------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- E X P _ I M G V -- -- -- -- B o d y -- -- -- -- Copyright (C) 2001-2022, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Casing; use Casing; with Checks; use Checks; with Einfo; use Einfo; with Einfo.Entities; use Einfo.Entities; with Einfo.Utils; use Einfo.Utils; with Debug; use Debug; with Exp_Put_Image; with Exp_Util; use Exp_Util; with Lib; use Lib; with Namet; use Namet; with Nmake; use Nmake; with Nlists; use Nlists; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Sem_Aux; use Sem_Aux; with Sem_Res; use Sem_Res; with Sem_Util; use Sem_Util; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Snames; use Snames; with Stand; use Stand; with Stringt; use Stringt; with Targparm; use Targparm; with Tbuild; use Tbuild; with Ttypes; use Ttypes; with Uintp; use Uintp; with Urealp; use Urealp; with System.Perfect_Hash_Generators; package body Exp_Imgv is procedure Rewrite_Object_Image (N : Node_Id; Pref : Entity_Id; Attr_Name : Name_Id; Str_Typ : Entity_Id); -- AI12-0124: Rewrite attribute 'Image when it is applied to an object -- reference as an attribute applied to a type. N denotes the node to be -- rewritten, Pref denotes the prefix of the 'Image attribute, and Name -- and Str_Typ specify which specific string type and 'Image attribute to -- apply (e.g. Name_Wide_Image and Standard_Wide_String). ------------------------------------ -- Build_Enumeration_Image_Tables -- ------------------------------------ procedure Build_Enumeration_Image_Tables (E : Entity_Id; N : Node_Id) is Loc : constant Source_Ptr := Sloc (E); In_Main_Unit : constant Boolean := In_Extended_Main_Code_Unit (Loc); Act : List_Id; Eind : Entity_Id; Estr : Entity_Id; H_Id : Entity_Id; H_OK : Boolean; H_Sp : Node_Id; Ind : List_Id; Ityp : Node_Id; Len : Nat; Lit : Entity_Id; Nlit : Nat; S_Id : Entity_Id; S_N : Nat := 0; Str : String_Id; package SPHG renames System.Perfect_Hash_Generators; Saved_SSO : constant Character := Opt.Default_SSO; -- Used to save the current scalar storage order during the generation -- of the literal lookup table. Serial_Number_Budget : constant := 50; -- We may want to compute a perfect hash function for use by the Value -- attribute. However computing this function is costly and, therefore, -- cannot be done when compiling every unit where the enumeration type -- is referenced, so we do it only when compiling the unit where it is -- declared. This means that we may need to control the internal serial -- numbers of this unit, or else we would risk generating public symbols -- with mismatched names later on. The strategy for this is to allocate -- a fixed budget of serial numbers to be spent from a specified point -- until the end of the processing and to make sure that it is always -- exactly spent on all possible paths from this point. Threshold : constant Nat := (if Is_Library_Level_Entity (E) or else not Always_Compatible_Rep_On_Target then 3 else Nat'Last); -- Threshold above which we want to generate the hash function in the -- default case. We avoid doing it if this would cause a trampoline to -- be generated because the type is local and descriptors are not used. Threshold_For_Size : constant Nat := Nat'Max (Threshold, 9); -- But the function and its tables take a bit of space so the threshold -- is raised when compiling for size. procedure Append_Table_To (L : List_Id; E : Entity_Id; UB : Nat; Ctyp : Entity_Id; V : List_Id); -- Append to L the declaration of E as a constant array of range 0 .. UB -- and component type Ctyp with initial value V. --------------------- -- Append_Table_To -- --------------------- procedure Append_Table_To (L : List_Id; E : Entity_Id; UB : Nat; Ctyp : Entity_Id; V : List_Id) is begin Append_To (L, Make_Object_Declaration (Loc, Defining_Identifier => E, Constant_Present => True, Object_Definition => Make_Constrained_Array_Definition (Loc, Discrete_Subtype_Definitions => New_List ( Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 0), High_Bound => Make_Integer_Literal (Loc, UB))), Component_Definition => Make_Component_Definition (Loc, Aliased_Present => False, Subtype_Indication => New_Occurrence_Of (Ctyp, Loc))), Expression => Make_Aggregate (Loc, Expressions => V, Is_Enum_Array_Aggregate => True))); end Append_Table_To; -- Start of Build_Enumeration_Image_Tables begin -- Nothing to do for types other than a root enumeration type if E /= Root_Type (E) then return; -- Nothing to do if pragma Discard_Names applies elsif Discard_Names (E) then return; end if; -- Otherwise tables need constructing Start_String; Ind := New_List; Lit := First_Literal (E); Len := 1; Nlit := 0; H_OK := False; loop Append_To (Ind, Make_Integer_Literal (Loc, UI_From_Int (Len))); exit when No (Lit); Nlit := Nlit + 1; Get_Unqualified_Decoded_Name_String (Chars (Lit)); if Name_Buffer (1) /= ''' then Set_Casing (All_Upper_Case); end if; Store_String_Chars (Name_Buffer (1 .. Name_Len)); if In_Main_Unit then SPHG.Insert (Name_Buffer (1 .. Name_Len)); end if; Len := Len + Int (Name_Len); Next_Literal (Lit); end loop; if Len < Int (2 ** (8 - 1)) then Ityp := Standard_Integer_8; elsif Len < Int (2 ** (16 - 1)) then Ityp := Standard_Integer_16; else Ityp := Standard_Integer_32; end if; Str := End_String; Estr := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (E), 'S')); Eind := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (E), 'N')); Set_Lit_Strings (E, Estr); Set_Lit_Indexes (E, Eind); -- Temporarily set the current scalar storage order to the default -- during the generation of the literals table, since both the Image and -- Value attributes rely on runtime routines for interpreting table -- values. Opt.Default_SSO := ' '; -- Generate literal table Act := New_List ( Make_Object_Declaration (Loc, Defining_Identifier => Estr, Constant_Present => True, Object_Definition => New_Occurrence_Of (Standard_String, Loc), Expression => Make_String_Literal (Loc, Strval => Str))); -- Generate index table Append_Table_To (Act, Eind, Nlit, Ityp, Ind); -- If the number of literals is not greater than Threshold, then we are -- done. Otherwise we generate a (perfect) hash function for use by the -- Value attribute. if Nlit > Threshold then -- We start to count serial numbers from here S_N := Increment_Serial_Number; -- Generate specification of hash function H_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (E), 'H')); Mutate_Ekind (H_Id, E_Function); Set_Is_Internal (H_Id); if not Debug_Generated_Code then Set_Debug_Info_Off (H_Id); end if; Set_Lit_Hash (E, H_Id); S_Id := Make_Temporary (Loc, 'S'); H_Sp := Make_Function_Specification (Loc, Defining_Unit_Name => H_Id, Parameter_Specifications => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => S_Id, Parameter_Type => New_Occurrence_Of (Standard_String, Loc))), Result_Definition => New_Occurrence_Of (Standard_Natural, Loc)); -- If the unit where the type is declared is the main unit, and the -- number of literals is greater than Threshold_For_Size when we are -- optimizing for size, and the restriction No_Implicit_Loops is not -- active, and -gnatd_h is not specified, and not GNAT_Mode, generate -- the hash function. if In_Main_Unit and then (Optimize_Size = 0 or else Nlit > Threshold_For_Size) and then not Restriction_Active (No_Implicit_Loops) and then not Debug_Flag_Underscore_H and then not GNAT_Mode then declare LB : constant Positive := 2 * Positive (Nlit) + 1; UB : constant Positive := LB + 24; begin -- Try at most 25 * 4 times to compute the hash function before -- giving up and using a linear search for the Value attribute. for V in LB .. UB loop begin SPHG.Initialize (4321, V, SPHG.Memory_Space, Tries => 4); SPHG.Compute (""); H_OK := True; exit; exception when SPHG.Too_Many_Tries => null; end; end loop; end; end if; -- If the hash function has been successfully computed, 4 more tables -- named P, T1, T2 