/**************************************************************************** * * * GNAT COMPILER COMPONENTS * * * * I N I T * * * * C Implementation File * * * * Copyright (C) 1992-2022, Free Software Foundation, Inc. * * * * GNAT is free software; you can redistribute it and/or modify it under * * terms of the GNU General Public License as published by the Free Soft- * * ware Foundation; either version 3, or (at your option) any later ver- * * sion. GNAT is distributed in the hope that it will be useful, but WITH- * * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * * or FITNESS FOR A PARTICULAR PURPOSE. * * * * As a special exception under Section 7 of GPL version 3, you are granted * * additional permissions described in the GCC Runtime Library Exception, * * version 3.1, as published by the Free Software Foundation. * * * * You should have received a copy of the GNU General Public License and * * a copy of the GCC Runtime Library Exception along with this program; * * see the files COPYING3 and COPYING.RUNTIME respectively. If not, see * * . * * * * GNAT was originally developed by the GNAT team at New York University. * * Extensive contributions were provided by Ada Core Technologies Inc. * * * ****************************************************************************/ /* This unit contains initialization circuits that are system dependent. A major part of the functionality involves stack overflow checking. The GCC backend generates probe instructions to test for stack overflow. For details on the exact approach used to generate these probes, see the "Using and Porting GCC" manual, in particular the "Stack Checking" section and the subsection "Specifying How Stack Checking is Done". The handlers installed by this file are used to catch the resulting signals that come from these probes failing (i.e. touching protected pages). */ /* This file should be kept synchronized with s-init.ads, s-init.adb and the s-init-*.adb variants. All these files implement the required functionality for different targets. */ /* The following include is here to meet the published VxWorks requirement that the __vxworks header appear before any other include. */ #ifdef __vxworks #include "vxWorks.h" #include "version.h" /* for _WRS_VXWORKS_MAJOR */ #endif #ifdef __ANDROID__ #undef __linux__ #endif #ifdef IN_RTS #ifdef STANDALONE #include "runtime.h" #else #include "tconfig.h" #include "tsystem.h" #endif #include /* We don't have libiberty, so use malloc. */ #define xmalloc(S) malloc (S) #else #include "config.h" #include "system.h" #endif #include "adaint.h" #include "raise.h" #ifdef __cplusplus extern "C" { #endif extern void __gnat_raise_program_error (const void *, int); /* Addresses of exception data blocks for predefined exceptions. Tasking_Error is not used in this unit, and the abort signal is only used on IRIX. ??? Revisit this part since IRIX is no longer supported. */ extern struct Exception_Data constraint_error; extern struct Exception_Data numeric_error; extern struct Exception_Data program_error; extern struct Exception_Data storage_error; /* For the Cert run time we use the regular raise exception routine because __gnat_raise_from_signal_handler is not available. */ #ifdef CERT #define Raise_From_Signal_Handler __gnat_raise_exception #else #define Raise_From_Signal_Handler __gnat_raise_from_signal_handler #endif extern void Raise_From_Signal_Handler (struct Exception_Data *, const void *) ATTRIBUTE_NORETURN; /* Global values computed by the binder. Note that these variables are declared here, not in the binder file, to avoid having unresolved references in the shared libgnat. */ int __gl_main_priority = -1; int __gl_main_cpu = -1; int __gl_time_slice_val = -1; char __gl_wc_encoding = 'n'; char __gl_locking_policy = ' '; char __gl_queuing_policy = ' '; char __gl_task_dispatching_policy = ' '; char *__gl_priority_specific_dispatching = 0; int __gl_num_specific_dispatching = 0; char *__gl_interrupt_states = 0; int __gl_num_interrupt_states = 0; int __gl_unreserve_all_interrupts = 0; int __gl_exception_tracebacks = 0; int __gl_exception_tracebacks_symbolic = 0; int __gl_detect_blocking = 0; int __gl_default_stack_size = -1; int __gl_leap_seconds_support = 0; int __gl_canonical_streams = 0; char *__gl_bind_env_addr = NULL; int __gl_xdr_stream = 0; /* This value is not used anymore, but kept for bootstrapping purpose. */ int __gl_zero_cost_exceptions = 0; /* Indication of whether synchronous signal handler has already been installed by a previous call to adainit. */ int __gnat_handler_installed = 0; #ifndef IN_RTS int __gnat_inside_elab_final_code = 0; /* ??? This variable is obsolete since 2001-08-29 but is kept to allow bootstrap from old GNAT versions (< 3.15). */ #endif /* HAVE_GNAT_INIT_FLOAT must be set on every targets where a __gnat_init_float is defined. If this is not set then a void implementation will be defined at the end of this unit. */ #undef HAVE_GNAT_INIT_FLOAT /******************************/ /* __gnat_get_interrupt_state */ /******************************/ char __gnat_get_interrupt_state (int); /* This routine is called from the runtime as needed to determine the state of an interrupt, as set by an Interrupt_State pragma appearing anywhere in the current partition. The input argument is the interrupt number, and the result is one of the following: 'n' this interrupt not set by any Interrupt_State pragma 'u' Interrupt_State pragma set state to User 'r' Interrupt_State pragma set state to Runtime 's' Interrupt_State pragma set state to System */ char __gnat_get_interrupt_state (int intrup) { if (intrup >= __gl_num_interrupt_states) return 'n'; else return __gl_interrupt_states [intrup]; } /***********************************/ /* __gnat_get_specific_dispatching */ /***********************************/ char __gnat_get_specific_dispatching (int); /* This routine is called from the runtime as needed to determine the priority specific dispatching policy, as set by a Priority_Specific_Dispatching pragma appearing anywhere in the current partition. The input argument is the priority number, and the result is the upper case first character of the policy name, e.g. 'F' for FIFO_Within_Priorities. A space ' ' is returned if no Priority_Specific_Dispatching pragma is used in the partition. */ char __gnat_get_specific_dispatching (int priority) { if (__gl_num_specific_dispatching == 0) return ' '; else if (priority >= __gl_num_specific_dispatching) return 'F'; else return __gl_priority_specific_dispatching [priority]; } #ifndef IN_RTS /**********************/ /* __gnat_set_globals */ /**********************/ /* This routine is kept for bootstrapping purposes, since the binder generated file now sets the __gl_* variables directly. */ void __gnat_set_globals (void) { } #endif /***************/ /* AIX Section */ /***************/ #if defined (_AIX) #include #include /* Some versions of AIX don't define SA_NODEFER. */ #ifndef SA_NODEFER #define SA_NODEFER 0 #endif /* SA_NODEFER */ /* Versions of AIX before 4.3 don't have nanosleep but provide nsleep instead. */ #ifndef _AIXVERSION_430 extern int nanosleep (struct timestruc_t *, struct timestruc_t *); int nanosleep (struct timestruc_t *Rqtp, struct timestruc_t *Rmtp) { return nsleep (Rqtp, Rmtp); } #endif /* _AIXVERSION_430 */ static void __gnat_error_handler (int sig, siginfo_t *si ATTRIBUTE_UNUSED, void *ucontext ATTRIBUTE_UNUSED) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGSEGV: /* FIXME: we need to detect the case of a *real* SIGSEGV. */ exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; act.sa_sigaction = __gnat_error_handler; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /*****************/ /* HP-UX section */ /*****************/ #elif defined (__hpux__) #include #include #if defined (IN_RTS) && defined (__ia64__) #include #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext) { ucontext_t *uc = (ucontext_t *) ucontext; uint64_t ip; /* Adjust on itanium, as GetIPInfo is not supported. */ __uc_get_ip (uc, &ip); __uc_set_ip (uc, ip + 1); } #endif /* IN_RTS && __ia64__ */ /* Tasking and Non-tasking signal handler. Map SIGnal to Ada exception propagation after the required low level adjustments. */ static void __gnat_error_handler (int sig, siginfo_t *si ATTRIBUTE_UNUSED, void *ucontext) { struct Exception_Data *exception; const char *msg; __gnat_adjust_context_for_raise (sig, ucontext); switch (sig) { case SIGSEGV: /* FIXME: we need to detect the case of a *real* SIGSEGV. */ exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } /* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */ #if defined (__hppa__) char __gnat_alternate_stack[16 * 1024]; /* 2 * SIGSTKSZ */ #else char __gnat_alternate_stack[128 * 1024]; /* MINSIGSTKSZ */ #endif void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! Also setup an alternate stack region for the handler execution so that stack overflows can be handled properly, avoiding a SEGV generation from stack usage by the handler itself. */ stack_t stack; stack.ss_sp = __gnat_alternate_stack; stack.ss_size = sizeof (__gnat_alternate_stack); stack.ss_flags = 0; sigaltstack (&stack, NULL); act.sa_sigaction = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); act.sa_flags |= SA_ONSTACK; if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); __gnat_handler_installed = 1; } /*********************/ /* GNU/Linux Section */ /*********************/ #elif defined (__linux__) #include #define __USE_GNU 1 /* required to get REG_EIP/RIP from glibc's ucontext.h */ #include /* GNU/Linux, which uses glibc, does not define NULL in included header files. */ #if !defined (NULL) #define NULL ((void *) 0) #endif #if defined (MaRTE) /* MaRTE OS provides its own version of sigaction, sigfillset, and sigemptyset (overriding these symbol names). We want to make sure that the versions provided by the underlying C library are used here (these versions are renamed by MaRTE to linux_sigaction, fake_linux_sigfillset, and fake_linux_sigemptyset, respectively). The MaRTE library will not always be present (it will not be linked if no tasking constructs are used), so we use the weak symbol mechanism to point always to the symbols defined within the C library. */ #pragma weak linux_sigaction int linux_sigaction (int signum, const struct sigaction *act, struct sigaction *oldact) { return sigaction (signum, act, oldact); } #define sigaction(signum, act, oldact) linux_sigaction (signum, act, oldact) #pragma weak fake_linux_sigfillset void fake_linux_sigfillset (sigset_t *set) { sigfillset (set); } #define sigfillset(set) fake_linux_sigfillset (set) #pragma weak fake_linux_sigemptyset void fake_linux_sigemptyset (sigset_t *set) { sigemptyset (set); } #define sigemptyset(set) fake_linux_sigemptyset (set) #endif #if defined (__i386__) || defined (__x86_64__) || defined (__ia64__) \ || defined (__ARMEL__) #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext) { #ifndef STANDALONE mcontext_t *mcontext = &((ucontext_t *) ucontext)->uc_mcontext; /* On the i386 and x86-64 architectures, stack checking is performed by means of probes with moving stack pointer, that is to say the probed address is always the value of the stack pointer. Upon hitting the guard page, the stack pointer therefore points to an inaccessible address and an alternate signal stack is needed to run the handler. But there is an additional twist: on these architectures, the EH return code writes the address of the handler at the target CFA's value on the stack before doing the jump. As a consequence, if there is an active handler in the frame whose stack has overflowed, the stack pointer must nevertheless point to an accessible address by the time the EH return is executed. We therefore adjust the saved value of the stack pointer by the size of one page + a small dope of 4 words, in order to make sure that it points to an accessible address in case it's used as the target CFA. The stack checking code guarantees that this address is unused by the time this happens. */ #if defined (__i386__) unsigned long *pc = (unsigned long *)mcontext->gregs[REG_EIP]; /* The pattern is "orl $0x0,(%esp)" for a probe in 32-bit mode. */ if (signo == SIGSEGV && pc && *pc == 0x00240c83) mcontext->gregs[REG_ESP] += 4096 + 4 * sizeof (unsigned long); #elif defined (__x86_64__) unsigned long long *pc = (unsigned long long *)mcontext->gregs[REG_RIP]; if (signo == SIGSEGV && pc /* The pattern is "orq $0x0,(%rsp)" for a probe in 64-bit mode. */ && ((*pc & 0xffffffffffLL) == 0x00240c8348LL /* The pattern may also be "orl $0x0,(%esp)" for a probe in x32 mode. */ || (*pc & 0xffffffffLL) == 0x00240c83LL)) mcontext->gregs[REG_RSP] += 4096 + 4 * sizeof (unsigned long); #elif defined (__ia64__) /* ??? The IA-64 unwinder doesn't compensate for signals. */ mcontext->sc_ip++; #elif defined (__ARMEL__) /* ARM Bump has to be an even number because of odd/even architecture. */ mcontext->arm_pc+=2; #ifdef __thumb2__ #define CPSR_THUMB_BIT 5 /* For thumb, the return address much have the low order bit set, otherwise the unwinder will reset to "arm" mode upon return. As long as the compilation unit containing the landing pad is compiled with the same mode (arm vs thumb) as the signaling compilation unit, this works. */ if (mcontext->arm_cpsr & (1<arm_pc+=1; #endif #endif #endif } #endif static void __gnat_error_handler (int sig, siginfo_t *si ATTRIBUTE_UNUSED, void *ucontext) { struct Exception_Data *exception; const char *msg; /* Adjusting is required for every fault context, so adjust for this one now, before we possibly trigger a recursive fault below. */ __gnat_adjust_context_for_raise (sig, ucontext); switch (sig) { case SIGSEGV: /* Here we would like a discrimination test to see whether the page before the faulting address is accessible. Unfortunately, Linux seems to have no way of giving us the faulting address. In old versions of init.c, we had a test of the page before the stack pointer: ((volatile char *) ((long) si->esp_at_signal & - getpagesize ()))[getpagesize ()]; but that's wrong since it tests the stack pointer location and the stack probing code may not move it until all probes succeed. For now we simply do not attempt any discrimination at all. Note that this is quite acceptable, since a "real" SIGSEGV can only occur as the result of an erroneous program. */ exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &storage_error; msg = "SIGBUS: possible stack overflow"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } #ifndef __ia64__ #define HAVE_GNAT_ALTERNATE_STACK 1 /* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */ char __gnat_alternate_stack[32 * 1024]; #endif #ifdef __XENO__ #include #include RT_TASK main_task; #endif void __gnat_install_handler (void) { struct sigaction act; #ifdef __XENO__ int prio; if (__gl_main_priority == -1) prio = 49; else prio = __gl_main_priority; /* Avoid memory swapping for this program */ mlockall (MCL_CURRENT|MCL_FUTURE); /* Turn the current Linux task into a native Xenomai task */ rt_task_shadow (&main_task, "environment_task", prio, T_FPU); #endif /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! Also setup an alternate stack region for the handler execution so that stack overflows can be handled properly, avoiding a SEGV generation from stack usage by the handler itself. */ act.sa_sigaction = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') { #ifdef HAVE_GNAT_ALTERNATE_STACK /* Setup an alternate stack region for the handler execution so that stack overflows can be handled properly, avoiding a SEGV generation from stack usage by the handler itself. */ stack_t stack; stack.ss_sp = __gnat_alternate_stack; stack.ss_size = sizeof (__gnat_alternate_stack); stack.ss_flags = 0; sigaltstack (&stack, NULL); act.sa_flags |= SA_ONSTACK; #endif sigaction (SIGSEGV, &act, NULL); } __gnat_handler_installed = 1; } /*******************/ /* LynxOS Section */ /*******************/ #elif defined (__Lynx__) #include #include /* SA_SIGINFO is not supported by default on LynxOS, so all we have available here is the "sig" argument. On newer LynxOS versions it's possible to support SA_SIGINFO by setting a kernel configuration macro. To wit: #define NONPOSIX_SA_HANDLER_PROTO (0) This macro must be set to 1 in either sys/bsp./uparam.h or in the associated uparam.h customization file sys/bsp./xparam.h (uparam.h includes xparam.h for customization) The NONPOSIX_SA_HANDLER_PROTO macro makes it possible to provide signal-catching function with 'info' and 'context' input parameters even if SA_SIGINFO flag is not set or it is set for a non-realtime signal. It also allows signal-catching function to update thread context even if SA_UPDATECTX flag is not set. This would be useful, but relying on that would transmit the requirement to users to configure that feature as well, which is undesirable. */ static void __gnat_error_handler (int sig) { struct Exception_Data *exception; const char *msg; switch(sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; act.sa_handler = __gnat_error_handler; act.sa_flags = 0x0; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /*******************/ /* Solaris Section */ /*******************/ #elif defined (__sun__) && !defined (__vxworks) #include #include #include #include static void __gnat_error_handler (int sig, siginfo_t *si, void *ucontext ATTRIBUTE_UNUSED) { struct Exception_Data *exception; static int recurse = 0; const char *msg; switch (sig) { case SIGSEGV: /* If the problem was permissions, this is a constraint error. Likewise if the failing address isn't maximally aligned or if we've recursed. ??? Using a static variable here isn't task-safe, but it's much too hard to do anything else and we're just determining which exception to raise. */ if (si->si_code == SEGV_ACCERR || (long) si->si_addr == 0 || (((long) si->si_addr) & 3) != 0 || recurse) { exception = &constraint_error; msg = "SIGSEGV"; } else { /* See if the page before the faulting page is accessible. Do that by trying to access it. We'd like to simply try to access 4096 + the faulting address, but it's not guaranteed to be the actual address, just to be on the same page. */ recurse++; ((volatile char *) ((long) si->si_addr & - getpagesize ()))[getpagesize ()]; exception = &storage_error; msg = "stack overflow or erroneous memory access"; } break; case SIGBUS: exception = &program_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } recurse = 0; Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_sigaction = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /***************/ /* VMS Section */ /***************/ #elif defined (VMS) /* Routine called from binder to override default feature values. */ void __gnat_set_features (void); int __gnat_features_set = 0; void (*__gnat_ctrl_c_handler) (void) = 0; #ifdef __IA64 #define lib_get_curr_invo_context LIB$I64_GET_CURR_INVO_CONTEXT #define lib_get_prev_invo_context LIB$I64_GET_PREV_INVO_CONTEXT #define lib_get_invo_handle LIB$I64_GET_INVO_HANDLE #else #define lib_get_curr_invo_context LIB$GET_CURR_INVO_CONTEXT #define lib_get_prev_invo_context LIB$GET_PREV_INVO_CONTEXT #define lib_get_invo_handle LIB$GET_INVO_HANDLE #endif /* Masks for facility identification. */ #define FAC_MASK 0x0fff0000 #define DECADA_M_FACILITY 0x00310000 /* Define macro symbols for the VMS conditions that become Ada exceptions. It would be better to just include */ #define SS$_CONTINUE 1 #define SS$_ACCVIO 12 #define SS$_HPARITH 1284 #define SS$_INTDIV 1156 #define SS$_STKOVF 1364 #define SS$_CONTROLC 1617 #define SS$_RESIGNAL 2328 #define MTH$_FLOOVEMAT 1475268 /* Some ACVC_21 CXA tests */ /* The following codes must be resignalled, and not handled here. */ /* These codes are in standard message libraries. */ extern int C$_SIGKILL; extern int C$_SIGINT; extern int SS$_DEBUG; extern int LIB$_KEYNOTFOU; extern int LIB$_ACTIMAGE; /* These codes are non standard, which is to say the author is not sure if they are defined in the standard message libraries so keep them as macros for now. */ #define RDB$_STREAM_EOF 20480426 #define FDL$_UNPRIKW 11829410 #define CMA$_EXIT_THREAD 4227492 struct cond_sigargs { unsigned int sigarg; unsigned int sigargval; }; struct cond_subtests { unsigned int num; const struct cond_sigargs sigargs[]; }; struct cond_except { unsigned int cond; const struct Exception_Data *except; unsigned int needs_adjust; /* 1 = adjust PC, 0 = no adjust */ const struct cond_subtests *subtests; }; struct descriptor_s { unsigned short len, mbz; __char_ptr32 adr; }; /* Conditions that don't have an Ada exception counterpart must raise Non_Ada_Error. Since this is defined in s-auxdec, it should only be referenced by user programs, not the compiler or tools. Hence the #ifdef IN_RTS. */ #ifdef IN_RTS #define Status_Error ada__io_exceptions__status_error extern struct Exception_Data Status_Error; #define Mode_Error ada__io_exceptions__mode_error extern struct Exception_Data Mode_Error; #define Name_Error ada__io_exceptions__name_error extern struct Exception_Data Name_Error; #define Use_Error ada__io_exceptions__use_error extern struct Exception_Data Use_Error; #define Device_Error ada__io_exceptions__device_error extern struct Exception_Data Device_Error; #define End_Error ada__io_exceptions__end_error extern struct Exception_Data End_Error; #define Data_Error ada__io_exceptions__data_error extern struct Exception_Data Data_Error; #define Layout_Error ada__io_exceptions__layout_error extern struct Exception_Data Layout_Error; #define Non_Ada_Error system__aux_dec__non_ada_error extern struct Exception_Data Non_Ada_Error; #define Coded_Exception system__vms_exception_table__coded_exception extern struct Exception_Data *Coded_Exception (void *); #define Base_Code_In system__vms_exception_table__base_code_in extern void *Base_Code_In (void *); /* DEC Ada exceptions are not defined in a header file, so they must be declared. */ #define ADA$_ALREADY_OPEN 0x0031a594 #define ADA$_CONSTRAINT_ERRO 0x00318324 #define ADA$_DATA_ERROR 0x003192c4 #define ADA$_DEVICE_ERROR 0x003195e4 #define ADA$_END_ERROR 0x00319904 #define ADA$_FAC_MODE_MISMAT 0x0031a8b3 #define ADA$_IOSYSFAILED 0x0031af04 #define ADA$_KEYSIZERR 0x0031aa3c #define ADA$_KEY_MISMATCH 0x0031a8e3 #define ADA$_LAYOUT_ERROR 0x00319c24 #define ADA$_LINEXCMRS 0x0031a8f3 #define ADA$_MAXLINEXC 0x0031a8eb #define ADA$_MODE_ERROR 0x00319f44 #define ADA$_MRN_MISMATCH 0x0031a8db #define ADA$_MRS_MISMATCH 0x0031a8d3 #define ADA$_NAME_ERROR 0x0031a264 #define ADA$_NOT_OPEN 0x0031a58c #define ADA$_ORG_MISMATCH 0x0031a8bb #define ADA$_PROGRAM_ERROR 0x00318964 #define ADA$_RAT_MISMATCH 0x0031a8cb #define ADA$_RFM_MISMATCH 0x0031a8c3 #define ADA$_STAOVF 0x00318cac #define ADA$_STATUS_ERROR 0x0031a584 #define ADA$_STORAGE_ERROR 0x00318c84 #define ADA$_UNSUPPORTED 0x0031a8ab #define ADA$_USE_ERROR 0x0031a8a4 /* DEC Ada specific conditions. */ static const struct cond_except dec_ada_cond_except_table [] = { {ADA$_PROGRAM_ERROR, &program_error, 0, 0}, {ADA$_USE_ERROR, &Use_Error, 0, 0}, {ADA$_KEYSIZERR, &program_error, 0, 0}, {ADA$_STAOVF, &storage_error, 0, 0}, {ADA$_CONSTRAINT_ERRO, &constraint_error, 0, 0}, {ADA$_IOSYSFAILED, &Device_Error, 0, 0}, {ADA$_LAYOUT_ERROR, &Layout_Error, 0, 0}, {ADA$_STORAGE_ERROR, &storage_error, 0, 0}, {ADA$_DATA_ERROR, &Data_Error, 0, 0}, {ADA$_DEVICE_ERROR, &Device_Error, 0, 0}, {ADA$_END_ERROR, &End_Error, 0, 0}, {ADA$_MODE_ERROR, &Mode_Error, 0, 0}, {ADA$_NAME_ERROR, &Name_Error, 0, 0}, {ADA$_STATUS_ERROR, &Status_Error, 0, 0}, {ADA$_NOT_OPEN, &Use_Error, 0, 0}, {ADA$_ALREADY_OPEN, &Use_Error, 0, 0}, {ADA$_USE_ERROR, &Use_Error, 0, 0}, {ADA$_UNSUPPORTED, &Use_Error, 0, 0}, {ADA$_FAC_MODE_MISMAT, &Use_Error, 0, 0}, {ADA$_ORG_MISMATCH, &Use_Error, 0, 0}, {ADA$_RFM_MISMATCH, &Use_Error, 0, 0}, {ADA$_RAT_MISMATCH, &Use_Error, 0, 0}, {ADA$_MRS_MISMATCH, &Use_Error, 0, 0}, {ADA$_MRN_MISMATCH, &Use_Error, 0, 0}, {ADA$_KEY_MISMATCH, &Use_Error, 0, 0}, {ADA$_MAXLINEXC, &constraint_error, 0, 0}, {ADA$_LINEXCMRS, &constraint_error, 0, 0}, #if 0 /* Already handled by a pragma Import_Exception in Aux_IO_Exceptions */ {ADA$_LOCK_ERROR, &Lock_Error, 0, 0}, {ADA$_EXISTENCE_ERROR, &Existence_Error, 0, 0}, {ADA$_KEY_ERROR, &Key_Error, 0, 0}, #endif {0, 0, 0, 0} }; #endif /* IN_RTS */ /* Non-DEC Ada specific conditions that map to Ada exceptions. */ /* Subtest for ACCVIO Constraint_Error, kept for compatibility, in hindsight should have just made ACCVIO == Storage_Error. */ #define ACCVIO_VIRTUAL_ADDR 3 static const struct cond_subtests accvio_c_e = {1, /* number of subtests below */ { { ACCVIO_VIRTUAL_ADDR, 0 } } }; /* Macro flag to adjust PC which gets off by one for some conditions, not sure if this is reliably true, PC could be off by more for HPARITH for example, unless a trapb is inserted. */ #define NEEDS_ADJUST 1 static const struct cond_except system_cond_except_table [] = { {MTH$_FLOOVEMAT, &constraint_error, 0, 0}, {SS$_INTDIV, &constraint_error, 0, 0}, {SS$_HPARITH, &constraint_error, NEEDS_ADJUST, 0}, {SS$_ACCVIO, &constraint_error, NEEDS_ADJUST, &accvio_c_e}, {SS$_ACCVIO, &storage_error, NEEDS_ADJUST, 0}, {SS$_STKOVF, &storage_error, NEEDS_ADJUST, 0}, {0, 0, 0, 0} }; /* To deal with VMS conditions and their mapping to Ada exceptions, the __gnat_error_handler routine below is installed as an exception vector having precedence over DEC frame handlers. Some conditions still need to be handled by such handlers, however, in which case __gnat_error_handler needs to return SS$_RESIGNAL. Consider for instance