------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- F R E E Z E -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Aspects; use Aspects; with Atree; use Atree; with Checks; use Checks; with Contracts; use Contracts; with Debug; use Debug; with Einfo; use Einfo; with Einfo.Entities; use Einfo.Entities; with Einfo.Utils; use Einfo.Utils; with Elists; use Elists; with Errout; use Errout; with Exp_Ch3; use Exp_Ch3; with Exp_Ch7; use Exp_Ch7; with Exp_Disp; use Exp_Disp; with Exp_Pakd; use Exp_Pakd; with Exp_Util; use Exp_Util; with Exp_Tss; use Exp_Tss; with Ghost; use Ghost; with Layout; use Layout; with Lib; use Lib; with Local_Restrict; with Namet; use Namet; with Nlists; use Nlists; with Nmake; use Nmake; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Sem; use Sem; with Sem_Aux; use Sem_Aux; with Sem_Cat; use Sem_Cat; with Sem_Ch3; use Sem_Ch3; with Sem_Ch6; use Sem_Ch6; with Sem_Ch7; use Sem_Ch7; with Sem_Ch8; use Sem_Ch8; with Sem_Ch13; use Sem_Ch13; with Sem_Disp; use Sem_Disp; with Sem_Eval; use Sem_Eval; with Sem_Mech; use Sem_Mech; with Sem_Prag; use Sem_Prag; with Sem_Res; use Sem_Res; with Sem_Util; use Sem_Util; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Snames; use Snames; with Stand; use Stand; with Stringt; use Stringt; with Strub; use Strub; with Targparm; use Targparm; with Tbuild; use Tbuild; with Ttypes; use Ttypes; with Uintp; use Uintp; with Urealp; use Urealp; with Warnsw; use Warnsw; package body Freeze is ----------------------- -- Local Subprograms -- ----------------------- procedure Adjust_Esize_For_Alignment (Typ : Entity_Id); -- Typ is a type that is being frozen. If no size clause is given, -- but a default Esize has been computed, then this default Esize is -- adjusted up if necessary to be consistent with a given alignment, -- but never to a value greater than System_Max_Integer_Size. This is -- used for all discrete types and for fixed-point types. procedure Build_And_Analyze_Renamed_Body (Decl : Node_Id; New_S : Entity_Id; After : in out Node_Id); -- Build body for a renaming declaration, insert in tree and analyze procedure Check_Address_Clause (E : Entity_Id); -- Apply legality checks to address clauses for object declarations, -- at the point the object is frozen. Also ensure any initialization is -- performed only after the object has been frozen. procedure Check_Component_Storage_Order (Encl_Type : Entity_Id; Comp : Entity_Id; ADC : Node_Id; Comp_ADC_Present : out Boolean); -- For an Encl_Type that has a Scalar_Storage_Order attribute definition -- clause, verify that the component type has an explicit and compatible -- attribute/aspect. For arrays, Comp is Empty; for records, it is the -- entity of the component under consideration. For an Encl_Type that -- does not have a Scalar_Storage_Order attribute definition clause, -- verify that the component also does not have such a clause. -- ADC is the attribute definition clause if present (or Empty). On return, -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order -- attribute definition clause. procedure Check_Debug_Info_Needed (T : Entity_Id); -- As each entity is frozen, this routine is called to deal with the -- setting of Debug_Info_Needed for the entity. This flag is set if -- the entity comes from source, or if we are in Debug_Generated_Code -- mode or if the -gnatdV debug flag is set. However, it never sets -- the flag if Debug_Info_Off is set. This procedure also ensures that -- subsidiary entities have the flag set as required. procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id); -- When an expression function is frozen by a use of it, the expression -- itself is frozen. Check that the expression does not include references -- to deferred constants without completion. We report this at the freeze -- point of the function, to provide a better error message. -- -- In most cases the expression itself is frozen by the time the function -- itself is frozen, because the formals will be frozen by then. However, -- Attribute references to outer types are freeze points for those types; -- this routine generates the required freeze nodes for them. procedure Check_Strict_Alignment (E : Entity_Id); -- E is a base type. If E is tagged or has a component that is aliased -- or tagged or contains something this is aliased or tagged, set -- Strict_Alignment. procedure Check_Unsigned_Type (E : Entity_Id); pragma Inline (Check_Unsigned_Type); -- If E is a fixed-point or discrete type, then all the necessary work -- to freeze it is completed except for possible setting of the flag -- Is_Unsigned_Type, which is done by this procedure. The call has no -- effect if the entity E is not a discrete or fixed-point type. procedure Freeze_And_Append (Ent : Entity_Id; N : Node_Id; Result : in out List_Id); -- Freezes Ent using Freeze_Entity, and appends the resulting list of -- nodes to Result, modifying Result from No_List if necessary. N has -- the same usage as in Freeze_Entity. procedure Freeze_Enumeration_Type (Typ : Entity_Id); -- Freeze enumeration type. The Esize field is set as processing -- proceeds (i.e. set by default when the type is declared and then -- adjusted by rep clauses). What this procedure does is to make sure -- that if a foreign convention is specified, and no specific size -- is given, then the size must be at least Integer'Size. procedure Freeze_Static_Object (E : Entity_Id); -- If an object is frozen which has Is_Statically_Allocated set, then -- all referenced types must also be marked with this flag. This routine -- is in charge of meeting this requirement for the object entity E. procedure Freeze_Subprogram (E : Entity_Id); -- Perform freezing actions for a subprogram (create extra formals, -- and set proper default mechanism values). Note that this routine -- is not called for internal subprograms, for which neither of these -- actions is needed (or desirable, we do not want for example to have -- these extra formals present in initialization procedures, where they -- would serve no purpose). In this call E is either a subprogram or -- a subprogram type (i.e. an access to a subprogram). function Is_Fully_Defined (T : Entity_Id) return Boolean; -- True if T is not private and has no private components, or has a full -- view. Used to determine whether the designated type of an access type -- should be frozen when the access type is frozen. This is done when an -- allocator is frozen, or an expression that may involve attributes of -- the designated type. Otherwise freezing the access type does not freeze -- the designated type. procedure Process_Default_Expressions (E : Entity_Id; After : in out Node_Id); -- This procedure is called for each subprogram to complete processing of -- default expressions at the point where all types are known to be frozen. -- The expressions must be analyzed in full, to make sure that all error -- processing is done (they have only been preanalyzed). If the expression -- is not an entity or literal, its analysis may generate code which must -- not be executed. In that case we build a function body to hold that -- code. This wrapper function serves no other purpose (it used to be -- called to evaluate the default, but now the default is inlined at each -- point of call). procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id); -- Typ is a record or array type that is being frozen. This routine sets -- the default component alignment from the scope stack values if the -- alignment is otherwise not specified. procedure Set_SSO_From_Default (T : Entity_Id); -- T is a record or array type that is being frozen. If it is a base type, -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order -- will be set appropriately. Note that an explicit occurrence of aspect -- Scalar_Storage_Order or an explicit setting of this aspect with an -- attribute definition clause occurs, then these two flags are reset in -- any case, so call will have no effect. function Should_Freeze_Type (Typ : Entity_Id; E : Entity_Id; N : Node_Id) return Boolean; -- True if Typ should be frozen when the profile of E is being frozen at N. -- ??? Expression functions that are not completions shouldn't freeze types -- but our current expansion and freezing model requires an early freezing -- when the tag of Typ is needed or for an aggregate with a subtype of Typ, -- so we return True in these cases. procedure Undelay_Type (T : Entity_Id); -- T is a type of a component that we know to be an Itype. We don't want -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any -- Full_View or Corresponding_Record_Type. procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id); -- Expr is the expression for an address clause for the entity denoted by -- Nam whose type is Typ. If Typ has a default initialization, and there is -- no explicit initialization in the source declaration, check whether the -- address clause might cause overlaying of an entity, and emit a warning -- on the side effect that the initialization will cause. ------------------------------- -- Adjust_Esize_For_Alignment -- ------------------------------- procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is Align : Uint; begin if Known_Esize (Typ) and then Known_Alignment (Typ) then Align := Alignment_In_Bits (Typ); if Align > Esize (Typ) then if Align > System_Max_Integer_Size then pragma Assert (Serious_Errors_Detected > 0); else Set_Esize (Typ, Align); end if; end if; end if; end Adjust_Esize_For_Alignment; ------------------------------------ -- Build_And_Analyze_Renamed_Body -- ------------------------------------ procedure Build_And_Analyze_Renamed_Body (Decl : Node_Id; New_S : Entity_Id; After : in out Node_Id) is Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S); Ent : constant Entity_Id := Defining_Entity (Decl); Body_Node : Node_Id; Renamed_Subp : Entity_Id; begin -- If the renamed subprogram is intrinsic, there is no need for a -- wrapper body: we set the alias that will be called and expanded which -- completes the declaration. This transformation is only legal if the -- renamed entity has already been elaborated. -- Note that it is legal for a renaming_as_body to rename an intrinsic -- subprogram, as long as the renaming occurs before the new entity -- is frozen (RM 8.5.4 (5)). if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration and then Is_Entity_Name (Name (Body_Decl)) then Renamed_Subp := Entity (Name (Body_Decl)); else Renamed_Subp := Empty; end if; if Present (Renamed_Subp) and then Is_Intrinsic_Subprogram (Renamed_Subp) and then (not In_Same_Source_Unit (Renamed_Subp, Ent) or else Sloc (Renamed_Subp) < Sloc (Ent)) -- We can make the renaming entity intrinsic if the renamed function -- has an interface name, or if it is one of the shift/rotate -- operations known to the compiler. and then (Present (Interface_Name (Renamed_Subp)) or else Chars (Renamed_Subp) in Name_Rotate_Left | Name_Rotate_Right | Name_Shift_Left | Name_Shift_Right | Name_Shift_Right_Arithmetic) then Set_Interface_Name (Ent, Interface_Name (Renamed_Subp)); if Present (Alias (Renamed_Subp)) then Set_Alias (Ent, Alias (Renamed_Subp)); else Set_Alias (Ent, Renamed_Subp); end if; Set_Is_Intrinsic_Subprogram (Ent); Set_Has_Completion (Ent); else Body_Node := Build_Renamed_Body (Decl, New_S); Insert_After (After, Body_Node); Mark_Rewrite_Insertion (Body_Node); Analyze (Body_Node); After := Body_Node; end if; end Build_And_Analyze_Renamed_Body; ------------------------ -- Build_Renamed_Body -- ------------------------ function Build_Renamed_Body (Decl : Node_Id; New_S : Entity_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (New_S); -- We use for the source location of the renamed body, the location of -- the spec entity. It might seem more natural to use the location of -- the renaming declaration itself, but that would be wrong, since then -- the body we create would look as though it was created far too late, -- and this could cause problems with elaboration order analysis, -- particularly in connection with instantiations. N : constant Node_Id := Unit_Declaration_Node (New_S); Nam : constant Node_Id := Name (N); Old_S : Entity_Id; Spec : constant Node_Id := New_Copy_Tree (Specification (Decl)); Actuals : List_Id; Call_Node : Node_Id; Call_Name : Node_Id; Body_Node : Node_Id; Formal : Entity_Id; O_Formal : Entity_Id; Param_Spec : Node_Id; Pref : Node_Id := Empty; -- If the renamed entity is a primitive operation given in prefix form, -- the prefix is the target object and it has to be added as the first -- actual in the generated call. begin -- Determine the entity being renamed, which is the target of the call -- statement. If the name is an explicit dereference, this is a renaming -- of a subprogram type rather than a subprogram. The name itself is -- fully analyzed. if Nkind (Nam) = N_Selected_Component then Old_S := Entity (Selector_Name (Nam)); elsif Nkind (Nam) = N_Explicit_Dereference then Old_S := Etype (Nam); elsif Nkind (Nam) = N_Indexed_Component then if Is_Entity_Name (Prefix (Nam)) then Old_S := Entity (Prefix (Nam)); else Old_S := Entity (Selector_Name (Prefix (Nam))); end if; elsif Nkind (Nam) = N_Character_Literal then Old_S := Etype (New_S); else Old_S := Entity (Nam); end if; if Is_Entity_Name (Nam) then -- If the renamed entity is a predefined operator, retain full name -- to ensure its visibility. if Ekind (Old_S) = E_Operator and then Nkind (Nam) = N_Expanded_Name then Call_Name := New_Copy (Name (N)); else Call_Name := New_Occurrence_Of (Old_S, Loc); end if; else if Nkind (Nam) = N_Selected_Component and then Present (First_Formal (Old_S)) and then (Is_Controlling_Formal (First_Formal (Old_S)) or else Is_Class_Wide_Type (Etype (First_Formal (Old_S)))) then -- Retrieve the target object, to be added as a first actual -- in the call. Call_Name := New_Occurrence_Of (Old_S, Loc); Pref := Prefix (Nam); else Call_Name := New_Copy (Name (N)); end if; -- Original name may have been overloaded, but is fully resolved now Set_Is_Overloaded (Call_Name, False); end if; if Nkind (Decl) /= N_Subprogram_Declaration then Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Specification (N))); end if; -- For simple renamings, subsequent calls can be expanded directly as -- calls to the renamed entity. The body must be generated in any case -- for calls that may appear elsewhere. This is not done in the case -- where the subprogram is an instantiation because the actual proper -- body has not been built yet. if Ekind (Old_S) in E_Function | E_Procedure and then not Is_Generic_Instance (Old_S) then Set_Body_To_Inline (Decl, Old_S); end if; -- Check whether the return type is a limited view. If the subprogram -- is already frozen the generated body may have a non-limited view -- of the type, that must be used, because it is the one in the spec -- of the renaming declaration. if Ekind (Old_S) = E_Function and then Is_Entity_Name (Result_Definition (Spec)) then declare Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec)); begin if Has_Non_Limited_View (Ret_Type) then Set_Result_Definition (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc)); end if; end; end if; -- The body generated for this renaming is an internal artifact, and -- does not constitute a freeze point for the called entity. Set_Must_Not_Freeze (Call_Name); Formal := First_Formal (Defining_Entity (Decl)); if Present (Pref) then declare Pref_Type : constant Entity_Id := Etype (Pref); Form_Type : constant Entity_Id := Etype (First_Formal (Old_S)); begin -- The controlling formal may be an access parameter, or the -- actual may be an access value, so adjust accordingly. if Is_Access_Type (Pref_Type) and then not Is_Access_Type (Form_Type) then Actuals := New_List (Make_Explicit_Dereference (Loc, Relocate_Node (Pref))); elsif Is_Access_Type (Form_Type) and then not Is_Access_Type (Pref) then Actuals := New_List ( Make_Attribute_Reference (Loc, Attribute_Name => Name_Access, Prefix => Relocate_Node (Pref))); else Actuals := New_List (Pref); end if; end; elsif Present (Formal) then Actuals := New_List; else Actuals := No_List; end if; while Present (Formal) loop Append (New_Occurrence_Of (Formal, Loc), Actuals); Next_Formal (Formal); end loop; -- If the renamed entity is an entry, inherit its profile. For other -- renamings as bodies, both profiles must be subtype conformant, so it -- is not necessary to replace the profile given in the declaration. -- However, default values that are aggregates are rewritten when -- partially analyzed, so we recover the original aggregate to insure -- that subsequent conformity checking works. Similarly, if the default -- expression was constant-folded, recover the original expression. Formal := First_Formal (Defining_Entity (Decl)); if Present (Formal) then O_Formal := First_Formal (Old_S); Param_Spec := First (Parameter_Specifications (Spec)); while Present (Formal) loop if Is_Entry (Old_S) then if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then Set_Etype (Formal, Etype (O_Formal)); Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal)); end if; elsif Nkind (Default_Value (O_Formal)) = N_Aggregate or else Nkind (Original_Node (Default_Value (O_Formal))) /= Nkind (Default_Value (O_Formal)) then Set_Expression (Param_Spec, New_Copy_Tree (Original_Node (Default_Value (O_Formal)))); end if; Next_Formal (Formal); Next_Formal (O_Formal); Next (Param_Spec); end loop; end if; -- If the renamed entity is a function, the generated body contains a -- return statement. Otherwise, build a procedure call. If the entity is -- an entry, subsequent analysis of the call will transform it into the -- proper entry or protected operation call. If the renamed entity is -- a character literal, return it directly. if Ekind (Old_S) = E_Function or else Ekind (Old_S) = E_Operator or else (Ekind (Old_S) = E_Subprogram_Type and then Etype (Old_S) /= Standard_Void_Type) then Call_Node := Make_Simple_Return_Statement (Loc, Expression => Make_Function_Call (Loc, Name => Call_Name, Parameter_Associations => Actuals)); elsif Ekind (Old_S) = E_Enumeration_Literal then Call_Node := Make_Simple_Return_Statement (Loc, Expression => New_Occurrence_Of (Old_S, Loc)); elsif Nkind (Nam) = N_Character_Literal then Call_Node := Make_Simple_Return_Statement (Loc, Expression => Call_Name); else Call_Node := Make_Procedure_Call_Statement (Loc, Name => Call_Name, Parameter_Associations => Actuals); end if; -- Create entities for subprogram body and formals Set_Defining_Unit_Name (Spec, Make_Defining_Identifier (Loc, Chars => Chars (New_S))); Param_Spec := First (Parameter_Specifications (Spec)); while Present (Param_Spec) loop Set_Defining_Identifier (Param_Spec, Make_Defining_Identifier (Loc, Chars => Chars (Defining_Identifier (Param_Spec)))); Next (Param_Spec); end loop; -- In GNATprove, prefer to generate an expression function whenever -- possible, to benefit from the more precise analysis in that case -- (as if an implicit postcondition had been generated). if GNATprove_Mode and then Nkind (Call_Node) = N_Simple_Return_Statement then Body_Node := Make_Expression_Function (Loc, Specification => Spec, Expression => Expression (Call_Node)); else Body_Node := Make_Subprogram_Body (Loc, Specification => Spec, Declarations => New_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Call_Node))); end if; -- Link the body to the entity whose declaration it completes. If -- the body is analyzed when the renamed entity is frozen, it may -- be necessary to restore the proper scope (see package Exp_Ch13). if Nkind (N) = N_Subprogram_Renaming_Declaration and then Present (Corresponding_Spec (N)) then Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N)); else Set_Corresponding_Spec (Body_Node, New_S); end if; return Body_Node; end Build_Renamed_Body; -------------------------- -- Check_Address_Clause -- -------------------------- procedure Check_Address_Clause (E : Entity_Id) is Addr : constant Node_Id := Address_Clause (E); Typ : constant Entity_Id := Etype (E); Decl : Node_Id; Expr : Node_Id; Init : Node_Id; Lhs : Node_Id; Tag_Assign : Node_Id; begin if Present (Addr) then -- For a deferred constant, the initialization value is on full view if Ekind (E) = E_Constant and then Present (Full_View (E)) then Decl := Declaration_Node (Full_View (E)); else Decl := Declaration_Node (E); end if; Expr := Expression (Addr); if Needs_Constant_Address (Decl, Typ) then Check_Constant_Address_Clause (Expr, E); -- Has_Delayed_Freeze was set on E when the address clause was -- analyzed, and must remain set because we want the address -- clause to be elaborated only after any entity it references -- has been elaborated. end if; -- If Rep_Clauses are to be ignored, remove address clause from -- list attached to entity, because it may be illegal for gigi, -- for example by breaking order of elaboration. if Ignore_Rep_Clauses then declare Rep : Node_Id; begin Rep := First_Rep_Item (E); if Rep = Addr then Set_First_Rep_Item (E, Next_Rep_Item (Addr)); else while Present (Rep) and then Next_Rep_Item (Rep) /= Addr loop Next_Rep_Item (Rep); end loop; end if; if Present (Rep) then Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr)); end if; end; -- And now remove the address clause Kill_Rep_Clause (Addr); elsif not Error_Posted (Expr) and then not Needs_Finalization (Typ) then Warn_Overlay (Expr, Typ, Name (Addr)); end if; Init := Expression (Decl); -- If a variable, or a non-imported constant, overlays a constant -- object and has an initialization value, then the initialization -- may end up writing into read-only memory. Detect the cases of -- statically identical values and remove the initialization. In -- the other cases, give a warning. We will give other warnings -- later for the variable if it is assigned. if (Ekind (E) = E_Variable or else (Ekind (E) = E_Constant and then not Is_Imported (E))) and then Overlays_Constant (E) and then Present (Init) then declare O_Ent : Entity_Id; Off : Boolean; begin Find_Overlaid_Entity (Addr, O_Ent, Off); if Ekind (O_Ent) = E_Constant and then Etype (O_Ent) = Typ and then Present (Constant_Value (O_Ent)) and then Compile_Time_Compare (Init, Constant_Value (O_Ent), Assume_Valid => True) = EQ then Set_No_Initialization (Decl); return; elsif Comes_From_Source (Init) and then Address_Clause_Overlay_Warnings then Error_Msg_Sloc := Sloc (Addr); Error_Msg_NE ("?o?constant& may be modified via address clause#", Decl, O_Ent); end if; end; end if; -- Remove side effects from initial expression, except in the case of -- limited build-in-place calls and aggregates, which have their own -- expansion elsewhere. This exception is necessary to avoid copying -- limited objects. if Present (Init) and then not Is_Inherently_Limited_Type (Typ) then -- Capture initialization value at point of declaration, and make -- explicit assignment legal, because object may be a constant. Remove_Side_Effects (Init); Lhs := New_Occurrence_Of (E, Sloc (Decl)); Set_Assignment_OK (Lhs); -- Move initialization to freeze actions, once the object has -- been frozen and the address clause alignment check has been -- performed. Append_Freeze_Action (E, Make_Assignment_Statement (Sloc (Decl), Name => Lhs, Expression => Expression (Decl))); Set_No_Initialization (Decl); -- If the object is tagged, check whether the tag must be -- reassigned explicitly. Tag_Assign := Make_Tag_Assignment (Decl); if Present (Tag_Assign) then Append_Freeze_Action (E, Tag_Assign); end if; end if; end if; end Check_Address_Clause; ----------------------------- -- Check_Compile_Time_Size -- ----------------------------- procedure Check_Compile_Time_Size (T : Entity_Id) is procedure Set_Small_Size (T : Entity_Id; S : Uint); -- Sets the compile time known size in the RM_Size field of T, checking -- for a size clause that was given which attempts to give a small size. function Size_Known (T : Entity_Id) return Boolean; -- Recursive function that does all the work function Static_Discriminated_Components (T : Entity_Id) return Boolean; -- If T is a constrained subtype, its size is not known if any of its -- discriminant constraints is not static and it is not a null record. -- The test is conservative and doesn't check that the components are -- in fact constrained by non-static discriminant values. Could be made -- more precise ??? -------------------- -- Set_Small_Size -- -------------------- procedure Set_Small_Size (T : Entity_Id; S : Uint) is begin if S > System_Max_Integer_Size then return; -- Check for bad size clause given elsif Has_Size_Clause (T) then if RM_Size (T) < S then Error_Msg_Uint_1 := S; Error_Msg_NE (Size_Too_Small_Message, Size_Clause (T), T); end if; -- Set size if not set already. Do not set it to Uint_0, because in -- some cases (notably array-of-record), the Component_Size is -- No_Uint, which causes S to be Uint_0. Presumably the RM_Size and -- Component_Size will eventually be set correctly by the back end. elsif not Known_RM_Size (T) and then S /= Uint_0 then Set_RM_Size (T, S); end if; end Set_Small_Size; ---------------- -- Size_Known -- ---------------- function Size_Known (T : Entity_Id) return Boolean is Comp : Entity_Id; Ctyp : Entity_Id; begin if Size_Known_At_Compile_Time (T) then return True; -- Always True for elementary types, even generic formal elementary -- types. We used to return False in the latter case, but the size -- is known at compile time, even in the template, we just do not -- know the exact size but that's not the point of this routine. elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then return True; -- Array types elsif Is_Array_Type (T) then -- String literals always have known size, and we can set it if Ekind (T) = E_String_Literal_Subtype then if Known_Component_Size (T) then Set_Small_Size (T, Component_Size (T) * String_Literal_Length (T)); else -- The following is wrong, but does what previous versions -- did. The Component_Size is unknown for the string in a -- pragma Warnings. Set_Small_Size (T, Uint_0); end if; return True; -- Unconstrained types never have known at compile time size elsif not Is_Constrained (T) then return False; -- Don't do any recursion on type with error posted, since we may -- have a malformed type that leads us into a loop. elsif Error_Posted (T) then return False; -- Otherwise if component size unknown, then array size unknown elsif not Size_Known (Component_Type (T)) then return False; end if; -- Check for all indexes static, and also compute possible size -- (in case it is not greater than System_Max_Integer_Size and -- thus may be packable). declare Index : Entity_Id; Low : Node_Id; High : Node_Id; Size : Uint := Component_Size (T); Dim : Uint; begin -- See comment in Set_Small_Size above if No (Size) then Size := Uint_0; end if; Index := First_Index (T); while Present (Index) loop if Nkind (Index) = N_Range then Get_Index_Bounds (Index, Low, High); elsif Error_Posted (Scalar_Range (Etype (Index))) then return False; else Low := Type_Low_Bound (Etype (Index)); High := Type_High_Bound (Etype (Index)); end if; if not Compile_Time_Known_Value (Low) or else not Compile_Time_Known_Value (High) or else Etype (Index) = Any_Type then return False; else Dim := Expr_Value (High) - Expr_Value (Low) + 1; if Dim > Uint_0 then Size := Size * Dim; else Size := Uint_0; end if; end if; Next_Index (Index); end loop; Set_Small_Size (T, Size); return True; end; -- For non-generic private types, go to underlying type if present elsif Is_Private_Type (T) and then not Is_Generic_Type (T) and then Present (Underlying_Type (T)) then -- Don't do any recursion on type with error posted, since we may -- have a malformed type that leads us into a loop. if Error_Posted (T) then return False; else return Size_Known (Underlying_Type (T)); end if; -- Record types elsif Is_Record_Type (T) then -- A subtype of a variant record must not have non-static -- discriminated components. if T /= Base_Type (T) and then not Static_Discriminated_Components (T) then return False; -- Don't do any recursion on type with error posted, since we may -- have a malformed type that leads us into a loop. elsif Error_Posted (T) then return False; end if; -- Now look at the components of the record declare -- The following two variables are used to keep track of the -- size of packed records if we can tell the size of the packed -- record in the front end. Packed_Size_Known is True if so far -- we can figure out the size. It is initialized to True for a -- packed record, unless the record has either discriminants or -- independent components, or is a strict-alignment type, since -- it cannot be fully packed in this case. -- The reason we eliminate the discriminated case is that -- we don't know the way the back end lays out discriminated -- packed records. If Packed_Size_Known is True, then -- Packed_Size is the size in bits so far. Packed_Size_Known : Boolean := Is_Packed (T) and then not Has_Discriminants (T) and then not Has_Independent_Components (T) and then not Strict_Alignment (T); Packed_Size : Uint := Uint_0; -- Size in bits so far begin -- Test for variant part present if Has_Discriminants (T) and then Present (Parent (T)) and then Nkind (Parent (T)) = N_Full_Type_Declaration and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition and then not Null_Present (Type_Definition (Parent (T))) and then Present (Variant_Part (Component_List (Type_Definition (Parent (T))))) then -- If variant part is present, and type is unconstrained, -- then we must have defaulted discriminants, or a size -- clause must be present for the type, or else the size -- is definitely not known at compile time. if not Is_Constrained (T) and then No (Discriminant_Default_Value (First_Discriminant (T))) and then not Known_RM_Size (T) and then not Known_Esize (T) then return False; end if; end if; -- Loop through components Comp := First_Component_Or_Discriminant (T); while Present (Comp) loop Ctyp := Etype (Comp); -- We do not know the packed size if there is a component -- clause present (we possibly could, but this would only -- help in the case of a record with partial rep clauses. -- That's because in the case of full rep clauses, the -- size gets figured out anyway by a different circuit). if Present (Component_Clause (Comp)) then Packed_Size_Known := False; end if; -- We do not know the packed size for an independent -- component or if it is of a strict-alignment type, -- since packing does not touch these (RM 13.2(7)). if Is_Independent (Comp) or else Is_Independent (Ctyp) or else Strict_Alignment (Ctyp) then Packed_Size_Known := False; end if; -- We need to identify a component that is an array where -- the index type is an enumeration type with non-standard -- representation, and some bound of the type depends on a -- discriminant. -- This is because gigi computes the size by doing a -- substitution of the appropriate discriminant value in -- the size expression for the base type, and gigi is not -- clever enough to evaluate the resulting expression (which -- involves a call to rep_to_pos) at compile time. -- It would be nice if gigi would either recognize that -- this expression can be computed at compile time, or -- alternatively figured out the size from the subtype -- directly, where all the information is at hand ??? if Is_Array_Type (Etype (Comp)) and then Present (Packed_Array_Impl_Type (Etype (Comp))) then declare Ocomp : constant Entity_Id := Original_Record_Component (Comp); OCtyp : constant Entity_Id := Etype (Ocomp); Ind : Node_Id; Indtyp : Entity_Id; Lo, Hi : Node_Id; begin Ind := First_Index (OCtyp); while Present (Ind) loop Indtyp := Etype (Ind); if Is_Enumeration_Type (Indtyp) and then Has_Non_Standard_Rep (Indtyp) then Lo := Type_Low_Bound (Indtyp); Hi := Type_High_Bound (Indtyp); if Is_Entity_Name (Lo) and then Ekind (Entity (Lo)) = E_Discriminant then return False; elsif Is_Entity_Name (Hi) and then Ekind (Entity (Hi)) = E_Discriminant then return False; end if; end if; Next_Index (Ind); end loop; end; end if; -- Clearly size of record is not known if the size of one of -- the components is not known. if not Size_Known (Ctyp) then return False; end if; -- Accumulate packed size if possible if Packed_Size_Known then -- We can deal with elementary types, small packed arrays -- if the representation is a modular type and also small -- record types as checked by Set_Small_Size. if Is_Elementary_Type (Ctyp) or else (Is_Array_Type (Ctyp) and then Present (Packed_Array_Impl_Type (Ctyp)) and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Ctyp))) or else Is_Record_Type (Ctyp) then -- If RM_Size is known and static, then we can keep -- accumulating the packed size. if Known_Static_RM_Size (Ctyp) then Packed_Size := Packed_Size + RM_Size (Ctyp); -- If we have a field whose RM_Size is not known then -- we can't figure out the packed size here. else Packed_Size_Known := False; end if; -- For other types we can't figure out the packed size else Packed_Size_Known := False; end if; end if; Next_Component_Or_Discriminant (Comp); end loop; if Packed_Size_Known then Set_Small_Size (T, Packed_Size); end if; return True; end; -- All other cases, size not known at compile time else return False; end if; end Size_Known; ------------------------------------- -- Static_Discriminated_Components -- ------------------------------------- function Static_Discriminated_Components (T : Entity_Id) return Boolean is Constraint : Elmt_Id; begin if Has_Discriminants (T) and then Present (Discriminant_Constraint (T)) and then Present (First_Component (T)) then Constraint := First_Elmt (Discriminant_Constraint (T)); while Present (Constraint) loop if not Compile_Time_Known_Value (Node (Constraint)) then return False; end if; Next_Elmt (Constraint); end loop; end if; return True; end Static_Discriminated_Components; -- Start of processing for Check_Compile_Time_Size begin Set_Size_Known_At_Compile_Time (T, Size_Known (T)); end Check_Compile_Time_Size; ----------------------------------- -- Check_Component_Storage_Order -- ----------------------------------- procedure Check_Component_Storage_Order (Encl_Type : Entity_Id; Comp : Entity_Id; ADC : Node_Id; Comp_ADC_Present : out Boolean) is Comp_Base : Entity_Id; Comp_ADC : Node_Id; Encl_Base : Entity_Id; Err_Node : Node_Id; Component_Aliased : Boolean; Comp_Byte_Aligned : Boolean := False; -- Set for the record case, True if Comp is aligned on byte boundaries -- (in which case it is allowed to have different storage order). Comp_SSO_Differs : Boolean; -- Set True when the component is a nested composite, and it does not -- have the same scalar storage order as Encl_Type. begin -- Record case if Present (Comp) then Err_Node := Comp; Comp_Base := Etype (Comp); if Is_Tag (Comp) then Comp_Byte_Aligned := True; Component_Aliased := False; else -- If a component clause is present, check if the component starts -- and ends on byte boundaries. Otherwise conservatively assume it -- does so only in the case where the record is not packed. if Present (Component_Clause (Comp)) then Comp_Byte_Aligned := Known_Normalized_First_Bit (Comp) and then Known_Esize (Comp) and then Normalized_First_Bit (Comp) mod System_Storage_Unit = 0 and then Esize (Comp) mod System_Storage_Unit = 0; else Comp_Byte_Aligned := not Is_Packed (Encl_Type); end if; Component_Aliased := Is_Aliased (Comp); end if; -- Array case else Err_Node := Encl_Type; Comp_Base := Component_Type (Encl_Type); Component_Aliased := Has_Aliased_Components (Encl_Type); end if; -- Note: the Reverse_Storage_Order flag is set on the base type, but -- the attribute definition clause is attached to the first subtype. -- Also, if the base type is incomplete or private, go to full view -- if known Encl_Base := Base_Type (Encl_Type); if Present (Underlying_Type (Encl_Base)) then Encl_Base := Underlying_Type (Encl_Base); end if; Comp_Base := Base_Type (Comp_Base); if Present (Underlying_Type (Comp_Base)) then Comp_Base := Underlying_Type (Comp_Base); end if; Comp_ADC := Get_Attribute_Definition_Clause (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order); Comp_ADC_Present := Present (Comp_ADC); -- Case of record or array component: check storage order compatibility. -- But, if the record has Complex_Representation, then it is treated as -- a scalar in the back end so the storage order is irrelevant. if (Is_Record_Type (Comp_Base) and then not Has_Complex_Representation (Comp_Base)) or else Is_Array_Type (Comp_Base) then Comp_SSO_Differs := Reverse_Storage_Order (Encl_Base) /= Reverse_Storage_Order (Comp_Base); -- Parent and extension must have same storage order if Present (Comp) and then Chars (Comp) = Name_uParent then if Comp_SSO_Differs then Error_Msg_N ("record extension must have same scalar storage order as " & "parent", Err_Node); end if; -- If component and composite SSO differs, check that component -- falls on byte boundaries and isn't bit packed. elsif Comp_SSO_Differs then -- Component SSO differs from enclosing composite: -- Reject if composite is a bit-packed array, as it is rewritten -- into an array of scalars. if Is_Bit_Packed_Array (Encl_Base) then Error_Msg_N ("type of packed array must have same scalar storage order " & "as component", Err_Node); -- Reject if not byte aligned elsif Is_Record_Type (Encl_Base) and then not Comp_Byte_Aligned then if Present (Component_Clause (Comp)) then Error_Msg_N ("type of non-byte-aligned component must have same scalar" & " storage order as enclosing record", Err_Node); else