------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- ADA.CONTAINERS.INDEFINITE_ORDERED_SETS -- -- -- -- B o d y -- -- -- -- Copyright (C) 2004-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------ with Ada.Containers.Helpers; use Ada.Containers.Helpers; with Ada.Containers.Red_Black_Trees.Generic_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations); with Ada.Containers.Red_Black_Trees.Generic_Keys; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys); with Ada.Containers.Red_Black_Trees.Generic_Set_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations); with Ada.Unchecked_Deallocation; with System; use type System.Address; with System.Put_Images; package body Ada.Containers.Indefinite_Ordered_Sets with SPARK_Mode => Off is pragma Warnings (Off, "variable ""Busy*"" is not referenced"); pragma Warnings (Off, "variable ""Lock*"" is not referenced"); -- See comment in Ada.Containers.Helpers ----------------------- -- Local Subprograms -- ----------------------- function Color (Node : Node_Access) return Color_Type; pragma Inline (Color); function Copy_Node (Source : Node_Access) return Node_Access; pragma Inline (Copy_Node); procedure Free (X : in out Node_Access); procedure Insert_Sans_Hint (Tree : in out Tree_Type; New_Item : Element_Type; Node : out Node_Access; Inserted : out Boolean); procedure Insert_With_Hint (Dst_Tree : in out Tree_Type; Dst_Hint : Node_Access; Src_Node : Node_Access; Dst_Node : out Node_Access); function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Greater_Element_Node); function Is_Less_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Less_Element_Node); function Is_Less_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Less_Node_Node); function Left (Node : Node_Access) return Node_Access; pragma Inline (Left); function Parent (Node : Node_Access) return Node_Access; pragma Inline (Parent); procedure Replace_Element (Tree : in out Tree_Type; Node : Node_Access; Item : Element_Type); function Right (Node : Node_Access) return Node_Access; pragma Inline (Right); procedure Set_Color (Node : Node_Access; Color : Color_Type); pragma Inline (Set_Color); procedure Set_Left (Node : Node_Access; Left : Node_Access); pragma Inline (Set_Left); procedure Set_Parent (Node : Node_Access; Parent : Node_Access); pragma Inline (Set_Parent); procedure Set_Right (Node : Node_Access; Right : Node_Access); pragma Inline (Set_Right); -------------------------- -- Local Instantiations -- -------------------------- procedure Free_Element is new Ada.Unchecked_Deallocation (Element_Type, Element_Access); package Tree_Operations is new Red_Black_Trees.Generic_Operations (Tree_Types); procedure Delete_Tree is new Tree_Operations.Generic_Delete_Tree (Free); function Copy_Tree is new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree); use Tree_Operations; package Element_Keys is new Red_Black_Trees.Generic_Keys (Tree_Operations => Tree_Operations, Key_Type => Element_Type, Is_Less_Key_Node => Is_Less_Element_Node, Is_Greater_Key_Node => Is_Greater_Element_Node); package Set_Ops is new Generic_Set_Operations (Tree_Operations => Tree_Operations, Insert_With_Hint => Insert_With_Hint, Copy_Tree => Copy_Tree, Delete_Tree => Delete_Tree, Is_Less => Is_Less_Node_Node, Free => Free); --------- -- "<" -- --------- function "<" (Left, Right : Cursor) return Boolean is begin if Checks and then Left.Node = null then raise Constraint_Error with "Left cursor equals No_Element"; end if; if Checks and then Right.Node = null then raise Constraint_Error with "Right cursor equals No_Element"; end if; if Checks and then Left.Node.Element = null then raise Program_Error with "Left cursor is bad"; end if; if Checks and then Right.Node.Element = null then raise Program_Error with "Right cursor is bad"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "bad Left cursor in ""<"""); pragma Assert (Vet (Right.Container.Tree, Right.Node), "bad Right cursor in ""<"""); return Left.Node.Element.all < Right.Node.Element.all; end "<"; function "<" (Left : Cursor; Right : Element_Type) return Boolean is begin if Checks and then Left.Node = null then raise Constraint_Error with "Left cursor equals No_Element"; end if; if Checks and then Left.Node.Element = null then raise Program_Error with "Left cursor is bad"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "bad Left cursor in ""<"""); return Left.Node.Element.all < Right; end "<"; function "<" (Left : Element_Type; Right : Cursor) return Boolean is begin if Checks and then Right.Node = null then raise Constraint_Error with "Right cursor equals No_Element"; end if; if Checks and then Right.Node.Element = null then raise Program_Error with "Right cursor is bad"; end if; pragma Assert (Vet (Right.Container.Tree, Right.Node), "bad Right cursor in ""<"""); return Left < Right.Node.Element.all; end "<"; --------- -- "=" -- --------- function "=" (Left, Right : Set) return Boolean is function Is_Equal_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Equal_Node_Node); function Is_Equal is new Tree_Operations.Generic_Equal (Is_Equal_Node_Node); ------------------------ -- Is_Equal_Node_Node -- ------------------------ function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is begin return L.Element.all = R.Element.all; end Is_Equal_Node_Node; -- Start of processing for "=" begin return Is_Equal (Left.Tree, Right.Tree); end "="; --------- -- ">" -- --------- function ">" (Left, Right : Cursor) return Boolean is begin if Checks and then Left.Node = null then raise Constraint_Error with "Left cursor equals No_Element"; end if; if Checks and then Right.Node = null then raise Constraint_Error with "Right cursor equals