------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S -- -- -- -- S p e c -- -- -- -- Copyright (C) 1992-2024, Free Software Foundation, Inc. -- -- -- -- This specification is derived from the Ada Reference Manual for use with -- -- GNAT. The copyright notice above, and the license provisions that follow -- -- apply solely to the contents of the part following the private keyword. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ generic type Real is digits <>; package Ada.Numerics.Generic_Complex_Types is pragma Pure; type Complex is record Re, Im : Real'Base; end record; pragma Complex_Representation (Complex); type Imaginary is private; pragma Preelaborable_Initialization (Imaginary); i : constant Imaginary; j : constant Imaginary; function Re (X : Complex) return Real'Base; function Im (X : Complex) return Real'Base; function Im (X : Imaginary) return Real'Base; procedure Set_Re (X : in out Complex; Re : Real'Base); procedure Set_Im (X : in out Complex; Im : Real'Base); procedure Set_Im (X : out Imaginary; Im : Real'Base); function Compose_From_Cartesian (Re, Im : Real'Base) return Complex; function Compose_From_Cartesian (Re : Real'Base) return Complex; function Compose_From_Cartesian (Im : Imaginary) return Complex; function Modulus (X : Complex) return Real'Base; function "abs" (Right : Complex) return Real'Base renames Modulus; function Argument (X : Complex) return Real'Base; function Argument (X : Complex; Cycle : Real'Base) return Real'Base; function Compose_From_Polar ( Modulus, Argument : Real'Base) return Complex; function Compose_From_Polar ( Modulus, Argument, Cycle : Real'Base) return Complex; function "+" (Right : Complex) return Complex; function "-" (Right : Complex) return Complex; function Conjugate (X : Complex) return Complex; function "+" (Left, Right : Complex) return Complex; function "-" (Left, Right : Complex) return Complex; function "*" (Left, Right : Complex) return Complex; function "/" (Left, Right : Complex) return Complex; function "**" (Left : Complex; Right : Integer) return Complex; function "+" (Right : Imaginary) return Imaginary; function "-" (Right : Imaginary) return Imaginary; function Conjugate (X : Imaginary) return Imaginary renames "-"; function "abs" (Right : Imaginary) return Real'Base; function "+" (Left, Right : Imaginary) return Imaginary; function "-" (Left, Right : Imaginary) return Imaginary; function "*" (Left, Right : Imaginary) return Real'Base; function "/" (Left, Right : Imaginary) return Real'Base; function "**" (Left : Imaginary; Right : Integer) return Complex; function "<" (Left, Right : Imaginary) return Boolean; function "<=" (Left, Right : Imaginary) return Boolean; function ">" (Left, Right : Imaginary) return Boolean; function ">=" (Left, Right : Imaginary) return Boolean; function "+" (Left : Complex; Right : Real'Base) return Complex; function "+" (Left : Real'Base; Right : Complex) return Complex; function "-" (Left : Complex; Right : Real'Base) return Complex; function "-" (Left : Real'Base; Right : Complex) return Complex; function "*" (Left : Complex; Right : Real'Base) return Complex; function "*" (Left : Real'Base; Right : Complex) return Complex; function "/" (Left : Complex; Right : Real'Base) return Complex; function "/" (Left : Real'Base; Right : Complex) return Complex; function "+" (Left : Complex; Right : Imaginary) return Complex; function "+" (Left : Imaginary; Right : Complex) return Complex; function "-" (Left : Complex; Right : Imaginary) return Complex; function "-" (Left : Imaginary; Right : Complex) return Complex; function "*" (Left : Complex; Right : Imaginary) return Complex; function "*" (Left : Imaginary; Right : Complex) return Complex; function "/" (Left : Complex; Right : Imaginary) return Complex; function "/" (Left : Imaginary; Right : Complex) return Complex; function "+" (Left : Imaginary; Right : Real'Base) return Complex; function "+" (Left : Real'Base; Right : Imaginary) return Complex; function "-" (Left : Imaginary; Right : Real'Base) return Complex; function "-" (Left : Real'Base; Right : Imaginary) return Complex; function "*" (Left : Imaginary; Right : Real'Base) return Imaginary; function "*" (Left : Real'Base; Right : Imaginary) return Imaginary; function "/" (Left : Imaginary; Right : Real'Base) return Imaginary; function "/" (Left : Real'Base; Right : Imaginary) return Imaginary; private type Imaginary is new Real'Base; i : constant Imaginary := 1.0; j : constant Imaginary := 1.0; pragma Inline ("+"); pragma Inline ("-"); pragma Inline ("*"); pragma Inline ("<"); pragma Inline ("<="); pragma Inline (">"); pragma Inline (">="); pragma Inline ("abs"); pragma Inline (Compose_From_Cartesian); pragma Inline (Conjugate); pragma Inline (Im); pragma Inline (Re); pragma Inline (Set_Im); pragma Inline (Set_Re); end Ada.Numerics.Generic_Complex_Types;