------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- G N A T . D Y N A M I C _ H T A B L E S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2002-2014, AdaCore -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Ada.Unchecked_Deallocation; package body GNAT.Dynamic_HTables is ------------------- -- Static_HTable -- ------------------- package body Static_HTable is type Table_Type is array (Header_Num) of Elmt_Ptr; type Instance_Data is record Table : Table_Type; Iterator_Index : Header_Num; Iterator_Ptr : Elmt_Ptr; Iterator_Started : Boolean := False; end record; function Get_Non_Null (T : Instance) return Elmt_Ptr; -- Returns Null_Ptr if Iterator_Started is False or if the Table is -- empty. Returns Iterator_Ptr if non null, or the next non null -- element in table if any. --------- -- Get -- --------- function Get (T : Instance; K : Key) return Elmt_Ptr is Elmt : Elmt_Ptr; begin if T = null then return Null_Ptr; end if; Elmt := T.Table (Hash (K)); loop if Elmt = Null_Ptr then return Null_Ptr; elsif Equal (Get_Key (Elmt), K) then return Elmt; else Elmt := Next (Elmt); end if; end loop; end Get; --------------- -- Get_First -- --------------- function Get_First (T : Instance) return Elmt_Ptr is begin if T = null then return Null_Ptr; end if; T.Iterator_Started := True; T.Iterator_Index := T.Table'First; T.Iterator_Ptr := T.Table (T.Iterator_Index); return Get_Non_Null (T); end Get_First; -------------- -- Get_Next -- -------------- function Get_Next (T : Instance) return Elmt_Ptr is begin if T = null or else not T.Iterator_Started then return Null_Ptr; end if; T.Iterator_Ptr := Next (T.Iterator_Ptr); return Get_Non_Null (T); end Get_Next; ------------------ -- Get_Non_Null -- ------------------ function Get_Non_Null (T : Instance) return Elmt_Ptr is begin if T = null then return Null_Ptr; end if; while T.Iterator_Ptr = Null_Ptr loop if T.Iterator_Index = T.Table'Last then T.Iterator_Started := False; return Null_Ptr; end if; T.Iterator_Index := T.Iterator_Index + 1; T.Iterator_Ptr := T.Table (T.Iterator_Index); end loop; return T.Iterator_Ptr; end Get_Non_Null; ------------ -- Remove -- ------------ procedure Remove (T : Instance; K : Key) is Index : constant Header_Num := Hash (K); Elmt : Elmt_Ptr; Next_Elmt : Elmt_Ptr; begin if T = null then return; end if; Elmt := T.Table (Index); if Elmt = Null_Ptr then return; elsif Equal (Get_Key (Elmt), K) then T.Table (Index) := Next (Elmt); else loop Next_Elmt := Next (Elmt); if Next_Elmt = Null_Ptr then return; elsif Equal (Get_Key (Next_Elmt), K) then Set_Next (Elmt, Next (Next_Elmt)); return; else Elmt := Next_Elmt; end if; end loop; end if; end Remove; ----------- -- Reset -- ----------- procedure Reset (T : in out Instance) is procedure Free is new Ada.Unchecked_Deallocation (Instance_Data, Instance); begin if T = null then return; end if; for J in T.Table'Range loop T.Table (J) := Null_Ptr; end loop; Free (T); end Reset; --------- -- Set -- --------- procedure Set (T : in out Instance; E : Elmt_Ptr) is Index : Header_Num; begin if T = null then T := new Instance_Data; end if; Index := Hash (Get_Key (E)); Set_Next (E, T.Table (Index)); T.Table (Index) := E; end Set; end Static_HTable; ------------------- -- Simple_HTable -- ------------------- package body Simple_HTable is procedure Free is new Ada.Unchecked_Deallocation (Element_Wrapper, Elmt_Ptr); --------- -- Get -- --------- function Get (T : Instance; K : Key) return Element is Tmp : Elmt_Ptr; begin if T = Nil then return No_Element; end if; Tmp := Tab.Get (Tab.Instance (T), K); if Tmp = null then return No_Element; else return Tmp.E; end if; end Get; --------------- -- Get_First -- --------------- function Get_First (T : Instance) return Element is Tmp : constant Elmt_Ptr := Tab.Get_First (Tab.Instance (T)); begin if Tmp = null then return No_Element; else return Tmp.E; end if; end Get_First; ------------- -- Get_Key -- ------------- function Get_Key (E : Elmt_Ptr) return Key is begin return E.K; end Get_Key; -------------- -- Get_Next -- -------------- function Get_Next (T : Instance) return Element is Tmp : constant Elmt_Ptr := Tab.Get_Next (Tab.Instance (T)); begin if Tmp = null then return No_Element; else return Tmp.E; end if; end Get_Next; ---------- -- Next -- ---------- function Next (E : Elmt_Ptr) return Elmt_Ptr is begin return E.Next; end Next; ------------ -- Remove -- ------------ procedure Remove (T : Instance; K : Key) is