declaration and then Nkind (Parent (True_Parent)) = N_Compilation_Unit and then Nkind (Unit (Parent (True_Parent))) = N_Package_Instantiation then -- Parent is a compilation unit that is an instantiation, but -- instantiation node has not been replaced with package decl. Inst_Node := Unit (Parent (True_Parent)); exit; elsif Nkind (True_Parent) = N_Package_Declaration and then Nkind (Parent (True_Parent)) /= N_Compilation_Unit and then Present (Generic_Parent (Specification (True_Parent))) then -- Parent is an instantiation within another specification. -- Declaration for instance has been inserted before original -- instantiation node. A direct link would be preferable? Inst_Node := Next (True_Parent); while Present (Inst_Node) and then Nkind (Inst_Node) /= N_Package_Instantiation loop Next (Inst_Node); end loop; -- If the instance appears within a generic, and the generic -- unit is defined within a formal package of the enclosing -- generic, there is no generic body available, and none -- needed. A more precise test should be used ??? if No (Inst_Node) then return; end if; exit; -- If an ancestor of the generic comes from a formal package -- there is no source for the ancestor body. This is detected -- by examining the scope of the ancestor and its declaration. -- The body, if any is needed, will be available when the -- current unit (containing a formal package) is instantiated. elsif Nkind (True_Parent) = N_Package_Specification and then Present (Generic_Parent (True_Parent)) and then Nkind (Original_Node (Unit_Declaration_Node (Scope (Generic_Parent (True_Parent))))) = N_Formal_Package_Declaration then return; else True_Parent := Parent (True_Parent); end if; end loop; -- Case where we are currently instantiating a nested generic if Present (Inst_Node) then if Nkind (Parent (True_Parent)) = N_Compilation_Unit then -- Instantiation node and declaration of instantiated package -- were exchanged when only the declaration was needed. -- Restore instantiation node before proceeding with body. Set_Unit (Parent (True_Parent), Inst_Node); end if; -- Now complete instantiation of enclosing body, if it appears in -- some other unit. If it appears in the current unit, the body -- will have been instantiated already. if No (Corresponding_Body (Instance_Spec (Inst_Node))) then -- We need to determine the expander mode to instantiate the -- enclosing body. Because the generic body we need may use -- global entities declared in the enclosing package (including -- aggregates) it is in general necessary to compile this body -- with expansion enabled, except if we are within a generic -- package, in which case the usual generic rule applies. declare Exp_Status : Boolean := True; Scop : Entity_Id; begin -- Loop through scopes looking for generic package Scop := Scope (Defining_Entity (Instance_Spec (Inst_Node))); while Present (Scop) and then Scop /= Standard_Standard loop if Ekind (Scop) = E_Generic_Package then Exp_Status := False; exit; end if; Scop := Scope (Scop); end loop; -- Collect previous instantiations in the unit that contains -- the desired generic. if Nkind (Parent (True_Parent)) /= N_Compilation_Unit and then not Body_Optional then declare Decl : Elmt_Id; Info : Pending_Body_Info; Par : Node_Id; begin Par := Parent (Inst_Node); while Present (Par) loop exit when Nkind (Parent (Par)) = N_Compilation_Unit; Par := Parent (Par); end loop; pragma Assert (Present (Par)); if Nkind (Par) = N_Package_Body then Collect_Previous_Instances (Declarations (Par)); elsif Nkind (Par) = N_Package_Declaration then Collect_Previous_Instances (Visible_Declarations (Specification (Par))); Collect_Previous_Instances (Private_Declarations (Specification (Par))); else -- Enclosing unit is a subprogram body. In this -- case all instance bodies are processed in order -- and there is no need to collect them separately. null; end if; Decl := First_Elmt (Previous_Instances); while Present (Decl) loop Info := (Inst_Node => Node (Decl), Act_Decl => Instance_Spec (Node (Decl)), Fin_Scop => Empty, Config_Switches => Save_Config_Switches, Current_Sem_Unit => Get_Code_Unit (Sloc (Node (Decl))), Expander_Status => Exp_Status, Local_Suppress_Stack_Top => Local_Suppress_Stack_Top, Scope_Suppress => Scope_Suppress, Warnings => Save_Warnings); -- Package instance if Nkind (Node (Decl)) = N_Package_Instantiation then Instantiate_Package_Body (Info, Body_Optional => True); -- Subprogram instance else -- The instance_spec is in the wrapper package, -- usually followed by its local renaming -- declaration. See Build_Subprogram_Renaming -- for details. If the instance carries aspects, -- these result in the corresponding pragmas, -- inserted after the subprogram declaration. -- They must be skipped as well when retrieving -- the desired spec. Some of them may have been -- rewritten as null statements. -- A direct link would be more robust ??? declare Decl : Node_Id := (Last (Visible_Declarations (Specification (Info.Act_Decl)))); begin while Nkind (Decl) in N_Null_Statement | N_Pragma | N_Subprogram_Renaming_Declaration loop Decl := Prev (Decl); end loop; Info.Act_Decl := Decl; end; Instantiate_Subprogram_Body (Info, Body_Optional => True); end if; Next_Elmt (Decl); end loop; end; end if; Instantiate_Package_Body (Body_Info => ((Inst_Node => Inst_Node, Act_Decl => True_Parent, Fin_Scop => Empty, Config_Switches => Save_Config_Switches, Current_Sem_Unit => Get_Code_Unit (Sloc (Inst_Node)), Expander_Status => Exp_Status, Local_Suppress_Stack_Top => Local_Suppress_Stack_Top, Scope_Suppress => Scope_Suppress, Warnings => Save_Warnings)), Body_Optional => Body_Optional); end; end if; -- Case where we are not instantiating a nested generic else Opt.Style_Check := False; Expander_Mode_Save_And_Set (True); Load_Needed_Body (Comp_Unit, OK); Opt.Style_Check := Saved_Style_Check; Restore_Warnings (Saved_Warn); Expander_Mode_Restore; if not OK and then Unit_Requires_Body (Defining_Entity (Spec)) and then not Body_Optional then declare Bname : constant Unit_Name_Type := Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit))); begin -- In CodePeer mode, the missing body may make the analysis -- incomplete, but we do not treat it as fatal. if CodePeer_Mode then return; else Error_Msg_Unit_1 := Bname; Error_Msg_N ("this instantiation requires$!", N); Error_Msg_File_1 := Get_File_Name (Bname, Subunit => False); Error_Msg_N ("\but file{ was not found!", N); raise Unrecoverable_Error; end if; end; end if; end if; end if; -- If loading parent of the generic caused an instantiation circularity, -- we abandon compilation at this point, because otherwise in some cases -- we get into trouble with infinite recursions after this point. if Circularity_Detected then raise Unrecoverable_Error; end if; end Load_Parent_Of_Generic; --------------------------------- -- Map_Formal_Package_Entities -- --------------------------------- procedure Map_Formal_Package_Entities (Form : Entity_Id; Act : Entity_Id) is E1 : Entity_Id; E2 : Entity_Id; begin Set_Instance_Of (Form, Act); -- Traverse formal and actual package to map the corresponding entities. -- We skip over internal entities that may be generated during semantic -- analysis, and find the matching entities by name, given that they -- must appear in the same order. E1 := First_Entity (Form); E2 := First_Entity (Act); while Present (E1) and then E1 /= First_Private_Entity (Form) loop -- Could this test be a single condition??? Seems like it could, and -- isn't FPE (Form) a constant anyway??? if not Is_Internal (E1) and then Present (Parent (E1)) and then not Is_Class_Wide_Type (E1) and then not Is_Internal_Name (Chars (E1)) then while Present (E2) and then Chars (E2) /= Chars (E1) loop Next_Entity (E2); end loop; if No (E2) then exit; else Set_Instance_Of (E1, E2); if Is_Type (E1) and then Is_Tagged_Type (E2) then Set_Instance_Of (Class_Wide_Type (E1), Class_Wide_Type (E2)); end if; if Is_Constrained (E1) then Set_Instance_Of (Base_Type (E1), Base_Type (E2)); end if; if Ekind (E1) = E_Package and then No (Renamed_Entity (E1)) then Map_Formal_Package_Entities (E1, E2); end if; end if; end if; Next_Entity (E1); end loop; end Map_Formal_Package_Entities; ----------------------- -- Move_Freeze_Nodes -- ----------------------- procedure Move_Freeze_Nodes (Out_Of : Entity_Id; After : Node_Id; L : List_Id) is Decl : Node_Id; Next_Decl : Node_Id; Next_Node : Node_Id := After; Spec : Node_Id; function Is_Outer_Type (T : Entity_Id) return Boolean; -- Check whether entity is declared in a scope external to that of the -- generic unit. ------------------- -- Is_Outer_Type -- ------------------- function Is_Outer_Type (T : Entity_Id) return Boolean is Scop : Entity_Id := Scope (T); begin if Scope_Depth (Scop) < Scope_Depth (Out_Of) then return True; else while Scop /= Standard_Standard loop if Scop = Out_Of then return False; else Scop := Scope (Scop); end if; end loop; return True; end if; end Is_Outer_Type; -- Start of processing for Move_Freeze_Nodes begin if No (L) then return; end if; -- First remove the freeze nodes that may appear before all other -- declarations. Decl := First (L); while Present (Decl) and then Nkind (Decl) = N_Freeze_Entity and then Is_Outer_Type (Entity (Decl)) loop Decl := Remove_Head (L); Insert_After (Next_Node, Decl); Set_Analyzed (Decl, False); Next_Node := Decl; Decl := First (L); end loop; -- Next scan the list of declarations and remove each freeze node that -- appears ahead of the current node. while Present (Decl) loop while Present (Next (Decl)) and then Nkind (Next (Decl)) = N_Freeze_Entity and then Is_Outer_Type (Entity (Next (Decl))) loop Next_Decl := Remove_Next (Decl); Insert_After (Next_Node, Next_Decl); Set_Analyzed (Next_Decl, False); Next_Node := Next_Decl; end loop; -- If the declaration is a nested package or concurrent type, then -- recurse. Nested generic packages will have been processed from the -- inside out. case Nkind (Decl) is when N_Package_Declaration => Spec := Specification (Decl); when N_Task_Type_Declaration => Spec := Task_Definition (Decl); when N_Protected_Type_Declaration => Spec := Protected_Definition (Decl); when others => Spec := Empty; end case; if Present (Spec) then Move_Freeze_Nodes (Out_Of, Next_Node, Visible_Declarations (Spec)); Move_Freeze_Nodes (Out_Of, Next_Node, Private_Declarations (Spec)); end if; Next (Decl); end loop; end Move_Freeze_Nodes; ---------------- -- Next_Assoc -- ---------------- function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr is begin return Generic_Renamings.Table (E).Next_In_HTable; end Next_Assoc; ------------------------ -- Preanalyze_Actuals -- ------------------------ procedure Preanalyze_Actuals (N : Node_Id; Inst : Entity_Id := Empty) is procedure Perform_Appropriate_Analysis (N : Node_Id); -- Determine if the actuals we are analyzing come from a generic -- instantiation that is a library unit and dispatch accordingly. ---------------------------------- -- Perform_Appropriate_Analysis -- ---------------------------------- procedure Perform_Appropriate_Analysis (N : Node_Id) is begin -- When we have a library instantiation we cannot allow any expansion -- to occur, since there may be no place to put it. Instead, in that -- case we perform a preanalysis of the actual. if Present (Inst) and then Is_Compilation_Unit (Inst) then Preanalyze (N); else Analyze (N); end if; end Perform_Appropriate_Analysis; -- Local variables Errs : constant Nat := Serious_Errors_Detected; Assoc : Node_Id; Act : Node_Id; Cur : Entity_Id := Empty; -- Current homograph of the instance name Vis : Boolean := False; -- Saved visibility status of the current homograph -- Start of processing for Preanalyze_Actuals begin Assoc := First (Generic_Associations (N)); -- If the instance is a child unit, its name may hide an outer homonym, -- so make it invisible to perform name resolution on the actuals. if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name and then Present (Current_Entity (Defining_Identifier (Defining_Unit_Name (N)))) then Cur := Current_Entity (Defining_Identifier (Defining_Unit_Name (N))); if Is_Compilation_Unit (Cur) then Vis := Is_Immediately_Visible (Cur); Set_Is_Immediately_Visible (Cur, False); else Cur := Empty; end if; end if; while Present (Assoc) loop if Nkind (Assoc) /= N_Others_Choice then Act := Explicit_Generic_Actual_Parameter (Assoc); -- Within a nested instantiation, a defaulted actual is an empty -- association, so nothing to analyze. If the subprogram actual -- is an attribute, analyze prefix only, because actual is not a -- complete attribute reference. -- If actual is an allocator, analyze expression only. The full -- analysis can generate code, and if instance is a compilation -- unit we have to wait until the package instance is installed -- to have a proper place to insert this code. -- String literals may be operators, but at this point we do not -- know whether the actual is a formal subprogram or a string. if No (Act) then null; elsif Nkind (Act) = N_Attribute_Reference then Perform_Appropriate_Analysis (Prefix (Act)); elsif Nkind (Act) = N_Explicit_Dereference then Perform_Appropriate_Analysis (Prefix (Act)); elsif Nkind (Act) = N_Allocator then declare Expr : constant Node_Id := Expression (Act); begin if Nkind (Expr) = N_Subtype_Indication then Perform_Appropriate_Analysis (Subtype_Mark (Expr)); -- Analyze separately each discriminant constraint, when -- given with a named association. declare Constr : Node_Id; begin Constr := First (Constraints (Constraint (Expr))); while Present (Constr) loop if Nkind (Constr) = N_Discriminant_Association then Perform_Appropriate_Analysis (Expression (Constr)); else Perform_Appropriate_Analysis (Constr); end if; Next (Constr); end loop; end; else Perform_Appropriate_Analysis (Expr); end if; end; elsif Nkind (Act) /= N_Operator_Symbol then Perform_Appropriate_Analysis (Act); -- Within a package instance, mark actuals that are limited -- views, so their use can be moved to the body of the -- enclosing unit. if Is_Entity_Name (Act) and then Is_Type (Entity (Act)) and then From_Limited_With (Entity (Act)) and then Present (Inst) then Append_Elmt (Entity (Act), Incomplete_Actuals (Inst)); end if; end if; if Errs /= Serious_Errors_Detected then -- Do a minimal analysis of the generic, to prevent spurious -- warnings complaining about the generic being unreferenced, -- before abandoning the instantiation. Perform_Appropriate_Analysis (Name (N)); if Is_Entity_Name (Name (N)) and then Etype (Name (N)) /= Any_Type then Generate_Reference (Entity (Name (N)), Name (N)); Set_Is_Instantiated (Entity (Name (N))); end if; if Present (Cur) then -- For the case of a child instance hiding an outer homonym, -- provide additional warning which might explain the error. Set_Is_Immediately_Visible (Cur, Vis); Error_Msg_NE ("& hides outer unit with the same name??", N, Defining_Unit_Name (N)); end if; Abandon_Instantiation (Act); end if; end if; Next (Assoc); end loop; if Present (Cur) then Set_Is_Immediately_Visible (Cur, Vis); end if; end Preanalyze_Actuals; ------------------------------- -- Provide_Completing_Bodies -- ------------------------------- procedure Provide_Completing_Bodies (N : Node_Id) is procedure Build_Completing_Body (Subp_Decl : Node_Id); -- Generate the completing body for subprogram declaration Subp_Decl procedure Provide_Completing_Bodies_In (Decls : List_Id); -- Generating completing bodies for all subprograms found in declarative -- list Decls. --------------------------- -- Build_Completing_Body -- --------------------------- procedure Build_Completing_Body (Subp_Decl : Node_Id) is Loc : constant Source_Ptr := Sloc (Subp_Decl); Subp_Id : constant Entity_Id := Defining_Entity (Subp_Decl); Spec : Node_Id; begin -- Nothing to do if the subprogram already has a completing body if Present (Corresponding_Body (Subp_Decl)) then return; -- Mark the function as having a valid return statement even though -- the body contains a single raise statement. elsif Ekind (Subp_Id) = E_Function then Set_Return_Present (Subp_Id); end if; -- Clone the specification to obtain new entities and reset the only -- semantic field. Spec := Copy_Subprogram_Spec (Specification (Subp_Decl)); Set_Generic_Parent (Spec, Empty); -- Generate: -- function Func ... return ... is -- -- procedure Proc ... is -- begin -- raise Program_Error with "access before elaboration"; -- edn Proc; Insert_After_And_Analyze (Subp_Decl, Make_Subprogram_Body (Loc, Specification => Spec, Declarations => New_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Raise_Program_Error (Loc, Reason => PE_Access_Before_Elaboration))))); end Build_Completing_Body; ---------------------------------- -- Provide_Completing_Bodies_In -- ---------------------------------- procedure Provide_Completing_Bodies_In (Decls : List_Id) is Decl : Node_Id; begin if Present (Decls) then Decl := First (Decls); while Present (Decl) loop Provide_Completing_Bodies (Decl); Next (Decl); end loop; end if; end Provide_Completing_Bodies_In; -- Local variables Spec : Node_Id; -- Start of processing for Provide_Completing_Bodies begin if Nkind (N) = N_Package_Declaration then Spec := Specification (N); Push_Scope (Defining_Entity (N)); Provide_Completing_Bodies_In (Visible_Declarations (Spec)); Provide_Completing_Bodies_In (Private_Declarations (Spec)); Pop_Scope; elsif Nkind (N) = N_Subprogram_Declaration then Build_Completing_Body (N); end if; end Provide_Completing_Bodies; ------------------- -- Remove_Parent -- ------------------- procedure Remove_Parent (In_Body : Boolean := False) is S : Entity_Id := Current_Scope; -- S is the scope containing the instantiation just completed. The scope -- stack contains the parent instances of the instantiation, followed by -- the original S. Cur_P : Entity_Id; E : Entity_Id; P : Entity_Id; Hidden : Elmt_Id; begin -- After child instantiation is complete, remove from scope stack the -- extra copy of the current scope, and then remove parent instances. if not In_Body then Pop_Scope; while Current_Scope /= S loop P := Current_Scope; End_Package_Scope (Current_Scope); if In_Open_Scopes (P) then E := First_Entity (P); while Present (E) loop Set_Is_Immediately_Visible (E, True); Next_Entity (E); end loop; -- If instantiation is declared in a block, it is the enclosing -- scope that might be a parent instance. Note that only one -- block can be involved, because the parent instances have -- been installed within it. if Ekind (P) = E_Block then Cur_P := Scope (P); else Cur_P := P; end if; if Is_Generic_Instance (Cur_P) and then P /= Current_Scope then -- We are within an instance of some sibling. Retain -- visibility of parent, for proper subsequent cleanup, and -- reinstall private declarations as well. Set_In_Private_Part (P); Install_Private_Declarations (P); end if; -- If the ultimate parent is a top-level unit recorded in -- Instance_Parent_Unit, then reset its visibility to what it was -- before instantiation. (It's not clear what the purpose is of -- testing whether Scope (P) is In_Open_Scopes, but that test was -- present before the ultimate parent test was added.???) elsif not In_Open_Scopes (Scope (P)) or else (P = Instance_Parent_Unit and then not Parent_Unit_Visible) then Set_Is_Immediately_Visible (P, False); -- If the current scope is itself an instantiation of a generic -- nested within P, and we are in the private part of body of this -- instantiation, restore the full views of P, that were removed -- in End_Package_Scope above. This obscure case can occur when a -- subunit of a generic contains an instance of a child unit of -- its generic parent unit. elsif S = Current_Scope and then Is_Generic_Instance (S) and then (In_Package_Body (S) or else In_Private_Part (S)) then declare Par : constant Entity_Id := Generic_Parent (Package_Specification (S)); begin if Present (Par) and then P = Scope (Par) then Set_In_Private_Part (P); Install_Private_Declarations (P); end if; end; end if; end loop; -- Reset visibility of entities in the enclosing scope Set_Is_Hidden_Open_Scope (Current_Scope, False); Hidden := First_Elmt (Hidden_Entities); while Present (Hidden) loop Set_Is_Immediately_Visible (Node (Hidden), True); Next_Elmt (Hidden); end loop; else -- Each body is analyzed separately, and there is no context that -- needs preserving from one body instance to the next, so remove all -- parent scopes that have been installed. while Present (S) loop End_Package_Scope (S); Set_Is_Immediately_Visible (S, False); S := Current_Scope; exit when S = Standard_Standard; end loop; end if; end