------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- P A R _ S C O -- -- -- -- B o d y -- -- -- -- Copyright (C) 2009-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Aspects; use Aspects; with Atree; use Atree; with Debug; use Debug; with Errout; use Errout; with Lib; use Lib; with Lib.Util; use Lib.Util; with Namet; use Namet; with Nlists; use Nlists; with Opt; use Opt; with Output; use Output; with Put_SCOs; with SCOs; use SCOs; with Sem; use Sem; with Sem_Util; use Sem_Util; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Sinput; use Sinput; with Snames; use Snames; with Table; with GNAT.HTable; use GNAT.HTable; with GNAT.Heap_Sort_G; package body Par_SCO is -------------------------- -- First-pass SCO table -- -------------------------- -- The Short_Circuit_And_Or pragma enables one to use AND and OR operators -- in source code while the ones used with booleans will be interpreted as -- their short circuit alternatives (AND THEN and OR ELSE). Thus, the true -- meaning of these operators is known only after the semantic analysis. -- However, decision SCOs include short circuit operators only. The SCO -- information generation pass must be done before expansion, hence before -- the semantic analysis. Because of this, the SCO information generation -- is done in two passes. -- The first one (SCO_Record_Raw, before semantic analysis) completes the -- SCO_Raw_Table assuming all AND/OR operators are short circuit ones. -- Then, the semantic analysis determines which operators are promoted to -- short circuit ones. Finally, the second pass (SCO_Record_Filtered) -- translates the SCO_Raw_Table to SCO_Table, taking care of removing the -- remaining AND/OR operators and of adjusting decisions accordingly -- (splitting decisions, removing empty ones, etc.). type SCO_Generation_State_Type is (None, Raw, Filtered); SCO_Generation_State : SCO_Generation_State_Type := None; -- Keep track of the SCO generation state: this will prevent us from -- running some steps multiple times (the second pass has to be started -- from multiple places). package SCO_Raw_Table is new Table.Table (Table_Component_Type => SCO_Table_Entry, Table_Index_Type => Nat, Table_Low_Bound => 1, Table_Initial => 500, Table_Increment => 300, Table_Name => "Raw_Table"); ----------------------- -- Unit Number Table -- ----------------------- -- This table parallels the SCO_Unit_Table, keeping track of the unit -- numbers corresponding to the entries made in this table, so that before -- writing out the SCO information to the ALI file, we can fill in the -- proper dependency numbers and file names. -- Note that the zeroth entry is here for convenience in sorting the table; -- the real lower bound is 1. package SCO_Unit_Number_Table is new Table.Table (Table_Component_Type => Unit_Number_Type, Table_Index_Type => SCO_Unit_Index, Table_Low_Bound => 0, -- see note above on sort Table_Initial => 20, Table_Increment => 200, Table_Name => "SCO_Unit_Number_Entry"); ------------------------------------------ -- Condition/Operator/Pragma Hash Table -- ------------------------------------------ -- We need to be able to get to conditions quickly for handling the calls -- to Set_SCO_Condition efficiently, and similarly to get to pragmas to -- handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and -- Set_SCO_Logical_Operator). For this purpose we identify the conditions, -- operators and pragmas in the table by their starting sloc, and use this -- hash table to map from these sloc values to SCO_Table indexes. type Header_Num is new Integer range 0 .. 996; -- Type for hash table headers function Hash (F : Source_Ptr) return Header_Num; -- Function to Hash source pointer value function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean; -- Function to test two keys for equality function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean; -- Function to test for source locations order package SCO_Raw_Hash_Table is new Simple_HTable (Header_Num, Int, 0, Source_Ptr, Hash, Equal); -- The actual hash table -------------------------- -- Internal Subprograms -- -------------------------- function Has_Decision (N : Node_Id) return Boolean; -- N is the node for a subexpression. Returns True if the subexpression -- contains a nested decision (i.e. either is a logical operator, or -- contains a logical operator in its subtree). -- -- This must be used in the first pass (SCO_Record_Raw) only: here AND/OR -- operators are considered as short circuit, just in case the -- Short_Circuit_And_Or pragma is used: only real short circuit operations -- will be kept in the secord pass. type Tristate is (False, True, Unknown); function Is_Logical_Operator (N : Node_Id) return Tristate; -- N is the node for a subexpression. This procedure determines whether N -- is a logical operator: True for short circuit conditions, Unknown for OR -- and AND (the Short_Circuit_And_Or pragma may be used) and False -- otherwise. Note that in cases where True is returned, callers assume -- Nkind (N) in N_Op. function To_Source_Location (S : Source_Ptr) return Source_Location; -- Converts Source_Ptr value to Source_Location (line/col) format procedure Process_Decisions (N : Node_Id; T : Character; Pragma_Sloc : Source_Ptr); -- If N is Empty, has no effect. Otherwise scans the tree for the node N, -- to output any decisions it contains. T is one of IEGPWX (for context of -- expression: if/exit when/entry guard/pragma/while/expression). If T is -- other than X, the node N is the if expression involved, and a decision -- is always present (at the very least a simple decision is present at the -- top level). procedure Process_Decisions (L : List_Id; T : Character; Pragma_Sloc : Source_Ptr); -- Calls above procedure for each element of the list L procedure Set_Raw_Table_Entry (C1 : Character; C2 : Character; From : Source_Ptr; To : Source_Ptr; Last : Boolean; Pragma_Sloc : Source_Ptr := No_Location; Pragma_Aspect_Name : Name_Id := No_Name); -- Append an entry to SCO_Raw_Table with fields set as per arguments type Dominant_Info is record K : Character; -- F/T/S/E for a valid dominance marker, or ' ' for no dominant N : Node_Id; -- Node providing the Sloc(s) for the dominance marker end record; No_Dominant : constant Dominant_Info := (' ', Empty); procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr); -- Add one entry from the instance table to the corresponding SCO table procedure Traverse_Declarations_Or_Statements (L : List_Id; D : Dominant_Info := No_Dominant; P : Node_Id := Empty); -- Process L, a list of statements or declarations dominated by D. If P is -- present, it is processed as though it had been prepended to L. function Traverse_Declarations_Or_Statements (L : List_Id; D : Dominant_Info := No_Dominant; P : Node_Id := Empty) return Dominant_Info; -- Same as above, and returns dominant information corresponding to the -- last node with SCO in L. -- The following Traverse_* routines perform appropriate calls to -- Traverse_Declarations_Or_Statements to traverse specific node kinds. -- Parameter D, when present, indicates the dominant of the first -- declaration or statement within N. procedure Traverse_Generic_Package_Declaration (N : Node_Id); procedure Traverse_Handled_Statement_Sequence (N : Node_Id; D : Dominant_Info := No_Dominant); procedure Traverse_Package_Body (N : Node_Id); procedure Traverse_Package_Declaration (N : Node_Id; D : Dominant_Info := No_Dominant); procedure Traverse_Subprogram_Or_Task_Body (N : Node_Id; D : Dominant_Info := No_Dominant); procedure Traverse_Protected_Or_Task_Definition (N : Node_Id); -- Note regarding traversals: In a few cases where an Alternatives list is -- involved, pragmas such as "pragma Page" may show up before the first -- alternative. We skip them because we're out of statement or declaration -- context, so these can't be pragmas of interest for SCO purposes, and -- the regular alternative processing typically involves attribute queries -- which aren't valid for a pragma. procedure Write_SCOs_To_ALI_File is new Put_SCOs; -- Write SCO information to the ALI file using routines in Lib.Util ---------- -- dsco -- ---------- procedure dsco is procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry); -- Dump a SCO table entry ---------------- -- Dump_Entry -- ---------------- procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is begin Write_Str (" "); Write_Int (Index); Write_Char ('.'); if T.C1 /= ' ' then Write_Str (" C1 = '"); Write_Char (T.C1); Write_Char ('''); end if; if T.C2 /= ' ' then Write_Str (" C2 = '"); Write_Char (T.C2); Write_Char ('''); end if; if T.From /= No_Source_Location then Write_Str (" From = "); Write_Int (Int (T.From.Line)); Write_Char (':'); Write_Int (Int (T.From.Col)); end if; if T.To /= No_Source_Location then Write_Str (" To = "); Write_Int (Int (T.To.Line)); Write_Char (':'); Write_Int (Int (T.To.Col)); end if; if T.Last then Write_Str (" True"); else Write_Str (" False"); end if; Write_Eol; end Dump_Entry; -- Start of processing for dsco begin -- Dump SCO unit table Write_Line ("SCO Unit Table"); Write_Line ("--------------"); for Index in 1 .. SCO_Unit_Table.Last loop declare UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index); begin Write_Str (" "); Write_Int (Int (Index)); Write_Str (" Dep_Num = "); Write_Int (Int (UTE.Dep_Num)); Write_Str (" From = "); Write_Int (Int (UTE.From)); Write_Str (" To = "); Write_Int (Int (UTE.To)); Write_Str (" File_Name = """); if UTE.File_Name /= null then Write_Str (UTE.File_Name.all); end if; Write_Char ('"'); Write_Eol; end; end loop; -- Dump SCO Unit number table if it contains any entries if SCO_Unit_Number_Table.Last >= 1 then Write_Eol; Write_Line ("SCO Unit Number Table"); Write_Line ("---------------------"); for Index in 1 .. SCO_Unit_Number_Table.Last loop Write_Str (" "); Write_Int (Int (Index)); Write_Str (". Unit_Number = "); Write_Int (Int (SCO_Unit_Number_Table.Table (Index))); Write_Eol; end loop; end if; -- Dump SCO raw-table Write_Eol; Write_Line ("SCO Raw Table"); Write_Line ("---------"); if SCO_Generation_State = Filtered then Write_Line ("Empty (free'd after second pass)"); else for Index in 1 .. SCO_Raw_Table.Last loop Dump_Entry (Index, SCO_Raw_Table.Table (Index)); end loop; end if; -- Dump SCO table itself Write_Eol; Write_Line ("SCO Filtered Table"); Write_Line ("---------"); for Index in 1 .. SCO_Table.Last loop Dump_Entry (Index, SCO_Table.Table (Index)); end loop; end dsco; ----------- -- Equal -- ----------- function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is begin return F1 = F2; end Equal; ------- -- < -- ------- function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is begin return S1.Line < S2.Line or else (S1.Line = S2.Line and then S1.Col < S2.Col); end "<"; ------------------ -- Has_Decision -- ------------------ function Has_Decision (N : Node_Id) return Boolean is function Check_Node (N : Node_Id) return Traverse_Result; -- Determine if Nkind (N) indicates the presence of a decision (i.e. N -- is a logical operator, which is a decision in itself, or an -- IF-expression whose Condition attribute is a decision, or a -- quantified expression, whose predicate is a decision). ---------------- -- Check_Node -- ---------------- function Check_Node (N : Node_Id) return Traverse_Result is begin -- If we are not sure this is a logical operator (AND and OR may be -- turned into logical operators with the Short_Circuit_And_Or -- pragma), assume it is. Putative decisions will be discarded if -- needed in the second pass. if Is_Logical_Operator (N) /= False or else Nkind (N) = N_If_Expression or else Nkind (N) = N_Quantified_Expression then return Abandon; else return OK; end if; end Check_Node; function Traverse is new Traverse_Func (Check_Node); -- Start of processing for Has_Decision begin return Traverse (N) = Abandon; end Has_Decision; ---------- -- Hash -- ---------- function Hash (F : Source_Ptr) return Header_Num is begin return Header_Num (Nat (F) mod 997); end Hash; ---------------- -- Initialize -- ---------------- procedure Initialize is begin SCO_Unit_Number_Table.Init; -- The SCO_Unit_Number_Table entry with index 0 is intentionally set -- aside to be used as temporary for sorting. SCO_Unit_Number_Table.Increment_Last; end Initialize; ------------------------- -- Is_Logical_Operator -- ------------------------- function Is_Logical_Operator (N : Node_Id) return Tristate is begin if Nkind (N) in N_And_Then | N_Op_Not | N_Or_Else then return True; elsif Nkind (N) in N_Op_And | N_Op_Or then return Unknown; else return False; end if; end Is_Logical_Operator; ----------------------- -- Process_Decisions -- ----------------------- -- Version taking a list procedure Process_Decisions (L : List_Id; T : Character; Pragma_Sloc : Source_Ptr) is N : Node_Id; begin N := First (L); while Present (N) loop Process_Decisions (N, T, Pragma_Sloc); Next (N); end loop; end Process_Decisions; -- Version taking a node Current_Pragma_Sloc : Source_Ptr := No_Location; -- While processing a pragma, this is set to the sloc of the N_Pragma node procedure Process_Decisions (N : Node_Id; T : Character; Pragma_Sloc : Source_Ptr) is Mark : Nat; -- This is used to mark the location of a decision sequence in the SCO -- table. We use it for backing out a simple decision in an expression -- context that contains only NOT operators. Mark_Hash : Nat; -- Likewise for the putative SCO_Raw_Hash_Table entries: see below type Hash_Entry is record Sloc : Source_Ptr; SCO_Index : Nat; end record; -- We must register all conditions/pragmas in SCO_Raw_Hash_Table. -- However we cannot register them in the same time we are adding the -- corresponding SCO entries to the raw table since we may discard them -- later on. So instead we put all putative conditions into Hash_Entries -- (see below) and register them once we are sure we keep them. -- -- This data structure holds the conditions/pragmas to register in -- SCO_Raw_Hash_Table. package Hash_Entries is new Table.Table (Table_Component_Type => Hash_Entry, Table_Index_Type => Nat, Table_Low_Bound => 1, Table_Initial => 10, Table_Increment => 10, Table_Name => "Hash_Entries"); -- Hold temporarily (i.e. free'd before returning) the Hash_Entry before -- they are registered in SCO_Raw_Hash_Table. X_Not_Decision : Boolean; -- This flag keeps track of whether a decision sequence in the SCO table -- contains only NOT operators, and is for an expression context (T=X). -- The flag will be set False if T is other than X, or if an operator -- other than NOT is in the sequence. procedure Output_Decision_Operand (N : Node_Id); -- The node N is the top level logical operator of a decision, or it is -- one of the operands of a logical operator belonging to a single -- complex decision. This routine outputs the sequence of table entries -- corresponding to the node. Note that we do not process the sub- -- operands to look for further decisions, that processing is done in -- Process_Decision_Operand, because we can't get decisions mixed up in -- the global table. Call has no effect if N is Empty. procedure Output_Element (N : Node_Id); -- Node N is an operand of a logical operator that is not itself a -- logical operator, or it is a simple decision. This routine outputs -- the table entry for the element, with C1 set to ' '. Last is set -- False, and an entry is made in the condition hash table. procedure Output_Header (T : Character); -- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/ -- PRAGMA, and 'X' for the expression case. procedure Process_Decision_Operand (N : Node_Id); -- This is called on node N, the top level node of a decision, or on one -- of its operands or suboperands after generating the full output for -- the complex decision. It process the suboperands of the decision -- looking for nested decisions. function Process_Node (N : Node_Id) return Traverse_Result; -- Processes one node in the traversal, looking for logical operators, -- and if one is found, outputs the appropriate table entries. ----------------------------- -- Output_Decision_Operand -- ----------------------------- procedure Output_Decision_Operand (N : Node_Id) is C1 : Character; C2 : Character; -- C1 holds a character that identifies the operation while C2 -- indicates whether we are sure (' ') or not ('?') this operation -- belongs to the decision. '?' entries will be filtered out in the -- second (SCO_Record_Filtered) pass. L : Node_Id; T : Tristate; begin if No (N) then return; end if; T := Is_Logical_Operator (N); -- Logical operator if T /= False then if Nkind (N) = N_Op_Not then C1 := '!'; L := Empty; else L := Left_Opnd (N); if Nkind (N) in N_Op_Or | N_Or_Else then C1 := '|'; else pragma Assert (Nkind (N) in N_Op_And | N_And_Then); C1 := '&'; end if; end if; if T = True then C2 := ' '; else C2 := '?'; end if; Set_Raw_Table_Entry (C1 => C1, C2 => C2, From => Sloc (N), To => No_Location, Last => False); Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last)); Output_Decision_Operand (L); Output_Decision_Operand (Right_Opnd (N)); -- Not a logical operator else Output_Element (N); end if; end Output_Decision_Operand; -------------------- -- Output_Element -- -------------------- procedure Output_Element (N : Node_Id) is FSloc : Source_Ptr; LSloc : Source_Ptr; begin Sloc_Range (N, FSloc, LSloc); Set_Raw_Table_Entry (C1 => ' ', C2 => 'c', From => FSloc, To => LSloc, Last => False); Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last)); end Output_Element; ------------------- -- Output_Header -- ------------------- procedure Output_Header (T : Character) is Loc : Source_Ptr := No_Location; -- Node whose Sloc is used for the decision Nam : Name_Id := No_Name; -- For the case of an aspect, aspect name begin case T is when 'I' | 'E' | 'W' | 'a' | 'A' => -- For IF, EXIT, WHILE, or aspects, the token SLOC is that of -- the parent of the expression. Loc := Sloc (Parent (N)); if T = 'a' or else T = 'A' then Nam := Chars (Identifier (Parent (N))); end if; when 'G' | 'P' => -- For entry guard, the token sloc is from the N_Entry_Body. -- For PRAGMA, we must get the location from the pragma node. -- Argument N is the pragma argument, and we have to go up -- two levels (through the pragma argument association) to -- get to the pragma node itself. For the guard on a select -- alternative, we do not have access to the token location for -- the WHEN, so we use the first sloc of the condition itself. -- First_Sloc gives the most sensible result, but we have to -- beware of also using it when