------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- L I B . X R E F -- -- -- -- B o d y -- -- -- -- Copyright (C) 1998-2022, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Csets; use Csets; with Einfo; use Einfo; with Einfo.Utils; use Einfo.Utils; with Elists; use Elists; with Errout; use Errout; with Lib.Util; use Lib.Util; with Nlists; use Nlists; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Sem; use Sem; with Sem_Aux; use Sem_Aux; with Sem_Prag; use Sem_Prag; with Sem_Util; use Sem_Util; with Sem_Warn; use Sem_Warn; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Sinput; use Sinput; with Snames; use Snames; with Stringt; use Stringt; with Stand; use Stand; with Table; use Table; with Warnsw; use Warnsw; with GNAT.Heap_Sort_G; with GNAT.HTable; package body Lib.Xref is ------------------ -- Declarations -- ------------------ -- The Xref table is used to record references. The Loc field is set -- to No_Location for a definition entry. subtype Xref_Entry_Number is Int; type Xref_Key is record -- These are the components of Xref_Entry that participate in hash -- lookups. Ent : Entity_Id; -- Entity referenced (E parameter to Generate_Reference) Loc : Source_Ptr; -- Location of reference (Original_Location (Sloc field of N parameter -- to Generate_Reference)). Set to No_Location for the case of a -- defining occurrence. Typ : Character; -- Reference type (Typ param to Generate_Reference) Eun : Unit_Number_Type; -- Unit number corresponding to Ent Lun : Unit_Number_Type; -- Unit number corresponding to Loc. Value is undefined and not -- referenced if Loc is set to No_Location. -- The following components are only used for SPARK cross-references Ref_Scope : Entity_Id; -- Entity of the closest subprogram or package enclosing the reference Ent_Scope : Entity_Id; -- Entity of the closest subprogram or package enclosing the definition, -- which should be located in the same file as the definition itself. end record; type Xref_Entry is record Key : Xref_Key; Ent_Scope_File : Unit_Number_Type; -- File for entity Ent_Scope Def : Source_Ptr; -- Original source location for entity being referenced. Note that these -- values are used only during the output process, they are not set when -- the entries are originally built. This is because private entities -- can be swapped when the initial call is made. HTable_Next : Xref_Entry_Number; -- For use only by Static_HTable end record; package Xrefs is new Table.Table ( Table_Component_Type => Xref_Entry, Table_Index_Type => Xref_Entry_Number, Table_Low_Bound => 1, Table_Initial => Alloc.Xrefs_Initial, Table_Increment => Alloc.Xrefs_Increment, Table_Name => "Xrefs"); -------------- -- Xref_Set -- -------------- -- We keep a set of xref entries, in order to avoid inserting duplicate -- entries into the above Xrefs table. An entry is in Xref_Set if and only -- if it is in Xrefs. Num_Buckets : constant := 2**16; subtype Header_Num is Integer range 0 .. Num_Buckets - 1; type Null_Type is null record; pragma Unreferenced (Null_Type); function Hash (F : Xref_Entry_Number) return Header_Num; function Equal (F1, F2 : Xref_Entry_Number) return Boolean; procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number); function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number; function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number; pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key); package Xref_Set is new GNAT.HTable.Static_HTable ( Header_Num, Element => Xref_Entry, Elmt_Ptr => Xref_Entry_Number, Null_Ptr => 0, Set_Next => HT_Set_Next, Next => HT_Next, Key => Xref_Entry_Number, Get_Key => Get_Key, Hash => Hash, Equal => Equal); ----------------------------- -- SPARK Xrefs Information -- ----------------------------- package body SPARK_Specific is separate; ------------------------ -- Local Subprograms -- ------------------------ procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type); -- Add an entry to the tables of Xref_Entries, avoiding duplicates procedure Generate_Prim_Op_References (Typ : Entity_Id); -- For a tagged type, generate implicit references to its primitive -- operations, for source navigation. This is done right before emitting -- cross-reference information rather than at the freeze point of the type -- in order to handle late bodies that are primitive operations. function Lt (T1, T2 : Xref_Entry) return Boolean; -- Order cross-references --------------- -- Add_Entry -- --------------- procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is begin Xrefs.Increment_Last; -- tentative Xrefs.Table (Xrefs.Last).Key := Key; -- Set the entry in Xref_Set, and if newly set, keep the above -- tentative increment. if Xref_Set.Set_If_Not_Present (Xrefs.Last) then Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File; -- Leave Def and HTable_Next uninitialized Set_Has_Xref_Entry (Key.Ent); -- It was already in Xref_Set, so throw away the tentatively-added entry else Xrefs.Decrement_Last; end if; end Add_Entry; ----------- -- Equal -- ----------- function Equal (F1, F2 : Xref_Entry_Number) return Boolean is Result : constant Boolean := Xrefs.Table (F1).Key = Xrefs.Table (F2).Key; begin return Result; end Equal; ------------------------- -- Generate_Definition -- ------------------------- procedure Generate_Definition (E : Entity_Id) is begin pragma Assert (Nkind (E) in N_Entity); -- Note that we do not test Xref_Entity_Letters here. It is too early -- to do so, since we are often called before the entity is fully -- constructed, so that the Ekind is still E_Void. if Opt.Xref_Active -- Definition must come from source -- We make an exception for subprogram child units that have no spec. -- For these we generate a subprogram declaration for library use, -- and the corresponding entity does not come from source. -- Nevertheless, all references will be attached to it and we have -- to treat is as coming from user code. and then (Comes_From_Source (E) or else Is_Child_Unit (E)) -- And must have a reasonable source location that is not -- within an instance (all entities in instances are ignored) and then Sloc (E) > No_Location and then Instantiation_Location (Sloc (E)) = No_Location -- And must be a non-internal name from the main source unit and then In_Extended_Main_Source_Unit (E) and then not Is_Internal_Name (Chars (E)) then Add_Entry ((Ent => E, Loc => No_Location, Typ => ' ', Eun => Get_Source_Unit (Original_Location (Sloc (E))), Lun => No_Unit, Ref_Scope => Empty, Ent_Scope => Empty), Ent_Scope_File => No_Unit); if In_Inlined_Body then Set_Referenced (E); end if; end if; end Generate_Definition; --------------------------------- -- Generate_Operator_Reference -- --------------------------------- procedure Generate_Operator_Reference (N : Node_Id; T : Entity_Id) is begin if not In_Extended_Main_Source_Unit (N) then return; end if; -- If the operator is not a Standard operator, then we generate a real -- reference to the user defined operator. if Sloc (Entity (N)) /= Standard_Location then Generate_Reference (Entity (N), N); -- A reference to an implicit inequality operator is also a reference -- to the user-defined equality. if Nkind (N) = N_Op_Ne and then not Comes_From_Source (Entity (N)) and then Present (Corresponding_Equality (Entity (N))) then Generate_Reference (Corresponding_Equality (Entity (N)), N); end if; -- For the case of Standard operators, we mark the result type as -- referenced. This ensures that in the case where we are using a -- derived operator, we mark an entity of the unit that implicitly -- defines this operator as used. Otherwise we may think that no entity -- of the unit is used. The actual entity marked as referenced is the -- first subtype, which is the relevant user defined entity. -- Note: we only do this for operators that come from source. The -- generated code sometimes reaches for entities that do not need to be -- explicitly visible (for example, when we expand the code for -- comparing two record objects, the fields of the record may not be -- visible). elsif Comes_From_Source (N) then Set_Referenced (First_Subtype (T)); end if; end Generate_Operator_Reference; --------------------------------- -- Generate_Prim_Op_References -- --------------------------------- procedure