Remove_Parent; ----------------------------------- -- Requires_Conformance_Checking -- ----------------------------------- function Requires_Conformance_Checking (N : Node_Id) return Boolean is begin -- No conformance checking required if the generic actual part is empty, -- or is a box or an others_clause (necessarily with a box). return Present (Generic_Associations (N)) and then not Box_Present (N) and then Nkind (First (Generic_Associations (N))) /= N_Others_Choice; end Requires_Conformance_Checking; ----------------- -- Restore_Env -- ----------------- procedure Restore_Env is Saved : Instance_Env renames Instance_Envs.Table (Instance_Envs.Last); begin if No (Current_Instantiated_Parent.Act_Id) then -- Restore environment after subprogram inlining Restore_Private_Views (Empty); end if; Current_Instantiated_Parent := Saved.Instantiated_Parent; Exchanged_Views := Saved.Exchanged_Views; Hidden_Entities := Saved.Hidden_Entities; Current_Sem_Unit := Saved.Current_Sem_Unit; Parent_Unit_Visible := Saved.Parent_Unit_Visible; Instance_Parent_Unit := Saved.Instance_Parent_Unit; Restore_Config_Switches (Saved.Switches); Instance_Envs.Decrement_Last; end Restore_Env; --------------------------- -- Restore_Private_Views -- --------------------------- procedure Restore_Private_Views (Pack_Id : Entity_Id; Is_Package : Boolean := True) is M : Elmt_Id; E : Entity_Id; Typ : Entity_Id; Dep_Elmt : Elmt_Id; Dep_Typ : Node_Id; procedure Restore_Nested_Formal (Formal : Entity_Id); -- Hide the generic formals of formal packages declared with box which -- were reachable in the current instantiation. --------------------------- -- Restore_Nested_Formal -- --------------------------- procedure Restore_Nested_Formal (Formal : Entity_Id) is pragma Assert (Ekind (Formal) = E_Package); Ent : Entity_Id; begin if Present (Renamed_Entity (Formal)) and then Denotes_Formal_Package (Renamed_Entity (Formal), True) then return; elsif Present (Associated_Formal_Package (Formal)) then Ent := First_Entity (Formal); while Present (Ent) loop exit when Ekind (Ent) = E_Package and then Renamed_Entity (Ent) = Renamed_Entity (Formal); Set_Is_Hidden (Ent); Set_Is_Potentially_Use_Visible (Ent, False); -- If package, then recurse if Ekind (Ent) = E_Package then Restore_Nested_Formal (Ent); end if; Next_Entity (Ent); end loop; end if; end Restore_Nested_Formal; -- Start of processing for Restore_Private_Views begin M := First_Elmt (Exchanged_Views); while Present (M) loop Typ := Node (M); -- Subtypes of types whose views have been exchanged, and that are -- defined within the instance, were not on the Private_Dependents -- list on entry to the instance, so they have to be exchanged -- explicitly now, in order to remain consistent with the view of the -- parent type. if Ekind (Typ) in E_Private_Type | E_Limited_Private_Type | E_Record_Type_With_Private then Dep_Elmt := First_Elmt (Private_Dependents (Typ)); while Present (Dep_Elmt) loop Dep_Typ := Node (Dep_Elmt); if Scope (Dep_Typ) = Pack_Id and then Present (Full_View (Dep_Typ)) then Replace_Elmt (Dep_Elmt, Full_View (Dep_Typ)); Exchange_Declarations (Dep_Typ); end if; Next_Elmt (Dep_Elmt); end loop; end if; Exchange_Declarations (Typ); Next_Elmt (M); end loop; if No (Pack_Id) then return; end if; -- Make the generic formal parameters private, and make the formal types -- into subtypes of the actuals again. E := First_Entity (Pack_Id); while Present (E) loop Set_Is_Hidden (E, True); if Is_Type (E) and then Nkind (Parent (E)) = N_Subtype_Declaration then -- Always preserve the flag Is_Generic_Actual_Type for GNATprove, -- as it is needed to identify the subtype with the type it -- renames, when there are conversions between access types -- to these. if GNATprove_Mode then null; -- If the actual for E is itself a generic actual type from -- an enclosing instance, E is still a generic actual type -- outside of the current instance. This matter when resolving -- an overloaded call that may be ambiguous in the enclosing -- instance, when two of its actuals coincide. elsif Is_Entity_Name (Subtype_Indication (Parent (E))) and then Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (E)))) then null; else Set_Is_Generic_Actual_Type (E, False); -- It might seem reasonable to clear the Is_Generic_Actual_Type -- flag also on the Full_View if the type is private, since it -- was set also on this Full_View. However, this flag is relied -- upon by Covers to spot "types exported from instantiations" -- which are implicit Full_Views built for instantiations made -- on private types and we get type mismatches if we do it when -- the block exchanging the declarations below triggers ??? -- if Is_Private_Type (E) and then Present (Full_View (E)) then -- Set_Is_Generic_Actual_Type (Full_View (E), False); -- end if; end if; -- An unusual case of aliasing: the actual may also be directly -- visible in the generic, and be private there, while it is fully -- visible in the context of the instance. The internal subtype -- is private in the instance but has full visibility like its -- parent in the enclosing scope. This enforces the invariant that -- the privacy status of all private dependents of a type coincide -- with that of the parent type. This can only happen when a -- generic child unit is instantiated within a sibling. if Is_Private_Type (E) and then not Is_Private_Type (Etype (E)) then Exchange_Declarations (E); end if; elsif Ekind (E) = E_Package then -- The end of the renaming list is the renaming of the generic -- package itself. If the instance is a subprogram, all entities -- in the corresponding package are renamings. If this entity is -- a formal package, make its own formals private as well. The -- actual in this case is itself the renaming of an instantiation. -- If the entity is not a package renaming, it is the entity -- created to validate formal package actuals: ignore it. -- If the actual is itself a formal package for the enclosing -- generic, or the actual for such a formal package, it remains -- visible on exit from the instance, and therefore nothing needs -- to be done either, except to keep it accessible. if Is_Package and then Renamed_Entity (E) = Pack_Id then exit; elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then null; elsif Denotes_Formal_Package (Renamed_Entity (E), True, Pack_Id) then Set_Is_Hidden (E, False); else declare Act_P : constant Entity_Id := Renamed_Entity (E); Id : Entity_Id; begin Id := First_Entity (Act_P); while Present (Id) and then Id /= First_Private_Entity (Act_P) loop exit when Ekind (Id) = E_Package and then Renamed_Entity (Id) = Act_P; Set_Is_Hidden (Id, True); Set_Is_Potentially_Use_Visible (Id, In_Use (Act_P)); if Ekind (Id) = E_Package then Restore_Nested_Formal (Id); end if; Next_Entity (Id); end loop; end; end if; end if; Next_Entity (E); end loop; end Restore_Private_Views; -------------- -- Save_Env -- -------------- procedure Save_Env (Gen_Unit : Entity_Id; Act_Unit : Entity_Id) is begin Init_Env; Set_Instance_Env (Gen_Unit, Act_Unit); end Save_Env; ---------------------------- -- Save_Global_References -- ---------------------------- procedure Save_Global_References (Templ : Node_Id) is -- ??? it is horrible to use global variables in highly recursive code E : Entity_Id; -- The entity of the current associated node Gen_Scope : Entity_Id; -- The scope of the generic for which references are being saved N2 : Node_Id; -- The current associated node function Is_Global (E : Entity_Id) return Boolean; -- Check whether entity is defined outside of generic unit. Examine the -- scope of an entity, and the scope of the scope, etc, until we find -- either Standard, in which case the entity is global, or the generic -- unit itself, which indicates that the entity is local. If the entity -- is the generic unit itself, as in the case of a recursive call, or -- the enclosing generic unit, if different from the current scope, then -- it is local as well, because it will be replaced at the point of -- instantiation. On the other hand, if it is a reference to a child -- unit of a common ancestor, which appears in an instantiation, it is -- global because it is used to denote a specific compilation unit at -- the time the instantiations will be analyzed. procedure Qualify_Universal_Operands (Op : Node_Id; Func_Call : Node_Id); -- Op denotes a binary or unary operator in generic template Templ. Node -- Func_Call is the function call alternative of the operator within the -- the analyzed copy of the template. Change each operand which yields a -- universal type by wrapping it into a qualified expression -- -- Actual_Typ'(Operand) -- -- where Actual_Typ is the type of corresponding actual parameter of -- Operand in Func_Call. procedure Reset_Entity (N : Node_Id); -- Save semantic information on global entity so that it is not resolved -- again at instantiation time. procedure Save_Entity_Descendants (N : Node_Id); -- Apply Save_Global_References to the two syntactic descendants of -- non-terminal nodes that carry an Associated_Node and are processed -- through Reset_Entity. Once the global entity (if any) has been -- captured together with its type, only two syntactic descendants need -- to be traversed to complete the processing of the tree rooted at N. -- This applies to Selected_Components, Expanded_Names, and to Operator -- nodes. N can also be a character literal, identifier, or operator -- symbol node, but the call has no effect in these cases. procedure Save_Global_Defaults (N1 : Node_Id; N2 : Node_Id); -- Default actuals in nested instances must be handled specially -- because there is no link to them from the original tree. When an -- actual subprogram is given by a default, we add an explicit generic -- association for it in the instantiation node. When we save the -- global references on the name of the instance, we recover the list -- of generic associations, and add an explicit one to the original -- generic tree, through which a global actual can be preserved. -- Similarly, if a child unit is instantiated within a sibling, in the -- context of the parent, we must preserve the identifier of the parent -- so that it can be properly resolved in a subsequent instantiation. procedure Save_Global_Descendant (D : Union_Id); -- Apply Save_References recursively to the descendants of node D procedure