the use of a third party library compiled with DECAda and performing its own exception handling internally. To allow some user-level flexibility, which conditions should be resignaled is controlled by a predicate function, provided with the condition value and returning a boolean indication stating whether this condition should be resignaled or not. That predicate function is called indirectly, via a function pointer, by __gnat_error_handler, and changing that pointer is allowed to the user code by way of the __gnat_set_resignal_predicate interface. The user level function may then implement what it likes, including for instance the maintenance of a dynamic data structure if the set of to be resignalled conditions has to change over the program's lifetime. ??? This is not a perfect solution to deal with the possible interactions between the GNAT and the DECAda exception handling models and better (more general) schemes are studied. This is so just provided as a convenient workaround in the meantime, and should be use with caution since the implementation has been kept very simple. */ typedef int resignal_predicate (int code); static const int * const cond_resignal_table [] = { &C$_SIGKILL, (int *)CMA$_EXIT_THREAD, &SS$_DEBUG, &LIB$_KEYNOTFOU, &LIB$_ACTIMAGE, (int *) RDB$_STREAM_EOF, (int *) FDL$_UNPRIKW, 0 }; static const int facility_resignal_table [] = { 0x1380000, /* RDB */ 0x2220000, /* SQL */ 0 }; /* Default GNAT predicate for resignaling conditions. */ static int __gnat_default_resignal_p (int code) { int i, iexcept; for (i = 0; facility_resignal_table [i]; i++) if ((code & FAC_MASK) == facility_resignal_table [i]) return 1; for (i = 0, iexcept = 0; cond_resignal_table [i] && !(iexcept = LIB$MATCH_COND (&code, &cond_resignal_table [i])); i++); return iexcept; } /* Static pointer to predicate that the __gnat_error_handler exception vector invokes to determine if it should resignal a condition. */ static resignal_predicate *__gnat_resignal_p = __gnat_default_resignal_p; /* User interface to change the predicate pointer to PREDICATE. Reset to the default if PREDICATE is null. */ void __gnat_set_resignal_predicate (resignal_predicate *predicate) { if (predicate == NULL) __gnat_resignal_p = __gnat_default_resignal_p; else __gnat_resignal_p = predicate; } /* Should match System.Parameters.Default_Exception_Msg_Max_Length. */ #define Default_Exception_Msg_Max_Length 512 /* Action routine for SYS$PUTMSG. There may be multiple conditions, each with text to be appended to MESSAGE and separated by line termination. */ static int copy_msg (struct descriptor_s *msgdesc, char *message) { int len = strlen (message); int copy_len; /* Check for buffer overflow and skip. */ if (len > 0 && len <= Default_Exception_Msg_Max_Length - 3) { strcat (message, "\r\n"); len += 2; } /* Check for buffer overflow and truncate if necessary. */ copy_len = (len + msgdesc->len <= Default_Exception_Msg_Max_Length - 1 ? msgdesc->len : Default_Exception_Msg_Max_Length - 1 - len); strncpy (&message [len], msgdesc->adr, copy_len); message [len + copy_len] = 0; return 0; } /* Scan TABLE for a match for the condition contained in SIGARGS, and return the entry, or the empty entry if no match found. */ static const struct cond_except * scan_conditions ( int *sigargs, const struct cond_except *table []) { int i; struct cond_except entry; /* Scan the exception condition table for a match and fetch the associated GNAT exception pointer. */ for (i = 0; (*table) [i].cond; i++) { unsigned int match = LIB$MATCH_COND (&sigargs [1], &(*table) [i].cond); const struct cond_subtests *subtests = (*table) [i].subtests; if (match) { if (!subtests) { return &(*table) [i]; } else { unsigned int ii; int num = (*subtests).num; /* Perform subtests to differentiate exception. */ for (ii = 0; ii < num; ii++) { unsigned int arg = (*subtests).sigargs [ii].sigarg; unsigned int argval = (*subtests).sigargs [ii].sigargval; if (sigargs [arg] != argval) { num = 0; break; } } /* All subtests passed. */ if (num == (*subtests).num) return &(*table) [i]; } } } /* No match, return the null terminating entry. */ return &(*table) [i]; } /* __gnat_handle_vms_condtition is both a frame based handler for the runtime, and an exception vector for the compiler. */ long __gnat_handle_vms_condition (int *sigargs, void *mechargs) { struct Exception_Data *exception = 0; unsigned int needs_adjust = 0; void *base_code; struct descriptor_s gnat_facility = {4, 0, "GNAT"}; char message [Default_Exception_Msg_Max_Length]; const char *msg = ""; /* Check for conditions to resignal which aren't effected by pragma Import_Exception. */ if (__gnat_resignal_p (sigargs [1])) return SS$_RESIGNAL; #ifndef IN_RTS /* toplev.cc handles this for compiler. */ if (sigargs [1] == SS$_HPARITH) return SS$_RESIGNAL; #endif #ifdef IN_RTS /* See if it's an imported exception. Beware that registered exceptions are bound to their base code, with the severity bits masked off. */ base_code = Base_Code_In ((void *) sigargs[1]); exception = Coded_Exception (base_code); #endif if (exception == 0) #ifdef IN_RTS { int i; struct cond_except cond; const struct cond_except *cond_table; const struct cond_except *cond_tables [] = {dec_ada_cond_except_table, system_cond_except_table, 0}; unsigned int ctrlc = SS$_CONTROLC; unsigned int *sigint = &C$_SIGINT; int ctrlc_match = LIB$MATCH_COND (&sigargs [1], &ctrlc); int sigint_match = LIB$MATCH_COND (&sigargs [1], &sigint); extern int SYS$DCLAST (void (*astadr)(), unsigned long long astprm, unsigned int acmode); /* If SS$_CONTROLC has been imported as an exception, it will take priority over a Ctrl/C handler. See above. SIGINT has a different condition value due to it's DECCCRTL roots and it's the condition that gets raised for a "kill -INT". */ if ((ctrlc_match || sigint_match) && __gnat_ctrl_c_handler) { SYS$DCLAST (__gnat_ctrl_c_handler, 0, 0); return SS$_CONTINUE; } i = 0; while ((cond_table = cond_tables[i++]) && !exception) { cond = *scan_conditions (sigargs, &cond_table); exception = (struct Exception_Data *) cond.except; } if (exception) needs_adjust = cond.needs_adjust; else /* User programs expect Non_Ada_Error to be raised if no match, reference DEC Ada test CXCONDHAN. */ exception = &Non_Ada_Error; } #else { /* Pretty much everything is just a program error in the compiler */ exception = &program_error; } #endif message[0] = 0; /* Subtract PC & PSL fields as per ABI for SYS$PUTMSG. */ sigargs[0] -= 2; extern int SYS$PUTMSG (void *, int (*)(), void *, unsigned long long); /* If it was a DEC Ada specific condtiion, make it GNAT otherwise keep the old facility. */ if ((sigargs [1] & FAC_MASK) == DECADA_M_FACILITY) SYS$PUTMSG (sigargs, copy_msg, &gnat_facility, (unsigned long long ) message); else SYS$PUTMSG (sigargs, copy_msg, 0, (unsigned long long ) message); /* Add back PC & PSL fields as per ABI for SYS$PUTMSG. */ sigargs[0] += 2; msg = message; if (needs_adjust) __gnat_adjust_context_for_raise (sigargs [1], (void *)mechargs); Raise_From_Signal_Handler (exception, msg); } #if defined (IN_RTS) && defined (__IA64) /* Called only from adasigio.b32. This is a band aid to avoid going through the VMS signal handling code which results in a 0x8000 per handled exception memory leak in P2 space (see VMS source listing sys/lis/exception.lis) due to the allocation of working space that is expected to be deallocated upon return from the condition handler, which doesn't return in GNAT compiled code. */ void GNAT$STOP (int *sigargs) { /* Note that there are no mechargs. We rely on the fact that condtions raised from DEClib I/O do not require an "adjust". Also the count will be off by 2, since LIB$STOP didn't get a chance to add the PC and PSL fields, so we bump it so PUTMSG comes out right. */ sigargs [0] += 2; __gnat_handle_vms_condition (sigargs, 0); } #endif void __gnat_install_handler (void) { long prvhnd ATTRIBUTE_UNUSED; #if !defined (IN_RTS) extern int SYS$SETEXV (unsigned int vector, int (*addres)(), unsigned int accmode, void *(*(prvhnd))); SYS$SETEXV (1, __gnat_handle_vms_condition, 3, &prvhnd); #endif __gnat_handler_installed = 1; } /* __gnat_adjust_context_for_raise for Alpha - see comments along with the default version later in this file. */ #if defined (IN_RTS) && defined (__alpha__) #include #include #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext) { if (signo == SS$_HPARITH) { /* Sub one to the address of the instruction signaling the condition, located in the sigargs array. */ CHF$MECH_ARRAY * mechargs = (CHF$MECH_ARRAY *) ucontext; CHF$SIGNAL_ARRAY * sigargs = (CHF$SIGNAL_ARRAY *) mechargs->chf$q_mch_sig_addr; int vcount = sigargs->chf$is_sig_args; int * pc_slot = & (&sigargs->chf$l_sig_name)[vcount-2]; (*pc_slot)--; } } #endif /* __gnat_adjust_context_for_raise for ia64. */ #if defined (IN_RTS) && defined (__IA64) #include #include #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE typedef unsigned long long u64; void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext) { /* Add one to the address of the instruction signaling the condition, located in the 64bits sigargs array. */ CHF$MECH_ARRAY * mechargs = (CHF$MECH_ARRAY *) ucontext; CHF64$SIGNAL_ARRAY *chfsig64 = (CHF64$SIGNAL_ARRAY *) mechargs->chf$ph_mch_sig64_addr; u64 * post_sigarray = (u64 *)chfsig64 + 1 + chfsig64->chf64$l_sig_args; u64 * ih_pc_loc = post_sigarray - 2; (*ih_pc_loc) ++; } #endif /* Easier interface for LIB$GET_LOGICAL: put the equivalence of NAME into BUF, always NUL terminated. In case of error or if the result is longer than LEN (length of BUF) an empty string is written info BUF. */ static void __gnat_vms_get_logical (const char *name, char *buf, int len) { struct descriptor_s name_desc, result_desc; int status; unsigned short rlen; /* Build the descriptor for NAME. */ name_desc.len = strlen (name); name_desc.mbz = 0; name_desc.adr = (char *)name; /* Build the descriptor for the result. */ result_desc.len = len; result_desc.mbz = 0; result_desc.adr = buf; status = LIB$GET_LOGICAL (&name_desc, &result_desc, &rlen); if ((status & 1) == 1 && rlen < len) buf[rlen] = 0; else buf[0] = 0; } /* Size of a page on ia64 and alpha VMS. */ #define VMS_PAGESIZE 8192 /* User mode. */ #define PSL__C_USER 3 /* No access. */ #define PRT__C_NA 0 /* Descending region. */ #define VA__M_DESCEND 1 /* Get by virtual address. */ #define VA___REGSUM_BY_VA 1 /* Memory region summary. */ struct regsum { unsigned long long q_region_id; unsigned int l_flags; unsigned int l_region_protection; void *pq_start_va; unsigned long long q_region_size; void *pq_first_free_va; }; extern int SYS$GET_REGION_INFO (unsigned int, unsigned long long *, void *, void *, unsigned int, void *, unsigned int *); extern int SYS$EXPREG_64 (unsigned long long *, unsigned long long, unsigned int, unsigned int, void **, unsigned long long *); extern int SYS$SETPRT_64 (void *, unsigned long long, unsigned int, unsigned int, void **, unsigned long long *, unsigned int *); /* Add a guard page in the memory region containing ADDR at ADDR +/- SIZE. (The sign depends on the kind of the memory region). */ static int __gnat_set_stack_guard_page (void *addr, unsigned long size) { int status; void *ret_va; unsigned long long ret_len; unsigned int ret_prot; void *start_va; unsigned long long length; unsigned int retlen; struct regsum buffer; /* Get the region for ADDR. */ status = SYS$GET_REGION_INFO (VA___REGSUM_BY_VA, NULL, addr, NULL, sizeof (buffer), &buffer, &retlen); if ((status & 1) != 1) return -1; /* Extend the region. */ status = SYS$EXPREG_64 (&buffer.q_region_id, size, 0, 0, &start_va, &length); if ((status & 1) != 1) return -1; /* Create a guard page. */ if (!(buffer.l_flags & VA__M_DESCEND)) start_va = (void *)((unsigned long long)start_va + length - VMS_PAGESIZE); status = SYS$SETPRT_64 (start_va, VMS_PAGESIZE, PSL__C_USER, PRT__C_NA, &ret_va, &ret_len, &ret_prot); if ((status & 1) != 1) return -1; return 0; } /* Read logicals to limit the stack(s) size. */ static void __gnat_set_stack_limit (void) { #ifdef __ia64__ void *sp; unsigned long size; char value[16]; char *e; /* The main stack. */ __gnat_vms_get_logical ("GNAT_STACK_SIZE", value, sizeof (value)); size = strtoul (value, &e, 0); if (e > value && *e == 0) { asm ("mov %0=sp" : "=r" (sp)); __gnat_set_stack_guard_page (sp, size * 1024); } /* The register stack. */ __gnat_vms_get_logical ("GNAT_RBS_SIZE", value, sizeof (value)); size = strtoul (value, &e, 0); if (e > value && *e == 0) { asm ("mov %0=ar.bsp" : "=r" (sp)); __gnat_set_stack_guard_page (sp, size * 1024); } #endif } #ifdef IN_RTS extern int SYS$IEEE_SET_FP_CONTROL (void *, void *, void *); #define K_TRUE 1 #define __int64 long long #define __NEW_STARLET #include #endif /* Feature logical name and global variable address pair. If we ever add another feature logical to this list, the feature struct will need to be enhanced to take into account possible values for *gl_addr. */ struct feature { const char *name; int *gl_addr; }; /* Default values for GNAT features set by environment or binder. */ int __gl_heap_size = 64; /* Default float format is 'I' meaning IEEE. If gnatbind detetcts that a VAX Float format is specified, it will set this global variable to 'V'. Subsequently __gnat_set_features will test the variable and if set for VAX Float will call a Starlet function to enable trapping for invalid operation, drivide by zero, and overflow. This will prevent the VMS runtime (specifically OTS$CHECK_FP_MODE) from complaining about inconsistent floating point settings in a mixed language program. Ideally the setting would be determined at link time based on settings in the object files, however the VMS linker seems to take the setting from the first object in the link, e.g. pcrt0.o which is float representation neutral. */ char __gl_float_format = 'I'; /* Array feature logical names and global variable addresses. */ static const struct feature features[] = { {"GNAT$NO_MALLOC_64", &__gl_heap_size}, {0, 0} }; void __gnat_set_features (void) { int i; char buff[16]; #ifdef IN_RTS IEEE clrmsk, setmsk, prvmsk; clrmsk.ieee$q_flags = 0LL; setmsk.ieee$q_flags = 0LL; #endif /* Loop through features array and test name for enable/disable. */ for (i = 0; features[i].name; i++) { __gnat_vms_get_logical (features[i].name, buff, sizeof (buff)); if (strcmp (buff, "ENABLE") == 0 || strcmp (buff, "TRUE") == 0 || strcmp (buff, "1") == 0) *features[i].gl_addr = 32; else if (strcmp (buff, "DISABLE") == 0 || strcmp (buff, "FALSE") == 0 || strcmp (buff, "0") == 0) *features[i].gl_addr = 64; } /* Features to artificially limit the stack size. */ __gnat_set_stack_limit (); #ifdef IN_RTS if (__gl_float_format == 'V') { setmsk.ieee$v_trap_enable_inv = K_TRUE; setmsk.ieee$v_trap_enable_dze = K_TRUE; setmsk.ieee$v_trap_enable_ovf = K_TRUE; SYS$IEEE_SET_FP_CONTROL (&clrmsk, &setmsk, &prvmsk); } #endif __gnat_features_set = 1; } /* Return true if the VMS version is 7.x. */ extern unsigned int LIB$GETSYI (int *, ...); #define SYI$_VERSION 0x1000 int __gnat_is_vms_v7 (void) { struct descriptor_s desc; char version[8]; int status; int code = SYI$_VERSION; desc.len = sizeof (version); desc.mbz = 0; desc.adr = version; status = LIB$GETSYI (&code, 0, &desc); if ((status & 1) == 1 && version[1] == '7' && version[2] == '.') return 1; else return 0; } /*******************/ /* FreeBSD Section */ /*******************/ #elif defined (__FreeBSD__) || defined (__DragonFly__) #include #include #include static void __gnat_error_handler (int sig, siginfo_t *si ATTRIBUTE_UNUSED, void *ucontext ATTRIBUTE_UNUSED) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &storage_error; msg = "SIGBUS: possible stack overflow"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_sigaction = (void (*)(int, struct __siginfo *, void*)) __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; (void) sigemptyset (&act.sa_mask); (void) sigaction (SIGILL, &act, NULL); (void) sigaction (SIGFPE, &act, NULL); (void) sigaction (SIGSEGV, &act, NULL); (void) sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /*************************************/ /* VxWorks Section (including Vx653) */ /*************************************/ #elif defined(__vxworks) #include #include #if (defined (__i386__) || defined (__x86_64__)) && !defined (VTHREADS) #include #endif #include "sigtramp.h" #ifndef __RTP__ #include #include #endif #if ((defined (ARMEL) && (_WRS_VXWORKS_MAJOR == 6))) && !defined(__RTP__) #define VXWORKS_FORCE_GUARD_PAGE 1 #include extern size_t vxIntStackOverflowSize; #define INT_OVERFLOW_SIZE vxIntStackOverflowSize #endif #ifdef VTHREADS #include "private/vThreadsP.h" #endif #ifndef __RTP__ /* Directly vectored Interrupt routines are not supported when using RTPs. */ extern void * __gnat_inum_to_ivec (int); /* This is needed by the GNAT run time to handle Vxworks interrupts. */ void * __gnat_inum_to_ivec (int num) { return (void *) INUM_TO_IVEC (num); } #endif #if !defined(__alpha_vxworks) && ((_WRS_VXWORKS_MAJOR != 6) && (_WRS_VXWORKS_MAJOR != 7)) && !defined(__RTP__) /* getpid