Error_Msg_N ("type of packed component must have same scalar" & " storage order as enclosing record", Err_Node); end if; -- Warn if specified only for the outer composite elsif Present (ADC) and then No (Comp_ADC) then Error_Msg_NE ("scalar storage order specified for & does not apply to " & "component?", Err_Node, Encl_Base); end if; end if; -- Enclosing type has explicit SSO: non-composite component must not -- be aliased. elsif Present (ADC) and then Component_Aliased then Error_Msg_N ("aliased component not permitted for type with explicit " & "Scalar_Storage_Order", Err_Node); end if; end Check_Component_Storage_Order; ----------------------------- -- Check_Debug_Info_Needed -- ----------------------------- procedure Check_Debug_Info_Needed (T : Entity_Id) is begin if Debug_Info_Off (T) then return; elsif Comes_From_Source (T) or else Debug_Generated_Code or else Debug_Flag_VV or else Needs_Debug_Info (T) then Set_Debug_Info_Needed (T); end if; end Check_Debug_Info_Needed; ------------------------------- -- Check_Expression_Function -- ------------------------------- procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is function Find_Constant (Nod : Node_Id) return Traverse_Result; -- Function to search for deferred constant ------------------- -- Find_Constant -- ------------------- function Find_Constant (Nod : Node_Id) return Traverse_Result is begin -- When a constant is initialized with the result of a dispatching -- call, the constant declaration is rewritten as a renaming of the -- displaced function result. This scenario is not a premature use of -- a constant even though the Has_Completion flag is not set. if Is_Entity_Name (Nod) and then Present (Entity (Nod)) and then Ekind (Entity (Nod)) = E_Constant and then Scope (Entity (Nod)) = Current_Scope and then Nkind (Declaration_Node (Entity (Nod))) = N_Object_Declaration and then not Is_Imported (Entity (Nod)) and then not Has_Completion (Entity (Nod)) and then not (Present (Full_View (Entity (Nod))) and then Has_Completion (Full_View (Entity (Nod)))) then Error_Msg_NE ("premature use of& in call or instance", N, Entity (Nod)); elsif Nkind (Nod) = N_Attribute_Reference then Analyze (Prefix (Nod)); if Is_Entity_Name (Prefix (Nod)) and then Is_Type (Entity (Prefix (Nod))) then if Expander_Active then Check_Fully_Declared (Entity (Prefix (Nod)), N); end if; Freeze_Before (N, Entity (Prefix (Nod))); end if; end if; return OK; end Find_Constant; procedure Check_Deferred is new Traverse_Proc (Find_Constant); -- Local variables Decl : Node_Id; -- Start of processing for Check_Expression_Function begin Decl := Original_Node (Unit_Declaration_Node (Nam)); -- The subprogram body created for the expression function is not -- itself a freeze point. if Scope (Nam) = Current_Scope and then Nkind (Decl) = N_Expression_Function and then Nkind (N) /= N_Subprogram_Body then Check_Deferred (Expression (Decl)); end if; end Check_Expression_Function; -------------------------------- -- Check_Inherited_Conditions -- -------------------------------- procedure Check_Inherited_Conditions (R : Entity_Id; Late_Overriding : Boolean := False) is Prim_Ops : constant Elist_Id := Primitive_Operations (R); Decls : List_Id; Op_Node : Elmt_Id; Par_Prim : Entity_Id; Prim : Entity_Id; type Wrapper_Kind is (No_Wrapper, LSP_Wrapper, Postcond_Wrapper); Wrapper_Needed : Wrapper_Kind; -- Kind of wrapper needed by a given inherited primitive of tagged -- type R: -- * No_Wrapper: No wrapper is needed. -- * LSP_Wrapper: Wrapper that handles inherited class-wide pre/post -- conditions that call overridden primitives. -- * Postcond_Wrapper: Wrapper that handles postconditions of interface -- primitives. function Build_DTW_Body (Loc : Source_Ptr; DTW_Spec : Node_Id; DTW_Decls : List_Id; Par_Prim : Entity_Id; Wrapped_Subp : Entity_Id) return Node_Id; -- Build the body of the dispatch table wrapper containing the given -- spec and declarations; the call to the wrapped subprogram includes -- the proper type conversion. function Build_DTW_Spec (Par_Prim : Entity_Id) return Node_Id; -- Build the spec of the dispatch table wrapper procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id; LSP_Wrapper_Needed : out Boolean); -- Build corresponding pragmas for an operation whose ancestor has -- class-wide pre/postconditions. If the operation is inherited then -- Wrapper_Needed is returned True to force the creation of a wrapper -- for the inherited operation. If the ancestor is being overridden, -- the pragmas are constructed only to verify their legality, in case -- they contain calls to other primitives that may have been overridden. procedure Check_Interface_Primitives_Strub_Mode; -- Called when R is an interface type to check strub mode compatibility -- all its primitives. function Needs_Wrapper (Class_Cond : Node_Id; Subp : Entity_Id; Par_Subp : Entity_Id) return Boolean; -- Checks whether the dispatch-table wrapper (DTW) for Subp must be -- built to evaluate the given class-wide condition. -------------------- -- Build_DTW_Body -- -------------------- function Build_DTW_Body (Loc : Source_Ptr; DTW_Spec : Node_Id; DTW_Decls : List_Id; Par_Prim : Entity_Id; Wrapped_Subp : Entity_Id) return Node_Id is Actuals : constant List_Id := Empty_List; Call : Node_Id; Formal : Entity_Id := First_Formal (Par_Prim); New_F_Spec : Entity_Id := First (Parameter_Specifications (DTW_Spec)); New_Formal : Entity_Id; begin -- Build parameter association for call to wrapped subprogram while Present (Formal) loop New_Formal := Defining_Identifier (New_F_Spec); -- If the controlling argument is inherited, add conversion to -- parent type for the call. if Is_Controlling_Formal (Formal) then Append_To (Actuals, Make_Type_Conversion (Loc, New_Occurrence_Of (Etype (Formal), Loc), New_Occurrence_Of (New_Formal, Loc))); else Append_To (Actuals, New_Occurrence_Of (New_Formal, Loc)); end if; Next_Formal (Formal); Next (New_F_Spec); end loop; if Ekind (Wrapped_Subp) = E_Procedure then Call := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Wrapped_Subp, Loc), Parameter_Associations => Actuals); else Call := Make_Simple_Return_Statement (Loc, Expression => Make_Function_Call (Loc, Name => New_Occurrence_Of (Wrapped_Subp, Loc), Parameter_Associations => Actuals)); end if; return Make_Subprogram_Body (Loc, Specification => Copy_Subprogram_Spec (DTW_Spec), Declarations => DTW_Decls, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Call), End_Label => Make_Identifier (Loc, Chars (Defining_Entity (DTW_Spec))))); end Build_DTW_Body; -------------------- -- Build_DTW_Spec -- -------------------- function Build_DTW_Spec (Par_Prim : Entity_Id) return Node_Id is DTW_Id : Entity_Id; DTW_Spec : Node_Id; begin DTW_Spec := Build_Overriding_Spec (Par_Prim, R); DTW_Id := Defining_Entity (DTW_Spec); -- Clear the not-overriding indicator since the DTW wrapper overrides -- its wrapped subprogram; required because if present in the parent -- primitive, given that Build_Overriding_Spec inherits it, we report -- spurious errors. Set_Must_Not_Override (DTW_Spec, False); -- Add minimal decoration of fields Mutate_Ekind (DTW_Id, Ekind (Par_Prim)); Set_Is_Dispatch_Table_Wrapper (DTW_Id); Set_Is_Wrapper (DTW_Id); -- The DTW wrapper is never a null procedure if Nkind (DTW_Spec) = N_Procedure_Specification then Set_Null_Present (DTW_Spec, False); end if; return DTW_Spec; end Build_DTW_Spec; --------------------------------------- -- Build_Inherited_Condition_Pragmas -- --------------------------------------- procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id; LSP_Wrapper_Needed : out Boolean) is Class_Pre : constant Node_Id := Class_Preconditions (Ultimate_Alias (Subp)); Class_Post : Node_Id := Class_Postconditions (Par_Prim); A_Post : Node_Id; New_Prag : Node_Id; begin LSP_Wrapper_Needed := False; if No (Class_Pre) and then No (Class_Post) then return; end if; -- For class-wide preconditions we just evaluate whether the wrapper -- is needed; there is no need to build the pragma since the check -- is performed on the caller side. if Present (Class_Pre) and then Needs_Wrapper (Class_Pre, Subp, Par_Prim) then LSP_Wrapper_Needed := True; end if; -- For class-wide postconditions we evaluate whether the wrapper is -- needed and we build the class-wide postcondition pragma to install -- it in the wrapper. if Present (Class_Post) and then Needs_Wrapper (Class_Post, Subp, Par_Prim) then LSP_Wrapper_Needed := True; -- Update the class-wide postcondition Class_Post := New_Copy_Tree (Class_Post); Build_Class_Wide_Expression (Pragma_Or_Expr => Class_Post, Subp => Subp, Par_Subp => Par_Prim, Adjust_Sloc => False); -- Install the updated class-wide postcondition in a copy of the -- pragma postcondition defined for the nearest ancestor. A_Post := Get_Class_Wide_Pragma (Par_Prim, Pragma_Postcondition); if No (A_Post) then declare Subps : constant Subprogram_List := Inherited_Subprograms (Subp); begin for Index in Subps'Range loop A_Post := Get_Class_Wide_Pragma (Subps (Index), Pragma_Postcondition); exit when Present (A_Post); end loop; end; end if; -- A_Post can be null here if the postcondition was inlined in the -- called subprogram. if Present (A_Post) then New_Prag := New_Copy_Tree (A_Post); Rewrite (Expression (First (Pragma_Argument_Associations (New_Prag))), Class_Post); Append (New_Prag, Decls); end if; end if; end Build_Inherited_Condition_Pragmas; ------------------------------------------- -- Check_Interface_Primitives_Strub_Mode -- ------------------------------------------- procedure Check_Interface_Primitives_Strub_Mode is Elmt : Elmt_Id; Iface_Elmt : Elmt_Id; Iface : Entity_Id; Iface_Prim : Entity_Id; Ifaces_List : Elist_Id; Op_Node : Elmt_Id; Prim : Entity_Id; Prim_Iface : Entity_Id; begin pragma Assert (Is_Interface (R)); -- Collect interfaces extended by interface type R Collect_Interfaces (R, Ifaces_List); Op_Node := First_Elmt (Prim_Ops); while Present (Op_Node) loop Prim := Node (Op_Node); Prim_Iface := R; Par_Prim := Overridden_Operation (Prim); -- We only need to check entities defined in the sources -- Check that overrider and overridden primitives have the same -- strub mode. if Present (Par_Prim) then Check_Same_Strub_Mode (Prim, Par_Prim); -- No need to check internally added predefined primitives since -- they all have the same strub mode. elsif Is_Predefined_Dispatching_Operation (Prim) and then not Comes_From_Source (Prim) then null; -- Check strub mode of matching primitives of all the interface -- types, since several interface types may define primitives with -- the same profile that will be implemented by a single primitive -- of tagged types implementing R, and therefore must have the -- same strub mode. else -- If this interface primitive has been inherited this is an -- internal entity we rely on its renamed entity (which is the -- entity defined in the sources). if Present (Alias (Prim)) then Prim := Ultimate_Alias (Prim); Prim_Iface := Find_Dispatching_Type (Prim); end if; -- Search for primitives conformant with this one in the other -- interface types. Iface_Elmt := First_Elmt (Ifaces_List); while Present (Iface_Elmt) loop Iface := Node (Iface_Elmt); if Iface /= Prim_Iface then Elmt := First_Elmt (Primitive_Operations (Iface)); while Present (Elmt) loop Iface_Prim := Node (Elmt); if Chars (Iface_Prim) = Chars (Prim) and then Comes_From_Source (Iface_Prim) and then Is_Interface_Conformant (Prim_Iface, Iface_Prim, Prim) then -- Check the strub mode passing the original -- primitive (instead of its alias); required -- to report the error at the right location. Check_Same_Strub_Mode (Node (Op_Node), Iface_Prim); end if; Next_Elmt (Elmt); end loop; end if; Next_Elmt (Iface_Elmt); end loop; end if; Next_Elmt (Op_Node); end loop; end Check_Interface_Primitives_Strub_Mode; ------------------- -- Needs_Wrapper -- ------------------- function Needs_Wrapper (Class_Cond : Node_Id; Subp : Entity_Id; Par_Subp : Entity_Id) return Boolean is Result : Boolean := False; function Check_Entity (N : Node_Id) return Traverse_Result; -- Check calls to overridden primitives -------------------- -- Replace_Entity -- -------------------- function Check_Entity (N : Node_Id) return Traverse_Result is New_E : Entity_Id; begin if Nkind (N) = N_Identifier and then Present (Entity (N)) and then (Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N))) and then (Nkind (Parent (N)) /= N_Attribute_Reference or else Attribute_Name (Parent (N)) /= Name_Class) then -- Determine whether entity has a renaming New_E := Get_Mapped_Entity (Entity (N)); -- If the entity is an overridden primitive and we are not -- in GNATprove mode, we must build a wrapper for the current -- inherited operation. If the reference is the prefix of an -- attribute such as 'Result (or others ???) there is no need -- for a wrapper: the condition is just rewritten in terms of -- the inherited subprogram. if Present (New_E) and then Comes_From_Source (New_E) and then Is_Subprogram (New_E) and then Nkind (Parent (N)) /= N_Attribute_Reference and then not GNATprove_Mode then Result := True; return Abandon; end if; end if; return OK; end Check_Entity; procedure Check_Condition_Entities is new Traverse_Proc (Check_Entity); -- Start of processing for Needs_Wrapper begin Update_Primitives_Mapping (Par_Subp, Subp); Map_Formals (Par_Subp, Subp); Check_Condition_Entities (Class_Cond); return Result; end Needs_Wrapper; Wrappers_List : Elist_Id := No_Elist; -- List containing identifiers of built wrappers. Used to defer building -- and analyzing their class-wide precondition subprograms. Postcond_Candidates_List : Elist_Id := No_Elist; -- List containing inherited primitives of tagged type R that implement -- interface primitives that have postconditions. -- Start of processing for Check_Inherited_Conditions begin if Late_Overriding then Op_Node := First_Elmt (Prim_Ops); while Present (Op_Node) loop Prim := Node (Op_Node); -- Map the overridden primitive to the overriding one if Present (Overridden_Operation (Prim)) and then Comes_From_Source (Prim) then Par_Prim := Overridden_Operation (Prim); Update_Primitives_Mapping (Par_Prim, Prim); -- Force discarding previous mappings of its formals Map_Formals (Par_Prim, Prim, Force_Update => True); end if; Next_Elmt (Op_Node); end loop; end if; -- For interface types we only need to check strub mode compatibility -- of their primitives (since they don't have wrappers). if Is_Interface (R) then Check_Interface_Primitives_Strub_Mode; return; end if; -- Perform validity checks on the inherited conditions of overriding -- operations, for conformance with LSP, and apply SPARK-specific -- restrictions on inherited conditions. Op_Node := First_Elmt (Prim_Ops); while Present (Op_Node) loop Prim := Node (Op_Node); Par_Prim := Overridden_Operation (Prim); if Present (Par_Prim) and then Comes_From_Source (Prim) then -- When the primitive is an LSP wrapper we climb to the parent -- primitive that has the inherited contract. if Is_Wrapper (Par_Prim) and then Present (LSP_Subprogram (Par_Prim)) then Par_Prim := LSP_Subprogram (Par_Prim); end if; -- Check that overrider and overridden operations have -- the same strub mode. Check_Same_Strub_Mode (Prim, Par_Prim); -- Analyze the contract items of the overridden operation, before -- they are rewritten as pragmas. Analyze_Entry_Or_Subprogram_Contract (Par_Prim); -- In GNATprove mode this is where we can collect the inherited -- conditions, because we do not create the Check pragmas that -- normally convey the modified class-wide conditions on -- overriding operations. if GNATprove_Mode then Collect_Inherited_Class_Wide_Conditions (Prim); end if; -- Check strub mode compatibility of primitives that implement -- interface primitives. elsif Present (Interface_Alias (Prim)) then Check_Same_Strub_Mode (Alias (Prim), Interface_Alias (Prim)); end if; Next_Elmt (Op_Node); end loop; -- Collect inherited primitives that may need a wrapper to handle -- postconditions of interface primitives; done to improve the -- performance when checking if postcondition wrappers are needed. Op_Node := First_Elmt (Prim_Ops); while Present (Op_Node) loop Prim := Node (Op_Node); if Present (Interface_Alias (Prim)) and then not Comes_From_Source (Alias (Prim)) and then Present (Class_Postconditions (Interface_Alias (Prim))) then if No (Postcond_Candidates_List) then Postcond_Candidates_List := New_Elmt_List; end if; Append_Unique_Elmt (Alias (Prim), Postcond_Candidates_List); end if; Next_Elmt (Op_Node); end loop; -- Now examine the inherited operations to check whether they require -- a wrapper to handle inherited conditions that call other primitives, -- so that LSP can be verified/enforced. Op_Node := First_Elmt (Prim_Ops); while Present (Op_Node) loop Decls := Empty_List; Prim := Node (Op_Node); Wrapper_Needed := No_Wrapper; -- Skip internal entities built for mapping interface primitives if not Comes_From_Source (Prim) and then Present (Alias (Prim)) and then No (Interface_Alias (Prim)) then Par_Prim := Ultimate_Alias (Prim); -- When the primitive is an LSP wrapper we climb to the parent -- primitive that has the inherited contract. if Is_Wrapper (Par_Prim) and then Present (LSP_Subprogram (Par_Prim)) then Par_Prim := LSP_Subprogram (Par_Prim); end if; -- Analyze the contract items of the parent operation, and -- determine whether this inherited primitive needs a LSP -- wrapper. This is determined when the condition is rewritten -- in sem_prag, using the mapping between overridden and -- overriding operations built in the loop above. declare LSP_Wrapper_Needed : Boolean; begin Analyze_Entry_Or_Subprogram_Contract (Par_Prim); Build_Inherited_Condition_Pragmas (Prim, LSP_Wrapper_Needed); if LSP_Wrapper_Needed then Wrapper_Needed := LSP_Wrapper; end if; end; -- If the LSP wrapper is not needed but the tagged type R -- implements additional interface types, and this inherited -- primitive covers an interface primitive of these additional -- interface types that has class-wide postconditions, then it -- requires a postconditions wrapper. if Wrapper_Needed = No_Wrapper and then Present (Interfaces (R)) and then Present (Postcond_Candidates_List) and then Contains (Postcond_Candidates_List, Prim) then declare Elmt : Elmt_Id; Ent : Entity_Id; Iface : Entity_Id; Iface_Elmt : Elmt_Id; begin Elmt := First_Elmt (Prim_Ops); while Present (Elmt) loop Ent := Node (Elmt); -- Perform the search relying on the internal entities -- that link tagged type primitives with interface -- primitives. if Present (Interface_Alias (Ent)) and then (Alias (Ent)) = Prim and then Present (Class_Postconditions (Interface_Alias (Ent))) then Iface := Find_Dispatching_Type (Interface_Alias (Ent)); -- We only need to locate primitives of additional -- interfaces implemented by tagged type R (since -- inherited primitives of parent types that cover -- primitives of inherited interface types don't -- need a wrapper). Iface_Elmt := First_Elmt (Interfaces (R)); while Present (Iface_Elmt) loop if Node (Iface_Elmt) = Iface then Wrapper_Needed := Postcond_Wrapper; exit; end if; Next_Elmt (Iface_Elmt); end loop; end if; Next_Elmt (Elmt); end loop; end; end if; end if; if Wrapper_Needed /= No_Wrapper and then not Is_Abstract_Subprogram (Par_Prim) and then Expander_Active then -- Build the dispatch-table wrapper (DTW). The support for -- AI12-0195 relies on two kind of wrappers: one for indirect -- calls (also used for AI12-0220), and one for putting in the -- dispatch table: -- -- 1) "indirect-call wrapper" (ICW) is needed anytime there are -- class-wide preconditions. Prim'Access will point directly -- at the ICW if any, or at the "pristine" body if Prim has -- no class-wide preconditions. -- -- 2) "dispatch-table wrapper" (DTW) is needed anytime the class -- wide preconditions *or* the class-wide postconditions are -- affected by overriding. -- -- The DTW holds a single statement that is a single call where -- the controlling actuals are conversions to the corresponding -- type in the parent primitive. If the primitive is a function -- the statement is a return statement with a call. declare Alias_Id : constant Entity_Id := Ultimate_Alias (Prim); Loc : constant Source_Ptr := Sloc (R); DTW_Body : Node_Id; DTW_Decl : Node_Id; DTW_Id : Entity_Id; DTW_Spec : Node_Id; Prim_Next_E : constant Entity_Id := Next_Entity (Prim); Prim_Prev_E : constant Entity_Id := Prev_Entity (Prim); begin DTW_Spec := Build_DTW_Spec (Par_Prim); DTW_Id := Defining_Entity (DTW_Spec); DTW_Decl := Make_Subprogram_Declaration (Loc, Specification => DTW_Spec); -- LSP wrappers reference the parent primitive that has the -- the class-wide pre/post condition that calls overridden -- primitives. if Wrapper_Needed = LSP_Wrapper then Set_LSP_Subprogram (DTW_Id, Par_Prim); end if; -- The spec of the wrapper has been built using the source -- location of its parent primitive; we must update it now -- (with the source location of the internal primitive built -- by Derive_Subprogram that will override this wrapper) to -- avoid inlining conflicts between internally built helpers -- for class-wide pre/postconditions of the parent and the -- helpers built for this wrapper. Set_Sloc (DTW_Id, Sloc (Prim)); -- For inherited class-wide preconditions the DTW wrapper -- reuses the ICW of the parent (which checks the parent -- interpretation of the class-wide preconditions); the -- interpretation of the class-wide preconditions for the -- inherited subprogram is checked at the caller side. -- When the subprogram inherits class-wide postconditions -- the DTW also checks the interpretation of the class-wide -- postconditions for the inherited subprogram, and the body -- of the parent checks its interpretation of the parent for -- the class-wide postconditions. -- procedure Prim (F1 : T1; ...) is -- [ pragma Check (Postcondition, Expr); ] -- begin -- Par_Prim_ICW (Par_Type (F1), ...); -- end; if Present (Indirect_Call_Wrapper (Par_Prim)) then DTW_Body := Build_DTW_Body (Loc, DTW_Spec => DTW_Spec, DTW_Decls => Decls, Par_Prim => Par_Prim, Wrapped_Subp => Indirect_Call_Wrapper (Par_Prim)); -- For subprograms that only inherit class-wide postconditions -- the DTW wrapper calls the parent primitive (which on its -- body checks the interpretation of the class-wide post- -- conditions for the parent subprogram), and the DTW checks -- the interpretation of the class-wide postconditions for the -- inherited subprogram. -- procedure Prim (F1 : T1; ...) is -- pragma Check (Postcondition, Expr); -- begin -- Par_Prim (Par_Type (F1), ...); -- end; else DTW_Body := Build_DTW_Body (Loc, DTW_Spec => DTW_Spec, DTW_Decls => Decls, Par_Prim => Par_Prim, Wrapped_Subp => Par_Prim); end if; -- Insert the declaration of the wrapper before the freezing -- node of the record type declaration to ensure that it will -- override the internal primitive built by Derive_Subprogram. if Late_Overriding then Ensure_Freeze_Node (R); Insert_Before_And_Analyze (Freeze_Node (R), DTW_Decl); else Append_Freeze_Action (R, DTW_Decl); Analyze (DTW_Decl); end if; -- The analyis of DTW_Decl has removed Prim from its scope -- chain and added DTW_Id at the end of the scope chain. Move -- DTW_Id to its correct place in the scope chain: the analysis -- of the wrapper declaration has just added DTW_Id at the end -- of the list of entities of its scope. However, given that -- this wrapper overrides Prim, we must move DTW_Id to the -- original place of Prim in its scope chain. This is required -- for wrappers of private type primitives to ensure their -- correct visibility since wrappers are built when the full -- tagged type declaration is frozen (in the private part of -- the package) but they may override primitives defined in the -- public part of the package. declare DTW_Prev_E : constant Entity_Id := Prev_Entity (DTW_Id); begin pragma Assert (Last_Entity (Current_Scope) = DTW_Id); pragma Assert (Ekind (Current_Scope) not in E_Package | E_Generic_Package or else No (First_Private_Entity (Current_Scope)) or else First_Private_Entity (Current_Scope) /= DTW_Id); -- Remove DTW_Id from the end of the doubly-linked list of -- entities of this scope; no need to handle removing it -- from the beginning of the chain since such case can never -- occur for this entity. Set_Last_Entity (Current_Scope, DTW_Prev_E); Set_Next_Entity (DTW_Prev_E, Empty); -- Place DTW_Id back in the original place of its wrapped -- primitive in the list of entities of this scope. Link_Entities (Prim_Prev_E, DTW_Id); Link_Entities (DTW_Id, Prim_Next_E); end; -- Insert the body of the wrapper in the freeze actions of -- its record type declaration to ensure that it is placed -- in the scope of its declaration but not too early to cause -- premature freezing of other entities. Append_Freeze_Action (R, DTW_Body); Analyze (DTW_Body); -- Ensure correct decoration pragma Assert (Is_Dispatching_Operation (DTW_Id)); pragma Assert (Present (Overridden_Operation (DTW_Id))); pragma Assert (Overridden_Operation (DTW_Id) = Alias_Id); -- Inherit dispatch table slot Set_DTC_Entity_Value (R, DTW_Id); Set_DT_Position (DTW_Id, DT_Position (Alias_Id)); -- Register the wrapper in the dispatch table if Late_Overriding and then not Building_Static_DT (R) then Insert_List_After_And_Analyze (Freeze_Node (R), Register_Primitive (Loc, DTW_Id)); end if; -- Defer building helpers and ICW for the DTW. Required to -- ensure uniqueness in their names because when building -- these wrappers for overlapped subprograms their homonym -- number is not definite until all these dispatch table -- wrappers of tagged type R have been analyzed. if Present (Indirect_Call_Wrapper (Par_Prim)) then Append_New_Elmt (DTW_Id, Wrappers_List); end if; end; end if; Next_Elmt (Op_Node); end loop; -- Build and analyze deferred class-wide precondition subprograms of -- built wrappers. if Present (Wrappers_List) then declare Body_N : Node_Id; CW_Subp : Entity_Id; Decl_N : Node_Id; DTW_Id : Entity_Id; Elmt : Elmt_Id; begin Elmt := First_Elmt (Wrappers_List); while Present (Elmt) loop DTW_Id := Node (Elmt); Next_Elmt (Elmt); Merge_Class_Conditions (DTW_Id); Make_Class_Precondition_Subps (DTW_Id, Late_Overriding); CW_Subp := Static_Call_Helper (DTW_Id); Decl_N := Unit_Declaration_Node (CW_Subp); Analyze (Decl_N); -- If the DTW was built for a late-overriding primitive -- its body must be analyzed now (since the tagged type -- is already frozen). if Late_Overriding then Body_N := Unit_Declaration_Node (Corresponding_Body (Decl_N)); Analyze (Body_N); end if; end loop; end; end if; end Check_Inherited_Conditions; ---------------------------- -- Check_Strict_Alignment -- ---------------------------- procedure Check_Strict_Alignment (E : Entity_Id) is Comp : Entity_Id; begin -- Bit-packed array types do not require strict alignment, even if they -- are by-reference types, because they are accessed in a special way. if Is_By_Reference_Type (E) and then not Is_Bit_Packed_Array (E) then Set_Strict_Alignment (E); elsif Is_Array_Type (E) then Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E))); -- RM 13.2(7.1/4): Any component of a packed type that contains an -- aliased part shall be aligned according to the alignment of its -- subtype. -- Unfortunately this breaks Florist, which has had the bad habit -- of overaligning all the types it declares on 32-bit platforms, -- so make an exception if the component size is the storage unit. -- Other legacy codebases could also be affected because this was -- historically not enforced, so -gnatd_l can be used to disable it. if Has_Aliased_Components (E) and then not (Known_Component_Size (E) and then Component_Size (E) = System_Storage_Unit) and then not Debug_Flag_Underscore_L then Set_Strict_Alignment (E); end if; elsif Is_Record_Type (E) then Comp := First_Component (E); while Present (Comp) loop if not Is_Type (Comp) and then (Is_Aliased (Comp) or else Strict_Alignment (Etype (Comp))) then Set_Strict_Alignment (E); return; end if; Next_Component (Comp); end loop; end if; end Check_Strict_Alignment; ------------------------- -- Check_Unsigned_Type -- ------------------------- procedure Check_Unsigned_Type (E : Entity_Id) is Ancestor : Entity_Id; Lo_Bound : Node_Id; Btyp : Entity_Id; begin if not Is_Discrete_Or_Fixed_Point_Type (E) then return; end if; -- Do not attempt to analyze case where range was in error if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then return; end if; -- The situation that is nontrivial is something like: -- subtype x1 is integer range -10 .. +10; -- subtype x2 is x1 range 0 .. V1; -- subtype x3 is x2 range V2 .. V3; -- subtype x4 is x3 range V4 .. V5; -- where Vn are variables. Here the base type is signed, but we still -- know that x4 is unsigned because of the lower bound of x2. -- The only way to deal with this is to look up the ancestor chain Ancestor := E; loop if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then return; end if; Lo_Bound := Type_Low_Bound (Ancestor); if Compile_Time_Known_Value (Lo_Bound) then if Expr_Rep_Value (Lo_Bound) >= 0 then Set_Is_Unsigned_Type (E, True); end if; return; else Ancestor := Ancestor_Subtype (Ancestor); -- If no ancestor had a static lower bound, go to base type if No (Ancestor) then -- Note: the reason we still check for a compile time known -- value for the base type is that at least in the case of -- generic formals, we can have bounds that fail this test, -- and there may be other cases in error situations. Btyp := Base_Type (E); if Btyp = Any_Type or else Etype (Btyp) = Any_Type then return; end if; Lo_Bound := Type_Low_Bound (Base_Type (E)); if Compile_Time_Known_Value (Lo_Bound) and then Expr_Rep_Value (Lo_Bound) >= 0 then Set_Is_Unsigned_Type (E, True); end if; return; end if; end if; end loop; end Check_Unsigned_Type; ----------------------------------------------- -- Explode_Initialization_Compound_Statement -- ----------------------------------------------- procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is Init_Stmts : constant Node_Id := Initialization_Statements (E); begin if Present (Init_Stmts) and then Nkind (Init_Stmts) = N_Compound_Statement then Insert_List_Before (Init_Stmts, Actions (Init_Stmts)); -- Note that we rewrite Init_Stmts into a NULL statement, rather than -- just removing it, because Freeze_All may rely on this particular -- Node_Id still being present in the enclosing list to know where to -- stop freezing. Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts))); Set_Initialization_Statements (E, Empty); end if; end Explode_Initialization_Compound_Statement; ---------------- -- Freeze_All -- ---------------- -- Note: the easy coding for this procedure would be to just build a -- single list of freeze nodes and then insert them and analyze them -- all at once. This won't work, because the analysis of earlier freeze -- nodes may recursively freeze types which would otherwise appear later -- on in the freeze list. So we must analyze and expand the freeze nodes -- as they are generated. procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id); -- This is the internal recursive routine that does freezing of entities -- (but NOT the analysis of default expressions, which should not be -- recursive, we don't want to analyze those till we are sure that ALL -- the types are frozen). -------------------- -- Freeze_All_Ent -- -------------------- procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is E : Entity_Id; Flist : List_Id; procedure Process_Flist; -- If freeze nodes are present, insert and analyze, and reset cursor -- for next insertion. ------------------- -- Process_Flist -- ------------------- procedure Process_Flist is Lastn : Node_Id; begin if Is_Non_Empty_List (Flist) then Lastn := Next (After); Insert_List_After_And_Analyze (After, Flist); if Present (Lastn) then After := Prev (Lastn); else After := Last (List_Containing (After)); end if; end if; end Process_Flist; -- Start of processing for Freeze_All_Ent begin E := From; while Present (E) loop -- If the entity is an inner package which is not a package -- renaming, then its entities must be frozen at this point. Note -- that such entities do NOT get frozen at the end of the nested -- package itself (only library packages freeze). -- Same is true for task declarations, where anonymous records -- created for entry parameters must be frozen. if Ekind (E) = E_Package and then No (Renamed_Entity (E)) and then not Is_Child_Unit (E) and then not Is_Frozen (E) then Push_Scope (E); Install_Visible_Declarations (E); Install_Private_Declarations (E); Freeze_All (First_Entity (E), After); End_Package_Scope (E); if Is_Generic_Instance (E) and then Has_Delayed_Freeze (E) then Set_Has_Delayed_Freeze (E, False); Expand_N_Package_Declaration (Unit_Declaration_Node (E)); end if; elsif Ekind (E) in Task_Kind and then Nkind (Parent (E)) in N_Single_Task_Declaration | N_Task_Type_Declaration then Push_Scope (E); Freeze_All (First_Entity (E), After); End_Scope; -- For a derived tagged type, we must ensure that all the -- primitive operations of the parent have been frozen, so that -- their addresses will be in the parent's dispatch table at the -- point it is inherited. elsif Ekind (E) = E_Record_Type and then Is_Tagged_Type (E) and then Is_Tagged_Type (Etype (E)) and then Is_Derived_Type (E) then declare Prim_List : constant Elist_Id := Primitive_Operations (Etype (E)); Prim : Elmt_Id; Subp : Entity_Id; begin Prim := First_Elmt (Prim_List); while Present (Prim) loop Subp := Node (Prim); if Comes_From_Source (Subp) and then not Is_Frozen (Subp) then Flist := Freeze_Entity (Subp, After); Process_Flist; end if; Next_Elmt (Prim); end loop; end; end if; if not Is_Frozen (E) then Flist := Freeze_Entity (E, After); Process_Flist; -- If already frozen, and there are delayed aspects, this is where -- we do the visibility check for these aspects (see Sem_Ch13 spec -- for a description of how we handle aspect visibility). elsif Has_Delayed_Aspects (E) then Check_Aspects_At_End_Of_Declarations (E); end if; -- If an incomplete type is still not frozen, this may be a -- premature freezing because of a body declaration that follows. -- Indicate where the freezing took place. Freezing will happen -- if the body comes from source, but not if it is internally -- generated, for example as the body of a type invariant. -- If the freezing is caused by the end of the current declarative -- part, it is a Taft Amendment type, and there is no error. if not Is_Frozen (E) and then Ekind (E) = E_Incomplete_Type then declare Bod : constant Node_Id := Next (After); begin -- The presence of a body freezes all entities previously -- declared in the current list of declarations, but this -- does not apply if the body does not come from source. -- A type invariant is transformed into a subprogram body -- which is placed at the end of the private part of the -- current package, but this body does not freeze incomplete -- types that may be declared in this private part. if Comes_From_Source (Bod) and then Nkind (Bod) in N_Entry_Body | N_Package_Body | N_Protected_Body | N_Subprogram_Body | N_Task_Body | N_Body_Stub and then In_Same_List (After, Parent (E)) then Error_Msg_Sloc := Sloc (Next (After)); Error_Msg_NE ("type& is frozen# before its full declaration", Parent (E), E); end if; end; end if; Next_Entity (E); end loop; end Freeze_All_Ent; -- Local variables Decl : Node_Id; E : Entity_Id; Item : Entity_Id; -- Start of processing for Freeze_All begin Freeze_All_Ent (From, After); -- Now that all types are frozen, we can deal with default expressions -- that require us to build a default expression functions. This is the -- point at which such functions are constructed (after all types that -- might be used in such expressions have been frozen). -- For subprograms that are renaming_as_body, we create the wrapper -- bodies as needed. -- We also add finalization chains to access types whose designated -- types are controlled. This is normally done when freezing the type, -- but this misses recursive type definitions where the later members -- of the recursion introduce controlled components. -- Loop through entities E := From; while Present (E) loop if Is_Subprogram (E) then if not Default_Expressions_Processed (E) then Process_Default_Expressions (E, After); end if; -- Check subprogram renamings for the same strub-mode. -- Avoid rechecking dispatching operations, that's taken -- care of in Check_Inherited_Conditions, that covers -- inherited interface operations. Item := Alias (E); if Present (Item) and then not Is_Dispatching_Operation (E) then Check_Same_Strub_Mode (E, Item); end if; if not Has_Completion (E) then Decl := Unit_Declaration_Node (E); if Nkind (Decl) = N_Subprogram_Renaming_Declaration then if Error_Posted (Decl) then Set_Has_Completion (E); else Build_And_Analyze_Renamed_Body (Decl, E, After); end if; elsif Nkind (Decl) = N_Subprogram_Declaration and then Present (Corresponding_Body (Decl)) and then Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) = N_Subprogram_Renaming_Declaration then Build_And_Analyze_Renamed_Body (Decl, Corresponding_Body (Decl), After); end if; end if; -- Freeze the default expressions of entries, entry families, and -- protected subprograms. elsif Is_Concurrent_Type (E) then Item := First_Entity (E); while Present (Item) loop if Is_Subprogram_Or_Entry (Item) and then not Default_Expressions_Processed (Item) then Process_Default_Expressions (Item, After); end if; Next_Entity (Item); end loop; end if; -- Historical note: We used to create a finalization collection for -- access types whose designated type is not controlled, but contains -- private controlled compoments. This form of postprocessing is no -- longer needed because the finalization collection is now created -- when the access type is frozen (see Exp_Ch3.Freeze_Type). Next_Entity (E); end loop; end Freeze_All; ----------------------- -- Freeze_And_Append -- ----------------------- procedure Freeze_And_Append (Ent : Entity_Id; N : Node_Id; Result : in out List_Id) is -- Freezing an Expression_Function does not freeze its profile: -- the formals will have been frozen otherwise before the E_F -- can be called. L : constant List_Id := Freeze_Entity (Ent, N, Do_Freeze_Profile => not Is_Expression_Function (Ent)); begin if Is_Non_Empty_List (L) then if Result = No_List then Result := L; else Append_List (L, Result); end if; end if; end Freeze_And_Append; ------------------- -- Freeze_Before -- ------------------- procedure Freeze_Before (N : Node_Id; T : Entity_Id; Do_Freeze_Profile : Boolean := True) is -- Freeze T, then insert the generated Freeze nodes before the node N. -- Flag Freeze_Profile is used when T is an overloadable entity, and -- indicates whether its profile should be frozen at the same time. Freeze_Nodes : constant List_Id := Freeze_Entity (T, N, Do_Freeze_Profile); Pack : constant Entity_Id := Scope (T); begin if Ekind (T) = E_Function then Check_Expression_Function (N, T); end if; if Is_Non_Empty_List (Freeze_Nodes) then -- If the entity is a type declared in an inner package, it may be -- frozen by an outer declaration before the package itself is -- frozen. Install the package scope to analyze the freeze nodes, -- which may include generated subprograms such as predicate -- functions, etc. if Is_Type (T) and then From_Nested_Package (T) then Push_Scope (Pack); Install_Visible_Declarations (Pack); Install_Private_Declarations (Pack); Insert_Actions (N, Freeze_Nodes); End_Package_Scope (Pack); else Insert_Actions (N, Freeze_Nodes); end if; end if; end Freeze_Before; ------------------- -- Freeze_Entity -- ------------------- -- WARNING: This routine manages Ghost regions. Return statements must be -- replaced by gotos which jump to the end of the routine and restore the -- Ghost mode. function Freeze_Entity (E : Entity_Id; N : Node_Id; Do_Freeze_Profile : Boolean := True) return List_Id is Loc : constant Source_Ptr := Sloc (N); Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; Saved_IGR : constant Node_Id := Ignored_Ghost_Region; -- Save the Ghost-related attributes to restore on exit Atype : Entity_Id; Comp : Entity_Id; F_Node : Node_Id; Formal : Entity_Id; Indx : Node_Id; Result : List_Id := No_List; -- List of freezing actions, left at No_List if none Test_E : Entity_Id := E; -- A local temporary used to test if freezing is necessary for E, since -- its value can be set to something other than E in certain cases. For -- example, E cannot be used directly in cases such as when it is an -- Itype defined within a record - since it is the location of record -- which matters. procedure Add_To_Result (Fnod : Node_Id); -- Add freeze action Fnod to list Result function After_Last_Declaration return Boolean; -- If Loc is a freeze_entity that appears after the last declaration -- in the scope, inhibit error messages on late completion. procedure Check_Current_Instance (Comp_Decl : Node_Id); -- Check that an Access or Unchecked_Access attribute with a prefix -- which is the current instance type can only be applied when the type -- is limited. procedure Check_No_Parts_Violations (Typ : Entity_Id; Aspect_No_Parts : Aspect_Id) with Pre => Aspect_No_Parts in Aspect_No_Controlled_Parts | Aspect_No_Task_Parts; -- Check that Typ does not violate the semantics of the specified -- Aspect_No_Parts (No_Controlled_Parts or No_Task_Parts) when it is -- specified on Typ or one of its ancestors. procedure Check_Suspicious_Convention (Rec_Type : Entity_Id); -- Give a warning for pragma Convention with language C or C++ applied -- to a discriminated record type. This is suppressed for the unchecked -- union case, since the whole point in this case is interface C. We -- also do not generate this within instantiations, since we will have -- generated a message on the template. procedure Check_Suspicious_Modulus (Utype : Entity_Id); -- Give warning for modulus of 8, 16, 32, 64 or 128 given as an explicit -- integer literal without an explicit corresponding size clause. The -- caller has checked that Utype is a modular integer type. procedure Freeze_Array_Type (Arr : Entity_Id); -- Freeze array type, including freezing index and component types procedure Freeze_Object_Declaration (E : Entity_Id); -- Perform checks and generate freeze node if needed for a constant or -- variable declared by an object declaration. function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id; -- Create Freeze_Generic_Entity nodes for types declared in a generic -- package. Recurse on inner generic packages. function Freeze_Profile (E : Entity_Id) return Boolean; -- Freeze formals and return type of subprogram. If some type in the -- profile is incomplete and we are in an instance, freezing of the -- entity will take place elsewhere, and the function returns False. procedure Freeze_Record_Type (Rec : Entity_Id); -- Freeze record type, including freezing component types, and freezing -- primitive operations if this is a tagged type. function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean; -- Determine whether an arbitrary entity is subject to Boolean aspect -- Import and its value is specified as True. procedure Inherit_Freeze_Node (Fnod : Node_Id; Typ : Entity_Id); -- Set type Typ's freeze node to refer to Fnode. This routine ensures -- that any attributes attached to Typ's original node are preserved. procedure Wrap_Imported_Subprogram (E : Entity_Id); -- If E is an entity for an imported subprogram with pre/post-conditions -- then this procedure will create a wrapper to ensure that proper run- -- time checking of the pre/postconditions. See body for details. ------------------- -- Add_To_Result -- ------------------- procedure Add_To_Result (Fnod : Node_Id) is begin Append_New_To (Result, Fnod); end Add_To_Result; ---------------------------- -- After_Last_Declaration -- ---------------------------- function After_Last_Declaration return Boolean is Spec : constant Node_Id := Parent (Current_Scope); begin if Nkind (Spec) = N_Package_Specification then if Present (Private_Declarations (Spec)) then return Loc >= Sloc (Last (Private_Declarations (Spec))); elsif Present (Visible_Declarations (Spec)) then return Loc >= Sloc (Last (Visible_Declarations (Spec))); else return False; end if; else return False; end if; end After_Last_Declaration; ---------------------------- -- Check_Current_Instance -- ---------------------------- procedure Check_Current_Instance (Comp_Decl : Node_Id) is function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean; -- Determine whether Typ is compatible with the rules for aliased -- views of types as defined in RM 3.10 in the various dialects. function Process (N : Node_Id) return Traverse_Result; -- Process routine to apply check to given node ----------------------------- -- Is_Aliased_View_Of_Type -- ----------------------------- function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is Typ_Decl : constant Node_Id := Parent (Typ); begin -- Common case if Nkind (Typ_Decl) = N_Full_Type_Declaration and then Limited_Present (Type_Definition (Typ_Decl)) then return True; -- The following paragraphs describe what a legal aliased view of -- a type is in the various dialects of Ada. -- Ada 95 -- The current instance of a limited type, and a formal parameter -- or generic formal object of a tagged type. -- Ada 95 limited type -- * Type with reserved word "limited" -- * A protected or task type -- * A composite type with limited component elsif Ada_Version <= Ada_95 then return Is_Limited_Type (Typ); -- Ada 2005 -- The current instance of a limited tagged type, a protected -- type, a task type, or a type that has the reserved word -- "limited" in its full definition ... a formal parameter or -- generic formal object of a tagged type. -- Ada 2005 limited type -- * Type with reserved word "limited", "synchronized", "task" -- or "protected" -- * A composite type with limited component -- * A derived type whose parent is a non-interface limited type elsif Ada_Version = Ada_2005 then return (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ)) or else (Is_Derived_Type (Typ) and then not Is_Interface (Etype (Typ)) and then Is_Limited_Type (Etype (Typ))); -- Ada 2012 and beyond -- The current instance of an immutably limited type ... a formal -- parameter or generic formal object of a tagged type. -- Ada 2012 limited type -- * Type with reserved word "limited", "synchronized", "task" -- or "protected" -- * A composite type with limited component -- * A derived type whose parent is a non-interface limited type -- * An incomplete view -- Ada 2012 immutably limited type -- * Explicitly limited record type -- * Record extension with "limited" present -- * Non-formal limited private type that is either tagged -- or has at least one access discriminant with a default -- expression -- * Task type, protected type or synchronized interface -- * Type derived from immutably limited type else return Is_Immutably_Limited_Type (Typ) or else Is_Incomplete_Type (Typ); end if; end Is_Aliased_View_Of_Type; ------------- -- Process -- ------------- function Process (N : Node_Id) return Traverse_Result is begin case Nkind (N) is when N_Attribute_Reference => if Attribute_Name (N) in Name_Access | Name_Unchecked_Access and then Is_Entity_Name (Prefix (N)) and then Entity (Prefix (N)) = E then if Ada_Version < Ada_2012 then Error_Msg_N ("current instance must be a limited type", Prefix (N)); else Error_Msg_N ("current instance must be an immutably limited " & "type (RM-2012, 7.5 (8.1/3))", Prefix (N)); end if; return Abandon; else return OK; end if; when others => return OK; end case; end Process; procedure Traverse is new Traverse_Proc (Process); -- Local variables Rec_Type : constant Entity_Id := Scope (Defining_Identifier (Comp_Decl)); -- Start of processing for Check_Current_Instance begin if not Is_Aliased_View_Of_Type (Rec_Type) then Traverse (Comp_Decl); end if; end Check_Current_Instance; ------------------------------- -- Check_No_Parts_Violations -- ------------------------------- procedure Check_No_Parts_Violations (Typ : Entity_Id; Aspect_No_Parts : Aspect_Id) is function Find_Aspect_No_Parts (Typ : Entity_Id) return Node_Id; -- Search for Aspect_No_Parts on a given type. When -- the aspect is not explicity specified Empty is returned. function Get_Aspect_No_Parts_Value (Typ : Entity_Id) return Entity_Id; -- Obtain the value for the Aspect_No_Parts on a given -- type. When the aspect is not explicitly specified Empty is -- returned. function Has_Aspect_No_Parts (Typ : Entity_Id) return Boolean; -- Predicate function which identifies whether No_Parts -- is explicitly specified on a given type. ------------------------------------- -- Find_Aspect_No_Parts -- ------------------------------------- function Find_Aspect_No_Parts (Typ : Entity_Id) return Node_Id is Partial_View : constant Entity_Id := Incomplete_Or_Partial_View (Typ); Aspect_Spec : Entity_Id := Find_Aspect (Typ, Aspect_No_Parts); Curr_Aspect_Spec : Entity_Id; begin -- Examine Typ's associated node, when present, since aspect -- specifications do not get transferred when nodes get rewritten. -- For example, this can happen in the expansion of array types if No (Aspect_Spec) and then Present (Associated_Node_For_Itype (Typ)) and then Nkind (Associated_Node_For_Itype (Typ)) = N_Full_Type_Declaration then Aspect_Spec := Find_Aspect (Id => Defining_Identifier (Associated_Node_For_Itype (Typ)), A => Aspect_No_Parts); end if; -- Examine aspects specifications on private type declarations -- Should Find_Aspect be improved to handle this case ??? if No (Aspect_Spec) and then Present (Partial_View) and then Present (Aspect_Specifications (Declaration_Node (Partial_View))) then Curr_Aspect_Spec := First (Aspect_Specifications (Declaration_Node (Partial_View))); -- Search through aspects present on the private type while Present (Curr_Aspect_Spec) loop if Get_Aspect_Id (Curr_Aspect_Spec) = Aspect_No_Parts then Aspect_Spec := Curr_Aspect_Spec; exit; end if; Next (Curr_Aspect_Spec); end loop; end if; -- When errors are posted on the aspect return Empty if Error_Posted (Aspect_Spec) then return Empty; end if; return Aspect_Spec; end Find_Aspect_No_Parts; ------------------------------------------ -- Get_Aspect_No_Parts_Value -- ------------------------------------------ function Get_Aspect_No_Parts_Value (Typ : Entity_Id) return Entity_Id is Aspect_Spec : constant Entity_Id := Find_Aspect_No_Parts (Typ); begin -- Return the value of the aspect when present if Present (Aspect_Spec) then -- No expression is the same as True if No (Expression (Aspect_Spec)) then return Standard_True; end if; -- Assume its expression has already been constant folded into -- a Boolean value and return its value. return Entity (Expression (Aspect_Spec)); end if; -- Otherwise, the aspect is not specified - so return Empty return Empty; end Get_Aspect_No_Parts_Value; ------------------------------------ -- Has_Aspect_No_Parts -- ------------------------------------ function Has_Aspect_No_Parts (Typ : Entity_Id) return Boolean is (Present (Find_Aspect_No_Parts (Typ))); -- Generic instances ------------------------------------------- -- Get_Generic_Formal_Types_In_Hierarchy -- ------------------------------------------- function Get_Generic_Formal_Types_In_Hierarchy is new Collect_Types_In_Hierarchy (Predicate => Is_Generic_Formal); -- Return a list of all types within a given type's hierarchy which -- are generic formals. ---------------------------------------- -- Get_Types_With_Aspect_In_Hierarchy -- ---------------------------------------- function Get_Types_With_Aspect_In_Hierarchy is new Collect_Types_In_Hierarchy (Predicate => Has_Aspect_No_Parts); -- Returns a list of all types within a given type's hierarchy which -- have the Aspect_No_Parts specified. -- Local declarations Aspect_Value : Entity_Id; Curr_Value : Entity_Id; Curr_Typ_Elmt : Elmt_Id; Curr_Body_Elmt : Elmt_Id; Curr_Formal_Elmt : Elmt_Id; Gen_Bodies : Elist_Id; Gen_Formals : Elist_Id; Scop : Entity_Id; Types_With_Aspect : Elist_Id; -- Start of processing for Check_No_Parts_Violations begin -- Nothing to check if the type is elementary or artificial if Is_Elementary_Type (Typ) or else not Comes_From_Source (Typ) then return; end if; Types_With_Aspect := Get_Types_With_Aspect_In_Hierarchy (Typ); -- Nothing to check if there are no types with No_Parts specified if Is_Empty_Elmt_List (Types_With_Aspect) then return; end if; -- Set name for all errors below Error_Msg_Name_1 := Aspect_Names (Aspect_No_Parts); -- Obtain the aspect value for No_Parts for comparison Aspect_Value := Get_Aspect_No_Parts_Value (Node (First_Elmt (Types_With_Aspect))); -- When the value is True and there are controlled/task parts or the -- type itself is controlled/task, trigger the appropriate error. if Aspect_Value = Standard_True then if Aspect_No_Parts = Aspect_No_Controlled_Parts then if Is_Controlled (Typ) or else Has_Controlled_Component (Typ) then Error_Msg_N ("aspect % applied to controlled type &", Typ); end if; elsif Aspect_No_Parts = Aspect_No_Task_Parts then if Has_Task (Typ) then Error_Msg_N ("aspect % applied to task type &", Typ); Error_Msg_N ("\replace task components with access-to-task-type " & "components??", Typ); end if; else raise Program_Error; end if; end if; -- Move through Types_With_Aspect - checking that the value specified -- for their corresponding Aspect_No_Parts do not override each -- other. Curr_Typ_Elmt := First_Elmt (Types_With_Aspect); while Present (Curr_Typ_Elmt) loop Curr_Value := Get_Aspect_No_Parts_Value (Node (Curr_Typ_Elmt)); -- Compare the aspect value against the current type if Curr_Value /= Aspect_Value then Error_Msg_NE ("cannot override aspect % of " & "ancestor type &", Typ, Node (Curr_Typ_Elmt)); return; end if; Next_Elmt (Curr_Typ_Elmt); end loop; -- Issue an error if the aspect applies to a type declared inside a -- generic body and if said type derives from or has a component -- of ageneric formal type - since those are considered to have -- controlled/task parts and have Aspect_No_Parts specified as -- False by default (RM H.4.1(4/5) is about the language-defined -- No_Controlled_Parts aspect, and we are using the same rules for -- No_Task_Parts). -- We do not check tagged types since deriving from a formal type -- within an enclosing generic unit is already illegal -- (RM 3.9.1 (4/2)). if Aspect_Value = Standard_True and then In_Generic_Body (Typ) and then not Is_Tagged_Type (Typ) then Gen_Bodies := New_Elmt_List; Gen_Formals := Get_Generic_Formal_Types_In_Hierarchy (Typ => Typ, Examine_Components => True); -- Climb scopes collecting generic bodies Scop := Scope (Typ); while Present (Scop) and then Scop /= Standard_Standard loop -- Generic package body if Ekind (Scop) = E_Generic_Package and then In_Package_Body (Scop) then Append_Elmt (Scop, Gen_Bodies); -- Generic subprogram body elsif Is_Generic_Subprogram (Scop) then Append_Elmt (Scop, Gen_Bodies); end if; Scop := Scope (Scop); end loop; -- Warn about the improper use of Aspect_No_Parts on a type -- declaration deriving from or that has a component of a generic -- formal type within the formal type's corresponding generic -- body by moving through all formal types in Typ's hierarchy and -- checking if they are formals in any of the enclosing generic -- bodies. -- However, a special exception gets made for formal types which -- derive from a type which has Aspect_No_Parts True. -- For example: -- generic -- type Form is private; -- package G is -- type Type_A is new Form with No_Controlled_Parts; -- OK -- end; -- -- package body G is -- type Type_B is new Form with No_Controlled_Parts; -- ERROR -- end; -- generic -- type Form is private; -- package G is -- type Type_A is record C : Form; end record -- with No_Controlled_Parts; -- OK -- end; -- -- package body G is -- type Type_B is record C : Form; end record -- with No_Controlled_Parts; -- ERROR -- end; -- type Root is tagged null record with No_Controlled_Parts; -- -- generic -- type Form is new Root with private; -- package G is -- type Type_A is record C : Form; end record -- with No_Controlled_Parts; -- OK -- end; -- -- package body G is -- type Type_B is record C : Form; end record -- with No_Controlled_Parts; -- OK -- end; Curr_Formal_Elmt := First_Elmt (Gen_Formals); while Present (Curr_Formal_Elmt) loop Curr_Body_Elmt := First_Elmt (Gen_Bodies); while Present (Curr_Body_Elmt) loop -- Obtain types in the formal type's hierarchy which have -- the aspect specified. Types_With_Aspect := Get_Types_With_Aspect_In_Hierarchy (Node (Curr_Formal_Elmt)); -- We found a type declaration in a generic body where both -- Aspect_No_Parts is true and one of its ancestors is a -- generic formal type. if Scope (Node (Curr_Formal_Elmt)) = Node (Curr_Body_Elmt) -- Check that no ancestors of the formal type have -- Aspect_No_Parts True before issuing the error. and then (Is_Empty_Elmt_List (Types_With_Aspect) or else Get_Aspect_No_Parts_Value (Node (First_Elmt (Types_With_Aspect))) = Standard_False) then Error_Msg_Node_1 := Typ; Error_Msg_Node_2 := Node (Curr_Formal_Elmt); Error_Msg ("aspect % cannot be applied to " & "type & which has an ancestor or component of " & "formal type & within the formal type's " & "corresponding generic body", Sloc (Typ)); end if; Next_Elmt (Curr_Body_Elmt); end loop; Next_Elmt (Curr_Formal_Elmt); end loop; end if; end Check_No_Parts_Violations; --------------------------------- -- Check_Suspicious_Convention -- --------------------------------- procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is begin if Has_Discriminants (Rec_Type) and then Is_Base_Type (Rec_Type) and then not Is_Unchecked_Union (Rec_Type) and then (Convention (Rec_Type) = Convention_C or else Convention (Rec_Type) = Convention_CPP) and then Comes_From_Source (Rec_Type) and then not In_Instance and then not Has_Warnings_Off (Rec_Type) then declare Cprag : constant Node_Id := Get_Rep_Pragma (Rec_Type, Name_Convention); A2 : Node_Id; begin if Present (Cprag) then A2 := Next (First (Pragma_Argument_Associations (Cprag))); if Convention (Rec_Type) = Convention_C then Error_Msg_N ("?x?discriminated record has no direct equivalent in " & "C", A2); else Error_Msg_N ("?x?discriminated record has no direct equivalent in " & "C++", A2); end if; Error_Msg_NE ("\?x?use of convention for type& is dubious", A2, Rec_Type); end if; end; end if; end Check_Suspicious_Convention; ------------------------------ -- Check_Suspicious_Modulus -- ------------------------------ procedure Check_Suspicious_Modulus (Utype : Entity_Id) is Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype)); begin if not Warn_On_Suspicious_Modulus_Value then return; end if; if Nkind (Decl) = N_Full_Type_Declaration then declare Tdef : constant Node_Id := Type_Definition (Decl); begin if Nkind (Tdef) = N_Modular_Type_Definition then declare Modulus : constant Node_Id := Original_Node (Expression (Tdef)); begin if Nkind (Modulus) = N_Integer_Literal then declare Modv : constant Uint := Intval (Modulus); Sizv : constant Uint := RM_Size (Utype); begin -- First case, modulus and size are the same. This -- happens if you have something like mod 32, with -- an explicit size of 32, this is for sure a case -- where the warning is given, since it is seems -- very unlikely that someone would want e.g. a -- five bit type stored in 32 bits. It is much -- more likely they wanted a 32-bit type. if Modv = Sizv then null; -- Second case, the modulus is 32 or 64 and no -- size clause is present. This is a less clear -- case for giving the warning, but in the case -- of 32/64 (5-bit or 6-bit types) these seem rare -- enough that it is a likely error (and in any -- case using 2**5 or 2**6 in these cases seems -- clearer. We don't include 8 or 16 here, simply -- because in practice 3-bit and 4-bit types are -- more common and too many false positives if -- we warn in these cases. elsif not Has_Size_Clause (Utype) and then (Modv = Uint_32 or else Modv = Uint_64) then null; -- No warning needed else return; end if; -- If we fall through, give warning Error_Msg_Uint_1 := Modv; Error_Msg_N ("?.m?2 '*'*^' may have been intended here", Modulus); end; end if; end; end if; end; end if; end Check_Suspicious_Modulus; ----------------------- -- Freeze_Array_Type -- ----------------------- procedure Freeze_Array_Type (Arr : Entity_Id) is FS : constant Entity_Id := First_Subtype (Arr); Ctyp : constant Entity_Id := Component_Type (Arr); Clause : Node_Id; -- Set to Component_Size clause or Atomic pragma, if any Non_Standard_Enum : Boolean := False; -- Set true if any of the index types is an enumeration type with a -- non-standard representation. begin Freeze_And_Append (Ctyp, N, Result); Indx := First_Index (Arr); while Present (Indx) loop Freeze_And_Append (Etype (Indx), N, Result); if Is_Enumeration_Type (Etype (Indx)) and then Has_Non_Standard_Rep (Etype (Indx)) then Non_Standard_Enum := True; end if; Next_Index (Indx); end loop; -- Processing that is done only for base types if Ekind (Arr) = E_Array_Type then -- Deal with default setting of reverse storage order Set_SSO_From_Default (Arr); -- Propagate flags from component type Propagate_Concurrent_Flags (Arr, Ctyp); Propagate_Controlled_Flags (Arr, Ctyp, Comp => True); if Has_Unchecked_Union (Ctyp) then Set_Has_Unchecked_Union (Arr); end if; -- The array type requires its own invariant procedure in order to -- verify the component invariant over all elements. In GNATprove -- mode, the component invariants are checked by other means. They -- should not be added to the array type invariant procedure, so -- that the procedure can be used to check the array type -- invariants if any. if Has_Invariants (Ctyp) and then not GNATprove_Mode then Set_Has_Own_Invariants (Arr); end if; -- Warn for pragma Pack overriding foreign convention if Has_Foreign_Convention (Ctyp) and then Has_Pragma_Pack (Arr) then declare CN : constant Name_Id := Get_Convention_Name (Convention (Ctyp)); PP : constant Node_Id := Get_Pragma (First_Subtype (Arr), Pragma_Pack); begin if Present (PP) then Error_Msg_Name_1 := CN; Error_Msg_Sloc := Sloc (Arr); Error_Msg_N ("pragma Pack affects convention % components #??", PP); Error_Msg_Name_1 := CN; Error_Msg_N ("\array components may not have % compatible " & "representation??", PP); end if; end; end if; -- Check for Aliased or Atomic or Full Access or Independent -- components with an unsuitable component size clause given. -- The main purpose is to give an error when bit packing would -- be required to honor the component size, because bit packing -- is incompatible with these aspects; when bit packing is not -- required, the final validation of the component size may be -- left to the back end. if Has_Component_Size_Clause (Arr) then CS_Check : declare procedure Complain_CS (T : String; Min : Boolean := False); -- Output an error message for an unsuitable component size -- clause for independent components (T is either "aliased" -- or "atomic" or "volatile full access" or "independent"). ----------------- -- Complain_CS -- ----------------- procedure Complain_CS (T : String; Min : Boolean := False) is begin Clause := Get_Attribute_Definition_Clause (FS, Attribute_Component_Size); Error_Msg_N ("incorrect component size for " & T & " components", Clause); if Known_Static_Esize (Ctyp) then Error_Msg_Uint_1 := Esize (Ctyp); if Min then Error_Msg_N ("\minimum allowed value is^", Clause); else Error_Msg_N ("\only allowed value is^", Clause); end if; else Error_Msg_N ("\must be multiple of storage unit", Clause); end if; end Complain_CS; -- Start of processing for CS_Check begin -- OK if the component size and object size are equal, or -- if the component size is a multiple of the storage unit. if (if Known_Static_Esize (Ctyp) then Component_Size (Arr) = Esize (Ctyp) else Component_Size (Arr) mod System_Storage_Unit = 0) then null; elsif Has_Aliased_Components (Arr) then Complain_CS ("aliased"); elsif Has_Atomic_Components (Arr) or else Is_Atomic (Ctyp) then Complain_CS ("atomic"); elsif Is_Volatile_Full_Access (Ctyp) then Complain_CS ("volatile full access"); -- For Independent a larger size is permitted elsif (Has_Independent_Components (Arr) or else Is_Independent (Ctyp)) and then (not Known_Static_Esize (Ctyp) or else Component_Size (Arr) < Esize (Ctyp)) then Complain_CS ("independent", Min => True); end if; end CS_Check; -- Check for Aliased or Atomic or Full Access or Independent -- components with an unsuitable aspect/pragma Pack given. -- The main purpose is to prevent bit packing from occurring, -- because bit packing is incompatible with these aspects; when -- bit packing cannot occur, the final handling of the packing -- may be left to the back end. elsif Is_Packed (Arr) and then Known_Static_RM_Size (Ctyp) then Pack_Check : declare procedure Complain_Pack (T : String); -- Output a warning message for an unsuitable aspect/pragma -- Pack for independent components (T is either "aliased" or -- "atomic" or "volatile full access" or "independent") and -- reset the Is_Packed flag on the array type. ------------------- -- Complain_Pack -- ------------------- procedure Complain_Pack (T : String) is begin Error_Msg_N ("?cannot pack " & T & " components (RM 13.2(7))", Get_Rep_Pragma (FS, Name_Pack)); Set_Is_Packed (Arr, False); end Complain_Pack; -- Start of processing for Pack_Check begin -- OK if the component size and object size are equal, or -- if the component size is a multiple of the storage unit. if (if Known_Static_Esize (Ctyp) then RM_Size (Ctyp) = Esize (Ctyp) else RM_Size (Ctyp) mod System_Storage_Unit = 0) then null; elsif Has_Aliased_Components (Arr) then Complain_Pack ("aliased"); elsif Has_Atomic_Components (Arr) or else Is_Atomic (Ctyp) then Complain_Pack ("atomic"); elsif Is_Volatile_Full_Access (Ctyp) then Complain_Pack ("volatile full access"); elsif Has_Independent_Components (Arr) or else Is_Independent (Ctyp) then Complain_Pack ("independent"); end if; end Pack_Check; end if; -- If packing was requested or if the component size was -- set explicitly, then see if bit packing is required. This -- processing is only done for base types, since all of the -- representation aspects involved are type-related. -- This is not just an optimization, if we start processing the -- subtypes, they interfere with the settings on the base type -- (this is because Is_Packed has a slightly different meaning -- before and after freezing). declare Csiz : Uint; Esiz : Uint; begin if Is_Packed (Arr) and then Known_Static_RM_Size (Ctyp) and then not Has_Component_Size_Clause (Arr) then Csiz := UI_Max (RM_Size (Ctyp), 1); elsif Known_Component_Size (Arr) then Csiz := Component_Size (Arr); elsif not Known_Static_Esize (Ctyp) then Csiz := Uint_0; else Esiz := Esize (Ctyp); -- We can set the component size if it is less than 16, -- rounding it up to the next storage unit size. if Esiz <= 8 then Csiz := Uint_8; elsif Esiz <= 16 then Csiz := Uint_16; else Csiz := Uint_0; end if; -- Set component size up to match alignment if it would -- otherwise be less than the alignment. This deals with -- cases of types whose alignment exceeds their size (the -- padded type cases). if Csiz /= 0 and then Known_Alignment (Ctyp) then declare A : constant Uint := Alignment_In_Bits (Ctyp); begin if Csiz < A then Csiz := A; end if; end; end if; end if; -- Case of component size that may result in bit packing if 1 <= Csiz and then Csiz <= System_Max_Integer_Size then declare Ent : constant Entity_Id := First_Subtype (Arr); Pack_Pragma : constant Node_Id := Get_Rep_Pragma (Ent, Name_Pack); Comp_Size_C : constant Node_Id := Get_Attribute_Definition_Clause (Ent, Attribute_Component_Size); begin -- Warn if we have pack and component size so that the -- pack is ignored. -- Note: here we must check for the presence of a -- component size before checking for a Pack pragma to -- deal with the case where the array type is a derived -- type whose parent is currently private. if Present (Comp_Size_C) and then Has_Pragma_Pack (Ent) and then Warn_On_Redundant_Constructs then Error_Msg_Sloc := Sloc (Comp_Size_C); Error_Msg_NE ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent); Error_Msg_N ("\?r?explicit component size given#!", Pack_Pragma); Set_Is_Packed (Base_Type (Ent), False); Set_Is_Bit_Packed_Array (Base_Type (Ent), False); end if; -- Set component size if not already set by a component -- size clause. if No (Comp_Size_C) then Set_Component_Size (Arr, Csiz); end if; -- Check for base type of 8, 16, 32 bits, where an -- unsigned subtype has a length one less than the -- base type (e.g. Natural subtype of Integer). -- In such cases, if a component size was not set -- explicitly, then generate a warning. if Has_Pragma_Pack (Arr) and then No (Comp_Size_C) and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31) and then Known_Esize (Base_Type (Ctyp)) and then Esize (Base_Type (Ctyp)) = Csiz + 1 then Error_Msg_Uint_1 := Csiz; if Present (Pack_Pragma) then Error_Msg_N ("??pragma Pack causes component size to be ^!", Pack_Pragma); Error_Msg_N ("\??use Component_Size to set desired value!", Pack_Pragma); end if; end if; -- Bit packing is never needed for 8, 16, 32, 64 or 128 if Addressable (Csiz) then -- If the Esize of the component is known and equal to -- the component size then even packing is not needed. if Known_Static_Esize (Ctyp) and then Esize (Ctyp) = Csiz then -- Here the array was requested to be packed, but -- the packing request had no effect whatsoever, -- so flag Is_Packed is reset. -- Note: semantically this means that we lose track -- of the fact that a derived type inherited pragma -- Pack that was non-effective, but that is fine. -- We regard a Pack pragma as a request to set a -- representation characteristic, and this request -- may be ignored. Set_Is_Packed (Base_Type (Arr), False); Set_Has_Non_Standard_Rep (Base_Type (Arr), False); else Set_Is_Packed (Base_Type (Arr), True); Set_Has_Non_Standard_Rep (Base_Type (Arr), True); end if; Set_Is_Bit_Packed_Array (Base_Type (Arr), False); -- Bit packing is not needed for multiples of the storage -- unit if the type is composite because the back end can -- byte pack composite types efficiently. That's not true -- for discrete types because every read would generate a -- lot of instructions, so we keep using the manipulation -- routines of the runtime for them. elsif Csiz mod System_Storage_Unit = 0 and then Is_Composite_Type (Ctyp) then Set_Is_Packed (Base_Type (Arr), True); Set_Has_Non_Standard_Rep (Base_Type (Arr), True); Set_Is_Bit_Packed_Array (Base_Type (Arr), False); -- In all other cases, bit packing is needed else Set_Is_Packed (Base_Type (Arr), True); Set_Has_Non_Standard_Rep (Base_Type (Arr), True); Set_Is_Bit_Packed_Array (Base_Type (Arr), True); end if; end; end if; end; -- Warn for case of atomic type Clause := Get_Rep_Pragma (FS, Name_Atomic); if Present (Clause) and then not Addressable (Component_Size (FS)) then Error_Msg_NE ("non-atomic components of type& may not be " & "accessible by separate tasks??", Clause, Arr); if Has_Component_Size_Clause (Arr) then Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause (FS, Attribute_Component_Size)); Error_Msg_N ("\because of component size clause#??", Clause); elsif Has_Pragma_Pack (Arr) then Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack)); Error_Msg_N ("\because of pragma Pack#??", Clause); end if; end if; -- Check for scalar storage order declare Dummy : Boolean; begin Check_Component_Storage_Order (Encl_Type => Arr, Comp => Empty, ADC => Get_Attribute_Definition_Clause (First_Subtype (Arr), Attribute_Scalar_Storage_Order), Comp_ADC_Present => Dummy); end; -- Processing that is done only for subtypes else -- Acquire alignment from base type. Known_Alignment of the base -- type is False for Wide_String, for example. if not Known_Alignment (Arr) and then Known_Alignment (Base_Type (Arr)) then Set_Alignment (Arr, Alignment (Base_Type (Arr))); Adjust_Esize_Alignment (Arr); end if; end if; -- Specific checks for bit-packed arrays if Is_Bit_Packed_Array (Arr) then -- Check number of elements for bit-packed arrays that come from -- source and have compile time known ranges. The bit-packed -- arrays circuitry does not support arrays with more than -- Integer'Last + 1 elements, and when this restriction is -- violated, causes incorrect data access. -- For the case where this is not compile time known, a run-time -- check should be generated??? if Comes_From_Source (Arr) and then Is_Constrained (Arr) then declare Elmts : Uint; Index : Node_Id; Ilen : Node_Id; Ityp : Entity_Id; begin Elmts := Uint_1; Index := First_Index (Arr); while Present (Index) loop Ityp := Etype (Index); -- Never generate an error if any index is of a generic -- type. We will check this in instances. if Is_Generic_Type (Ityp) then Elmts := Uint_0; exit; end if; Ilen := Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ityp, Loc), Attribute_Name => Name_Range_Length); Analyze_And_Resolve (Ilen); -- No attempt is made to check number of elements if not -- compile time known. if Nkind (Ilen) /= N_Integer_Literal then Elmts := Uint_0; exit; end if; Elmts := Elmts * Intval (Ilen); Next_Index (Index); end loop; if Elmts > Intval (High_Bound (Scalar_Range (Standard_Integer))) + 1 then Error_Msg_N ("bit packed array type may not have " & "more than Integer''Last+1 elements", Arr); end if; end; end if; -- Check size if Known_RM_Size (Arr) then declare SizC : constant Node_Id := Size_Clause (Arr); Discard : Boolean; begin -- It is not clear if it is possible to have no size clause -- at this stage, but it is not worth worrying about. Post -- error on the entity name in the size clause if present, -- else on the type entity itself. if Present (SizC) then Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard); else Check_Size (Arr, Arr, RM_Size (Arr), Discard); end if; end; end if; end if; -- If any of the index types was an enumeration type with a non- -- standard rep clause, then we indicate that the array type is -- always packed (even if it is not bit-packed). if Non_Standard_Enum then Set_Has_Non_Standard_Rep (Base_Type (Arr)); Set_Is_Packed (Base_Type (Arr)); end if; Set_Component_Alignment_If_Not_Set (Arr); -- If the array is packed and bit-packed or packed to eliminate holes -- in the non-contiguous enumeration index types, we must create the -- packed array type to be used to actually implement the type. This -- is only needed for real array types (not for string literal types, -- since they are present only for the front end). if Is_Packed (Arr) and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum) and then Ekind (Arr) /= E_String_Literal_Subtype then Create_Packed_Array_Impl_Type (Arr); Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result); -- Make sure that we have the necessary routines to implement the -- packing, and complain now if not. Note that we only test this -- for constrained array types. if Is_Constrained (Arr) and then Is_Bit_Packed_Array (Arr) and then Present (Packed_Array_Impl_Type (Arr)) and then Is_Array_Type (Packed_Array_Impl_Type (Arr)) then declare CS : constant Uint := Component_Size (Arr); RE : constant RE_Id := Get_Id (UI_To_Int (CS)); begin if RE /= RE_Null and then not RTE_Available (RE) then Error_Msg_CRT ("packing of " & UI_Image (CS) & "-bit components", First_Subtype (Etype (Arr))); -- Cancel the packing Set_Is_Packed (Base_Type (Arr), False); Set_Is_Bit_Packed_Array (Base_Type (Arr), False); Set_Packed_Array_Impl_Type (Arr, Empty); goto Skip_Packed; end if; end; end if; -- Size information of packed array type is copied to the array -- type, since this is really the representation. But do not -- override explicit existing size values. If the ancestor subtype -- is constrained the Packed_Array_Impl_Type will be inherited -- from it, but the size may have been provided already, and -- must not be overridden either. if not Has_Size_Clause (Arr) and then (No (Ancestor_Subtype (Arr)) or else not Has_Size_Clause (Ancestor_Subtype (Arr))) then Copy_Esize (To => Arr, From => Packed_Array_Impl_Type (Arr)); Copy_RM_Size (To => Arr, From => Packed_Array_Impl_Type (Arr)); end if; if not Has_Alignment_Clause (Arr) then Copy_Alignment (To => Arr, From => Packed_Array_Impl_Type (Arr)); end if; end if; <> -- A Ghost type cannot have a component of protected or task type -- (SPARK RM 6.9(21)). if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then Error_Msg_N ("ghost array type & cannot have concurrent component type", Arr); end if; end Freeze_Array_Type; ------------------------------- -- Freeze_Object_Declaration -- ------------------------------- procedure Freeze_Object_Declaration (E : Entity_Id) is procedure Check_Large_Modular_Array (Typ : Entity_Id); -- Check that the size of array type Typ can be computed without -- overflow, and generates a Storage_Error otherwise. This is only -- relevant for array types whose index is a modular type with -- Standard_Long_Long_Integer_Size bits: wrap-around arithmetic -- might yield a meaningless value for the length of the array, -- or its corresponding attribute. procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id); -- Ensure that the initialization state of variable Var_Id subject -- to pragma Thread_Local_Storage agrees with the semantics of the -- pragma. function Has_Default_Initialization (Obj_Id : Entity_Id) return Boolean; -- Determine whether object Obj_Id default initialized ------------------------------- -- Check_Large_Modular_Array -- ------------------------------- procedure Check_Large_Modular_Array (Typ : Entity_Id) is Obj_Loc : constant Source_Ptr := Sloc (E); Idx_Typ : Entity_Id; begin -- Nothing to do when expansion is disabled because this routine -- generates a runtime check. if not Expander_Active then return; -- Nothing to do for String literal subtypes because their index -- cannot be a modular type. elsif Ekind (Typ) = E_String_Literal_Subtype then return; -- Nothing to do for an imported object because the object will -- be created on the exporting side. elsif Is_Imported (E) then return; -- Nothing to do for unconstrained array types. This case arises -- when the object declaration is illegal. elsif not Is_Constrained (Typ) then return; end if; Idx_Typ := Etype (First_Index (Typ)); -- To prevent arithmetic overflow with large values, we raise -- Storage_Error under the following guard: -- -- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30) -- -- This takes care of the boundary case, but it is preferable to -- use a smaller limit, because even on 64-bit architectures an -- array of more than 2 ** 30 bytes is likely to raise -- Storage_Error. if Is_Modular_Integer_Type (Idx_Typ) and then RM_Size (Idx_Typ) = Standard_Long_Long_Integer_Size then -- Ensure that the type of the object is elaborated before -- the check itself is emitted to avoid elaboration issues -- in the code generator at the library level. if Is_Itype (Etype (E)) and then In_Open_Scopes (Scope (Etype (E))) then declare Ref_Node : constant Node_Id := Make_Itype_Reference (Obj_Loc); begin Set_Itype (Ref_Node, Etype (E)); Insert_Action (Declaration_Node (E), Ref_Node); end; end if; Insert_Action (Declaration_Node (E), Make_Raise_Storage_Error (Obj_Loc, Condition => Make_Op_Ge (Obj_Loc, Left_Opnd => Make_Op_Subtract (Obj_Loc, Left_Opnd => Make_Op_Divide (Obj_Loc, Left_Opnd => Make_Attribute_Reference (Obj_Loc, Prefix => New_Occurrence_Of (Typ, Obj_Loc), Attribute_Name => Name_Last), Right_Opnd => Make_Integer_Literal (Obj_Loc, Uint_2)), Right_Opnd => Make_Op_Divide (Obj_Loc, Left_Opnd => Make_Attribute_Reference (Obj_Loc, Prefix => New_Occurrence_Of (Typ, Obj_Loc), Attribute_Name => Name_First), Right_Opnd => Make_Integer_Literal (Obj_Loc, Uint_2))), Right_Opnd => Make_Integer_Literal (Obj_Loc, (Uint_2 ** 30))), Reason => SE_Object_Too_Large)); end if; end Check_Large_Modular_Array; --------------------------------------- -- Check_Pragma_Thread_Local_Storage -- --------------------------------------- procedure Check_Pragma_Thread_Local_Storage (Var_Id : Entity_Id) is function Has_Incompatible_Initialization (Var_Decl : Node_Id) return Boolean; -- Determine whether variable Var_Id with declaration Var_Decl is -- initialized with a value that violates the semantics of pragma -- Thread_Local_Storage. ------------------------------------- -- Has_Incompatible_Initialization -- ------------------------------------- function Has_Incompatible_Initialization (Var_Decl : Node_Id) return Boolean is Init_Expr : constant Node_Id := Expression (Var_Decl); begin -- The variable is default-initialized. This directly violates -- the semantics of the pragma. if Has_Default_Initialization (Var_Id) then return True; -- The variable has explicit initialization. In this case only -- a handful of values satisfy the semantics of the pragma. elsif Has_Init_Expression (Var_Decl) and then Present (Init_Expr) then -- "null" is a legal form of initialization if Nkind (Init_Expr) = N_Null then return False; -- A static expression is a legal form of initialization elsif Is_Static_Expression (Init_Expr) then return False; -- A static aggregate is a legal form of initialization elsif Nkind (Init_Expr) = N_Aggregate and then Compile_Time_Known_Aggregate (Init_Expr) then return False; -- All other initialization expressions violate the semantic -- of the pragma. else return True; end if; -- The variable lacks any kind of initialization, which agrees -- with the semantics of the pragma. else return False; end if; end Has_Incompatible_Initialization; -- Local declarations Var_Decl : constant Node_Id := Declaration_Node (Var_Id); -- Start of processing for Check_Pragma_Thread_Local_Storage begin -- A variable whose initialization is suppressed lacks any kind of -- initialization. if Suppress_Initialization (Var_Id) then null; -- The variable has default initialization, or is explicitly -- initialized to a value other than null, static expression, -- or a static aggregate. elsif Has_Incompatible_Initialization (Var_Decl) then Error_Msg_NE ("Thread_Local_Storage variable& is improperly initialized", Var_Decl, Var_Id); Error_Msg_NE ("\only allowed initialization is explicit NULL, static " & "expression or static aggregate", Var_Decl, Var_Id); end if; end Check_Pragma_Thread_Local_Storage; -------------------------------- -- Has_Default_Initialization -- -------------------------------- function Has_Default_Initialization (Obj_Id : Entity_Id) return Boolean is Obj_Decl : constant Node_Id := Declaration_Node (Obj_Id); Obj_Typ : constant Entity_Id := Etype (Obj_Id); begin return Comes_From_Source (Obj_Id) and then not Is_Imported (Obj_Id) and then not Has_Init_Expression (Obj_Decl) and then ((Has_Non_Null_Base_Init_Proc (Obj_Typ) and then not No_Initialization (Obj_Decl) and then not Initialization_Suppressed (Obj_Typ)) or else (Needs_Simple_Initialization (Obj_Typ) and then not Is_Internal (Obj_Id))); end Has_Default_Initialization; -- Local variables Typ : constant Entity_Id := Etype (E); Def : Node_Id; -- Start of processing for Freeze_Object_Declaration begin -- Abstract type allowed only for C++ imported variables or constants -- Note: we inhibit this check for objects that do not come from -- source because there is at least one case (the expansion of -- x'Class'Input where x is abstract) where we legitimately -- generate an abstract object. if Is_Abstract_Type (Typ) and then Comes_From_Source (Parent (E)) and then not (Is_Imported (E) and then Is_CPP_Class (Typ)) then Def := Object_Definition (Parent (E)); Error_Msg_N ("type of object cannot be abstract", Def); if Is_CPP_Class (Etype (E)) then Error_Msg_NE ("\} may need a cpp_constructor", Def, Typ); elsif Present (Expression (Parent (E))) then Error_Msg_N -- CODEFIX ("\maybe a class-wide type was meant", Def); end if; end if; -- For object created by object declaration, perform required -- categorization (preelaborate and pure) checks. Defer these -- checks to freeze time since pragma Import inhibits default -- initialization and thus pragma Import affects these checks. Validate_Object_Declaration (Declaration_Node (E)); -- If there is an address clause, check that it is valid and if need -- be move initialization to the freeze node. Check_Address_Clause (E); -- Similar processing is needed for aspects that may affect object -- layout, like Address, if there is an initialization expression. -- We don't do this if there is a pragma Linker_Section, because it -- would prevent the back end from statically initializing the -- object; we don't want elaboration code in that case. if Has_Delayed_Aspects (E) and then Expander_Active and then Is_Array_Type (Typ) and then Present (Expression (Declaration_Node (E))) and then No (Linker_Section_Pragma (E)) then declare Decl : constant Node_Id := Declaration_Node (E); Lhs : constant Node_Id := New_Occurrence_Of (E, Loc); begin -- Capture initialization value at point of declaration, and -- make explicit assignment legal, because object may be a -- constant. Remove_Side_Effects (Expression (Decl)); Set_Assignment_OK (Lhs); -- Move initialization to freeze actions Append_Freeze_Action (E, Make_Assignment_Statement (Loc, Name => Lhs, Expression => Expression (Decl))); Set_No_Initialization (Decl); -- Set_Is_Frozen (E, False); end; end if; -- Reset Is_True_Constant for non-constant aliased object. We -- consider that the fact that a non-constant object is aliased may -- indicate that some funny business is going on, e.g. an aliased -- object is passed by reference to a procedure which captures the -- address of the object, which is later used to assign a new value, -- even though the compiler thinks that it is not modified. Such -- code is highly dubious, but we choose to make it "work" for -- non-constant aliased objects. -- Note that we used to do this for all aliased objects, whether or -- not constant, but this caused anomalies down the line because we -- ended up with static objects that were not Is_True_Constant. Not -- resetting Is_True_Constant for (aliased) constant objects ensures -- that this anomaly never occurs. -- However, we don't do that for internal entities. We figure that if -- we deliberately set Is_True_Constant for an internal entity, e.g. -- a dispatch table entry, then we mean it. if Ekind (E) /= E_Constant and then (Is_Aliased (E) or else Is_Aliased (Typ)) and then not Is_Internal_Name (Chars (E)) then Set_Is_True_Constant (E, False); end if; -- If the object needs any kind of default initialization, an error -- must be issued if No_Default_Initialization applies. The check -- doesn't apply to imported objects, which are not ever default -- initialized, and is why the check is deferred until freezing, at -- which point we know if Import applies. Deferred constants are also -- exempted from this test because their completion is explicit, or -- through an import pragma. if Ekind (E) = E_Constant and then Present (Full_View (E)) then null; elsif Has_Default_Initialization (E) then Check_Restriction (No_Default_Initialization, Declaration_Node (E)); end if; -- Ensure that a variable subject to pragma Thread_Local_Storage -- -- * Lacks default initialization, or -- -- * The initialization expression is either "null", a static -- constant, or a compile-time known aggregate. if Has_Pragma_Thread_Local_Storage (E) then Check_Pragma_Thread_Local_Storage (E); end if; -- For imported objects, set Is_Public unless there is also an -- address clause, which means that there is no external symbol -- needed for the Import (Is_Public may still be set for other -- unrelated reasons). Note that we delayed this processing -- till freeze time so that we can be sure not to set the flag -- if there is an address clause. If there is such a clause, -- then the only purpose of the Import pragma is to suppress -- implicit initialization. if Is_Imported (E) and then No (Address_Clause (E)) then Set_Is_Public (E); end if; -- For source objects that are not Imported and are library level, if -- no linker section pragma was given inherit the appropriate linker -- section from the corresponding type. if Comes_From_Source (E) and then not Is_Imported (E) and then Is_Library_Level_Entity (E) and then No (Linker_Section_Pragma (E)) then Set_Linker_Section_Pragma (E, Linker_Section_Pragma (Typ)); end if; -- For convention C objects of an enumeration type, warn if the size -- is not integer size and no explicit size given. Skip warning for -- Boolean and Character, and assume programmer expects 8-bit sizes -- for these cases. if (Convention (E) = Convention_C or else Convention (E) = Convention_CPP) and then Is_Enumeration_Type (Typ) and then not Is_Character_Type (Typ) and then not Is_Boolean_Type (Typ) and then Esize (Typ) < Standard_Integer_Size and then not Has_Size_Clause (E) then Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size); Error_Msg_N ("??convention C enumeration object has size less than ^", E); Error_Msg_N ("\??use explicit size clause to set size", E); end if; -- Declaring too big an array in disabled ghost code is OK if Is_Array_Type (Typ) and then not Is_Ignored_Ghost_Entity (E) then Check_Large_Modular_Array (Typ); end if; end Freeze_Object_Declaration; ----------------------------- -- Freeze_Generic_Entities -- ----------------------------- function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is E : Entity_Id; F : Node_Id; Flist : List_Id; begin Flist := New_List; E := First_Entity (Pack); while Present (E) loop if Is_Type (E) and then not Is_Generic_Type (E) then F := Make_Freeze_Generic_Entity (Sloc (Pack)); Set_Entity (F, E); Append_To (Flist, F); elsif Ekind (E) = E_Generic_Package then Append_List_To (Flist, Freeze_Generic_Entities (E)); end if; Next_Entity (E); end loop; return Flist; end Freeze_Generic_Entities; -------------------- -- Freeze_Profile -- -------------------- function Freeze_Profile (E : Entity_Id) return Boolean is F_Type : Entity_Id; R_Type : Entity_Id; Warn_Node : Node_Id; begin -- Loop through formals Formal := First_Formal (E); while Present (Formal) loop F_Type := Etype (Formal); -- AI05-0151: incomplete types can appear in a profile. By the -- time the entity is frozen, the full view must be available, -- unless it is a limited view. if Is_Incomplete_Type (F_Type) and then Present (Full_View (F_Type)) and then not From_Limited_With (F_Type) then F_Type := Full_View (F_Type); Set_Etype (Formal, F_Type); end if; if not From_Limited_With (F_Type) and then Should_Freeze_Type (F_Type, E, N) then Freeze_And_Append (F_Type, N, Result); end if; if Is_Private_Type (F_Type) and then Is_Private_Type (Base_Type (F_Type)) and then No (Full_View (Base_Type (F_Type))) and then not Is_Generic_Type (F_Type) and then not Is_Derived_Type (F_Type) then -- If the type of a formal is incomplete, subprogram is being -- frozen prematurely. Within an instance (but not within a -- wrapper package) this is an artifact of our need to regard -- the end of an instantiation as a freeze point. Otherwise it -- is a definite error. if In_Instance then Set_Is_Frozen (E, False); Result := No_List; return False; elsif not After_Last_Declaration then Error_Msg_NE ("type & must be fully defined before this point", N, F_Type); end if; end if; -- Check suspicious parameter for C function. These tests apply -- only to exported/imported subprograms. if Warn_On_Export_Import and then Comes_From_Source (E) and then Convention (E) in Convention_C_Family and then (Is_Imported (E) or else Is_Exported (E)) and then Convention (E) /= Convention (Formal) and then not Has_Warnings_Off (E) and then not Has_Warnings_Off (F_Type) and then not Has_Warnings_Off (Formal) then -- Qualify mention of formals with subprogram name Error_Msg_Qual_Level := 1; -- Check suspicious use of fat C pointer, but do not emit -- a warning on an access to subprogram when unnesting is -- active. if Is_Access_Type (F_Type) and then Known_Esize (F_Type) and then Esize (F_Type) > Ttypes.System_Address_Size and then (not Unnest_Subprogram_Mode or else not Is_Access_Subprogram_Type (F_Type)) then Error_Msg_N ("?x?type of & does not correspond to C pointer!", Formal); -- Check suspicious return of boolean elsif Root_Type (F_Type) = Standard_Boolean and then Convention (F_Type) = Convention_Ada and then not Has_Warnings_Off (F_Type) and then not Has_Size_Clause (F_Type) then Error_Msg_N ("& is an 8-bit Ada Boolean?x?", Formal); Error_Msg_N ("\use appropriate corresponding type in C " & "(e.g. char)?x?", Formal); -- Check suspicious tagged type elsif (Is_Tagged_Type (F_Type) or else (Is_Access_Type (F_Type) and then Is_Tagged_Type (Designated_Type (F_Type)))) and then Convention (E) = Convention_C then Error_Msg_N ("?x?& involves a tagged type which does not " & "correspond to any C type!", Formal); -- Check wrong convention subprogram pointer elsif Ekind (F_Type) = E_Access_Subprogram_Type and then not Has_Foreign_Convention (F_Type) then Error_Msg_N ("?x?subprogram pointer & should " & "have foreign convention!", Formal); Error_Msg_Sloc := Sloc (F_Type); Error_Msg_NE ("\?x?add Convention pragma to declaration of &#", Formal, F_Type); end if; -- Turn off name qualification after message output Error_Msg_Qual_Level := 0; end if; -- Check for unconstrained array in exported foreign convention -- case. if Has_Foreign_Convention (E) and then not Is_Imported (E) and then Is_Array_Type (F_Type) and then not Is_Constrained (F_Type) and then Warn_On_Export_Import then Error_Msg_Qual_Level := 1; -- If this is an inherited operation, place the warning on -- the derived type declaration, rather than on the original -- subprogram. if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration then Warn_Node := Parent (E); if Formal = First_Formal (E) then Error_Msg_NE ("??in inherited operation&", Warn_Node, E); end if; else Warn_Node := Formal; end if; Error_Msg_NE ("?x?type of argument& is unconstrained array", Warn_Node, Formal); Error_Msg_N ("\?x?foreign caller must pass bounds explicitly", Warn_Node); Error_Msg_Qual_Level := 0; end if; if not From_Limited_With (F_Type) then if Is_Access_Type (F_Type) then F_Type := Designated_Type (F_Type); end if; end if; Next_Formal (Formal); end loop; -- Case of function: similar checks on return type if Ekind (E) = E_Function then -- Freeze return type R_Type := Etype (E); -- AI05-0151: the return type may have been incomplete at the -- point of declaration. Replace it with the full view, unless the -- current type is a limited view. In that case the full view is -- in a different unit, and gigi finds the non-limited view after -- the other unit is elaborated. if Ekind (R_Type) = E_Incomplete_Type and then Present (Full_View (R_Type)) and then not From_Limited_With (R_Type) then R_Type := Full_View (R_Type); Set_Etype (E, R_Type); end if; if Should_Freeze_Type (R_Type, E, N) then Freeze_And_Append (R_Type, N, Result); end if; -- Check suspicious return type for C function if Warn_On_Export_Import and then Comes_From_Source (E) and then Convention (E) in Convention_C_Family and then (Is_Imported (E) or else Is_Exported (E)) then -- Check suspicious return of fat C pointer if Is_Access_Type (R_Type) and then Known_Esize (R_Type) and then Esize (R_Type) > Ttypes.System_Address_Size and then not Has_Warnings_Off (E) and then not Has_Warnings_Off (R_Type) then Error_Msg_N ("?x?return type of& does not correspond to C pointer!", E); -- Check suspicious return of boolean elsif Root_Type (R_Type) = Standard_Boolean and then Convention (R_Type) = Convention_Ada and then not Has_Warnings_Off (E) and then not Has_Warnings_Off (R_Type) and then not Has_Size_Clause (R_Type) then declare N : constant Node_Id := Result_Definition (Declaration_Node (E)); begin Error_Msg_NE ("return type of & is an 8-bit Ada Boolean?x?", N, E); Error_Msg_NE ("\use appropriate corresponding type in C " & "(e.g. char)?x?", N, E); end; -- Check suspicious return tagged type elsif (Is_Tagged_Type (R_Type) or else (Is_Access_Type (R_Type) and then Is_Tagged_Type (Designated_Type (R_Type)))) and then Convention (E) = Convention_C and then not Has_Warnings_Off (E) and then not Has_Warnings_Off (R_Type) then Error_Msg_N ("?x?return type of & does not " & "correspond to C type!", E); -- Check return of wrong convention subprogram pointer elsif Ekind (R_Type) = E_Access_Subprogram_Type and then not Has_Foreign_Convention (R_Type) and then not Has_Warnings_Off (E) and then not Has_Warnings_Off (R_Type) then Error_Msg_N ("?x?& should return a foreign " & "convention subprogram pointer", E); Error_Msg_Sloc := Sloc (R_Type); Error_Msg_NE ("\?x?add Convention pragma to declaration of& #", E, R_Type); end if; end if; -- Give warning for suspicious return of a result of an -- unconstrained array type in a foreign convention function. if Has_Foreign_Convention (E) -- We are looking for a return of unconstrained array and then Is_Array_Type (R_Type) and then not Is_Constrained (R_Type) -- Exclude imported routines, the warning does not belong on -- the import, but rather on the routine definition. and then not Is_Imported (E) -- Check that general warning is enabled, and that it is not -- suppressed for this particular case. and then Warn_On_Export_Import and then not Has_Warnings_Off (E) and then not Has_Warnings_Off (R_Type) then Error_Msg_N ("?x?foreign convention function& should not return " & "unconstrained array!", E); end if; end if; -- Check suspicious use of Import in pure unit (cases where the RM -- allows calls to be omitted). if Is_Imported (E) -- It might be suspicious if the compilation unit has the Pure -- aspect/pragma. and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit)) -- The RM allows omission of calls only in the case of -- library-level subprograms (see RM-10.2.1(18)). and then Is_Library_Level_Entity (E) -- Ignore internally generated entity. This happens in some cases -- of subprograms in specs, where we generate an implied body. and then Comes_From_Source (Import_Pragma (E)) -- Assume run-time knows what it is doing and then not GNAT_Mode -- Assume explicit Pure_Function means import is pure and then not Has_Pragma_Pure_Function (E) -- Don't need warning in relaxed semantics mode and then not Relaxed_RM_Semantics -- Assume convention Intrinsic is OK, since this is specialized. -- This deals with the DEC unit current_exception.ads and then Convention (E) /= Convention_Intrinsic -- Assume that ASM interface knows what it is doing and then Convention (E) /= Convention_Assembler then Error_Msg_N ("pragma Import in Pure unit??", Import_Pragma (E)); Error_Msg_NE ("\calls to & may be omitted (RM 10.2.1(18/3))??", Import_Pragma (E), E); end if; return True; end Freeze_Profile; ------------------------ -- Freeze_Record_Type -- ------------------------ procedure Freeze_Record_Type (Rec : Entity_Id) is ADC : Node_Id; Comp : Entity_Id; IR : Node_Id; Prev : Entity_Id; Junk : Boolean; pragma Warnings (Off, Junk); Aliased_Component : Boolean := False; -- Set True if we find at least one component which is aliased. This -- is used to prevent Implicit_Packing of the record, since packing -- cannot modify the size of alignment of an aliased component. All_Elem_Components : Boolean := True; -- True if all components are of a type whose underlying type is -- elementary. All_Sized_Components : Boolean := True; -- True if all components have a known RM_Size All_Storage_Unit_Components : Boolean := True; -- True if all components have an RM_Size that is a multiple of the -- storage unit. Elem_Component_Total_Esize : Uint := Uint_0; -- Accumulates total Esize values of all elementary components. Used -- for processing of Implicit_Packing. Final_Storage_Only : Boolean := True; -- Used to compute the Finalize_Storage_Only flag Placed_Component : Boolean := False; -- Set True if we find at least one component with a component -- clause (used to warn about useless Bit_Order pragmas, and also -- to detect cases where Implicit_Packing may have an effect). Relaxed_Finalization : Boolean := True; -- Used to compute the Has_Relaxed_Finalization flag Sized_Component_Total_RM_Size : Uint := Uint_0; -- Accumulates total RM_Size values of all sized components. Used -- for processing of Implicit_Packing. Sized_Component_Total_Round_RM_Size : Uint := Uint_0; -- Accumulates total RM_Size values of all sized components, rounded -- individually to a multiple of the storage unit. SSO_ADC : Node_Id; -- Scalar_Storage_Order attribute definition clause for the record SSO_ADC_Component : Boolean := False; -- Set True if we find at least one component whose type has a -- Scalar_Storage_Order attribute definition clause. Unplaced_Component : Boolean := False; -- Set True if we find at least one component with no component -- clause (used to warn about useless Pack pragmas). procedure Check_Itype (Typ : Entity_Id); -- If the component subtype is an access to a constrained subtype of -- an already frozen type, make the subtype frozen as well. It might -- otherwise be frozen in the wrong scope, and a freeze node on -- subtype has no effect. Similarly, if the component subtype is a -- regular (not protected) access to subprogram, set the anonymous -- subprogram type to frozen as well, to prevent an out-of-scope -- freeze node at some eventual point of call. Protected operations -- are handled elsewhere. procedure Freeze_Choices_In_Variant_Part (VP : Node_Id); -- Make sure that all types mentioned in Discrete_Choices of the -- variants referenceed by the Variant_Part VP are frozen. This is -- a recursive routine to deal with nested variants. ----------------- -- Check_Itype -- ----------------- procedure Check_Itype (Typ : Entity_Id) is Desig : constant Entity_Id := Designated_Type (Typ); begin if not Is_Frozen (Desig) and then Is_Frozen (Base_Type (Desig)) then Set_Is_Frozen (Desig); -- In addition, add an Itype_Reference to ensure that the -- access subtype is elaborated early enough. This cannot be -- done if the subtype may depend on discriminants. if Ekind (Comp) = E_Component and then Is_Itype (Etype (Comp)) and then not Has_Discriminants (Rec) then IR := Make_Itype_Reference (Sloc (Comp)); Set_Itype (IR, Desig); Add_To_Result (IR); end if; elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type and then Convention (Desig) /= Convention_Protected then Set_Is_Frozen (Desig); Create_Extra_Formals (Desig); end if; end Check_Itype; ------------------------------------ -- Freeze_Choices_In_Variant_Part -- ------------------------------------ procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is pragma Assert (Nkind (VP) = N_Variant_Part); Variant : Node_Id; Choice : Node_Id; CL : Node_Id; begin -- Loop through variants Variant := First_Non_Pragma (Variants (VP)); while Present (Variant) loop -- Loop through choices, checking that all types are frozen Choice := First_Non_Pragma (Discrete_Choices (Variant)); while Present (Choice) loop if Nkind (Choice) in N_Has_Etype and then Present (Etype (Choice)) then Freeze_And_Append (Etype (Choice), N, Result); end if; Next_Non_Pragma (Choice); end loop; -- Check for nested variant part to process CL := Component_List (Variant); if not Null_Present (CL) then if Present (Variant_Part (CL)) then Freeze_Choices_In_Variant_Part (Variant_Part (CL)); end if; end if; Next_Non_Pragma (Variant); end loop; end Freeze_Choices_In_Variant_Part; -- Start of processing for Freeze_Record_Type begin -- Freeze components and embedded subtypes Comp := First_Entity (Rec); Prev := Empty; while Present (Comp) loop if Is_Aliased (Comp) then Aliased_Component := True; end if; -- Handle the component and discriminant case if Ekind (Comp) in E_Component | E_Discriminant then declare CC : constant Node_Id := Component_Clause (Comp); begin -- Freezing a record type freezes the type of each of its -- components. However, if the type of the component is -- part of this record, we do not want or need a separate -- Freeze_Node. Note that Is_Itype is wrong because that's -- also set in private type cases. We also can't check for -- the Scope being exactly Rec because of private types and -- record extensions. if Is_Itype (Etype (Comp)) and then Is_Record_Type (Underlying_Type (Scope (Etype (Comp)))) then Undelay_Type (Etype (Comp)); end if; Freeze_And_Append (Etype (Comp), N, Result); -- Warn for pragma Pack overriding foreign convention if Has_Foreign_Convention (Etype (Comp)) and then Has_Pragma_Pack (Rec) -- Don't warn for aliased components, since override -- cannot happen in that case. and then not Is_Aliased (Comp) then declare CN : constant Name_Id := Get_Convention_Name (Convention (Etype (Comp))); PP : constant Node_Id := Get_Pragma (Rec, Pragma_Pack); begin if Present (PP) then Error_Msg_Name_1 := CN; Error_Msg_Sloc := Sloc (Comp); Error_Msg_N ("pragma Pack affects convention % component#??", PP); Error_Msg_Name_1 := CN; Error_Msg_NE ("\component & may not have % compatible " & "representation??", PP, Comp); end if; end; end if; -- Check for error of component clause given for variable -- sized type. We have to delay this test till this point, -- since the component type has to be frozen for us to know -- if it is variable length. if Present (CC) then Placed_Component := True; -- We omit this test in a generic context, it will be -- applied at instantiation time. if Inside_A_Generic then null; -- Also omit this test in CodePeer mode, since we do not -- have sufficient info on size and rep clauses. elsif CodePeer_Mode then null; -- Do the check elsif not Size_Known_At_Compile_Time (Underlying_Type (Etype (Comp))) then Error_Msg_N ("component clause not allowed for variable " & "length component", CC); end if; else Unplaced_Component := True; end if; -- Case of component requires byte alignment if Must_Be_On_Byte_Boundary (Etype (Comp)) then -- Set the enclosing record to also require byte align Set_Must_Be_On_Byte_Boundary (Rec); -- Check for component clause that is inconsistent with -- the required byte boundary alignment. if Present (CC) and then Normalized_First_Bit (Comp) mod System_Storage_Unit /= 0 then Error_Msg_N ("component & must be byte aligned", Component_Name (Component_Clause (Comp))); end if; end if; end; end if; -- Gather data for possible Implicit_Packing later. Note that at -- this stage we might be dealing with a real component, or with -- an implicit subtype declaration. if Known_Static_RM_Size (Etype (Comp)) then declare Comp_Type : constant Entity_Id := Etype (Comp); Comp_Size : constant Uint := RM_Size (Comp_Type); SSU : constant Int := Ttypes.System_Storage_Unit; begin Sized_Component_Total_RM_Size := Sized_Component_Total_RM_Size + Comp_Size; Sized_Component_Total_Round_RM_Size := Sized_Component_Total_Round_RM_Size + (Comp_Size + SSU - 1) / SSU * SSU; if Present (Underlying_Type (Comp_Type)) and then Is_Elementary_Type (Underlying_Type (Comp_Type)) then Elem_Component_Total_Esize := Elem_Component_Total_Esize + Esize (Comp_Type); else All_Elem_Components := False; if Comp_Size mod SSU /= 0 then All_Storage_Unit_Components := False; end if; end if; end; else All_Sized_Components := False; end if; -- If the component is an Itype with Delayed_Freeze and is either -- a record or array subtype and its base type has not yet been -- frozen, we must remove this from the entity list of this record -- and put it on the entity list of the scope of its base type. -- Note that we know that this is not the type of a component -- since we cleared Has_Delayed_Freeze for it in the previous -- loop. Thus this must be the Designated_Type of an access type, -- which is the type of a component. if Is_Itype (Comp) and then Is_Type (Scope (Comp)) and then Is_Composite_Type (Comp) and then Base_Type (Comp) /= Comp and then Has_Delayed_Freeze (Comp) and then not Is_Frozen (Base_Type (Comp)) then declare Will_Be_Frozen : Boolean := False; S : Entity_Id; begin -- We have a difficult case to handle here. Suppose Rec is -- subtype being defined in a subprogram that's created as -- part of the freezing of Rec'Base. In that case, we know -- that Comp'Base must have already been frozen by the time -- we get to elaborate this because Gigi doesn't elaborate -- any bodies until it has elaborated all of the declarative -- part. But Is_Frozen will not be set at this point because -- we are processing code in lexical order. -- We detect this case by going up the Scope chain of Rec -- and seeing if we have a subprogram scope before reaching -- the top of the scope chain or that of Comp'Base. If we -- do, then mark that Comp'Base will actually be frozen. If -- so, we merely undelay it. S := Scope (Rec); while Present (S) loop if Is_Subprogram (S) then Will_Be_Frozen := True; exit; elsif S = Scope (Base_Type (Comp)) then exit; end if; S := Scope (S); end loop; if Will_Be_Frozen then Undelay_Type (Comp); else if Present (Prev) then Link_Entities (Prev, Next_Entity (Comp)); else Set_First_Entity (Rec, Next_Entity (Comp)); end if; -- Insert in entity list of scope of base type (which -- must be an enclosing scope, because still unfrozen). Append_Entity (Comp, Scope (Base_Type (Comp))); end if; end; -- If the component is an access type with an allocator as default -- value, the designated type will be frozen by the corresponding -- expression in init_proc. In order to place the freeze node for -- the designated type before that for the current record type, -- freeze it now. -- Same process if the component is an array of access types, -- initialized with an aggregate. If the designated type is -- private, it cannot contain allocators, and it is premature -- to freeze the type, so we check for this as well. elsif Is_Access_Type (Etype (Comp)) and then Present (Parent (Comp)) and then Nkind (Parent (Comp)) in N_Component_Declaration | N_Discriminant_Specification and then Present (Expression (Parent (Comp))) then declare Alloc : constant Node_Id := Unqualify (Expression (Parent (Comp))); begin if Nkind (Alloc) = N_Allocator then -- If component is pointer to a class-wide type, freeze -- the specific type in the expression being allocated. -- The expression may be a subtype indication, in which -- case freeze the subtype mark. if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then if Is_Entity_Name (Expression (Alloc)) then Freeze_And_Append (Entity (Expression (Alloc)), N, Result); elsif Nkind (Expression (Alloc)) = N_Subtype_Indication then Freeze_And_Append (Entity (Subtype_Mark (Expression (Alloc))), N, Result); end if; elsif Is_Itype (Designated_Type (Etype (Comp))) then Check_Itype (Etype (Comp)); else Freeze_And_Append (Designated_Type (Etype (Comp)), N, Result); end if; end if; end; elsif Is_Access_Type (Etype (Comp)) and then Is_Itype (Designated_Type (Etype (Comp))) then Check_Itype (Etype (Comp)); -- Freeze the designated type when initializing a component with -- an aggregate in case the aggregate contains allocators. -- type T is ...; -- type T_Ptr is access all T; -- type T_Array is array ... of T_Ptr; -- type Rec is record -- Comp : T_Array := (others => ...); -- end record; elsif Is_Array_Type (Etype (Comp)) and then Is_Access_Type (Component_Type (Etype (Comp))) then declare Comp_Par : constant Node_Id := Parent (Comp); Desig_Typ : constant Entity_Id := Designated_Type (Component_Type (Etype (Comp))); begin -- The only case when this sort of freezing is not done is -- when the designated type is class-wide and the root type -- is the record owning the component. This scenario results -- in a circularity because the class-wide type requires -- primitives that have not been created yet as the root -- type is in the process of being frozen. -- type Rec is tagged; -- type Rec_Ptr is access all Rec'Class; -- type Rec_Array is array ... of Rec_Ptr; -- type Rec is record -- Comp : Rec_Array := (others => ...); -- end record; if Is_Class_Wide_Type (Desig_Typ) and then Root_Type (Desig_Typ) = Rec then null; elsif Is_Fully_Defined (Desig_Typ) and then Present (Comp_Par) and then Nkind (Comp_Par) = N_Component_Declaration and then Present (Expression (Comp_Par)) and then Nkind (Expression (Comp_Par)) = N_Aggregate then Freeze_And_Append (Desig_Typ, N, Result); end if; end; end if; Prev := Comp; Next_Entity (Comp); end loop; SSO_ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Scalar_Storage_Order); -- If the record type has Complex_Representation, then it is treated -- as a scalar in the back end so the storage order is irrelevant. if