------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- S Y S T E M . E X N _ L L F -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2018, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ -- Note: the reason for treating exponents in the range 0 .. 4 specially is -- to ensure identical results to the static inline expansion in the case of -- a compile time known exponent in this range. The use of Float'Machine and -- Long_Float'Machine is to avoid unwanted extra precision in the results. -- Note that for a negative exponent in Left ** Right, we compute the result -- as: -- 1.0 / (Left ** (-Right)) -- Note that the case of Left being zero is not special, it will simply result -- in a division by zero at the end, yielding a correctly signed infinity, or -- possibly generating an overflow. -- Note on overflow: This coding assumes that the target generates infinities -- with standard IEEE semantics. If this is not the case, then the code -- for negative exponent may raise Constraint_Error. This follows the -- implementation permission given in RM 4.5.6(12). package body System.Exn_LLF is subtype Negative is Integer range Integer'First .. -1; function Exp (Left : Long_Long_Float; Right : Natural) return Long_Long_Float; -- Common routine used if Right is greater or equal to 5 --------------- -- Exn_Float -- --------------- function Exn_Float (Left : Float; Right : Integer) return Float is Temp : Float; begin case Right is when 0 => return 1.0; when 1 => return Left; when 2 => return Float'Machine (Left * Left); when 3 => return Float'Machine (Left * Left * Left); when 4 => Temp := Float'Machine (Left * Left); return Float'Machine (Temp * Temp); when Negative => return Float'Machine (1.0 / Exn_Float (Left, -Right)); when others => return Float'Machine (Float (Exp (Long_Long_Float (Left), Right))); end case; end Exn_Float; -------------------- -- Exn_Long_Float -- -------------------- function Exn_Long_Float (Left : Long_Float; Right : Integer) return Long_Float is Temp : Long_Float; begin case Right is when 0 => return 1.0; when 1 => return Left; when 2 => return Long_Float'Machine (Left * Left); when 3 => return Long_Float'Machine (Left * Left * Left); when 4 => Temp := Long_Float'Machine (Left * Left); return Long_Float'Machine (Temp * Temp); when Negative => return Long_Float'Machine (1.0 / Exn_Long_Float (Left, -Right)); when others => return Long_Float'Machine (Long_Float (Exp (Long_Long_Float (Left), Right))); end case; end Exn_Long_Float; ------------------------- -- Exn_Long_Long_Float -- ------------------------- function Exn_Long_Long_Float (Left : Long_Long_Float; Right : Integer) return Long_Long_Float is Temp : Long_Long_Float; begin case Right is when 0 => return 1.0; when 1 => return Left; when 2 => return Left * Left; when 3 => return Left * Left * Left; when 4 => Temp := Left * Left; return Temp * Temp; when Negative => return 1.0 / Exn_Long_Long_Float (Left, -Right); when others => return Exp (Left, Right); end case; end Exn_Long_Long_Float; --------- -- Exp -- --------- function Exp (Left : Long_Long_Float; Right : Natural) return Long_Long_Float is Result : Long_Long_Float := 1.0; Factor : Long_Long_Float := Left; Exp : Natural := Right; begin -- We use the standard logarithmic approach, Exp gets shifted right -- testing successive low order bits and Factor is the value of the -- base raised to the next power of 2. If the low order bit or Exp is -- set, multiply the result by this factor. loop if Exp rem 2 /= 0 then Result := Result * Factor; end if; Exp := Exp / 2; exit when Exp = 0; Factor := Factor * Factor; end loop; return Result; end Exp; end System.Exn_LLF;