computing the dominance marker -- sloc (in the Set_Statement_Entry procedure), as this is not -- fully equivalent to the "To" sloc computed by -- Sloc_Range (Guard, To, From). if Nkind (Parent (N)) in N_Accept_Alternative | N_Delay_Alternative | N_Terminate_Alternative then Loc := First_Sloc (N); else Loc := Sloc (Parent (Parent (N))); end if; when 'X' => -- For an expression, no Sloc null; -- No other possibilities when others => raise Program_Error; end case; Set_Raw_Table_Entry (C1 => T, C2 => ' ', From => Loc, To => No_Location, Last => False, Pragma_Sloc => Pragma_Sloc, Pragma_Aspect_Name => Nam); -- For an aspect specification, which will be rewritten into a -- pragma, enter a hash table entry now. if T = 'a' then Hash_Entries.Append ((Loc, SCO_Raw_Table.Last)); end if; end Output_Header; ------------------------------ -- Process_Decision_Operand -- ------------------------------ procedure Process_Decision_Operand (N : Node_Id) is begin if Is_Logical_Operator (N) /= False then if Nkind (N) /= N_Op_Not then Process_Decision_Operand (Left_Opnd (N)); X_Not_Decision := False; end if; Process_Decision_Operand (Right_Opnd (N)); else Process_Decisions (N, 'X', Pragma_Sloc); end if; end Process_Decision_Operand; ------------------ -- Process_Node -- ------------------ function Process_Node (N : Node_Id) return Traverse_Result is begin case Nkind (N) is -- Aspect specifications have dedicated processings (see -- Traverse_Aspects) so ignore them here, so that they are -- processed only once. when N_Aspect_Specification => return Skip; -- Logical operators, output table entries and then process -- operands recursively to deal with nested conditions. when N_And_Then | N_Op_And | N_Op_Not | N_Op_Or | N_Or_Else => declare T : Character; begin -- If outer level, then type comes from call, otherwise it -- is more deeply nested and counts as X for expression. if N = Process_Decisions.N then T := Process_Decisions.T; else T := 'X'; end if; -- Output header for sequence X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not; Mark := SCO_Raw_Table.Last; Mark_Hash := Hash_Entries.Last; Output_Header (T); -- Output the decision Output_Decision_Operand (N); -- If the decision was in an expression context (T = 'X') -- and contained only NOT operators, then we don't output -- it, so delete it. if X_Not_Decision then SCO_Raw_Table.Set_Last (Mark); Hash_Entries.Set_Last (Mark_Hash); -- Otherwise, set Last in last table entry to mark end else SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True; end if; -- Process any embedded decisions Process_Decision_Operand (N); return Skip; end; -- Case expression -- Really hard to believe this is correct given the special -- handling for if expressions below ??? when N_Case_Expression => return OK; -- ??? -- If expression, processed like an if statement when N_If_Expression => declare Cond : constant Node_Id := First (Expressions (N)); Thnx : constant Node_Id := Next (Cond); Elsx : constant Node_Id := Next (Thnx); begin Process_Decisions (Cond, 'I', Pragma_Sloc); Process_Decisions (Thnx, 'X', Pragma_Sloc); Process_Decisions (Elsx, 'X', Pragma_Sloc); return Skip; end; when N_Quantified_Expression => declare Cond : constant Node_Id := Condition (N); I_Spec : Node_Id := Empty; begin if Present (Iterator_Specification (N)) then I_Spec := Iterator_Specification (N); else I_Spec := Loop_Parameter_Specification (N); end if; Process_Decisions (I_Spec, 'X', Pragma_Sloc); Process_Decisions (Cond, 'W', Pragma_Sloc); return Skip; end; -- All other cases, continue scan when others => return OK; end case; end Process_Node; procedure Traverse is new Traverse_Proc (Process_Node); -- Start of processing for Process_Decisions begin if No (N) then return; end if; Hash_Entries.Init; -- See if we have simple decision at outer level and if so then -- generate the decision entry for this simple decision. A simple -- decision is a boolean expression (which is not a logical operator -- or short circuit form) appearing as the operand of an IF, WHILE, -- EXIT WHEN, or special PRAGMA construct. if T /= 'X' and then Is_Logical_Operator (N) = False then Output_Header (T); Output_Element (N); -- Change Last in last table entry to True to mark end of -- sequence, which is this case is only one element long. SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True; end if; Traverse (N); -- Now we have the definitive set of SCO entries, register them in the -- corresponding hash table. for J in 1 .. Hash_Entries.Last loop SCO_Raw_Hash_Table.Set (Hash_Entries.Table (J).Sloc, Hash_Entries.Table (J).SCO_Index); end loop; Hash_Entries.Free; end Process_Decisions; ----------- -- pscos -- ----------- procedure pscos is procedure Write_Info_Char (C : Character) renames Write_Char; -- Write one character; procedure Write_Info_Initiate (Key : Character) renames Write_Char; -- Start new one and write one character; procedure Write_Info_Nat (N : Nat); -- Write value of N procedure Write_Info_Terminate renames Write_Eol; -- Terminate current line -------------------- -- Write_Info_Nat -- -------------------- procedure Write_Info_Nat (N : Nat) is begin Write_Int (N); end Write_Info_Nat; procedure Debug_Put_SCOs is new Put_SCOs; -- Start of processing for pscos begin Debug_Put_SCOs; end pscos; --------------------- -- Record_Instance -- --------------------- procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is Inst_Src : constant Source_File_Index := Get_Source_File_Index (Inst_Sloc); begin SCO_Instance_Table.Append ((Inst_Dep_Num => Dependency_Num (Unit (Inst_Src)), Inst_Loc => To_Source_Location (Inst_Sloc), Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src)))); pragma Assert (SCO_Instance_Table.Last = SCO_Instance_Index (Id)); end Record_Instance; ---------------- -- SCO_Output -- ---------------- procedure SCO_Output is procedure Populate_SCO_Instance_Table is new Sinput.Iterate_On_Instances (Record_Instance); begin pragma Assert (SCO_Generation_State = Filtered); if Debug_Flag_Dot_OO then dsco; end if; Populate_SCO_Instance_Table; -- Sort the unit tables based on dependency numbers Unit_Table_Sort : declare function Lt (Op1 : Natural; Op2 : Natural) return Boolean; -- Comparison routine for sort call procedure Move (From : Natural; To : Natural); -- Move routine for sort call -------- -- Lt -- -------- function Lt (Op1 : Natural; Op2 : Natural) return Boolean is begin return Dependency_Num (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1))) < Dependency_Num (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2))); end Lt; ---------- -- Move -- ---------- procedure Move (From : Natural; To : Natural) is begin SCO_Unit_Table.Table (SCO_Unit_Index (To)) := SCO_Unit_Table.Table (SCO_Unit_Index (From)); SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) := SCO_Unit_Number_Table.Table (SCO_Unit_Index (From)); end Move; package Sorting is new GNAT.Heap_Sort_G (Move, Lt); -- Start of processing for Unit_Table_Sort begin Sorting.Sort (Integer (SCO_Unit_Table.Last)); end Unit_Table_Sort; -- Loop through entries in the unit table to set file name and -- dependency number entries. for J in 1 .. SCO_Unit_Table.Last loop declare U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J); UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J); begin Get_Name_String (Reference_Name (Source_Index (U))); UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len)); UTE.Dep_Num := Dependency_Num (U); end; end loop; -- Now the tables are all setup for output to the ALI file Write_SCOs_To_ALI_File; end SCO_Output; ------------------------- -- SCO_Pragma_Disabled -- ------------------------- function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is Index : Nat; begin if Loc = No_Location then return False; end if; Index := SCO_Raw_Hash_Table.Get (Loc); -- The test here for zero is to deal with possible previous errors, and -- for the case of pragma statement SCOs, for which we always set the -- Pragma_Sloc even if the particular pragma cannot be specifically -- disabled. if Index /= 0 then declare T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index); begin case T.C1 is when 'S' => -- Pragma statement return T.C2 = 'p'; when 'A' => -- Aspect decision (enabled) return False; when 'a' => -- Aspect decision (not enabled) return True; when ASCII.NUL => -- Nullified disabled SCO return True; when others => raise Program_Error; end case; end; else return False; end if; end SCO_Pragma_Disabled; -------------------- -- SCO_Record_Raw -- -------------------- procedure SCO_Record_Raw (U : Unit_Number_Type) is procedure Traverse_Aux_Decls (N : Node_Id); -- Traverse the Aux_Decls_Node of compilation unit N ------------------------ -- Traverse_Aux_Decls -- ------------------------ procedure Traverse_Aux_Decls (N : Node_Id) is ADN : constant Node_Id := Aux_Decls_Node (N); begin Traverse_Declarations_Or_Statements (Config_Pragmas (ADN)); Traverse_Declarations_Or_Statements (Pragmas_After (ADN)); -- Declarations and Actions do not correspond to source constructs, -- they contain only nodes from expansion, so at this point they -- should still be empty: pragma Assert (No (Declarations (ADN))); pragma Assert (No (Actions (ADN))); end Traverse_Aux_Decls; -- Local variables From : Nat; Lu : Node_Id; -- Start