No_Element"; end if; if Checks and then Left.Node.Element = null then raise Program_Error with "Left cursor is bad"; end if; if Checks and then Right.Node.Element = null then raise Program_Error with "Right cursor is bad"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "bad Left cursor in "">"""); pragma Assert (Vet (Right.Container.Tree, Right.Node), "bad Right cursor in "">"""); -- L > R same as R < L return Right.Node.Element.all < Left.Node.Element.all; end ">"; function ">" (Left : Cursor; Right : Element_Type) return Boolean is begin if Checks and then Left.Node = null then raise Constraint_Error with "Left cursor equals No_Element"; end if; if Checks and then Left.Node.Element = null then raise Program_Error with "Left cursor is bad"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "bad Left cursor in "">"""); return Right < Left.Node.Element.all; end ">"; function ">" (Left : Element_Type; Right : Cursor) return Boolean is begin if Checks and then Right.Node = null then raise Constraint_Error with "Right cursor equals No_Element"; end if; if Checks and then Right.Node.Element = null then raise Program_Error with "Right cursor is bad"; end if; pragma Assert (Vet (Right.Container.Tree, Right.Node), "bad Right cursor in "">"""); return Right.Node.Element.all < Left; end ">"; ------------ -- Adjust -- ------------ procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree); procedure Adjust (Container : in out Set) is begin Adjust (Container.Tree); end Adjust; ------------ -- Assign -- ------------ procedure Assign (Target : in out Set; Source : Set) is begin if Target'Address = Source'Address then return; end if; Target.Clear; Target.Union (Source); end Assign; ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Ceiling (Container.Tree, Item); begin return (if Node = null then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Ceiling; ----------- -- Clear -- ----------- procedure Clear is new Tree_Operations.Generic_Clear (Delete_Tree); procedure Clear (Container : in out Set) is begin Clear (Container.Tree); end Clear; ----------- -- Color -- ----------- function Color (Node : Node_Access) return Color_Type is begin return Node.Color; end Color; ------------------------ -- Constant_Reference -- ------------------------ function Constant_Reference (Container : aliased Set; Position : Cursor) return Constant_Reference_Type is begin if Checks and then Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong container"; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Node has no element"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "bad cursor in Constant_Reference"); declare Tree : Tree_Type renames Position.Container.all.Tree; TC : constant Tamper_Counts_Access := Tree.TC'Unrestricted_Access; begin return R : constant Constant_Reference_Type := (Element => Position.Node.Element.all'Access, Control => (Controlled with TC)) do Busy (TC.all); end return; end; end Constant_Reference; -------------- -- Contains -- -------------- function Contains (Container : Set; Item : Element_Type) return Boolean is begin return Find (Container, Item) /= No_Element; end Contains; ---------- -- Copy -- ---------- function Copy (Source : Set) return Set is begin return Target : Set do Target.Assign (Source); end return; end Copy; --------------- -- Copy_Node -- --------------- function Copy_Node (Source : Node_Access) return Node_Access is Element : Element_Access := new Element_Type'(Source.Element.all); begin return new Node_Type'(Parent => null, Left => null, Right => null, Color => Source.Color, Element => Element); exception when others => Free_Element (Element); raise; end Copy_Node; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Position : in out Cursor) is begin if Checks and then Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Position cursor is bad"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "bad cursor in Delete"); Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node); Free (Position.Node); Position.Container := null; end Delete; procedure Delete (Container : in out Set; Item : Element_Type) is X : Node_Access := Element_Keys.Find (Container.Tree, Item); begin if Checks and then X = null then raise Constraint_Error with "attempt to delete element not in set"; end if; Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Set) is Tree : Tree_Type renames Container.Tree; X : Node_Access := Tree.First; begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end if; end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Set) is Tree : Tree_Type renames Container.Tree; X : Node_Access := Tree.Last; begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end if; end Delete_Last; ---------------- -- Difference -- ---------------- procedure Difference (Target : in out Set; Source : Set) is begin Set_Ops.Difference (Target.Tree, Source.Tree); end Difference; function Difference (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Difference (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Difference; ------------- -- Element -- ------------- function Element (Position : Cursor) return Element_Type is begin if Checks and then Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Position cursor is bad"; end if; if Checks and then (Left (Position.Node) = Position.Node or else Right (Position.Node) = Position.Node) then raise Program_Error with "dangling cursor"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Element"); return Position.Node.Element.all; end Element; ------------------------- -- Equivalent_Elements -- ------------------------- function Equivalent_Elements (Left, Right : Element_Type) return Boolean is begin if Left < Right or else Right < Left then