Generate_Prim_Op_References (Typ : Entity_Id) is Base_T : Entity_Id; Prim : Elmt_Id; Prim_List : Elist_Id; begin -- Handle subtypes of synchronized types if Ekind (Typ) = E_Protected_Subtype or else Ekind (Typ) = E_Task_Subtype then Base_T := Etype (Typ); else Base_T := Typ; end if; -- References to primitive operations are only relevant for tagged types if not Is_Tagged_Type (Base_T) or else Is_Class_Wide_Type (Base_T) then return; end if; -- Ada 2005 (AI-345): For synchronized types generate reference to the -- wrapper that allow us to dispatch calls through their implemented -- abstract interface types. -- The check for Present here is to protect against previously reported -- critical errors. Prim_List := Primitive_Operations (Base_T); if No (Prim_List) then return; end if; Prim := First_Elmt (Prim_List); while Present (Prim) loop -- If the operation is derived, get the original for cross-reference -- reference purposes (it is the original for which we want the xref -- and for which the comes_from_source test must be performed). Generate_Reference (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False); Next_Elmt (Prim); end loop; end Generate_Prim_Op_References; ------------------------ -- Generate_Reference -- ------------------------ procedure Generate_Reference (E : Entity_Id; N : Node_Id; Typ : Character := 'r'; Set_Ref : Boolean := True; Force : Boolean := False) is Actual_Typ : Character := Typ; Call : Node_Id; Def : Source_Ptr; Ent : Entity_Id; Ent_Scope : Entity_Id; Formal : Entity_Id; Kind : Entity_Kind; Nod : Node_Id; Ref : Source_Ptr; Ref_Scope : Entity_Id; function Get_Through_Renamings (E : Entity_Id) return Entity_Id; -- Get the enclosing entity through renamings, which may come from -- source or from the translation of generic instantiations. function OK_To_Set_Referenced return Boolean; -- Returns True if the Referenced flag can be set. There are a few -- exceptions where we do not want to set this flag, see body for -- details of these exceptional cases. --------------------------- -- Get_Through_Renamings -- --------------------------- function Get_Through_Renamings (E : Entity_Id) return Entity_Id is begin case Ekind (E) is -- For subprograms we just need to check once if they are have a -- Renamed_Entity, because Renamed_Entity is set transitively. when Subprogram_Kind => declare Renamed : constant Entity_Id := Renamed_Entity (E); begin if Present (Renamed) then return Renamed; else return E; end if; end; -- For objects we need to repeatedly call Renamed_Object, because -- it is not transitive. when Object_Kind => declare Obj : Entity_Id := E; begin loop pragma Assert (Present (Obj)); declare Renamed : constant Entity_Id := Renamed_Object (Obj); begin if Present (Renamed) then Obj := Get_Enclosing_Object (Renamed); -- The renamed expression denotes a non-object, -- e.g. function call, slicing of a function call, -- pointer dereference, etc. if No (Obj) or else Ekind (Obj) = E_Enumeration_Literal then return Empty; end if; else return Obj; end if; end; end loop; end; when others => return E; end case; end Get_Through_Renamings; --------------------------- -- OK_To_Set_Referenced -- --------------------------- function OK_To_Set_Referenced return Boolean is P : Node_Id; begin -- A reference from a pragma Unreferenced or pragma Unmodified or -- pragma Warnings does not cause the Referenced flag to be set. -- This avoids silly warnings about things being referenced and -- not assigned when the only reference is from the pragma. if Nkind (N) = N_Identifier then P := Parent (N); if Nkind (P) = N_Pragma_Argument_Association then P := Parent (P); if Nkind (P) = N_Pragma then if Pragma_Name_Unmapped (P) in Name_Warnings | Name_Unmodified | Name_Unreferenced then return False; end if; end if; -- A reference to a formal in a named parameter association does -- not make the formal referenced. Formals that are unused in the -- subprogram body are properly flagged as such, even if calls -- elsewhere use named notation. elsif Nkind (P) = N_Parameter_Association and then N = Selector_Name (P) then return False; end if; end if; return True; end OK_To_Set_Referenced; -- Start of processing for Generate_Reference begin -- If Get_Ignore_Errors, then we are in Preanalyze_Without_Errors, and -- we should not record cross references, because that will cause -- duplicates when we call Analyze. if Get_Ignore_Errors then return; end if; -- May happen in case of severe errors if Nkind (E) not in N_Entity then return; end if; Find_Actual (N, Formal, Call); if Present (Formal) then Kind := Ekind (Formal); else Kind := E_Void; end if; -- Check for obsolescent reference to package ASCII. GNAT treats this -- element of annex J specially since in practice, programs make a lot -- of use of this feature, so we don't include it in the set of features -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we -- are required to note it as a violation of the RM defined restriction. if E = Standard_ASCII then Check_Restriction (No_Obsolescent_Features, N); end if; -- Check for reference to entity marked with Is_Obsolescent -- Note that we always allow obsolescent references in the compiler -- itself and the run time, since we assume that we know what we are -- doing in such cases. For example the calls in Ada.Characters.Handling -- to its own obsolescent subprograms are just fine. -- In any case we only generate warnings if we are in the extended main -- source unit, and the entity itself is not in the extended main source -- unit, since we assume the source unit itself knows what is going on -- (and for sure we do not want silly warnings, e.g. on the end line of -- an obsolescent procedure body). if Is_Obsolescent (E) and then not GNAT_Mode and then not In_Extended_Main_Source_Unit (E) and then In_Extended_Main_Source_Unit (N) then Check_Restriction (No_Obsolescent_Features, N); if Warn_On_Obsolescent_Feature then Output_Obsolescent_Entity_Warnings (N, E); end if; end if; -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only -- detect real explicit references (modifications and references). if Comes_From_Source (N) and then Is_Ada_2005_Only (E) and then Ada_Version < Ada_2005 and then Warn_On_Ada_2005_Compatibility and then (Typ = 'm' or else Typ = 'r' or else Typ = 's') then Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E); end if; -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only -- detect real explicit references (modifications and references). if Comes_From_Source (N) and then Is_Ada_2012_Only (E) and then Ada_Version < Ada_2012 and then Warn_On_Ada_2012_Compatibility and then (Typ = 'm' or else Typ = 'r') then Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E); end if; -- Warn if reference to Ada 2022 entity not in Ada 2022 mode. We only -- detect real explicit references (modifications and references). if Comes_From_Source (N) and then Is_Ada_2022_Only (E) and then not Is_Subprogram (E) and then Ada_Version < Ada_2022 and then Warn_On_Ada_2022_Compatibility and then (Typ = 'm' or else Typ = 'r') then Error_Msg_NE ("& is only defined in Ada 2022?y?", N, E); -- Error on static and dispatching calls to Ada 2022 subprograms that -- require overriding if we are not in Ada 2022 mode (since overriding -- was skipped); warn if the subprogram does not require overriding. elsif Comes_From_Source (N) and then Is_Ada_2022_Only (E) and then Ada_Version < Ada_2022 and then Is_Subprogram (E) and then (Typ = 'r' or else Typ = 's' or else Typ = 'R') then if Requires_Overriding (E) then Error_Msg_NE ("& is only defined in Ada 2022 and requires overriding", N, E); elsif Warn_On_Ada_2022_Compatibility then Error_Msg_NE ("& is only defined in Ada 2022?y?", N, E); end if; end if; -- Never collect references if not in main source unit. However, we omit -- this test if Typ is 'e' or 'k', since these entries are structural, -- and it is useful to have them in units that reference packages as -- well as units that define packages. We also omit the test for the -- case of 'p' since we want to include inherited primitive operations -- from other packages. -- We also omit this test is this is a body reference for a subprogram -- instantiation. In this case the reference