------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- S Y S T E M . I M A G E _ I -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Ada.Numerics.Big_Numbers.Big_Integers_Ghost; use Ada.Numerics.Big_Numbers.Big_Integers_Ghost; with System.Val_Spec; package body System.Image_I is -- Ghost code, loop invariants and assertions in this unit are meant for -- analysis only, not for run-time checking, as it would be too costly -- otherwise. This is enforced by setting the assertion policy to Ignore. pragma Assertion_Policy (Ghost => Ignore, Loop_Invariant => Ignore, Assert => Ignore, Assert_And_Cut => Ignore, Pre => Ignore, Post => Ignore, Subprogram_Variant => Ignore); subtype Non_Positive is Int range Int'First .. 0; function Uns_Of_Non_Positive (T : Non_Positive) return Uns is (if T = Int'First then Uns (Int'Last) + 1 else Uns (-T)); procedure Set_Digits (T : Non_Positive; S : in out String; P : in out Natural) with Pre => P < Integer'Last and then S'Last < Integer'Last and then S'First <= P + 1 and then S'First <= S'Last and then P <= S'Last - Unsigned_Width_Ghost + 1, Post => S (S'First .. P'Old) = S'Old (S'First .. P'Old) and then P in P'Old + 1 .. S'Last and then UP.Only_Decimal_Ghost (S, From => P'Old + 1, To => P) and then UP.Scan_Based_Number_Ghost (S, From => P'Old + 1, To => P) = UP.Wrap_Option (Uns_Of_Non_Positive (T)); -- Set digits of absolute value of T, which is zero or negative. We work -- with the negative of the value so that the largest negative number is -- not a special case. package Unsigned_Conversion is new Unsigned_Conversions (Int => Uns); function Big (Arg : Uns) return Big_Integer renames Unsigned_Conversion.To_Big_Integer; function From_Big (Arg : Big_Integer) return Uns renames Unsigned_Conversion.From_Big_Integer; Big_10 : constant Big_Integer := Big (10) with Ghost; ------------------ -- Local Lemmas -- ------------------ procedure Lemma_Non_Zero (X : Uns) with Ghost, Pre => X /= 0, Post => Big (X) /= 0; procedure Lemma_Div_Commutation (X, Y : Uns) with Ghost, Pre => Y /= 0, Post => Big (X) / Big (Y) = Big (X / Y); procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive) with Ghost, Post => X / Y / Z = X / (Y * Z); --------------------------- -- Lemma_Div_Commutation -- --------------------------- procedure Lemma_Non_Zero (X : Uns) is null; procedure Lemma_Div_Commutation (X, Y : Uns) is null; --------------------- -- Lemma_Div_Twice -- --------------------- procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive) is XY : constant Big_Natural := X / Y; YZ : constant Big_Natural := Y * Z; XYZ : constant Big_Natural := X / Y / Z; R : constant Big_Natural := (XY rem Z) * Y + (X rem Y); begin pragma Assert (X = XY * Y + (X rem Y)); pragma Assert (XY = XY / Z * Z + (XY rem Z)); pragma Assert (X = XYZ * YZ + R); pragma Assert ((XY rem Z) * Y <= (Z - 1) * Y); pragma Assert (R <= YZ - 1); pragma Assert (X / YZ = (XYZ * YZ + R) / YZ); pragma Assert (X / YZ = XYZ + R / YZ); end Lemma_Div_Twice; ------------------- -- Image_Integer -- ------------------- procedure Image_Integer (V : Int; S : in out String; P : out Natural) is pragma Assert (S'First = 1); procedure Prove_Value_Integer with Ghost, Pre => S'First = 1 and then S'Last < Integer'Last and then P in 2 .. S'Last and then S (1) in ' ' | '-' and then (S (1) = '-') = (V < 0) and then UP.Only_Decimal_Ghost (S, From => 2, To => P) and then UP.Scan_Based_Number_Ghost (S, From => 2, To => P) = UP.Wrap_Option (IP.Abs_Uns_Of_Int (V)), Post => not System.Val_Spec.Only_Space_Ghost (S, 1, P) and then IP.Is_Integer_Ghost (S (1 .. P)) and then IP.Is_Value_Integer_Ghost (S (1 .. P), V); -- Ghost lemma to prove the value of Value_Integer from the value of -- Scan_Based_Number_Ghost and the sign on a decimal string. ------------------------- -- Prove_Value_Integer -- ------------------------- procedure Prove_Value_Integer is Str : constant String := S (1 .. P); begin pragma Assert (Str'First = 1); pragma Assert (Str (2) /= ' '); pragma Assert (UP.Only_Decimal_Ghost (Str, From => 2, To => P)); UP.Prove_Scan_Based_Number_Ghost_Eq (S, Str, From => 2, To => P); pragma Assert (UP.Scan_Based_Number_Ghost (Str, From => 2, To => P) = UP.Wrap_Option (IP.Abs_Uns_Of_Int (V))); IP.Prove_Scan_Only_Decimal_Ghost (Str, V); end Prove_Value_Integer; -- Start of processing for Image_Integer begin if V >= 0 then pragma Annotate (CodePeer, False_Positive, "test always false", "V can be positive"); S (1) := ' '; P := 1; pragma Assert (P < S'Last); else P := 0; pragma Assert (P < S'Last - 1); end if; declare P_Prev : constant Integer := P with Ghost; Offset : constant Positive := (if V >= 0 then 1 else 2) with Ghost; begin Set_Image_Integer (V, S, P); pragma Assert (P_Prev + Offset = 2); end; pragma Assert (if V >= 0 then S (1) = ' '); pragma Assert (S (1) in ' ' | '-'); Prove_Value_Integer; end Image_Integer; ---------------- -- Set_Digits -- ---------------- procedure Set_Digits (T : Non_Positive; S : in out String; P : in out Natural) is Nb_Digits : Natural := 0; Value : Non_Positive := T; -- Local ghost variables Pow : Big_Positive := 1 with Ghost; S_Init : constant String := S with Ghost; Uns_T : constant Uns := Uns_Of_Non_Positive (T) with Ghost; Uns_Value : Uns := Uns_Of_Non_Positive (Value) with Ghost; Prev_Value : Uns with Ghost; Prev_S : String := S with Ghost; -- Local ghost lemmas procedure Prove_Character_Val (RU : Uns; RI : Non_Positive) with Ghost, Post => RU rem 10 in 0 .. 9 and then -(RI rem 10) in 0 .. 9 and then Character'Val (48 + RU rem 10) in '0' .. '9' and then Character'Val (48 - RI rem 10) in '0' .. '9'; -- Ghost lemma to prove the value of a character corresponding to the -- next figure. procedure Prove_Euclidian (Val, Quot, Rest : Uns) with Ghost, Pre => Quot = Val / 10 and then Rest = Val rem 10, Post => Uns'Last - Rest >= 10 * Quot and then Val = 10 * Quot + Rest; -- Ghost lemma to prove the relation between the quotient/remainder of -- division by 10 and the initial value. procedure Prove_Hexa_To_Unsigned_Ghost (RU : Uns; RI : Int) with Ghost, Pre => RU in 0 .. 9 and then RI in 0 .. 9, Post => UP.Hexa_To_Unsigned_Ghost (Character'Val (48 + RU)) = RU and then UP.Hexa_To_Unsigned_Ghost (Character'Val (48 + RI)) = Uns (RI); -- Ghost lemma to prove that Hexa_To_Unsigned_Ghost returns the source -- figure when applied to the corresponding character. procedure Prove_Scan_Iter (S, Prev_S : String; V, Prev_V, Res : Uns; P, Max : Natural) with Ghost, Pre => S'First = Prev_S'First and then S'Last = Prev_S'Last and then S'Last < Natural'Last and then Max in S'Range and then P in S'First .. Max and then (for all I in P + 1 .. Max => Prev_S (I) in '0' .. '9') and then (for all I in P + 1 .. Max => Prev_S (I) = S (I)) and then S (P) in '0' .. '9' and then V <= Uns'Last / 10 and then Uns'Last - UP.Hexa_To_Unsigned_Ghost (S (P)) >= 10 * V and then Prev_V = V * 10 + UP.Hexa_To_Unsigned_Ghost (S (P)) and then (if P = Max then Prev_V = Res else UP.Scan_Based_Number_Ghost (Str => Prev_S, From => P + 1, To => Max, Base => 10, Acc => Prev_V) = UP.Wrap_Option (Res)), Post => (for all I in P .. Max => S (I) in '0' .. '9') and then UP.Scan_Based_Number_Ghost (Str => S, From => P, To => Max, Base => 10, Acc => V) = UP.Wrap_Option (Res); -- Ghost lemma to prove that Scan_Based_Number_Ghost is preserved -- through an iteration of the loop. procedure Prove_Uns_Of_Non_Positive_Value with Ghost, Pre => Uns_Value = Uns_Of_Non_Positive (Value), Post => Uns_Value / 10 = Uns_Of_Non_Positive (Value / 10) and then Uns_Value rem 10 = Uns_Of_Non_Positive (Value rem 10); -- Ghost lemma to prove that the relation between Value and its unsigned -- version is preserved. ----------------------------- -- Local lemma null bodies -- ----------------------------- procedure Prove_Character_Val (RU : Uns; RI : Non_Positive) is null; procedure Prove_Euclidian (Val, Quot, Rest : Uns) is null; procedure Prove_Hexa_To_Unsigned_Ghost (RU : Uns; RI : Int) is null; procedure Prove_Uns_Of_Non_Positive_Value is null; --------------------- -- Prove_Scan_Iter -- --------------------- procedure Prove_Scan_Iter (S, Prev_S : String; V, Prev_V, Res : Uns; P, Max : Natural) is pragma Unreferenced (Res); begin UP.Lemma_Scan_Based_Number_Ghost_Step (Str => S, From => P, To => Max, Base => 10, Acc => V); if P < Max then UP.Prove_Scan_Based_Number_Ghost_Eq (Prev_S, S, P + 1, Max, 10, Prev_V); else UP.Lemma_Scan_Based_Number_Ghost_Base (Str => S, From => P + 1, To => Max, Base => 10, Acc => Prev_V); end if; end Prove_Scan_Iter; -- Start of processing for Set_Digits begin pragma Assert (P >= S'First - 1 and P < S'Last); -- No check is done since, as documented in the Set_Image_Integer -- specification, the caller guarantees that S is long enough to -- hold the result. -- First we compute the number of characters needed for representing -- the number. loop Lemma_Div_Commutation (Uns_Of_Non_Positive (Value), 10); Lemma_Div_Twice (Big (Uns_Of_Non_Positive (T)), Big_10 ** Nb_Digits, Big_10); Prove_Uns_Of_Non_Positive_Value; Value := Value / 10; Nb_Digits := Nb_Digits + 1; Uns_Value := Uns_Value / 10; Pow := Pow * 10; pragma Loop_Invariant (Uns_Value = Uns_Of_Non_Positive (Value)); pragma Loop_Invariant (Nb_Digits in 1 .. Unsigned_Width_Ghost - 1); pragma Loop_Invariant (Pow = Big_10 ** Nb_Digits); pragma Loop_Invariant (Big (Uns_Value) = Big (Uns_T) / Pow); pragma Loop_Variant (Increases => Value); exit when Value = 0; Lemma_Non_Zero (Uns_Value); pragma Assert (Pow <= Big (Uns'Last)); end loop; Value := T; Uns_Value := Uns_Of_Non_Positive (T); Pow := 1; pragma Assert (Uns_Value = From_Big (Big (Uns_T) / Big_10 ** 0)); -- We now populate digits from the end of the string to the beginning for J in reverse 1 .. Nb_Digits loop Lemma_Div_Commutation (Uns_Value, 10); Lemma_Div_Twice (Big (Uns_T), Big_10 ** (Nb_Digits - J), Big_10); Prove_Character_Val (Uns_Value, Value); Prove_Hexa_To_Unsigned_Ghost (Uns_Value rem 10, -(Value rem 10)); Prove_Uns_Of_Non_Positive_Value; Prev_Value := Uns_Value; Prev_S := S; Pow := Pow * 10; Uns_Value := Uns_Value / 10; S (P + J) := Character'Val (48 - (Value rem 10)); Value := Value / 10; Prove_Euclidian (Val => Prev_Value, Quot => Uns_Value, Rest => UP.Hexa_To_Unsigned_Ghost (S (P + J))); Prove_Scan_Iter (S, Prev_S, Uns_Value, Prev_Value, Uns_T, P + J, P + Nb_Digits); pragma Loop_Invariant (Uns_Value = Uns_Of_Non_Positive (Value)); pragma Loop_Invariant (Uns_Value <= Uns'Last / 10); pragma Loop_Invariant (for all K in S'First .. P => S (K) = S_Init (K)); pragma Loop_Invariant (UP.Only_Decimal_Ghost (S, P + J, P + Nb_Digits)); pragma Loop_Invariant (for all K in P + J .. P + Nb_Digits => S (K) in '0' .. '9'); pragma Loop_Invariant (Pow = Big_10 ** (Nb_Digits - J + 1)); pragma Loop_Invariant (Big (Uns_Value) = Big (Uns_T) / Pow); pragma Loop_Invariant (UP.Scan_Based_Number_Ghost (Str => S, From => P + J, To => P + Nb_Digits, Base => 10, Acc => Uns_Value) = UP.Wrap_Option (Uns_T)); end loop; pragma Assert (Big (Uns_Value) = Big (Uns_T) / Big_10 ** (Nb_Digits)); pragma Assert (Uns_Value = 0); pragma Assert (UP.Scan_Based_Number_Ghost (Str => S, From => P + 1, To => P + Nb_Digits, Base => 10, Acc => Uns_Value) = UP.Wrap_Option (Uns_T)); P := P + Nb_Digits; end Set_Digits; ----------------------- -- Set_Image_Integer -- ----------------------- procedure Set_Image_Integer (V : Int; S : in out String; P : in out Natural) is begin if V >= 0 then Set_Digits (-V, S, P); else pragma Assert (P >= S'First - 1 and P < S'Last); -- No check is done since, as documented in the specification, -- the caller guarantees that S is long enough to hold the result. P := P + 1; S (P) := '-'; Set_Digits (V, S, P); end if; end Set_Image_Integer; end System.Image_I;