of processing for SCO_Record_Raw begin -- It is legitimate to run this pass multiple times (once per unit) so -- run it even if it was already run before. pragma Assert (SCO_Generation_State in None .. Raw); SCO_Generation_State := Raw; -- Ignore call if not generating code and generating SCO's if not (Generate_SCO and then Operating_Mode = Generate_Code) then return; end if; -- Ignore call if this unit already recorded for J in 1 .. SCO_Unit_Number_Table.Last loop if U = SCO_Unit_Number_Table.Table (J) then return; end if; end loop; -- Otherwise record starting entry From := SCO_Raw_Table.Last + 1; -- Get Unit (checking case of subunit) Lu := Unit (Cunit (U)); if Nkind (Lu) = N_Subunit then Lu := Proper_Body (Lu); end if; -- Traverse the unit Traverse_Aux_Decls (Cunit (U)); case Nkind (Lu) is when N_Generic_Instantiation | N_Generic_Package_Declaration | N_Package_Body | N_Package_Declaration | N_Protected_Body | N_Subprogram_Body | N_Subprogram_Declaration | N_Task_Body => Traverse_Declarations_Or_Statements (L => No_List, P => Lu); -- All other cases of compilation units (e.g. renamings), generate no -- SCO information. when others => null; end case; -- Make entry for new unit in unit tables, we will fill in the file -- name and dependency numbers later. SCO_Unit_Table.Append ( (Dep_Num => 0, File_Name => null, File_Index => Get_Source_File_Index (Sloc (Lu)), From => From, To => SCO_Raw_Table.Last)); SCO_Unit_Number_Table.Append (U); end SCO_Record_Raw; ----------------------- -- Set_SCO_Condition -- ----------------------- procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is -- SCO annotations are not processed after the filtering pass pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw); Constant_Condition_Code : constant array (Boolean) of Character := (False => 'f', True => 't'); Orig : constant Node_Id := Original_Node (Cond); Dummy : Source_Ptr; Index : Nat; Start : Source_Ptr; begin Sloc_Range (Orig, Start, Dummy); Index := SCO_Raw_Hash_Table.Get (Start); -- Index can be zero for boolean expressions that do not have SCOs -- (simple decisions outside of a control flow structure), or in case -- of a previous error. if Index = 0 then return; else pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' '); SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val); end if; end Set_SCO_Condition; ------------------------------ -- Set_SCO_Logical_Operator -- ------------------------------ procedure Set_SCO_Logical_Operator (Op : Node_Id) is -- SCO annotations are not processed after the filtering pass pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw); Orig : constant Node_Id := Original_Node (Op); Orig_Sloc : constant Source_Ptr := Sloc (Orig); Index : constant Nat := SCO_Raw_Hash_Table.Get (Orig_Sloc); begin -- All (putative) logical operators are supposed to have their own entry -- in the SCOs table. However, the semantic analysis may invoke this -- subprogram with nodes that are out of the SCO generation scope. if Index /= 0 then SCO_Raw_Table.Table (Index).C2 := ' '; end if; end Set_SCO_Logical_Operator; ---------------------------- -- Set_SCO_Pragma_Enabled -- ---------------------------- procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is -- SCO annotations are not processed after the filtering pass pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw); Index : Nat; begin -- Nothing to do if not generating SCO, or if we're not processing the -- original source occurrence of the pragma. if not (Generate_SCO and then In_Extended_Main_Source_Unit (Loc) and then not (In_Instance or In_Inlined_Body)) then return; end if; -- Note: the reason we use the Sloc value as the key is that in the -- generic case, the call to this procedure is made on a copy of the -- original node, so we can't use the Node_Id value. Index := SCO_Raw_Hash_Table.Get (Loc); -- A zero index here indicates that semantic analysis found an -- activated pragma at Loc which does not have a corresponding pragma -- or aspect at the syntax level. This may occur in legitimate cases -- because of expanded code (such are Pre/Post conditions generated for -- formal parameter validity checks), or as a consequence of a previous -- error. if Index = 0 then return; else declare T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index); begin -- Note: may be called multiple times for the same sloc, so -- account for the fact that the entry may already have been -- marked enabled. case T.C1 is -- Aspect (decision SCO) when 'a' => T.C1 := 'A'; when 'A' => null; -- Pragma (statement SCO) when 'S' => pragma Assert (T.C2 = 'p' or else T.C2 = 'P'); T.C2 := 'P'; when others => raise Program_Error; end case; end; end if; end Set_SCO_Pragma_Enabled; ------------------------- -- Set_Raw_Table_Entry -- ------------------------- procedure Set_Raw_Table_Entry (C1 : Character; C2 : Character; From : Source_Ptr; To : Source_Ptr; Last : Boolean; Pragma_Sloc : Source_Ptr := No_Location; Pragma_Aspect_Name : Name_Id := No_Name) is pragma Assert (SCO_Generation_State = Raw); begin SCO_Raw_Table.Append ((C1 => C1, C2 => C2, From => To_Source_Location (From), To => To_Source_Location (To), Last => Last, Pragma_Sloc => Pragma_Sloc, Pragma_Aspect_Name => Pragma_Aspect_Name)); end Set_Raw_Table_Entry; ------------------------ -- To_Source_Location -- ------------------------ function To_Source_Location (S : Source_Ptr) return Source_Location is begin if S = No_Location then return No_Source_Location; else return (Line => Get_Logical_Line_Number (S), Col => Get_Column_Number (S)); end if; end To_Source_Location; ----------------------------------------- -- Traverse_Declarations_Or_Statements -- ----------------------------------------- -- Tables used by Traverse_Declarations_Or_Statements for temporarily -- holding statement and decision entries. These are declared globally -- since they are shared by recursive calls to this procedure. type SC_Entry is record N : Node_Id; From : Source_Ptr; To : Source_Ptr; Typ : Character; end record; -- Used to store a single entry in the following table, From:To represents -- the range of entries in the CS line entry, and typ is the type, with -- space meaning that no type letter will accompany the entry. package SC is new Table.Table (Table_Component_Type => SC_Entry, Table_Index_Type => Nat, Table_Low_Bound => 1, Table_Initial => 1000, Table_Increment => 200, Table_Name => "SCO_SC"); -- Used to store statement components for a CS entry to be output as a -- result of the call to this procedure. SC.Last is the last entry stored, -- so the current statement sequence is represented by SC_Array (SC_First -- .. SC.Last), where SC_First is saved on entry to each recursive call to -- the routine. -- -- Extend_Statement_Sequence adds an entry to this array, and then -- Set_Statement_Entry clears the entries starting with SC_First, copying -- these entries to the main SCO output table. The reason that we do the -- temporary caching of results in this array is that we want the SCO table -- entries for a given CS line to be contiguous, and the processing may -- output intermediate entries such as decision entries. type SD_Entry is record Nod : Node_Id; Lst : List_Id; Typ : Character; Plo : Source_Ptr; end record; -- Used to store a single entry in the following table. Nod is the node to -- be searched for decisions for the case of Process_Decisions_Defer with a -- node argument (with Lst set to No_List. Lst is the list to be searched -- for decisions for the case of Process_Decisions_Defer with a List -- argument (in which case Nod is set to Empty). Plo is the sloc of the -- enclosing pragma, if any. package SD is new Table.Table (Table_Component_Type => SD_Entry, Table_Index_Type => Nat, Table_Low_Bound => 1, Table_Initial => 1000, Table_Increment => 200, Table_Name => "SCO_SD"); -- Used to store possible decision information. Instead of calling the -- Process_Decisions procedures directly, we call Process_Decisions_Defer, -- which simply stores the arguments in this table. Then when we clear -- out a statement sequence using Set_Statement_Entry, after generating -- the CS lines for the statements, the entries in this table result in -- calls to Process_Decision. The reason for doing things this way is to -- ensure that decisions are output after the CS line for the statements -- in which the decisions occur. procedure Traverse_Declarations_Or_Statements (L : List_Id; D : Dominant_Info := No_Dominant; P : Node_Id := Empty) is Discard_Dom : Dominant_Info; pragma Warnings (Off, Discard_Dom); begin Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P); end Traverse_Declarations_Or_Statements; function Traverse_Declarations_Or_Statements (L : List_Id; D : Dominant_Info := No_Dominant; P : Node_Id := Empty) return Dominant_Info is Current_Dominant : Dominant_Info := D; -- Dominance information for the current basic block Current_Test : Node_Id; -- Conditional node (N_If_Statement or N_Elsif being processed) N : Node_Id; SC_First : constant Nat := SC.Last + 1; SD_First : constant Nat := SD.Last + 1; -- Record first entries used in SC/SD at this recursive level procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character); -- Extend the current statement sequence to encompass the node N. Typ is -- the