and G are needed. The hash function is of the form -- function Hash (S : String) return Natural is -- xxxP : constant array (0 .. X) of Natural = [...]; -- xxxT1 : constant array (0 .. Y) of Index_Type = [...]; -- xxxT2 : constant array (0 .. Y) of Index_Type = [...]; -- xxxG : constant array (0 .. Z) of Index_Type = [...]; -- F : constant Natural := S'First - 1; -- L : constant Natural := S'Length; -- A, B : Natural := 0; -- J : Natural; -- begin -- for K in P'Range loop -- exit when L < P (K); -- J := Character'Pos (S (P (K) + F)); -- A := (A + Natural (T1 (K) * J)) mod N; -- B := (B + Natural (T2 (K) * J)) mod N; -- end loop; -- return (Natural (G (A)) + Natural (G (B))) mod M; -- end Hash; -- where N is the length of G and M the number of literals. Note that -- we declare the tables inside the function for two reasons: first, -- their analysis creates array subtypes and thus their concatenation -- operators which are homonyms of the concatenation operator and may -- change the homonym number of user operators declared in the scope; -- second, the code generator can fold the values in the tables when -- they are small and avoid emitting them in the final object code. if H_OK then declare Siz, L1, L2 : Natural; I : Int; Pos, T1, T2, G : List_Id; EPos, ET1, ET2, EG : Entity_Id; F, L, A, B, J, K : Entity_Id; Body_Decls : List_Id; Body_Stmts : List_Id; Loop_Stmts : List_Id; begin Body_Decls := New_List; -- Generate position table SPHG.Define (SPHG.Character_Position, Siz, L1, L2); Pos := New_List; for J in 0 .. L1 - 1 loop I := Int (SPHG.Value (SPHG.Character_Position, J)); Append_To (Pos, Make_Integer_Literal (Loc, UI_From_Int (I))); end loop; EPos := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (E), 'P')); Append_Table_To (Body_Decls, EPos, Nat (L1 - 1), Standard_Natural, Pos); -- Generate function table 1 SPHG.Define (SPHG.Function_Table_1, Siz, L1, L2); T1 := New_List; for J in 0 .. L1 - 1 loop I := Int (SPHG.Value (SPHG.Function_Table_1, J)); Append_To (T1, Make_Integer_Literal (Loc, UI_From_Int (I))); end loop; ET1 := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (E), "T1")); Ityp := Small_Integer_Type_For (UI_From_Int (Int (Siz)), Uns => True); Append_Table_To (Body_Decls, ET1, Nat (L1 - 1), Ityp, T1); -- Generate function table 2 SPHG.Define (SPHG.Function_Table_2, Siz, L1, L2); T2 := New_List; for J in 0 .. L1 - 1 loop I := Int (SPHG.Value (SPHG.Function_Table_2, J)); Append_To (T2, Make_Integer_Literal (Loc, UI_From_Int (I))); end loop; ET2 := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (E), "T2")); Ityp := Small_Integer_Type_For (UI_From_Int (Int (Siz)), Uns => True); Append_Table_To (Body_Decls, ET2, Nat (L1 - 1), Ityp, T2); -- Generate graph table SPHG.Define (SPHG.Graph_Table, Siz, L1, L2); G := New_List; for J in 0 .. L1 - 1 loop I := Int (SPHG.Value (SPHG.Graph_Table, J)); Append_To (G, Make_Integer_Literal (Loc, UI_From_Int (I))); end loop; EG := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (E), 'G')); Ityp := Small_Integer_Type_For (UI_From_Int (Int (Siz)), Uns => True); Append_Table_To (Body_Decls, EG, Nat (L1 - 1), Ityp, G); F := Make_Temporary (Loc, 'F'); Append_To (Body_Decls, Make_Object_Declaration (Loc, Defining_Identifier => F, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc), Expression => Make_Op_Subtract (Loc, Left_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (S_Id, Loc), Attribute_Name => Name_First), Right_Opnd => Make_Integer_Literal (Loc, 1)))); L := Make_Temporary (Loc, 'L'); Append_To (Body_Decls, Make_Object_Declaration (Loc, Defining_Identifier => L, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (S_Id, Loc), Attribute_Name => Name_Length))); A := Make_Temporary (Loc, 'A'); Append_To (Body_Decls, Make_Object_Declaration (Loc, Defining_Identifier => A, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc), Expression => Make_Integer_Literal (Loc, 0))); B := Make_Temporary (Loc, 'B'); Append_To (Body_Decls, Make_Object_Declaration (Loc, Defining_Identifier => B, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc), Expression => Make_Integer_Literal (Loc, 0))); J := Make_Temporary (Loc, 'J'); Append_To (Body_Decls, Make_Object_Declaration (Loc, Defining_Identifier => J, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc))); K := Make_Temporary (Loc, 'K'); -- Generate exit when L < P (K); Loop_Stmts := New_List ( Make_Exit_Statement (Loc, Condition => Make_Op_Lt (Loc, Left_Opnd => New_Occurrence_Of (L, Loc), Right_Opnd => Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (EPos, Loc), Expressions => New_List ( New_Occurrence_Of (K, Loc)))))); -- Generate J := Character'Pos (S (P (K) + F)); Append_To (Loop_Stmts, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (J, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Standard_Character, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (S_Id, Loc), Expressions => New_List ( Make_Op_Add (Loc, Left_Opnd => Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (EPos, Loc), Expressions => New_List ( New_Occurrence_Of (K, Loc))), Right_Opnd => New_Occurrence_Of (F, Loc)))))))); -- Generate A := (A + Natural (T1 (K) * J)) mod N; Append_To (Loop_Stmts, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (A, Loc), Expression => Make_Op_Mod (Loc, Left_Opnd => Make_Op_Add (Loc, Left_Opnd => New_Occurrence_Of (A, Loc), Right_Opnd => Make_Op_Multiply (Loc, Left_Opnd => Convert_To (Standard_Natural, Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (ET1, Loc), Expressions => New_List ( New_Occurrence_Of (K, Loc)))), Right_Opnd => New_Occurrence_Of (J, Loc))), Right_Opnd => Make_Integer_Literal (Loc, Int (L1))))); -- Generate B := (B + Natural (T2 (K) * J)) mod N; Append_To (Loop_Stmts, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (B, Loc), Expression => Make_Op_Mod (Loc, Left_Opnd => Make_Op_Add (Loc, Left_Opnd => New_Occurrence_Of (B, Loc), Right_Opnd => Make_Op_Multiply (Loc, Left_Opnd => Convert_To (Standard_Natural, Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (ET2, Loc), Expressions => New_List ( New_Occurrence_Of (K, Loc)))), Right_Opnd => New_Occurrence_Of (J, Loc))), Right_Opnd => Make_Integer_Literal (Loc, Int (L1))))); -- Generate loop Body_Stmts := New_List ( Make_Implicit_Loop_Statement (N, Iteration_Scheme => Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => K, Discrete_Subtype_Definition => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (EPos, Loc), Attribute_Name => Name_Range))), Statements => Loop_Stmts)); -- Generate return (Natural (G (A)) + Natural (G (B))) mod M; Append_To (Body_Stmts, Make_Simple_Return_Statement (Loc, Expression => Make_Op_Mod (Loc, Left_Opnd => Make_Op_Add (Loc, Left_Opnd => Convert_To (Standard_Natural, Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (EG, Loc), Expressions => New_List ( New_Occurrence_Of (A, Loc)))), Right_Opnd => Convert_To (Standard_Natural, Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (EG, Loc), Expressions => New_List ( New_Occurrence_Of (B, Loc))))), Right_Opnd => Make_Integer_Literal (Loc, Nlit)))); -- Generate final body Append_To (Act, Make_Subprogram_Body (Loc, Specification => H_Sp, Declarations => Body_Decls, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Body_Stmts))); end; -- If we chose not to or did not manage to compute the hash function, -- we need to build a dummy function always returning Natural'Last -- because other units reference it if they use the Value attribute. elsif In_Main_Unit then declare Body_Stmts : List_Id; begin -- Generate return Natural'Last Body_Stmts := New_List ( Make_Simple_Return_Statement (Loc, Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Standard_Natural, Loc), Attribute_Name => Name_Last))); -- Generate body Append_To (Act, Make_Subprogram_Body (Loc, Specification => H_Sp, Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Body_Stmts))); end; -- For the other