------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- E X P _ S P A R K -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2022, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Checks; use Checks; with Einfo; use Einfo; with Einfo.Entities; use Einfo.Entities; with Einfo.Utils; use Einfo.Utils; with Exp_Attr; with Exp_Ch3; with Exp_Ch4; with Exp_Ch5; use Exp_Ch5; with Exp_Dbug; use Exp_Dbug; with Exp_Util; use Exp_Util; with Ghost; use Ghost; with Namet; use Namet; with Nlists; use Nlists; with Nmake; use Nmake; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Sem; use Sem; with Sem_Aux; use Sem_Aux; with Sem_Ch7; use Sem_Ch7; with Sem_Ch8; use Sem_Ch8; with Sem_Prag; use Sem_Prag; with Sem_Res; use Sem_Res; with Sem_Util; use Sem_Util; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Snames; use Snames; with Stand; use Stand; with Tbuild; use Tbuild; with Uintp; use Uintp; package body Exp_SPARK is ----------------------- -- Local Subprograms -- ----------------------- procedure Expand_SPARK_N_Attribute_Reference (N : Node_Id); -- Perform attribute-reference-specific expansion procedure Expand_SPARK_N_Delta_Aggregate (N : Node_Id); -- Perform delta-aggregate-specific expansion procedure Expand_SPARK_N_Freeze_Entity (N : Node_Id); -- Do a minimal expansion of freeze entities required by GNATprove. It is -- a subset of what is done for GNAT in Exp_Ch13.Expand_N_Freeze_Entity. -- Those two routines should be kept in sync. procedure Expand_SPARK_N_Loop_Statement (N : Node_Id); -- Perform loop-statement-specific expansion procedure Expand_SPARK_N_Object_Declaration (N : Node_Id); -- Perform object-declaration-specific expansion procedure Expand_SPARK_N_Object_Renaming_Declaration (N : Node_Id); -- Perform name evaluation for a renamed object procedure Expand_SPARK_N_Op_Ne (N : Node_Id); -- Rewrite operator /= based on operator = when defined explicitly procedure Expand_SPARK_Delta_Or_Update (Typ : Entity_Id; Aggr : Node_Id); -- Common expansion for attribute Update and delta aggregates procedure SPARK_Freeze_Type (N : Node_Id); -- Do a minimal type freezing required by GNATprove. It is a subset of what -- is done for GNAT in Exp_Ch3.Freeze_Type. Those two routines should be -- kept in sync. -- -- Currently in freezing we build the spec of dispatching equality. This -- spec is needed to properly resolve references to the equality operator. -- The body is not needed, because proof knows how to directly synthesize a -- logical meaning for it. Also, for tagged types with extension the -- expanded body would compare the _parent component, which is -- intentionally not generated in the GNATprove mode. -- -- We build the DIC procedure body here as well. ------------------ -- Expand_SPARK -- ------------------ procedure Expand_SPARK (N : Node_Id) is begin case Nkind (N) is -- Qualification of entity names in formal verification mode -- is limited to the addition of a suffix for homonyms (see -- Exp_Dbug.Qualify_Entity_Name). We used to qualify entity names -- as full expansion does, but this was removed as this prevents the -- verification back-end from using a short name for debugging and -- user interaction. The verification back-end already takes care -- of qualifying names when needed. when N_Block_Statement | N_Entry_Declaration | N_Package_Body | N_Package_Declaration | N_Protected_Type_Declaration | N_Subprogram_Body | N_Task_Type_Declaration => Qualify_Entity_Names (N); -- Replace occurrences of System'To_Address by calls to -- System.Storage_Elements.To_Address. when N_Attribute_Reference => Expand_SPARK_N_Attribute_Reference (N); when N_Delta_Aggregate => Expand_SPARK_N_Delta_Aggregate (N); when N_Expanded_Name | N_Identifier => Expand_SPARK_Potential_Renaming (N); -- Loop iterations over arrays need to be expanded, to avoid getting -- two names referring to the same