letter that identifies the type of statement/declaration that is -- being added to the sequence. procedure Process_Decisions_Defer (N : Node_Id; T : Character); pragma Inline (Process_Decisions_Defer); -- This routine is logically the same as Process_Decisions, except that -- the arguments are saved in the SD table for later processing when -- Set_Statement_Entry is called, which goes through the saved entries -- making the corresponding calls to Process_Decision. Note: the -- enclosing statement must have already been added to the current -- statement sequence, so that nested decisions are properly -- identified as such. procedure Process_Decisions_Defer (L : List_Id; T : Character); pragma Inline (Process_Decisions_Defer); -- Same case for list arguments, deferred call to Process_Decisions procedure Set_Statement_Entry; -- Output CS entries for all statements saved in table SC, and end the -- current CS sequence. Then output entries for all decisions nested in -- these statements, which have been deferred so far. procedure Traverse_One (N : Node_Id); -- Traverse one declaration or statement procedure Traverse_Aspects (N : Node_Id); -- Helper for Traverse_One: traverse N's aspect specifications procedure Traverse_Degenerate_Subprogram (N : Node_Id); -- Common code to handle null procedures and expression functions. Emit -- a SCO of the given Kind and N outside of the dominance flow. ------------------------------- -- Extend_Statement_Sequence -- ------------------------------- procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is Dummy : Source_Ptr; F : Source_Ptr; T : Source_Ptr; To_Node : Node_Id := Empty; begin Sloc_Range (N, F, T); case Nkind (N) is when N_Accept_Statement => if Present (Parameter_Specifications (N)) then To_Node := Last (Parameter_Specifications (N)); elsif Present (Entry_Index (N)) then To_Node := Entry_Index (N); else To_Node := Entry_Direct_Name (N); end if; when N_Case_Statement => To_Node := Expression (N); when N_Elsif_Part | N_If_Statement => To_Node := Condition (N); when N_Extended_Return_Statement => To_Node := Last (Return_Object_Declarations (N)); when N_Loop_Statement => To_Node := Iteration_Scheme (N); when N_Asynchronous_Select | N_Conditional_Entry_Call | N_Selective_Accept | N_Single_Protected_Declaration | N_Single_Task_Declaration | N_Timed_Entry_Call => T := F; when N_Protected_Type_Declaration | N_Task_Type_Declaration => if Has_Aspects (N) then To_Node := Last (Aspect_Specifications (N)); elsif Present (Discriminant_Specifications (N)) then To_Node := Last (Discriminant_Specifications (N)); else To_Node := Defining_Identifier (N); end if; when N_Subexpr => To_Node := N; when others => null; end case; if Present (To_Node) then Sloc_Range (To_Node, Dummy, T); end if; SC.Append ((N, F, T, Typ)); end Extend_Statement_Sequence; ----------------------------- -- Process_Decisions_Defer -- ----------------------------- procedure Process_Decisions_Defer (N : Node_Id; T : Character) is begin SD.Append ((N, No_List, T, Current_Pragma_Sloc)); end Process_Decisions_Defer; procedure Process_Decisions_Defer (L : List_Id; T : Character) is begin SD.Append ((Empty, L, T, Current_Pragma_Sloc)); end Process_Decisions_Defer; ------------------------- -- Set_Statement_Entry -- ------------------------- procedure Set_Statement_Entry is SC_Last : constant Int := SC.Last; SD_Last : constant Int := SD.Last; begin -- Output statement entries from saved entries in SC table for J in SC_First .. SC_Last loop if J = SC_First then if Current_Dominant /= No_Dominant then declare From : Source_Ptr; To : Source_Ptr; begin Sloc_Range (Current_Dominant.N, From, To); if Current_Dominant.K /= 'E' then To := No_Location; end if; -- Be consistent with the location determined in -- Output_Header. if Current_Dominant.K = 'T' and then Nkind (Parent (Current_Dominant.N)) in N_Accept_Alternative | N_Delay_Alternative | N_Terminate_Alternative then From := First_Sloc (Current_Dominant.N); end if; Set_Raw_Table_Entry (C1 => '>', C2 => Current_Dominant.K, From => From, To => To, Last => False, Pragma_Sloc => No_Location, Pragma_Aspect_Name => No_Name); end; end if; end if; declare SCE : SC_Entry renames SC.Table (J); Pragma_Sloc : Source_Ptr := No_Location; Pragma_Aspect_Name : Name_Id := No_Name; begin -- For the case of a statement SCO for a pragma controlled by -- Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and -- those of any nested decision) is emitted only if the pragma -- is enabled. if SCE.Typ = 'p' then Pragma_Sloc := SCE.From; SCO_Raw_Hash_Table.Set (Pragma_Sloc, SCO_Raw_Table.Last + 1); Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N); pragma Assert (Pragma_Aspect_Name /= No_Name); elsif SCE.Typ = 'P' then Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N); pragma Assert (Pragma_Aspect_Name /= No_Name); end if; Set_Raw_Table_Entry (C1 => 'S', C2 => SCE.Typ, From => SCE.From, To => SCE.To, Last => (J = SC_Last), Pragma_Sloc => Pragma_Sloc, Pragma_Aspect_Name => Pragma_Aspect_Name); end; end loop; -- Last statement of basic block, if present, becomes new current -- dominant. if SC_Last >= SC_First then Current_Dominant := ('S', SC.Table (SC_Last).N); end if; -- Clear out used section of SC table SC.Set_Last (SC_First - 1); -- Output any embedded decisions for J in SD_First .. SD_Last loop declare SDE : SD_Entry renames SD.Table (J); begin if Present (SDE.Nod) then Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo); else Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo); end if; end; end loop; -- Clear out used section of SD table SD.Set_Last (SD_First - 1); end Set_Statement_Entry; ---------------------- -- Traverse_Aspects -- ---------------------- procedure Traverse_Aspects (N : Node_Id) is AE : Node_Id; AN : Node_Id; C1 : Character; begin AN := First (Aspect_Specifications (N)); while Present (AN) loop AE := Expression (AN); C1 := ASCII.NUL; case Get_Aspect_Id (AN) is -- Aspects rewritten into pragmas controlled by a Check_Policy: -- Current_Pragma_Sloc must be set to the sloc of the aspect -- specification. The corresponding pragma will have the same -- sloc. Note that Invariant, Pre, and Post will be enabled if -- the policy is Check; on the other hand, predicate aspects -- will be enabled for Check and Ignore (when Add_Predicate -- is called) because the actual checks occur in client units. -- When the assertion policy for Predicate is Disable, the -- SCO remains disabled, because Add_Predicate is never called. -- Pre/post can have checks in client units too because of -- inheritance, so should they receive the same treatment??? when Aspect_Dynamic_Predicate | Aspect_Invariant | Aspect_Post | Aspect_Postcondition | Aspect_Pre | Aspect_Precondition | Aspect_Predicate | Aspect_Static_Predicate | Aspect_Type_Invariant => C1 := 'a'; -- Other aspects: just process any decision nested in the -- aspect expression. when others => if Has_Decision (AE) then C1 := 'X'; end if; end case; if C1 /= ASCII.NUL then pragma Assert (Current_Pragma_Sloc = No_Location); if C1 = 'a' or else C1 = 'A' then Current_Pragma_Sloc := Sloc (AN); end if; Process_Decisions_Defer (AE, C1); Current_Pragma_Sloc := No_Location; end if; Next (AN); end loop; end Traverse_Aspects; ------------------------------------ -- Traverse_Degenerate_Subprogram -- ------------------------------------ procedure Traverse_Degenerate_Subprogram (N : Node_Id) is begin -- Complete current sequence of statements Set_Statement_Entry; declare Saved_Dominant : constant Dominant_Info := Current_Dominant; -- Save last statement in current sequence as dominant begin -- Output statement SCO for degenerate subprogram body (null -- statement or freestanding expression) outside of the dominance -- chain. Current_Dominant := No_Dominant; Extend_Statement_Sequence (N, Typ => 'X'); -- For the case of an expression-function, collect decisions -- embedded in the expression now. if Nkind (N) in N_Subexpr then Process_Decisions_Defer (N, 'X'); end if; Set_Statement_Entry; -- Restore current dominant information designating last statement -- in previous sequence (i.e. make the dominance chain skip over -- the degenerate body). Current_Dominant := Saved_Dominant; end; end Traverse_Degenerate_Subprogram; ------------------ -- Traverse_One -- ------------------ procedure Traverse_One (N : Node_Id) is begin -- Initialize or extend current statement sequence. Note that for -- special cases such as IF and Case statements we will modify -- the range to exclude internal statements that should not be -- counted as part of the current statement sequence. case Nkind (N) is -- Package declaration when N_Package_Declaration => Set_Statement_Entry; Traverse_Package_Declaration (N, Current_Dominant); -- Generic package declaration when N_Generic_Package_Declaration => Set_Statement_Entry; Traverse_Generic_Package_Declaration (N); -- Package body when N_Package_Body => Set_Statement_Entry; Traverse_Package_Body (N); -- Subprogram declaration or subprogram body stub when N_Expression_Function | N_Subprogram_Body_Stub | N_Subprogram_Declaration => declare Spec : constant Node_Id := Specification (N); begin Process_Decisions_Defer (Parameter_Specifications (Spec), 'X'); -- Case of a null procedure: generate SCO for fictitious -- NULL statement