Tmp : Elmt_Ptr; begin Tmp := Tab.Get (Tab.Instance (T), K); if Tmp /= null then Tab.Remove (Tab.Instance (T), K); Free (Tmp); end if; end Remove; ----------- -- Reset -- ----------- procedure Reset (T : in out Instance) is E1, E2 : Elmt_Ptr; begin E1 := Tab.Get_First (Tab.Instance (T)); while E1 /= null loop E2 := Tab.Get_Next (Tab.Instance (T)); Free (E1); E1 := E2; end loop; Tab.Reset (Tab.Instance (T)); end Reset; --------- -- Set -- --------- procedure Set (T : in out Instance; K : Key; E : Element) is Tmp : constant Elmt_Ptr := Tab.Get (Tab.Instance (T), K); begin if Tmp = null then Tab.Set (Tab.Instance (T), new Element_Wrapper'(K, E, null)); else Tmp.E := E; end if; end Set; -------------- -- Set_Next -- -------------- procedure Set_Next (E : Elmt_Ptr; Next : Elmt_Ptr) is begin E.Next := Next; end Set_Next; end Simple_HTable; ------------------------ -- Load_Factor_HTable -- ------------------------ package body Load_Factor_HTable is Min_Size_Increase : constant := 5; -- The minimum increase expressed as number of buckets. This value is -- used to determine the new size of small tables and/or small growth -- percentages. procedure Attach (Elmt : not null Element_Ptr; Chain : not null Element_Ptr); -- Prepend an element to a bucket chain. Elmt is inserted after the -- dummy head of Chain. function Create_Buckets (Size : Positive) return Buckets_Array_Ptr; -- Allocate and initialize a new set of buckets. The buckets are created -- in the range Range_Type'First .. Range_Type'First + Size - 1. procedure Detach (Elmt : not null Element_Ptr); -- Remove an element from an arbitrary bucket chain function Find (Key : Key_Type; Chain : not null Element_Ptr) return Element_Ptr; -- Try to locate the element which contains a particular key within a -- bucket chain. If no such element exists, return No_Element. procedure Free is new Ada.Unchecked_Deallocation (Buckets_Array, Buckets_Array_Ptr); procedure Free is new Ada.Unchecked_Deallocation (Element, Element_Ptr); function Is_Empty_Chain (Chain : not null Element_Ptr) return Boolean; -- Determine whether a bucket chain contains only one element, namely -- the dummy head. ------------ -- Attach -- ------------ procedure Attach (Elmt : not null Element_Ptr; Chain : not null Element_Ptr) is begin Chain.Next.Prev := Elmt; Elmt.Next := Chain.Next; Chain.Next := Elmt; Elmt.Prev := Chain; end Attach; -------------------- -- Create_Buckets -- -------------------- function Create_Buckets (Size : Positive) return Buckets_Array_Ptr is Low_Bound : constant Range_Type := Range_Type'First; Buckets : Buckets_Array_Ptr; begin Buckets := new Buckets_Array (Low_Bound .. Low_Bound + Range_Type (Size) - 1); -- Ensure that the dummy head of each bucket chain points to itself -- in both directions. for Index in Buckets'Range loop declare Bucket : Element renames Buckets (Index); begin Bucket.Prev := Bucket'Unchecked_Access; Bucket.Next := Bucket'Unchecked_Access; end; end loop; return Buckets; end Create_Buckets; ------------------ -- Current_Size -- ------------------ function Current_Size (T : Table) return Positive is begin -- The table should have been properly initialized during object -- elaboration. if T.Buckets = null then raise Program_Error; -- The size of the table is determined by the number of buckets else return T.Buckets'Length; end if; end Current_Size; ------------ -- Detach -- ------------ procedure Detach (Elmt : not null Element_Ptr) is begin if Elmt.Prev /= null and Elmt.Next /= null then Elmt.Prev.Next := Elmt.Next; Elmt.Next.Prev := Elmt.Prev; Elmt.Prev := null; Elmt.Next := null; end if; end Detach; -------------- -- Finalize -- -------------- procedure Finalize (T : in out Table) is Bucket : Element_Ptr; Elmt : Element_Ptr; begin -- Inspect the buckets and deallocate bucket chains for Index in T.Buckets'Range loop Bucket := T.Buckets (Index)'Unchecked_Access; -- The current bucket chain contains an element other than the -- dummy head. while not Is_Empty_Chain (Bucket) loop -- Skip the dummy head, remove and deallocate the element Elmt := Bucket.Next; Detach (Elmt); Free (Elmt); end loop; end loop; -- Deallocate the buckets Free (T.Buckets); end Finalize; ---------- -- Find -- ---------- function Find (Key : Key_Type; Chain : not null Element_Ptr) return Element_Ptr is Elmt : Element_Ptr; begin -- Skip the dummy head, inspect the bucket chain for an element whose -- key matches the requested key. Since