------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- E X P _ C H 5 -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Accessibility; use Accessibility; with Aspects; use Aspects; with Atree; use Atree; with Checks; use Checks; with Debug; use Debug; with Einfo; use Einfo; with Einfo.Entities; use Einfo.Entities; with Einfo.Utils; use Einfo.Utils; with Elists; use Elists; with Exp_Aggr; use Exp_Aggr; with Exp_Ch6; use Exp_Ch6; with Exp_Ch7; use Exp_Ch7; with Exp_Ch11; use Exp_Ch11; with Exp_Dbug; use Exp_Dbug; with Exp_Pakd; use Exp_Pakd; with Exp_Tss; use Exp_Tss; with Exp_Util; use Exp_Util; with Inline; use Inline; with Mutably_Tagged; use Mutably_Tagged; with Namet; use Namet; with Nlists; use Nlists; with Nmake; use Nmake; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Sem; use Sem; with Sem_Aux; use Sem_Aux; with Sem_Ch3; use Sem_Ch3; with Sem_Ch8; use Sem_Ch8; with Sem_Ch13; use Sem_Ch13; with Sem_Eval; use Sem_Eval; with Sem_Res; use Sem_Res; with Sem_Util; use Sem_Util; use Sem_Util.Storage_Model_Support; with Snames; use Snames; with Stand; use Stand; with Stringt; use Stringt; with Tbuild; use Tbuild; with Ttypes; use Ttypes; with Uintp; use Uintp; with Validsw; use Validsw; with Warnsw; use Warnsw; package body Exp_Ch5 is procedure Build_Formal_Container_Iteration (N : Node_Id; Container : Entity_Id; Cursor : Entity_Id; Init : out Node_Id; Advance : out Node_Id; New_Loop : out Node_Id); -- Utility to create declarations and loop statement for both forms -- of formal container iterators. function Convert_To_Iterable_Type (Container : Entity_Id; Loc : Source_Ptr) return Node_Id; -- Returns New_Occurrence_Of (Container), possibly converted to an ancestor -- type, if the type of Container inherited the Iterable aspect from that -- ancestor. function Change_Of_Representation (N : Node_Id) return Boolean; -- Determine if the right-hand side of assignment N is a type conversion -- which requires a change of representation. Called only for the array -- and record cases. procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id); -- N is an assignment which assigns an array value. This routine process -- the various special cases and checks required for such assignments, -- including change of representation. Rhs is normally simply the right- -- hand side of the assignment, except that if the right-hand side is a -- type conversion or a qualified expression, then the RHS is the actual -- expression inside any such type conversions or qualifications. function Expand_Assign_Array_Loop (N : Node_Id; Larray : Entity_Id; Rarray : Entity_Id; L_Type : Entity_Id; R_Type : Entity_Id; Ndim : Pos; Rev : Boolean) return Node_Id; -- N is an assignment statement which assigns an array value. This routine -- expands the assignment into a loop (or nested loops for the case of a -- multi-dimensional array) to do the assignment component by component. -- Larray and Rarray are the entities of the actual arrays on the left-hand -- and right-hand sides. L_Type and R_Type are the types of these arrays -- (which may not be the same, due to either sliding, or to a change of -- representation case). Ndim is the number of dimensions and the parameter -- Rev indicates if the loops run normally (Rev = False), or reversed -- (Rev = True). The value returned is the constructed loop statement. -- Auxiliary declarations are inserted before node N using the standard -- Insert_Actions mechanism. function Expand_Assign_Array_Bitfield (N : Node_Id; Larray : Entity_Id; Rarray : Entity_Id; L_Type : Entity_Id; R_Type : Entity_Id; Rev : Boolean) return Node_Id; -- Alternative to Expand_Assign_Array_Loop for packed bitfields. Generates -- a call to System.Bitfields.Copy_Bitfield, which is more efficient than -- copying component-by-component. function Expand_Assign_Array_Bitfield_Fast (N : Node_Id; Larray : Entity_Id; Rarray : Entity_Id) return Node_Id; -- Alternative to Expand_Assign_Array_Bitfield. Generates a call to -- System.Bitfields.Fast_Copy_Bitfield, which is more efficient than -- Copy_Bitfield, but only works in restricted situations. function Expand_Assign_Array_Loop_Or_Bitfield (N : Node_Id; Larray : Entity_Id; Rarray : Entity_Id; L_Type : Entity_Id; R_Type : Entity_Id; Ndim : Pos; Rev : Boolean) return Node_Id; -- Calls either Expand_Assign_Array_Loop, Expand_Assign_Array_Bitfield, or -- Expand_Assign_Array_Bitfield_Fast as appropriate. procedure Expand_Assign_Record (N : Node_Id); -- N is an assignment of an untagged record value. This routine handles -- the case where the assignment must be made component by component, -- either because the target is not byte aligned, or there is a change -- of representation, or when we have a tagged type with a representation -- clause (this last case is required because holes in the tagged type -- might