object in memory (the array and -- the iterator) in GNATprove, especially since both can be written -- (thus possibly leading to interferences due to aliasing). No such -- problem arises with quantified expressions over arrays, which are -- dealt with specially in GNATprove. when N_Loop_Statement => Expand_SPARK_N_Loop_Statement (N); when N_Object_Declaration => Expand_SPARK_N_Object_Declaration (N); when N_Object_Renaming_Declaration => Expand_SPARK_N_Object_Renaming_Declaration (N); when N_Op_Ne => Expand_SPARK_N_Op_Ne (N); when N_Freeze_Entity => -- Currently we only expand type freeze entities, so ignore other -- freeze entites, because it is expensive to create a suitable -- freezing environment. if Is_Type (Entity (N)) then Expand_SPARK_N_Freeze_Entity (N); end if; -- In SPARK mode, no other constructs require expansion when others => null; end case; end Expand_SPARK; ---------------------------------- -- Expand_SPARK_Delta_Or_Update -- ---------------------------------- procedure Expand_SPARK_Delta_Or_Update (Typ : Entity_Id; Aggr : Node_Id) is Assoc : Node_Id; Comp : Node_Id; Comp_Id : Entity_Id; Comp_Type : Entity_Id; Expr : Node_Id; Index : Node_Id; Index_Typ : Entity_Id; New_Assoc : Node_Id; begin -- Apply scalar range checks on the updated components, if needed if Is_Array_Type (Typ) then -- Multidimensional arrays if Present (Next_Index (First_Index (Typ))) then Assoc := First (Component_Associations (Aggr)); while Present (Assoc) loop Expr := Expression (Assoc); Comp_Type := Component_Type (Typ); if Is_Scalar_Type (Comp_Type) then Apply_Scalar_Range_Check (Expr, Comp_Type); end if; -- The current association contains a sequence of indexes -- denoting an element of a multidimensional array: -- -- (Index_1, ..., Index_N) Expr := First (Choices (Assoc)); pragma Assert (Nkind (Aggr) = N_Aggregate); while Present (Expr) loop Index := First (Expressions (Expr)); Index_Typ := First_Index (Typ); while Present (Index_Typ) loop Apply_Scalar_Range_Check (Index, Etype (Index_Typ)); Next (Index); Next_Index (Index_Typ); end loop; Next (Expr); end loop; Next (Assoc); end loop; -- One-dimensional arrays else Assoc := First (Component_Associations (Aggr)); while Present (Assoc) loop Expr := Expression (Assoc); Comp_Type := Component_Type (Typ); -- Analyze expression of the iterated_component_association -- with its index parameter in scope. if Nkind (Assoc) = N_Iterated_Component_Association then Push_Scope (Scope (Defining_Identifier (Assoc))); Enter_Name (Defining_Identifier (Assoc)); Analyze_And_Resolve (Expr, Comp_Type); end if; if Is_Scalar_Type (Comp_Type) then Apply_Scalar_Range_Check (Expr, Comp_Type); end if; -- Restore scope of the iterated_component_association if Nkind (Assoc) = N_Iterated_Component_Association then End_Scope; end if; Index := First (Choice_List (Assoc)); Index_Typ := First_Index (Typ); while Present (Index) loop -- If the index denotes a range of elements or a constrained -- subtype indication, then their low and high bounds -- already have range checks applied. if Nkind (Index) in N_Range | N_Subtype_Indication then null; -- Otherwise the index denotes a single expression where -- range checks need to be applied or a subtype name -- (without range constraints) where applying checks is -- harmless. -- -- In delta_aggregate and Update attribute on array the -- others_choice is not allowed. else pragma Assert (Nkind (Index) in N_Subexpr); Apply_Scalar_Range_Check (Index, Etype (Index_Typ)); end if; Next (Index); end loop; Next (Assoc); end loop; end if; else pragma Assert (Is_Record_Type (Typ)); -- If the aggregate has multiple component choices, e.g.: -- -- X'Update (A | B | C => 123) -- -- then each component might be of a different type and might or -- might not require a range check. We first rewrite associations -- into single-component choices, e.g.: -- -- X'Update (A => 123, B => 123, C => 123) -- -- and then apply range checks to individual copies of the -- expressions. We do the same for delta aggregates, accordingly. -- Iterate over associations of the original aggregate Assoc := First (Component_Associations (Aggr)); -- Rewrite into a new aggregate and decorate case Nkind (Aggr) is when N_Aggregate => Rewrite (Aggr, Make_Aggregate (Sloc => Sloc (Aggr), Component_Associations => New_List)); when N_Delta_Aggregate => Rewrite (Aggr, Make_Delta_Aggregate (Sloc => Sloc (Aggr), Expression => Expression (Aggr), Component_Associations => New_List)); when others => raise Program_Error; end case; Set_Etype (Aggr, Typ); -- Populate the new aggregate with component associations while Present (Assoc) loop Expr := Expression (Assoc); Comp := First (Choices (Assoc)); while Present (Comp) loop Comp_Id := Entity (Comp); Comp_Type := Etype (Comp_Id); New_Assoc := Make_Component_Association (Sloc => Sloc (Assoc), Choices => New_List (New_Occurrence_Of (Comp_Id, Sloc (Comp))), Expression => New_Copy_Tree (Expr)); -- New association must be attached to the aggregate before we -- analyze it. Append (New_Assoc, Component_Associations (Aggr)); Analyze_And_Resolve (Expression (New_Assoc), Comp_Type); if Is_Scalar_Type (Comp_Type) then Apply_Scalar_Range_Check (Expression (New_Assoc), Comp_Type); end if; Next (Comp); end loop; Next (Assoc); end loop; end if; end Expand_SPARK_Delta_Or_Update; ---------------------------------- -- Expand_SPARK_N_Freeze_Entity -- ---------------------------------- procedure Expand_SPARK_N_Freeze_Entity (N : Entity_Id) is E : constant Entity_Id := Entity (N); Action : Node_Id; E_Scope : Entity_Id; In_Other_Scope : Boolean; In_Outer_Scope : Boolean; begin -- Here E is a type or a subprogram E_Scope := Scope (E); -- This is an error protection against previous errors if No (E_Scope) then Check_Error_Detected; return; end if; -- The entity may be a subtype declared for a constrained record -- component, in which case the relevant scope is the scope of -- the record. This happens for class-wide subtypes created for -- a constrained type extension with inherited discriminants. if Is_Type (E_Scope) and then not Is_Concurrent_Type (E_Scope) then E_Scope := Scope (E_Scope); -- The entity may be a subtype declared for an iterator elsif Ekind (E_Scope) = E_Loop then E_Scope := Scope (E_Scope); end if; -- If we are freezing entities defined in protected types, they belong -- in the enclosing scope, given that the original type has been -- expanded away. The same is true for entities in task types, in -- particular the parameter records of entries (Entities in bodies are -- all frozen within the body). If we are in the task body, this is a -- proper scope. If we are within a subprogram body, the proper scope -- is the corresponding spec. This may happen for itypes generated in -- the bodies of protected operations. if Ekind (E_Scope) = E_Protected_Type or else (Ekind (E_Scope) = E_Task_Type and then not Has_Completion (E_Scope)) then E_Scope := Scope (E_Scope); elsif Ekind (E_Scope) = E_Subprogram_Body then E_Scope := Corresponding_Spec (Unit_Declaration_Node (E_Scope)); end if; -- If the scope of the entity is in open scopes, it is the current one -- or an enclosing one, including a loop, a block, or a subprogram. if In_Open_Scopes (E_Scope) then In_Other_Scope := False; In_Outer_Scope := E_Scope /= Current_Scope; -- Otherwise it is a local package or a different compilation unit else In_Other_Scope := True; In_Outer_Scope := False; end if; -- If the entity being frozen is defined in a scope that is not -- currently on the scope stack, we must establish the proper -- visibility before freezing the entity and related subprograms. if In_Other_Scope then Push_Scope (E_Scope); -- Finalizers are little odd in terms of freezing. The spec of the -- procedure appears in the declarations while the body appears in -- the statement part of a single construct. Since the finalizer must -- be called by the At_End handler of the construct, the spec is -- manually frozen right after its declaration. The only side effect -- of this action appears in contexts where the construct is not in -- its final resting place. These contexts are: -- * Entry bodies - The declarations and statements are moved to -- the procedure equivalen of the entry. -- * Protected subprograms - The declarations and statements are -- moved to the non-protected version of the subprogram. -- * Task bodies - The declarations and statements are moved to the -- task body procedure. -- * Blocks that will be rewritten as subprograms when unnesting -- is in effect. -- Visible declarations do not need to be installed in these three -- cases since it does not make semantic sense to do so. All entities -- referenced by a finalizer are visible and already resolved, plus -- the enclosing scope may not have visible declarations at all. if Ekind (E) = E_Procedure and then Is_Finalizer (E) and then (Is_Entry (E_Scope) or else (Is_Subprogram (E_Scope) and then Is_Protected_Type (Scope (E_Scope))) or else Is_Task_Type (E_Scope) or else Ekind (E_Scope) = E_Block) then null; else Install_Visible_Declarations (E_Scope); end if; if Is_Concurrent_Type (E_Scope) or else Is_Package_Or_Generic_Package (E_Scope) then Install_Private_Declarations (E_Scope); end if; -- If the entity is in an outer scope, then that scope needs to -- temporarily become the current scope so that operations created -- during type freezing will be declared in the right scope and -- can properly override any corresponding inherited operations. elsif In_Outer_Scope then Push_Scope (E_Scope); end if; -- Remember that we are processing a freezing entity and its freezing -- nodes. This flag (non-zero = set) is used to avoid the need of -- climbing through the tree while processing the freezing actions (ie. -- to avoid generating spurious warnings or to avoid killing constant -- indications while processing the code associated with freezing -- actions). We use a counter to deal with nesting. Inside_Freezing_Actions := Inside_Freezing_Actions + 1; -- Currently only types require freezing in SPARK SPARK_Freeze_Type (N); -- Analyze actions in freeze node, if any Action := First (Actions (N)); while Present (Action) loop Analyze (Action); Next (Action); end loop; -- Pop scope if we installed one for the analysis if In_Other_Scope then if Ekind (Current_Scope) = E_Package then End_Package_Scope (E_Scope); else End_Scope; end if; elsif In_Outer_Scope then Pop_Scope; end if; -- Restore previous value of the nesting-level counter that records -- whether we are inside a (possibly nested) call to this procedure. Inside_Freezing_Actions := Inside_Freezing_Actions - 1; end Expand_SPARK_N_Freeze_Entity; ---------------------------------------- -- Expand_SPARK_N_Attribute_Reference -- ---------------------------------------- procedure Expand_SPARK_N_Attribute_Reference (N : Node_Id) is Aname : constant Name_Id := Attribute_Name (N); Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname); Loc : constant Source_Ptr := Sloc (N); Pref : constant Node_Id := Prefix (N); Typ : constant Entity_Id := Etype (N); Expr : Node_Id; begin case Attr_Id is when Attribute_To_Address => -- Extract and convert argument to expected type for call Expr := Make_Type_Conversion (Loc, Subtype_Mark => New_Occurrence_Of (RTE (RE_Integer_Address), Loc), Expression => Relocate_Node (First (Expressions (N)))); -- Replace attribute reference with call Rewrite (N, Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (RE_To_Address), Loc), Parameter_Associations => New_List (Expr))); Analyze_And_Resolve (N, Typ); when Attribute_Object_Size | Attribute_Size | Attribute_Value_Size | Attribute_VADS_Size => Exp_Attr.Expand_Size_Attribute (N); -- For attributes which return Universal_Integer, introduce a -- conversion to the expected type with the appropriate check flags -- set. when Attribute_Aft | Attribute_Alignment | Attribute_Bit | Attribute_Bit_Position | Attribute_Descriptor_Size | Attribute_First_Bit | Attribute_Last_Bit | Attribute_Length | Attribute_Max_Alignment_For_Allocation | Attribute_Max_Size_In_Storage_Elements | Attribute_Pos | Attribute_Position | Attribute_Range_Length => -- If the expected type is Long_Long_Integer, there will be no -- check flag as the compiler assumes attributes always fit in -- this type. Since in SPARK_Mode we do not take Storage_Error -- into account, we cannot make this assumption and need to -- produce a check. ??? It should be enough to add this check for -- attributes 'Length, 'Range_Length and 'Pos when the type is as -- big as Long_Long_Integer. declare Typ : Entity_Id; begin if Attr_Id in Attribute_Pos | Attribute_Range_Length then Typ := Etype (Prefix (N)); elsif Attr_Id = Attribute_Length then Typ := Get_Index_Subtype (N); else Typ := Empty; end if; Apply_Universal_Integer_Attribute_Checks (N); if Present (Typ) and then Known_RM_Size (Typ) and then RM_Size (Typ) = RM_Size (Standard_Long_Long_Integer) then -- ??? This should rather be a range check, but this would -- crash GNATprove which somehow recovers the proper kind -- of check anyway. Set_Do_Overflow_Check (N); end if; end; when Attribute_Constrained => -- If the prefix is an access to object, the attribute applies to -- the designated object, so rewrite with an explicit dereference. if Is_Access_Type (Etype (Pref)) and then (not Is_Entity_Name (Pref) or else Is_Object (Entity (Pref))) then Rewrite (Pref, Make_Explicit_Dereference (Loc, Relocate_Node (Pref))); Analyze_And_Resolve (N, Standard_Boolean); end if; when Attribute_Update => Expand_SPARK_Delta_Or_Update (Typ, First (Expressions (N))); when others => null; end case; end Expand_SPARK_N_Attribute_Reference; ------------------------------------ -- Expand_SPARK_N_Delta_Aggregate -- ------------------------------------ procedure Expand_SPARK_N_Delta_Aggregate (N : Node_Id) is begin Expand_SPARK_Delta_Or_Update (Etype (N), N); end Expand_SPARK_N_Delta_Aggregate; ----------------------------------- -- Expand_SPARK_N_Loop_Statement -- ----------------------------------- procedure Expand_SPARK_N_Loop_Statement (N : Node_Id) is Scheme : constant Node_Id := Iteration_Scheme (N); begin -- Loop iterations over arrays need to be expanded, to avoid getting -- two names referring to the same object in memory (the array and the -- iterator) in GNATprove, especially since both can be written (thus -- possibly leading to interferences due to aliasing). No such problem -- arises with quantified expressions over arrays, which are dealt with -- specially in GNATprove. if Present (Scheme) and then Present (Iterator_Specification (Scheme)) and then Is_Iterator_Over_Array (Iterator_Specification (Scheme)) then Expand_Iterator_Loop_Over_Array (N); end if; end Expand_SPARK_N_Loop_Statement; --------------------------------------- -- Expand_SPARK_N_Object_Declaration -- --------------------------------------- procedure Expand_SPARK_N_Object_Declaration (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Obj_Id : constant Entity_Id := Defining_Identifier (N); Typ : constant Entity_Id := Etype (Obj_Id); Call : Node_Id; begin -- If the object declaration denotes a variable without initialization -- whose type is subject to pragma Default_Initial_Condition, create -- and analyze a dummy call to the DIC procedure of the type in order -- to detect potential elaboration issues. if Comes_From_Source (Obj_Id) and then Ekind (Obj_Id) = E_Variable and then Has_DIC (Typ) and then Present (DIC_Procedure (Typ)) and then not