units, just declare the function else Append_To (Act, Make_Subprogram_Declaration (Loc, Specification => H_Sp)); end if; else Set_Lit_Hash (E, Empty); end if; if In_Main_Unit then System.Perfect_Hash_Generators.Finalize; end if; Insert_Actions (N, Act, Suppress => All_Checks); -- This is where we check that our budget of serial numbers has been -- entirely spent, see the declaration of Serial_Number_Budget above. if Nlit > Threshold then Synchronize_Serial_Number (S_N + Serial_Number_Budget); end if; -- Reset the scalar storage order to the saved value Opt.Default_SSO := Saved_SSO; end Build_Enumeration_Image_Tables; ---------------------------- -- Expand_Image_Attribute -- ---------------------------- -- For all cases other than user-defined enumeration types, the scheme -- is as follows. First we insert the following code: -- Snn : String (1 .. rt'Width); -- Pnn : Natural; -- Image_xx (tv, Snn, Pnn [,pm]); -- -- and then Expr is replaced by Snn (1 .. Pnn) -- In the above expansion: -- rt is the root type of the expression -- tv is the expression with the value, usually a type conversion -- pm is an extra parameter present in some cases -- The following table shows tv, xx, and (if used) pm for the various -- possible types of the argument: -- For types whose root type is Character -- xx = Character -- tv = Character (Expr) -- For types whose root type is Boolean -- xx = Boolean -- tv = Boolean (Expr) -- For signed integer types -- xx = [Long_Long_[Long_]]Integer -- tv = [Long_Long_[Long_]]Integer (Expr) -- For modular types -- xx = [Long_Long_[Long_]]Unsigned -- tv = System.Unsigned_Types.[Long_Long_[Long_]]Unsigned (Expr) -- For types whose root type is Wide_Character -- xx = Wide_Character -- tv = Wide_Character (Expr) -- pm = Boolean, true if Ada 2005 mode, False otherwise -- For types whose root type is Wide_Wide_Character -- xx = Wide_Wide_Character -- tv = Wide_Wide_Character (Expr) -- For floating-point types -- xx = Floating_Point -- tv = [Long_[Long_]]Float (Expr) -- pm = typ'Digits (typ = subtype of expression) -- For decimal fixed-point types -- xx = Decimal{32,64,128} -- tv = Integer_{32,64,128} (Expr)? [convert with no scaling] -- pm = typ'Scale (typ = subtype of expression) -- For the most common ordinary fixed-point types -- xx = Fixed{32,64,128} -- tv = Integer_{32,64,128} (Expr) [convert with no scaling] -- pm = numerator of typ'Small (typ = subtype of expression) -- denominator of typ'Small -- (Integer_{32,64,128} x typ'Small)'Fore -- typ'Aft -- For other ordinary fixed-point types -- xx = Fixed -- tv = Long_Float (Expr) -- pm = typ'Aft (typ = subtype of expression) -- For enumeration types other than those declared in package Standard -- or System, Snn, Pnn, are expanded as above, but the call looks like: -- Image_Enumeration_NN (rt'Pos (X), Snn, Pnn, typS, typI'Address) -- where rt is the root type of the expression, and typS and typI are -- the entities constructed as described in the spec for the procedure -- Build_Enumeration_Image_Tables and NN is 32/16/8 depending on the -- element type of Lit_Indexes. The rewriting of the expression to -- Snn (1 .. Pnn) then occurs as in the other cases. A special case is -- when pragma Discard_Names applies, in which case we replace expr by: -- (rt'Pos (expr))'Img -- So that the result is a space followed by the decimal value for the -- position of the enumeration value in the enumeration type. procedure Expand_Image_Attribute (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Exprs : constant List_Id := Expressions (N); Expr : constant Node_Id := Relocate_Node (First (Exprs)); Pref : constant Node_Id := Prefix (N); procedure Expand_Standard_Boolean_Image; -- Expand attribute 'Image in Standard.Boolean, avoiding string copy procedure Expand_User_Defined_Enumeration_Image (Typ : Entity_Id); -- Expand attribute 'Image in user-defined enumeration types, avoiding -- string copy. ----------------------------------- -- Expand_Standard_Boolean_Image -- ----------------------------------- procedure Expand_Standard_Boolean_Image is Ins_List : constant List_Id := New_List; S1_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); T_Id : constant Entity_Id := Make_Temporary (Loc, 'T'); F_Id : constant Entity_Id := Make_Temporary (Loc, 'F'); V_Id : constant Entity_Id := Make_Temporary (Loc, 'V'); begin -- We use a single 5-character string subtype throughout so that the -- subtype of the string if-expression is constrained and, therefore, -- does not force the creation of a temporary during analysis. -- Generate: -- subtype S1 is String (1 .. 5); Append_To (Ins_List, Make_Subtype_Declaration (Loc, Defining_Identifier => S1_Id, Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => New_List ( Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => Make_Integer_Literal (Loc, 5))))))); -- Generate: -- T : constant String (1 .. 5) := "TRUE "; Start_String; Store_String_Chars ("TRUE "); Append_To (Ins_List, Make_Object_Declaration (Loc, Defining_Identifier => T_Id, Object_Definition => New_Occurrence_Of (S1_Id, Loc), Constant_Present => True, Expression => Make_String_Literal (Loc, End_String))); -- Generate: -- F : constant String (1 .. 5) := "FALSE"; Start_String; Store_String_Chars ("FALSE"); Append_To (Ins_List, Make_Object_Declaration (Loc, Defining_Identifier => F_Id, Object_Definition => New_Occurrence_Of (S1_Id, Loc), Constant_Present => True, Expression => Make_String_Literal (Loc, End_String))); -- Generate: -- V : String (1 .. 5) renames (if Expr then T else F); Append_To (Ins_List, Make_Object_Renaming_Declaration (Loc, Defining_Identifier => V_Id, Subtype_Mark => New_Occurrence_Of (S1_Id, Loc), Name => Make_If_Expression (Loc, Expressions => New_List ( Duplicate_Subexpr (Expr), New_Occurrence_Of (T_Id, Loc), New_Occurrence_Of (F_Id, Loc))))); -- Insert all the above declarations before N. We suppress checks -- because everything is in range at this stage. Insert_Actions (N, Ins_List, Suppress => All_Checks); -- Final step is to rewrite the expression as a slice: -- V (1 .. (if Expr then 4 else 5)) and analyze, again with no -- checks, since we are sure that everything is OK. Rewrite (N, Make_Slice (Loc, Prefix => New_Occurrence_Of (V_Id, Loc), Discrete_Range => Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => Make_If_Expression (Loc, Expressions => New_List ( Duplicate_Subexpr (Expr), Make_Integer_Literal (Loc, 4), Make_Integer_Literal (Loc, 5)))))); Analyze_And_Resolve (N, Standard_String, Suppress => All_Checks); end Expand_Standard_Boolean_Image; ------------------------------------------- -- Expand_User_Defined_Enumeration_Image -- ------------------------------------------- procedure Expand_User_Defined_Enumeration_Image (Typ : Entity_Id) is Ins_List : constant List_Id := New_List; P1_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); P2_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); P3_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); P4_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); S1_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); begin -- Apply a validity check, since it is a bit drastic to get a -- completely junk image value for an invalid value. if not Expr_Known_Valid (Expr) then Insert_Valid_Check (Expr); end if; -- Generate: -- P1 : constant Natural := Typ'Pos (Typ?