is used by s-parint.adb, but is not defined by VxWorks, except on Alpha VxWorks and VxWorks 6.x (including RTPs). */ extern long getpid (void); long getpid (void) { return taskIdSelf (); } #endif /* When stack checking is performed by probing a guard page on the stack, sometimes this guard page is not properly reset on VxWorks. We need to manually reset it in this case. This function returns TRUE in case the guard page was hit by the signal. */ static int __gnat_reset_guard_page (int sig) { /* On ARM VxWorks 6.x and x86_64 VxWorks 7, the guard page is left un-armed by the kernel after being violated, so subsequent violations aren't detected. So we retrieve the address of the guard page from the TCB and compare it with the page that is violated and re-arm that page if there's a match. */ #if defined (VXWORKS_FORCE_GUARD_PAGE) /* Ignore signals that are not stack overflow signals */ if (sig != SIGSEGV && sig != SIGBUS && sig != SIGILL) return FALSE; /* If the target does not support guard pages, INT_OVERFLOW_SIZE will be 0 */ if (INT_OVERFLOW_SIZE == 0) return FALSE; TASK_ID tid = taskIdSelf (); WIND_TCB *pTcb = taskTcb (tid); VIRT_ADDR guardPage = (VIRT_ADDR) pTcb->pStackEnd - INT_OVERFLOW_SIZE; UINT stateMask = VM_STATE_MASK_VALID; UINT guardState = VM_STATE_VALID_NOT; #if (_WRS_VXWORKS_MAJOR >= 7) stateMask |= MMU_ATTR_SPL_MSK; guardState |= MMU_ATTR_NO_BLOCK; #endif UINT nState; vmStateGet (NULL, guardPage, &nState); if ((nState & VM_STATE_MASK_VALID) != VM_STATE_VALID_NOT) { /* If the guard page has a valid state, we need to reset to invalid state here */ vmStateSet (NULL, guardPage, INT_OVERFLOW_SIZE, stateMask, guardState); return TRUE; } #endif /* VXWORKS_FORCE_GUARD_PAGE */ return FALSE; } /* VxWorks 653 vThreads expects the field excCnt to be zeroed when a signal is. handled. The VxWorks version of longjmp does this; GCC's builtin_longjmp doesn't. */ void __gnat_clear_exception_count (void) { #ifdef VTHREADS WIND_TCB *currentTask = (WIND_TCB *) taskIdSelf(); currentTask->vThreads.excCnt = 0; #endif } /* Handle different SIGnal to exception mappings in different VxWorks versions. */ void __gnat_map_signal (int sig, siginfo_t *si ATTRIBUTE_UNUSED, void *sc ATTRIBUTE_UNUSED) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; #ifdef VTHREADS #ifdef __VXWORKSMILS__ case SIGILL: exception = &storage_error; msg = "SIGILL: possible stack overflow"; break; case SIGSEGV: exception = &storage_error; msg = "SIGSEGV"; break; case SIGBUS: exception = &program_error; msg = "SIGBUS"; break; #else case SIGILL: exception = &constraint_error; msg = "Floating point exception or SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "SIGSEGV"; break; case SIGBUS: exception = &storage_error; msg = "SIGBUS: possible stack overflow"; break; #endif #elif (_WRS_VXWORKS_MAJOR >= 6) case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; #ifdef __RTP__ /* In RTP mode a SIGSEGV is most likely due to a stack overflow, since stack checking uses the probing mechanism. */ case SIGSEGV: exception = &storage_error; msg = "SIGSEGV: possible stack overflow"; break; case SIGBUS: exception = &program_error; msg = "SIGBUS"; break; #else /* VxWorks 6 kernel mode with probing. SIGBUS for guard page hit */ case SIGSEGV: exception = &storage_error; msg = "SIGSEGV"; break; case SIGBUS: exception = &storage_error; msg = "SIGBUS: possible stack overflow"; break; #endif #else /* VxWorks 5: a SIGILL is most likely due to a stack overflow, since stack checking uses the stack limit mechanism. */ case SIGILL: exception = &storage_error; msg = "SIGILL: possible stack overflow"; break; case SIGSEGV: exception = &storage_error; msg = "SIGSEGV"; break; case SIGBUS: exception = &program_error; msg = "SIGBUS"; break; #endif default: exception = &program_error; msg = "unhandled signal"; } if (__gnat_reset_guard_page (sig)) { /* Set the exception message: we know for sure that we have a stack overflow here */ exception = &storage_error; switch (sig) { case SIGSEGV: msg = "SIGSEGV: stack overflow"; break; case SIGBUS: msg = "SIGBUS: stack overflow"; break; case SIGILL: msg = "SIGILL: stack overflow"; break; } } __gnat_clear_exception_count (); Raise_From_Signal_Handler (exception, msg); } #if defined (ARMEL) && (_WRS_VXWORKS_MAJOR >= 7) && !defined (__aarch64__) /* ARM-vx7 case with arm unwinding exceptions */ #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE #include #ifndef __RTP__ #include #else #include #include #include #endif /* __RTP__ */ void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *sc ATTRIBUTE_UNUSED) { /* In case of ARM exceptions, the registers context have the PC pointing to the instruction that raised the signal. However the unwinder expects the instruction to be in the range ]PC,PC+1]. */ uintptr_t *pc_addr; #ifdef __RTP__ mcontext_t *mcontext = &((ucontext_t *) sc)->uc_mcontext; pc_addr = (uintptr_t*)&mcontext->regs.pc; #else struct sigcontext * sctx = (struct sigcontext *) sc; pc_addr = (uintptr_t*)&sctx->sc_pregs->pc; #endif /* ARM Bump has to be an even number because of odd/even architecture. */ *pc_addr += 2; } #endif /* ARMEL && _WRS_VXWORKS_MAJOR >= 7 */ /* Tasking and Non-tasking signal handler. Map SIGnal to Ada exception propagation after the required low level adjustments. */ static void __gnat_error_handler (int sig, siginfo_t *si, void *sc) { sigset_t mask; /* VxWorks on e500v2 clears the SPE bit of the MSR when entering CPU exception state. To allow the handler and exception to work properly when they contain SPE instructions, we need to set it back before doing anything else. This mechanism is only need in kernel mode. */ #if !(defined (__RTP__) || defined (VTHREADS)) && ((CPU == PPCE500V2) || (CPU == PPC85XX)) unsigned msr; /* Read the MSR value */ asm volatile ("mfmsr %0" : "=r" (msr)); /* Force the SPE bit if not set. */ if ((msr & 0x02000000) == 0) { msr |= 0x02000000; /* Store to MSR */ asm volatile ("mtmsr %0" : : "r" (msr)); } #endif /* VxWorks will always mask out the signal during the signal handler and will reenable it on a longjmp. GNAT does not generate a longjmp to return from a signal handler so the signal will still be masked unless we unmask it. */ sigprocmask (SIG_SETMASK, NULL, &mask); sigdelset (&mask, sig); sigprocmask (SIG_SETMASK, &mask, NULL); #if defined (__ARMEL__) || defined (__PPC__) || defined (__i386__) || defined (__x86_64__) || defined (__aarch64__) /* On certain targets, kernel mode, we process signals through a Call Frame Info trampoline, voiding the need for myriads of fallback_frame_state variants in the ZCX runtime. We have no simple way to distinguish ZCX from SJLJ here, so we do this for SJLJ as well even though this is not necessary. This only incurs a few extra instructions and a tiny amount of extra stack usage. */ #ifdef HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE /* We need to sometimes to adjust the PC in case of signals so that it doesn't reference the exception that actually raised the signal but the instruction before it. */ __gnat_adjust_context_for_raise (sig, sc); #endif __gnat_sigtramp (sig, (void *)si, (void *)sc, (__sigtramphandler_t *)&__gnat_map_signal); #else __gnat_map_signal (sig, si, sc); #endif } #if defined(__leon__) && defined(_WRS_KERNEL) /* For LEON VxWorks we need to install a trap handler for stack overflow */ extern void excEnt (void); /* VxWorks exception handler entry */ struct trap_entry { unsigned long inst_first; unsigned long inst_second; unsigned long inst_third; unsigned long inst_fourth; }; /* Four instructions representing entries in the trap table */ struct trap_entry *trap_0_entry; /* We will set the location of the entry for software trap 0 in the trap table. */ #endif void __gnat_install_handler (void) { struct sigaction act; /* Setup signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! */ act.sa_sigaction = __gnat_error_handler; act.sa_flags = SA_SIGINFO | SA_ONSTACK; sigemptyset (&act.sa_mask); /* For VxWorks, install all signal handlers, since pragma Interrupt_State applies to vectored hardware interrupts, not signals. */ sigaction (SIGFPE, &act, NULL); sigaction (SIGILL, &act, NULL); sigaction (SIGSEGV, &act, NULL); sigaction (SIGBUS, &act, NULL); #if defined(__leon__) && defined(_WRS_KERNEL) /* Specific to the LEON VxWorks kernel run-time library */ /* For stack checking the compiler triggers a software trap 0 (ta 0) in case of overflow (we use the stack limit mechanism). We need to install the trap handler here for this software trap (the OS does not handle it) as if it were a data_access_exception (trap 9). We do the same as if we put in the trap table a VXSPARC_BAD_TRAP(9). Software trap 0 is located at vector 0x80, and each entry takes 4 words. */ trap_0_entry = (struct trap_entry *)(intVecBaseGet () + 0x80 * 4); /* mov 0x9, %l7 */ trap_0_entry->inst_first = 0xae102000 + 9; /* sethi %hi(excEnt), %l6 */ /* The 22 most significant bits of excEnt are obtained shifting 10 times to the right. */ trap_0_entry->inst_second = 0x2d000000 + ((unsigned long)excEnt >> 10); /* jmp %l6+%lo(excEnt) */ /* The 10 least significant bits of excEnt are obtained by masking */ trap_0_entry->inst_third = 0x81c5a000 + ((unsigned long)excEnt & 0x3ff); /* rd %psr, %l0 */ trap_0_entry->inst_fourth = 0xa1480000; #endif #ifdef __HANDLE_VXSIM_SC /* By experiment, found that sysModel () returns the following string prefix for vxsim when running on Linux and Windows. */ { char *model = sysModel (); if ((strncmp (model, "Linux", 5) == 0) || (strncmp (model, "Windows", 7) == 0) || (strncmp (model, "SIMLINUX", 8) == 0) /* vx7 */ || (strncmp (model, "SIMNT", 5) == 0)) /* ditto */ __gnat_set_is_vxsim (TRUE); } #endif __gnat_handler_installed = 1; } #define HAVE_GNAT_INIT_FLOAT void __gnat_init_float (void) { /* Disable overflow/underflow exceptions on the PPC processor, needed to get correct Ada semantics. Note that for AE653 vThreads, the HW overflow settings are an OS configuration issue. The instructions below have no effect. */ #if defined (_ARCH_PPC) && !defined (_SOFT_FLOAT) && (!defined (VTHREADS) || defined (__VXWORKSMILS__)) #if defined (__SPE__) { /* For e500v2, do nothing and leave the responsibility to install the handler and enable the exceptions to the BSP. */ } #else asm ("mtfsb0 25"); asm ("mtfsb0 26"); #endif #endif #if (defined (__i386__) || defined (__x86_64__)) && !defined (VTHREADS) /* This is used to properly initialize the FPU on an x86 for each process thread. */ asm ("finit"); #endif /* Similarly for SPARC64. Achieved by masking bits in the Trap Enable Mask field of the Floating-point Status Register (see the SPARC Architecture Manual Version 9, p 48). */ #if defined (sparc64) #define FSR_TEM_NVM (1 << 27) /* Invalid operand */ #define FSR_TEM_OFM (1 << 26) /* Overflow */ #define FSR_TEM_UFM (1 << 25) /* Underflow */ #define FSR_TEM_DZM (1 << 24) /* Division by Zero */ #define FSR_TEM_NXM (1 << 23) /* Inexact result */ { unsigned int fsr; __asm__("st %%fsr, %0" : "=m" (fsr)); fsr &= ~(FSR_TEM_OFM | FSR_TEM_UFM); __asm__("ld %0, %%fsr" : : "m" (fsr)); } #endif } /* This subprogram is called by System.Task_Primitives.Operations.Enter_Task (if not null) when a new task is created. It is initialized by System.Stack_Checking.Operations.Initialize_Stack_Limit. The use of a hook avoids to drag stack checking subprograms if stack checking is not used. */ void (*__gnat_set_stack_limit_hook)(void) = (void (*)(void))0; /******************/ /* NetBSD Section */ /******************/ #elif defined(__NetBSD__) #include #include static void __gnat_error_handler (int sig) { struct Exception_Data *exception; const char *msg; switch(sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; act.sa_handler = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /*******************/ /* OpenBSD Section */ /*******************/ #elif defined(__OpenBSD__) #include #include static void __gnat_error_handler (int sig) { struct Exception_Data *exception; const char *msg; switch(sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; act.sa_handler = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System" */ if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } /******************/ /* Darwin Section */ /******************/ #elif defined(__APPLE__) #include #include #include #include #include /* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */ char __gnat_alternate_stack[32 * 1024]; /* 1 * MINSIGSTKSZ */ /* Defined in xnu unix_signal.c. Tell the kernel to re-use alt stack when delivering a signal. */ #define UC_RESET_ALT_STACK 0x80000000 #if !(defined (__arm__) || defined (__arm64__) || TARGET_IPHONE_SIMULATOR) #include #include #include #endif #ifdef __arm64__ #include #include "sigtramp.h" #endif /* Return true if ADDR is within a stack guard area. */ static int __gnat_is_stack_guard (mach_vm_address_t addr) { #if !(defined (__arm__) || defined (__arm64__) || TARGET_IPHONE_SIMULATOR) kern_return_t kret; vm_region_submap_info_data_64_t info; mach_vm_address_t start; mach_vm_size_t size; natural_t depth; mach_msg_type_number_t count; count = VM_REGION_SUBMAP_INFO_COUNT_64; start = addr; size = -1; depth = 9999; kret = mach_vm_region_recurse (mach_task_self (), &start, &size, &depth, (vm_region_recurse_info_t) &info, &count); if (kret == KERN_SUCCESS && addr >= start && addr < (start + size) && info.protection == VM_PROT_NONE && info.user_tag == VM_MEMORY_STACK) return 1; return 0; #else /* Pagezero for arm. */ return addr >= 4096; #endif } #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE #if defined (__x86_64__) static int __darwin_major_version (void) { static int cache = -1; if (cache < 0) { int mib[2] = {CTL_KERN, KERN_OSRELEASE}; size_t len; /* Find out how big the buffer needs to be (and set cache to 0 on failure). */ if (sysctl (mib, 2, NULL, &len, NULL, 0) == 0) { char release[len]; sysctl (mib, 2, release, &len, NULL, 0); /* Darwin releases are of the form L.M.N where L is the major version, so strtol will return L. */ cache = (int) strtol (release, NULL, 10); } else { cache = 0; } } return cache; } #endif void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext ATTRIBUTE_UNUSED) { #if defined (__x86_64__) if (__darwin_major_version () < 12) { /* Work around radar #10302855, where the unwinders (libunwind or libgcc_s depending on the system revision) and the DWARF unwind data for sigtramp have different ideas about register numbering, causing rbx and rdx to be transposed. */ ucontext_t *uc = (ucontext_t *)ucontext; unsigned long t = uc->uc_mcontext->__ss.__rbx; uc->uc_mcontext->__ss.__rbx = uc->uc_mcontext->__ss.__rdx; uc->uc_mcontext->__ss.__rdx = t; } #elif defined(__arm64__) /* Even though the CFI is marked as a signal frame, we need this. */ ucontext_t *uc = (ucontext_t *)ucontext; uc->uc_mcontext->__ss.__pc++; #endif } static void __gnat_map_signal (int sig, siginfo_t *si, void *mcontext ATTRIBUTE_UNUSED) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGSEGV: case SIGBUS: if (__gnat_is_stack_guard ((unsigned long)si->si_addr)) { #ifdef __arm64__ /* ??? This is a kludge to make stack checking work. The problem is that the trampoline doesn't restore LR and, consequently, doesn't make it possible to unwind past an interrupted frame which hasn"t saved LR on the stack yet. Therefore, for probes in the prologue (32-bit probes as opposed to standard 64-bit probes), we make the unwinder skip the not-yet-established frame altogether. */ mcontext_t mc = (mcontext_t)mcontext; if (!(*(unsigned int *)(mc->__ss.__pc-1) & ((unsigned int)1 << 30))) mc->__ss.__pc = mc->__ss.__lr; #endif exception = &storage_error; msg = "stack overflow"; } else { exception = &constraint_error; msg = "erroneous memory access"; } /* Reset the use of alt stack, so that the alt stack will be used for the next signal delivery. The stack can't be used in case of stack checking. */ syscall (SYS_sigreturn, NULL, UC_RESET_ALT_STACK); break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } static void __gnat_error_handler (int sig, siginfo_t *si, void *ucontext) { __gnat_adjust_context_for_raise (sig, ucontext); /* The Darwin libc comes with a signal trampoline, except for ARM64. */ #ifdef __arm64__ __gnat_sigtramp (sig, (void *)si, ucontext, (__sigtramphandler_t *)&__gnat_map_signal); #else __gnat_map_signal (sig, si, ucontext); #endif } void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! Also setup an alternate stack region for the handler execution so that stack overflows can be handled properly, avoiding a SEGV generation from stack usage by the handler itself (and it is required by Darwin). */ stack_t stack; stack.ss_sp = __gnat_alternate_stack; stack.ss_size = sizeof (__gnat_alternate_stack); stack.ss_flags = 0; sigaltstack (&stack, NULL); act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; act.sa_sigaction = __gnat_error_handler; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGABRT) != 's') sigaction (SIGABRT, &act, NULL); if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); act.sa_flags |= SA_ONSTACK; if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } #elif defined(__QNX__) /***************/ /* QNX Section */ /***************/ #include #include #include #include #include "sigtramp.h" void __gnat_map_signal (int sig, siginfo_t *si ATTRIBUTE_UNUSED, void *mcontext ATTRIBUTE_UNUSED) { struct Exception_Data *exception; const char *msg; switch(sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } static void __gnat_error_handler (int sig, siginfo_t *si, void *ucontext) { __gnat_sigtramp (sig, (void *) si, (void *) ucontext, (__sigtramphandler_t *)&__gnat_map_signal); } /* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */ /* sigaltstack is currently not supported by QNX7 */ char __gnat_alternate_stack[0]; void __gnat_install_handler (void) { struct sigaction act; int err; act.sa_handler = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_SIGINFO; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System" */ if (__gnat_get_interrupt_state (SIGFPE) != 's') { err = sigaction (SIGFPE, &act, NULL); if (err == -1) { err = errno; perror ("error while attaching SIGFPE"); perror (strerror (err)); } } if (__gnat_get_interrupt_state (SIGILL) != 's') { sigaction (SIGILL, &act, NULL); if (err == -1) { err = errno; perror ("error while attaching SIGFPE"); perror (strerror (err)); } } if (__gnat_get_interrupt_state (SIGSEGV) != 's') { sigaction (SIGSEGV, &act, NULL); if (err == -1) { err = errno; perror ("error while attaching SIGFPE"); perror (strerror (err)); } } if (__gnat_get_interrupt_state (SIGBUS) != 's') { sigaction (SIGBUS, &act, NULL); if (err == -1) { err = errno; perror ("error while attaching SIGFPE"); perror (strerror (err)); } } __gnat_handler_installed = 1; } /*****************/ /* RTEMS Section */ /*****************/ #elif defined(__rtems__) #include #include static void __gnat_error_handler (int sig) { struct Exception_Data *exception; const char *msg; switch(sig) { case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; case SIGILL: exception = &constraint_error; msg = "SIGILL"; break; case SIGSEGV: exception = &storage_error; msg = "erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } void __gnat_install_handler (void) { struct sigaction act; act.sa_handler = __gnat_error_handler; sigemptyset (&act.sa_mask); /* Do not install handlers if interrupt state is "System". */ if (__gnat_get_interrupt_state (SIGFPE) != 's') sigaction (SIGFPE, &act, NULL); if (__gnat_get_interrupt_state (SIGILL) != 's') sigaction (SIGILL, &act, NULL); if (__gnat_get_interrupt_state (SIGSEGV) != 's') sigaction (SIGSEGV, &act, NULL); if (__gnat_get_interrupt_state (SIGBUS) != 's') sigaction (SIGBUS, &act, NULL); __gnat_handler_installed = 1; } #elif defined (__DJGPP__) void __gnat_install_handler () { __gnat_handler_installed = 1; } #elif defined(__ANDROID__) /*******************/ /* Android Section */ /*******************/ #include #include #include "sigtramp.h" #define HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext) { mcontext_t *mcontext = &((ucontext_t *) ucontext)->uc_mcontext; /* ARM Bump has to be an even number because of odd/even architecture. */ ((mcontext_t *) mcontext)->arm_pc += 2; } static void __gnat_map_signal (int sig, siginfo_t *si ATTRIBUTE_UNUSED, void *mcontext ATTRIBUTE_UNUSED) { struct Exception_Data *exception; const char *msg; switch (sig) { case SIGSEGV: exception = &storage_error; msg = "stack overflow or erroneous memory access"; break; case SIGBUS: exception = &constraint_error; msg = "SIGBUS"; break; case SIGFPE: exception = &constraint_error; msg = "SIGFPE"; break; default: exception = &program_error; msg = "unhandled signal"; } Raise_From_Signal_Handler (exception, msg); } static void __gnat_error_handler (int sig, siginfo_t *si, void *ucontext) { __gnat_adjust_context_for_raise (sig, ucontext); __gnat_sigtramp (sig, (void *) si, (void *) ucontext, (__sigtramphandler_t *)&__gnat_map_signal); } /* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */ char __gnat_alternate_stack[16 * 1024]; void __gnat_install_handler (void) { struct sigaction act; /* Set up signal handler to map synchronous signals to appropriate exceptions. Make sure that the handler isn't interrupted by another signal that might cause a scheduling event! Also setup an alternate stack region for the handler execution so that stack overflows can be handled properly, avoiding a SEGV generation from stack usage by the handler itself. */ stack_t stack; stack.ss_sp = __gnat_alternate_stack; stack.ss_size = sizeof (__gnat_alternate_stack); stack.ss_flags = 0; sigaltstack (&stack, NULL); act.sa_sigaction = __gnat_error_handler; act.sa_flags = SA_NODEFER | SA_RESTART | SA_SIGINFO; sigemptyset (&act.sa_mask); sigaction (SIGABRT, &act, NULL); sigaction (SIGFPE, &act, NULL); sigaction (SIGILL, &act, NULL); sigaction (SIGBUS, &act, NULL); act.sa_flags |= SA_ONSTACK; sigaction (SIGSEGV, &act, NULL); __gnat_handler_installed = 1; } #else /* For all other versions of GNAT, the handler does nothing. */ /*******************/ /* Default Section */ /*******************/ void __gnat_install_handler (void) { __gnat_handler_installed = 1; } #endif /*********************/ /* __gnat_init_float */ /*********************/ #if defined (_WIN32) || defined (__INTERIX) || defined (__linux__) \ || defined (__Lynx__) || defined(__NetBSD__) || defined(__FreeBSD__) \ || defined (__OpenBSD__) || defined (__DragonFly__) || defined(__QNX__) #define HAVE_GNAT_INIT_FLOAT void __gnat_init_float (void) { #if defined (__i386__) || defined (__x86_64__) /* This is used to properly initialize the FPU to 64-bit precision on an x86 for each process thread and also for floating-point I/O. */ asm ("finit"); #endif } #endif #ifndef HAVE_GNAT_INIT_FLOAT /* All targets without a specific __gnat_init_float will use an empty one. */ void __gnat_init_float (void) { } #endif /***********************************/ /* __gnat_adjust_context_for_raise */ /***********************************/ #ifndef HAVE_GNAT_ADJUST_CONTEXT_FOR_RAISE /* All targets without a specific version will use an empty one. */ /* Given UCONTEXT a pointer to a context structure received by a signal handler for SIGNO, perform the necessary adjustments to let the handler raise an exception. Calls to this routine are not conditioned by the propagation scheme in use. */ void __gnat_adjust_context_for_raise (int signo ATTRIBUTE_UNUSED, void *ucontext ATTRIBUTE_UNUSED) { /* We used to compensate here for the raised from call vs raised from signal exception discrepancy with the GCC ZCX scheme, but this now can be dealt with generically in the unwinder (see GCC PR other/26208). This however requires the use of the _Unwind_GetIPInfo routine in raise-gcc.c, which is predicated on the definition of HAVE_GETIPINFO at compile time. Only the VMS ports still do the compensation described in the few lines below. *** Call vs signal exception discrepancy with GCC ZCX scheme *** The GCC unwinder expects to be dealing with call return addresses, since this is the "nominal" case of what we retrieve while unwinding a regular call chain. To evaluate if a handler applies at some point identified by a return address, the propagation engine needs to determine what region the corresponding call instruction pertains to. Because the return address may not be attached to the same region as the call, the unwinder always subtracts "some" amount from a return address to search the region tables, amount chosen to ensure that the resulting address is inside the call instruction. When we raise an exception from a signal handler, e.g. to transform a SIGSEGV into Storage_Error, things need to appear as if the signal handler had been "called" by the instruction which triggered the signal, so that exception handlers that apply there are considered. What the unwinder will retrieve as the return address from the signal handler is what it will find as the faulting instruction address in the signal context pushed by the kernel. Leaving this address untouched looses, if the triggering instruction happens to be the very first of a region, as the later adjustments performed by the unwinder would yield an address outside that region. We need to compensate for the unwinder adjustments at some point, and this is what this routine is expected to do. signo is passed because on some targets for some signals the PC in context points to the instruction after the faulting one, in which case the unwinder adjustment is still desired. */ } #endif #ifdef __cplusplus } #endif