Save_References (N : Node_Id); -- This is the recursive procedure that does the work, once the -- enclosing generic scope has been established. procedure Set_Global_Type (N : Node_Id; N2 : Node_Id); -- If the type of N2 is global to the generic unit, save the type in -- the generic node. Just as we perform name capture for explicit -- references within the generic, we must capture the global types -- of local entities because they may participate in resolution in -- the instance. --------------- -- Is_Global -- --------------- function Is_Global (E : Entity_Id) return Boolean is Se : Entity_Id; function Is_Instance_Node (Decl : Node_Id) return Boolean; -- Determine whether the parent node of a reference to a child unit -- denotes an instantiation or a formal package, in which case the -- reference to the child unit is global, even if it appears within -- the current scope (e.g. when the instance appears within the body -- of an ancestor). ---------------------- -- Is_Instance_Node -- ---------------------- function Is_Instance_Node (Decl : Node_Id) return Boolean is begin return Nkind (Decl) in N_Generic_Instantiation or else Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration; end Is_Instance_Node; -- Start of processing for Is_Global begin if E = Gen_Scope then return False; elsif E = Standard_Standard then return True; -- E should be an entity, but it is not always elsif Nkind (E) not in N_Entity then return False; elsif Nkind (E) /= N_Expanded_Name and then Is_Child_Unit (E) and then (Is_Instance_Node (Parent (N2)) or else (Nkind (Parent (N2)) = N_Expanded_Name and then N2 = Selector_Name (Parent (N2)) and then Is_Instance_Node (Parent (Parent (N2))))) then return True; else -- E may be an expanded name - typically an operator - in which -- case we must find its enclosing scope since expanded names -- don't have corresponding scopes. if Nkind (E) = N_Expanded_Name then Se := Find_Enclosing_Scope (E); -- Otherwise, E is an entity and will have Scope set else Se := Scope (E); end if; while Se /= Gen_Scope loop if Se = Standard_Standard then return True; else Se := Scope (Se); end if; end loop; return False; end if; end Is_Global; -------------------------------- -- Qualify_Universal_Operands -- -------------------------------- procedure Qualify_Universal_Operands (Op : Node_Id; Func_Call : Node_Id) is procedure Qualify_Operand (Opnd : Node_Id; Actual : Node_Id); -- Rewrite operand Opnd as a qualified expression of the form -- -- Actual_Typ'(Opnd) -- -- where Actual is the corresponding actual parameter of Opnd in -- function call Func_Call. function Qualify_Type (Loc : Source_Ptr; Typ : Entity_Id) return Node_Id; -- Qualify type Typ by creating a selected component of the form -- -- Scope_Of_Typ.Typ --------------------- -- Qualify_Operand -- --------------------- procedure Qualify_Operand (Opnd : Node_Id; Actual : Node_Id) is Loc : constant Source_Ptr := Sloc (Opnd); Typ : constant Entity_Id := Etype (Actual); Mark : Node_Id; Qual : Node_Id; begin -- Qualify the operand when it is of a universal type. Note that -- the template is unanalyzed and it is not possible to directly -- query the type. This transformation is not done when the type -- of the actual is internally generated because the type will be -- regenerated in the instance. if Yields_Universal_Type (Opnd) and then Comes_From_Source (Typ) and then not Is_Hidden (Typ) then -- The type of the actual may be a global reference. Save this -- information by creating a reference to it. if Is_Global (Typ) then Mark := New_Occurrence_Of (Typ, Loc); -- Otherwise rely on resolution to find the proper type within -- the instance. else Mark := Qualify_Type (Loc, Typ); end if; Qual := Make_Qualified_Expression (Loc, Subtype_Mark => Mark, Expression => Relocate_Node (Opnd)); -- Mark the qualification to distinguish it from other source -- constructs and signal the instantiation mechanism that this -- node requires special processing. See Copy_Generic_Node for -- details. Set_Is_Qualified_Universal_Literal (Qual); Rewrite (Opnd, Qual); end if; end Qualify_Operand; ------------------ -- Qualify_Type -- ------------------ function Qualify_Type (Loc : Source_Ptr; Typ : Entity_Id) return Node_Id is Scop : constant Entity_Id := Scope (Typ); Result : Node_Id; begin Result := Make_Identifier (Loc, Chars (Typ)); if Present (Scop) and then not Is_Generic_Unit (Scop) then Result := Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Chars (Scop)), Selector_Name => Result); end if; return Result; end Qualify_Type; -- Local variables Actuals : constant List_Id := Parameter_Associations (Func_Call); -- Start of processing for Qualify_Universal_Operands begin if Nkind (Op) in N_Binary_Op then Qualify_Operand (Left_Opnd (Op), First (Actuals)); Qualify_Operand (Right_Opnd (Op), Next (First (Actuals))); elsif Nkind (Op) in N_Unary_Op then Qualify_Operand (Right_Opnd (Op), First (Actuals)); end if; end Qualify_Universal_Operands; ------------------ -- Reset_Entity -- ------------------ procedure Reset_Entity (N : Node_Id) is function Top_Ancestor (E : Entity_Id) return Entity_Id; -- Find the ultimate ancestor of the current unit. If it is not a -- generic unit, then the name of the current unit in the prefix of -- an expanded name must be replaced with its generic homonym to -- ensure that it will be properly resolved in an instance. ------------------ -- Top_Ancestor -- ------------------ function Top_Ancestor (E : Entity_Id) return Entity_Id is Par : Entity_Id; begin Par := E; while Is_Child_Unit (Par) loop Par := Scope (Par); end loop; return Par; end Top_Ancestor; -- Start of processing for Reset_Entity begin N2 := Get_Associated_Node (N); E := Entity (N2); if Present (E) then -- If the node is an entry call to an entry in an enclosing task, -- it is rewritten as a selected component. No global entity to -- preserve in this case, since the expansion will be redone in -- the instance. if Nkind (E) not in N_Entity then Set_Associated_Node (N, Empty); Set_Etype (N, Empty); return; end if; -- If the entity is an itype created as a subtype of an access -- type with a null exclusion restore source entity for proper -- visibility. The itype will be created anew in the instance. if Is_Itype (E) and then Ekind (E) = E_Access_Subtype and then Is_Entity_Name (N) and then Chars (Etype (E)) = Chars (N) then E := Etype (E); Set_Entity (N2, E); Set_Etype (N2, E); end if; if Is_Global (E) then Set_Global_Type (N, N2); elsif Nkind (N) = N_Op_Concat and then Is_Generic_Type (Etype (N2)) and then (Base_Type (Etype (Right_Opnd (N2))) = Etype (N2) or else Base_Type (Etype (Left_Opnd (N2))) = Etype (N2)) and then Is_Intrinsic_Subprogram (E) then null; -- Entity is local. Mark generic node as unresolved. Note that now -- it does not have an entity. else Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; if Nkind (Parent (N)) in N_Generic_Instantiation and then N = Name (Parent (N)) then Save_Global_Defaults (Parent (N), Parent (N2)); end if; elsif Nkind (Parent (N)) = N_Selected_Component and then Nkind (Parent (N2)) = N_Expanded_Name then -- In case of previous errors, the tree might be malformed if No (Entity (Parent (N2))) then null; elsif Is_Global (Entity (Parent (N2))) then Change_Selected_Component_To_Expanded_Name (Parent (N)); Set_Associated_Node (Parent (N), Parent (N2)); Set_Global_Type (Parent (N), Parent (N2)); Save_Entity_Descendants (N); -- If this is a reference to the current generic entity, replace -- by the name of the generic homonym of the current package. This -- is because in an instantiation Par.P.Q will not resolve to the -- name of the instance, whose enclosing scope is not necessarily -- Par. We use the generic homonym rather that the name of the -- generic itself because it may be hidden by a local declaration. elsif In_Open_Scopes (Entity (Parent (N2))) and then not Is_Generic_Unit (Top_Ancestor (Entity (Prefix (Parent (N2))))) then if Ekind (Entity (Parent (N2))) = E_Generic_Package then Rewrite (Parent (N), Make_Identifier (Sloc (N), Chars => Chars (Generic_Homonym (Entity (Parent (N2)))))); else Rewrite (Parent (N), Make_Identifier (Sloc (N), Chars => Chars (Selector_Name (Parent (N2))))); end if; end if; if Nkind (Parent (Parent (N))) in N_Generic_Instantiation and then Parent (N) = Name (Parent (Parent (N))) then Save_Global_Defaults (Parent (Parent (N)), Parent (Parent (N2))); end if; -- A selected component may denote a static constant that has been -- folded. If the static constant is global to the generic, capture -- its value. Otherwise the folding will happen in any instantiation. elsif Nkind (Parent (N)) = N_Selected_Component and then Nkind (Parent (N2)) in N_Integer_Literal | N_Real_Literal then if Present (Entity (Original_Node (Parent (N2)))) and then Is_Global (Entity (Original_Node (Parent (N2)))) then Rewrite (Parent (N), New_Copy (Parent (N2))); Set_Analyzed (Parent (N), False); end if; -- A selected component may be transformed into a parameterless -- function call. If the called entity is global, rewrite the node -- appropriately, i.e. as an extended name for the global entity. elsif Nkind (Parent (N)) = N_Selected_Component and then Nkind (Parent (N2)) = N_Function_Call and then N = Selector_Name (Parent (N)) then if No (Parameter_Associations (Parent (N2))) then if Is_Global (Entity (Name (Parent (N2)))) then Change_Selected_Component_To_Expanded_Name (Parent (N)); Set_Associated_Node (Parent (N), Name (Parent (N2))); Set_Global_Type (Parent (N), Name (Parent (N2))); Save_Entity_Descendants (N); else Set_Is_Prefixed_Call (Parent (N)); Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; -- In Ada 2005, X.F may be a call to a primitive operation, -- rewritten as F (X). This rewriting will be done again in an -- instance, so keep the original node. Global entities will be -- captured as for other constructs. Indicate that this must -- resolve as a call, to prevent accidental overloading in the -- instance, if both a component and a primitive operation appear -- as candidates. else Set_Is_Prefixed_Call (Parent (N)); end if; -- Entity is local. Reset in generic unit, so that node is resolved -- anew at the point of instantiation. else Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; end Reset_Entity; ----------------------------- -- Save_Entity_Descendants -- ----------------------------- procedure Save_Entity_Descendants (N : Node_Id) is begin case Nkind (N) is when N_Binary_Op => Save_Global_Descendant (Union_Id (Left_Opnd (N))); Save_Global_Descendant (Union_Id (Right_Opnd (N))); when N_Unary_Op => Save_Global_Descendant (Union_Id (Right_Opnd (N))); when N_Expanded_Name | N_Selected_Component => Save_Global_Descendant (Union_Id (Prefix (N))); Save_Global_Descendant (Union_Id (Selector_Name (N))); when N_Character_Literal | N_Identifier | N_Operator_Symbol => null; when others => raise Program_Error; end case; end Save_Entity_Descendants; -------------------------- -- Save_Global_Defaults -- -------------------------- procedure Save_Global_Defaults (N1 : Node_Id; N2 : Node_Id) is Loc : constant Source_Ptr := Sloc (N1); Assoc2 : constant List_Id := Generic_Associations (N2); Gen_Id : constant Entity_Id := Get_Generic_Entity (N2); Assoc1 : List_Id; Act1 : Node_Id; Act2 : Node_Id; Def : Node_Id; Ndec : Node_Id; Subp : Entity_Id; Actual : Entity_Id; begin Assoc1 := Generic_Associations (N1); if Present (Assoc1) then Act1 := First (Assoc1); else Act1 := Empty; Set_Generic_Associations (N1, New_List); Assoc1 := Generic_Associations (N1); end if; if Present (Assoc2) then Act2 := First (Assoc2); else return; end if; while Present (Act1) and then Present (Act2) loop Next (Act1); Next (Act2); end loop; -- Find the associations added for default subprograms if Present (Act2) then while Nkind (Act2) /= N_Generic_Association or else No (Entity (Selector_Name (Act2))) or else not Is_Overloadable (Entity (Selector_Name (Act2))) loop Next (Act2); end loop; -- Add a similar association if the default is global. The -- renaming declaration for the actual has been analyzed, and -- its alias is the program it renames. Link the actual in the -- original generic tree with the node in the analyzed tree. while Present (Act2) loop Subp := Entity (Selector_Name (Act2)); Def := Explicit_Generic_Actual_Parameter (Act2); -- Following test is defence against rubbish errors if No (Alias (Subp)) then return; end if; -- Retrieve the resolved actual from the renaming declaration -- created for the instantiated formal. Actual := Entity (Name (Parent (Parent (Subp)))); Set_Entity (Def, Actual); Set_Etype (Def, Etype (Actual)); if Is_Global (Actual) then Ndec := Make_Generic_Association (Loc, Selector_Name => New_Occurrence_Of (Subp, Loc), Explicit_Generic_Actual_Parameter => New_Occurrence_Of (Actual, Loc)); Set_Associated_Node (Explicit_Generic_Actual_Parameter (Ndec), Def); Append (Ndec, Assoc1); -- If there are other defaults, add a dummy association in case -- there are other defaulted formals with the same name. -- Note that we are creating an N_Generic_Association with -- neither Explicit_Generic_Actual_Parameter nor Box_Present. elsif Present (Next (Act2)) and True then Ndec := Make_Generic_Association (Loc, Selector_Name => New_Occurrence_Of (Subp, Loc), Explicit_Generic_Actual_Parameter => Empty); Append (Ndec, Assoc1); end if; Next (Act2); end loop; end if; if Nkind (Name (N1)) = N_Identifier and then Is_Child_Unit (Gen_Id) and then Is_Global (Gen_Id) and then Is_Generic_Unit (Scope (Gen_Id)) and then In_Open_Scopes (Scope (Gen_Id)) then -- This is an instantiation of a child unit within a sibling, so -- that the generic parent is in scope. An eventual instance must -- occur within the scope of an instance of the parent. Make name -- in instance into an expanded name, to preserve the identifier -- of the parent, so it can be resolved subsequently. Rewrite (Name (N2), Make_Expanded_Name (Loc, Chars => Chars (Gen_Id), Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc), Selector_Name => New_Occurrence_Of (Gen_Id, Loc))); Set_Entity (Name (N2), Gen_Id); Rewrite (Name (N1), Make_Expanded_Name (Loc, Chars => Chars (Gen_Id), Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc), Selector_Name => New_Occurrence_Of (Gen_Id, Loc))); Set_Associated_Node (Name (N1), Name (N2)); Set_Associated_Node (Prefix (Name (N1)), Empty); Set_Associated_Node (Selector_Name (Name (N1)), Selector_Name (Name (N2))); Set_Etype (Name (N1), Etype (Gen_Id)); end if; end Save_Global_Defaults; ---------------------------- -- Save_Global_Descendant -- ---------------------------- procedure Save_Global_Descendant (D : Union_Id) is N1 : Node_Id; begin if D in Node_Range then if D = Union_Id (Empty) then null; elsif Nkind (Node_Id (D)) /= N_Compilation_Unit then Save_References (Node_Id (D)); end if; elsif D in List_Range then pragma Assert (D /= Union_Id (No_List)); -- Because No_List = Empty, which is in Node_Range above N1 := First (List_Id (D)); while Present (N1) loop Save_References (N1); Next (N1); end loop; -- Element list or other non-node field, nothing to do else null; end if; end Save_Global_Descendant; --------------------- -- Save_References -- --------------------- -- This is the recursive procedure that does the work once the enclosing -- generic scope has been established. We have to treat specially a -- number of node rewritings that are required by semantic processing -- and which change the kind of nodes in the generic copy: typically -- constant-folding, replacing an operator node by a string literal, or -- a selected component by an expanded name. In each of those cases, the -- transformation is propagated to the generic unit. procedure Save_References (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); function Requires_Delayed_Save (Nod : Node_Id) return Boolean; -- Determine whether arbitrary node Nod requires delayed capture of -- global references within its aspect specifications. procedure Save_References_In_Aggregate (N : Node_Id); -- Save all global references in [extension] aggregate node N procedure Save_References_In_Char_Lit_Or_Op_Symbol (N : Node_Id); -- Save all global references in a character literal or operator -- symbol denoted by N. procedure Save_References_In_Descendants (N : Node_Id); -- Save all global references in all descendants of node N procedure Save_References_In_Identifier (N : Node_Id); -- Save all global references in identifier node N procedure Save_References_In_Operator (N : Node_Id); -- Save all global references in operator node N procedure Save_References_In_Pragma (Prag : Node_Id); -- Save all global references found within the expression of pragma -- Prag. --------------------------- -- Requires_Delayed_Save -- --------------------------- function Requires_Delayed_Save (Nod : Node_Id) return Boolean is begin -- Generic packages and subprograms require delayed capture of -- global references within their aspects due to the timing of -- annotation analysis. if Nkind (Nod) in N_Generic_Package_Declaration | N_Generic_Subprogram_Declaration | N_Package_Body | N_Package_Body_Stub | N_Subprogram_Body | N_Subprogram_Body_Stub then -- Since the capture of global references is done on the -- unanalyzed generic template, there is no information around -- to infer the context. Use the Associated_Entity linkages to -- peek into the analyzed generic copy and determine what the -- template corresponds to. if Nod = Templ then return Is_Generic_Declaration_Or_Body (Unit_Declaration_Node (Get_Associated_Entity (Defining_Entity (Nod)))); -- Otherwise the generic unit being processed is not the top -- level template. It is safe to capture of global references -- within the generic unit because at this point the top level -- copy is fully analyzed. else return False; end if; -- Otherwise capture the global references without interference else return False; end if; end Requires_Delayed_Save; ---------------------------------- -- Save_References_In_Aggregate -- ---------------------------------- procedure Save_References_In_Aggregate (N : Node_Id) is Nam : Node_Id; Qual : Node_Id := Empty; Typ : Entity_Id := Empty; begin N2 := Get_Associated_Node (N); if Present (N2) then Typ := Etype (N2); -- In an instance within a generic, use the name of the actual -- and not the original generic parameter. If the actual is -- global in the current generic it must be preserved for its -- instantiation. if Parent_Kind (Typ) = N_Subtype_Declaration and then Present (Generic_Parent_Type (Parent (Typ))) then Typ := Base_Type (Typ); Set_Etype (N2, Typ); end if; end if; if No (N2) or else No (Typ) or else not Is_Global (Typ) then Set_Associated_Node (N, Empty); -- For a full aggregate, if the type is local but is a derived -- tagged type of a global ancestor, we will need to have the -- full view of this global ancestor available in the instance -- in order to analyze the full aggregate. if Present (N2) and then Nkind (N2) = N_Aggregate and then Present (Typ) and then Is_Tagged_Type (Typ) and then Is_Derived_Type (Typ) then declare Root_Typ : constant Entity_Id := Root_Type (Typ); Parent_Typ : Entity_Id := Typ; begin loop Parent_Typ := Etype (Parent_Typ); if Is_Global (Parent_Typ) then Set_Ancestor_Type (N, Parent_Typ); exit; end if; exit when Parent_Typ = Root_Typ; end loop; end; end if; -- If the aggregate is an actual in a call, it has been -- resolved in the current context, to some local type. The -- enclosing call may have been disambiguated by the aggregate, -- and this disambiguation might fail at instantiation time -- because the type to which the aggregate did resolve is not -- preserved. In order to preserve some of this information, -- wrap the aggregate in a qualified expression, using the id -- of its type. For further disambiguation we qualify the type -- name with its scope (if visible and not hidden by a local -- homograph) because both id's will have corresponding -- entities in an instance. This resolves most of the problems -- with missing type information on aggregates in instances. if Present (N2) and then Nkind (N2) = Nkind (N) and then Nkind (Parent (N2)) in N_Subprogram_Call and then Present (Typ) and then Comes_From_Source (Typ) then Nam := Make_Identifier (Loc, Chars (Typ)); if Is_Immediately_Visible (Scope (Typ)) and then (not In_Open_Scopes (Scope (Typ)) or else Current_Entity (Scope (Typ)) = Scope (Typ)) then Nam := Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Chars (Scope (Typ))), Selector_Name => Nam); end if; Qual := Make_Qualified_Expression (Loc, Subtype_Mark => Nam, Expression => Relocate_Node (N)); end if; -- For a full