return False; else return True; end if; end Equivalent_Elements; --------------------- -- Equivalent_Sets -- --------------------- function Equivalent_Sets (Left, Right : Set) return Boolean is function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Equivalent_Node_Node); function Is_Equivalent is new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node); ----------------------------- -- Is_Equivalent_Node_Node -- ----------------------------- function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is begin if L.Element.all < R.Element.all then return False; elsif R.Element.all < L.Element.all then return False; else return True; end if; end Is_Equivalent_Node_Node; -- Start of processing for Equivalent_Sets begin return Is_Equivalent (Left.Tree, Right.Tree); end Equivalent_Sets; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Item : Element_Type) is X : Node_Access := Element_Keys.Find (Container.Tree, Item); begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end if; end Exclude; -------------- -- Finalize -- -------------- procedure Finalize (Object : in out Iterator) is begin if Object.Container /= null then Unbusy (Object.Container.Tree.TC); end if; end Finalize; ---------- -- Find -- ---------- function Find (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Find (Container.Tree, Item); begin if Node = null then return No_Element; else return Cursor'(Container'Unrestricted_Access, Node); end if; end Find; ----------- -- First -- ----------- function First (Container : Set) return Cursor is begin return (if Container.Tree.First = null then No_Element else Cursor'(Container'Unrestricted_Access, Container.Tree.First)); end First; function First (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the First (and Last) selector function. -- When the Node component is null, this means the iterator object was -- constructed without a start expression, in which case the (forward) -- iteration starts from the (logical) beginning of the entire sequence -- of items (corresponding to Container.First, for a forward iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is non-null, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (forward) partial iteration begins. if Object.Node = null then return Object.Container.First; else return Cursor'(Object.Container, Object.Node); end if; end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Set) return Element_Type is begin if Checks and then Container.Tree.First = null then raise Constraint_Error with "set is empty"; end if; return Container.Tree.First.Element.all; end First_Element; ----------- -- Floor -- ----------- function Floor (Container : Set; Item : Element_Type) return Cursor is Node : constant Node_Access := Element_Keys.Floor (Container.Tree, Item); begin return (if Node = null then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Floor; ---------- -- Free -- ---------- procedure Free (X : in out Node_Access) is procedure Deallocate is new Ada.Unchecked_Deallocation (Node_Type, Node_Access); begin if X = null then return; end if; X.Parent := X; X.Left := X; X.Right := X; begin Free_Element (X.Element); exception when others => X.Element := null; Deallocate (X); raise; end; Deallocate (X); end Free; -- Ada 2022 features: function Has_Element (Container : Set; Position : Cursor) return Boolean is begin pragma Assert (Vet (Container.Tree, Position.Node), "bad cursor in Has_Element"); pragma Assert ((Position.Container = null) = (Position.Node = null), "bad nullity in Has_Element"); return Position.Container = Container'Unrestricted_Access; end Has_Element; function Tampering_With_Cursors_Prohibited (Container : Set) return Boolean is begin return Is_Busy (Container.Tree.TC); end Tampering_With_Cursors_Prohibited; function Element (Container : Set; Position : Cursor) return Element_Type is begin if Checks and then not Has_Element (Container, Position) then raise Program_Error with "Position for wrong Container"; end if; return Element (Position); end Element; procedure Query_Element (Container : Set; Position : Cursor; Process : not null access procedure (Element : Element_Type)) is begin if Checks and then not Has_Element (Container, Position) then raise Program_Error with "Position for wrong Container"; end if; Query_Element (Position, Process); end Query_Element; function Next (Container : Set; Position : Cursor) return Cursor is begin if Checks and then not (Position = No_Element or else Has_Element (Container, Position)) then raise Program_Error with "Position for wrong Container"; end if; return Next (Position); end Next; procedure Next (Container : Set; Position : in out Cursor) is begin Position := Next (Container, Position); end Next; ------------------ -- Generic_Keys -- ------------------ package body Generic_Keys is ----------------------- -- Local Subprograms -- ----------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Greater_Key_Node); function Is_Less_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Less_Key_Node); -------------------------- -- Local Instantiations -- -------------------------- package Key_Keys is new Red_Black_Trees.Generic_Keys (Tree_Operations => Tree_Operations, Key_Type => Key_Type, Is_Less_Key_Node => Is_Less_Key_Node, Is_Greater_Key_Node => Is_Greater_Key_Node); ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Ceiling (Container.Tree, Key); begin return (if Node = null then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Ceiling; ------------------------ -- Constant_Reference -- ------------------------ function Constant_Reference (Container : aliased Set; Key : Key_Type) return Constant_Reference_Type is Position : constant Cursor := Find (Container, Key); begin