is to the generic body, -- which clearly need not be in the main unit containing the instance. -- For the same reason we accept an implicit reference generated for -- a default in an instance. -- We also set the referenced flag in a generic package that is not in -- the main source unit, when the object is of a formal private type, -- to warn in the instance if the corresponding type is not a fully -- initialized type. if not In_Extended_Main_Source_Unit (N) then if Typ = 'e' or else Typ = 'I' or else Typ = 'p' or else Typ = 'i' or else Typ = 'k' or else (Typ = 'b' and then Is_Generic_Instance (E)) -- Allow the generation of references to reads, writes and calls -- in SPARK mode when the related context comes from an instance. or else (GNATprove_Mode and then In_Extended_Main_Code_Unit (N) and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')) then null; elsif In_Instance_Body and then In_Extended_Main_Code_Unit (N) and then Is_Generic_Type (Etype (E)) then Set_Referenced (E); return; elsif Inside_A_Generic and then Is_Object (E) and then Is_Generic_Type (Etype (E)) then Set_Referenced (E); return; else return; end if; end if; -- For reference type p, the entity must be in main source unit if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then return; end if; -- Unless the reference is forced, we ignore references where the -- reference itself does not come from source. if not Force and then not Comes_From_Source (N) then return; end if; -- Deal with setting entity as referenced, unless suppressed. Note that -- we still do Set_Referenced on entities that do not come from source. -- This situation arises when we have a source reference to a derived -- operation, where the derived operation itself does not come from -- source, but we still want to mark it as referenced, since we really -- are referencing an entity in the corresponding package (this avoids -- wrong complaints that the package contains no referenced entities). if Set_Ref then -- When E itself is an IN OUT parameter mark it referenced if Is_Assignable (E) and then Ekind (E) = E_In_Out_Parameter and then Known_To_Be_Assigned (N) then Set_Referenced (E); -- For the case where the entity is on the left hand side of an -- assignment statment, we do nothing here. -- The processing for Analyze_Assignment_Statement will set the -- Referenced_As_LHS flag. elsif Is_Assignable (E) and then Known_To_Be_Assigned (N, Only_LHS => True) then null; -- For objects that are renamings, just set as simply referenced. -- We do not try to do assignment type tracking in this case. elsif Is_Assignable (E) and then Present (Renamed_Object (E)) then Set_Referenced (E); -- Check for a reference in a pragma that should not count as a -- making the variable referenced for warning purposes. elsif Is_Non_Significant_Pragma_Reference (N) then null; -- A reference in an attribute definition clause does not count as a -- reference except for the case of Address. The reason that 'Address -- is an exception is that it creates an alias through which the -- variable may be referenced. elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause and then Chars (Parent (N)) /= Name_Address and then N = Name (Parent (N)) then null; -- Constant completion does not count as a reference elsif Typ = 'c' and then Ekind (E) = E_Constant then null; -- Record representation clause does not count as a reference elsif Nkind (N) = N_Identifier and then Nkind (Parent (N)) = N_Record_Representation_Clause then null; -- Discriminants do not need to produce a reference to record type elsif Typ = 'd' and then Nkind (Parent (N)) = N_Discriminant_Specification then null; -- Out parameter case elsif Kind = E_Out_Parameter and then Is_Assignable (E) then -- If warning mode for all out parameters is set, or this is -- the only warning parameter, then we want to mark this for -- later warning logic by setting Referenced_As_Out_Parameter if Warn_On_Modified_As_Out_Parameter (Formal) then Set_Referenced_As_Out_Parameter (E, True); Set_Referenced_As_LHS (E, False); -- For OUT parameter not covered by the above cases, we simply -- regard it as a non-reference. else Set_Referenced_As_Out_Parameter (E); Set_Referenced (E); end if; -- Special processing for IN OUT parameters, where we have an -- implicit assignment to a simple variable. elsif Kind = E_In_Out_Parameter and then Is_Assignable (E) then -- For sure this counts as a normal read reference Set_Referenced (E); Set_Last_Assignment (E, Empty); -- We count it as being referenced as an out parameter if the -- option is set to warn on all out parameters, except that we -- have a special exclusion for an intrinsic subprogram, which -- is most likely an instantiation of Unchecked_Deallocation -- which we do not want to consider as an assignment since it -- generates false positives. We also exclude the case of an -- IN OUT parameter if the name of the procedure is Free, -- since we suspect similar semantics. if Warn_On_All_Unread_Out_Parameters and then Is_Entity_Name (Name (Call)) and then not Is_Intrinsic_Subprogram (Entity (Name (Call))) and then Chars (Name (Call)) /= Name_Free then Set_Referenced_As_Out_Parameter (E, True); Set_Referenced_As_LHS (E, False); end if; -- Don't count a recursive reference within a subprogram as a -- reference (that allows detection of a recursive subprogram -- whose only references are recursive calls as unreferenced). elsif Is_Subprogram (E) and then E = Nearest_Dynamic_Scope (Current_Scope) then null; -- Any other occurrence counts as referencing the entity elsif OK_To_Set_Referenced then Set_Referenced (E); -- If variable, this is an OK reference after an assignment -- so we can clear the Last_Assignment indication. if Is_Assignable (E) then Set_Last_Assignment (E, Empty); end if; end if; -- Check for pragma Unreferenced given and reference is within -- this source unit (occasion for possible warning to be issued). -- Note that the entity may be marked as unreferenced by pragma -- Unused. if Has_Unreferenced (E) and then In_Same_Extended_Unit (E, N) then -- A reference as a named parameter in a call does not count as a -- violation of pragma Unreferenced for this purpose. if Nkind (N) = N_Identifier and then Nkind (Parent (N)) = N_Parameter_Association and then Selector_Name (Parent (N)) = N then null; -- Neither does a reference to a variable on the left side of -- an assignment or use of an out parameter with warnings for -- unread out parameters specified (via -gnatw.o). -- The reason for treating unread out parameters in a special -- way is so that when pragma Unreferenced is specified on such -- an out parameter we do not want to issue a warning about the -- pragma being unnecessary - because the purpose of the flag -- is to warn about them not being read (e.g. unreferenced) -- after use. elsif (Known_To_Be_Assigned (N, Only_LHS => True) or else (Present (Formal) and then Ekind (Formal) = E_Out_Parameter and then Warn_On_All_Unread_Out_Parameters)) and then not (Ekind (E) = E_In_Out_Parameter and then Known_To_Be_Assigned (N)) then null; -- Do not consider F'Result as a violation of pragma Unreferenced -- since the attribute acts as an anonymous alias of the function -- result and not as a real reference to the function. elsif Ekind (E) in E_Function | E_Generic_Function and then Is_Entity_Name (N) and then Is_Attribute_Result (Parent (N)) then null; -- No warning if the reference is in a call that does not come -- from source (e.g. a call to a controlled type primitive). elsif not Comes_From_Source (Parent (N)) and then Nkind (Parent (N)) = N_Procedure_Call_Statement then null; -- For entry formals, we want to place the warning message on the -- corresponding entity in the accept statement. The current scope -- is the body of the accept, so we find the formal whose name -- matches that of the entry formal (there is no link between the -- two entities, and the one in the accept statement is only used -- for conformance checking). elsif Ekind (Scope (E)) = E_Entry then declare BE : Entity_Id; begin BE := First_Entity (Current_Scope); while Present (BE) loop if Chars (BE) = Chars (E) then if Has_Pragma_Unused (E) then Error_Msg_NE -- CODEFIX ("??aspect Unused specified for&!", N, BE); else