each bucket chain is circular -- the search must stop once the dummy head is encountered. Elmt := Chain.Next; while Elmt /= Chain loop if Equal (Elmt.Key, Key) then return Elmt; end if; Elmt := Elmt.Next; end loop; return No_Element; end Find; --------- -- Get -- --------- function Get (T : Table; Key : Key_Type) return Value_Type is Bucket : Element_Ptr; Elmt : Element_Ptr; begin -- Obtain the bucket chain where the (key, value) pair should reside -- by calculating the proper hash location. Bucket := T.Buckets (Hash (Key, Current_Size (T)))'Unchecked_Access; -- Try to find an element whose key matches the requested key Elmt := Find (Key, Bucket); -- The hash table does not contain a matching (key, value) pair if Elmt = No_Element then return No_Value; else return Elmt.Val; end if; end Get; ---------------- -- Initialize -- ---------------- procedure Initialize (T : in out Table) is begin pragma Assert (T.Buckets = null); T.Buckets := Create_Buckets (Initial_Size); T.Element_Count := 0; end Initialize; -------------------- -- Is_Empty_Chain -- -------------------- function Is_Empty_Chain (Chain : not null Element_Ptr) return Boolean is begin return Chain.Next = Chain and Chain.Prev = Chain; end Is_Empty_Chain; ------------ -- Remove -- ------------ procedure Remove (T : in out Table; Key : Key_Type) is Bucket : Element_Ptr; Elmt : Element_Ptr; begin -- Obtain the bucket chain where the (key, value) pair should reside -- by calculating the proper hash location. Bucket := T.Buckets (Hash (Key, Current_Size (T)))'Unchecked_Access; -- Try to find an element whose key matches the requested key Elmt := Find (Key, Bucket); -- Remove and deallocate the (key, value) pair if Elmt /= No_Element then Detach (Elmt); Free (Elmt); end if; end Remove; --------- -- Set -- --------- procedure Set (T : in out Table; Key : Key_Type; Val : Value_Type) is Curr_Size : constant Positive := Current_Size (T); procedure Grow; -- Grow the table to a new size according to the desired percentage -- and relocate all existing elements to the new buckets. ---------- -- Grow -- ---------- procedure Grow is Buckets : Buckets_Array_Ptr; Elmt : Element_Ptr; Hash_Loc : Range_Type; Old_Bucket : Element_Ptr; Old_Buckets : Buckets_Array_Ptr := T.Buckets; Size : Positive; begin -- Calculate the new size and allocate a new set of buckets. Note -- that a table with a small size or a small growth percentage may -- not always grow (for example, 10 buckets and 3% increase). In -- that case, enforce a minimum increase. Size := Positive'Max (Curr_Size * ((100 + Growth_Percentage) / 100), Min_Size_Increase); Buckets := Create_Buckets (Size); -- Inspect the old buckets and transfer all elements by rehashing -- all (key, value) pairs in the new buckets. for Index in Old_Buckets'Range loop Old_Bucket := Old_Buckets (Index)'Unchecked_Access; -- The current bucket chain contains an element other than the -- dummy head. while not Is_Empty_Chain (Old_Bucket) loop -- Skip the dummy head and find the new hash location Elmt := Old_Bucket.Next; Hash_Loc := Hash (Elmt.Key, Size); -- Remove the element from the old buckets and insert it -- into the new buckets. Note that there is no need to check -- for duplicates because the hash table did not have any to -- begin with. Detach (Elmt); Attach (Elmt => Elmt, Chain => Buckets (Hash_Loc)'Unchecked_Access); end loop; end loop; -- Associate the new buckets with the table and reclaim the -- storage occupied by the old buckets. T.Buckets := Buckets; Free (Old_Buckets); end Grow; -- Local variables subtype LLF is Long_Long_Float; Count : Natural renames T.Element_Count; Bucket : Element_Ptr; Hash_Loc : Range_Type; -- Start of processing for Set begin -- Find the bucket where the (key, value) pair should be inserted by -- computing the proper hash location. Hash_Loc := Hash (Key, Curr_Size); Bucket := T.Buckets (Hash_Loc)'Unchecked_Access; -- Ensure that the key is not already present in the bucket in order -- to avoid duplicates. if Find (Key, Bucket) = No_Element then Attach (Elmt => new Element'(Key, Val, null, null), Chain => Bucket); Count := Count + 1; -- Multiple insertions may cause long bucket chains and decrease -- the performance of basic operations. If this is the case, grow -- the table and rehash all existing elements. if (LLF (Count) / LLF (Curr_Size)) > LLF (Load_Factor) then Grow; end if; end if; end Set; end Load_Factor_HTable; end GNAT.Dynamic_HTables;