if Checks and then Position = No_Element then raise Constraint_Error with "Key not in set"; end if; return Constant_Reference (Container, Position); end Constant_Reference; -------------- -- Contains -- -------------- function Contains (Container : Set; Key : Key_Type) return Boolean is begin return Find (Container, Key) /= No_Element; end Contains; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Key : Key_Type) is X : Node_Access := Key_Keys.Find (Container.Tree, Key); begin if Checks and then X = null then raise Constraint_Error with "attempt to delete key not in set"; end if; Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end Delete; ------------- -- Element -- ------------- function Element (Container : Set; Key : Key_Type) return Element_Type is Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); begin if Checks and then Node = null then raise Constraint_Error with "key not in set"; end if; return Node.Element.all; end Element; --------------------- -- Equivalent_Keys -- --------------------- function Equivalent_Keys (Left, Right : Key_Type) return Boolean is begin if Left < Right or else Right < Left then return False; else return True; end if; end Equivalent_Keys; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Key : Key_Type) is X : Node_Access := Key_Keys.Find (Container.Tree, Key); begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end if; end Exclude; -------------- -- Finalize -- -------------- procedure Finalize (Control : in out Reference_Control_Type) is begin if Control.Container /= null then Impl.Reference_Control_Type (Control).Finalize; if Checks and then not (Key (Control.Pos) = Control.Old_Key.all) then Delete (Control.Container.all, Key (Control.Pos)); raise Program_Error; end if; Control.Container := null; Control.Old_Key := null; end if; end Finalize; ---------- -- Find -- ---------- function Find (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); begin return (if Node = null then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Find; ----------- -- Floor -- ----------- function Floor (Container : Set; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key); begin return (if Node = null then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Floor; ------------------------- -- Is_Greater_Key_Node -- ------------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean is begin return Key (Right.Element.all) < Left; end Is_Greater_Key_Node; ---------------------- -- Is_Less_Key_Node -- ---------------------- function Is_Less_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean is begin return Left < Key (Right.Element.all); end Is_Less_Key_Node; --------- -- Key -- --------- function Key (Position : Cursor) return Key_Type is begin if Checks and then Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Position cursor is bad"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Key"); return Key (Position.Node.Element.all); end Key; ------------- -- Replace -- ------------- procedure Replace (Container : in out Set; Key : Key_Type; New_Item : Element_Type) is Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key); begin if Checks and then Node = null then raise Constraint_Error with "attempt to replace key not in set"; end if; Replace_Element (Container.Tree, Node, New_Item); end Replace; ---------- -- Read -- ---------- procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; ------------------------------ -- Reference_Preserving_Key -- ------------------------------ function Reference_Preserving_Key (Container : aliased in out Set; Position : Cursor) return Reference_Type is begin if Checks and then Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong container"; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Node has no element"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "bad cursor in function Reference_Preserving_Key"); declare Tree : Tree_Type renames Container.Tree; begin return R : constant Reference_Type := (Element => Position.Node.Element.all'Unchecked_Access, Control => (Controlled with Tree.TC'Unrestricted_Access, Container => Container'Unchecked_Access, Pos => Position, Old_Key => new Key_Type'(Key (Position)))) do Busy (Tree.TC); end return; end; end Reference_Preserving_Key; function Reference_Preserving_Key (Container : aliased in out Set; Key : Key_Type) return Reference_Type is Position : constant Cursor := Find (Container, Key); begin if Checks and then Position = No_Element then raise Constraint_Error with "Key not in set"; end if; return Reference_Preserving_Key (Container, Position); end Reference_Preserving_Key; ----------------------------------- -- Update_Element_Preserving_Key -- ----------------------------------- procedure Update_Element_Preserving_Key (Container : in out Set; Position : Cursor; Process : not null access procedure (Element : in out Element_Type)) is Tree : Tree_Type renames Container.Tree; begin if Checks and then Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Position cursor is bad"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "bad cursor in Update_Element_Preserving_Key"); declare E : Element_Type renames Position.Node.Element.all; K : constant Key_Type := Key (E); Lock : With_Lock (Tree.TC'Unrestricted_Access); begin Process (E); if Equivalent_Keys (K, Key (E)) then return; end if; end; declare X : Node_Access := Position.Node; begin Tree_Operations.Delete_Node_Sans_Free (Tree, X); Free (X); end; raise Program_Error with "key was modified"; end Update_Element_Preserving_Key; ----------- -- Write -- ----------- procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; end Generic_Keys; ------------------------ -- Get_Element_Access -- ------------------------ function Get_Element_Access (Position : Cursor) return not null Element_Access is begin return Position.Node.Element; end Get_Element_Access; ----------------- -- Has_Element -- ----------------- function Has_Element (Position : Cursor) return Boolean is begin return Position /= No_Element; end Has_Element; ------------- -- Include -- ------------- procedure Include (Container : in out Set; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; X : Element_Access; begin Insert (Container, New_Item, Position, Inserted); if not Inserted then TE_Check (Container.Tree.TC); declare -- The element allocator may need an accessibility check in the -- case the actual type is class-wide or has access discriminants -- (see RM 4.8(10.1) and AI12-0035). pragma Unsuppress (Accessibility_Check); begin X := Position.Node.Element; Position.Node.Element := new Element_Type'(New_Item); Free_Element (X); end; end if; end Include; ------------ -- Insert -- ------------ procedure Insert (Container : in out Set; New_Item : Element_Type; Position : out Cursor; Inserted : out Boolean) is begin Insert_Sans_Hint (Container.Tree, New_Item, Position.Node, Inserted); Position.Container := Container'Unrestricted_Access; end Insert; procedure Insert (Container : in out Set; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; begin Insert (Container, New_Item, Position, Inserted); if Checks and then not Inserted then raise Constraint_Error with "attempt to insert element already in set"; end if; end Insert; ---------------------- -- Insert_Sans_Hint -- ---------------------- procedure Insert_Sans_Hint (Tree : in out Tree_Type; New_Item : Element_Type; Node : out Node_Access; Inserted : out Boolean) is function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Conditional_Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is -- The element allocator may need an accessibility check in the case -- the actual type is class-wide or has access discriminants (see -- RM 4.8(10.1) and AI12-0035). pragma Unsuppress (Accessibility_Check); Element : Element_Access := new Element_Type'(New_Item); begin return new Node_Type'(Parent => null, Left => null, Right => null, Color => Red_Black_Trees.Red, Element => Element); exception when others => Free_Element (Element); raise; end New_Node; -- Start of processing for Insert_Sans_Hint begin Conditional_Insert_Sans_Hint (Tree, New_Item, Node, Inserted); end Insert_Sans_Hint; ---------------------- -- Insert_With_Hint -- ---------------------- procedure Insert_With_Hint (Dst_Tree : in out Tree_Type; Dst_Hint : Node_Access; Src_Node : Node_Access; Dst_Node : out Node_Access) is Success : Boolean; function New_Node return Node_Access; procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Insert_Post); procedure Insert_With_Hint is new Element_Keys.Generic_Conditional_Insert_With_Hint (Insert_Post, Insert_Sans_Hint); -------------- -- New_Node -- -------------- function New_Node return Node_Access is Element : Element_Access := new Element_Type'(Src_Node.Element.all); Node : Node_Access; begin begin Node := new Node_Type; exception when others => Free_Element (Element); raise; end; Node.Element := Element; return Node; end New_Node; -- Start of processing for Insert_With_Hint begin Insert_With_Hint (Dst_Tree, Dst_Hint, Src_Node.Element.all, Dst_Node, Success); end Insert_With_Hint; ------------------ -- Intersection -- ------------------ procedure Intersection (Target : in out Set; Source : Set) is begin Set_Ops.Intersection (Target.Tree, Source.Tree); end Intersection; function Intersection (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Intersection (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Intersection; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Set) return Boolean is begin return Container.Tree.Length = 0; end Is_Empty; ----------------------------- -- Is_Greater_Element_Node -- ----------------------------- function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean is begin -- e > node same as node < e return Right.Element.all < Left; end Is_Greater_Element_Node; -------------------------- -- Is_Less_Element_Node -- -------------------------- function Is_Less_Element_Node (Left : Element_Type; Right : Node_Access) return Boolean is begin return Left < Right.Element.all; end Is_Less_Element_Node; ----------------------- -- Is_Less_Node_Node -- ----------------------- function Is_Less_Node_Node (L, R : Node_Access) return Boolean is begin return L.Element.all < R.Element.all; end Is_Less_Node_Node; --------------- -- Is_Subset -- --------------- function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is begin return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree); end Is_Subset; ------------- -- Iterate -- ------------- procedure Iterate (Container : Set; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Iterate is new Tree_Operations.Generic_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container'Unrestricted_Access.all.Tree; Busy : With_Busy (T.TC'Unrestricted_Access); -- Start of processing for Iterate begin Local_Iterate (T); end Iterate; function Iterate (Container : Set) return Set_Iterator_Interfaces.Reversible_Iterator'class is begin -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is null (as is the case here), this means the iterator -- object was constructed without a start expression. This is a complete -- iterator, meaning that the iteration starts from the (logical) -- beginning of the sequence of items. -- Note: For a forward iterator, Container.First is the beginning, and -- for a reverse iterator, Container.Last is the beginning. return It : constant Iterator := Iterator'(Limited_Controlled