Has_Complex_Representation (Rec) then if Present (SSO_ADC) then Error_Msg_N ("??storage order has no effect with Complex_Representation", SSO_ADC); end if; else -- Deal with default setting of reverse storage order Set_SSO_From_Default (Rec); -- Check consistent attribute setting on component types declare Comp_ADC_Present : Boolean; begin Comp := First_Component (Rec); while Present (Comp) loop Check_Component_Storage_Order (Encl_Type => Rec, Comp => Comp, ADC => SSO_ADC, Comp_ADC_Present => Comp_ADC_Present); SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present; Next_Component (Comp); end loop; end; -- Now deal with reverse storage order/bit order issues if Present (SSO_ADC) then -- Check compatibility of Scalar_Storage_Order with Bit_Order, -- if the former is specified. if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then -- Note: report error on Rec, not on SSO_ADC, as ADC may -- apply to some ancestor type. Error_Msg_Sloc := Sloc (SSO_ADC); Error_Msg_N ("scalar storage order for& specified# inconsistent with " & "bit order", Rec); end if; -- Warn if there is a Scalar_Storage_Order attribute definition -- clause but no component clause, no component that itself has -- such an attribute definition, and no pragma Pack. if not (Placed_Component or else SSO_ADC_Component or else Is_Packed (Rec)) then Error_Msg_N ("??scalar storage order specified but no component " & "clause", SSO_ADC); end if; end if; end if; -- Deal with Bit_Order aspect ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order); if Present (ADC) and then Base_Type (Rec) = Rec then if not (Placed_Component or else Present (SSO_ADC) or else Is_Packed (Rec)) then -- Warn if clause has no effect when no component clause is -- present, but suppress warning if the Bit_Order is required -- due to the presence of a Scalar_Storage_Order attribute. Error_Msg_N ("??bit order specification has no effect", ADC); Error_Msg_N ("\??since no component clauses were specified", ADC); -- Here is where we do the processing to adjust component clauses -- for reversed bit order, when not using reverse SSO. If an error -- has been reported on Rec already (such as SSO incompatible with -- bit order), don't bother adjusting as this may generate extra -- noise. elsif Reverse_Bit_Order (Rec) and then not Reverse_Storage_Order (Rec) and then not Error_Posted (Rec) then Adjust_Record_For_Reverse_Bit_Order (Rec); -- Case where we have both an explicit Bit_Order and the same -- Scalar_Storage_Order: leave record untouched, the back-end -- will take care of required layout conversions. else null; end if; end if; -- Check for useless pragma Pack when all components placed. We only -- do this check for record types, not subtypes, since a subtype may -- have all its components placed, and it still makes perfectly good -- sense to pack other subtypes or the parent type. We do not give -- this warning if Optimize_Alignment is set to Space, since the -- pragma Pack does have an effect in this case (it always resets -- the alignment to one). if Ekind (Rec) = E_Record_Type and then Is_Packed (Rec) and then not Unplaced_Component and then Optimize_Alignment /= 'S' then -- Reset packed status. Probably not necessary, but we do it so -- that there is no chance of the back end doing something strange -- with this redundant indication of packing. Set_Is_Packed (Rec, False); -- Give warning if redundant constructs warnings on if Warn_On_Redundant_Constructs then Error_Msg_N -- CODEFIX ("?r?pragma Pack has no effect, no unplaced components", Get_Rep_Pragma (Rec, Name_Pack)); end if; end if; -- If this is the record corresponding to a remote type, freeze the -- remote type here since that is what we are semantically freezing. -- This prevents the freeze node for that type in an inner scope. if Ekind (Rec) = E_Record_Type then if Present (Corresponding_Remote_Type (Rec)) then Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result); end if; -- Check for tasks, protected and controlled components, unchecked -- unions, and type invariants. Comp := First_Component (Rec); while Present (Comp) loop Propagate_Concurrent_Flags (Rec, Etype (Comp)); -- Do not set Has_Controlled_Component on a class-wide -- equivalent type. See Make_CW_Equivalent_Type. if not Is_Class_Wide_Equivalent_Type (Rec) and then (Has_Controlled_Component (Etype (Comp)) or else (Chars (Comp) /= Name_uParent and then Is_Controlled (Etype (Comp))) or else (Is_Protected_Type (Etype (Comp)) and then Present (Corresponding_Record_Type (Etype (Comp))) and then Has_Controlled_Component (Corresponding_Record_Type (Etype (Comp))))) then Set_Has_Controlled_Component (Rec); Final_Storage_Only := Final_Storage_Only and then Finalize_Storage_Only (Etype (Comp)); Relaxed_Finalization := Relaxed_Finalization and then Has_Relaxed_Finalization (Etype (Comp)); end if; if Has_Unchecked_Union (Etype (Comp)) then Set_Has_Unchecked_Union (Rec); end if; -- The record type requires its own invariant procedure in -- order to verify the invariant of each individual component. -- Do not consider internal components such as _parent because -- parent class-wide invariants are always inherited. -- In GNATprove mode, the component invariants are checked by -- other means. They should not be added to the record type -- invariant procedure, so that the procedure can be used to -- check the recordy type invariants if any. if Comes_From_Source (Comp) and then Has_Invariants (Etype (Comp)) and then not GNATprove_Mode then Set_Has_Own_Invariants (Rec); end if; -- Scan component declaration for likely misuses of current -- instance, either in a constraint or a default expression. if Has_Per_Object_Constraint (Comp) then Check_Current_Instance (Parent (Comp)); end if; Next_Component (Comp); end loop; -- For a type that is not directly controlled but has controlled -- components, Finalize_Storage_Only is set if all the controlled -- components are Finalize_Storage_Only. The same processing is -- appled to Has_Relaxed_Finalization. if not Is_Controlled (Rec) and then Has_Controlled_Component (Rec) then Set_Finalize_Storage_Only (Rec, Final_Storage_Only); Set_Has_Relaxed_Finalization (Rec, Relaxed_Finalization); end if; end if; -- Enforce the restriction that access attributes with a current -- instance prefix can only apply to limited types. This comment -- is floating here, but does not seem to belong here??? -- Set component alignment if not otherwise already set Set_Component_Alignment_If_Not_Set (Rec); -- For first subtypes, check if there are any fixed-point fields with -- component clauses, where we must check the size. This is not done -- till the freeze point since for fixed-point types, we do not know -- the size until the type is frozen. Similar processing applies to -- bit-packed arrays. if Is_First_Subtype (Rec) then Comp := First_Component (Rec); while Present (Comp) loop if Present (Component_Clause (Comp)) and then (Is_Fixed_Point_Type (Etype (Comp)) or else Is_Bit_Packed_Array (Etype (Comp))) then Check_Size (Component_Name (Component_Clause (Comp)), Etype (Comp), Esize (Comp), Junk); end if; Next_Component (Comp); end loop; end if; -- See if Size is too small as is (and implicit packing might help) if not Is_Packed (Rec) -- No implicit packing if even one component is explicitly placed and then not Placed_Component -- Or even one component is aliased and then not Aliased_Component -- Must have size clause and all sized components and then Has_Size_Clause (Rec) and then All_Sized_Components -- Do not try implicit packing on records with discriminants, too -- complicated, especially in the variant record case. and then not Has_Discriminants (Rec) -- We want to implicitly pack if the specified size of the record -- is less than the sum of the object sizes (no point in packing -- if this is not the case), if we can compute it, i.e. if we have -- only elementary components. Otherwise, we have at least one -- composite component and we want to implicitly pack only if bit -- packing is required for it, as we are sure in this case that -- the back end cannot do the expected layout without packing. and then ((All_Elem_Components and then RM_Size (Rec) < Elem_Component_Total_Esize) or else (not All_Elem_Components and then not All_Storage_Unit_Components and then RM_Size (Rec) < Sized_Component_Total_Round_RM_Size)) -- And the total RM size cannot be greater than the specified size -- since otherwise packing will not get us where we have to be. and then Sized_Component_Total_RM_Size <= RM_Size (Rec) -- Never do implicit packing in CodePeer or SPARK modes since -- we don't do any packing in these modes, since this generates -- over-complex code that confuses static analysis, and in -- general, neither CodePeer not GNATprove care about the -- internal representation of objects. and then not (CodePeer_Mode or GNATprove_Mode) then -- If implicit packing enabled, do it if Implicit_Packing then Set_Is_Packed (Rec); -- Otherwise flag the size clause else declare Sz : constant Node_Id := Size_Clause (Rec); begin Error_Msg_NE -- CODEFIX ("size given for& too small", Sz, Rec); Error_Msg_N -- CODEFIX ("\use explicit pragma Pack " & "or use pragma Implicit_Packing", Sz); end; end if; end if; -- Make sure that if we have an iterator aspect, then we have -- either Constant_Indexing or Variable_Indexing. declare Iterator_Aspect : Node_Id; begin Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element); if No (Iterator_Aspect) then Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator); end if; if Present (Iterator_Aspect) then if Has_Aspect (Rec, Aspect_Constant_Indexing) or else Has_Aspect (Rec, Aspect_Variable_Indexing) then null; else Error_Msg_N ("Iterator_Element requires indexing aspect", Iterator_Aspect); end if; end if; end; -- All done if not a full record definition if Ekind (Rec) /= E_Record_Type then return; end if; -- Finally we need to check the variant part to make sure that -- all types within choices are properly frozen as part of the -- freezing of the record type. Check_Variant_Part : declare D : constant Node_Id := Declaration_Node (Rec); T : Node_Id; C : Node_Id; begin -- Find component list C := Empty; if Nkind (D) = N_Full_Type_Declaration then T := Type_Definition (D); if Nkind (T) = N_Record_Definition then C := Component_List (T); elsif Nkind (T) = N_Derived_Type_Definition and then Present (Record_Extension_Part (T)) then C := Component_List (Record_Extension_Part (T)); end if; end if; -- Case of variant part present if Present (C) and then Present (Variant_Part (C)) then Freeze_Choices_In_Variant_Part (Variant_Part (C)); end if; -- Note: we used to call Check_Choices here, but it is too early, -- since predicated subtypes are frozen here, but their freezing -- actions are in Analyze_Freeze_Entity, which has not been called -- yet for entities frozen within this procedure, so we moved that -- call to the Analyze_Freeze_Entity for the record type. end Check_Variant_Part; -- Check that all the primitives of an interface type are abstract -- or null procedures. if Is_Interface (Rec) and then not Error_Posted (Parent (Rec)) then declare Elmt : Elmt_Id; Subp : Entity_Id; begin Elmt := First_Elmt (Primitive_Operations (Rec)); while Present (Elmt) loop Subp := Node (Elmt); if not Is_Abstract_Subprogram (Subp) -- Avoid reporting the error on inherited primitives and then Comes_From_Source (Subp) then Error_Msg_Name_1 := Chars (Subp); if Ekind (Subp) = E_Procedure then if not Null_Present (Parent (Subp)) then Error_Msg_N ("interface procedure % must be abstract or null", Parent (Subp)); end if; else Error_Msg_N ("interface function % must be abstract", Parent (Subp)); end if; end if; Next_Elmt (Elmt); end loop; end; end if; end Freeze_Record_Type; ------------------------------- -- Has_Boolean_Aspect_Import -- ------------------------------- function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is Decl : constant Node_Id := Declaration_Node (E); Asp : Node_Id; Expr : Node_Id; begin if Has_Aspects (Decl) then Asp := First (Aspect_Specifications (Decl)); while Present (Asp) loop Expr := Expression (Asp); -- The value of aspect Import is True when the expression is -- either missing or it is explicitly set to True. if Get_Aspect_Id (Asp) = Aspect_Import and then (No (Expr) or else (Compile_Time_Known_Value (Expr) and then Is_True (Expr_Value (Expr)))) then return True; end if; Next (Asp); end loop; end if; return False; end Has_Boolean_Aspect_Import; ------------------------- -- Inherit_Freeze_Node -- ------------------------- procedure Inherit_Freeze_Node (Fnod : Node_Id; Typ : Entity_Id) is Typ_Fnod : constant Node_Id := Freeze_Node (Typ); begin Set_Freeze_Node (Typ, Fnod); Set_Entity (Fnod, Typ); -- The input type had an existing node. Propagate relevant attributes -- from the old freeze node to the inherited freeze node. -- ??? if both freeze nodes have attributes, would they differ? if Present (Typ_Fnod) then -- Attribute Access_Types_To_Process if Present (Access_Types_To_Process (Typ_Fnod)) and then No (Access_Types_To_Process (Fnod)) then Set_Access_Types_To_Process (Fnod, Access_Types_To_Process (Typ_Fnod)); end if; -- Attribute Actions if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then Set_Actions (Fnod, Actions (Typ_Fnod)); end if; -- Attribute First_Subtype_Link if Present (First_Subtype_Link (Typ_Fnod)) and then No (First_Subtype_Link (Fnod)) then Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod)); end if; -- Attribute TSS_Elist if Present (TSS_Elist (Typ_Fnod)) and then No (TSS_Elist (Fnod)) then Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod)); end if; end if; end Inherit_Freeze_Node; ------------------------------ -- Wrap_Imported_Subprogram -- ------------------------------ -- The issue here is that our normal approach of checking preconditions -- and postconditions does not work for imported procedures, since we -- are not generating code for the body. To get around this we create -- a wrapper, as shown by the following example: -- procedure K (A : Integer); -- pragma Import (C, K); -- The spec is rewritten by removing the effects of pragma Import, but -- leaving the convention unchanged, as though the source had said: -- procedure K (A : Integer); -- pragma Convention (C, K); -- and we create a body, added to the entity K freeze actions, which -- looks like: -- procedure K (A : Integer) is -- procedure K (A : Integer); -- pragma Import (C, K); -- begin -- K (A); -- end K; -- Now the contract applies in the normal way to the outer procedure, -- and the inner procedure has no contracts, so there is no problem -- in just calling it to get the original effect. -- In the case of a function, we create an appropriate return statement -- for the subprogram body that calls the inner procedure. procedure Wrap_Imported_Subprogram (E : Entity_Id) is function Copy_Import_Pragma return Node_Id; -- Obtain a copy of the Import_Pragma which belongs to subprogram E ------------------------ -- Copy_Import_Pragma -- ------------------------ function Copy_Import_Pragma return Node_Id is -- The subprogram should have an import pragma, otherwise it does -- need a wrapper. Prag : constant Node_Id := Import_Pragma (E); pragma Assert (Present (Prag)); -- Save all semantic fields of the pragma Save_Asp : constant Node_Id := Corresponding_Aspect (Prag); Save_From : constant Boolean := From_Aspect_Specification (Prag); Save_Prag : constant Node_Id := Next_Pragma (Prag); Save_Rep : constant Node_Id := Next_Rep_Item (Prag); Result : Node_Id; begin -- Reset all semantic fields. This avoids a potential infinite -- loop when the pragma comes from an aspect as the duplication -- will copy the aspect, then copy the corresponding pragma and -- so on. Set_Corresponding_Aspect (Prag, Empty); Set_From_Aspect_Specification (Prag, False); Set_Next_Pragma (Prag, Empty); Set_Next_Rep_Item (Prag, Empty); Result := Copy_Separate_Tree (Prag); -- Restore the original semantic fields Set_Corresponding_Aspect (Prag, Save_Asp); Set_From_Aspect_Specification (Prag, Save_From); Set_Next_Pragma (Prag, Save_Prag); Set_Next_Rep_Item (Prag, Save_Rep); return Result; end Copy_Import_Pragma; -- Local variables Loc : constant Source_Ptr := Sloc (E); CE : constant Name_Id := Chars (E); Bod : Node_Id; Forml : Entity_Id; Parms : List_Id; Prag : Node_Id; Spec : Node_Id; Stmt : Node_Id; -- Start of processing for Wrap_Imported_Subprogram begin -- Nothing to do if not imported if not Is_Imported (E) then return; -- Test enabling conditions for wrapping elsif Is_Subprogram (E) and then Present (Contract (E)) and then Present (Pre_Post_Conditions (Contract (E))) and then not GNATprove_Mode then -- Here we do the wrap Prag := Copy_Import_Pragma; -- Fix up spec so it is no longer imported and has convention Ada Set_Has_Completion (E, False); Set_Import_Pragma (E, Empty); Set_Interface_Name (E, Empty); Set_Is_Imported (E, False); Set_Convention (E, Convention_Ada); -- Grab the subprogram declaration and specification Spec := Declaration_Node (E); -- Build parameter list that we need Parms := New_List; Forml := First_Formal (E); while Present (Forml) loop Append_To (Parms, Make_Identifier (Loc, Chars (Forml))); Next_Formal (Forml); end loop; -- Build the call -- An imported function whose result type is anonymous access -- creates a new anonymous access type when it is relocated into -- the declarations of the body generated below. As a result, the -- accessibility level of these two anonymous access types may not -- be compatible even though they are essentially the same type. -- Use an unchecked type conversion to reconcile this case. Note -- that the conversion is safe because in the named access type -- case, both the body and imported function utilize the same -- type. if Ekind (E) in E_Function | E_Generic_Function then Stmt := Make_Simple_Return_Statement (Loc, Expression => Unchecked_Convert_To (Etype (E), Make_Function_Call (Loc, Name => Make_Identifier (Loc, CE), Parameter_Associations => Parms))); else Stmt := Make_Procedure_Call_Statement (Loc, Name => Make_Identifier (Loc, CE), Parameter_Associations => Parms); end if; -- Now build the body Bod := Make_Subprogram_Body (Loc, Specification => Copy_Subprogram_Spec (Spec), Declarations => New_List ( Make_Subprogram_Declaration (Loc, Specification => Copy_Subprogram_Spec (Spec)), Prag), Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Stmt), End_Label => Make_Identifier (Loc, CE))); -- Append the body to freeze result Add_To_Result (Bod); return; -- Case of imported subprogram that does not get wrapped else -- Set Is_Public. All imported entities need an external symbol -- created for them since they are always referenced from another -- object file. Note this used to be set when we set Is_Imported -- back in Sem_Prag, but now we delay it to this point, since we -- don't want to set this flag if we wrap an imported subprogram. Set_Is_Public (E); end if; end Wrap_Imported_Subprogram; -- Start of processing for Freeze_Entity begin -- The entity being frozen may be subject to pragma Ghost. Set the mode -- now to ensure that any nodes generated during freezing are properly -- flagged as Ghost. Set_Ghost_Mode (E); -- We are going to test for various reasons why this entity need not be -- frozen here, but in the case of an Itype that's defined within a -- record, that test actually applies to the record. if Is_Itype (E) and then Is_Record_Type (Scope (E)) then Test_E := Scope (E); elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E))) and then Is_Record_Type (Underlying_Type (Scope (E))) then Test_E := Underlying_Type (Scope (E)); end if; -- Do not freeze if already frozen since we only need one freeze node if Is_Frozen (E) then if Is_Itype (E) and then not Is_Base_Type (E) and then not Is_Frozen (Etype (E)) then -- If a frozen subtype of an unfrozen type seems impossible -- then see Analyze_Protected_Definition.Undelay_Itypes. Result := Freeze_Entity (Etype (E), N, Do_Freeze_Profile => Do_Freeze_Profile); else Result := No_List; end if; goto Leave; -- Do not freeze if we are preanalyzing without freezing elsif Inside_Preanalysis_Without_Freezing > 0 then Result := No_List; goto Leave; elsif Ekind (E) = E_Generic_Package then Result := Freeze_Generic_Entities (E); goto Leave; -- It is improper to freeze an external entity within a generic because -- its freeze node will appear in a non-valid context. The entity will -- be frozen in the proper scope after the current generic is analyzed. -- However, aspects must be analyzed because they may be queried later -- within the generic itself, and the corresponding pragma or attribute -- definition has not been analyzed yet. After this, indicate that the -- entity has no further delayed aspects, to prevent a later aspect -- analysis out of the scope of the generic. elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then if Has_Delayed_Aspects (E) then Analyze_Aspects_At_Freeze_Point (E); Set_Has_Delayed_Aspects (E, False); end if; Result := No_List; goto Leave; -- AI05-0213: A formal incomplete type does not freeze the actual. In -- the instance, the same applies to the subtype renaming the actual. elsif Is_Private_Type (E) and then Is_Generic_Actual_Type (E) and then No (Full_View (Base_Type (E))) and then Ada_Version >= Ada_2012 then Result := No_List; goto Leave; -- Formal subprograms are never frozen elsif Is_Formal_Subprogram (E) then Result := No_List; goto Leave; -- Generic types are never frozen as they lack delayed semantic checks elsif Is_Generic_Type (E) then Result := No_List; goto Leave; -- Do not freeze a global entity within an inner scope created during -- expansion. A call to subprogram E within some internal procedure -- (a stream attribute for example) might require freezing E, but the -- freeze node must appear in the same declarative part as E itself. -- The two-pass elaboration mechanism in gigi guarantees that E will -- be frozen before the inner call is elaborated. We exclude constants -- from this test, because deferred constants may be frozen early, and -- must be diagnosed (e.g. in the case of a deferred constant being used -- in a default expression). If the enclosing subprogram comes from -- source, or is a generic instance, then the freeze point is the one -- mandated by the language, and we freeze the entity. A subprogram that -- is a child unit body that acts as a spec does not have a spec that -- comes from source, but can only come from source. elsif In_Open_Scopes (Scope (Test_E)) and then Scope (Test_E) /= Current_Scope and then Ekind (Test_E) /= E_Constant then -- Here we deal with the special case of the expansion of -- postconditions. Previously this was handled by the loop below, -- since these postcondition checks got isolated to a separate, -- internally generated, subprogram. Now, however, the postcondition -- checks get contained within their corresponding subprogram -- directly. if not Comes_From_Source (N) and then Nkind (N) = N_Pragma and then From_Aspect_Specification (N) and then Is_Valid_Assertion_Kind (Original_Aspect_Pragma_Name (N)) -- Now, verify the placement of the pragma is within an expanded -- subprogram which contains postcondition expansion - detected -- through the presence of the "Wrapped_Statements" field. and then Present (Enclosing_Subprogram (Current_Scope)) and then Present (Wrapped_Statements (Enclosing_Subprogram (Current_Scope))) then goto Leave; end if; -- Otherwise, loop through scopes checking if an enclosing scope -- comes from source or is a generic. Note that, for the purpose -- of this test, we need to consider that the internally generated -- subprogram described above comes from source too if the original -- subprogram itself does. declare S : Entity_Id; begin S := Current_Scope; while Present (S) loop if Is_Overloadable (S) then if Comes_From_Source (S) or else (Chars (S) = Name_uWrapped_Statements and then Comes_From_Source (Scope (S))) or else Is_Generic_Instance (S) or else Is_Child_Unit (S) then exit; else Result := No_List; goto Leave; end if; end if; S := Scope (S); end loop; end; -- Similarly, an inlined instance body may make reference to global -- entities, but these references cannot be the proper freezing point -- for them, and in the absence of inlining freezing will take place in -- their own scope. Normally instance bodies are analyzed after the -- enclosing compilation, and everything has been frozen at the proper -- place, but with front-end inlining an instance body is compiled -- before the end of the enclosing scope, and as a result out-of-order -- freezing must be prevented. elsif Front_End_Inlining and then In_Instance_Body and then Present (Scope (Test_E)) then declare S : Entity_Id; begin S := Scope (Test_E); while Present (S) loop if Is_Generic_Instance (S) then exit; else S := Scope (S); end if; end loop; if No (S) then Result := No_List; goto Leave; end if; end; end if; -- Add checks to detect proper initialization of scalars that may appear -- as subprogram parameters. if Is_Subprogram (E) and then Check_Validity_Of_Parameters then Apply_Parameter_Validity_Checks (E); end if; -- Deal with delayed aspect specifications. The analysis of the aspect -- is required to be delayed to the freeze point, thus we analyze the -- pragma or attribute definition clause in the tree at this point. We -- also analyze the aspect specification node at the freeze point when -- the aspect doesn't correspond to pragma/attribute definition clause. -- In addition, a derived type may have inherited aspects that were -- delayed in the parent, so these must also be captured now. -- For a record type, we deal with the delayed aspect specifications on -- components first, which is consistent with the non-delayed case and -- makes it possible to have a single processing to detect conflicts. if Is_Record_Type (E) then declare Comp : Entity_Id; Rec_Pushed : Boolean := False; -- Set True if the record type E has been pushed on the scope -- stack. Needed for the analysis of delayed aspects specified -- to the components of Rec. begin Comp := First_Component (E); while Present (Comp) loop if Has_Delayed_Aspects (Comp) then if not Rec_Pushed then Push_Scope (E); Rec_Pushed := True; -- The visibility to the discriminants must be restored -- in order to properly analyze the aspects. if Has_Discriminants (E) then Install_Discriminants (E); end if; end if; Analyze_Aspects_At_Freeze_Point (Comp); end if; Next_Component (Comp); end loop; -- Pop the scope if Rec scope has been pushed on the scope stack -- during the delayed aspect analysis process. if Rec_Pushed then if Has_Discriminants (E) then Uninstall_Discriminants (E); end if; Pop_Scope; end if; end; end if; if Has_Delayed_Aspects (E) then Analyze_Aspects_At_Freeze_Point (E); end if; -- Here to freeze the entity Set_Is_Frozen (E); -- Case of entity being frozen is other than a type if not Is_Type (E) then -- If entity is exported or imported and does not have an external -- name, now is the time to provide the appropriate default name. -- Skip this if the entity is stubbed, since we don't need a name -- for any stubbed routine. For the case on intrinsics, if no -- external name is specified, then calls will be handled in -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an -- external name is provided, then Expand_Intrinsic_Call leaves -- calls in place for expansion by GIGI. if (Is_Imported (E) or else Is_Exported (E)) and then No (Interface_Name (E)) and then Convention (E) /= Convention_Stubbed and then Convention (E) /= Convention_Intrinsic then Set_Encoded_Interface_Name (E, Get_Default_External_Name (E)); end if; -- Subprogram case if Is_Subprogram (E) then -- Check for needing to wrap imported subprogram if not Inside_A_Generic then Wrap_Imported_Subprogram (E); end if; -- Freeze all parameter types and the return type (RM 13.14(14)). -- However skip this for internal subprograms. This is also where -- any extra formal parameters are created since we now know -- whether the subprogram will use a foreign convention. -- In Ada 2012, freezing a subprogram does not always freeze the -- corresponding profile (see AI05-019). An attribute reference -- is not a freezing point of the profile. Similarly, we do not -- freeze the profile of primitives of a library-level tagged type -- when we are building its dispatch table. Flag Do_Freeze_Profile -- indicates whether the profile should be frozen now. -- This processing doesn't apply to internal entities (see below) if not Is_Internal (E) and then Do_Freeze_Profile then if not Freeze_Profile (E) then goto Leave; end if; end if; -- Must freeze its parent first if it is a derived subprogram if Present (Alias (E)) then Freeze_And_Append (Alias (E), N, Result); end if; -- We don't freeze internal subprograms, because we don't normally -- want addition of extra formals or mechanism setting to happen -- for those. However we do pass through predefined dispatching -- cases, since extra formals may be needed in some cases, such as -- for the stream 'Input function (build-in-place formals). if not Is_Internal (E) or else Is_Predefined_Dispatching_Operation (E) then Freeze_Subprogram (E); end if; -- If warning on suspicious contracts then check for the case of -- a postcondition other than False for a No_Return subprogram. if No_Return (E) and then Warn_On_Suspicious_Contract and then Present (Contract (E)) then declare Prag : Node_Id := Pre_Post_Conditions (Contract (E)); Exp : Node_Id; begin while Present (Prag) loop if Pragma_Name_Unmapped (Prag) in Name_Post | Name_Postcondition | Name_Refined_Post then Exp := Expression (First (Pragma_Argument_Associations (Prag))); if Nkind (Exp) /= N_Identifier or else Chars (Exp) /= Name_False then Error_Msg_NE ("useless postcondition, & is marked " & "No_Return?.t?", Exp, E); end if; end if; Prag := Next_Pragma (Prag); end loop; end; end if; -- Here for other than a subprogram or type else -- If entity has a type declared in the current scope, and it is -- not a generic unit, then freeze it first. if Present (Etype (E)) and then Ekind (E) /= E_Generic_Function and then Within_Scope (Etype (E), Current_Scope) then Freeze_And_Append (Etype (E), N, Result); -- For an object of an anonymous array type, aspects on the -- object declaration apply to the type itself. This is the -- case for Atomic_Components, Volatile_Components, and -- Independent_Components. In these cases analysis of the -- generated pragma will mark the anonymous types accordingly, -- and the object itself does not require a freeze node. if Ekind (E) = E_Variable and then Is_Itype (Etype (E)) and then Is_Array_Type (Etype (E)) and then Has_Delayed_Aspects (E) then Set_Has_Delayed_Aspects (E, False); Set_Has_Delayed_Freeze (E, False); Set_Freeze_Node (E, Empty); end if; end if; -- Special processing for objects created by object declaration; -- we protect the call to Declaration_Node against entities of -- expressions replaced by the frontend with an N_Raise_CE node. if Ekind (E) in E_Constant | E_Variable and then Nkind (Declaration_Node (E)) = N_Object_Declaration then Freeze_Object_Declaration (E); end if; -- Check that a constant which has a pragma Volatile[_Components] -- or Atomic[_Components] also has a pragma Import (RM C.6(13)). -- Note: Atomic[_Components] also sets Volatile[_Components] if Ekind (E) = E_Constant and then (Has_Volatile_Components (E) or else Is_Volatile (E)) and then not Is_Imported (E) and then not Has_Boolean_Aspect_Import (E) then -- Make sure we actually have a pragma, and have not merely -- inherited the indication from elsewhere (e.g. an address -- clause, which is not good enough in RM terms). if Has_Rep_Pragma (E, Name_Atomic) or else Has_Rep_Pragma (E, Name_Atomic_Components) then Error_Msg_N ("standalone atomic constant must be " & "imported (RM C.6(13))", E); elsif Has_Rep_Pragma (E, Name_Volatile) or else Has_Rep_Pragma (E, Name_Volatile_Components) then Error_Msg_N ("standalone volatile constant must be " & "imported (RM C.6(13))", E); end if; end if; -- Static objects require special handling if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable) and then Is_Statically_Allocated (E) then Freeze_Static_Object (E); end if; -- Remaining step is to layout objects if Ekind (E) in E_Variable | E_Constant | E_Loop_Parameter or else Is_Formal (E) then Layout_Object (E); end if; -- For an object that does not have delayed freezing, and whose -- initialization actions have been captured in a compound -- statement, move them back now directly within the enclosing -- statement sequence. if Ekind (E) in E_Constant | E_Variable and then not Has_Delayed_Freeze (E) then Explode_Initialization_Compound_Statement (E); end if; -- Do not generate a freeze node for a generic unit if Is_Generic_Unit (E) then Result := No_List; goto Leave; end if; end if; -- Case of a type or subtype being frozen else -- Verify several SPARK legality rules related to Ghost types now -- that the type is frozen. Check_Ghost_Type (E); -- We used to check here that a full type must have preelaborable -- initialization if it completes a private type specified with -- pragma Preelaborable_Initialization, but that missed cases where -- the types occur within a generic package, since the freezing -- that occurs within a containing scope generally skips traversal -- of a generic unit's declarations (those will be frozen within -- instances). This check was moved to Analyze_Package_Specification. -- The type may be defined in a generic unit. This can occur when -- freezing a generic function that returns the type (which is -- defined in a parent unit). It is clearly meaningless to freeze -- this type. However, if it is a subtype, its size may be determi- -- nable and used in subsequent checks, so might as well try to -- compute it. -- In Ada 2012, Freeze_Entities is also used in the front end to -- trigger the analysis of aspect expressions, so in this case we -- want to continue the freezing process. -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead -- In_Generic_Scope (E)??? if Present (Scope (E)) and then Is_Generic_Unit (Scope (E)) and then (not Has_Predicates (E) and then not Has_Delayed_Freeze (E)) then Check_Compile_Time_Size (E); Result := No_List; goto Leave; end if; -- Check for error of Type_Invariant'Class applied to an untagged -- type (check delayed to freeze time when full type is available). declare Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant); begin if Present (Prag) and then Class_Present (Prag) and then not Is_Tagged_Type (E) then Error_Msg_NE ("Type_Invariant''Class cannot be specified for &", Prag, E); Error_Msg_N ("\can only be specified for a tagged type", Prag); end if; end; -- Deal with special cases of freezing for subtype if E /= Base_Type (E) then -- Before we do anything else, a specific test for the case of a -- size given for an array where the array would need to be packed -- in order for the size to be honored, but is not. This is the -- case where implicit packing may apply. The reason we do this so -- early is that, if we have implicit packing, the layout of the -- base type is affected, so we must do this before we freeze the -- base type. -- We could do this processing only if implicit packing is enabled -- since in all other cases, the error would be caught by the back -- end. However, we choose to do the check even if we do not have -- implicit packing enabled, since this allows us to give a more -- useful error message (advising use of pragma Implicit_Packing -- or pragma Pack). if Is_Array_Type (E) then declare Ctyp : constant Entity_Id := Component_Type (E); Rsiz : constant Uint := (if Known_RM_Size (Ctyp) then RM_Size (Ctyp) else Uint_0); SZ : constant Node_Id := Size_Clause (E); Btyp : constant Entity_Id := Base_Type (E); Lo : Node_Id; Hi : Node_Id; Indx : Node_Id; Dim : Uint; Num_Elmts : Uint := Uint_1; -- Number of elements in array begin -- Check enabling conditions. These are straightforward -- except for the test for a limited composite type. This -- eliminates the rare case of a array of limited components -- where there are issues of whether or not we can go ahead -- and pack the array (since we can't freely pack and unpack -- arrays if they are limited). -- Note that we check the root type explicitly because the -- whole point is we are doing this test before we have had -- a chance to freeze the base type (and it is that freeze -- action that causes stuff to be inherited). -- The conditions on the size are identical to those used in -- Freeze_Array_Type to set the Is_Packed flag. if Has_Size_Clause (E) and then Known_Static_RM_Size (E) and then not Is_Packed (E) and then not Has_Pragma_Pack (E) and then not Has_Component_Size_Clause (E) and then Known_Static_RM_Size (Ctyp) and then Rsiz <= System_Max_Integer_Size and then not (Addressable (Rsiz) and then Known_Static_Esize (Ctyp) and then Esize (Ctyp) = Rsiz) and then not (Rsiz mod System_Storage_Unit = 0 and then Is_Composite_Type (Ctyp)) and then not Is_Limited_Composite (E) and then not Is_Packed (Root_Type (E)) and then not Has_Component_Size_Clause (Root_Type (E)) and then not (CodePeer_Mode or GNATprove_Mode) then -- Compute number of elements in array Indx := First_Index (E); while Present (Indx) loop Get_Index_Bounds (Indx, Lo, Hi); if not (Compile_Time_Known_Value (Lo) and then Compile_Time_Known_Value (Hi)) then goto No_Implicit_Packing; end if; Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1; if