aggregate, if the type is global and a derived -- tagged type, we will also need to have the full view of its -- ancestor available in the instance in order to analyze the -- full aggregate. elsif Present (N2) and then Nkind (N2) = N_Aggregate and then Present (Typ) and then Is_Tagged_Type (Typ) and then Is_Derived_Type (Typ) then Set_Ancestor_Type (N, Etype (Typ)); end if; if Nkind (N) = N_Aggregate then Save_Global_Descendant (Union_Id (Aggregate_Bounds (N))); elsif Nkind (N) = N_Extension_Aggregate then Save_Global_Descendant (Union_Id (Ancestor_Part (N))); else pragma Assert (False); end if; Save_Global_Descendant (Union_Id (Expressions (N))); Save_Global_Descendant (Union_Id (Component_Associations (N))); Save_Global_Descendant (Union_Id (Etype (N))); if Present (Qual) then Rewrite (N, Qual); end if; end Save_References_In_Aggregate; ---------------------------------------------- -- Save_References_In_Char_Lit_Or_Op_Symbol -- ---------------------------------------------- procedure Save_References_In_Char_Lit_Or_Op_Symbol (N : Node_Id) is begin if Nkind (N) = Nkind (Get_Associated_Node (N)) then Reset_Entity (N); elsif Nkind (N) = N_Operator_Symbol and then Nkind (Get_Associated_Node (N)) = N_String_Literal then Change_Operator_Symbol_To_String_Literal (N); end if; end Save_References_In_Char_Lit_Or_Op_Symbol; ------------------------------------ -- Save_References_In_Descendants -- ------------------------------------ procedure Save_References_In_Descendants (N : Node_Id) is procedure Walk is new Walk_Sinfo_Fields (Save_Global_Descendant); begin Walk (N); end Save_References_In_Descendants; ----------------------------------- -- Save_References_In_Identifier -- ----------------------------------- procedure Save_References_In_Identifier (N : Node_Id) is begin -- The node did not undergo a transformation if Nkind (N) = Nkind (Get_Associated_Node (N)) then -- If this is a discriminant reference, always save it. -- It is used in the instance to find the corresponding -- discriminant positionally rather than by name. Set_Original_Discriminant (N, Original_Discriminant (Get_Associated_Node (N))); Reset_Entity (N); -- The analysis of the generic copy transformed the identifier -- into another construct. Propagate the changes to the template. else N2 := Get_Associated_Node (N); -- The identifier denotes a call to a parameterless function. -- Mark the node as resolved when the function is external. if Nkind (N2) = N_Function_Call then E := Entity (Name (N2)); if Present (E) and then Is_Global (E) then Set_Global_Type (N, N2); else Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; -- The identifier denotes a named number that was constant -- folded. Preserve the original name for ASIS and undo the -- constant folding which will be repeated in the instance. -- Is this still needed??? elsif Nkind (N2) in N_Integer_Literal | N_Real_Literal and then Is_Entity_Name (Original_Node (N2)) then Set_Associated_Node (N, Original_Node (N2)); Reset_Entity (N); -- The identifier resolved to a string literal. Propagate this -- information to the generic template. elsif Nkind (N2) = N_String_Literal then Rewrite (N, New_Copy (N2)); -- The identifier is rewritten as a dereference if it is the -- prefix of an implicit dereference. Preserve the original -- tree as the analysis of the instance will expand the node -- again, but preserve the resolved entity if it is global. elsif Nkind (N2) = N_Explicit_Dereference then if Is_Entity_Name (Prefix (N2)) and then Present (Entity (Prefix (N2))) and then Is_Global (Entity (Prefix (N2))) then Set_Associated_Node (N, Prefix (N2)); Set_Global_Type (N, Prefix (N2)); elsif Nkind (Prefix (N2)) = N_Function_Call and then Is_Entity_Name (Name (Prefix (N2))) and then Present (Entity (Name (Prefix (N2)))) and then Is_Global (Entity (Name (Prefix (N2)))) then Rewrite (N, Make_Explicit_Dereference (Loc, Prefix => Make_Function_Call (Loc, Name => New_Occurrence_Of (Entity (Name (Prefix (N2))), Loc)))); Set_Associated_Node (Name (Prefix (N)), Name (Prefix (N2))); Set_Global_Type (Name (Prefix (N)), Name (Prefix (N2))); else Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; -- The subtype mark of a nominally unconstrained object is -- rewritten as a subtype indication using the bounds of the -- expression. Recover the original subtype mark. elsif Nkind (N2) = N_Subtype_Indication and then Is_Entity_Name (Original_Node (N2)) then Set_Associated_Node (N, Original_Node (N2)); Reset_Entity (N); end if; end if; end Save_References_In_Identifier; --------------------------------- -- Save_References_In_Operator -- --------------------------------- procedure Save_References_In_Operator (N : Node_Id) is begin N2 := Get_Associated_Node (N); -- The node did not undergo a transformation if Nkind (N) = Nkind (N2) then if Nkind (N) = N_Op_Concat then Set_Is_Component_Left_Opnd (N, Is_Component_Left_Opnd (N2)); Set_Is_Component_Right_Opnd (N, Is_Component_Right_Opnd (N2)); end if; Reset_Entity (N); -- The analysis of the generic copy transformed the operator into -- some other construct. Propagate the changes to the template if -- applicable. else -- The operator resoved to a function call if Nkind (N2) = N_Function_Call then -- Add explicit qualifications in the generic template for -- all operands of universal type. This aids resolution by -- preserving the actual type of a literal or an attribute -- that yields a universal result. Qualify_Universal_Operands (N, N2); E := Entity (Name (N2)); if Present (E) and then Is_Global (E) then Set_Global_Type (N, N2); else Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; -- The operator was folded into a literal elsif Nkind (N2) in N_Integer_Literal | N_Real_Literal | N_String_Literal then if Present (Original_Node (N2)) and then Nkind (Original_Node (N2)) = Nkind (N) then -- Operation was constant-folded. Whenever possible, -- recover semantic information from unfolded node. -- This was initially done for ASIS but is apparently -- needed also for e.g. compiling a-nbnbin.adb. Set_Associated_Node (N, Original_Node (N2)); if Nkind (N) = N_Op_Concat then Set_Is_Component_Left_Opnd (N, Is_Component_Left_Opnd (Get_Associated_Node (N))); Set_Is_Component_Right_Opnd (N, Is_Component_Right_Opnd (Get_Associated_Node (N))); end if; Reset_Entity (N); -- Propagate the constant folding back to the template else Rewrite (N, New_Copy (N2)); Set_Analyzed (N, False); end if; -- The operator was folded into an enumeration literal. Retain -- the entity to avoid spurious ambiguities if it is overloaded -- at the point of instantiation or inlining. elsif Nkind (N2) = N_Identifier and then Ekind (Entity (N2)) = E_Enumeration_Literal then Rewrite (N, New_Copy (N2)); Set_Analyzed (N, False); end if; end if; -- Complete the operands check if node has not been constant -- folded. if Nkind (N) in N_Op then Save_Entity_Descendants (N); end if; end Save_References_In_Operator; ------------------------------- -- Save_References_In_Pragma -- ------------------------------- procedure Save_References_In_Pragma (Prag : Node_Id) is Context : Node_Id; Do_Save : Boolean := True; begin -- Do not save global references in pragmas generated from aspects -- because the pragmas will be regenerated at instantiation time. if From_Aspect_Specification (Prag) then Do_Save := False; -- The capture of global references within contract-related source -- pragmas associated with generic packages, subprograms or their -- respective bodies must be delayed due to timing of annotation -- analysis. Global references are still captured in routine -- Save_Global_References_In_Contract. elsif Is_Generic_Contract_Pragma (Prag) and then Prag /= Templ then if Is_Package_Contract_Annotation (Prag) then Context := Find_Related_Package_Or_Body (Prag); else pragma Assert (Is_Subprogram_Contract_Annotation (Prag)); Context := Find_Related_Declaration_Or_Body (Prag); end if; -- The use of Original_Node accounts for the case when the -- related context is generic template. if Requires_Delayed_Save (Original_Node (Context)) then Do_Save := False; end if; end if; -- For all other cases, save all global references within the -- descendants, but skip the following semantic fields: -- Next_Pragma, Corresponding_Aspect, Next_Rep_Item. if Do_Save then Save_Global_Descendant (Union_Id (Pragma_Argument_Associations (N))); Save_Global_Descendant (Union_Id (Pragma_Identifier (N))); end if; end Save_References_In_Pragma; -- Start of processing for Save_References begin if N = Empty then null; -- Aggregates elsif Nkind (N) in N_Aggregate | N_Extension_Aggregate then Save_References_In_Aggregate (N); -- Character literals, operator symbols elsif Nkind (N) in N_Character_Literal | N_Operator_Symbol then Save_References_In_Char_Lit_Or_Op_Symbol (N); -- Defining identifiers elsif Nkind (N) in N_Entity then null; -- Identifiers elsif Nkind (N) = N_Identifier then Save_References_In_Identifier (N); -- Operators elsif Nkind (N) in N_Op then Save_References_In_Operator (N); -- Pragmas elsif Nkind (N) = N_Pragma then Save_References_In_Pragma (N); elsif Nkind (N) = N_Aspect_Specification then declare P : constant Node_Id := Parent (N); Expr : Node_Id; begin if Permits_Aspect_Specifications (P) then -- The capture of global references within aspects -- associated with generic packages, subprograms or -- their bodies must be delayed due to timing of -- annotation analysis. Global references are still -- captured in routine Save_Global_References_In_Contract. if Requires_Delayed_Save (Original_Node (P)) then null; -- Otherwise save all global references within the -- aspects else Expr := Expression (N); if Present (Expr) then Save_Global_References (Expr); end if; end if; end if; end; -- Do not walk the node pointed to by Label_Construct twice elsif Nkind (N) = N_Implicit_Label_Declaration then null; else Save_References_In_Descendants (N); end if; end Save_References; --------------------- -- Set_Global_Type -- --------------------- procedure Set_Global_Type (N : Node_Id; N2 : Node_Id) is Comparison : constant Boolean := Nkind (N2) in N_Op_Compare; Typ : constant Entity_Id := (if Comparison then Compare_Type (N2) else Etype (N2)); begin -- For a comparison (or equality) operator, the Etype is Boolean, so -- it is always global. But the type subject to the