(Expr)); Append_To (Ins_List, Make_Object_Declaration (Loc, Defining_Identifier => P1_Id, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc), Constant_Present => True, Expression => Convert_To (Standard_Natural, Make_Attribute_Reference (Loc, Attribute_Name => Name_Pos, Prefix => New_Occurrence_Of (Typ, Loc), Expressions => New_List (OK_Convert_To (Typ, Expr)))))); -- Compute the index of the string start, generating: -- P2 : constant Natural := call_put_enumN (P1); Append_To (Ins_List, Make_Object_Declaration (Loc, Defining_Identifier => P2_Id, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc), Constant_Present => True, Expression => Convert_To (Standard_Natural, Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (Lit_Indexes (Typ), Loc), Expressions => New_List (New_Occurrence_Of (P1_Id, Loc)))))); -- Compute the index of the next value, generating: -- P3 : constant Natural := call_put_enumN (P1 + 1); declare Add_Node : constant Node_Id := Make_Op_Add (Loc, Left_Opnd => New_Occurrence_Of (P1_Id, Loc), Right_Opnd => Make_Integer_Literal (Loc, Uint_1)); begin Append_To (Ins_List, Make_Object_Declaration (Loc, Defining_Identifier => P3_Id, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc), Constant_Present => True, Expression => Convert_To (Standard_Natural, Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (Lit_Indexes (Typ), Loc), Expressions => New_List (Add_Node))))); end; -- Generate: -- P4 : String renames call_put_enumS (P2 .. P3 - 1); declare Sub_Node : constant Node_Id := Make_Op_Subtract (Loc, Left_Opnd => New_Occurrence_Of (P3_Id, Loc), Right_Opnd => Make_Integer_Literal (Loc, Uint_1)); begin Append_To (Ins_List, Make_Object_Renaming_Declaration (Loc, Defining_Identifier => P4_Id, Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), Name => Make_Slice (Loc, Prefix => New_Occurrence_Of (Lit_Strings (Typ), Loc), Discrete_Range => Make_Range (Loc, Low_Bound => New_Occurrence_Of (P2_Id, Loc), High_Bound => Sub_Node)))); end; -- Generate: -- subtype S1 is String (1 .. P3 - P2); declare HB : constant Node_Id := Make_Op_Subtract (Loc, Left_Opnd => New_Occurrence_Of (P3_Id, Loc), Right_Opnd => New_Occurrence_Of (P2_Id, Loc)); begin Append_To (Ins_List, Make_Subtype_Declaration (Loc, Defining_Identifier => S1_Id, Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => New_List ( Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => HB)))))); end; -- Insert all the above declarations before N. We suppress checks -- because everything is in range at this stage. Insert_Actions (N, Ins_List, Suppress => All_Checks); Rewrite (N, Unchecked_Convert_To (S1_Id, New_Occurrence_Of (P4_Id, Loc))); Analyze_And_Resolve (N, Standard_String); end Expand_User_Defined_Enumeration_Image; -- Local variables Enum_Case : Boolean; Imid : RE_Id; Proc_Ent : Entity_Id; Ptyp : Entity_Id; Rtyp : Entity_Id; Tent : Entity_Id := Empty; Ttyp : Entity_Id; Arg_List : List_Id; -- List of arguments for run-time procedure call Ins_List : List_Id; -- List of actions to be inserted Snn : constant Entity_Id := Make_Temporary (Loc, 'S'); Pnn : constant Entity_Id := Make_Temporary (Loc, 'P'); -- Start of processing for Expand_Image_Attribute begin if Is_Object_Image (Pref) then Rewrite_Object_Image (N, Pref, Name_Image, Standard_String); return; end if; -- If Image should be transformed using Put_Image, then do so. See -- Exp_Put_Image for details. if Exp_Put_Image.Image_Should_Call_Put_Image (N) then Rewrite (N, Exp_Put_Image.Build_Image_Call (N)); Analyze_And_Resolve (N, Standard_String, Suppress => All_Checks); return; end if; Ptyp := Underlying_Type (Entity (Pref)); -- Ada 2022 allows 'Image on private types, so fetch the underlying -- type to obtain the structure of the type. We use the base type, -- not the root type for discrete types, to handle properly derived -- types, but we use the root type for enumeration types, because the -- literal map is attached to the root. Should be inherited ??? if Is_Real_Type (Ptyp) or else Is_Enumeration_Type (Ptyp) then Rtyp := Underlying_Type (Root_Type (Ptyp)); else Rtyp := Underlying_Type (Base_Type (Ptyp)); end if; -- Set Imid (RE_Id of procedure to call), and Tent, target for the -- type conversion of the first argument for all possibilities. Enum_Case := False; if Rtyp = Standard_Boolean then -- Use inline expansion if the -gnatd_x switch is not passed to the -- compiler. Otherwise expand into a call to the runtime. if not Debug_Flag_Underscore_X then Expand_Standard_Boolean_Image; return; else Imid := RE_Image_Boolean; Tent := Rtyp; end if; -- For standard character, we have to select the version which handles -- soft hyphen correctly, based on the version of Ada in use (this is -- ugly, but we have no choice). elsif Rtyp = Standard_Character then if Ada_Version < Ada_2005 then Imid := RE_Image_Character; else Imid := RE_Image_Character_05; end if; Tent := Rtyp; elsif Rtyp = Standard_Wide_Character then Imid := RE_Image_Wide_Character; Tent := Rtyp; elsif Rtyp = Standard_Wide_Wide_Character then Imid := RE_Image_Wide_Wide_Character; Tent := Rtyp; elsif Is_Signed_Integer_Type (Rtyp) then if Esize (Rtyp) <= Standard_Integer_Size then Imid := RE_Image_Integer; Tent := Standard_Integer; elsif Esize (Rtyp) <= Standard_Long_Long_Integer_Size then Imid := RE_Image_Long_Long_Integer; Tent := Standard_Long_Long_Integer; else Imid := RE_Image_Long_Long_Long_Integer; Tent := Standard_Long_Long_Long_Integer; end if; elsif Is_Modular_Integer_Type (Rtyp) then if Modulus (Rtyp) <= Modulus (RTE (RE_Unsigned)) then Imid := RE_Image_Unsigned; Tent := RTE (RE_Unsigned); elsif Modulus (Rtyp) <= Modulus (RTE (RE_Long_Long_Unsigned)) then Imid := RE_Image_Long_Long_Unsigned; Tent := RTE (RE_Long_Long_Unsigned); else Imid := RE_Image_Long_Long_Long_Unsigned; Tent := RTE (RE_Long_Long_Long_Unsigned); end if; elsif Is_Decimal_Fixed_Point_Type (Rtyp) then if Esize (Rtyp) <= 32 then Imid := RE_Image_Decimal32; Tent := RTE (RE_Integer_32); elsif Esize (Rtyp) <= 64 then Imid := RE_Image_Decimal64; Tent := RTE (RE_Integer_64); else Imid := RE_Image_Decimal128; Tent := RTE (RE_Integer_128); end if; elsif Is_Ordinary_Fixed_Point_Type (Rtyp) then declare Num : constant Uint := Norm_Num (Small_Value (Rtyp)); Den : constant Uint := Norm_Den (Small_Value (Rtyp)); Max : constant Uint := UI_Max (Num, Den); Min : constant Uint := UI_Min (Num, Den); Siz : constant Uint := Esize (Rtyp); begin -- Note that we do not use sharp bounds to speed things up if Siz <= 32 and then Max <= Uint_2 ** 31 and then (Min = Uint_1 or else (Num < Den and then Den <= Uint_2 ** 27) or else (Den < Num and then Num <= Uint_2 ** 25)) then Imid := RE_Image_Fixed32; Tent := RTE (RE_Integer_32); elsif Siz <= 64 and then Max <= Uint_2 ** 63 and then (Min = Uint_1 or else (Num < Den and then Den <= Uint_2 ** 59) or else (Den < Num and then Num <= Uint_2 ** 53)) then Imid := RE_Image_Fixed64; Tent := RTE (RE_Integer_64); elsif System_Max_Integer_Size = 128 and then Max <= Uint_2 ** 127 and then (Min = Uint_1 or else (Num < Den and then Den <= Uint_2 ** 123) or else (Den < Num and then Num <= Uint_2 ** 122)) then Imid := RE_Image_Fixed128; Tent := RTE (RE_Integer_128); else Imid := RE_Image_Fixed; Tent := Standard_Long_Float; end if; end; elsif Is_Floating_Point_Type (Rtyp) then -- Short_Float and Float are the same type for GNAT if Rtyp = Standard_Short_Float or else Rtyp = Standard_Float then Imid := RE_Image_Float; Tent := Standard_Float; elsif Rtyp = Standard_Long_Float then Imid := RE_Image_Long_Float; Tent := Standard_Long_Float; else Imid := RE_Image_Long_Long_Float; Tent := Standard_Long_Long_Float; end if; -- Only other possibility is user-defined enumeration type else pragma Assert (Is_Enumeration_Type (Rtyp)); if Discard_Names (First_Subtype (Ptyp)) or else No (Lit_Strings (Rtyp)) then -- When pragma Discard_Names applies to the first subtype, build -- (Long_Long_Integer (Pref'Pos (Expr)))'Img. The conversion is -- there to avoid applying 'Img directly in Universal_Integer, -- which can be a very large type. See also the handling of 'Val. Rewrite (N, Make_Attribute_Reference (Loc, Prefix => Convert_To (Standard_Long_Long_Integer, Make_Attribute_Reference (Loc, Prefix => Pref, Attribute_Name => Name_Pos, Expressions => New_List (Expr))), Attribute_Name => Name_Img)); Analyze_And_Resolve (N, Standard_String); return; -- Use inline expansion if the -gnatd_x switch is not passed to the -- compiler. Otherwise expand into