located at the NULL keyword in the -- procedure specification. if Nkind (N) = N_Subprogram_Declaration and then Nkind (Spec) = N_Procedure_Specification and then Null_Present (Spec) then Traverse_Degenerate_Subprogram (Null_Statement (Spec)); -- Case of an expression function: generate a statement SCO -- for the expression (and then decision SCOs for any nested -- decisions). elsif Nkind (N) = N_Expression_Function then Traverse_Degenerate_Subprogram (Expression (N)); end if; end; -- Entry declaration when N_Entry_Declaration => Process_Decisions_Defer (Parameter_Specifications (N), 'X'); -- Generic subprogram declaration when N_Generic_Subprogram_Declaration => Process_Decisions_Defer (Generic_Formal_Declarations (N), 'X'); Process_Decisions_Defer (Parameter_Specifications (Specification (N)), 'X'); -- Task or subprogram body when N_Subprogram_Body | N_Task_Body => Set_Statement_Entry; Traverse_Subprogram_Or_Task_Body (N); -- Entry body when N_Entry_Body => declare Cond : constant Node_Id := Condition (Entry_Body_Formal_Part (N)); Inner_Dominant : Dominant_Info := No_Dominant; begin Set_Statement_Entry; if Present (Cond) then Process_Decisions_Defer (Cond, 'G'); -- For an entry body with a barrier, the entry body -- is dominated by a True evaluation of the barrier. Inner_Dominant := ('T', N); end if; Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant); end; -- Protected body when N_Protected_Body => Set_Statement_Entry; Traverse_Declarations_Or_Statements (Declarations (N)); -- Exit statement, which is an exit statement in the SCO sense, -- so it is included in the current statement sequence, but -- then it terminates this sequence. We also have to process -- any decisions in the exit statement expression. when N_Exit_Statement => Extend_Statement_Sequence (N, 'E'); Process_Decisions_Defer (Condition (N), 'E'); Set_Statement_Entry; -- If condition is present, then following statement is -- only executed if the condition evaluates to False. if Present (Condition (N)) then Current_Dominant := ('F', N); else Current_Dominant := No_Dominant; end if; -- Label, which breaks the current statement sequence, but the -- label itself is not included in the next statement sequence, -- since it generates no code. when N_Label => Set_Statement_Entry; Current_Dominant := No_Dominant; -- Block statement, which breaks the current statement sequence when N_Block_Statement => Set_Statement_Entry; -- The first statement in the handled sequence of statements -- is dominated by the elaboration of the last declaration. Current_Dominant := Traverse_Declarations_Or_Statements (L => Declarations (N), D => Current_Dominant); Traverse_Handled_Statement_Sequence (N => Handled_Statement_Sequence (N), D => Current_Dominant); -- If statement, which breaks the current statement sequence, -- but we include the condition in the current sequence. when N_If_Statement => Current_Test := N; Extend_Statement_Sequence (N, 'I'); Process_Decisions_Defer (Condition (N), 'I'); Set_Statement_Entry; -- Now we traverse the statements in the THEN part Traverse_Declarations_Or_Statements (L => Then_Statements (N), D => ('T', N)); -- Loop through ELSIF parts if present if Present (Elsif_Parts (N)) then declare Saved_Dominant : constant Dominant_Info := Current_Dominant; Elif : Node_Id := First (Elsif_Parts (N)); begin while Present (Elif) loop -- An Elsif is executed only if the previous test -- got a FALSE outcome. Current_Dominant := ('F', Current_Test); -- Now update current test information Current_Test := Elif; -- We generate a statement sequence for the -- construct "ELSIF condition", so that we have -- a statement for the resulting decisions. Extend_Statement_Sequence (Elif, 'I'); Process_Decisions_Defer (Condition (Elif), 'I'); Set_Statement_Entry; -- An ELSIF part is never guaranteed to have -- been executed, following statements are only -- dominated by the initial IF statement. Current_Dominant := Saved_Dominant; -- Traverse the statements in the ELSIF Traverse_Declarations_Or_Statements (L => Then_Statements (Elif), D => ('T', Elif)); Next (Elif); end loop; end; end if; -- Finally traverse the ELSE statements if present Traverse_Declarations_Or_Statements (L => Else_Statements (N), D => ('F', Current_Test)); -- CASE statement, which breaks the current statement sequence, -- but we include the expression in the current sequence. when N_Case_Statement => Extend_Statement_Sequence (N, 'C'); Process_Decisions_Defer (Expression (N), 'X'); Set_Statement_Entry; -- Process case branches, all of which are dominated by the -- CASE statement. declare Alt : Node_Id; begin Alt := First_Non_Pragma (Alternatives (N)); while Present (Alt) loop Traverse_Declarations_Or_Statements (L => Statements (Alt), D => Current_Dominant); Next (Alt); end loop; end; -- ACCEPT statement when N_Accept_Statement => Extend_Statement_Sequence (N, 'A'); Set_Statement_Entry; -- Process sequence of statements, dominant is the ACCEPT -- statement. Traverse_Handled_Statement_Sequence (N => Handled_Statement_Sequence (N), D => Current_Dominant); -- SELECT when N_Selective_Accept => Extend_Statement_Sequence (N, 'S'); Set_Statement_Entry; -- Process alternatives declare Alt : Node_Id; Guard : Node_Id; S_Dom : Dominant_Info; begin Alt := First (Select_Alternatives (N)); while Present (Alt) loop S_Dom := Current_Dominant; Guard := Condition (Alt); if Present (Guard) then Process_Decisions (Guard, 'G', Pragma_Sloc => No_Location); Current_Dominant := ('T', Guard); end if; Traverse_One (Alt); Current_Dominant := S_Dom; Next (Alt); end loop; end; Traverse_Declarations_Or_Statements (L => Else_Statements (N), D => Current_Dominant); when N_Conditional_Entry_Call | N_Timed_Entry_Call => Extend_Statement_Sequence (N, 'S'); Set_Statement_Entry; -- Process alternatives Traverse_One (Entry_Call_Alternative (N)); if Nkind (N) = N_Timed_Entry_Call then Traverse_One (Delay_Alternative (N)); else Traverse_Declarations_Or_Statements (L => Else_Statements (N), D => Current_Dominant); end if; when N_Asynchronous_Select => Extend_Statement_Sequence (N, 'S'); Set_Statement_Entry; Traverse_One (Triggering_Alternative (N)); Traverse_Declarations_Or_Statements (L => Statements (Abortable_Part (N)), D => Current_Dominant); when N_Accept_Alternative => Traverse_Declarations_Or_Statements (L => Statements (N), D => Current_Dominant, P => Accept_Statement (N)); when N_Entry_Call_Alternative => Traverse_Declarations_Or_Statements (L => Statements (N), D => Current_Dominant, P => Entry_Call_Statement (N)); when N_Delay_Alternative => Traverse_Declarations_Or_Statements (L => Statements (N), D => Current_Dominant, P => Delay_Statement (N)); when N_Triggering_Alternative => Traverse_Declarations_Or_Statements (L => Statements (N), D => Current_Dominant, P => Triggering_Statement (N)); when N_Terminate_Alternative => -- It is dubious to emit a statement SCO for a TERMINATE -- alternative, since no code is actually executed if the -- alternative is selected -- the tasking runtime call just -- never returns??? Extend_Statement_Sequence (N, ' '); Set_Statement_Entry; -- Unconditional exit points, which are included in the current -- statement sequence, but then terminate it when N_Goto_Statement | N_Raise_Statement | N_Requeue_Statement => Extend_Statement_Sequence (N, ' '); Set_Statement_Entry; Current_Dominant := No_Dominant; -- Simple return statement. which is an exit point, but we -- have to process the return expression for decisions. when N_Simple_Return_Statement => Extend_Statement_Sequence (N, ' '); Process_Decisions_Defer (Expression (N), 'X'); Set_Statement_Entry; Current_Dominant := No_Dominant; -- Extended return statement when N_Extended_Return_Statement => Extend_Statement_Sequence (N, 'R'); Process_Decisions_Defer (Return_Object_Declarations (N), 'X'); Set_Statement_Entry; Traverse_Handled_Statement_Sequence (N => Handled_Statement_Sequence (N), D => Current_Dominant); Current_Dominant := No_Dominant; -- Loop ends the current statement sequence, but we include -- the iteration scheme if present in the current sequence. -- But the body of the loop starts a new sequence, since it -- may not be executed as part of the current sequence. when N_Loop_Statement => declare ISC : constant Node_Id := Iteration_Scheme (N); Inner_Dominant : Dominant_Info := No_Dominant; begin if Present (ISC) then -- If iteration scheme present, extend the current -- statement sequence to include the iteration scheme -- and process any decisions it contains. -- While loop if Present (Condition (ISC)) then Extend_Statement_Sequence (N, 'W'); Process_Decisions_Defer (Condition (ISC), 'W'); -- Set more specific dominant for inner statements -- (the control sloc for the decision is that of -- the WHILE token). Inner_Dominant := ('T', ISC); -- For loop else Extend_Statement_Sequence (N, 'F'); Process_Decisions_Defer (Loop_Parameter_Specification (ISC), 'X'); end if; end if; Set_Statement_Entry; if Inner_Dominant = No_Dominant then Inner_Dominant := Current_Dominant; end if; Traverse_Declarations_Or_Statements (L => Statements (N), D => Inner_Dominant); end; -- Pragma when N_Pragma => -- Record sloc of pragma (pragmas don't nest) pragma Assert (Current_Pragma_Sloc = No_Location); Current_Pragma_Sloc := Sloc (N); -- Processing depends on the kind of pragma declare Nam : constant Name_Id := Pragma_Name_Unmapped (N); Arg : Node_Id := First (Pragma_Argument_Associations (N)); Typ : Character; begin case Nam is when Name_Assert | Name_Assert_And_Cut | Name_Assume | Name_Check | Name_Loop_Invariant | Name_Postcondition | Name_Precondition | Name_Type_Invariant | Name_Invariant => -- For Assert/Check/Precondition/Postcondition, we -- must generate a P entry for the decision. Note -- that this is done unconditionally at this stage. -- Output for disabled pragmas is suppressed later -- on when we output the decision line in Put_SCOs, -- depending on setting by Set_SCO_Pragma_Enabled. if Nam = Name_Check or else Nam = Name_Type_Invariant or else Nam = Name_Invariant then Next (Arg); end if; Process_Decisions_Defer (Expression (Arg), 'P'); Typ := 'p'; -- Pre/postconditions can be inherited so SCO should -- never be deactivated??? when Name_Debug => if Present (Arg) and then Present (Next (Arg)) then -- Case of a dyadic pragma Debug: first argument -- is a P decision, any nested decision in the -- second argument is an X decision. Process_Decisions_Defer (Expression (Arg), 'P'); Next (Arg); end if; Process_Decisions_Defer (Expression (Arg), 'X'); Typ := 'p'; -- For all other pragmas, we generate decision entries -- for any embedded expressions, and the pragma is -- never disabled. -- Should generate P decisions (not X) for assertion -- related pragmas: [{Static,Dynamic}_]Predicate??? when others => Process_Decisions_Defer (N, 'X'); Typ := 'P'; end case; -- Add statement SCO Extend_Statement_Sequence (N, Typ); Current_Pragma_Sloc := No_Location; end; -- Object declaration. Ignored if Prev_Ids is set, since the -- parser generates multiple instances of the whole declaration -- if there is more than one identifier declared, and we only -- want one entry in the SCOs, so we take the first, for which -- Prev_Ids is False. when N_Number_Declaration | N_Object_Declaration => if not Prev_Ids (N) then Extend_Statement_Sequence (N, 'o'); if Has_Decision (N) then Process_Decisions_Defer (N, 'X'); end if; end if; -- All other cases, which extend the current statement sequence -- but do not terminate it, even if they have nested decisions. when N_Protected_Type_Declaration | N_Task_Type_Declaration => Extend_Statement_Sequence (N, 't'); Process_Decisions_Defer (Discriminant_Specifications (N), 'X'); Set_Statement_Entry; Traverse_Protected_Or_Task_Definition (N); when N_Single_Protected_Declaration | N_Single_Task_Declaration => Extend_Statement_Sequence (N, 'o'); Set_Statement_Entry; Traverse_Protected_Or_Task_Definition (N); when others => -- Determine required type character code, or ASCII.NUL if -- no SCO should be generated for this node. declare NK : constant Node_Kind := Nkind (N); Typ : Character; begin case NK is when N_Full_Type_Declaration | N_Incomplete_Type_Declaration | N_Private_Extension_Declaration | N_Private_Type_Declaration => Typ := 't'; when N_Subtype_Declaration => Typ := 's'; when N_Renaming_Declaration => Typ := 'r'; when N_Generic_Instantiation => Typ := 'i'; when N_Package_Body_Stub | N_Protected_Body_Stub | N_Representation_Clause | N_Task_Body_Stub | N_Use_Package_Clause | N_Use_Type_Clause => Typ := ASCII.NUL; when N_Procedure_Call_Statement => Typ := ' '; when others => if NK in N_Statement_Other_Than_Procedure_Call then Typ := ' '; else Typ := 'd'; end if; end case; if Typ /= ASCII.NUL then Extend_Statement_Sequence (N, Typ); end if; end; -- Process any embedded decisions if Has_Decision (N) then Process_Decisions_Defer (N, 'X'); end if; end case; if Permits_Aspect_Specifications (N) then Traverse_Aspects (N); end if; end Traverse_One; -- Start of processing for Traverse_Declarations_Or_Statements begin -- Process single prefixed node if Present (P) then Traverse_One (P); end if; -- Loop through statements or declarations N := First (L); while Present (N) loop -- Note: For separate bodies, we see the tree after Par.Labl has -- introduced implicit labels, so we need to ignore those nodes. if Nkind (N) /= N_Implicit_Label_Declaration then Traverse_One (N); end if; Next (N); end loop; -- End sequence of statements and flush deferred decisions if Present (P) or else Is_Non_Empty_List (L) then Set_Statement_Entry; end if; return Current_Dominant; end Traverse_Declarations_Or_Statements; ------------------------------------------ -- Traverse_Generic_Package_Declaration -- ------------------------------------------ procedure Traverse_Generic_Package_Declaration (N : Node_Id) is begin Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location); Traverse_Package_Declaration (N); end Traverse_Generic_Package_Declaration; ----------------------------------------- -- Traverse_Handled_Statement_Sequence -- ----------------------------------------- procedure Traverse_Handled_Statement_Sequence (N : Node_Id; D : Dominant_Info := No_Dominant) is Handler : Node_Id; begin -- For package bodies without a statement part, the parser adds an empty -- one, to normalize the representation. The null statement therein, -- which does not come from source, does not get a SCO. if Present (N) and then Comes_From_Source (N) then Traverse_Declarations_Or_Statements (Statements (N), D); if Present (Exception_Handlers (N)) then Handler := First_Non_Pragma (Exception_Handlers (N)); while Present (Handler) loop Traverse_Declarations_Or_Statements (L => Statements (Handler), D => ('E', Handler)); Next (Handler); end loop; end if; end if; end Traverse_Handled_Statement_Sequence; --------------------------- -- Traverse_Package_Body -- --------------------------- procedure Traverse_Package_Body (N : Node_Id) is Dom : Dominant_Info; begin -- The first statement in the handled sequence of statements is -- dominated by the elaboration of the last declaration. Dom := Traverse_Declarations_Or_Statements (Declarations (N)); Traverse_Handled_Statement_Sequence (Handled_Statement_Sequence (N), Dom); end Traverse_Package_Body; ---------------------------------- -- Traverse_Package_Declaration -- ---------------------------------- procedure Traverse_Package_Declaration (N : Node_Id; D : Dominant_Info := No_Dominant) is Spec : constant Node_Id := Specification (N); Dom : Dominant_Info; begin Dom := Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D); -- First private declaration is dominated by last visible declaration Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom); end Traverse_Package_Declaration; ------------------------------------------- -- Traverse_Protected_Or_Task_Definition -- ------------------------------------------- procedure Traverse_Protected_Or_Task_Definition (N : Node_Id) is Dom_Info : Dominant_Info := ('S', N); -- The first declaration is dominated by the protected or task [type] -- declaration. Sync_Def : Node_Id; -- N's protected or task definition Priv_Decl : List_Id; Vis_Decl : List_Id; -- Sync_Def's Visible_Declarations and Private_Declarations begin case Nkind (N) is when N_Protected_Type_Declaration | N_Single_Protected_Declaration => Sync_Def := Protected_Definition (N); when N_Single_Task_Declaration | N_Task_Type_Declaration => Sync_Def := Task_Definition (N); when others => raise Program_Error; end case; -- Sync_Def may be Empty at least for empty Task_Type_Declarations. -- Querying Visible or Private_Declarations is invalid in this case. if Present (Sync_Def) then Vis_Decl := Visible_Declarations (Sync_Def); Priv_Decl := Private_Declarations (Sync_Def); else Vis_Decl := No_List; Priv_Decl := No_List; end if; Dom_Info := Traverse_Declarations_Or_Statements (L => Vis_Decl, D => Dom_Info); -- If visible declarations are present, the first private declaration -- is dominated by the last visible declaration. Traverse_Declarations_Or_Statements (L => Priv_Decl, D => Dom_Info); end Traverse_Protected_Or_Task_Definition; -------------------------------------- -- Traverse_Subprogram_Or_Task_Body -- -------------------------------------- procedure Traverse_Subprogram_Or_Task_Body (N : Node_Id; D : Dominant_Info := No_Dominant) is Decls : constant List_Id := Declarations (N); Dom_Info : Dominant_Info := D; begin -- If declarations are present, the first statement is dominated by the -- last declaration. Dom_Info := Traverse_Declarations_Or_Statements (L => Decls, D => Dom_Info); Traverse_Handled_Statement_Sequence (N => Handled_Statement_Sequence (N), D => Dom_Info); end Traverse_Subprogram_Or_Task_Body; ------------------------- -- SCO_Record_Filtered -- ------------------------- procedure SCO_Record_Filtered is type Decision is record Kind : Character; -- Type of the SCO decision (see comments for SCO_Table_Entry.C1) Sloc : Source_Location; Top : Nat; -- Index in the SCO_Raw_Table for the root operator/condition for the -- expression that controls the decision. end record; -- Decision descriptor: used to gather information about a candidate -- SCO decision. package Pending_Decisions is new Table.Table (Table_Component_Type => Decision, Table_Index_Type => Nat, Table_Low_Bound => 1, Table_Initial => 1000, Table_Increment => 200, Table_Name => "Filter_Pending_Decisions"); -- Table used to hold decisions to process during the collection pass procedure Add_Expression_Tree (Idx : in out Nat); -- Add SCO raw table