Has_Private_View -- processing is the Compare_Type, so we must specifically check it. if Comparison then Set_Etype (N, Etype (N2)); if not Is_Global (Typ) then return; end if; Set_Compare_Type (N, Typ); else Set_Etype (N, Typ); end if; -- If the entity of N is not the associated node, this is a -- nested generic and it has an associated node as well, whose -- type is already the full view (see below). Indicate that the -- original node has a private view. if Entity (N) /= N2 then if Has_Private_View (Entity (N)) then Set_Has_Private_View (N); end if; if Has_Secondary_Private_View (Entity (N)) then Set_Has_Secondary_Private_View (N); end if; end if; -- If not a private type, deal with a secondary private view if not Is_Private_Type (Typ) then if (Is_Access_Type (Typ) and then Is_Private_Type (Designated_Type (Typ))) or else (Is_Array_Type (Typ) and then Is_Private_Type (Component_Type_For_Private_View (Typ))) then Set_Has_Secondary_Private_View (N); end if; -- If it is a derivation of a private type in a context where no -- full view is needed, nothing to do either. elsif No (Full_View (Typ)) and then Typ /= Etype (Typ) then null; -- Otherwise mark the type for flipping and set the full view on N2 -- when available, which is necessary for Check_Private_View to swap -- back the views in case the full declaration of Typ is visible in -- the instantiation context. Note that this will be problematic if -- N2 is re-analyzed later, e.g. if it's a default value in a call. else Set_Has_Private_View (N); if Present (Full_View (Typ)) then if Comparison then Set_Compare_Type (N2, Full_View (Typ)); else Set_Etype (N2, Full_View (Typ)); end if; end if; end if; if Is_Floating_Point_Type (Typ) and then Has_Dimension_System (Typ) then Copy_Dimensions (N2, N); end if; end Set_Global_Type; -- Start of processing for Save_Global_References begin Gen_Scope := Current_Scope; -- If the generic unit is a child unit, references to entities in the -- parent are treated as local, because they will be resolved anew in -- the context of the instance of the parent. while Is_Child_Unit (Gen_Scope) and then Ekind (Scope (Gen_Scope)) = E_Generic_Package loop Gen_Scope := Scope (Gen_Scope); end loop; Save_References (Templ); end Save_Global_References; --------------------------------------- -- Save_Global_References_In_Aspects -- --------------------------------------- procedure Save_Global_References_In_Aspects (N : Node_Id) is Asp : Node_Id; Expr : Node_Id; begin Asp := First (Aspect_Specifications (N)); while Present (Asp) loop Expr := Expression (Asp); if Present (Expr) then Save_Global_References (Expr); end if; Next (Asp); end loop; end Save_Global_References_In_Aspects; ------------------------------------------ -- Set_Copied_Sloc_For_Inherited_Pragma -- ------------------------------------------ procedure Set_Copied_Sloc_For_Inherited_Pragma (N : Node_Id; E : Entity_Id) is begin Create_Instantiation_Source (N, E, Inlined_Body => False, Inherited_Pragma => True, Factor => S_Adjustment); end Set_Copied_Sloc_For_Inherited_Pragma; -------------------------------------- -- Set_Copied_Sloc_For_Inlined_Body -- -------------------------------------- procedure Set_Copied_Sloc_For_Inlined_Body (N : Node_Id; E : Entity_Id) is begin Create_Instantiation_Source (N, E, Inlined_Body => True, Inherited_Pragma => False, Factor => S_Adjustment); end Set_Copied_Sloc_For_Inlined_Body; --------------------- -- Set_Instance_Of -- --------------------- procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id) is begin Generic_Renamings.Table (Generic_Renamings.Last) := (A, B, Assoc_Null); Generic_Renamings_HTable.Set (Generic_Renamings.Last); Generic_Renamings.Increment_Last; end Set_Instance_Of; -------------------- -- Set_Next_Assoc -- -------------------- procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr) is begin Generic_Renamings.Table (E).Next_In_HTable := Next; end Set_Next_Assoc; ------------------- -- Start_Generic -- ------------------- procedure Start_Generic is begin -- ??? More things could be factored out in this routine. -- Should probably be done at a later stage. Generic_Flags.Append (Inside_A_Generic); Inside_A_Generic := True; Expander_Mode_Save_And_Set (False); end Start_Generic; ---------------------- -- Set_Instance_Env -- ---------------------- -- WARNING: This routine manages SPARK regions procedure Set_Instance_Env (Gen_Unit : Entity_Id; Act_Unit : Entity_Id) is Saved_AE : constant Boolean := Assertions_Enabled; Saved_CPL : constant Node_Id := Check_Policy_List; Saved_DEC : constant Boolean := Dynamic_Elaboration_Checks; Saved_SM : constant SPARK_Mode_Type := SPARK_Mode; Saved_SMP : constant Node_Id := SPARK_Mode_Pragma; begin -- Regardless of the current mode, predefined units are analyzed in the -- most current Ada mode, and earlier version Ada checks do not apply -- to predefined units. Nothing needs to be done for non-internal units. -- These are always analyzed in the current mode. if In_Internal_Unit (Gen_Unit) then -- The following call resets all configuration attributes to default -- or the xxx_Config versions of the attributes when the current sem -- unit is the main unit. At the same time, internal units must also -- inherit certain configuration attributes from their context. It -- is unclear what these two sets are. Set_Config_Switches (True, Current_Sem_Unit = Main_Unit); -- Reinstall relevant configuration attributes of the context Assertions_Enabled := Saved_AE; Check_Policy_List := Saved_CPL; Dynamic_Elaboration_Checks := Saved_DEC; Install_SPARK_Mode (Saved_SM, Saved_SMP); end if; Current_Instantiated_Parent := (Gen_Id => Gen_Unit, Act_Id => Act_Unit, Next_In_HTable => Assoc_Null); end Set_Instance_Env; ----------------- -- Switch_View -- ----------------- procedure Switch_View (T : Entity_Id) is BT : constant Entity_Id := Base_Type (T); Priv_Elmt : Elmt_Id := No_Elmt; Priv_Sub : Entity_Id; begin -- T may be private but its base type may have been exchanged through -- some other occurrence, in which case there is nothing to switch -- besides T itself. Note that a private dependent subtype of a private -- type might not have been switched even if the base type has been, -- because of the last branch of Check_Private_View (see comment there). if not Is_Private_Type (BT) then Prepend_Elmt (Full_View (T), Exchanged_Views); Exchange_Declarations (T); return; end if; Priv_Elmt := First_Elmt (Private_Dependents (BT)); if Present (Full_View (BT)) then Prepend_Elmt (Full_View (BT), Exchanged_Views); Exchange_Declarations (BT); end if; while Present (Priv_Elmt) loop Priv_Sub := Node (Priv_Elmt); if Present (Full_View (Priv_Sub)) then Prepend_Elmt (Full_View (Priv_Sub), Exchanged_Views); Exchange_Declarations (Priv_Sub); end if; Next_Elmt (Priv_Elmt); end loop; end Switch_View; ----------------- -- True_Parent -- ----------------- function True_Parent (N : Node_Id) return Node_Id is begin if Nkind (Parent (N)) = N_Subunit then return Parent (Corresponding_Stub (Parent (N))); else return Parent (N); end if; end True_Parent; ----------------------------- -- Valid_Default_Attribute -- ----------------------------- procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id) is Attr_Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (Def)); T : constant Entity_Id := Entity (Prefix (Def)); Is_Fun : constant Boolean := (Ekind (Nam) = E_Function); F : Entity_Id; Num_F : Nat; OK : Boolean; begin if No (T) or else T = Any_Id then return; end if; Num_F := 0; F := First_Formal (Nam); while Present (F) loop Num_F := Num_F + 1; Next_Formal (F); end loop; case Attr_Id is when Attribute_Adjacent | Attribute_Ceiling | Attribute_Copy_Sign | Attribute_Floor | Attribute_Fraction | Attribute_Machine | Attribute_Model | Attribute_Remainder | Attribute_Rounding | Attribute_Unbiased_Rounding => OK := Is_Fun and then Num_F = 1 and then Is_Floating_Point_Type (T); when Attribute_Image | Attribute_Pred | Attribute_Succ | Attribute_Value | Attribute_Wide_Image | Attribute_Wide_Value => OK := Is_Fun and then Num_F = 1 and then Is_Scalar_Type (T); when Attribute_Max | Attribute_Min => OK := Is_Fun and then Num_F = 2 and then Is_Scalar_Type (T); when Attribute_Input => OK := (Is_Fun and then Num_F = 1); when Attribute_Output | Attribute_Put_Image | Attribute_Read | Attribute_Write => OK := not Is_Fun and then Num_F = 2; when others => OK := False; end case; if not OK then Error_Msg_N ("attribute reference has wrong profile for subprogram", Def); end if; end Valid_Default_Attribute; ---------------------------------- -- Validate_Formal_Type_Default -- ---------------------------------- procedure Validate_Formal_Type_Default (Decl : Node_Id) is Default : constant Node_Id := Default_Subtype_Mark (Original_Node (Decl)); Formal : constant Entity_Id := Defining_Identifier (Decl); Def_Sub : Entity_Id; -- Default subtype mark Type_Def : Node_Id; procedure Check_Discriminated_Formal; -- Check that discriminants of default for private or incomplete -- type match those of formal type. function Reference_Formal (N : Node_Id) return Traverse_Result; -- Check whether formal type definition mentions a previous formal -- type of the same generic. ---------------------- -- Reference_Formal -- ---------------------- function Reference_Formal (N : Node_Id) return Traverse_Result is begin if Is_Entity_Name (N) and then Scope (Entity (N)) = Current_Scope then return Abandon; else return OK; end if; end Reference_Formal; function Depends_On_Other_Formals is new Traverse_Func (Reference_Formal); function Default_Subtype_Matches (Gen_T, Def_T : Entity_Id) return Boolean; procedure Validate_Array_Type_Default; -- Verify that dimension, indices, and component types of default -- are compatible with formal array type definition. procedure Validate_Derived_Type_Default; -- Verify that ancestor and progenitor types match. --------------------------------- -- Check_Discriminated_Formal -- --------------------------------- procedure Check_Discriminated_Formal is Formal_Discr : Entity_Id; Actual_Discr : Entity_Id; Formal_Subt : Entity_Id; begin if Has_Discriminants (Formal) then if not Has_Discriminants (Def_Sub) then Error_Msg_NE ("default for & must have discriminants", Default, Formal); elsif Is_Constrained (Def_Sub) then Error_Msg_NE ("default for & must be