with Container => Container'Unrestricted_Access, Node => null) do Busy (Container.Tree.TC'Unrestricted_Access.all); end return; end Iterate; function Iterate (Container : Set; Start : Cursor) return Set_Iterator_Interfaces.Reversible_Iterator'class is begin -- It was formerly the case that when Start = No_Element, the partial -- iterator was defined to behave the same as for a complete iterator, -- and iterate over the entire sequence of items. However, those -- semantics were unintuitive and arguably error-prone (it is too easy -- to accidentally create an endless loop), and so they were changed, -- per the ARG meeting in Denver on 2011/11. However, there was no -- consensus about what positive meaning this corner case should have, -- and so it was decided to simply raise an exception. This does imply, -- however, that it is not possible to use a partial iterator to specify -- an empty sequence of items. if Checks and then Start = No_Element then raise Constraint_Error with "Start position for iterator equals No_Element"; end if; if Checks and then Start.Container /= Container'Unrestricted_Access then raise Program_Error with "Start cursor of Iterate designates wrong set"; end if; pragma Assert (Vet (Container.Tree, Start.Node), "Start cursor of Iterate is bad"); -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is non-null (as is the case here), it means that this is a -- partial iteration, over a subset of the complete sequence of -- items. The iterator object was constructed with a start expression, -- indicating the position from which the iteration begins. Note that -- the start position has the same value irrespective of whether this is -- a forward or reverse iteration. return It : constant Iterator := (Limited_Controlled with Container => Container'Unrestricted_Access, Node => Start.Node) do Busy (Container.Tree.TC'Unrestricted_Access.all); end return; end Iterate; ---------- -- Last -- ---------- function Last (Container : Set) return Cursor is begin return (if Container.Tree.Last = null then No_Element else Cursor'(Container'Unrestricted_Access, Container.Tree.Last)); end Last; function Last (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the Last (and First) selector function. -- When the Node component is null, this means the iterator object was -- constructed without a start expression, in which case the (reverse) -- iteration starts from the (logical) beginning of the entire sequence -- (corresponding to Container.Last, for a reverse iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is non-null, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (reverse) partial iteration begins. if Object.Node = null then return Object.Container.Last; else return Cursor'(Object.Container, Object.Node); end if; end Last; ------------------ -- Last_Element -- ------------------ function Last_Element (Container : Set) return Element_Type is begin if Checks and then Container.Tree.Last = null then raise Constraint_Error with "set is empty"; end if; return Container.Tree.Last.Element.all; end Last_Element; ---------- -- Left -- ---------- function Left (Node : Node_Access) return Node_Access is begin return Node.Left; end Left; ------------ -- Length -- ------------ function Length (Container : Set) return Count_Type is begin return Container.Tree.Length; end Length; ---------- -- Move -- ---------- procedure Move is new Tree_Operations.Generic_Move (Clear); procedure Move (Target : in out Set; Source : in out Set) is begin Move (Target => Target.Tree, Source => Source.Tree); end Move; ---------- -- Next -- ---------- procedure Next (Position : in out Cursor) is begin Position := Next (Position); end Next; function Next (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Position cursor is bad"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Next"); declare Node : constant Node_Access := Tree_Operations.Next (Position.Node); begin return (if Node = null then No_Element else Cursor'(Position.Container, Node)); end; end Next; function Next (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Checks and then Position.Container /= Object.Container then raise Program_Error with "Position cursor of Next designates wrong set"; end if; return Next (Position); end Next; ------------- -- Overlap -- ------------- function Overlap (Left, Right : Set) return Boolean is begin return Set_Ops.Overlap (Left.Tree, Right.Tree); end Overlap; ------------ -- Parent -- ------------ function Parent (Node : Node_Access) return Node_Access is begin return Node.Parent; end Parent; -------------- -- Previous -- -------------- procedure Previous (Position : in out Cursor) is begin Position := Previous (Position); end Previous; function Previous (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Position cursor is bad"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Previous"); declare Node : constant Node_Access := Tree_Operations.Previous (Position.Node); begin return (if Node = null then No_Element else Cursor'(Position.Container, Node)); end; end Previous; function Previous (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Checks and then Position.Container /= Object.Container then raise Program_Error with "Position cursor of Previous designates wrong set"; end if; return Previous (Position); end Previous; ---------------------- -- Pseudo_Reference -- ---------------------- function Pseudo_Reference (Container : aliased Set'Class) return Reference_Control_Type is TC : constant Tamper_Counts_Access := Container.Tree.TC'Unrestricted_Access; begin return R : constant Reference_Control_Type := (Controlled with TC) do Busy (TC.all); end return; end Pseudo_Reference; ------------------- -- Query_Element -- ------------------- procedure Query_Element (Position : Cursor; Process : not null access procedure (Element : Element_Type)) is begin if Checks and then Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Position cursor is bad"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "bad cursor in Query_Element"); declare T : Tree_Type renames Position.Container.Tree; Lock : With_Lock (T.TC'Unrestricted_Access); begin Process (Position.Node.Element.all); end; end Query_Element; --------------- -- Put_Image -- --------------- procedure Put_Image (S : in out Ada.Strings.Text_Buffers.Root_Buffer_Type'Class; V : Set) is First_Time : Boolean := True; use System.Put_Images; begin Array_Before (S); for X of V loop if First_Time then First_Time := False; else Simple_Array_Between (S); end if; Element_Type'Put_Image (S, X); end loop; Array_After (S); end Put_Image; ---------- -- Read -- ---------- procedure Read (Stream : not null access Root_Stream_Type'Class; Container : out Set) is function Read_Node (Stream : not null access Root_Stream_Type'Class) return Node_Access; pragma Inline (Read_Node); procedure Read is new Tree_Operations.Generic_Read (Clear, Read_Node); --------------- -- Read_Node -- --------------- function Read_Node (Stream : not null access Root_Stream_Type'Class) return Node_Access is Node : Node_Access := new Node_Type; begin Node.Element := new Element_Type'(Element_Type'Input (Stream)); return Node; exception when others => Free (Node); -- Note that Free deallocates elem too raise; end Read_Node; -- Start of processing for Read begin Read (Stream, Container.Tree); end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Cursor) is begin raise Program_Error with "attempt to stream set cursor"; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; ------------- -- Replace -- ------------- procedure Replace (Container : in out Set; New_Item : Element_Type) is Node : constant Node_Access := Element_Keys.Find (Container.Tree, New_Item); X : Element_Access; pragma Warnings (Off, X); begin TE_Check (Container.Tree.TC); if Checks and then Node = null then raise Constraint_Error with "attempt to replace element not in set"; end if; declare -- The element allocator may need an accessibility check in the case -- the actual type is class-wide or has access discriminants (see -- RM 4.8(10.1) and AI12-0035). pragma Unsuppress (Accessibility_Check); begin X := Node.Element; Node.Element := new Element_Type'(New_Item); Free_Element (X); end; end Replace; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Tree : in out Tree_Type; Node : Node_Access; Item : Element_Type) is pragma Assert (Node /= null); pragma Assert (Node.Element /= null); function New_Node return Node_Access; pragma Inline (New_Node); procedure Local_Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Local_Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post); procedure Local_Insert_With_Hint is new Element_Keys.Generic_Conditional_Insert_With_Hint (Local_Insert_Post, Local_Insert_Sans_Hint); -------------- -- New_Node -- -------------- function New_Node return Node_Access is -- The element allocator may need an accessibility check in the case -- the actual type is class-wide or has access discriminants (see -- RM 4.8(10.1) and AI12-0035). pragma Unsuppress (Accessibility_Check); begin Node.Element := new Element_Type'(Item); -- OK if fails Node.Color := Red; Node.Parent := null; Node.Right := null; Node.Left := null; return Node; end New_Node; Hint : Node_Access; Result : Node_Access; Inserted : Boolean; Compare : Boolean; X : Element_Access := Node.Element; -- Start of processing for Replace_Element begin -- Replace_Element assigns value Item to the element designated by Node, -- per certain semantic constraints, described as follows. -- If Item is equivalent to the element, then element is replaced and -- there's nothing else to do. This is the easy case. -- If Item is not equivalent, then the node will (possibly) have to move -- to some other place in the tree. This is slighly more complicated, -- because we must ensure that Item is not equivalent to some other -- element in the tree (in which case, the replacement is not allowed). -- Determine whether Item is equivalent to element on the specified -- node. declare Lock : With_Lock (Tree.TC'Unrestricted_Access); begin Compare := (if Item < Node.Element.all then False elsif Node.Element.all < Item then False else True); end; if Compare then -- Item is equivalent to the node's element, so we will not have to -- move the node. TE_Check (Tree.TC); declare -- The element allocator may need an accessibility check in the -- case the actual type is class-wide or has access discriminants -- (see RM 4.8(10.1) and AI12-0035). pragma Unsuppress (Accessibility_Check); begin Node.Element := new Element_Type'(Item); Free_Element (X); end; return; end if; -- The replacement Item is not equivalent to the element on the -- specified node, which means that it will need to be re-inserted in a -- different position in the tree. We must now determine whether Item is -- equivalent to some other element in the tree (which would prohibit -- the assignment and hence the move). -- Ceiling returns the smallest element equivalent or greater than the -- specified Item; if there is no such element, then it returns null. Hint := Element_Keys.Ceiling (Tree, Item); if Hint /= null then declare Lock : With_Lock (Tree.TC'Unrestricted_Access); begin Compare := Item < Hint.Element.all; end; -- Item >= Hint.Element if Checks and then not Compare then -- Ceiling returns an element that is equivalent or greater -- than Item. If Item is "not less than" the element, then -- by elimination