Error_Msg_NE -- CODEFIX ("??aspect Unreferenced specified for&!", N, BE); end if; exit; end if; Next_Entity (BE); end loop; end; -- Here we issue the warning, since this is a real reference elsif Has_Pragma_Unused (E) then Error_Msg_NE -- CODEFIX ("??aspect Unused specified for&!", N, E); else Error_Msg_NE -- CODEFIX ("??aspect Unreferenced specified for&!", N, E); end if; end if; -- If this is a subprogram instance, mark as well the internal -- subprogram in the wrapper package, which may be a visible -- compilation unit. if Is_Overloadable (E) and then Is_Generic_Instance (E) and then Present (Alias (E)) then Set_Referenced (Alias (E)); end if; end if; -- Generate reference if all conditions are met: if -- Cross referencing must be active Opt.Xref_Active -- The entity must be one for which we collect references and then Xref_Entity_Letters (Ekind (E)) /= ' ' -- Both Sloc values must be set to something sensible and then Sloc (E) > No_Location and then Sloc (N) > No_Location -- Ignore references from within an instance. The only exceptions to -- this are default subprograms, for which we generate an implicit -- reference and compilations in SPARK mode. and then (Instantiation_Location (Sloc (N)) = No_Location or else Typ = 'i' or else GNATprove_Mode) -- Ignore dummy references and then Typ /= ' ' then if Nkind (N) in N_Identifier | N_Defining_Identifier | N_Defining_Operator_Symbol | N_Operator_Symbol | N_Defining_Character_Literal | N_Op or else (Nkind (N) = N_Character_Literal and then Sloc (Entity (N)) /= Standard_Location) then Nod := N; elsif Nkind (N) in N_Expanded_Name | N_Selected_Component then Nod := Selector_Name (N); else return; end if; -- Normal case of source entity comes from source if Comes_From_Source (E) then Ent := E; -- Because a declaration may be generated for a subprogram body -- without declaration in GNATprove mode, for inlining, some -- parameters may end up being marked as not coming from source -- although they are. Take these into account specially. elsif GNATprove_Mode and then Is_Formal (E) then Ent := E; -- Entity does not come from source, but is a derived subprogram and -- the derived subprogram comes from source (after one or more -- derivations) in which case the reference is to parent subprogram. elsif Is_Overloadable (E) and then Present (Alias (E)) then Ent := Alias (E); while not Comes_From_Source (Ent) loop if No (Alias (Ent)) then return; end if; Ent := Alias (Ent); end loop; -- The internally created defining entity for a child subprogram -- that has no previous spec has valid references. elsif Is_Overloadable (E) and then Is_Child_Unit (E) then Ent := E; -- Ditto for the formals of such a subprogram elsif Is_Overloadable (Scope (E)) and then Is_Child_Unit (Scope (E)) then Ent := E; -- Record components of discriminated subtypes or derived types must -- be treated as references to the original component. elsif Ekind (E) = E_Component and then Comes_From_Source (Original_Record_Component (E)) then Ent := Original_Record_Component (E); -- If this is an expanded reference to a discriminant, recover the -- original discriminant, which gets the reference. elsif Ekind (E) = E_In_Parameter and then Present (Discriminal_Link (E)) then Ent := Discriminal_Link (E); Set_Referenced (Ent); -- Ignore reference to any other entity that is not from source else return; end if; -- In SPARK mode, consider the underlying entity renamed instead of -- the renaming, which is needed to compute a valid set of effects -- (reads, writes) for the enclosing subprogram. if GNATprove_Mode then Ent := Get_Through_Renamings (Ent); -- If no enclosing object, then it could be a reference to any -- location not tracked individually, like heap-allocated data. -- Conservatively approximate this possibility by generating a -- dereference, and return. if No (Ent) then if Actual_Typ = 'w' then SPARK_Specific.Generate_Dereference (Nod, 'r'); SPARK_Specific.Generate_Dereference (Nod, 'w'); else SPARK_Specific.Generate_Dereference (Nod, 'r'); end if; return; end if; end if; -- Record reference to entity if Actual_Typ = 'p' and then Is_Subprogram (Nod) and then Present (Overridden_Operation (Nod)) then Actual_Typ := 'P'; end if; -- Comment needed here for special SPARK code ??? if GNATprove_Mode then -- Ignore references to an entity which is a Part_Of single -- concurrent object. Ideally we would prefer to add it as a -- reference to the corresponding concurrent type, but it is quite -- difficult (as such references are not currently added even for) -- reads/writes of private protected components) and not worth the -- effort. if Ekind (Ent) in E_Abstract_State | E_Constant | E_Variable and then Present (Encapsulating_State (Ent)) and then Is_Single_Concurrent_Object (Encapsulating_State (Ent)) then return; end if; Ref := Sloc (Nod); Def := Sloc (Ent); Ref_Scope := SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Nod); Ent_Scope := SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Ent); -- Since we are reaching through renamings in SPARK mode, we may -- end up with standard constants. Ignore those. if Sloc (Ent_Scope) <= Standard_Location or else Def <= Standard_Location then return; end if; Add_Entry ((Ent => Ent, Loc => Ref, Typ => Actual_Typ, Eun => Get_Top_Level_Code_Unit (Def), Lun => Get_Top_Level_Code_Unit (Ref), Ref_Scope => Ref_Scope, Ent_Scope => Ent_Scope), Ent_Scope_File => Get_Top_Level_Code_Unit (Ent)); else Ref := Original_Location (Sloc (Nod)); Def := Original_Location (Sloc (Ent)); -- If this is an operator symbol, skip the initial quote for -- navigation purposes. This is not done for the end label, -- where we want the actual position after the closing quote. if Typ = 't' then null; elsif Nkind (N) = N_Defining_Operator_Symbol or else Nkind (Nod) = N_Operator_Symbol then Ref := Ref + 1; end if; Add_Entry ((Ent => Ent, Loc => Ref, Typ => Actual_Typ, Eun => Get_Source_Unit (Def), Lun => Get_Source_Unit (Ref), Ref_Scope => Empty, Ent_Scope => Empty), Ent_Scope_File => No_Unit); -- Generate reference to the first private entity if Typ = 'e' and then Comes_From_Source (E) and then Nkind (Ent) = N_Defining_Identifier and then (Is_Package_Or_Generic_Package (Ent) or else Is_Concurrent_Type (Ent)) and then Present (First_Private_Entity (E)) and then In_Extended_Main_Source_Unit (N) then -- Handle case in which the full-view and partial-view of the -- first private entity are swapped. declare First_Private : Entity_Id := First_Private_Entity (E); begin if Is_Private_Type (First_Private) and then Present (Full_View (First_Private)) then First_Private := Full_View (First_Private); end if; Add_Entry ((Ent => Ent, Loc => Sloc (First_Private), Typ => 'E', Eun => Get_Source_Unit (Def), Lun => Get_Source_Unit (Ref), Ref_Scope => Empty, Ent_Scope => Empty), Ent_Scope_File => No_Unit); end; end if; end if; end if; end Generate_Reference; ----------------------------------- -- Generate_Reference_To_Formals -- ----------------------------------- procedure Generate_Reference_To_Formals (E : Entity_Id) is Formal : Entity_Id; begin if Is_Access_Subprogram_Type (E) then Formal := First_Formal (Designated_Type (E)); else Formal := First_Formal (E); end if; while Present (Formal) loop if Ekind (Formal) = E_In_Parameter then if Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition then Generate_Reference (E, Formal, '^', False); else Generate_Reference (E, Formal, '>', False); end if; elsif Ekind (Formal) = E_In_Out_Parameter then Generate_Reference (E, Formal, '=', False); else Generate_Reference (E, Formal, '<', False); end if; Next_Formal (Formal); end loop; end Generate_Reference_To_Formals; ------------------------------------------- -- Generate_Reference_To_Generic_Formals -- ------------------------------------------- procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is Formal : Entity_Id; begin Formal := First_Entity (E); while Present (Formal) loop if Comes_From_Source (Formal) then Generate_Reference (E, Formal, 'z', False); end if; Next_Entity (Formal); end loop; end Generate_Reference_To_Generic_Formals; ------------- -- Get_Key -- ------------- function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is begin return E; end Get_Key; ---------- -- Hash -- ---------- function Hash (F : Xref_Entry_Number) return Header_Num is -- It is unlikely to have two references to the same entity at the same -- source location, so the hash function depends only on the Ent and Loc -- fields. XE : Xref_Entry renames Xrefs.Table (F); type M is mod 2**32; H : constant M := 3 * M (XE.Key.Ent) + 5 * M (abs XE.Key.Loc); -- It would be more natural to write: -- -- H : constant M := 3 * M'Mod (XE.Key.Ent) + 5 * M'Mod (XE.Key.Loc); -- -- But we can't use M'Mod, because it prevents bootstrapping with older -- compilers. Loc can be negative, so we do "abs" before converting. -- One day this can be cleaned up ??? begin return Header_Num (H mod Num_Buckets); end Hash; ----------------- -- HT_Set_Next -- ----------------- procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is begin Xrefs.Table (E).HTable_Next := Next; end HT_Set_Next; ------------- -- HT_Next -- ------------- function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is begin return Xrefs.Table (E).HTable_Next; end HT_Next; ---------------- -- Initialize -- ---------------- procedure Initialize is begin Xrefs.Init; end Initialize; -------- -- Lt -- -------- function Lt (T1, T2 : Xref_Entry) return Boolean is begin -- First test: if entity is in different unit, sort by unit if T1.Key.Eun /= T2.Key.Eun then return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun); -- Second test: within same unit, sort by entity Sloc elsif T1.Def /= T2.Def then return T1.Def < T2.Def; -- Third test: sort definitions ahead of references elsif T1.Key.Loc = No_Location then return True; elsif T2.Key.Loc = No_Location then return False; -- Fourth test: for same entity, sort by reference location unit elsif T1.Key.Lun /= T2.Key.Lun then return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun); -- Fifth test: order of location within referencing unit elsif T1.Key.Loc /= T2.Key.Loc then return T1.Key.Loc < T2.Key.Loc; -- Finally, for two locations at the same address, we prefer -- the one that does NOT have the type 'r' so that a modification -- or extension takes preference, when there are more than one -- reference at the same location. As a result, in the case of -- entities that are in-out actuals, the read reference follows -- the modify reference. else return T2.Key.Typ = 'r'; end if; end Lt; ----------------------- -- Output_References -- ----------------------- procedure Output_References is procedure Get_Type_Reference (Ent : Entity_Id; Tref : out Entity_Id; Left : out Character; Right : out Character); -- Given an Entity_Id Ent, determines whether a type reference is -- required. If so, Tref is set to the entity for the type reference -- and Left and Right are set to the left/right brackets to be output -- for the reference. If no type reference is required, then Tref is -- set to Empty, and Left/Right are set to space. procedure Output_Import_Export_Info (Ent : Entity_Id); -- Output language and external name information for an interfaced -- entity, using the format . ------------------------ -- Get_Type_Reference -- ------------------------ procedure Get_Type_Reference (Ent : Entity_Id; Tref : out Entity_Id; Left : out Character; Right : out Character) is Sav : Entity_Id; begin -- See if we have a type reference Tref := Ent; Left := '{'; Right := '}'; loop Sav := Tref; -- Processing for types if Is_Type (Tref) then -- Case of base type if Base_Type (Tref) = Tref then -- If derived, then get first subtype if Tref /= Etype (Tref) then Tref := First_Subtype (Etype (Tref)); -- Set brackets for derived type, but don't override -- pointer case since the fact that something is a -- pointer is more important. if Left /= '(' then Left := '<'; Right := '>'; end if; -- If the completion of a private type is itself a derived -- type, we need the parent of the full view. elsif Is_Private_Type (Tref) and then Present (Full_View (Tref)) and then Etype (Full_View (Tref)) /= Full_View (Tref) then Tref := Etype (Full_View (Tref)); if Left /= '(' then Left := '<'; Right := '>'; end if; -- If non-derived pointer, get directly designated type. -- If the type has a full view, all references are on the -- partial view that is seen first. elsif Is_Access_Type (Tref) then Tref := Directly_Designated_Type (Tref); Left := '('; Right := ')'; elsif Is_Private_Type (Tref) and then Present (Full_View (Tref)) then if Is_Access_Type (Full_View (Tref)) then Tref := Directly_Designated_Type (Full_View (Tref)); Left := '('; Right := ')'; -- If the full view is an array type, we also retrieve -- the corresponding component type, because the ali -- entry already indicates that this is an array. elsif Is_Array_Type (Full_View (Tref)) then Tref := Component_Type (Full_View (Tref)); Left := '('; Right := ')'; end if; -- If non-derived array, get component type. Skip component -- type for case of String or Wide_String, saves worthwhile -- space. elsif Is_Array_Type (Tref) and then Tref /= Standard_String and then Tref /= Standard_Wide_String then Tref := Component_Type (Tref); Left := '('; Right := ')'; -- For other non-derived base types, nothing else exit; end if; -- For a subtype, go to ancestor subtype else Tref := Ancestor_Subtype (Tref); -- If no ancestor subtype, go to base type if No (Tref) then Tref := Base_Type (Sav); end if; end if; -- For objects, functions, enum literals, just get type from -- Etype field. elsif Is_Object (Tref) or else Ekind (Tref) = E_Enumeration_Literal or else Ekind (Tref) = E_Function or else Ekind (Tref) = E_Operator then Tref := Etype (Tref); -- Another special case: an object of a classwide type -- initialized with a tag-indeterminate call gets a subtype -- of the classwide type during expansion. See if the original -- type in the declaration is named, and return it instead -- of going to the root type. The expression may be a class- -- wide function call whose result is on the secondary stack, -- which forces the declaration to be rewritten as a renaming, -- so examine the source declaration. if Ekind (Tref) = E_Class_Wide_Subtype then declare Decl : constant Node_Id := Original_Node (Parent (Ent)); begin if Nkind (Decl) = N_Object_Declaration and then Is_Entity_Name (Original_Node (Object_Definition (Decl))) then Tref := Entity (Original_Node (Object_Definition (Decl))); end if; end; -- For a function that returns a class-wide type, Tref is -- already correct. elsif Is_Overloadable (Ent) and then Is_Class_Wide_Type (Tref) then return; end if; -- For anything else, exit else exit; end if; -- Exit if no type reference, or we are stuck in some loop trying -- to find the type reference, or if the type is standard void -- type (the latter is an implementation artifact that should not -- show up in the generated cross-references). exit when No (Tref) or else Tref = Sav or else Tref = Standard_Void_Type; -- If we have a usable type reference, return, otherwise keep -- looking for something useful (we are looking for something -- that either comes from source or standard) if Sloc (Tref) = Standard_Location or else Comes_From_Source (Tref) then -- If the reference is a subtype created for a generic actual, -- go actual directly, the inner subtype is not user visible. if Nkind (Parent (Tref)) = N_Subtype_Declaration and then not Comes_From_Source (Parent (Tref)) and then (Is_Wrapper_Package (Scope (Tref)) or else Is_Generic_Instance (Scope (Tref))) then Tref := First_Subtype (Base_Type (Tref)); end if; return; end if; end loop; -- If we fall through the loop, no type reference Tref := Empty; Left := ' '; Right := ' '; end Get_Type_Reference; ------------------------------- -- Output_Import_Export_Info -- ------------------------------- procedure Output_Import_Export_Info (Ent : Entity_Id) is Language_Name : Name_Id; Conv : constant Convention_Id := Convention (Ent); begin -- Generate language name from convention if Conv = Convention_C or else Conv in Convention_C_Variadic then Language_Name := Name_C; elsif Conv = Convention_CPP then Language_Name := Name_CPP; elsif Conv = Convention_Ada then Language_Name := Name_Ada; else -- For the moment we ignore all other cases ??? return; end if; Write_Info_Char ('<'); Get_Unqualified_Name_String (Language_Name); for J in 1 .. Name_Len loop Write_Info_Char (Name_Buffer (J)); end loop; if Present (Interface_Name (Ent)) then Write_Info_Char (','); String_To_Name_Buffer (Strval (Interface_Name (Ent))); for J in 1 .. Name_Len loop Write_Info_Char (Name_Buffer (J)); end loop; end if; Write_Info_Char ('>'); end Output_Import_Export_Info; -- Start of processing for Output_References begin -- First we add references to the primitive operations of tagged types -- declared in the main unit. Handle_Prim_Ops : declare Ent : Entity_Id; begin for J in 1 .. Xrefs.Last loop Ent := Xrefs.Table (J).Key.Ent; if Is_Type (Ent) and then Is_Tagged_Type (Ent) and then Is_Base_Type (Ent) and then In_Extended_Main_Source_Unit (Ent) then Generate_Prim_Op_References (Ent); end if; end loop; end Handle_Prim_Ops; -- Before we go ahead and output the references we have a problem -- that needs dealing with. So far we have captured things that are -- definitely referenced by the main unit, or defined in the main -- unit. That's because we don't want to clutter up the ali file -- for this unit with definition lines for entities in other units -- that are not referenced. -- But there is a glitch. We may reference an entity in another unit, -- and it may have a type reference to an entity that is not directly -- referenced in the main unit, which may mean that there is no xref -- entry for this entity yet in the list of references. -- If we don't do something about this, we will end with an orphan type -- reference, i.e. it will point to an entity that does not appear -- within the generated references in the ali file. That is not good for -- tools using the xref information. -- To fix this, we go through the references adding definition entries -- for any unreferenced entities that can be referenced in a type -- reference. There is a recursion problem here, and that is dealt with -- by making sure that this traversal also traverses any entries that -- get added by the traversal. Handle_Orphan_Type_References : declare J : Nat; Tref : Entity_Id; Ent : Entity_Id; L, R : Character; pragma Warnings (Off, L); pragma Warnings (Off, R); procedure New_Entry (E : Entity_Id); -- Make an additional entry into the Xref table for a type entity -- that is related to the current entity (parent, type ancestor, -- progenitor, etc.). ---------------- -- New_Entry -- ---------------- procedure New_Entry (E : Entity_Id) is begin pragma Assert (Present (E)); if not Has_Xref_Entry (Implementation_Base_Type (E)) and then Sloc (E) > No_Location then Add_Entry ((Ent => E, Loc => No_Location, Typ => Character'First, Eun => Get_Source_Unit (Original_Location (Sloc (E))), Lun => No_Unit, Ref_Scope => Empty, Ent_Scope => Empty), Ent_Scope_File => No_Unit); end if; end New_Entry; -- Start of processing for Handle_Orphan_Type_References begin -- Note that this is not a for loop for a very good reason. The -- processing of items in the table can add new items to the table, -- and they must be processed as well. J := 1; while J <= Xrefs.Last loop Ent := Xrefs.Table (J).Key.Ent; -- Do not generate reference information for an ignored Ghost -- entity because neither the entity nor its references will -- appear in the final tree. if Is_Ignored_Ghost_Entity (Ent) then goto Orphan_Continue; end if; Get_Type_Reference (Ent, Tref, L, R); if Present (Tref) and then not Has_Xref_Entry (Tref) and then Sloc (Tref) > No_Location then New_Entry (Tref); if Is_Record_Type (Ent) and then Present (Interfaces (Ent)) then -- Add an entry for each one of the given interfaces -- implemented by type Ent. declare Elmt : Elmt_Id := First_Elmt (Interfaces (Ent)); begin while Present (Elmt) loop New_Entry (Node (Elmt)); Next_Elmt (Elmt); end loop; end; end if; end if; -- Collect inherited primitive operations that may be declared in -- another unit and have no visible reference in the current one. if Is_Type (Ent) and then Is_Tagged_Type (Ent) and then Is_Derived_Type (Ent) and then Is_Base_Type (Ent) and then In_Extended_Main_Source_Unit (Ent) then declare Op_List : constant Elist_Id := Primitive_Operations (Ent); Op : Elmt_Id; Prim : Entity_Id; function Parent_Op (E : Entity_Id) return Entity_Id; -- Find original operation, which may be inherited through -- several derivations. function Parent_Op (E : Entity_Id) return Entity_Id is Orig_Op : constant Entity_Id := Alias (E); begin if No (Orig_Op) then return Empty; elsif not Comes_From_Source (E) and then not Has_Xref_Entry (Orig_Op) and then Comes_From_Source (Orig_Op) then return Orig_Op; else return Parent_Op (Orig_Op); end if; end Parent_Op; begin Op := First_Elmt (Op_List); while Present (Op) loop Prim := Parent_Op (Node (Op)); if Present (Prim) then Add_Entry ((Ent => Prim, Loc => No_Location, Typ => Character'First, Eun => Get_Source_Unit (Sloc (Prim)), Lun => No_Unit, Ref_Scope => Empty, Ent_Scope => Empty), Ent_Scope_File => No_Unit); end if; Next_Elmt (Op); end loop; end; end if; <> J := J + 1; end loop; end Handle_Orphan_Type_References; -- Now we have all the references, including those for any embedded type -- references, so we can sort them, and output them. Output_Refs : declare Nrefs : constant Nat := Xrefs.Last; -- Number of references in table Rnums : array (0 .. Nrefs) of Nat; -- This array contains numbers of references in the Xrefs table. -- This list is sorted in output order. The extra 0'th entry is -- convenient for the call to sort. When we sort the table, we -- move the entries in Rnums around, but we do not move the -- original table entries. Curxu : Unit_Number_Type; -- Current xref unit Curru : Unit_Number_Type; -- Current reference unit for one entity Curent : Entity_Id; -- Current entity Curnam : String (1 .. Name_Buffer'Length); Curlen : Natural; -- Simple name and length of current entity Curdef : Source_Ptr; -- Original source location for current entity Crloc : Source_Ptr; -- Current reference location Ctyp : Character; -- Entity type character Prevt : Character; -- reference kind of previous reference Tref : Entity_Id; -- Type reference Rref : Node_Id; -- Renaming reference Trunit : Unit_Number_Type; -- Unit number for type reference function Lt (Op1, Op2 : Natural) return Boolean; -- Comparison function for Sort call function Name_Change (X : Entity_Id) return Boolean; -- Determines if entity X has a different simple name from Curent procedure Move (From : Natural; To : Natural); -- Move procedure for Sort call package Sorting is new GNAT.Heap_Sort_G (Move, Lt); -------- -- Lt -- -------- function Lt (Op1, Op2 : Natural) return Boolean is T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1))); T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2))); begin return Lt (T1, T2); end Lt; ---------- -- Move -- ---------- procedure Move (From : Natural; To : Natural) is begin Rnums (Nat (To)) := Rnums (Nat (From)); end Move; ----------------- -- Name_Change -- ----------------- -- Why a string comparison here??? Why not compare Name_Id values??? function Name_Change (X : Entity_Id) return Boolean is begin Get_Unqualified_Name_String (Chars (X)); if Name_Len /= Curlen then return True; else return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen); end if; end Name_Change; -- Start of processing for Output_Refs begin -- Capture the definition Sloc values. We delay doing this till now, -- since at the time the reference or definition is made, private -- types may be swapped, and the Sloc value may be incorrect. We -- also set up the pointer vector for the sort. -- For user-defined operators we need to skip the initial quote and -- point to the first character of the name, for navigation purposes. for J in 1 .. Nrefs loop declare E : constant Entity_Id := Xrefs.Table (J).Key.Ent; Loc : constant Source_Ptr := Original_Location (Sloc (E)); begin Rnums (J) := J; if Nkind (E) = N_Defining_Operator_Symbol then Xrefs.Table (J).Def := Loc + 1; else Xrefs.Table (J).Def := Loc; end if; end; end loop; -- Sort the references Sorting.Sort (Integer (Nrefs)); -- Initialize loop through references Curxu := No_Unit; Curent := Empty; Curdef := No_Location; Curru := No_Unit; Crloc := No_Location; Prevt := 'm'; -- Loop to output references for Refno in 1 .. Nrefs loop Output_One_Ref : declare Ent : Entity_Id; XE : Xref_Entry renames Xrefs.Table (Rnums (Refno)); -- The current entry to be accessed Left : Character; Right : Character; -- Used for {} or <> or () for type reference procedure Check_Type_Reference (Ent : Entity_Id; List_Interface : Boolean; Is_Component : Boolean := False); -- Find whether there is a meaningful type reference for -- Ent, and display it accordingly. If List_Interface is -- true, then Ent is a progenitor interface of the current -- type entity being listed. In that case list it as is, -- without looking for a type reference for it. Flag is also -- used for index types of an array type, where the caller -- supplies the intended type reference. Is_Component serves -- the same purpose, to display the component type of a -- derived array type, for which only the parent type has -- ben displayed so far. procedure Output_Instantiation_Refs (Loc : Source_Ptr); -- Recursive procedure to output instantiation references for -- the given source ptr in [file|line[...]] form. No output -- if the given location is not a generic template reference. procedure Output_Overridden_Op (Old_E : Entity_Id); -- For a subprogram that is overriding, display information -- about the inherited operation that it overrides. -------------------------- -- Check_Type_Reference -- -------------------------- procedure Check_Type_Reference (Ent : Entity_Id; List_Interface : Boolean; Is_Component : Boolean := False) is begin if List_Interface then -- This is a progenitor interface of the type for which -- xref information is being generated. Tref := Ent; Left := '<'; Right := '>'; -- The following is not documented in lib-xref.ads ??? elsif Is_Component then Tref := Ent; Left := '('; Right := ')'; else Get_Type_Reference (Ent, Tref, Left, Right); end if; if Present (Tref) then -- Case of standard entity, output name if Sloc (Tref) = Standard_Location then Write_Info_Char (Left); Write_Info_Name (Chars (Tref)); Write_Info_Char (Right); -- Case of source entity, output location else Write_Info_Char (Left); Trunit := Get_Source_Unit (Sloc (Tref)); if Trunit /= Curxu then Write_Info_Nat (Dependency_Num (Trunit)); Write_Info_Char ('|'); end if; Write_Info_Nat (Int (Get_Logical_Line_Number (Sloc (Tref)))); declare Ent : Entity_Id; Ctyp : Character; begin Ent := Tref; Ctyp := Xref_Entity_Letters (Ekind (Ent)); if Ctyp = '+' and then Present (Full_View (Ent)) then Ent := Underlying_Type (Ent); if Present (Ent) then Ctyp := Xref_Entity_Letters (Ekind (Ent)); end if; end if; Write_Info_Char (Ctyp); end; Write_Info_Nat (Int (Get_Column_Number (Sloc (Tref)))); -- If the type comes from an instantiation, add the -- corresponding info. Output_Instantiation_Refs (Sloc (Tref)); Write_Info_Char (Right); end if; end if; end Check_Type_Reference; ------------------------------- -- Output_Instantiation_Refs -- ------------------------------- procedure Output_Instantiation_Refs (Loc : Source_Ptr) is Iloc : constant Source_Ptr := Instantiation_Location (Loc); Lun : Unit_Number_Type; Cu : constant Unit_Number_Type := Curru; begin -- Nothing to do if this is not an instantiation if Iloc = No_Location then return; end if; -- Output instantiation reference Write_Info_Char ('['); Lun := Get_Source_Unit (Iloc); if Lun /= Curru then Curru := Lun; Write_Info_Nat (Dependency_Num (Curru)); Write_Info_Char ('|'); end if; Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc))); -- Recursive call to get nested instantiations Output_Instantiation_Refs (Iloc); -- Output final ] after call to get proper nesting Write_Info_Char (']'); Curru := Cu; return; end Output_Instantiation_Refs; -------------------------- -- Output_Overridden_Op -- -------------------------- procedure Output_Overridden_Op (Old_E : Entity_Id) is Op : Entity_Id; begin -- The overridden operation has an implicit declaration -- at the point of derivation. What we want to display -- is the original operation, which has the actual body -- (or abstract declaration) that is being overridden. -- The overridden operation is not always set, e.g. when -- it is a predefined operator. if No (Old_E) then return; -- Follow alias chain if one is present elsif Present (Alias (Old_E)) then -- The subprogram may have been implicitly inherited -- through several levels of derivation, so find the -- ultimate (source) ancestor. Op := Ultimate_Alias (Old_E); -- Normal case of no alias present. We omit generated -- primitives like tagged equality, that have no source -- representation. else Op := Old_E; end if; if Present (Op) and then Sloc (Op) /= Standard_Location and then Comes_From_Source (Op) then declare Loc : constant Source_Ptr := Sloc (Op); Par_Unit : constant Unit_Number_Type := Get_Source_Unit (Loc); begin Write_Info_Char ('<'); if Par_Unit /= Curxu then Write_Info_Nat (Dependency_Num (Par_Unit)); Write_Info_Char ('|'); end if; Write_Info_Nat (Int (Get_Logical_Line_Number (Loc))); Write_Info_Char ('p'); Write_Info_Nat (Int (Get_Column_Number (Loc))); Write_Info_Char ('>'); end; end if; end Output_Overridden_Op; -- Start of processing for Output_One_Ref begin Ent := XE.Key.Ent; -- Do not generate reference information for an ignored Ghost -- entity because neither the entity nor its references will -- appear in the final tree. if Is_Ignored_Ghost_Entity (Ent) then goto Continue; end if; Ctyp := Xref_Entity_Letters (Ekind (Ent)); -- Skip reference if it is the only reference to an entity, -- and it is an END line reference, and the entity is not in -- the current extended source. This prevents junk entries -- consisting only of packages with END lines, where no -- entity from the package is actually referenced. if XE.Key.Typ = 'e' and then Ent /= Curent and then (Refno = Nrefs or else Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent) and then not In_Extended_Main_Source_Unit (Ent) then goto Continue; end if; -- For private type, get full view type if Ctyp = '+' and then Present (Full_View (XE.Key.Ent)) then Ent := Underlying_Type (Ent); if Present (Ent) then Ctyp := Xref_Entity_Letters (Ekind (Ent)); end if; end if; -- Special exception for Boolean if Ctyp = 'E' and then Is_Boolean_Type (Ent) then Ctyp := 'B'; end if; -- For variable reference, get corresponding type if Ctyp = '*' then Ent := Etype (XE.Key.Ent); Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent))); -- If variable is private type, get full view type if Ctyp = '+' and then Present (Full_View (Etype (XE.Key.Ent))) then Ent := Underlying_Type (Etype (XE.Key.Ent)); if Present (Ent) then Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent))); end if; elsif Is_Generic_Type (Ent) then -- If the type of the entity is a generic private type, -- there is no usable full view, so retain the indication -- that this is an object. Ctyp := '*'; end if; -- Special handling for access parameters and objects and -- components of an anonymous access type. if Ekind (Etype (XE.Key.Ent)) in E_Anonymous_Access_Type | E_Anonymous_Access_Subprogram_Type | E_Anonymous_Access_Protected_Subprogram_Type then if Is_Formal (XE.Key.Ent) or else Ekind (XE.Key.Ent) in E_Variable | E_Constant | E_Component then Ctyp := 'p'; end if; -- Special handling for Boolean elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then Ctyp := 'b'; end if; end if; -- Special handling for abstract types and operations if Is_Overloadable (XE.Key.Ent) and then Is_Abstract_Subprogram (XE.Key.Ent) then if Ctyp = 'U' then Ctyp := 'x'; -- Abstract procedure elsif Ctyp = 'V' then Ctyp := 'y'; -- Abstract function end if; elsif Is_Type (XE.Key.Ent) and then Is_Abstract_Type (XE.Key.Ent) then if Is_Interface (XE.Key.Ent) then Ctyp := 'h'; elsif Ctyp = 'R' then Ctyp := 'H'; -- Abstract type end if; end if; -- Only output reference if interesting type of entity if Ctyp = ' ' -- Suppress references to object definitions, used for local -- references. or else XE.Key.Typ = 'D' or else XE.Key.Typ = 'I' -- Suppress self references, except for bodies that act as -- specs. or else (XE.Key.Loc = XE.Def and then (XE.Key.Typ /= 'b' or else not Is_Subprogram (XE.Key.Ent))) -- Also suppress definitions of body formals (we only -- treat these as references, and the references were -- separately recorded). or else (Is_Formal (XE.Key.Ent) and then Present (Spec_Entity (XE.Key.Ent))) then null; else -- Start