Dim > Uint_0 then Num_Elmts := Num_Elmts * Dim; else Num_Elmts := Uint_0; end if; Next_Index (Indx); end loop; -- What we are looking for here is the situation where -- the RM_Size given would be exactly right if there was -- a pragma Pack, resulting in the component size being -- the RM_Size of the component type. if RM_Size (E) = Num_Elmts * Rsiz then -- For implicit packing mode, just set the component -- size and Freeze_Array_Type will do the rest. if Implicit_Packing then Set_Component_Size (Btyp, Rsiz); -- Otherwise give an error message, except that if the -- specified Size is zero, there is no need for pragma -- Pack. Note that size zero is not considered -- Addressable. elsif RM_Size (E) /= Uint_0 then Error_Msg_NE ("size given for& too small", SZ, E); Error_Msg_N -- CODEFIX ("\use explicit pragma Pack or use pragma " & "Implicit_Packing", SZ); end if; end if; end if; end; end if; <> -- If ancestor subtype present, freeze that first. Note that this -- will also get the base type frozen. Need RM reference ??? Atype := Ancestor_Subtype (E); if Present (Atype) then Freeze_And_Append (Atype, N, Result); -- No ancestor subtype present else -- See if we have a nearest ancestor that has a predicate. -- That catches the case of derived type with a predicate. -- Need RM reference here ??? Atype := Nearest_Ancestor (E); if Present (Atype) and then Has_Predicates (Atype) then Freeze_And_Append (Atype, N, Result); end if; -- Freeze base type before freezing the entity (RM 13.14(15)) if E /= Base_Type (E) then Freeze_And_Append (Base_Type (E), N, Result); end if; end if; -- A subtype inherits all the type-related representation aspects -- from its parents (RM 13.1(8)). if May_Inherit_Delayed_Rep_Aspects (E) then Inherit_Delayed_Rep_Aspects (E); end if; Inherit_Aspects_At_Freeze_Point (E); -- For a derived type, freeze its parent type first (RM 13.14(15)) elsif Is_Derived_Type (E) then Freeze_And_Append (Etype (E), N, Result); -- A derived type inherits each type-related representation aspect -- of its parent type that was directly specified before the -- declaration of the derived type (RM 13.1(15)). if May_Inherit_Delayed_Rep_Aspects (E) then Inherit_Delayed_Rep_Aspects (E); end if; Inherit_Aspects_At_Freeze_Point (E); end if; -- Case of array type if Is_Array_Type (E) then Freeze_Array_Type (E); end if; -- Check for incompatible size and alignment for array/record type if Warn_On_Size_Alignment and then (Is_Array_Type (E) or else Is_Record_Type (E)) and then Has_Size_Clause (E) and then Has_Alignment_Clause (E) -- If explicit Object_Size clause given assume that the programmer -- knows what he is doing, and expects the compiler behavior. and then not Has_Object_Size_Clause (E) -- It does not really make sense to warn for the minimum alignment -- since the programmer could not get rid of the warning. and then Alignment (E) > 1 -- Check for size not a multiple of alignment and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0 then declare SC : constant Node_Id := Size_Clause (E); AC : constant Node_Id := Alignment_Clause (E); Loc : Node_Id; Abits : constant Uint := Alignment (E) * System_Storage_Unit; begin if Present (SC) and then Present (AC) then -- Give a warning if Sloc (SC) > Sloc (AC) then Loc := SC; Error_Msg_NE ("?.z?size is not a multiple of alignment for &", Loc, E); Error_Msg_Sloc := Sloc (AC); Error_Msg_Uint_1 := Alignment (E); Error_Msg_N ("\?.z?alignment of ^ specified #", Loc); else Loc := AC; Error_Msg_NE ("?.z?size is not a multiple of alignment for &", Loc, E); Error_Msg_Sloc := Sloc (SC); Error_Msg_Uint_1 := RM_Size (E); Error_Msg_N ("\?.z?size of ^ specified #", Loc); end if; Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits; Error_Msg_N ("\?.z?Object_Size will be increased to ^", Loc); end if; end; end if; -- For a class-wide type, the corresponding specific type is -- frozen as well (RM 13.14(15)) if Is_Class_Wide_Type (E) then Freeze_And_Append (Root_Type (E), N, Result); -- If the base type of the class-wide type is still incomplete, -- the class-wide remains unfrozen as well. This is legal when -- E is the formal of a primitive operation of some other type -- which is being frozen. if not Is_Frozen (Root_Type (E)) then Set_Is_Frozen (E, False); goto Leave; end if; -- The equivalent type associated with a class-wide subtype needs -- to be frozen to ensure that its layout is done. if Ekind (E) = E_Class_Wide_Subtype and then Present (Equivalent_Type (E)) then Freeze_And_Append (Equivalent_Type (E), N, Result); end if; -- Generate an itype reference for a library-level class-wide type -- at the freeze point. Otherwise the first explicit reference to -- the type may appear in an inner scope which will be rejected by -- the back-end. if Is_Itype (E) and then Is_Compilation_Unit (Scope (E)) then declare Ref : constant Node_Id := Make_Itype_Reference (Loc); begin Set_Itype (Ref, E); -- From a gigi point of view, a class-wide subtype derives -- from its record equivalent type. As a result, the itype -- reference must appear after the freeze node of the -- equivalent type or gigi will reject the reference. if Ekind (E) = E_Class_Wide_Subtype and then Present (Equivalent_Type (E)) then Insert_After (Freeze_Node (Equivalent_Type (E)), Ref); else Add_To_Result (Ref); end if; end; end if; -- For a record type or record subtype, freeze all component types -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than -- using Is_Record_Type, because we don't want to attempt the freeze -- for the case of a private type with record extension (we will do -- that later when the full type is frozen). elsif Ekind (E) in E_Record_Type | E_Record_Subtype then if not In_Generic_Scope (E) then Freeze_Record_Type (E); end if; -- Report a warning if a discriminated record base type has a -- convention with language C or C++ applied to it. This check is -- done even within generic scopes (but not in instantiations), -- which is why we don't do it as part of Freeze_Record_Type. Check_Suspicious_Convention (E); -- For a concurrent type, freeze corresponding record type. This does -- not correspond to any specific rule in the RM, but the record type -- is essentially part of the concurrent type. Also freeze all local -- entities. This includes record types created for entry parameter -- blocks and whatever local entities may appear in the private part. elsif Is_Concurrent_Type (E) then if Present (Corresponding_Record_Type (E)) then Freeze_And_Append (Corresponding_Record_Type (E), N, Result); end if; Comp := First_Entity (E); while Present (Comp) loop if Is_Type (Comp) then Freeze_And_Append (Comp, N, Result); elsif Ekind (Comp) /= E_Function then -- The guard on the presence of the Etype seems to be needed -- for some CodePeer (-gnatcC) cases, but not clear why??? if Present (Etype (Comp)) then if Is_Itype (Etype (Comp)) and then Underlying_Type (Scope (Etype (Comp))) = E then Undelay_Type (Etype (Comp)); end if; Freeze_And_Append (Etype (Comp), N, Result); end if; end if; Next_Entity (Comp); end loop; -- Private types are required to point to the same freeze node as -- their corresponding full views. The freeze node itself has to -- point to the partial view of the entity (because from the partial -- view, we can retrieve the full view, but not the reverse). -- However, in order to freeze correctly, we need to freeze the full -- view. If we are freezing at the end of a scope (or within the -- scope) of the private type, the partial and full views will have -- been swapped, the full view appears first in the entity chain and -- the swapping mechanism ensures that the pointers are properly set -- (on scope exit). -- If we encounter the partial view before the full view (e.g. when -- freezing from another scope), we freeze the full view, and then -- set the pointers appropriately since we cannot rely on swapping to -- fix things up (subtypes in an outer scope might not get swapped). -- If the full view is itself private, the above requirements apply -- to the underlying full view instead of the full view. But there is -- no swapping mechanism for the underlying full view so we need to -- set the pointers appropriately in both cases. elsif Is_Incomplete_Or_Private_Type (E) and then not Is_Generic_Type (E) then -- The construction of the dispatch table associated with library -- level tagged types forces freezing of all the primitives of the -- type, which may cause premature freezing of the partial view. -- For example: -- package Pkg is -- type T is tagged private; -- type DT is new T with private; -- procedure Prim (X : in out T; Y : in out DT'Class); -- private -- type T is tagged null record; -- Obj : T; -- type DT is new T with null record; -- end; -- In this case the type will be frozen later by the usual -- mechanism: an object declaration, an instantiation, or the -- end of a declarative part. if Is_Library_Level_Tagged_Type (E) and then No (Full_View (E)) then Set_Is_Frozen (E, False); goto Leave; -- Case of full view present elsif Present (Full_View (E)) then -- If full view has already been frozen, then no further -- processing is required if Is_Frozen (Full_View (E)) then Set_Has_Delayed_Freeze (E, False); Set_Freeze_Node (E, Empty); -- Otherwise freeze full view and patch the pointers so that -- the freeze node will elaborate both views in the back end. -- However, if full view is itself private, freeze underlying -- full view instead and patch the pointers so that the freeze -- node will elaborate the three views in the back end. else declare Full : Entity_Id := Full_View (E); begin if Is_Private_Type (Full) and then Present (Underlying_Full_View (Full)) then Full := Underlying_Full_View (Full); end if; Freeze_And_Append (Full, N, Result); if Full /= Full_View (E) and then Has_Delayed_Freeze (Full_View (E)) then F_Node := Freeze_Node (Full); if Present (F_Node) then Inherit_Freeze_Node (Fnod => F_Node, Typ => Full_View (E)); else Set_Has_Delayed_Freeze (Full_View (E), False); Set_Freeze_Node (Full_View (E), Empty); end if; end if; if Has_Delayed_Freeze (E) then F_Node := Freeze_Node (Full_View (E)); if Present (F_Node) then Inherit_Freeze_Node (Fnod => F_Node, Typ => E); else -- {Incomplete,Private}_Subtypes with Full_Views -- constrained by discriminants. Set_Has_Delayed_Freeze (E, False); Set_Freeze_Node (E, Empty); end if; end if; end; end if; Check_Debug_Info_Needed (E); -- AI95-117 requires that the convention of a partial view be -- the same as the convention of the full view. Note that this -- is a recognized breach of privacy, but it's essential for -- logical consistency of representation, and the lack of a -- rule in RM95 was an oversight. Set_Convention (E, Convention (Full_View (E))); Set_Size_Known_At_Compile_Time (E, Size_Known_At_Compile_Time (Full_View (E))); -- Size information is copied from the full view to the -- incomplete or private view for consistency. -- We skip this is the full view is not a type. This is very -- strange of course, and can only happen as a result of -- certain illegalities, such as a premature attempt to derive -- from an incomplete type. if Is_Type (Full_View (E)) then Set_Size_Info (E, Full_View (E)); Copy_RM_Size (To => E, From => Full_View (E)); end if; goto Leave; -- Case of underlying full view present elsif Is_Private_Type (E) and then Present (Underlying_Full_View (E)) then if not Is_Frozen (Underlying_Full_View (E)) then Freeze_And_Append (Underlying_Full_View (E), N, Result); end if; -- Patch the pointers so that the freeze node will elaborate -- both views in the back end. if Has_Delayed_Freeze (E) then F_Node := Freeze_Node (Underlying_Full_View (E)); if Present (F_Node) then Inherit_Freeze_Node (Fnod => F_Node, Typ => E); else Set_Has_Delayed_Freeze (E, False); Set_Freeze_Node (E, Empty); end if; end if; Check_Debug_Info_Needed (E); goto Leave; -- Case of no full view present. If entity is subtype or derived, -- it is safe to freeze, correctness depends on the frozen status -- of parent. Otherwise it is either premature usage, or a Taft -- amendment type, so diagnosis is at the point of use and the -- type might be frozen later. elsif E /= Base_Type (E) then declare Btyp : constant Entity_Id := Base_Type (E); begin -- However, if the base type is itself private and has no -- (underlying) full view either, wait until the full type -- declaration is seen and all the full views are created. if Is_Private_Type (Btyp) and then No (Full_View (Btyp)) and then No (Underlying_Full_View (Btyp)) and then Has_Delayed_Freeze (Btyp) and then No (Freeze_Node (Btyp)) then Set_Is_Frozen (E, False); Result := No_List; goto Leave; end if; end; elsif Is_Derived_Type (E) then null; else Set_Is_Frozen (E, False); Result := No_List; goto Leave; end if; -- For access subprogram, freeze types of all formals, the return -- type was already frozen, since it is the Etype of the function. -- Formal types can be tagged Taft amendment types, but otherwise -- they cannot be incomplete. elsif Ekind (E) = E_Subprogram_Type then Formal := First_Formal (E); while Present (Formal) loop if Ekind (Etype (Formal)) = E_Incomplete_Type and then No (Full_View (Etype (Formal))) then if Is_Tagged_Type (Etype (Formal)) then null; -- AI05-151: Incomplete types are allowed in access to -- subprogram specifications. elsif Ada_Version < Ada_2012 then Error_Msg_NE ("invalid use of incomplete type&", E, Etype (Formal)); end if; end if; Freeze_And_Append (Etype (Formal), N, Result); Next_Formal (Formal); end loop; Freeze_Subprogram (E); -- For access to a protected subprogram, freeze the equivalent type -- (however this is not set if we are not generating code or if this -- is an anonymous type used just for resolution). elsif Is_Access_Protected_Subprogram_Type (E) then if Present (Equivalent_Type (E)) then Freeze_And_Append (Equivalent_Type (E), N, Result); end if; end if; -- Generic types are never seen by the back-end, and are also not -- processed by the expander (since the expander is turned off for -- generic processing), so we never need freeze nodes for them. if Is_Generic_Type (E) then goto Leave; end if; -- Some special processing for non-generic types to complete -- representation details not known till the freeze point. if Is_Fixed_Point_Type (E) then Freeze_Fixed_Point_Type (E); elsif Is_Enumeration_Type (E) then Freeze_Enumeration_Type (E); elsif Is_Integer_Type (E) then Adjust_Esize_For_Alignment (E); if Is_Modular_Integer_Type (E) then -- Standard_Address has been built with the assumption that its -- modulus was System_Address_Size, but this is not a universal -- property and may need to be corrected. if Is_RTE (E, RE_Address) then Set_Modulus (Standard_Address, Modulus (E)); Set_Intval (High_Bound (Scalar_Range (Standard_Address)), Modulus (E) - 1); elsif Warn_On_Suspicious_Modulus_Value then Check_Suspicious_Modulus (E); end if; end if; -- The pool applies to named and anonymous access types, but not -- to subprogram and to internal types generated for 'Access -- references. elsif Is_Access_Object_Type (E) and then Ekind (E) /= E_Access_Attribute_Type then -- If a pragma Default_Storage_Pool applies, and this type has no -- Storage_Pool or Storage_Size clause (which must have occurred -- before the freezing point), then use the default. This applies -- only to base types. -- None of this applies to access to subprograms, for which there -- are clearly no pools. if Present (Default_Pool) and then Is_Base_Type (E) and then not Has_Storage_Size_Clause (E) and then No (Associated_Storage_Pool (E)) then -- Case of pragma Default_Storage_Pool (null) if Nkind (Default_Pool) = N_Null then Set_No_Pool_Assigned (E); -- Case of pragma Default_Storage_Pool (Standard) elsif Entity (Default_Pool) = Standard_Standard then Set_Associated_Storage_Pool (E, RTE (RE_Global_Pool_Object)); -- Case of pragma Default_Storage_Pool (storage_pool_NAME) else Set_Associated_Storage_Pool (E, Entity (Default_Pool)); end if; end if; -- Check restriction for standard storage pool if No (Associated_Storage_Pool (E)) then Check_Restriction (No_Standard_Storage_Pools, E); end if; -- Deal with error message for pure access type. This is not an -- error in Ada 2005 if there is no pool (see AI-366). if Is_Pure_Unit_Access_Type (E) and then (Ada_Version < Ada_2005 or else not No_Pool_Assigned (E)) and then not Is_Generic_Unit (Scope (E)) then Error_Msg_N ("named access type not allowed in pure unit", E); if Ada_Version >= Ada_2005 then Error_Msg_N ("\would be legal if Storage_Size of 0 given??", E); elsif No_Pool_Assigned (E) then Error_Msg_N ("\would be legal in Ada 2005??", E); else Error_Msg_N ("\would be legal in Ada 2005 if " & "Storage_Size of 0 given??", E); end if; end if; end if; -- Case of composite types if Is_Composite_Type (E) then -- AI95-117 requires that all new primitives of a tagged type -- must inherit the convention of the full view of the -- type. Inherited and overriding operations are defined to -- inherit the convention of their parent or overridden -- subprogram (also specified in AI-117), which will have -- occurred earlier (in Derive_Subprogram and -- New_Overloaded_Entity). Here we set the convention of -- primitives that are still convention Ada, which will ensure -- that any new primitives inherit the type's convention. We -- don't do this for primitives that are internal to avoid -- potential problems in the case of nested subprograms and -- convention C. In addition, class-wide types can have a -- foreign convention inherited from their specific type, but -- are excluded from this since they don't have any associated -- primitives. if Is_Tagged_Type (E) and then not Is_Class_Wide_Type (E) and then Convention (E) /= Convention_Ada then declare Prim_List : constant Elist_Id := Primitive_Operations (E); Prim : Elmt_Id; begin Prim := First_Elmt (Prim_List); while Present (Prim) loop if Convention (Node (Prim)) = Convention_Ada and then Comes_From_Source (Node (Prim)) then Set_Convention (Node (Prim), Convention (E)); end if; Next_Elmt (Prim); end loop; end; end if; -- If the type is a simple storage pool type, then this is where -- we attempt to locate and validate its Allocate, Deallocate, and -- Storage_Size operations (the first is required, and the latter -- two are optional). We also verify that the full type for a -- private type is allowed to be a simple storage pool type. if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type)) and then (Is_Base_Type (E) or else Has_Private_Declaration (E)) then -- If the type is marked Has_Private_Declaration, then this is -- a full type for a private type that was specified with the -- pragma Simple_Storage_Pool_Type, and here we ensure that the -- pragma is allowed for the full type (for example, it can't -- be an array type, or a nonlimited record type). if Has_Private_Declaration (E) then if (not Is_Record_Type (E) or else not Is_Inherently_Limited_Type (E)) and then not Is_Private_Type (E) then Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type; Error_Msg_N ("pragma% can only apply to full type that is an " & "explicitly limited type", E); end if; end if; Validate_Simple_Pool_Ops : declare Pool_Type : Entity_Id renames E; Address_Type : constant Entity_Id := RTE (RE_Address); Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count); procedure Validate_Simple_Pool_Op_Formal (Pool_Op : Entity_Id; Pool_Op_Formal : in out Entity_Id; Expected_Mode : Formal_Kind; Expected_Type : Entity_Id; Formal_Name : String; OK_Formal : in out Boolean); -- Validate one formal Pool_Op_Formal of the candidate pool -- operation Pool_Op. The formal must be of Expected_Type -- and have mode Expected_Mode. OK_Formal will be set to -- False if the formal doesn't match. If OK_Formal is False -- on entry, then the formal will effectively be ignored -- (because validation of the pool op has already failed). -- Upon return, Pool_Op_Formal will be updated to the next -- formal, if any. procedure Validate_Simple_Pool_Operation (Op_Name : Name_Id); -- Search for and validate a simple pool operation with the -- name Op_Name. If the name is Allocate, then there must be -- exactly one such primitive operation for the simple pool -- type. If the name is Deallocate or Storage_Size, then -- there can be at most one such primitive operation. The -- profile of the located primitive must conform to what -- is expected for each operation. ------------------------------------ -- Validate_Simple_Pool_Op_Formal -- ------------------------------------ procedure Validate_Simple_Pool_Op_Formal (Pool_Op : Entity_Id; Pool_Op_Formal : in out Entity_Id; Expected_Mode : Formal_Kind; Expected_Type : Entity_Id; Formal_Name : String; OK_Formal : in out Boolean) is begin -- If OK_Formal is False on entry, then simply ignore -- the formal, because an earlier formal has already -- been flagged. if not OK_Formal then return; -- If no formal is passed in, then issue an error for a -- missing formal. elsif No (Pool_Op_Formal) then Error_Msg_NE ("simple storage pool op missing formal " & Formal_Name & " of type&", Pool_Op, Expected_Type); OK_Formal := False; return; end if; if Etype (Pool_Op_Formal) /= Expected_Type then -- If the pool type was expected for this formal, then -- this will not be considered a candidate operation -- for the simple pool, so we unset OK_Formal so that -- the op and any later formals will be ignored. if Expected_Type = Pool_Type then OK_Formal := False; return; else Error_Msg_NE ("wrong type for formal " & Formal_Name & " of simple storage pool op; expected type&", Pool_Op_Formal, Expected_Type); end if; end if; -- Issue error if formal's mode is not the expected one if Ekind (Pool_Op_Formal) /= Expected_Mode then Error_Msg_N ("wrong mode for formal of simple storage pool op", Pool_Op_Formal); end if; -- Advance to the next formal Next_Formal (Pool_Op_Formal); end Validate_Simple_Pool_Op_Formal; ------------------------------------ -- Validate_Simple_Pool_Operation -- ------------------------------------ procedure Validate_Simple_Pool_Operation (Op_Name : Name_Id) is Op : Entity_Id; Found_Op : Entity_Id := Empty; Formal : Entity_Id; Is_OK : Boolean; begin pragma Assert (Op_Name in Name_Allocate | Name_Deallocate | Name_Storage_Size); Error_Msg_Name_1 := Op_Name; -- For each homonym declared immediately in the scope -- of the simple storage pool type, determine whether -- the homonym is an operation of the pool type, and, -- if so, check that its profile is as expected for -- a simple pool operation of that name. Op := Get_Name_Entity_Id (Op_Name); while Present (Op) loop if Ekind (Op) in E_Function | E_Procedure and then Scope (Op) = Current_Scope then Formal := First_Entity (Op); Is_OK := True; -- The first parameter must be of the pool type -- in order for the operation to qualify. if Op_Name = Name_Storage_Size then Validate_Simple_Pool_Op_Formal (Op, Formal, E_In_Parameter, Pool_Type, "Pool", Is_OK); else Validate_Simple_Pool_Op_Formal (Op, Formal, E_In_Out_Parameter, Pool_Type, "Pool", Is_OK); end if; -- If another operation with this name has already -- been located for the type, then flag an error, -- since we only allow the type to have a single -- such primitive. if Present (Found_Op) and then Is_OK then Error_Msg_NE ("only one % operation allowed for " & "simple storage pool type&", Op, Pool_Type); end if; -- In the case of Allocate and Deallocate, a formal -- of type System.Address is required. if Op_Name = Name_Allocate then Validate_Simple_Pool_Op_Formal (Op, Formal, E_Out_Parameter, Address_Type, "Storage_Address", Is_OK); elsif Op_Name = Name_Deallocate then Validate_Simple_Pool_Op_Formal (Op, Formal, E_In_Parameter, Address_Type, "Storage_Address", Is_OK); end if; -- In the case of Allocate and Deallocate, formals -- of type Storage_Count are required as the third -- and fourth parameters. if Op_Name /= Name_Storage_Size then Validate_Simple_Pool_Op_Formal (Op, Formal, E_In_Parameter, Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK); Validate_Simple_Pool_Op_Formal (Op, Formal, E_In_Parameter, Stg_Cnt_Type, "Alignment", Is_OK); end if; -- If no mismatched formals have been found (Is_OK) -- and no excess formals are present, then this -- operation has been validated, so record it. if No (Formal) and then Is_OK then Found_Op := Op; end if; end if; Op := Homonym (Op); end loop; -- There must be a valid Allocate operation for the type, -- so issue an error if none was found. if Op_Name = Name_Allocate and then No (Found_Op) then Error_Msg_N ("missing % operation for simple " & "storage pool type", Pool_Type); elsif Present (Found_Op) then -- Simple pool operations can't be abstract if Is_Abstract_Subprogram (Found_Op) then Error_Msg_N ("simple storage pool operation must not be " & "abstract", Found_Op); end if; -- The Storage_Size operation must be a function with -- Storage_Count as its result type. if Op_Name = Name_Storage_Size then if Ekind (Found_Op) = E_Procedure then Error_Msg_N ("% operation must be a function", Found_Op); elsif Etype (Found_Op) /= Stg_Cnt_Type then Error_Msg_NE ("wrong result type for%, expected type&", Found_Op, Stg_Cnt_Type); end if; -- Allocate and Deallocate must be procedures elsif Ekind (Found_Op) = E_Function then Error_Msg_N ("% operation must be a procedure", Found_Op); end if; end if; end Validate_Simple_Pool_Operation; -- Start of processing for Validate_Simple_Pool_Ops begin Validate_Simple_Pool_Operation (Name_Allocate); Validate_Simple_Pool_Operation (Name_Deallocate); Validate_Simple_Pool_Operation (Name_Storage_Size); end Validate_Simple_Pool_Ops; end if; end if; -- Now that all types from which E may depend are frozen, see if -- strict alignment is required, a component clause on a record -- is correct, the size is known at compile time and if it must -- be unsigned, in that order. if Base_Type (E) = E then Check_Strict_Alignment (E); end if; if Ekind (E) in E_Record_Type | E_Record_Subtype then declare RC : constant Node_Id := Get_Record_Representation_Clause (E); begin if Present (RC) then Check_Record_Representation_Clause (RC); end if; end; end if; Check_Compile_Time_Size (E); Check_Unsigned_Type (E); -- Do not allow a size clause for a type which does not have a size -- that is known at compile time if (Has_Size_Clause (E) or else Has_Object_Size_Clause (E)) and then not Size_Known_At_Compile_Time (E) and then not Is_Mutably_Tagged_Type (E) then -- Suppress this message if errors posted on E, even if we are -- in all errors mode, since this is often a junk message if not Error_Posted (E) then Error_Msg_N ("size clause not allowed for variable length type", Size_Clause (E)); end if; end if; -- Now we set/verify the representation information, in particular -- the size and alignment values. This processing is not required for -- generic types, since generic types do not play any part in code -- generation, and so the size and alignment values for such types -- are irrelevant. Ditto for types declared within a generic unit, -- which may have components that depend on generic parameters, and -- that will be recreated in an instance. if Inside_A_Generic then null; -- Otherwise we call the layout procedure else Layout_Type (E); end if; -- If this is an access to subprogram whose designated type is itself -- a subprogram type, the return type of this anonymous subprogram -- type must be decorated as well. if Ekind (E) = E_Anonymous_Access_Subprogram_Type and then Ekind (Designated_Type (E)) = E_Subprogram_Type then Layout_Type (Etype (Designated_Type (E))); end if; -- If the type has a Defaut_Value/Default_Component_Value aspect, -- this is where we analyze the expression (after the type is frozen, -- since in the case of Default_Value, we are analyzing with the -- type itself, and we treat Default_Component_Value similarly for -- the sake of uniformity). if Is_First_Subtype (E) and then Has_Default_Aspect (E) then declare Nam : Name_Id; Exp : Node_Id; Typ : Entity_Id; begin if Is_Scalar_Type (E) then Nam := Name_Default_Value; Typ := E; Exp := Default_Aspect_Value (Typ); else Nam := Name_Default_Component_Value; Typ := Component_Type (E); Exp := Default_Aspect_Component_Value (E); end if; Analyze_And_Resolve (Exp, Typ); if Etype (Exp) /= Any_Type then if not Is_OK_Static_Expression (Exp) then Error_Msg_Name_1 := Nam; Flag_Non_Static_Expr ("aspect% requires static expression", Exp); end if; end if; end; end if; -- Verify at this point that No_Controlled_Parts and No_Task_Parts, -- when specified on the current type or one of its ancestors, has -- not been overridden and that no violation of the aspect has -- occurred. -- It is important that we perform the checks here after the type has -- been processed because if said type depended on a private type it -- will not have been marked controlled or having tasks. Check_No_Parts_Violations (E, Aspect_No_Controlled_Parts); Check_No_Parts_Violations (E, Aspect_No_Task_Parts); -- End of freeze processing for type entities end if; -- Here is where we logically freeze the current entity. If it has a -- freeze node, then this is the point at which the freeze node is -- linked into the result list. if Has_Delayed_Freeze (E) then -- If a freeze node is already allocated, use it, otherwise allocate -- a new one. The preallocation happens in the case of anonymous base -- types, where we preallocate so that we can set First_Subtype_Link. -- Note that we reset the Sloc to the current freeze location. if Present (Freeze_Node (E)) then F_Node := Freeze_Node (E); Set_Sloc (F_Node, Loc); else F_Node := New_Node (N_Freeze_Entity, Loc); Set_Freeze_Node (E, F_Node); Set_Access_Types_To_Process (F_Node, No_Elist); Set_TSS_Elist (F_Node, No_Elist); Set_Actions (F_Node, No_List); end if; Set_Entity (F_Node, E); Add_To_Result (F_Node); -- A final pass over record types with discriminants. If the type -- has an incomplete declaration, there may be constrained access -- subtypes declared elsewhere, which do not depend on the discrimi- -- nants of the type, and which are used as component types (i.e. -- the full view is a recursive type). The designated types of these -- subtypes can only be elaborated after the type itself, and they -- need an itype reference. if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then declare Comp : Entity_Id; IR : Node_Id; Typ : Entity_Id; begin Comp := First_Component (E); while Present (Comp) loop Typ := Etype (Comp); if Is_Access_Type (Typ) and then Scope (Typ) /= E and then Base_Type (Designated_Type (Typ)) = E and then Is_Itype (Designated_Type (Typ)) then IR := Make_Itype_Reference (Sloc (Comp)); Set_Itype (IR, Designated_Type (Typ)); Append (IR, Result); end if; Next_Component (Comp); end loop; end; end if; end if; -- When a type is frozen, the first subtype of the type is frozen as -- well (RM 13.14(15)). This has to be done after freezing the type, -- since obviously the first subtype depends on its own base type. if Is_Type (E) then Freeze_And_Append (First_Subtype (E), N, Result); -- If we just froze a tagged non-class-wide record, then freeze the -- corresponding class-wide type. This must be done after the tagged -- type itself is frozen, because the class-wide type refers to the -- tagged type which generates the class. -- For a tagged type, freeze explicitly those primitive operations -- that are expression functions, which otherwise have no clear -- freeze point: these have to be frozen before the dispatch table -- for the type is built, and before any explicit call to the -- primitive, which would otherwise be the freeze point for it. if Is_Tagged_Type (E) and then not Is_Class_Wide_Type (E) and then Present (Class_Wide_Type (E)) then Freeze_And_Append (Class_Wide_Type (E), N, Result); declare Ops : constant Elist_Id := Primitive_Operations (E); Elmt : Elmt_Id; Subp : Entity_Id; begin if Ops /= No_Elist then Elmt := First_Elmt (Ops); while Present (Elmt) loop Subp := Node (Elmt); if Is_Expression_Function (Subp) then Freeze_And_Append (Subp, N, Result); end if; Next_Elmt (Elmt); end loop; end if; end; end if; end if; Check_Debug_Info_Needed (E); -- If subprogram has address clause then reset Is_Public flag, since we -- do not want the backend to generate external references. if Is_Subprogram (E) and then Present (Address_Clause (E)) and then not Is_Library_Level_Entity (E) then Set_Is_Public (E, False); end if; -- The Ghost mode of the enclosing context is ignored, while the -- entity being frozen is living. Insert the freezing action prior -- to the start of the enclosing ignored Ghost region. As a result -- the freezeing action will be preserved when the ignored Ghost -- context is eliminated. The insertion must take place even when -- the context is a spec expression, otherwise "Handling of Default -- and Per-Object Expressions" will suppress the insertion, and the -- freeze node will be dropped on the floor. if Saved_GM = Ignore and then Ghost_Mode /= Ignore and then Present (Ignored_Ghost_Region) then Insert_Actions (Assoc_Node => Ignored_Ghost_Region, Ins_Actions => Result, Spec_Expr_OK => True); Result := No_List; end if; <> Restore_Ghost_Region (Saved_GM, Saved_IGR); return Result; end Freeze_Entity; ----------------------------- -- Freeze_Enumeration_Type -- ----------------------------- procedure Freeze_Enumeration_Type (Typ : Entity_Id) is begin -- By default, if no size clause is present, an enumeration type with -- Convention C is assumed to interface to a C enum and has integer -- size, except for a boolean type because it is assumed to interface -- to _Bool introduced in C99. This applies to types. For subtypes, -- verify that its base type has no size clause either. Treat other -- foreign conventions in the same way, and also make sure alignment -- is set right. if Has_Foreign_Convention (Typ) and then not Is_Boolean_Type (Typ) and then not Has_Size_Clause (Typ) and then not Has_Size_Clause (Base_Type (Typ)) and then Esize (Typ) < Standard_Integer_Size -- Don't do this if Short_Enums on target and then not Target_Short_Enums then Set_Esize (Typ, UI_From_Int (Standard_Integer_Size)); Set_Alignment (Typ, Alignment (Standard_Integer)); -- Normal Ada case or size clause present or not Long_C_Enums on target else -- If the enumeration type interfaces to C, and it has a size clause -- that is smaller than the size of int, it warrants a warning. The -- user may intend the C type to be a boolean or a char, so this is -- not by itself an error that the Ada compiler can detect, but it -- is worth a heads-up. For Boolean and Character types we -- assume that the programmer has the proper C type in mind. -- For explicit sizes larger than int, assume the user knows what -- he is doing and that the code is intentional. if Convention (Typ) = Convention_C and then Has_Size_Clause (Typ) and then Esize (Typ) < Standard_Integer_Size and then not Is_Boolean_Type (Typ) and then not Is_Character_Type (Typ) -- Don't do this if Short_Enums on target and then not Target_Short_Enums then Error_Msg_N ("??the size of enums in C is implementation-defined", Size_Clause (Typ)); Error_Msg_N ("\??check that the C counterpart has size of " & UI_Image (Esize (Typ)), Size_Clause (Typ)); end if; Adjust_Esize_For_Alignment (Typ); end if; -- Reject a very large size on a type with a non-standard representation -- because Expand_Freeze_Enumeration_Type cannot deal with it. if Has_Non_Standard_Rep (Typ) and then Known_Esize (Typ) and then Esize (Typ) > System_Max_Integer_Size then Error_Msg_N ("enumeration type with representation clause too large", Typ); Error_Msg_Uint_1 := UI_From_Int (System_Max_Integer_Size); Error_Msg_N ("\the size of such a type cannot exceed ^ bits", Typ); end if; end Freeze_Enumeration_Type; ----------------------- -- Freeze_Expression -- ----------------------- procedure Freeze_Expression (N : Node_Id) is function Declared_In_Expanded_Body (N : Node_Id; Typ : Entity_Id; Nam : Entity_Id) return Boolean; -- Given the N_Handled_Sequence_Of_Statements node of an expander -- generated subprogram body, determines if the frozen entity is -- declared inside this body. This is recognized locating the -- enclosing subprogram of the entity Name or its Type and -- checking if it is this subprogram body. function Find_Aggregate_Component_Desig_Type return Entity_Id; -- If the expression is an array aggregate, the type of the component -- expressions is also frozen. If the component type is an access type -- and the expressions include allocators, the designed type is frozen -- as well. function In_Expanded_Body (N : Node_Id) return Boolean; -- Given an N_Handled_Sequence_Of_Statements node, determines whether it -- is the statement sequence of an expander-generated subprogram: body -- created for an expression function, for a predicate function, an init -- proc, a stream subprogram, or a renaming as body. If so, this is not -- a freezing context and the entity will be frozen at a later point. function Has_Decl_In_List (E : Entity_Id; N : Node_Id; L : List_Id) return Boolean; -- Determines whether an entity E referenced in node N is declared in -- the list L. ------------------------------- -- Declared_In_Expanded_Body -- ------------------------------- function Declared_In_Expanded_Body (N : Node_Id; Typ : Entity_Id; Nam : Entity_Id) return Boolean is pragma Assert (In_Expanded_Body (N)); Subp_Body : constant Node_Id := Parent (N); Subp_Id : Entity_Id; Scop : Entity_Id; begin if Acts_As_Spec (Subp_Body) then Subp_Id := Unique_Defining_Entity (Specification (Subp_Body)); else Subp_Id := Corresponding_Spec (Subp_Body); end if; if Present (Typ) then Scop := Scope (Typ); elsif Present (Nam) then Scop := Scope (Nam); else Scop := Standard_Standard; end if; while Scop /= Standard_Standard and then not Is_Subprogram (Scop) loop Scop := Scope (Scop); end loop; return Scop = Subp_Id; end Declared_In_Expanded_Body; ----------------------------------------- -- Find_Aggregate_Component_Desig_Type -- ----------------------------------------- function Find_Aggregate_Component_Desig_Type return Entity_Id is Assoc : Node_Id; Exp : Node_Id; begin if Present (Expressions (N)) then Exp := First (Expressions (N)); while Present (Exp) loop if Nkind (Exp) = N_Allocator then return Designated_Type (Component_Type (Etype (N))); end if; Next (Exp); end loop; end if; if Present (Component_Associations (N)) then Assoc := First (Component_Associations (N)); while Present (Assoc) loop if Nkind (Expression (Assoc)) = N_Allocator then return Designated_Type (Component_Type (Etype (N))); end if; Next (Assoc); end loop; end if; return Empty; end Find_Aggregate_Component_Desig_Type; ---------------------- -- In_Expanded_Body -- ---------------------- function In_Expanded_Body (N : Node_Id) return Boolean is P : constant Node_Id := Parent (N); Id : Entity_Id; begin if Nkind (P) /= N_Subprogram_Body then return False; -- Treat the generated body of an expression function like other -- bodies generated during expansion (e.g. stream subprograms) so -- that those bodies are not treated as freezing points. elsif Was_Expression_Function (P) then pragma Assert (not Comes_From_Source (P)); return True; -- This is the body of a generated predicate function elsif Present (Corresponding_Spec (P)) and then Is_Predicate_Function (Corresponding_Spec (P)) then return True; else Id := Defining_Unit_Name (Specification (P)); -- The following are expander-created bodies, or bodies that -- are not freeze points. if Nkind (Id) = N_Defining_Identifier and then (Is_Init_Proc (Id) or else Is_TSS (Id, TSS_Stream_Input) or else Is_TSS (Id, TSS_Stream_Output) or else Is_TSS (Id, TSS_Stream_Read) or else Is_TSS (Id, TSS_Stream_Write) or else Is_TSS (Id, TSS_Put_Image) or else Nkind (Original_Node (P)) = N_Subprogram_Renaming_Declaration) then return True; else return False; end if; end if; end In_Expanded_Body; ---------------------- -- Has_Decl_In_List -- ---------------------- function Has_Decl_In_List (E : Entity_Id; N : Node_Id; L : List_Id) return Boolean is Decl_Node : Node_Id; begin -- If E is an itype, pretend that it is declared in N except for a -- class-wide subtype with an equivalent type, because this latter -- type comes with a bona-fide declaration node. if Is_Itype (E) then if Ekind (E) = E_Class_Wide_Subtype and then Present (Equivalent_Type (E)) then Decl_Node := Declaration_Node (Equivalent_Type (E)); else Decl_Node := N; end if; else Decl_Node := Declaration_Node (E); end if; return Is_List_Member (Decl_Node) and then List_Containing (Decl_Node) = L; end Has_Decl_In_List; -- Local variables In_Spec_Exp : constant Boolean := In_Spec_Expression; Desig_Typ : Entity_Id; Nam : Entity_Id; P : Node_Id; Parent_P : Node_Id; Typ : Entity_Id; Allocator_Typ : Entity_Id := Empty; Freeze_Outside_Subp : Entity_Id := Empty; -- This entity is set if we are inside a subprogram body and the frozen -- entity is defined in the enclosing scope of this subprogram. In such -- case we must skip the subprogram body when climbing the parents chain -- to locate the correct placement for the freezing node. -- Start of processing for Freeze_Expression begin -- Immediate return if freezing is inhibited. This flag is set by the -- analyzer to stop freezing on generated expressions that would cause -- freezing if they were in the source program, but which are not -- supposed to freeze, since they are created. if Must_Not_Freeze (N) then return; end if; -- If expression is non-static, then it does not freeze in a default -- expression, see section "Handling of Default Expressions" in the -- spec of package Sem for further details. Note that we have to make -- sure that we actually have a real expression (if we have a subtype -- indication, we can't test Is_OK_Static_Expression). However, we -- exclude the case of the prefix of an attribute of a static scalar -- subtype from this early return, because static subtype attributes -- should always cause freezing, even in default expressions, but -- the attribute may not have been marked as static yet (because in -- Resolve_Attribute, the call to Eval_Attribute follows the call of -- Freeze_Expression on the prefix). if In_Spec_Exp and then Nkind (N) in N_Subexpr and then not Is_OK_Static_Expression (N) and then (Nkind (Parent (N)) /= N_Attribute_Reference or else not (Is_Entity_Name (N) and then Is_Type (Entity (N)) and then Is_OK_Static_Subtype (Entity (N)))) then return; end if; -- Freeze type of expression if not frozen already Typ := Empty; if Nkind (N) in N_Has_Etype and then Present (Etype (N)) then if not Is_Frozen (Etype (N)) then Typ := Etype (N); -- Base type may be an derived numeric type that is frozen at the -- point of declaration, but first_subtype is still unfrozen. elsif not Is_Frozen (First_Subtype (Etype (N))) then Typ := First_Subtype (Etype (N)); end if; end if; -- For entity name, freeze entity if not frozen already. A special -- exception occurs for an identifier that did not come from source. -- We don't let such identifiers freeze a non-internal entity, i.e. -- an entity that did come from source, since such an identifier was -- generated by the expander, and cannot have any semantic effect on -- the freezing semantics. For example, this stops the parameter of -- an initialization procedure from freezing the variable. if Is_Entity_Name (N) and then Present (Entity (N)) and then not Is_Frozen (Entity (N)) and then (Nkind (N) /= N_Identifier or else Comes_From_Source (N) or else not Comes_From_Source (Entity (N))) then Nam := Entity (N); if Present (Nam) and then Ekind (Nam) = E_Function then Check_Expression_Function (N, Nam); end if; else Nam := Empty; end if; -- For an allocator freeze designated type if not frozen already -- For an aggregate whose component type is an access type, freeze the -- designated type now, so that its freeze does not appear within the -- loop that might be created in the expansion of the aggregate. If the -- designated type is a private type without full view, the expression -- cannot contain an allocator, so the type is not frozen. -- For a function, we freeze the entity when the subprogram declaration -- is frozen, but a function call may appear in an initialization proc. -- before the declaration is frozen. We need to generate the extra -- formals, if any, to ensure that the expansion of the call includes -- the proper actuals. This only applies to Ada subprograms, not to -- imported ones. Desig_Typ := Empty; case Nkind (N) is when N_Allocator => Desig_Typ := Designated_Type (Etype (N)); if Nkind (Expression (N)) = N_Qualified_Expression then Allocator_Typ := Entity (Subtype_Mark (Expression (N))); end if; when N_Aggregate => if Is_Array_Type (Etype (N)) and then Is_Access_Type (Component_Type (Etype (N))) then -- Check whether aggregate includes allocators Desig_Typ := Find_Aggregate_Component_Desig_Type; end if; when N_Indexed_Component | N_Selected_Component | N_Slice => if Is_Access_Type (Etype (Prefix (N))) then Desig_Typ := Designated_Type (Etype (Prefix (N))); end if; when N_Identifier => if Present (Nam) and then Ekind (Nam) = E_Function and then Nkind (Parent (N)) = N_Function_Call and then not Has_Foreign_Convention (Nam) then Create_Extra_Formals (Nam); end if; when others => null; end case; if Desig_Typ /= Empty and then (Is_Frozen (Desig_Typ) or else not Is_Fully_Defined (Desig_Typ)) then Desig_Typ := Empty; end if; -- All done if nothing needs freezing if No (Typ) and then No (Nam) and then No (Desig_Typ) and then No (Allocator_Typ) then return; end if; -- Check if we are inside a subprogram body and the frozen entity is -- defined in the enclosing scope of this subprogram. In such case we -- must skip the subprogram when climbing the parents chain to locate -- the correct placement for the freezing node. -- This is not needed for default expressions and other spec expressions -- in generic units since the Move_Freeze_Nodes mechanism (sem_ch12.adb) -- takes care of placing them at the proper place, after the generic -- unit. if Present (Nam) and then Scope (Nam) /= Current_Scope and then not (In_Spec_Exp and then Inside_A_Generic) then declare S : Entity_Id := Current_Scope; begin while Present (S) and then In_Same_Source_Unit (Nam, S) loop if Scope (S) = Scope (Nam) then if Is_Subprogram (S) and then Has_Completion (S) then Freeze_Outside_Subp := S; end if; exit; end if; S := Scope (S); end loop; end; end if; -- Examine the enclosing context by climbing the parent chain -- If we identified that we must freeze the entity outside of a given -- subprogram then we just climb up to that subprogram checking if some -- enclosing node is marked as Must_Not_Freeze (since in such case we -- must not freeze yet this entity). P := N; if Present (Freeze_Outside_Subp) then loop -- Do not freeze the current expression if another expression in -- the chain of parents must not be frozen. if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then return; end if; Parent_P := Parent (P); -- If we don't have a parent, then we are not in a well-formed -- tree. This is an unusual case, but there are some legitimate -- situations in which this occurs, notably when the expressions -- in the range of a type declaration are resolved. We simply -- ignore the freeze request in this case. if No (Parent_P) then return; end if; -- If the parent is a subprogram body, the candidate insertion -- point is just ahead of it. if Nkind (Parent_P) = N_Subprogram_Body and then Unique_Defining_Entity (Parent_P) = Freeze_Outside_Subp then P := Parent_P; exit; end if; P := Parent_P; end loop; -- Otherwise the traversal serves two purposes - to detect scenarios -- where freezeing is not needed and to find the proper insertion point -- for the freeze nodes. Although somewhat similar to Insert_Actions, -- this traversal is freezing semantics-sensitive. Inserting freeze -- nodes blindly in the tree may result in types being frozen too early. else loop -- Do not freeze the current expression if another expression in -- the chain of parents must not be frozen. if Nkind (P) in N_Subexpr and then Must_Not_Freeze (P) then return; end if; Parent_P := Parent (P); -- If we don't have a parent, then we are not in a well-formed -- tree. This is an unusual case, but there are some legitimate -- situations in which this occurs, notably when the expressions -- in the range of a type declaration are resolved. We simply -- ignore the freeze request in this case. if No (Parent_P) then return; end if; -- See if we have got to an appropriate point in the tree case Nkind (Parent_P) is -- A special test for the exception of (RM 13.14(8)) for the -- case of per-object expressions (RM 3.8(18)) occurring in -- component definition or a discrete subtype definition. Note -- that we test for a component declaration which includes both -- cases we are interested in, and furthermore the tree does -- not have explicit nodes for either of these two constructs. when N_Component_Declaration => -- The case we want to test for here is an identifier that -- is a per-object expression, this is either a discriminant -- that appears in a context other than the component -- declaration or it is a reference to the type of the -- enclosing construct. -- For either of these cases, we skip the freezing if not In_Spec_Expression and then Nkind (N) = N_Identifier and then Present (Entity (N)) then -- We recognize the discriminant case by just looking for -- a reference to a discriminant. It can only be one for -- the enclosing construct. Skip freezing in this case. if Ekind (Entity (N)) = E_Discriminant then return; -- For the case of a reference to the enclosing record, -- (or task or protected type), we look for a type that -- matches the current scope. elsif Entity (N) = Current_Scope then return; end if; end if; -- If we have an enumeration literal that appears as the choice -- in the aggregate of an enumeration representation clause, -- then freezing does not occur (RM 13.14(10)). when N_Enumeration_Representation_Clause => -- The case we are looking for is an enumeration literal if Nkind (N) in N_Identifier | N_Character_Literal and then Is_Enumeration_Type (Etype (N)) then -- If enumeration literal appears directly as the choice, -- do not freeze (this is the normal non-overloaded case) if Nkind (Parent (N)) = N_Component_Association and then First (Choices (Parent (N))) = N then return; -- If enumeration literal appears as the name of function -- which is the choice, then also do not freeze. This -- happens in the overloaded literal case, where the -- enumeration literal is temporarily changed to a -- function call for overloading analysis purposes. elsif Nkind (Parent (N)) = N_Function_Call and then Nkind (Parent (Parent (N))) = N_Component_Association and then First (Choices (Parent (Parent (N)))) = Parent (N) then return; end if; end if; -- Normally if the parent is a handled sequence of statements, -- then the current node must be a statement, and that is an -- appropriate place to insert a freeze node. when N_Handled_Sequence_Of_Statements => -- An exception occurs when the sequence of statements is -- for an expander generated body that did not do the usual -- freeze all operation. In this case we usually want to -- freeze outside this body, not inside it, unless the -- entity is declared inside this expander generated body. exit when not In_Expanded_Body (Parent_P) or else Declared_In_Expanded_Body (Parent_P, Typ, Nam); -- If parent is a body or a spec or a block, then the current -- node is a statement or declaration and we can insert the -- freeze node before it. when N_Block_Statement | N_Entry_Body | N_Package_Body | N_Package_Specification | N_Protected_Body | N_Subprogram_Body | N_Task_Body => exit; -- The expander is allowed to define types in any statements -- list, so any of the following parent nodes also mark a -- freezing point if the actual node is in a list of -- statements or declarations. when N_Abortable_Part | N_Accept_Alternative | N_Case_Statement_Alternative | N_Compilation_Unit_Aux | N_Conditional_Entry_Call | N_Delay_Alternative | N_Elsif_Part | N_Entry_Call_Alternative | N_Exception_Handler | N_Extended_Return_Statement | N_Freeze_Entity | N_If_Statement | N_Selective_Accept | N_Triggering_Alternative => if No (Current_Subprogram) then exit when Is_List_Member (P); -- Check exceptional case documented above for an enclosing -- handled sequence of statements. else declare Par : Node_Id := Parent (Parent_P); begin while Present (Par) and then Nkind (Par) /= N_Handled_Sequence_Of_Statements and then Nkind (Parent (Par)) /= N_Subprogram_Body loop Par := Parent (Par); end loop; -- If we don't have a parent, then we are not in a -- well-formed tree and we ignore the freeze request. -- See previous comment in the enclosing loop. if No (Par) then return; end if; exit when not In_Expanded_Body (Par) or else Declared_In_Expanded_Body (Par, Typ, Nam); end; end if; -- The freeze nodes produced by an expression coming from the -- Actions list of an N_Expression_With_Actions, short-circuit -- expression or N_Case_Expression_Alternative node must remain -- within the Actions list if they freeze an entity declared in -- this list, as inserting the freeze nodes further up the tree -- may lead to use before declaration issues for the entity. when N_Case_Expression_Alternative | N_Expression_With_Actions | N_Short_Circuit => exit when (Present (Nam) and then Has_Decl_In_List (Nam, P, Actions (Parent_P))) or else (Present (Typ) and then Has_Decl_In_List (Typ, P, Actions (Parent_P))); -- Likewise for an N_If_Expression and its two Actions list when N_If_Expression => declare L1 : constant List_Id := Then_Actions (Parent_P); L2 : constant List_Id := Else_Actions (Parent_P); begin exit when (Present (Nam) and then Has_Decl_In_List (Nam, P, L1)) or else (Present (Typ) and then Has_Decl_In_List (Typ, P, L1)) or else (Present (Nam) and then Has_Decl_In_List (Nam, P, L2)) or else (Present (Typ) and then Has_Decl_In_List (Typ, P, L2)); end; -- N_Loop_Statement is a special case: a type that appears in -- the source can never be frozen in a loop (this occurs only -- because of a loop expanded by the expander), so we keep on -- going. Otherwise we terminate the search. Same is true of -- any entity which comes from source (if it has a predefined -- type, this type does not appear to come from source, but the -- entity should not be frozen here). when N_Loop_Statement => exit when not Comes_From_Source (Etype (N)) and then (No (Nam) or else not Comes_From_Source (Nam)); -- For all other cases, keep looking at parents when others => null; end case; -- We fall through the case if we did not yet find the proper -- place in the tree for inserting the freeze node, so climb. P := Parent_P; end loop; end if; -- If the expression appears in a record or an initialization procedure, -- the freeze nodes are collected and attached to the current scope, to -- be inserted and analyzed on exit from the scope, to insure that -- generated entities appear in the correct scope. If the expression is -- a default for a discriminant specification, the scope is still void. -- The expression can also appear in the discriminant part of a private -- or concurrent type. -- If the expression appears in a constrained subcomponent of an -- enclosing record declaration, the freeze nodes must be attached to -- the outer record type so they can eventually be placed in the -- enclosing declaration list. -- The other case requiring this special handling is if we are in a -- default expression, since in that case we are about to freeze a -- static type, and the freeze scope needs to be the outer scope, not -- the scope of the subprogram with the default parameter. -- For default expressions and other spec expressions in generic units, -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of -- placing them at the proper place, after the generic unit. if (In_Spec_Exp and not Inside_A_Generic) or else (Is_Type (Current_Scope) and then (not Is_Concurrent_Type (Current_Scope) or else not Has_Completion (Current_Scope))) or else Ekind (Current_Scope) = E_Void then declare Freeze_Nodes : List_Id := No_List; Pos : Int := Scope_Stack.Last; begin if Present (Desig_Typ) then Freeze_And_Append (Desig_Typ, N, Freeze_Nodes); end if; if Present (Typ) then Freeze_And_Append (Typ, N, Freeze_Nodes); end if; if Present (Nam) then Freeze_And_Append (Nam, N, Freeze_Nodes); end if; -- The current scope may be that of a constrained component of -- an enclosing record declaration, or a block of an enclosing -- declare expression in Ada 2022, or of a loop of an enclosing -- quantified expression or aggregate with an iterated component -- in Ada 2022, which is above the current scope in the scope -- stack. Indeed in the context of a quantified expression or -- an aggregate with an iterated component, an internal scope is -- created and pushed above the current scope in order to emulate -- the loop-like behavior of the construct. -- If the expression is within a top-level pragma, as for a pre- -- condition on a library-level subprogram, nothing to do. if not Is_Compilation_Unit (Current_Scope) and then (Is_Record_Type (Scope (Current_Scope)) or else (Ekind (Current_Scope) in E_Block | E_Loop and then Is_Internal (Current_Scope))) then Pos := Pos - 1; end if; if Is_Non_Empty_List (Freeze_Nodes) then -- When the current scope is transient, insert the freeze nodes -- prior to the expression that produced them. Transient scopes -- may create additional declarations when finalizing objects -- or managing the secondary stack. Inserting the freeze nodes -- of those constructs prior to the scope would result in a -- freeze-before-declaration, therefore the freeze node must -- remain interleaved with their constructs. if Scope_Is_Transient then Insert_Actions (N, Freeze_Nodes); elsif No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then Scope_Stack.Table (Pos).Pending_Freeze_Actions := Freeze_Nodes; else Append_List (Freeze_Nodes, Scope_Stack.Table (Pos).Pending_Freeze_Actions); end if; end if; end; return; end if; -- Now we have the right place to do the freezing. First, a special -- adjustment, if we are in spec-expression analysis mode, these freeze -- actions must not be thrown away (normally all inserted actions are -- thrown away in this mode). However, the freeze actions are from -- static expressions and one of the important reasons we are doing this -- special analysis is to get these freeze actions. Therefore we turn -- off the In_Spec_Expression mode to propagate these freeze actions. -- This also means they get properly analyzed and expanded. In_Spec_Expression := False; -- Freeze the subtype mark before a qualified expression on an -- allocator as per AARM 13.14(4.a). This is needed in particular to -- generate predicate functions. if Present (Allocator_Typ) then Freeze_Before (P, Allocator_Typ); end if; -- Freeze the designated type of an allocator (RM 13.14(13)) if Present (Desig_Typ) then Freeze_Before (P, Desig_Typ); end if; -- Freeze type of expression (RM 13.14(10)). Note that we took care of -- the enumeration representation clause exception in the loop above. if Present (Typ) then Freeze_Before (P, Typ); end if; -- Freeze name if one is present (RM 13.14(11)) if Present (Nam) then Freeze_Before (P, Nam); end if; -- Restore In_Spec_Expression flag In_Spec_Expression := In_Spec_Exp; end Freeze_Expression; ----------------------- -- Freeze_Expr_Types -- ----------------------- procedure Freeze_Expr_Types (Def_Id : Entity_Id; Typ : Entity_Id; Expr : Node_Id; N : Node_Id) is function Cloned_Expression return Node_Id; -- Build a duplicate of the expression of the return statement that has -- no defining entities shared with the original expression. function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result; -- Freeze all types referenced in the subtree rooted at Node ----------------------- -- Cloned_Expression -- ----------------------- function Cloned_Expression return Node_Id is function Clone_Id (Node : Node_Id) return Traverse_Result; -- Tree traversal routine that clones the defining identifier of -- iterator and loop parameter specification nodes. -------------- -- Clone_Id -- -------------- function Clone_Id (Node : Node_Id) return Traverse_Result is begin if Nkind (Node) in N_Iterator_Specification | N_Loop_Parameter_Specification then Set_Defining_Identifier (Node, New_Copy (Defining_Identifier (Node))); end if; return OK; end Clone_Id; procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id); -- Local variable Dup_Expr : constant Node_Id := New_Copy_Tree (Expr); -- Start of processing for Cloned_Expression begin -- We must duplicate the expression with semantic information to -- inherit the decoration of global entities in generic instances. -- Set the parent of the new node to be the parent of the original -- to get the proper context, which is needed for complete error -- reporting and for semantic analysis. Set_Parent (Dup_Expr, Parent (Expr)); -- Replace the defining identifier of iterators and loop param -- specifications by a clone to ensure that the cloned expression -- and the original expression don't have shared identifiers; -- otherwise, as part of the preanalysis of the expression, these -- shared identifiers may be left decorated with itypes which -- will not be available in the tree passed to the backend. Clone_Def_Ids (Dup_Expr); return Dup_Expr; end Cloned_Expression; ---------------------- -- Freeze_Type_Refs -- ---------------------- function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is procedure Check_And_Freeze_Type (Typ : Entity_Id); -- Check that Typ is fully declared and freeze it if so --------------------------- -- Check_And_Freeze_Type -- --------------------------- procedure Check_And_Freeze_Type (Typ : Entity_Id) is begin -- Skip Itypes created by the preanalysis, and itypes whose -- scope is another type (i.e. component subtypes that depend -- on a discriminant), if Is_Itype (Typ) and then (Scope_Within_Or_Same (Scope (Typ), Def_Id) or else Is_Type (Scope (Typ))) then return; end if; -- This provides a better error message than generating primitives -- whose compilation fails much later. Refine the error message if -- possible. Check_Fully_Declared (Typ, Node); if Error_Posted (Node) then if Has_Private_Component (Typ) and then not Is_Private_Type (Typ) then Error_Msg_NE ("\type& has private component", Node, Typ); end if; else Freeze_Before (N, Typ); end if; end Check_And_Freeze_Type; -- Start of processing for Freeze_Type_Refs begin -- Check that a type referenced by an entity can be frozen if Is_Entity_Name (Node) and then Present (Entity (Node)) then -- The entity itself may be a type, as in a membership test -- or an attribute reference. Freezing its own type would be -- incomplete if the entity is derived or an extension. if Is_Type (Entity (Node)) then Check_And_Freeze_Type (Entity (Node)); else Check_And_Freeze_Type (Etype (Entity (Node))); end if; -- Check that the enclosing record type can be frozen if Ekind (Entity (Node)) in E_Component | E_Discriminant then Check_And_Freeze_Type (Scope (Entity (Node))); end if; -- Freezing an access type does not freeze the designated type, but -- freezing conversions between access to interfaces requires that -- the interface types themselves be frozen, so that dispatch table -- entities are properly created. -- Unclear whether a more general rule is needed ??? elsif Nkind (Node) = N_Type_Conversion and then Is_Access_Type (Etype (Node)) and then Is_Interface (Designated_Type (Etype (Node))) then Check_And_Freeze_Type (Designated_Type (Etype (Node))); end if; -- An implicit dereference freezes the designated type. In the case -- of a dispatching call whose controlling argument is an access -- type, the dereference is not made explicit, so we must check for -- such a call and freeze the designated type. if Nkind (Node) in N_Has_Etype and then Present (Etype (Node)) and then Is_Access_Type (Etype (Node)) then if Nkind (Parent (Node)) = N_Function_Call and then Node = Controlling_Argument (Parent (Node)) then Check_And_Freeze_Type (Designated_Type (Etype (Node))); -- An explicit dereference freezes the designated type as well, -- even though that type is not attached to an entity in the -- expression. elsif Nkind (Parent (Node)) = N_Explicit_Dereference then Check_And_Freeze_Type (Designated_Type (Etype (Node))); end if; -- An iterator specification freezes the iterator type, even though -- that type is not attached to an entity in the construct. elsif Nkind (Node) in N_Has_Etype and then Present (Etype (Node)) and then Nkind (Parent (Node)) = N_Iterator_Specification and then Node = Name (Parent (Node)) then declare Iter : constant Node_Id := Find_Value_Of_Aspect (Etype (Node), Aspect_Default_Iterator); begin if Present (Iter) then Check_And_Freeze_Type (Etype (Iter)); end if; end; end if; -- No point in posting several errors on the same expression if Serious_Errors_Detected > 0 then return Abandon; else return OK; end if; end Freeze_Type_Refs; procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs); -- Local variables Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id); Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id); Dup_Expr : constant Node_Id := Cloned_Expression; -- Start of processing for Freeze_Expr_Types begin -- Preanalyze a duplicate of the expression to have available the -- minimum decoration needed to locate referenced unfrozen types -- without adding any decoration to the function expression. -- This routine is also applied to expressions in the contract for -- the subprogram. If that happens when expanding the code for -- pre/postconditions during expansion of the subprogram body, the -- subprogram is already installed. if Def_Id /= Current_Scope then Push_Scope (Def_Id); Install_Formals (Def_Id); Preanalyze_Spec_Expression (Dup_Expr, Typ); End_Scope; else Preanalyze_Spec_Expression (Dup_Expr, Typ); end if; -- Restore certain attributes of Def_Id since the preanalysis may -- have introduced itypes to this scope, thus modifying attributes -- First_Entity and Last_Entity. Set_First_Entity (Def_Id, Saved_First_Entity); Set_Last_Entity (Def_Id, Saved_Last_Entity); if Present (Last_Entity (Def_Id)) then Set_Next_Entity (Last_Entity (Def_Id), Empty); end if; -- Freeze all types referenced in the expression Freeze_References (Dup_Expr); end Freeze_Expr_Types; ----------------------------- -- Freeze_Fixed_Point_Type -- ----------------------------- -- Certain fixed-point types and subtypes, including implicit base types -- and declared first subtypes, have not yet set up a range. This is -- because the range cannot be set until the Small and Size values are -- known, and these are not known till the type is frozen. -- To signal this case, Scalar_Range contains an unanalyzed syntactic range -- whose bounds are unanalyzed real literals. This routine will recognize -- this case, and transform this range node into a properly typed range -- with properly analyzed and resolved values. procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is Rng : constant Node_Id := Scalar_Range (Typ); Lo : constant Node_Id := Low_Bound (Rng); Hi : constant Node_Id := High_Bound (Rng); Btyp : constant Entity_Id := Base_Type (Typ); Brng : constant Node_Id := Scalar_Range (Btyp); BLo : constant Node_Id := Low_Bound (Brng); BHi : constant Node_Id := High_Bound (Brng); Ftyp : constant Entity_Id := Underlying_Type (First_Subtype (Typ)); Small : Ureal; Loval : Ureal; Hival : Ureal; Atype : Entity_Id; Orig_Lo : Ureal; Orig_Hi : Ureal; -- Save original bounds (for shaving tests) Actual_Size : Int; -- Actual size chosen function Fsize (Lov, Hiv : Ureal) return Int; -- Returns size of type with given bounds. Also leaves these -- bounds set as the current bounds of the Typ. function Larger (A, B : Ureal) return Boolean; -- Returns true if A > B with a margin of Typ'Small function Smaller (A, B : Ureal) return Boolean; -- Returns true if A < B with a margin of Typ'Small ----------- -- Fsize -- ----------- function Fsize (Lov, Hiv : Ureal) return Int is begin Set_Realval (Lo, Lov); Set_Realval (Hi, Hiv); return Minimum_Size (Typ); end Fsize; ------------ -- Larger -- ------------ function Larger (A, B : Ureal) return Boolean is begin return A > B and then A - Small_Value (Typ) > B; end Larger; ------------- -- Smaller -- ------------- function Smaller (A, B : Ureal) return Boolean is begin return A < B and then A + Small_Value (Typ) < B; end Smaller; -- Start of processing for Freeze_Fixed_Point_Type begin -- The type, or its first subtype if we are freezing the anonymous -- base, may have a delayed Small aspect. It must be analyzed now, -- so that all characteristics of the type (size, bounds) can be -- computed and validated in the call to Minimum_Size that follows. if Has_Delayed_Aspects (Ftyp) then Analyze_Aspects_At_Freeze_Point (Ftyp); Set_Has_Delayed_Aspects (Ftyp, False); end if; if May_Inherit_Delayed_Rep_Aspects (Ftyp) then Inherit_Delayed_Rep_Aspects (Ftyp); Set_May_Inherit_Delayed_Rep_Aspects (Ftyp, False); end if; -- Inherit the Small value from the first subtype in any case if Typ /= Ftyp then Set_Small_Value (Typ, Small_Value (Ftyp)); end if; -- If Esize of a subtype has not previously been set, set it now if not Known_Esize (Typ) then Atype := Ancestor_Subtype (Typ); if Present (Atype) then Set_Esize (Typ, Esize (Atype)); else Copy_Esize (To => Typ, From => Btyp); end if; end if; -- Immediate return if the range is already analyzed. This means that -- the range is already set, and does not need to be computed by this -- routine. if Analyzed (Rng) then return; end if; -- Immediate return if either of the bounds raises Constraint_Error if Raises_Constraint_Error (Lo) or else Raises_Constraint_Error (Hi) then return; end if; Small := Small_Value (Typ); Loval := Realval (Lo); Hival := Realval (Hi); Orig_Lo := Loval; Orig_Hi := Hival; -- Ordinary fixed-point case if Is_Ordinary_Fixed_Point_Type (Typ) then -- For the ordinary fixed-point case, we are allowed to fudge the -- end-points up or down by small. Generally we prefer to fudge up, -- i.e. widen the bounds for non-model numbers so that the end points -- are included. However there are cases in which this cannot be -- done, and indeed cases in which we may need to narrow the bounds. -- The following circuit makes the decision. -- Note: our terminology here is that Incl_EP means that the bounds -- are widened by Small if necessary to include the end points, and -- Excl_EP means that the bounds are narrowed by Small to exclude the -- end-points if this reduces the size. -- Note that in the Incl case, all we care about is including the -- end-points. In the Excl case, we want to narrow the bounds as -- much as permitted by the RM, to give the smallest possible size. Fudge : declare Loval_Incl_EP : Ureal; Hival_Incl_EP : Ureal; Loval_Excl_EP : Ureal; Hival_Excl_EP : Ureal; Size_Incl_EP : Int; Size_Excl_EP : Int; Model_Num : Ureal; Actual_Lo : Ureal; Actual_Hi : Ureal; begin -- First step. Base types are required to be symmetrical. Right -- now, the base type range is a copy of the first subtype range. -- This will be corrected before we are done, but right away we -- need to deal with the case where both bounds are non-negative. -- In this case, we set the low bound to the negative of the high -- bound, to make sure that the size is computed to include the -- required sign. Note that we do not need to worry about the -- case of both bounds negative, because the sign will be dealt -- with anyway. Furthermore we can't just go making such a bound -- symmetrical, since in a twos-complement system, there is an -- extra negative value which could not be accommodated on the -- positive side. if Typ = Btyp and then not UR_Is_Negative (Loval) and then Hival > Loval then Loval := -Hival; Set_Realval (Lo, Loval); end if; -- Compute the fudged bounds. If the bound is a model number, (or -- greater if given low bound, smaller if high bound) then we do -- nothing to include it, but we are allowed to backoff to the -- next adjacent model number when we exclude it. If it is not a -- model number then we straddle the two values with the model -- numbers on either side. Model_Num := UR_Trunc (Loval / Small) * Small; if UR_Ge (Loval, Model_Num) then Loval_Incl_EP := Model_Num; else Loval_Incl_EP := Model_Num - Small; end if; -- The low value excluding the end point is Small greater, but -- we do not do this exclusion if the low value is positive, -- since it can't help the size and could actually hurt by -- crossing the high bound. if UR_Is_Negative (Loval_Incl_EP) then Loval_Excl_EP := Loval_Incl_EP + Small; -- If the value went from negative to zero, then we have the -- case where Loval_Incl_EP is the model number just below -- zero, so we want to stick to the negative value for the -- base type to maintain the condition that the size will -- include signed values. if Typ = Btyp and then UR_Is_Zero (Loval_Excl_EP) then Loval_Excl_EP := Loval_Incl_EP; end if; else Loval_Excl_EP := Loval_Incl_EP; end if; -- Similar processing for upper bound and high value Model_Num := UR_Trunc (Hival / Small) * Small; if UR_Le (Hival, Model_Num) then Hival_Incl_EP := Model_Num; else Hival_Incl_EP := Model_Num + Small; end if; if UR_Is_Positive (Hival_Incl_EP) then Hival_Excl_EP := Hival_Incl_EP - Small; else Hival_Excl_EP := Hival_Incl_EP; end if; -- One further adjustment is needed. In the case of subtypes, we -- cannot go outside the range of the base type, or we get -- peculiarities, and the base type range is already set. This -- only applies to the Incl values, since clearly the Excl values -- are already as restricted as they are allowed to be. if Typ /= Btyp then Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo)); Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi)); end if; -- Get size including and excluding end points Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP); Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP); -- No need to exclude end-points if it does not reduce size if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then Loval_Excl_EP := Loval_Incl_EP; end if; if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then Hival_Excl_EP := Hival_Incl_EP; end if; -- Now we set the actual size to be used. We want to use the -- bounds fudged up to include the end-points but only if this -- can be done without violating a specifically given size -- size clause or causing an unacceptable increase in size. -- Case of size clause given if Has_Size_Clause (Typ) then -- Use the inclusive size only if it is consistent with -- the explicitly specified size. if Size_Incl_EP <= RM_Size (Typ) then Actual_Lo := Loval_Incl_EP; Actual_Hi := Hival_Incl_EP; Actual_Size := Size_Incl_EP; -- If the inclusive size is too large, we try excluding -- the end-points (will be caught later if does not work). else Actual_Lo := Loval_Excl_EP; Actual_Hi := Hival_Excl_EP; Actual_Size := Size_Excl_EP; end if; -- Case of size clause not given else -- If we have a base type whose corresponding first subtype -- has an explicit size that is large enough to include our -- end-points, then do so. There is no point in working hard -- to get a base type whose size is smaller than the specified -- size of the first subtype. if Has_Size_Clause (Ftyp) and then Size_Incl_EP <= Esize (Ftyp) then Actual_Size := Size_Incl_EP; Actual_Lo := Loval_Incl_EP; Actual_Hi := Hival_Incl_EP; -- If excluding the end-points makes the size smaller and -- results in a size of 8,16,32,64, then we take the smaller -- size. For the 64 case, this is compulsory. For the other -- cases, it seems reasonable. We like to include end points -- if we can, but not at the expense of moving to the next -- natural boundary of size. elsif Size_Incl_EP /= Size_Excl_EP and then Addressable (Size_Excl_EP) then Actual_Size := Size_Excl_EP; Actual_Lo := Loval_Excl_EP; Actual_Hi := Hival_Excl_EP; -- Otherwise we can definitely include the end points else Actual_Size := Size_Incl_EP; Actual_Lo := Loval_Incl_EP; Actual_Hi := Hival_Incl_EP; end if; -- One pathological case: normally we never fudge a low bound -- down, since it would seem to increase the size (if it has -- any effect), but for ranges containing single value, or no -- values, the high bound can be small too large. Consider: -- type t is delta 2.0**(-14) -- range 131072.0 .. 