Has_Init_Expression (N) then Call := Build_DIC_Call (Loc, New_Occurrence_Of (Obj_Id, Loc), Typ); -- Partially insert the call into the tree by setting its parent -- pointer. Set_Parent (Call, N); Analyze (Call); end if; end Expand_SPARK_N_Object_Declaration; ------------------------------------------------ -- Expand_SPARK_N_Object_Renaming_Declaration -- ------------------------------------------------ procedure Expand_SPARK_N_Object_Renaming_Declaration (N : Node_Id) is CFS : constant Boolean := Comes_From_Source (N); Loc : constant Source_Ptr := Sloc (N); Obj_Id : constant Entity_Id := Defining_Entity (N); Nam : constant Node_Id := Name (N); Typ : constant Entity_Id := Etype (Obj_Id); begin -- Transform a renaming of the form -- Obj_Id : renames ; -- into -- Obj_Id : constant := ; -- Invoking Evaluate_Name and ultimately Remove_Side_Effects introduces -- a temporary to capture the function result. Once potential renamings -- are rewritten for SPARK, the temporary may be leaked out into source -- constructs and lead to confusing error diagnostics. Using an object -- declaration prevents this unwanted side effect. if Nkind (Nam) = N_Function_Call then Rewrite (N, Make_Object_Declaration (Loc, Defining_Identifier => Obj_Id, Constant_Present => True, Object_Definition => New_Occurrence_Of (Typ, Loc), Expression => Nam)); -- Inherit the original Comes_From_Source status of the renaming Set_Comes_From_Source (N, CFS); -- Sever the link to the renamed function result because the entity -- will no longer alias anything. Set_Renamed_Object (Obj_Id, Empty); -- Remove the entity of the renaming declaration from visibility as -- the analysis of the object declaration will reintroduce it again. Remove_Entity_And_Homonym (Obj_Id); Analyze (N); -- Otherwise unconditionally remove all side effects from the name else Evaluate_Name (Nam); end if; end Expand_SPARK_N_Object_Renaming_Declaration; -------------------------- -- Expand_SPARK_N_Op_Ne -- -------------------------- procedure Expand_SPARK_N_Op_Ne (N : Node_Id) is Typ : constant Entity_Id := Etype (Left_Opnd (N)); begin -- Case of elementary type with standard operator if Is_Elementary_Type (Typ) and then Sloc (Entity (N)) = Standard_Location then null; else Exp_Ch4.Expand_N_Op_Ne (N); end if; end Expand_SPARK_N_Op_Ne; ------------------------------------- -- Expand_SPARK_Potential_Renaming -- ------------------------------------- procedure Expand_SPARK_Potential_Renaming (N : Node_Id) is function In_Insignificant_Pragma (Nod : Node_Id) return Boolean; -- Determine whether arbitrary node Nod appears within a significant -- pragma for SPARK. ----------------------------- -- In_Insignificant_Pragma -- ----------------------------- function In_Insignificant_Pragma (Nod : Node_Id) return Boolean is Par : Node_Id; begin -- Climb the parent chain looking for an enclosing pragma Par := Nod; while Present (Par) loop if Nkind (Par) = N_Pragma then return not Pragma_Significant_In_SPARK (Get_Pragma_Id (Par)); -- Prevent the search from going too far elsif Is_Body_Or_Package_Declaration (Par) then exit; end if; Par := Parent (Par); end loop; return False; end In_Insignificant_Pragma; -- Local variables Loc : constant Source_Ptr := Sloc (N); Obj_Id : constant Entity_Id := Entity (N); Typ : constant Entity_Id := Etype (N); Ren : Node_Id; -- Start of processing for Expand_SPARK_Potential_Renaming begin -- Replace a reference to a renaming with the actual renamed object. -- Protect against previous errors leaving no entity in N. if Present (Obj_Id) and then Is_Object (Obj_Id) then Ren := Renamed_Object (Obj_Id); if Present (Ren) then -- Do not process a reference when it appears within a pragma of -- no significance to SPARK. It is assumed that the replacement -- will violate the semantics of the pragma and cause a spurious -- error. if In_Insignificant_Pragma (N) then return; -- Instantiations and inlining of subprograms employ "prologues" -- which map actual to formal parameters by means of renamings. -- Replace a reference to a formal by the corresponding actual -- parameter. elsif Nkind (Ren) in N_Entity then Rewrite (N, New_Occurrence_Of (Ren, Loc)); -- Otherwise the renamed object denotes a name else Rewrite (N, New_Copy_Tree (Ren, New_Sloc => Loc)); Reset_Analyzed_Flags (N); end if; Analyze_And_Resolve (N, Typ); end if; end if; end Expand_SPARK_Potential_Renaming; ----------------------- -- SPARK_Freeze_Type -- ----------------------- procedure SPARK_Freeze_Type (N : Entity_Id) is Typ : constant Entity_Id := Entity (N); Renamed_Eq : Entity_Id; -- Defining unit name for the predefined equality function in the case -- where the type has a primitive operation that is a renaming of -- predefined equality (but only if there is also an overriding -- user-defined equality function). Used to pass this entity from -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies. Decl : Node_Id; Eq_Spec : Node_Id := Empty; Predef_List : List_Id; Wrapper_Decl_List : List_Id; Wrapper_Body_List : List_Id := No_List; Saved_GM : constant Ghost_Mode_Type := Ghost_Mode; Saved_IGR : constant Node_Id := Ignored_Ghost_Region; -- Save the Ghost-related attributes to restore on exit begin -- The type being frozen may be subject to pragma Ghost. Set the mode -- now to ensure that any nodes generated during freezing are properly -- marked as Ghost. Set_Ghost_Mode (Typ); -- When a DIC is inherited by a tagged type, it may need to be -- specialized to the descendant type, hence build a separate DIC -- procedure for it as done during regular expansion for compilation. if Has_DIC (Typ) and then Is_Tagged_Type (Typ) then -- Why is this needed for DIC, but not for other aspects (such as -- Type_Invariant)??? Build_DIC_Procedure_Body (Typ); end if; if Ekind (Typ) = E_Record_Type and then Is_Tagged_Type (Typ) and then not Is_Interface (Typ) and then not Is_Limited_Type (Typ) then if Is_CPP_Class (Root_Type (Typ)) and then Convention (Typ) = Convention_CPP then null; -- Do not add the spec of the predefined primitives if we are -- compiling under restriction No_Dispatching_Calls. elsif not Restriction_Active (No_Dispatching_Calls) then Set_Is_Frozen (Typ, False); Predef_List := New_List; Exp_Ch3.Make_Predefined_Primitive_Eq_Spec (Typ, Predef_List, Renamed_Eq); Eq_Spec := First (Predef_List); Insert_List_Before_And_Analyze (N, Predef_List); Set_Is_Frozen (Typ); -- Remove link from the parent list to the spec and body of -- the dispatching equality, but keep the link in the opposite -- direction, to allow up-traversal of the AST. if Present (Eq_Spec) then Decl := Parent (Eq_Spec); Remove (Eq_Spec); Set_Parent (Eq_Spec, Decl); end if; end if; end if; if Ekind (Typ) = E_Record_Type and then Is_Tagged_Type (Typ) and then not Is_CPP_Class (Typ) then -- Ada 2005 (AI-391): For a nonabstract null extension, create -- wrapper functions for each nonoverridden inherited function -- with a controlling result of the type. The wrapper for such -- a function returns an extension aggregate that invokes the -- parent function. if Ada_Version >= Ada_2005 and then not Is_Abstract_Type (Typ) and then Is_Null_Extension (Typ) then Exp_Ch3.Make_Controlling_Function_Wrappers (Typ, Wrapper_Decl_List, Wrapper_Body_List); Insert_List_Before_And_Analyze (N, Wrapper_Decl_List); end if; -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden -- inherited functions, then add their bodies to the AST, so they -- will be processed like ordinary subprogram bodies (even though the -- compiler adds them into the freezing action). if not Is_Interface (Typ) then Insert_List_Before_And_Analyze (N, Wrapper_Body_List); end if; end if; Restore_Ghost_Region (Saved_GM, Saved_IGR); end SPARK_Freeze_Type; end Exp_SPARK;