entries for the decision controlling expression -- tree starting at Idx to the filtered SCO table. procedure Collect_Decisions (D : Decision; Next : out Nat); -- Collect decisions to add to the filtered SCO table starting at the -- D decision (including it and its nested operators/conditions). Set -- Next to the first node index passed the whole decision. procedure Compute_Range (Idx : in out Nat; From : out Source_Location; To : out Source_Location); -- Compute the source location range for the expression tree starting at -- Idx in the SCO raw table. Store its bounds in From and To. function Is_Decision (Idx : Nat) return Boolean; -- Return if the expression tree starting at Idx has adjacent nested -- nodes that make a decision. procedure Process_Pending_Decisions (Original_Decision : SCO_Table_Entry); -- Complete the filtered SCO table using collected decisions. Output -- decisions inherit the pragma information from the original decision. procedure Search_Nested_Decisions (Idx : in out Nat); -- Collect decisions to add to the filtered SCO table starting at the -- node at Idx in the SCO raw table. This node must not be part of an -- already-processed decision. Set Idx to the first node index passed -- the whole expression tree. procedure Skip_Decision (Idx : in out Nat; Process_Nested_Decisions : Boolean); -- Skip all the nodes that belong to the decision starting at Idx. If -- Process_Nested_Decision, call Search_Nested_Decisions on the first -- nested nodes that do not belong to the decision. Set Idx to the first -- node index passed the whole expression tree. ------------------------- -- Add_Expression_Tree -- ------------------------- procedure Add_Expression_Tree (Idx : in out Nat) is Node_Idx : constant Nat := Idx; T : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx); From : Source_Location; To : Source_Location; begin case T.C1 is when ' ' => -- This is a single condition. Add an entry for it and move on SCO_Table.Append (T); Idx := Idx + 1; when '!' => -- This is a NOT operator: add an entry for it and browse its -- only child. SCO_Table.Append (T); Idx := Idx + 1; Add_Expression_Tree (Idx); when others => -- This must be an AND/OR/AND THEN/OR ELSE operator if T.C2 = '?' then -- This is not a short circuit operator: consider this one -- and all its children as a single condition. Compute_Range (Idx, From, To); SCO_Table.Append ((From => From, To => To, C1 => ' ', C2 => 'c', Last => False, Pragma_Sloc => No_Location, Pragma_Aspect_Name => No_Name)); else -- This is a real short circuit operator: add an entry for -- it and browse its children. SCO_Table.Append (T); Idx := Idx + 1; Add_Expression_Tree (Idx); Add_Expression_Tree (Idx); end if; end case; end Add_Expression_Tree; ----------------------- -- Collect_Decisions -- ----------------------- procedure Collect_Decisions (D : Decision; Next : out Nat) is Idx : Nat := D.Top; begin if D.Kind /= 'X' or else Is_Decision (D.Top) then Pending_Decisions.Append (D); end if; Skip_Decision (Idx, True); Next := Idx; end Collect_Decisions; ------------------- -- Compute_Range -- ------------------- procedure Compute_Range (Idx : in out Nat; From : out Source_Location; To : out Source_Location) is Sloc_F : Source_Location := No_Source_Location; Sloc_T : Source_Location := No_Source_Location; procedure Process_One; -- Process one node of the tree, and recurse over children. Update -- Idx during the traversal. ----------------- -- Process_One -- ----------------- procedure Process_One is begin if Sloc_F = No_Source_Location or else SCO_Raw_Table.Table (Idx).From < Sloc_F then Sloc_F := SCO_Raw_Table.Table (Idx).From; end if; if Sloc_T = No_Source_Location or else Sloc_T < SCO_Raw_Table.Table (Idx).To then Sloc_T := SCO_Raw_Table.Table (Idx).To; end if; if SCO_Raw_Table.Table (Idx).C1 = ' ' then -- This is a condition: nothing special to do Idx := Idx + 1; elsif SCO_Raw_Table.Table (Idx).C1 = '!' then -- The "not" operator has only one operand Idx := Idx + 1; Process_One; else -- This is an AND THEN or OR ELSE logical operator: follow the -- left, then the right operands. Idx := Idx + 1; Process_One; Process_One; end if; end Process_One; -- Start of processing for Compute_Range begin Process_One; From := Sloc_F; To := Sloc_T; end Compute_Range; ----------------- -- Is_Decision -- ----------------- function Is_Decision (Idx : Nat) return Boolean is Index : Nat := Idx; begin loop declare T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index); begin case T.C1 is when ' ' => return False; when '!' => -- This is a decision iff the only operand of the NOT -- operator could be a standalone decision. Index := Idx + 1; when others => -- This node is a logical operator (and thus could be a -- standalone decision) iff it is a short circuit -- operator. return T.C2 /= '?'; end case; end; end loop; end Is_Decision; ------------------------------- -- Process_Pending_Decisions -- ------------------------------- procedure Process_Pending_Decisions (Original_Decision : SCO_Table_Entry) is begin for Index in 1 .. Pending_Decisions.Last loop declare D : Decision renames Pending_Decisions.Table (Index); Idx : Nat := D.Top; begin -- Add a SCO table entry for the decision itself pragma Assert (D.Kind /= ' '); SCO_Table.Append ((To => No_Source_Location, From => D.Sloc, C1 => D.Kind, C2 => ' ', Last => False, Pragma_Sloc => Original_Decision.Pragma_Sloc, Pragma_Aspect_Name => Original_Decision.Pragma_Aspect_Name)); -- Then add ones for its nested operators/operands. Do not -- forget to tag its *last* entry as such. Add_Expression_Tree (Idx); SCO_Table.Table (SCO_Table.Last).Last := True; end; end loop; -- Clear the pending decisions list Pending_Decisions.Set_Last (0); end Process_Pending_Decisions; ----------------------------- -- Search_Nested_Decisions -- ----------------------------- procedure Search_Nested_Decisions (Idx : in out Nat) is begin loop declare T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx); begin case T.C1 is when ' ' => Idx := Idx + 1; exit; when '!' => Collect_Decisions ((Kind => 'X', Sloc => T.From, Top => Idx), Idx); exit; when others => if T.C2 = '?' then -- This is not a logical operator: start looking for -- nested decisions from here. Recurse over the left -- child and let the loop take care of the right one. Idx := Idx + 1; Search_Nested_Decisions (Idx); else -- We found a nested decision Collect_Decisions ((Kind => 'X', Sloc => T.From, Top => Idx), Idx); exit; end if; end case; end; end loop; end Search_Nested_Decisions; ------------------- -- Skip_Decision -- ------------------- procedure Skip_Decision (Idx : in out Nat; Process_Nested_Decisions : Boolean) is begin loop declare T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx); begin Idx := Idx + 1; case T.C1 is when ' ' => exit; when '!' => -- This NOT operator belongs to the outside decision: -- just skip it. null; when others => if T.C2 = '?' and then Process_Nested_Decisions then -- This is not a logical operator: start looking for -- nested decisions from here. Recurse over the left -- child and let the loop take care of the right one. Search_Nested_Decisions (Idx); else -- This is a logical operator, so it belongs to the -- outside decision: skip its left child, then let the -- loop take care of the right one. Skip_Decision (Idx, Process_Nested_Decisions); end if; end case; end; end loop; end Skip_Decision; -- Start of processing for SCO_Record_Filtered begin -- Filtering must happen only once: do nothing if it this pass was -- already run. if SCO_Generation_State = Filtered then return; else pragma Assert (SCO_Generation_State = Raw); SCO_Generation_State := Filtered; end if; -- Loop through all SCO entries under SCO units for Unit_Idx in 1 .. SCO_Unit_Table.Last loop declare Unit : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Unit_Idx); Idx : Nat := Unit.From; -- Index of the current SCO raw table entry New_From : constant Nat := SCO_Table.Last + 1; -- After copying SCO enties of interest to the final table, we -- will have to change the From/To indexes this unit targets. -- This constant keeps track of the new From index. begin while Idx <= Unit.To loop declare T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx); begin case T.C1 is -- Decision (of any kind, including pragmas and aspects) when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' => if SCO_Pragma_Disabled (T.Pragma_Sloc) then -- Skip SCO entries for decisions in disabled -- constructs (pragmas or aspects). Idx := Idx + 1; Skip_Decision (Idx, False); else Collect_Decisions ((Kind => T.C1, Sloc => T.From, Top => Idx + 1), Idx); Process_Pending_Decisions (T); end if; -- There is no translation/filtering to do for other kind -- of SCO items (statements, dominance markers, etc.). when '|' | '&' | '!' | ' ' => -- SCO logical operators and conditions cannot exist -- on their own: they must be inside a decision (such -- entries must have been skipped by -- Collect_Decisions). raise Program_Error; when others => SCO_Table.Append (T); Idx := Idx + 1; end case; end; end loop; -- Now, update the SCO entry indexes in the unit entry Unit.From := New_From; Unit.To := SCO_Table.Last; end; end loop; -- Then clear the raw table to free bytes SCO_Raw_Table.Free; end SCO_Record_Filtered; end Par_SCO;