0; -- That lower bound is *just* outside the range of 32 bits, and -- does need fudging down in this case. Note that the bounds -- will always have crossed here, since the high bound will be -- fudged down if necessary, as in the case of: -- type t is delta 2.0**(-14) -- range 131072.0 .. 131072.0; -- So we detect the situation by looking for crossed bounds, -- and if the bounds are crossed, and the low bound is greater -- than zero, we will always back it off by small, since this -- is completely harmless. if Actual_Lo > Actual_Hi then if UR_Is_Positive (Actual_Lo) then Actual_Lo := Loval_Incl_EP - Small; Actual_Size := Fsize (Actual_Lo, Actual_Hi); -- And of course, we need to do exactly the same parallel -- fudge for flat ranges in the negative region. elsif UR_Is_Negative (Actual_Hi) then Actual_Hi := Hival_Incl_EP + Small; Actual_Size := Fsize (Actual_Lo, Actual_Hi); end if; end if; end if; Set_Realval (Lo, Actual_Lo); Set_Realval (Hi, Actual_Hi); end Fudge; -- Enforce some limitations for ordinary fixed-point types. They come -- from an exact algorithm used to implement Text_IO.Fixed_IO and the -- Fore, Image and Value attributes. The requirement on the Small is -- to lie in the range 2**(-(Siz - 1)) .. 2**(Siz - 1) for a type of -- Siz bits (Siz=32,64,128) and the requirement on the bounds is to -- be smaller in magnitude than 10.0**N * 2**(Siz - 1), where N is -- given by the formula N = floor ((Siz - 1) * log 2 / log 10). -- If the bounds of a 32-bit type are too large, force 64-bit type if Actual_Size <= 32 and then Small <= Ureal_2_31 and then (Smaller (Expr_Value_R (Lo), Ureal_M_2_10_18) or else Larger (Expr_Value_R (Hi), Ureal_2_10_18)) then Actual_Size := 33; end if; -- If the bounds of a 64-bit type are too large, force 128-bit type if System_Max_Integer_Size = 128 and then Actual_Size <= 64 and then Small <= Ureal_2_63 and then (Smaller (Expr_Value_R (Lo), Ureal_M_9_10_36) or else Larger (Expr_Value_R (Hi), Ureal_9_10_36)) then Actual_Size := 65; end if; -- Give error messages for first subtypes and not base types, as the -- bounds of base types are always maximum for their size, see below. if System_Max_Integer_Size < 128 and then Typ /= Btyp then -- See the 128-bit case below for the reason why we cannot test -- against the 2**(-63) .. 2**63 range. This quirk should have -- been kludged around as in the 128-bit case below, but it was -- not and we end up with a ludicrous range as a result??? if Small < Ureal_2_M_80 then Error_Msg_Name_1 := Name_Small; Error_Msg_N ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", Typ); elsif Small > Ureal_2_80 then Error_Msg_Name_1 := Name_Small; Error_Msg_N ("`&''%` too large, maximum allowed is 2.0'*'*80", Typ); end if; if Smaller (Expr_Value_R (Lo), Ureal_M_9_10_36) then Error_Msg_Name_1 := Name_First; Error_Msg_N ("`&''%` too small, minimum allowed is -9.0E+36", Typ); end if; if Larger (Expr_Value_R (Hi), Ureal_9_10_36) then Error_Msg_Name_1 := Name_Last; Error_Msg_N ("`&''%` too large, maximum allowed is 9.0E+36", Typ); end if; elsif System_Max_Integer_Size = 128 and then Typ /= Btyp then -- ACATS c35902d tests a delta equal to 2**(-(Max_Mantissa + 1)) -- but we cannot really support anything smaller than Fine_Delta -- because of the way we implement I/O for fixed point types??? if Small = Ureal_2_M_128 then null; elsif Small < Ureal_2_M_127 then Error_Msg_Name_1 := Name_Small; Error_Msg_N ("`&''%` too small, minimum allowed is 2.0'*'*(-127)", Typ); elsif Small > Ureal_2_127 then Error_Msg_Name_1 := Name_Small; Error_Msg_N ("`&''%` too large, maximum allowed is 2.0'*'*127", Typ); end if; if Actual_Size > 64 and then (Norm_Num (Small) > Uint_2 ** 127 or else Norm_Den (Small) > Uint_2 ** 127) and then Small /= Ureal_2_M_128 then Error_Msg_Name_1 := Name_Small; Error_Msg_N ("`&''%` not the ratio of two 128-bit integers", Typ); end if; if Smaller (Expr_Value_R (Lo), Ureal_M_10_76) then Error_Msg_Name_1 := Name_First; Error_Msg_N ("`&''%` too small, minimum allowed is -1.0E+76", Typ); end if; if Larger (Expr_Value_R (Hi), Ureal_10_76) then Error_Msg_Name_1 := Name_Last; Error_Msg_N ("`&''%` too large, maximum allowed is 1.0E+76", Typ); end if; end if; -- For the decimal case, none of this fudging is required, since there -- are no end-point problems in the decimal case (the end-points are -- always included). else Actual_Size := Fsize (Loval, Hival); end if; -- At this stage, the actual size has been calculated and the proper -- required bounds are stored in the low and high bounds. if Actual_Size > System_Max_Integer_Size then Error_Msg_Uint_1 := UI_From_Int (Actual_Size); Error_Msg_Uint_2 := UI_From_Int (System_Max_Integer_Size); Error_Msg_N ("size required (^) for type& too large, maximum allowed is ^", Typ); Actual_Size := System_Max_Integer_Size; end if; -- Check size against explicit given size if Has_Size_Clause (Typ) then if Actual_Size > RM_Size (Typ) then Error_Msg_Uint_1 := RM_Size (Typ); Error_Msg_Uint_2 := UI_From_Int (Actual_Size); Error_Msg_NE ("size given (^) for type& too small, minimum allowed is ^", Size_Clause (Typ), Typ); else Actual_Size := UI_To_Int (Esize (Typ)); end if; -- Increase size to next natural boundary if no size clause given else if Actual_Size <= 8 then Actual_Size := 8; elsif Actual_Size <= 16 then Actual_Size := 16; elsif Actual_Size <= 32 then Actual_Size := 32; elsif Actual_Size <= 64 then Actual_Size := 64; else Actual_Size := 128; end if; Set_Esize (Typ, UI_From_Int (Actual_Size)); Adjust_Esize_For_Alignment (Typ); end if; -- If we have a base type, then expand the bounds so that they extend to -- the full width of the allocated size in bits, to avoid junk range -- checks on intermediate computations. if Typ = Btyp then Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1)))); Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1))); end if; -- Final step is to reanalyze the bounds using the proper type -- and set the Corresponding_Integer_Value fields of the literals. Set_Etype (Lo, Empty); Set_Analyzed (Lo, False); Analyze (Lo); -- Resolve with universal fixed if the base type, and with the base -- type if we are freezing a subtype. Note we can't resolve the base -- type with itself, that would be a reference before definition. -- The resolution of the bounds of a subtype, if they are given by real -- literals, includes the setting of the Corresponding_Integer_Value, -- as for other literals of a fixed-point type. if Typ = Btyp then Resolve (Lo, Universal_Fixed); Set_Corresponding_Integer_Value (Lo, UR_To_Uint (Realval (Lo) / Small)); else Resolve (Lo, Btyp); end if; -- Similar processing for high bound Set_Etype (Hi, Empty); Set_Analyzed (Hi, False); Analyze (Hi); if Typ = Btyp then Resolve (Hi, Universal_Fixed); Set_Corresponding_Integer_Value (Hi, UR_To_Uint (Realval (Hi) / Small)); else Resolve (Hi, Btyp); end if; -- Set type of range to correspond to bounds Set_Etype (Rng, Etype (Lo)); -- Set Esize to calculated size if not set already if not Known_Esize (Typ) then Set_Esize (Typ, UI_From_Int (Actual_Size)); end if; -- Set RM_Size if not already set. If already set, check value declare Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ)); begin if Known_RM_Size (Typ) then if RM_Size (Typ) < Minsiz then Error_Msg_Uint_1 := RM_Size (Typ); Error_Msg_Uint_2 := Minsiz; Error_Msg_NE ("size given (^) for type& too small, minimum allowed is ^", Size_Clause (Typ), Typ); end if; else Set_RM_Size (Typ, Minsiz); end if; end; -- Check for shaving if Comes_From_Source (Typ) then -- In SPARK mode the given bounds must be strictly representable if SPARK_Mode = On then if Orig_Lo < Expr_Value_R (Lo) then Error_Msg_NE ("declared low bound of type & is outside type range", Lo, Typ); end if; if Orig_Hi > Expr_Value_R (Hi) then Error_Msg_NE ("declared high bound of type & is outside type range", Hi, Typ); end if; else if Orig_Lo < Expr_Value_R (Lo) then Error_Msg_N ("declared low bound of type & is outside type range??", Typ); Error_Msg_N ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ); end if; if Orig_Hi > Expr_Value_R (Hi) then Error_Msg_N ("declared high bound of type & is outside type range??", Typ); Error_Msg_N ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ); end if; end if; end if; end Freeze_Fixed_Point_Type; ------------------ -- Freeze_Itype -- ------------------ procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is L : List_Id; begin Set_Has_Delayed_Freeze (T); L := Freeze_Entity (T, N); Insert_Actions (N, L); end Freeze_Itype; -------------------------- -- Freeze_Static_Object -- -------------------------- procedure Freeze_Static_Object (E : Entity_Id) is Cannot_Be_Static : exception; -- Exception raised if the type of a static object cannot be made -- static. This happens if the type depends on non-global objects. procedure Ensure_Expression_Is_SA (N : Node_Id); -- Called to ensure that an expression used as part of a type definition -- is statically allocatable, which means that the expression type is -- statically allocatable, and the expression is either static, or a -- reference to a library level constant. procedure Ensure_Type_Is_SA (Typ : Entity_Id); -- Called to mark a type as static, checking that it is possible -- to set the type as static. If it is not possible, then the -- exception Cannot_Be_Static is raised. ----------------------------- -- Ensure_Expression_Is_SA -- ----------------------------- procedure Ensure_Expression_Is_SA (N : Node_Id) is Ent : Entity_Id; begin Ensure_Type_Is_SA (Etype (N)); if Is_OK_Static_Expression (N) then return; elsif Nkind (N) = N_Identifier then Ent := Entity (N); if Present (Ent) and then Ekind (Ent) = E_Constant and then Is_Library_Level_Entity (Ent) then return; end if; end if; raise Cannot_Be_Static; end Ensure_Expression_Is_SA; ----------------------- -- Ensure_Type_Is_SA -- ----------------------- procedure Ensure_Type_Is_SA (Typ : Entity_Id) is N : Node_Id; C : Entity_Id; begin -- If type is library level, we are all set if Is_Library_Level_Entity (Typ) then return; end if; -- We are also OK if the type already marked as statically allocated, -- which means we processed it before. if Is_Statically_Allocated (Typ) then return; end if; -- Mark type as statically allocated Set_Is_Statically_Allocated (Typ); -- Check that it is safe to statically allocate this type if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then Ensure_Expression_Is_SA (Type_Low_Bound (Typ)); Ensure_Expression_Is_SA (Type_High_Bound (Typ)); elsif Is_Array_Type (Typ) then N := First_Index (Typ); while Present (N) loop Ensure_Type_Is_SA (Etype (N)); Next_Index (N); end loop; Ensure_Type_Is_SA (Component_Type (Typ)); elsif Is_Access_Type (Typ) then if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then declare F : Entity_Id; T : constant Entity_Id := Etype (Designated_Type (Typ)); begin if T /= Standard_Void_Type then Ensure_Type_Is_SA (T); end if; F := First_Formal (Designated_Type (Typ)); while Present (F) loop Ensure_Type_Is_SA (Etype (F)); Next_Formal (F); end loop; end; else Ensure_Type_Is_SA (Designated_Type (Typ)); end if; elsif Is_Record_Type (Typ) then C := First_Entity (Typ); while Present (C) loop if Ekind (C) = E_Discriminant or else Ekind (C) = E_Component then Ensure_Type_Is_SA (Etype (C)); elsif Is_Type (C) then Ensure_Type_Is_SA (C); end if; Next_Entity (C); end loop; elsif Ekind (Typ) = E_Subprogram_Type then Ensure_Type_Is_SA (Etype (Typ)); C := First_Formal (Typ); while Present (C) loop Ensure_Type_Is_SA (Etype (C)); Next_Formal (C); end loop; else raise Cannot_Be_Static; end if; end Ensure_Type_Is_SA; -- Start of processing for Freeze_Static_Object begin Ensure_Type_Is_SA (Etype (E)); exception when Cannot_Be_Static => -- If the object that cannot be static is imported or exported, then -- issue an error message saying that this object cannot be imported -- or exported. If it has an address clause it is an overlay in the -- current partition and the static requirement is not relevant. -- Do not issue any error message when ignoring rep clauses. if Ignore_Rep_Clauses then null; elsif Is_Imported (E) then if No (Address_Clause (E)) then Error_Msg_N ("& cannot be imported (local type is not constant)", E); end if; -- Otherwise must be exported, something is wrong if compiler -- is marking something as statically allocated which cannot be). else pragma Assert (Is_Exported (E)); Error_Msg_N ("& cannot be exported (local type is not constant)", E); end if; end Freeze_Static_Object; ----------------------- -- Freeze_Subprogram -- ----------------------- procedure Freeze_Subprogram (E : Entity_Id) is procedure Set_Profile_Convention (Subp_Id : Entity_Id); -- Set the conventions of all anonymous access-to-subprogram formals and -- result subtype of subprogram Subp_Id to the convention of Subp_Id. ---------------------------- -- Set_Profile_Convention -- ---------------------------- procedure Set_Profile_Convention (Subp_Id : Entity_Id) is Conv : constant Convention_Id := Convention (Subp_Id); procedure Set_Type_Convention (Typ : Entity_Id); -- Set the convention of anonymous access-to-subprogram type Typ and -- its designated type to Conv. ------------------------- -- Set_Type_Convention -- ------------------------- procedure Set_Type_Convention (Typ : Entity_Id) is begin -- Set the convention on both the anonymous access-to-subprogram -- type and the subprogram type it points to because both types -- participate in conformance-related checks. if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then Set_Convention (Typ, Conv); Set_Convention (Designated_Type (Typ), Conv); end if; end Set_Type_Convention; -- Local variables Formal : Entity_Id; -- Start of processing for Set_Profile_Convention begin Formal := First_Formal (Subp_Id); while Present (Formal) loop Set_Type_Convention (Etype (Formal)); Next_Formal (Formal); end loop; if Ekind (Subp_Id) = E_Function then Set_Type_Convention (Etype (Subp_Id)); end if; end Set_Profile_Convention; -- Local variables F : Entity_Id; Retype : Entity_Id; -- Start of processing for Freeze_Subprogram begin -- Subprogram may not have an address clause unless it is imported if Present (Address_Clause (E)) then if not Is_Imported (E) then Error_Msg_N ("address clause can only be given for imported subprogram", Name (Address_Clause (E))); end if; end if; -- Reset the Pure indication on an imported subprogram unless an -- explicit Pure_Function pragma was present or the subprogram is an -- intrinsic. We do this because otherwise it is an insidious error -- to call a non-pure function from pure unit and have calls -- mysteriously optimized away. What happens here is that the Import -- can bypass the normal check to ensure that pure units call only pure -- subprograms. -- The reason for the intrinsic exception is that in general, intrinsic -- functions (such as shifts) are pure anyway. The only exceptions are -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure -- in any case, so no problem arises. if Is_Imported (E) and then Is_Pure (E) and then not Has_Pragma_Pure_Function (E) and then not Is_Intrinsic_Subprogram (E) then Set_Is_Pure (E, False); end if; -- For C++ constructors check that their external name has been given -- (either in pragma CPP_Constructor or in a pragma import). if Is_Constructor (E) and then Convention (E) = Convention_CPP and then (No (Interface_Name (E)) or else String_Equal (L => Strval (Interface_Name (E)), R => Strval (Get_Default_External_Name (E)))) then Error_Msg_N ("'C++ constructor must have external name or link name", E); end if; -- We also reset the Pure indication on a subprogram with an Address -- parameter, because the parameter may be used as a pointer and the -- referenced data may change even if the address value does not. -- Note that if the programmer gave an explicit Pure_Function pragma, -- then we believe the programmer, and leave the subprogram Pure. We -- also suppress this check on run-time files. if Is_Pure (E) and then Is_Subprogram (E) and then not Has_Pragma_Pure_Function (E) and then not Is_Internal_Unit (Current_Sem_Unit) then Check_Function_With_Address_Parameter (E); end if; -- Ensure that all anonymous access-to-subprogram types inherit the -- convention of their related subprogram (RM 6.3.1(13.1/5)). This is -- not done for a defaulted convention Ada because those types also -- default to Ada. Convention Protected must not be propagated when -- the subprogram is an entry because this would be illegal. The only -- way to force convention Protected on these kinds of types is to -- include keyword "protected" in the access definition. Conventions -- Entry and Intrinsic are also not propagated (specified by AI12-0207). if Convention (E) /= Convention_Ada and then Convention (E) /= Convention_Protected and then Convention (E) /= Convention_Entry and then Convention (E) /= Convention_Intrinsic then Set_Profile_Convention (E); end if; -- For non-foreign convention subprograms, this is where we create -- the extra formals (for accessibility level and constrained bit -- information). We delay this till the freeze point precisely so -- that we know the convention. if not Has_Foreign_Convention (E) then -- Extra formals of dispatching operations are added later by -- Expand_Freeze_Record_Type, which also adds extra formals to -- internal entities built to handle interface types. if not Is_Dispatching_Operation (E) then Create_Extra_Formals (E); pragma Assert ((Ekind (E) = E_Subprogram_Type and then Extra_Formals_OK (E)) or else (Is_Subprogram (E) and then Extra_Formals_OK (E) and then (No (Overridden_Operation (E)) or else Extra_Formals_Match_OK (E, Ultimate_Alias (Overridden_Operation (E)))))); end if; Set_Mechanisms (E); -- If this is convention Ada and a Valued_Procedure, that's odd if Ekind (E) = E_Procedure and then Is_Valued_Procedure (E) and then Convention (E) = Convention_Ada and then Warn_On_Export_Import then Error_Msg_N ("??Valued_Procedure has no effect for convention Ada", E); Set_Is_Valued_Procedure (E, False); end if; -- Case of foreign convention else Set_Mechanisms (E); -- For foreign conventions, warn about return of unconstrained array if Ekind (E) = E_Function then Retype := Underlying_Type (Etype (E)); -- If no return type, probably some other error, e.g. a -- missing full declaration, so ignore. if No (Retype) then null; -- If the return type is generic, we have emitted a warning -- earlier on, and there is nothing else to check here. Specific -- instantiations may lead to erroneous behavior. elsif Is_Generic_Type (Etype (E)) then null; -- Display warning if returning unconstrained array elsif Is_Array_Type (Retype) and then not Is_Constrained (Retype) -- Check appropriate warning is enabled (should we check for -- Warnings (Off) on specific entities here, probably so???) and then Warn_On_Export_Import then Error_Msg_N ("?x?foreign convention function& should not return " & "unconstrained array", E); return; end if; end if; -- If any of the formals for an exported foreign convention -- subprogram have defaults, then emit an appropriate warning since -- this is odd (default cannot be used from non-Ada code) if Is_Exported (E) then F := First_Formal (E); while Present (F) loop if Warn_On_Export_Import and then Present (Default_Value (F)) then Error_Msg_N ("?x?parameter cannot be defaulted in non-Ada call", Default_Value (F)); end if; Next_Formal (F); end loop; end if; end if; -- Pragma Inline_Always is disallowed for dispatching subprograms -- because the address of such subprograms is saved in the dispatch -- table to support dispatching calls, and dispatching calls cannot -- be inlined. This is consistent with the restriction against using -- 'Access or 'Address on an Inline_Always subprogram. if Is_Dispatching_Operation (E) and then Has_Pragma_Inline_Always (E) then Error_Msg_N ("pragma Inline_Always not allowed for dispatching subprograms", E); end if; if Is_Dispatching_Operation (E) and then Present (Overridden_Operation (E)) then Local_Restrict.Check_Overriding (Overrider_Op => E, Overridden_Op => Overridden_Operation (E)); end if; -- Because of the implicit representation of inherited predefined -- operators in the front-end, the overriding status of the operation -- may be affected when a full view of a type is analyzed, and this is -- not captured by the analysis of the corresponding type declaration. -- Therefore the correctness of a not-overriding indicator must be -- rechecked when the subprogram is frozen. if Nkind (E) = N_Defining_Operator_Symbol and then not Error_Posted (Parent (E)) then Check_Overriding_Indicator (E, Empty, Is_Primitive (E)); end if; end Freeze_Subprogram; ---------------------- -- Is_Fully_Defined -- ---------------------- function Is_Fully_Defined (T : Entity_Id) return Boolean is begin if Ekind (T) = E_Class_Wide_Type then return Is_Fully_Defined (Etype (T)); elsif Is_Array_Type (T) then return Is_Fully_Defined (Component_Type (T)); elsif Is_Record_Type (T) and not Is_Private_Type (T) then -- Verify that the record type has no components with private types -- without completion. declare Comp : Entity_Id; begin Comp := First_Component (T); while Present (Comp) loop if not Is_Fully_Defined (Etype (Comp)) then return False; end if; Next_Component (Comp); end loop; return True; end; -- For the designated type of an access to subprogram, all types in -- the profile must be fully defined. elsif Ekind (T) = E_Subprogram_Type then declare F : Entity_Id; begin F := First_Formal (T); while Present (F) loop if not Is_Fully_Defined (Etype (F)) then return False; end if; Next_Formal (F); end loop; return Is_Fully_Defined (Etype (T)); end; else return not Is_Private_Type (T) or else Present (Full_View (Base_Type (T))); end if; end Is_Fully_Defined; --------------------------------- -- Process_Default_Expressions -- --------------------------------- procedure Process_Default_Expressions (E : Entity_Id; After : in out Node_Id) is Loc : constant Source_Ptr := Sloc (E); Dbody : Node_Id; Formal : Node_Id; Dcopy : Node_Id; Dnam : Entity_Id; begin Set_Default_Expressions_Processed (E); -- A subprogram instance and its associated anonymous subprogram share -- their signature. The default expression functions are defined in the -- wrapper packages for the anonymous subprogram, and should not be -- generated again for the instance. if Is_Generic_Instance (E) and then Present (Alias (E)) and then Default_Expressions_Processed (Alias (E)) then return; end if; Formal := First_Formal (E); while Present (Formal) loop if Present (Default_Value (Formal)) then -- We work with a copy of the default expression because we -- do not want to disturb the original, since this would mess -- up the conformance checking. Dcopy := New_Copy_Tree (Default_Value (Formal)); -- The analysis of the expression may generate insert actions, -- which of course must not be executed. We wrap those actions -- in a procedure that is not called, and later on eliminated. -- The following cases have no side effects, and are analyzed -- directly. if Nkind (Dcopy) = N_Identifier or else Nkind (Dcopy) in N_Expanded_Name | N_Integer_Literal | N_Character_Literal | N_String_Literal | N_Real_Literal or else (Nkind (Dcopy) = N_Attribute_Reference and then Attribute_Name (Dcopy) = Name_Null_Parameter) or else Known_Null (Dcopy) then -- If there is no default function, we must still do a full -- analyze call on the default value, to ensure that all error -- checks are performed, e.g. those associated with static -- evaluation. Note: this branch will always be taken if the -- analyzer is turned off (but we still need the error checks). -- Note: the setting of parent here is to meet the requirement -- that we can only analyze the expression while attached to -- the tree. Really the requirement is that the parent chain -- be set, we don't actually need to be in the tree. Set_Parent (Dcopy, Declaration_Node (Formal)); Analyze (Dcopy); -- Default expressions are resolved with their own type if the -- context is generic, to avoid anomalies with private types. if Ekind (Scope (E)) = E_Generic_Package then Resolve (Dcopy); else Resolve (Dcopy, Etype (Formal)); end if; -- If that resolved expression will raise constraint error, -- then flag the default value as raising constraint error. -- This allows a proper error message on the calls. if Raises_Constraint_Error (Dcopy) then Set_Raises_Constraint_Error (Default_Value (Formal)); end if; -- If the default is a parameterless call, we use the name of -- the called function directly, and there is no body to build. elsif Nkind (Dcopy) = N_Function_Call and then No (Parameter_Associations (Dcopy)) then null; -- Else construct and analyze the body of a wrapper procedure -- that contains an object declaration to hold the expression. -- Given that this is done only to complete the analysis, it is -- simpler to build a procedure than a function which might -- involve secondary stack expansion. else Dnam := Make_Temporary (Loc, 'D'); Dbody := Make_Subprogram_Body (Loc, Specification => Make_Procedure_Specification (Loc, Defining_Unit_Name => Dnam), Declarations => New_List ( Make_Object_Declaration (Loc, Defining_Identifier => Make_Temporary (Loc, 'T'), Object_Definition => New_Occurrence_Of (Etype (Formal), Loc), Expression => New_Copy_Tree (Dcopy))), Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => Empty_List)); Set_Scope (Dnam, Scope (E)); Set_Assignment_OK (First (Declarations (Dbody))); Set_Is_Eliminated (Dnam); Insert_After (After, Dbody); Analyze (Dbody); After := Dbody; end if; end if; Next_Formal (Formal); end loop; end Process_Default_Expressions; ---------------------------------------- -- Set_Component_Alignment_If_Not_Set -- ---------------------------------------- procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is begin -- Ignore if not base type, subtypes don't need anything if Typ /= Base_Type (Typ) then return; end if; -- Do not override existing representation if Is_Packed (Typ) then return; elsif Has_Specified_Layout (Typ) then return; elsif Component_Alignment (Typ) /= Calign_Default then return; else Set_Component_Alignment (Typ, Scope_Stack.Table (Scope_Stack.Last).Component_Alignment_Default); end if; end Set_Component_Alignment_If_Not_Set; -------------------------- -- Set_SSO_From_Default -- -------------------------- procedure Set_SSO_From_Default (T : Entity_Id) is Reversed : Boolean; begin -- Set default SSO for an array or record base type, except in case of -- a type extension (which always inherits the SSO of its parent type). if Is_Base_Type (T) and then (Is_Array_Type (T) or else (Is_Record_Type (T) and then not (Is_Tagged_Type (T) and then Is_Derived_Type (T)))) then Reversed := (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T)) or else (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T)); if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T)) -- For a record type, if bit order is specified explicitly, -- then do not set SSO from default if not consistent. Note that -- we do not want to look at a Bit_Order attribute definition -- for a parent: if we were to inherit Bit_Order, then both -- SSO_Set_*_By_Default flags would have been cleared already -- (by Inherit_Aspects_At_Freeze_Point). and then not (Is_Record_Type (T) and then Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False) and then Reverse_Bit_Order (T) /= Reversed) then -- If flags cause reverse storage order, then set the result. Note -- that we would have ignored the pragma setting the non default -- storage order in any case, hence the assertion at this point. pragma Assert (not Reversed or else Support_Nondefault_SSO_On_Target); Set_Reverse_Storage_Order (T, Reversed); -- For a record type, also set reversed bit order. Note: if a bit -- order has been specified explicitly, then this is a no-op. if Is_Record_Type (T) then Set_Reverse_Bit_Order (T, Reversed); end if; end if; end if; end Set_SSO_From_Default; ------------------------ -- Should_Freeze_Type -- ------------------------ function Should_Freeze_Type (Typ : Entity_Id; E : Entity_Id; N : Node_Id) return Boolean is Decl : constant Node_Id := Original_Node (Unit_Declaration_Node (E)); function Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate (N : Node_Id) return Traverse_Result; -- Return Abandon if N is a dispatching call to a subprogram -- declared in the same scope as Typ, or a tagged result that -- needs specific expansion, or an aggregate whose type is Typ. function Check_Freezing is new Traverse_Func (Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate); -- Return Abandon if the input expression requires freezing Typ function Within_Simple_Return_Statement (N : Node_Id) return Boolean; -- Determine whether N is the expression of a simple return statement, -- or the dependent expression of a conditional expression which is -- the expression of a simple return statement, including recursively. ------------------------------------------------------- -- Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate -- ------------------------------------------------------- function Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate (N : Node_Id) return Traverse_Result is begin if Nkind (N) = N_Function_Call and then Present (Controlling_Argument (N)) and then Scope (Entity (Original_Node (Name (N)))) = Scope (Typ) then return Abandon; -- The expansion done in Expand_Simple_Function_Return will assign -- the tag to the result in this case. elsif Is_Conversion_Or_Reference_To_Formal (N) and then Within_Simple_Return_Statement (N) and then Etype (N) = Typ and then Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then return Abandon; elsif Nkind (N) in N_Aggregate | N_Delta_Aggregate | N_Extension_Aggregate and then Base_Type (Etype (N)) = Base_Type (Typ) then return Abandon; else return OK; end if; end Is_Dispatching_Call_Or_Tagged_Result_Or_Aggregate; ------------------------------------ -- Within_Simple_Return_Statement -- ------------------------------------ function Within_Simple_Return_Statement (N : Node_Id) return Boolean is Par : constant Node_Id := Parent (N); begin if Nkind (Par) = N_Simple_Return_Statement then return True; elsif Nkind (Par) = N_Case_Expression_Alternative then return Within_Simple_Return_Statement (Parent (Par)); elsif Nkind (Par) = N_If_Expression and then N /= First (Expressions (Par)) then return Within_Simple_Return_Statement (Par); else return False; end if; end Within_Simple_Return_Statement; -- Start of processing for Should_Freeze_Type begin return Within_Scope (Typ, Current_Scope) or else (Nkind (N) = N_Subprogram_Renaming_Declaration and then Present (Corresponding_Formal_Spec (N))) or else (Present (Decl) and then Nkind (Decl) = N_Expression_Function and then Check_Freezing (Expression (Decl)) = Abandon); end Should_Freeze_Type; ------------------ -- Undelay_Type -- ------------------ procedure Undelay_Type (T : Entity_Id) is begin Set_Has_Delayed_Freeze (T, False); Set_Freeze_Node (T, Empty); -- Since we don't want T to have a Freeze_Node, we don't want its -- Full_View or Corresponding_Record_Type to have one either. -- ??? Fundamentally, this whole handling is unpleasant. What we really -- want is to be sure that for an Itype that's part of record R and is a -- subtype of type T, that it's frozen after the later of the freeze -- points of R and T. We have no way of doing that directly, so what we -- do is force most such Itypes to be frozen as part of freezing R via -- this procedure and only delay the ones that need to be delayed -- (mostly the designated types of access types that are defined as part -- of the record). if Is_Private_Type (T) and then Present (Full_View (T)) and then Is_Itype (Full_View (T)) and then Is_Record_Type (Scope (Full_View (T))) then Undelay_Type (Full_View (T)); end if; if Is_Concurrent_Type (T) and then Present (Corresponding_Record_Type (T)) and then Is_Itype (Corresponding_Record_Type (T)) and then Is_Record_Type (Scope (Corresponding_Record_Type (T))) then Undelay_Type (Corresponding_Record_Type (T)); end if; end Undelay_Type; ------------------ -- Warn_Overlay -- ------------------ procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id) is Ent : constant Entity_Id := Entity (Nam); -- The object to which the address clause applies Init : Node_Id; Old : Entity_Id := Empty; Decl : Node_Id; begin -- No warning if address clause overlay warnings are off if not Address_Clause_Overlay_Warnings then return; end if; -- No warning if there is an explicit initialization Init := Original_Node (Expression (Declaration_Node (Ent))); if Present (Init) and then Comes_From_Source (Init) then return; end if; -- We only give the warning for non-imported entities of a type for -- which a non-null base init proc is defined, or for objects of access -- types with implicit null initialization, or when Normalize_Scalars -- applies and the type is scalar or a string type (the latter being -- tested for because predefined String types are initialized by inline -- code rather than by an init_proc). Note that we do not give the -- warning for Initialize_Scalars, since we suppressed initialization -- in this case. Also, do not warn if Suppress_Initialization is set -- either on the type, or on the object via pragma or aspect. if Present (Expr) and then not Is_Imported (Ent) and then not Initialization_Suppressed (Typ) and then not (Ekind (Ent) = E_Variable and then Initialization_Suppressed (Ent)) and then (Has_Non_Null_Base_Init_Proc (Typ) or else Is_Access_Type (Typ) or else (Normalize_Scalars and then (Is_Scalar_Type (Typ) or else Is_String_Type (Typ)))) then if Nkind (Expr) = N_Attribute_Reference and then Is_Entity_Name (Prefix (Expr)) then Old := Entity (Prefix (Expr)); elsif Is_Entity_Name (Expr) and then Ekind (Entity (Expr)) = E_Constant then Decl := Declaration_Node (Entity (Expr)); if Nkind (Decl) = N_Object_Declaration and then Present (Expression (Decl)) and then Nkind (Expression (Decl)) = N_Attribute_Reference and then Is_Entity_Name (Prefix (Expression (Decl))) then Old := Entity (Prefix (Expression (Decl))); elsif Nkind (Expr) = N_Function_Call then return; end if; -- A function call (most likely to To_Address) is probably not an -- overlay, so skip warning. Ditto if the function call was inlined -- and transformed into an entity. elsif Nkind (Original_Node (Expr)) = N_Function_Call then return; end if; -- If a pragma Import follows, we assume that it is for the current -- target of the address clause, and skip the warning. There may be -- a source pragma or an aspect that specifies import and generates -- the corresponding pragma. These will indicate that the entity is -- imported and that is checked above so that the spurious warning -- (generated when the entity is frozen) will be suppressed. The -- pragma may be attached to the aspect, so it is not yet a list -- member. if Is_List_Member (Parent (Expr)) then Decl := Next (Parent (Expr)); if Present (Decl) and then Nkind (Decl) = N_Pragma and then Pragma_Name (Decl) = Name_Import then return; end if; end if; -- Otherwise give warning message if Present (Old) then Error_Msg_Node_2 := Old; Error_Msg_N ("default initialization of & may modify &?o?", Nam); else Error_Msg_N ("default initialization of & may modify overlaid storage?o?", Nam); end if; -- Add friendly warning if initialization comes from a packed array -- component. if Is_Record_Type (Typ) then declare Comp : Entity_Id; begin Comp := First_Component (Typ); while Present (Comp) loop if Nkind (Parent (Comp)) = N_Component_Declaration and then Present (Expression (Parent (Comp))) then exit; elsif Is_Array_Type (Etype (Comp)) and then Present (Packed_Array_Impl_Type (Etype (Comp))) then Error_Msg_NE ("\packed array component& " & "will be initialized to zero??", Nam, Comp); exit; else Next_Component (Comp); end if; end loop; end; end if; Error_Msg_N ("\use pragma Import for & to " & "suppress initialization (RM B.1(24))??", Nam); end if; end Warn_Overlay; end Freeze;