new Xref section if new xref unit if XE.Key.Eun /= Curxu then if Write_Info_Col > 1 then Write_Info_EOL; end if; Curxu := XE.Key.Eun; Write_Info_Initiate ('X'); Write_Info_Char (' '); Write_Info_Nat (Dependency_Num (XE.Key.Eun)); Write_Info_Char (' '); Write_Info_Name (Reference_Name (Source_Index (XE.Key.Eun))); end if; -- Start new Entity line if new entity. Note that we -- consider two entities the same if they have the same -- name and source location. This causes entities in -- instantiations to be treated as though they referred -- to the template. if No (Curent) or else (XE.Key.Ent /= Curent and then (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef)) then Curent := XE.Key.Ent; Curdef := XE.Def; Get_Unqualified_Name_String (Chars (XE.Key.Ent)); Curlen := Name_Len; Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen); if Write_Info_Col > 1 then Write_Info_EOL; end if; -- Write column number information Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def))); Write_Info_Char (Ctyp); Write_Info_Nat (Int (Get_Column_Number (XE.Def))); -- Write level information Write_Level_Info : declare function Is_Visible_Generic_Entity (E : Entity_Id) return Boolean; -- Check whether E is declared in the visible part -- of a generic package. For source navigation -- purposes, treat this as a visible entity. function Is_Private_Record_Component (E : Entity_Id) return Boolean; -- Check whether E is a non-inherited component of a -- private extension. Even if the enclosing record is -- public, we want to treat the component as private -- for navigation purposes. --------------------------------- -- Is_Private_Record_Component -- --------------------------------- function Is_Private_Record_Component (E : Entity_Id) return Boolean is S : constant Entity_Id := Scope (E); begin return Ekind (E) = E_Component and then Nkind (Declaration_Node (S)) = N_Private_Extension_Declaration and then Original_Record_Component (E) = E; end Is_Private_Record_Component; ------------------------------- -- Is_Visible_Generic_Entity -- ------------------------------- function Is_Visible_Generic_Entity (E : Entity_Id) return Boolean is Par : Node_Id; begin -- The Present check here is an error defense if Present (Scope (E)) and then Ekind (Scope (E)) /= E_Generic_Package then return False; end if; Par := Parent (E); while Present (Par) loop if Nkind (Par) = N_Generic_Package_Declaration then -- Entity is a generic formal return False; elsif Nkind (Parent (Par)) = N_Package_Specification then return Is_List_Member (Par) and then List_Containing (Par) = Visible_Declarations (Parent (Par)); else Par := Parent (Par); end if; end loop; return False; end Is_Visible_Generic_Entity; -- Start of processing for Write_Level_Info begin if Is_Hidden (Curent) or else Is_Private_Record_Component (Curent) then Write_Info_Char (' '); elsif Is_Public (Curent) or else Is_Visible_Generic_Entity (Curent) then Write_Info_Char ('*'); else Write_Info_Char (' '); end if; end Write_Level_Info; -- Output entity name. We use the occurrence from the -- actual source program at the definition point. declare Ent_Name : constant String := Exact_Source_Name (Sloc (XE.Key.Ent)); begin for C in Ent_Name'Range loop Write_Info_Char (Ent_Name (C)); end loop; end; -- See if we have a renaming reference if Is_Object (XE.Key.Ent) and then Present (Renamed_Object (XE.Key.Ent)) then Rref := Renamed_Object (XE.Key.Ent); elsif Is_Overloadable (XE.Key.Ent) and then Nkind (Parent (Declaration_Node (XE.Key.Ent))) = N_Subprogram_Renaming_Declaration then Rref := Name (Parent (Declaration_Node (XE.Key.Ent))); elsif Ekind (XE.Key.Ent) = E_Package and then Nkind (Declaration_Node (XE.Key.Ent)) = N_Package_Renaming_Declaration then Rref := Name (Declaration_Node (XE.Key.Ent)); else Rref := Empty; end if; if Present (Rref) then if Nkind (Rref) = N_Expanded_Name then Rref := Selector_Name (Rref); end if; if Nkind (Rref) = N_Identifier or else Nkind (Rref) = N_Operator_Symbol then null; -- For renamed array components, use the array name -- for the renamed entity, which reflect the fact that -- in general the whole array is aliased. elsif Nkind (Rref) = N_Indexed_Component then if Nkind (Prefix (Rref)) = N_Identifier then Rref := Prefix (Rref); elsif Nkind (Prefix (Rref)) = N_Expanded_Name then Rref := Selector_Name (Prefix (Rref)); else Rref := Empty; end if; else Rref := Empty; end if; end if; -- Write out renaming reference if we have one if Present (Rref) then Write_Info_Char ('='); Write_Info_Nat (Int (Get_Logical_Line_Number (Sloc (Rref)))); Write_Info_Char (':'); Write_Info_Nat (Int (Get_Column_Number (Sloc (Rref)))); end if; -- Indicate that the entity is in the unit of the current -- xref section. Curru := Curxu; -- Write out information about generic parent, if entity -- is an instance. if Is_Generic_Instance (XE.Key.Ent) then declare Gen_Par : constant Entity_Id := Generic_Parent (Specification (Unit_Declaration_Node (XE.Key.Ent))); Loc : constant Source_Ptr := Sloc (Gen_Par); Gen_U : constant Unit_Number_Type := Get_Source_Unit (Loc); begin Write_Info_Char ('['); if Curru /= Gen_U then Write_Info_Nat (Dependency_Num (Gen_U)); Write_Info_Char ('|'); end if; Write_Info_Nat (Int (Get_Logical_Line_Number (Loc))); Write_Info_Char (']'); end; end if; -- See if we have a type reference and if so output Check_Type_Reference (XE.Key.Ent, False); -- Additional information for types with progenitors, -- including synchronized tagged types. declare Typ : constant Entity_Id := XE.Key.Ent; Elmt : Elmt_Id; begin if Is_Record_Type (Typ) and then Present (Interfaces (Typ)) then Elmt := First_Elmt (Interfaces (Typ)); elsif Is_Concurrent_Type (Typ) and then Present (Corresponding_Record_Type (Typ)) and then Present ( Interfaces (Corresponding_Record_Type (Typ))) then Elmt := First_Elmt ( Interfaces (Corresponding_Record_Type (Typ))); else Elmt := No_Elmt; end if; while Present (Elmt) loop Check_Type_Reference (Node (Elmt), True); Next_Elmt (Elmt); end loop; end; -- For array types, list index types as well. (This is -- not C, indexes have distinct types). if Is_Array_Type (XE.Key.Ent) then declare A_Typ : constant Entity_Id := XE.Key.Ent; Indx : Node_Id; begin -- If this is a derived array type, we have -- output the parent type, so add the component -- type now. if Is_Derived_Type (A_Typ) then Check_Type_Reference (Component_Type (A_Typ), False, True); end if; -- Add references to index types. Indx := First_Index (XE.Key.Ent); while Present (Indx) loop Check_Type_Reference (First_Subtype (Etype (Indx)), True); Next_Index (Indx); end loop; end; end if; -- If the entity is an overriding operation, write info -- on operation that was overridden. if Is_Subprogram (XE.Key.Ent) and then Present (Overridden_Operation (XE.Key.Ent)) then Output_Overridden_Op (Overridden_Operation (XE.Key.Ent)); end if; -- End of processing for entity output Crloc := No_Location; end if; -- Output the reference if it is not as the same location -- as the previous one, or it is a read-reference that -- indicates that the entity is an in-out actual in a call. if XE.Key.Loc /= No_Location and then (XE.Key.Loc /= Crloc or else (Prevt = 'm' and then XE.Key.Typ = 'r')) then Crloc := XE.Key.Loc; Prevt := XE.Key.Typ; -- Start continuation if line full, else blank if Write_Info_Col > 72 then Write_Info_EOL; Write_Info_Initiate ('.'); end if; Write_Info_Char (' '); -- Output file number if changed if XE.Key.Lun /= Curru then Curru := XE.Key.Lun; Write_Info_Nat (Dependency_Num (Curru)); Write_Info_Char ('|'); end if; Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Key.Loc))); Write_Info_Char (XE.Key.Typ); if Is_Overloadable (XE.Key.Ent) then if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b') or else (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i') then Output_Import_Export_Info (XE.Key.Ent); end if; end if; Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc))); Output_Instantiation_Refs (Sloc (XE.Key.Ent)); end if; end if; end Output_One_Ref; <> null; end loop; Write_Info_EOL; end Output_Refs; end Output_References; -- Start of elaboration for Lib.Xref begin -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr, -- because it's not an access type. Xref_Set.Reset; end Lib.Xref;