we know that Item is equivalent to the element. -- But this means that it is not possible to assign the value of -- Item to the specified element (on Node), because a different -- element (on Hint) equivalent to Item already exsits. (Were we -- to change Node's element value, we would have to move Node, but -- we would be unable to move the Node, because its new position -- in the tree is already occupied by an equivalent element.) raise Program_Error with "attempt to replace existing element"; end if; -- Item is not equivalent to any other element in the tree, so it is -- safe to assign the value of Item to Node.Element. This means that -- the node will have to move to a different position in the tree -- (because its element will have a different value). -- The nearest (greater) neighbor of Item is Hint. This will be the -- insertion position of Node (because its element will have Item as -- its new value). -- If Node equals Hint, the relative position of Node does not -- change. This allows us to perform an optimization: we need not -- remove Node from the tree and then reinsert it with its new value, -- because it would only be placed in the exact same position. if Hint = Node then TE_Check (Tree.TC); declare -- The element allocator may need an accessibility check in the -- case actual type is class-wide or has access discriminants -- (see RM 4.8(10.1) and AI12-0035). pragma Unsuppress (Accessibility_Check); begin Node.Element := new Element_Type'(Item); Free_Element (X); end; return; end if; end if; -- If we get here, it is because Item was greater than all elements in -- the tree (Hint = null), or because Item was less than some element at -- a different place in the tree (Item < Hint.Element.all). In either -- case, we remove Node from the tree (without actually deallocating -- it), and then insert Item into the tree, onto the same Node (so no -- new node is actually allocated). Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit Local_Insert_With_Hint (Tree => Tree, Position => Hint, Key => Item, Node => Result, Inserted => Inserted); pragma Assert (Inserted); pragma Assert (Result = Node); Free_Element (X); end Replace_Element; procedure Replace_Element (Container : in out Set; Position : Cursor; New_Item : Element_Type) is begin if Checks and then Position.Node = null then raise Constraint_Error with "Position cursor equals No_Element"; end if; if Checks and then Position.Node.Element = null then raise Program_Error with "Position cursor is bad"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong set"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "bad cursor in Replace_Element"); Replace_Element (Container.Tree, Position.Node, New_Item); end Replace_Element; --------------------- -- Reverse_Iterate -- --------------------- procedure Reverse_Iterate (Container : Set; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Reverse_Iterate is new Tree_Operations.Generic_Reverse_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; T : Tree_Type renames Container.Tree'Unrestricted_Access.all; Busy : With_Busy (T.TC'Unrestricted_Access); -- Start of processing for Reverse_Iterate begin Local_Reverse_Iterate (T); end Reverse_Iterate; ----------- -- Right -- ----------- function Right (Node : Node_Access) return Node_Access is begin return Node.Right; end Right; --------------- -- Set_Color -- --------------- procedure Set_Color (Node : Node_Access; Color : Color_Type) is begin Node.Color := Color; end Set_Color; -------------- -- Set_Left -- -------------- procedure Set_Left (Node : Node_Access; Left : Node_Access) is begin Node.Left := Left; end Set_Left; ---------------- -- Set_Parent -- ---------------- procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is begin Node.Parent := Parent; end Set_Parent; --------------- -- Set_Right -- --------------- procedure Set_Right (Node : Node_Access; Right : Node_Access) is begin Node.Right := Right; end Set_Right; -------------------------- -- Symmetric_Difference -- -------------------------- procedure Symmetric_Difference (Target : in out Set; Source : Set) is begin Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree); end Symmetric_Difference; function Symmetric_Difference (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Symmetric_Difference; ------------ -- To_Set -- ------------ function To_Set (New_Item : Element_Type) return Set is Tree : Tree_Type; Node : Node_Access; Inserted : Boolean; begin Insert_Sans_Hint (Tree, New_Item, Node, Inserted); return Set'(Controlled with Tree); end To_Set; ----------- -- Union -- ----------- procedure Union (Target : in out Set; Source : Set) is begin Set_Ops.Union (Target.Tree, Source.Tree); end Union; function Union (Left, Right : Set) return Set is Tree : constant Tree_Type := Set_Ops.Union (Left.Tree, Right.Tree); begin return Set'(Controlled with Tree); end Union; ----------- -- Write -- ----------- procedure Write (Stream : not null access Root_Stream_Type'Class; Container : Set) is procedure Write_Node (Stream : not null access Root_Stream_Type'Class; Node : Node_Access); pragma Inline (Write_Node); procedure Write is new Tree_Operations.Generic_Write (Write_Node); ---------------- -- Write_Node -- ---------------- procedure Write_Node (Stream : not null access Root_Stream_Type'Class; Node : Node_Access) is begin Element_Type'Output (Stream, Node.Element.all); end Write_Node; -- Start of processing for Write begin Write (Stream, Container.Tree); end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Cursor) is begin raise Program_Error with "attempt to stream set cursor"; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; end Ada.Containers.Indefinite_Ordered_Sets;