a call to the runtime. elsif not Debug_Flag_Underscore_X then Expand_User_Defined_Enumeration_Image (Rtyp); return; else Ttyp := Component_Type (Etype (Lit_Indexes (Rtyp))); if Ttyp = Standard_Integer_8 then Imid := RE_Image_Enumeration_8; elsif Ttyp = Standard_Integer_16 then Imid := RE_Image_Enumeration_16; else Imid := RE_Image_Enumeration_32; end if; -- Apply a validity check, since it is a bit drastic to get a -- completely junk image value for an invalid value. if not Expr_Known_Valid (Expr) then Insert_Valid_Check (Expr); end if; Enum_Case := True; end if; end if; -- Build first argument for call if Enum_Case then Arg_List := New_List ( Make_Attribute_Reference (Loc, Attribute_Name => Name_Pos, Prefix => New_Occurrence_Of (Ptyp, Loc), Expressions => New_List (Expr))); -- AI12-0020: Ada 2022 allows 'Image for all types, including private -- types. If the full type is not a fixed-point type, then it is enough -- to set the Conversion_OK flag. However, that would not work for -- fixed-point types, because that flag changes the run-time semantics -- of fixed-point type conversions; therefore, we must first convert to -- Rtyp, and then to Tent. else declare Conv : Node_Id; begin if Is_Private_Type (Etype (Expr)) then if Is_Fixed_Point_Type (Rtyp) then Conv := Convert_To (Tent, OK_Convert_To (Rtyp, Expr)); else Conv := OK_Convert_To (Tent, Expr); end if; else Conv := Convert_To (Tent, Expr); end if; Arg_List := New_List (Conv); end; end if; -- Build declarations of Snn and Pnn to be inserted Ins_List := New_List ( -- Snn : String (1 .. typ'Width); Make_Object_Declaration (Loc, Defining_Identifier => Snn, Object_Definition => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => New_List ( Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Rtyp, Loc), Attribute_Name => Name_Width)))))), -- Pnn : Natural; Make_Object_Declaration (Loc, Defining_Identifier => Pnn, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc))); -- Append Snn, Pnn arguments Append_To (Arg_List, New_Occurrence_Of (Snn, Loc)); Append_To (Arg_List, New_Occurrence_Of (Pnn, Loc)); -- Get entity of procedure to call Proc_Ent := RTE (Imid); -- If the procedure entity is empty, that means we have a case in -- no run time mode where the operation is not allowed, and an -- appropriate diagnostic has already been issued. if No (Proc_Ent) then return; end if; -- Otherwise complete preparation of arguments for run-time call -- Add extra arguments for Enumeration case if Enum_Case then Append_To (Arg_List, New_Occurrence_Of (Lit_Strings (Rtyp), Loc)); Append_To (Arg_List, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Lit_Indexes (Rtyp), Loc), Attribute_Name => Name_Address)); -- For floating-point types, append Digits argument elsif Is_Floating_Point_Type (Rtyp) then Append_To (Arg_List, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Digits)); -- For decimal, append Scale and also set to do literal conversion elsif Is_Decimal_Fixed_Point_Type (Rtyp) then Set_Conversion_OK (First (Arg_List)); Append_To (Arg_List, Make_Integer_Literal (Loc, Scale_Value (Ptyp))); -- For ordinary fixed-point types, append Num, Den, Fore, Aft parameters -- and also set to do literal conversion. elsif Is_Ordinary_Fixed_Point_Type (Rtyp) then if Imid /= RE_Image_Fixed then Set_Conversion_OK (First (Arg_List)); Append_To (Arg_List, Make_Integer_Literal (Loc, -Norm_Num (Small_Value (Ptyp)))); Append_To (Arg_List, Make_Integer_Literal (Loc, -Norm_Den (Small_Value (Ptyp)))); -- We want to compute the Fore value for the fixed point type -- whose mantissa type is Tent and whose small is typ'Small. declare T : Ureal := Uint_2 ** (Esize (Tent) - 1) * Small_Value (Ptyp); F : Nat := 2; begin while T >= Ureal_10 loop F := F + 1; T := T / Ureal_10; end loop; Append_To (Arg_List, Make_Integer_Literal (Loc, UI_From_Int (F))); end; end if; Append_To (Arg_List, Make_Integer_Literal (Loc, Aft_Value (Ptyp))); -- For Wide_Character, append Ada 2005 indication elsif Rtyp = Standard_Wide_Character then Append_To (Arg_List, New_Occurrence_Of (Boolean_Literals (Ada_Version >= Ada_2005), Loc)); end if; -- Now append the procedure call to the insert list Append_To (Ins_List, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Proc_Ent, Loc), Parameter_Associations => Arg_List)); -- Insert declarations of Snn, Pnn, and the procedure call. We suppress -- checks because we are sure that everything is in range at this stage. Insert_Actions (N, Ins_List, Suppress => All_Checks); -- Final step is to rewrite the expression as a slice and analyze, -- again with no checks, since we are sure that everything is OK. Rewrite (N, Make_Slice (Loc, Prefix => New_Occurrence_Of (Snn, Loc), Discrete_Range => Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => New_Occurrence_Of (Pnn, Loc)))); Analyze_And_Resolve (N, Standard_String, Suppress => All_Checks); end Expand_Image_Attribute; ---------------------------------- -- Expand_Valid_Value_Attribute -- ---------------------------------- procedure Expand_Valid_Value_Attribute (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Btyp : constant Entity_Id := Base_Type (Entity (Prefix (N))); Rtyp : constant Entity_Id := Root_Type (Btyp); pragma Assert (Is_Enumeration_Type (Rtyp)); Args : constant List_Id := Expressions (N); Func : RE_Id; Ttyp : Entity_Id; begin -- Generate: -- Valid_Value_Enumeration_NN -- (typS, typN'Address, typH'Unrestricted_Access, Num, X) Ttyp := Component_Type (Etype (Lit_Indexes (Rtyp))); if Ttyp = Standard_Integer_8 then Func := RE_Valid_Value_Enumeration_8; elsif Ttyp = Standard_Integer_16 then Func := RE_Valid_Value_Enumeration_16; else Func := RE_Valid_Value_Enumeration_32; end if; Prepend_To (Args, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Rtyp, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Rtyp, Loc), Attribute_Name => Name_Last)))); if Present (Lit_Hash (Rtyp)) then Prepend_To (Args, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Lit_Hash (Rtyp), Loc), Attribute_Name => Name_Unrestricted_Access)); else Prepend_To (Args, Make_Null (Loc)); end if; Prepend_To (Args, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Lit_Indexes (Rtyp), Loc), Attribute_Name => Name_Address)); Prepend_To (Args, New_Occurrence_Of (Lit_Strings (Rtyp), Loc)); Rewrite (N, Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (Func), Loc), Parameter_Associations => Args)); Analyze_And_Resolve (N, Standard_Boolean); end Expand_Valid_Value_Attribute; ---------------------------- -- Expand_Value_Attribute -- ---------------------------- -- For scalar types derived from Boolean, Character and integer types -- in package Standard, typ'Value (X) expands into: -- btyp (Value_xx (X)) -- where btyp is the base type of the prefix -- For types whose root type is Character -- xx = Character -- For types whose root type is Wide_Character -- xx = Wide_Character -- For types whose root type is Wide_Wide_Character -- xx = Wide_Wide_Character -- For types whose root type is Boolean -- xx = Boolean -- For signed integer types -- xx = [Long_Long_[Long_]]Integer -- For modular types -- xx = [Long_Long_[Long_]]Unsigned -- For floating-point types -- xx = [Long_[Long_]]Float -- For decimal fixed-point types, typ'Value (X) expands into -- btyp?(Value_Decimal{32,64,128} (X, typ'Scale)); -- For the most common ordinary fixed-point types, it expands into -- btyp?