unconstrained", Default, Formal); else Formal_Discr := First_Discriminant (Formal); Actual_Discr := First_Discriminant (Def_Sub); while Formal_Discr /= Empty loop if Actual_Discr = Empty then Error_Msg_N ("discriminants on Formal do not match formal", Default); end if; Formal_Subt := Etype (Formal_Discr); -- Access discriminants match if designated types do if Ekind (Base_Type (Formal_Subt)) = E_Anonymous_Access_Type and then (Ekind (Base_Type (Etype (Actual_Discr)))) = E_Anonymous_Access_Type and then Base_Type (Designated_Type (Base_Type (Formal_Subt))) = Base_Type (Designated_Type (Base_Type (Etype (Actual_Discr)))) and then Subtypes_Statically_Match (Designated_Type (Base_Type (Formal_Subt)), Designated_Type (Base_Type (Etype (Actual_Discr)))) then null; elsif Base_Type (Formal_Subt) /= Base_Type (Etype (Actual_Discr)) then Error_Msg_N ("types of discriminants of default must match formal", Default); elsif not Subtypes_Statically_Match (Formal_Subt, Etype (Actual_Discr)) and then Ada_Version >= Ada_95 then Error_Msg_N ("subtypes of discriminants of default " & "must match formal", Default); end if; Next_Discriminant (Formal_Discr); Next_Discriminant (Actual_Discr); end loop; if Actual_Discr /= Empty then Error_Msg_NE ("discriminants on default do not match formal", Default, Formal); end if; end if; end if; end Check_Discriminated_Formal; --------------------------- -- Default_Subtype_Matches -- --------------------------- function Default_Subtype_Matches (Gen_T, Def_T : Entity_Id) return Boolean is begin -- Check that the base types, root types (when dealing with class -- wide types), or designated types (when dealing with anonymous -- access types) of Gen_T and Def_T are statically matching subtypes. return (Base_Type (Gen_T) = Base_Type (Def_T) and then Subtypes_Statically_Match (Gen_T, Def_T)) or else (Is_Class_Wide_Type (Gen_T) and then Is_Class_Wide_Type (Def_T) and then Default_Subtype_Matches (Root_Type (Gen_T), Root_Type (Def_T))) or else (Is_Anonymous_Access_Type (Gen_T) and then Ekind (Def_T) = Ekind (Gen_T) and then Subtypes_Statically_Match (Designated_Type (Gen_T), Designated_Type (Def_T))); end Default_Subtype_Matches; ---------------------------------- -- Validate_Array_Type_Default -- ---------------------------------- procedure Validate_Array_Type_Default is I1, I2 : Node_Id; T2 : Entity_Id; begin if not Is_Array_Type (Def_Sub) then Error_Msg_NE ("default for& must be an array type ", Default, Formal); return; elsif Number_Dimensions (Def_Sub) /= Number_Dimensions (Formal) or else Is_Constrained (Def_Sub) /= Is_Constrained (Formal) then Error_Msg_NE ("default array type does not match&", Default, Formal); return; end if; I1 := First_Index (Formal); I2 := First_Index (Def_Sub); for J in 1 .. Number_Dimensions (Formal) loop -- If the indexes of the actual were given by a subtype_mark, -- the index was transformed into a range attribute. Retrieve -- the original type mark for checking. if Is_Entity_Name (Original_Node (I2)) then T2 := Entity (Original_Node (I2)); else T2 := Etype (I2); end if; if not Subtypes_Statically_Match (Etype (I1), T2) then Error_Msg_NE ("index types of default do not match those of formal &", Default, Formal); end if; Next_Index (I1); Next_Index (I2); end loop; if not Default_Subtype_Matches (Component_Type (Formal), Component_Type (Def_Sub)) then Error_Msg_NE ("component subtype of default does not match that of formal &", Default, Formal); end if; if Has_Aliased_Components (Formal) and then not Has_Aliased_Components (Default) then Error_Msg_NE ("default must have aliased components to match formal type &", Default, Formal); end if; end Validate_Array_Type_Default; ----------------------------------- -- Validate_Derived_Type_Default -- ----------------------------------- procedure Validate_Derived_Type_Default is begin if not Is_Ancestor (Etype (Formal), Def_Sub) then Error_Msg_NE ("default must be a descendent of&", Default, Etype (Formal)); end if; if Has_Interfaces (Formal) then if not Has_Interfaces (Def_Sub) then Error_Msg_NE ("default must implement all interfaces of formal&", Default, Formal); else declare Iface : Node_Id; Iface_Ent : Entity_Id; begin Iface := First (Abstract_Interface_List (Formal)); while Present (Iface) loop Iface_Ent := Entity (Iface); if Is_Ancestor (Iface_Ent, Def_Sub) or else Is_Progenitor (Iface_Ent, Def_Sub) then null; else Error_Msg_NE ("Default must implement interface&", Default, Etype (Iface)); end if; Next (Iface); end loop; end; end if; end if; end Validate_Derived_Type_Default; -- Start of processing for Validate_Formal_Type_Default begin Analyze (Default); if not Is_Entity_Name (Default) or else not Is_Type (Entity (Default)) then Error_Msg_N ("Expect type name for default of formal type", Default); return; else Def_Sub := Entity (Default); end if; -- Formal derived_type declarations are transformed into full -- type declarations or Private_Type_Extensions for ease of processing. if Nkind (Decl) = N_Full_Type_Declaration then Type_Def := Type_Definition (Decl); elsif Nkind (Decl) = N_Private_Extension_Declaration then Type_Def := Subtype_Indication (Decl); else Type_Def := Formal_Type_Definition (Decl); end if; if Depends_On_Other_Formals (Type_Def) = Abandon and then Scope (Def_Sub) /= Current_Scope then Error_Msg_N ("default of formal type that depends on " & "other formals must be a previous formal type", Default); return; elsif Def_Sub = Formal then Error_Msg_N ("default for formal type cannot be formal itsef", Default); return; end if; case Nkind (Type_Def) is when N_Formal_Private_Type_Definition => if (Is_Abstract_Type (Formal) and then not Is_Abstract_Type (Def_Sub)) or else (Is_Limited_Type (Formal) and then not Is_Limited_Type (Def_Sub)) then Error_Msg_NE ("default for private type$ does not match", Default, Formal); end if; Check_Discriminated_Formal; when N_Formal_Derived_Type_Definition => Check_Discriminated_Formal; Validate_Derived_Type_Default; when N_Formal_Incomplete_Type_Definition => if Is_Tagged_Type (Formal) and then not Is_Tagged_Type (Def_Sub) then Error_Msg_NE ("default for & must be a tagged type", Default, Formal); end if; Check_Discriminated_Formal; when N_Formal_Discrete_Type_Definition => if not Is_Discrete_Type (Def_Sub) then Error_Msg_NE ("default for& must be a discrete type", Default, Formal); end if; when N_Formal_Signed_Integer_Type_Definition => if not Is_Integer_Type (Def_Sub) then Error_Msg_NE ("default for& must be a discrete type", Default, Formal); end if; when N_Formal_Modular_Type_Definition => if not Is_Modular_Integer_Type (Def_Sub) then Error_Msg_NE ("default for& must be a modular_integer Type", Default, Formal); end if; when N_Formal_Floating_Point_Definition => if not Is_Floating_Point_Type (Def_Sub) then Error_Msg_NE ("default for& must be a floating_point type", Default, Formal); end if; when N_Formal_Ordinary_Fixed_Point_Definition => if not Is_Ordinary_Fixed_Point_Type (Def_Sub) then Error_Msg_NE ("default for& must be " & "an ordinary_fixed_point type ", Default, Formal); end if; when N_Formal_Decimal_Fixed_Point_Definition => if not Is_Decimal_Fixed_Point_Type (Def_Sub) then Error_Msg_NE ("default for& must be " & "an Decimal_fixed_point type ", Default, Formal); end if; when N_Array_Type_Definition => Validate_Array_Type_Default; when N_Access_Function_Definition | N_Access_Procedure_Definition => if Ekind (Def_Sub) /= E_Access_Subprogram_Type then Error_Msg_NE ("default for& must be an Access_To_Subprogram", Default, Formal); end if; Check_Subtype_Conformant (Designated_Type (Formal), Designated_Type (Def_Sub)); when N_Access_To_Object_Definition => if not Is_Access_Object_Type (Def_Sub) then Error_Msg_NE ("default for& must be an Access_To_Object", Default, Formal); elsif not Default_Subtype_Matches (Designated_Type (Formal), Designated_Type (Def_Sub)) then Error_Msg_NE ("designated type of defaul does not match " & "designated type of formal type", Default, Formal); end if; when N_Record_Definition => -- Formal interface type if not Is_Interface (Def_Sub) then Error_Msg_NE ("default for formal interface type must be an interface", Default, Formal); elsif Is_Limited_Type (Def_Sub) /= Is_Limited_Type (Formal) or else Is_Task_Interface (Formal) /= Is_Task_Interface (Def_Sub) or else Is_Protected_Interface (Formal) /= Is_Protected_Interface (Def_Sub) or else Is_Synchronized_Interface (Formal) /= Is_Synchronized_Interface (Def_Sub) then Error_Msg_NE ("default for interface& does not match", Def_Sub, Formal); end if; when N_Derived_Type_Definition => Validate_Derived_Type_Default; when N_Identifier => -- case of a private extension Validate_Derived_Type_Default; when N_Error => null; when others => raise Program_Error; end case; end Validate_Formal_Type_Default; package body Instance_Context is -------------------- -- Save_And_Reset -- -------------------- function Save_And_Reset return Context is begin return Result : Context (0 .. Integer (Generic_Renamings.Last)) do for Index in Result'Range loop declare Indexed_Assoc : Assoc renames Generic_Renamings.Table (Assoc_Ptr (Index)); Result_Pair : Binding_Pair renames Result (Index); begin -- If we have called Increment_Last but have not yet -- initialized the new last element of the table, then -- that last element might be invalid. Saving and -- restoring (especially restoring, it turns out) invalid -- values can result in exceptions if predicate checking -- is enabled, so replace invalid values with Empty. if Indexed_Assoc.Gen_Id'Valid then Result_Pair.Formal_Id := Indexed_Assoc.Gen_Id; else pragma Assert (Index = Result'Last); Result_Pair.Formal_Id := Empty; end if; if Indexed_Assoc.Act_Id'Valid then Result_Pair.Actual_Id := Indexed_Assoc.Act_Id; else pragma Assert (Index = Result'Last); Result_Pair.Actual_Id := Empty; end if; end; end loop; Generic_Renamings.Init; Generic_Renamings.Set_Last (-1); Generic_Renamings_HTable.Reset; end return; end Save_And_Reset; ------------- -- Restore -- ------------- procedure Restore (Saved : Context) is begin Generic_Renamings.Init; Generic_Renamings.Set_Last (0); Generic_Renamings_HTable.Reset; Generic_Renamings.Increment_Last; for Pair of Saved loop Set_Instance_Of (Pair.Formal_Id, Pair.Actual_Id); end loop; Generic_Renamings.Decrement_Last; end Restore; end Instance_Context; end Sem_Ch12;