(Value_Fixed{32,64,128} (X, numerator of S, denominator of S)); -- where S = typ'Small -- For other ordinary fixed-point types, it expands into -- btyp (Value_Long_Float (X)) -- For Wide_[Wide_]Character types, typ'Value (X) expands into -- btyp (Value_xx (X, EM)) -- where btyp is the base type of the prefix, and EM is the encoding method -- For enumeration types other than those derived from types Boolean, -- Character, Wide_[Wide_]Character in Standard, typ'Value (X) expands to: -- Enum'Val -- (Value_Enumeration_NN -- (typS, typN'Address, typH'Unrestricted_Access, Num, X)) -- where typS, typN and typH are the Lit_Strings, Lit_Indexes and Lit_Hash -- entities from T's root type entity, and Num is Enum'Pos (Enum'Last). -- The Value_Enumeration_NN function will search the tables looking for -- X and return the position number in the table if found which is -- used to provide the result of 'Value (using Enum'Val). If the -- value is not found Constraint_Error is raised. The suffix _NN -- depends on the element type of typN. procedure Expand_Value_Attribute (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Btyp : constant Entity_Id := Etype (N); pragma Assert (Is_Base_Type (Btyp)); pragma Assert (Btyp = Base_Type (Entity (Prefix (N)))); Rtyp : constant Entity_Id := Root_Type (Btyp); Args : constant List_Id := Expressions (N); Ttyp : Entity_Id; Vid : RE_Id; begin -- Fall through for all cases except user-defined enumeration type -- and decimal types, with Vid set to the Id of the entity for the -- Value routine and Args set to the list of parameters for the call. if Rtyp = Standard_Boolean then Vid := RE_Value_Boolean; elsif Rtyp = Standard_Character then Vid := RE_Value_Character; elsif Rtyp = Standard_Wide_Character then Vid := RE_Value_Wide_Character; Append_To (Args, Make_Integer_Literal (Loc, Intval => Int (Wide_Character_Encoding_Method))); elsif Rtyp = Standard_Wide_Wide_Character then Vid := RE_Value_Wide_Wide_Character; Append_To (Args, Make_Integer_Literal (Loc, Intval => Int (Wide_Character_Encoding_Method))); elsif Is_Signed_Integer_Type (Rtyp) then if Esize (Rtyp) <= Standard_Integer_Size then Vid := RE_Value_Integer; elsif Esize (Rtyp) <= Standard_Long_Long_Integer_Size then Vid := RE_Value_Long_Long_Integer; else Vid := RE_Value_Long_Long_Long_Integer; end if; elsif Is_Modular_Integer_Type (Rtyp) then if Modulus (Rtyp) <= Modulus (RTE (RE_Unsigned)) then Vid := RE_Value_Unsigned; elsif Modulus (Rtyp) <= Modulus (RTE (RE_Long_Long_Unsigned)) then Vid := RE_Value_Long_Long_Unsigned; else Vid := RE_Value_Long_Long_Long_Unsigned; end if; elsif Is_Decimal_Fixed_Point_Type (Rtyp) then if Esize (Rtyp) <= 32 and then abs (Scale_Value (Rtyp)) <= 9 then Vid := RE_Value_Decimal32; elsif Esize (Rtyp) <= 64 and then abs (Scale_Value (Rtyp)) <= 18 then Vid := RE_Value_Decimal64; else Vid := RE_Value_Decimal128; end if; Append_To (Args, Make_Integer_Literal (Loc, Scale_Value (Rtyp))); Rewrite (N, OK_Convert_To (Btyp, Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (Vid), Loc), Parameter_Associations => Args))); Set_Etype (N, Btyp); Analyze_And_Resolve (N, Btyp); return; elsif Is_Ordinary_Fixed_Point_Type (Rtyp) then declare Num : constant Uint := Norm_Num (Small_Value (Rtyp)); Den : constant Uint := Norm_Den (Small_Value (Rtyp)); Max : constant Uint := UI_Max (Num, Den); Min : constant Uint := UI_Min (Num, Den); Siz : constant Uint := Esize (Rtyp); begin if Siz <= 32 and then Max <= Uint_2 ** 31 and then (Min = Uint_1 or else Max <= Uint_2 ** 27) then Vid := RE_Value_Fixed32; elsif Siz <= 64 and then Max <= Uint_2 ** 63 and then (Min = Uint_1 or else Max <= Uint_2 ** 59) then Vid := RE_Value_Fixed64; elsif System_Max_Integer_Size = 128 and then Max <= Uint_2 ** 127 and then (Min = Uint_1 or else Max <= Uint_2 ** 123) then Vid := RE_Value_Fixed128; else Vid := RE_Value_Long_Float; end if; if Vid /= RE_Value_Long_Float then Append_To (Args, Make_Integer_Literal (Loc, -Norm_Num (Small_Value (Rtyp)))); Append_To (Args, Make_Integer_Literal (Loc, -Norm_Den (Small_Value (Rtyp)))); Rewrite (N, OK_Convert_To (Btyp, Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (Vid), Loc), Parameter_Associations => Args))); Set_Etype (N, Btyp); Analyze_And_Resolve (N, Btyp); return; end if; end; elsif Is_Floating_Point_Type (Rtyp) then -- Short_Float and Float are the same type for GNAT if Rtyp = Standard_Short_Float or else Rtyp = Standard_Float then Vid := RE_Value_Float; elsif Rtyp = Standard_Long_Float then Vid := RE_Value_Long_Float; else Vid := RE_Value_Long_Long_Float; end if; -- Only other possibility is user-defined enumeration type else pragma Assert (Is_Enumeration_Type (Rtyp)); -- Case of pragma Discard_Names, transform the Value -- attribute to Btyp'Val (Long_Long_Integer'Value (Args)) if Discard_Names (First_Subtype (Btyp)) or else No (Lit_Strings (Rtyp)) then Rewrite (N, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Btyp, Loc), Attribute_Name => Name_Val, Expressions => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Standard_Long_Long_Integer, Loc), Attribute_Name => Name_Value, Expressions => Args)))); Analyze_And_Resolve (N, Btyp); -- Normal case where we have enumeration tables, build -- T'Val -- (Value_Enumeration_NN -- (typS, typN'Address, typH'Unrestricted_Access, Num, X)) else Ttyp := Component_Type (Etype (Lit_Indexes (Rtyp))); if Ttyp = Standard_Integer_8 then Vid := RE_Value_Enumeration_8; elsif Ttyp = Standard_Integer_16 then Vid := RE_Value_Enumeration_16; else Vid := RE_Value_Enumeration_32; end if; Prepend_To (Args, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Rtyp, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Rtyp, Loc), Attribute_Name => Name_Last)))); if Present (Lit_Hash (Rtyp)) then Prepend_To (Args, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Lit_Hash (Rtyp), Loc), Attribute_Name => Name_Unrestricted_Access)); else Prepend_To (Args, Make_Null (Loc)); end if; Prepend_To (Args, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Lit_Indexes (Rtyp), Loc), Attribute_Name => Name_Address)); Prepend_To (Args, New_Occurrence_Of (Lit_Strings (Rtyp), Loc)); Rewrite (N, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Btyp, Loc), Attribute_Name => Name_Val, Expressions => New_List ( Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (Vid), Loc), Parameter_Associations => Args)))); Analyze_And_Resolve (N, Btyp); end if; return; end if; -- Compiling package Ada.Tags under No_Run_Time_Mode we disable the -- expansion of the attribute into the function call statement to avoid -- generating spurious errors caused by the use of Integer_Address'Value -- in our implementation of Ada.Tags.Internal_Tag. if No_Run_Time_Mode and then Is_RTE (Rtyp, RE_Integer_Address) and then RTU_Loaded (Ada_Tags) and then Cunit_Entity (Current_Sem_Unit) = Body_Entity (RTU_Entity (Ada_Tags)) then Rewrite (N, Unchecked_Convert_To (Rtyp, Make_Integer_Literal (Loc, Uint_0))); else Rewrite (N, Convert_To (Btyp, Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (Vid), Loc), Parameter_Associations => Args))); end if; Analyze_And_Resolve (N, Btyp); end Expand_Value_Attribute; --------------------------------- -- Expand_Wide_Image_Attribute -- --------------------------------- -- We expand typ'Wide_Image (X) as follows. First we insert this code: -- Rnn : Wide_String (1 .. rt'Wide_Width); -- Lnn : Natural; -- String_To_Wide_String -- (typ'Image (Expr), Rnn, Lnn, Wide_Character_Encoding_Method); -- where rt is the root type of the prefix type -- Now we replace the Wide_Image reference by -- Rnn (1 .. Lnn) -- This works in all cases because String_To_Wide_String converts any -- wide character escape sequences resulting from the Image call to the -- proper Wide_Character equivalent -- not quite right for typ = Wide_Character ??? procedure Expand_Wide_Image_Attribute (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Pref : constant Entity_Id := Prefix (N); Rnn : constant Entity_Id := Make_Temporary (Loc, 'S'); Lnn : constant Entity_Id := Make_Temporary (Loc, 'P'); Rtyp : Entity_Id; begin if Is_Object_Image (Pref) then Rewrite_Object_Image (N, Pref, Name_Wide_Image, Standard_Wide_String); return; end if; -- If Image should be transformed using Put_Image, then do so. See -- Exp_Put_Image for details. if Exp_Put_Image.Image_Should_Call_Put_Image (N) then Rewrite (N, Exp_Put_Image.Build_Image_Call (N)); Analyze_And_Resolve (N, Standard_Wide_String, Suppress => All_Checks); return; end if; Rtyp := Root_Type (Entity (Pref)); Insert_Actions (N, New_List ( -- Rnn : Wide_String (1 .. base_typ'Width); Make_Object_Declaration (Loc, Defining_Identifier => Rnn, Object_Definition => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Standard_Wide_String, Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => New_List ( Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Rtyp, Loc), Attribute_Name => Name_Wide_Width)))))), -- Lnn : Natural; Make_Object_Declaration (Loc, Defining_Identifier => Lnn, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc)), -- String_To_Wide_String -- (typ'Image (X), Rnn, Lnn, Wide_Character_Encoding_Method); Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (RTE (RE_String_To_Wide_String), Loc), Parameter_Associations => New_List ( Make_Attribute_Reference (Loc, Prefix => Prefix (N), Attribute_Name => Name_Image, Expressions => Expressions (N)), New_Occurrence_Of (Rnn, Loc), New_Occurrence_Of (Lnn, Loc), Make_Integer_Literal (Loc, Intval => Int (Wide_Character_Encoding_Method))))), -- Suppress checks because we know everything is properly in range Suppress => All_Checks); -- Final step is to rewrite the expression as a slice and analyze, -- again with no checks, since we are sure that everything is OK. Rewrite (N, Make_Slice (Loc, Prefix => New_Occurrence_Of (Rnn, Loc), Discrete_Range => Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => New_Occurrence_Of (Lnn, Loc)))); Analyze_And_Resolve (N, Standard_Wide_String, Suppress => All_Checks); end Expand_Wide_Image_Attribute; -------------------------------------- -- Expand_Wide_Wide_Image_Attribute -- -------------------------------------- -- We expand typ'Wide_Wide_Image (X) as follows. First we insert this code: -- Rnn : Wide_Wide_String (1 .. rt'Wide_Wide_Width); -- Lnn : Natural; -- String_To_Wide_Wide_String -- (typ'Image (Expr), Rnn, Lnn, Wide_Character_Encoding_Method); -- where rt is the root type of the prefix type -- Now we replace the Wide_Wide_Image reference by -- Rnn (1 .. Lnn) -- This works in all cases because String_To_Wide_Wide_String converts any -- wide character escape sequences resulting from the Image call to the -- proper Wide_Wide_Character equivalent -- not quite right for typ = Wide_Wide_Character ??? procedure Expand_Wide_Wide_Image_Attribute (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Pref : constant Entity_Id := Prefix (N); Rnn : constant Entity_Id := Make_Temporary (Loc, 'S'); Lnn : constant Entity_Id := Make_Temporary (Loc, 'P'); Rtyp : Entity_Id; begin if Is_Object_Image (Pref) then Rewrite_Object_Image (N, Pref, Name_Wide_Wide_Image, Standard_Wide_Wide_String); return; end if; -- If Image should be transformed using Put_Image, then do so. See -- Exp_Put_Image for details. if Exp_Put_Image.Image_Should_Call_Put_Image (N) then Rewrite (N, Exp_Put_Image.Build_Image_Call (N)); Analyze_And_Resolve (N, Standard_Wide_Wide_String, Suppress => All_Checks); return; end if; Rtyp := Root_Type (Entity (Pref)); Insert_Actions (N, New_List ( -- Rnn : Wide_Wide_String (1 .. rt'Wide_Wide_Width); Make_Object_Declaration (Loc, Defining_Identifier => Rnn, Object_Definition => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Standard_Wide_Wide_String, Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => New_List ( Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Rtyp, Loc), Attribute_Name => Name_Wide_Wide_Width)))))), -- Lnn : Natural; Make_Object_Declaration (Loc, Defining_Identifier => Lnn, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc)), -- String_To_Wide_Wide_String -- (typ'Image (X), Rnn, Lnn, Wide_Character_Encoding_Method); Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (RTE (RE_String_To_Wide_Wide_String), Loc), Parameter_Associations => New_List ( Make_Attribute_Reference (Loc, Prefix => Prefix (N), Attribute_Name => Name_Image, Expressions => Expressions (N)), New_Occurrence_Of (Rnn, Loc), New_Occurrence_Of (Lnn, Loc), Make_Integer_Literal (Loc, Intval => Int (Wide_Character_Encoding_Method))))), -- Suppress checks because we know everything is properly in range Suppress => All_Checks); -- Final step is to rewrite the expression as a slice and analyze, -- again with no checks, since we are sure that everything is OK. Rewrite (N, Make_Slice (Loc, Prefix => New_Occurrence_Of (Rnn, Loc), Discrete_Range => Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 1), High_Bound => New_Occurrence_Of (Lnn, Loc)))); Analyze_And_Resolve (N, Standard_Wide_Wide_String, Suppress => All_Checks); end Expand_Wide_Wide_Image_Attribute; ---------------------------- -- Expand_Width_Attribute -- ---------------------------- -- The processing here also handles the case of Wide_[Wide_]Width. With the -- exceptions noted, the processing is identical -- For scalar types derived from Boolean, character and integer types -- in package Standard. Note that the Width attribute is computed at -- compile time for all cases except those involving non-static sub- -- types. For such subtypes, typ'[Wide_[Wide_]]Width expands into: -- Result_Type (xx (yy (Ptyp'First), yy (Ptyp'Last))) -- where -- For types whose root type is Character -- xx = Width_Character -- yy = Character -- For types whose root type is Wide_Character -- xx = Wide_Width_Character -- yy = Character -- For types whose root type is Wide_Wide_Character -- xx = Wide_Wide_Width_Character -- yy = Character -- For types whose root type is Boolean -- xx = Width_Boolean -- yy = Boolean -- For signed integer types -- xx = Width_[Long_Long_[Long_]]Integer -- yy = [Long_Long_[Long_]]Integer -- For modular integer types -- xx = Width_[Long_Long_[Long_]]Unsigned -- yy = [Long_Long_[Long_]]Unsigned -- For types derived from Wide_Character, typ'Width expands into -- Result_Type (Width_Wide_Character ( -- Wide_Character (typ'First), -- Wide_Character (typ'Last), -- and typ'Wide_Width expands into: -- Result_Type (Wide_Width_Wide_Character ( -- Wide_Character (typ'First), -- Wide_Character (typ'Last)); -- and typ'Wide_Wide_Width expands into -- Result_Type (Wide_Wide_Width_Wide_Character ( -- Wide_Character (typ'First), -- Wide_Character (typ'Last)); -- For types derived from Wide_Wide_Character, typ'Width expands into -- Result_Type (Width_Wide_Wide_Character ( -- Wide_Wide_Character (typ'First), -- Wide_Wide_Character (typ'Last), -- and typ'Wide_Width expands into: -- Result_Type (Wide_Width_Wide_Wide_Character ( -- Wide_Wide_Character (typ'First), -- Wide_Wide_Character (typ'Last)); -- and typ'Wide_Wide_Width expands into -- Result_Type (Wide_Wide_Width_Wide_Wide_Char ( -- Wide_Wide_Character (typ'First), -- Wide_Wide_Character (typ'Last)); -- For fixed point types, typ'Width and typ'Wide_[Wide_]Width expand into -- if Ptyp'First > Ptyp'Last then 0 else Ptyp'Fore + 1 + Ptyp'Aft end if -- and for floating point types, they expand into -- if Ptyp'First > Ptyp'Last then 0 else btyp'Width end if -- where btyp is the base type. This looks recursive but it isn't -- because the base type is always static, and hence the expression -- in the else is reduced to an integer literal. -- For user-defined enumeration types, typ'Width expands into -- Result_Type (Width_Enumeration_NN -- (typS, -- typI'Address, -- typ'Pos (typ'First), -- typ'Pos (Typ'Last))); -- and typ'Wide_Width expands into: -- Result_Type (Wide_Width_Enumeration_NN -- (typS, -- typI, -- typ'Pos (typ'First), -- typ'Pos (Typ'Last)) -- Wide_Character_Encoding_Method); -- and typ'Wide_Wide_Width expands into: -- Result_Type (Wide_Wide_Width_Enumeration_NN -- (typS, -- typI, -- typ'Pos (typ'First), -- typ'Pos (Typ'Last)) -- Wide_Character_Encoding_Method); -- where typS and typI are the enumeration image strings and indexes -- table, as described in Build_Enumeration_Image_Tables. NN is 8/16/32 -- for depending on the element type for typI. -- Finally if Discard_Names is in effect for an enumeration type, then -- a special if expression is built that yields the space needed for the -- decimal representation of the largest pos value in the subtype. See -- code below for details. procedure Expand_Width_Attribute (N : Node_Id; Attr : Atype := Normal) is Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (N); Pref : constant Node_Id := Prefix (N); Ptyp : constant Entity_Id := Etype (Pref); Rtyp : constant Entity_Id := Root_Type (Ptyp); Arglist : List_Id; Ttyp : Entity_Id; XX : RE_Id; YY : Entity_Id; begin -- Types derived from Standard.Boolean if Rtyp = Standard_Boolean then XX := RE_Width_Boolean; YY := Rtyp; -- Types derived from Standard.Character elsif Rtyp = Standard_Character then case Attr is when Normal => XX := RE_Width_Character; when Wide => XX := RE_Wide_Width_Character; when Wide_Wide => XX := RE_Wide_Wide_Width_Character; end case; YY := Rtyp; -- Types derived from Standard.Wide_Character elsif Rtyp = Standard_Wide_Character then case Attr is when Normal => XX := RE_Width_Wide_Character; when Wide => XX := RE_Wide_Width_Wide_Character; when Wide_Wide => XX := RE_Wide_Wide_Width_Wide_Character; end case; YY := Rtyp; -- Types derived from Standard.Wide_Wide_Character elsif Rtyp = Standard_Wide_Wide_Character then case Attr is when Normal => XX := RE_Width_Wide_Wide_Character; when Wide => XX := RE_Wide_Width_Wide_Wide_Character; when Wide_Wide => XX := RE_Wide_Wide_Width_Wide_Wide_Char; end case; YY := Rtyp; -- Signed integer types elsif Is_Signed_Integer_Type (Rtyp) then if Esize (Rtyp) <= Standard_Integer_Size then XX := RE_Width_Integer; YY := Standard_Integer; elsif Esize (Rtyp) <= Standard_Long_Long_Integer_Size then XX := RE_Width_Long_Long_Integer; YY := Standard_Long_Long_Integer; else XX := RE_Width_Long_Long_Long_Integer; YY := Standard_Long_Long_Long_Integer; end if; -- Modular integer types elsif Is_Modular_Integer_Type (Rtyp) then if Modulus (Rtyp) <= Modulus (RTE (RE_Unsigned)) then XX := RE_Width_Unsigned; YY := RTE (RE_Unsigned); elsif Modulus (Rtyp) <= Modulus (RTE (RE_Long_Long_Unsigned)) then XX := RE_Width_Long_Long_Unsigned; YY := RTE (RE_Long_Long_Unsigned); else XX := RE_Width_Long_Long_Long_Unsigned; YY := RTE (RE_Long_Long_Long_Unsigned); end if; -- Fixed point types elsif Is_Fixed_Point_Type (Rtyp) then Rewrite (N, Make_If_Expression (Loc, Expressions => New_List ( Make_Op_Gt (Loc, Left_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_First), Right_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Last)), Make_Integer_Literal (Loc, 0), Make_Op_Add (Loc, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Fore), Make_Op_Add (Loc, Make_Integer_Literal (Loc, 1), Make_Integer_Literal (Loc, Aft_Value (Ptyp))))))); Analyze_And_Resolve (N, Typ); return; -- Floating point types elsif Is_Floating_Point_Type (Rtyp) then Rewrite (N, Make_If_Expression (Loc, Expressions => New_List ( Make_Op_Gt (Loc, Left_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_First), Right_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Last)), Make_Integer_Literal (Loc, 0), Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Base_Type (Ptyp), Loc), Attribute_Name => Name_Width)))); Analyze_And_Resolve (N, Typ); return; -- User-defined enumeration types else pragma Assert (Is_Enumeration_Type (Rtyp)); -- Whenever pragma Discard_Names is in effect, the value we need -- is the value needed to accommodate the largest integer pos value -- in the range of the subtype + 1 for the space at the start. We -- build: -- Tnn : constant Integer := Rtyp'Pos (Ptyp'Last) -- and replace the expression by -- (if Ptyp'Range_Length = 0 then 0 -- else (if Tnn < 10 then 2 -- else (if Tnn < 100 then 3 -- ... -- else n)))... -- where n is equal to Rtyp'Pos (Ptyp'Last) + 1 -- Note: The above processing is in accordance with the intent of -- the RM, which is that Width should be related to the impl-defined -- behavior of Image. It is not clear what this means if Image is -- not defined (as in the configurable run-time case for GNAT) and -- gives an error at compile time. -- We choose in this case to just go ahead and implement Width the -- same way, returning what Image would have returned if it has been -- available in the configurable run-time library. if Discard_Names (Rtyp) then declare Tnn : constant Entity_Id := Make_Temporary (Loc, 'T'); Cexpr : Node_Id; P : Int; M : Int; K : Int; begin Insert_Action (N, Make_Object_Declaration (Loc, Defining_Identifier => Tnn, Constant_Present => True, Object_Definition => New_Occurrence_Of (Standard_Integer, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Rtyp, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Convert_To (Rtyp, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Last)))))); -- OK, now we need to build the if expression. First get the -- value of M, the largest possible value needed. P := UI_To_Int (Enumeration_Pos (Entity (Type_High_Bound (Rtyp)))); K := 1; M := 1; while M < P loop M := M * 10; K := K + 1; end loop; -- Build inner else Cexpr := Make_Integer_Literal (Loc, K); -- Wrap in inner if's until counted down to 2 while K > 2 loop M := M / 10; K := K - 1; Cexpr := Make_If_Expression (Loc, Expressions => New_List ( Make_Op_Lt (Loc, Left_Opnd => New_Occurrence_Of (Tnn, Loc), Right_Opnd => Make_Integer_Literal (Loc, M)), Make_Integer_Literal (Loc, K), Cexpr)); end loop; -- Add initial comparison for null range and we are done, so -- rewrite the attribute occurrence with this expression. Rewrite (N, Convert_To (Typ, Make_If_Expression (Loc, Expressions => New_List ( Make_Op_Eq (Loc, Left_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Range_Length), Right_Opnd => Make_Integer_Literal (Loc, 0)), Make_Integer_Literal (Loc, 0), Cexpr)))); Analyze_And_Resolve (N, Typ); return; end; end if; -- Normal case, not Discard_Names Ttyp := Component_Type (Etype (Lit_Indexes (Rtyp))); case Attr is when Normal => if Ttyp = Standard_Integer_8 then XX := RE_Width_Enumeration_8; elsif Ttyp = Standard_Integer_16 then XX := RE_Width_Enumeration_16; else XX := RE_Width_Enumeration_32; end if; when Wide => if Ttyp = Standard_Integer_8 then XX := RE_Wide_Width_Enumeration_8; elsif Ttyp = Standard_Integer_16 then XX := RE_Wide_Width_Enumeration_16; else XX := RE_Wide_Width_Enumeration_32; end if; when Wide_Wide => if Ttyp = Standard_Integer_8 then XX := RE_Wide_Wide_Width_Enumeration_8; elsif Ttyp = Standard_Integer_16 then XX := RE_Wide_Wide_Width_Enumeration_16; else XX := RE_Wide_Wide_Width_Enumeration_32; end if; end case; Arglist := New_List ( New_Occurrence_Of (Lit_Strings (Rtyp), Loc), Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Lit_Indexes (Rtyp), Loc), Attribute_Name => Name_Address), Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_First))), Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Last)))); Rewrite (N, Convert_To (Typ, Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (XX), Loc), Parameter_Associations => Arglist))); Analyze_And_Resolve (N, Typ); return; end if; -- If we fall through XX and YY are set Arglist := New_List ( Convert_To (YY, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_First)), Convert_To (YY, Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ptyp, Loc), Attribute_Name => Name_Last))); Rewrite (N, Convert_To (Typ, Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (XX), Loc), Parameter_Associations => Arglist))); Analyze_And_Resolve (N, Typ); end Expand_Width_Attribute; -------------------------- -- Rewrite_Object_Image -- -------------------------- procedure Rewrite_Object_Image (N : Node_Id; Pref : Entity_Id; Attr_Name : Name_Id; Str_Typ : Entity_Id) is begin Rewrite (N, Make_Attribute_Reference (Sloc (N), Prefix => New_Occurrence_Of (Etype (Pref), Sloc (N)), Attribute_Name => Attr_Name, Expressions => New_List (Relocate_Node (Pref)))); Analyze_And_Resolve (N, Str_Typ); end Rewrite_Object_Image; end Exp_Imgv;