be filled with components from child types). procedure Expand_Assign_With_Target_Names (N : Node_Id); -- (AI12-0125): N is an assignment statement whose RHS contains occurrences -- of @ that designate the value of the LHS of the assignment. If the LHS -- is side-effect-free the target names can be replaced with a copy of the -- LHS; otherwise the semantics of the assignment is described in terms of -- a procedure with an in-out parameter, and expanded as such. procedure Expand_Formal_Container_Loop (N : Node_Id); -- Use the primitives specified in an Iterable aspect to expand a loop -- over a so-called formal container, primarily for SPARK usage. procedure Expand_Formal_Container_Element_Loop (N : Node_Id); -- Same, for an iterator of the form " For E of C". In this case the -- iterator provides the name of the element, and the cursor is generated -- internally. procedure Expand_Iterator_Loop (N : Node_Id); -- Expand loop over arrays and containers that uses the form "for X of C" -- with an optional subtype mark, or "for Y in C". procedure Expand_Iterator_Loop_Over_Container (N : Node_Id; I_Spec : Node_Id; Container : Node_Id; Container_Typ : Entity_Id); -- Expand loop over containers that uses the form "for X of C" with an -- optional subtype mark, or "for Y in C". I_Spec is the iterator -- specification and Container is either the Container (for OF) or the -- iterator (for IN). procedure Expand_Predicated_Loop (N : Node_Id); -- Expand for loop over predicated subtype function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id; -- Generate the necessary code for controlled and tagged assignment, that -- is to say, finalization of the target before, adjustment of the target -- after and save and restore of the tag and finalization pointers which -- are not 'part of the value' and must not be changed upon assignment. N -- is the original Assignment node. -------------------------------------- -- Build_Formal_Container_Iteration -- -------------------------------------- procedure Build_Formal_Container_Iteration (N : Node_Id; Container : Entity_Id; Cursor : Entity_Id; Init : out Node_Id; Advance : out Node_Id; New_Loop : out Node_Id) is Loc : constant Source_Ptr := Sloc (N); Stats : constant List_Id := Statements (N); Typ : constant Entity_Id := Base_Type (Etype (Container)); Has_Element_Op : constant Entity_Id := Get_Iterable_Type_Primitive (Typ, Name_Has_Element); First_Op : Entity_Id; Next_Op : Entity_Id; begin -- Use the proper set of primitives depending on the direction of -- iteration. The legality of a reverse iteration has been checked -- during analysis. if Reverse_Present (Iterator_Specification (Iteration_Scheme (N))) then First_Op := Get_Iterable_Type_Primitive (Typ, Name_Last); Next_Op := Get_Iterable_Type_Primitive (Typ, Name_Previous); else First_Op := Get_Iterable_Type_Primitive (Typ, Name_First); Next_Op := Get_Iterable_Type_Primitive (Typ, Name_Next); end if; -- Declaration for Cursor Init := Make_Object_Declaration (Loc, Defining_Identifier => Cursor, Object_Definition => New_Occurrence_Of (Etype (First_Op), Loc), Expression => Make_Function_Call (Loc, Name => New_Occurrence_Of (First_Op, Loc), Parameter_Associations => New_List ( Convert_To_Iterable_Type (Container, Loc)))); -- Statement that advances (in the right direction) cursor in loop Advance := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Cursor, Loc), Expression => Make_Function_Call (Loc, Name => New_Occurrence_Of (Next_Op, Loc), Parameter_Associations => New_List ( Convert_To_Iterable_Type (Container, Loc), New_Occurrence_Of (Cursor, Loc)))); -- Iterator is rewritten as a while_loop New_Loop := Make_Loop_Statement (Loc, Iteration_Scheme => Make_Iteration_Scheme (Loc, Condition => Make_Function_Call (Loc, Name => New_Occurrence_Of (Has_Element_Op, Loc), Parameter_Associations => New_List ( Convert_To_Iterable_Type (Container, Loc), New_Occurrence_Of (Cursor, Loc)))), Statements => Stats, End_Label => Empty); -- If the contruct has a specified loop name, preserve it in the new -- loop, for possible use in exit statements. if Present (Identifier (N)) and then Comes_From_Source (Identifier (N)) then Set_Identifier (New_Loop, Identifier (N)); end if; end Build_Formal_Container_Iteration; ------------------------------ -- Change_Of_Representation -- ------------------------------ function Change_Of_Representation (N : Node_Id) return Boolean is Rhs : constant Node_Id := Expression (N); begin return Nkind (Rhs) = N_Type_Conversion and then not Has_Compatible_Representation (Target_Typ => Etype (Rhs), Operand_Typ => Etype (Expression (Rhs))); end Change_Of_Representation; ------------------------------ -- Convert_To_Iterable_Type -- ------------------------------ function Convert_To_Iterable_Type (Container : Entity_Id; Loc : Source_Ptr) return Node_Id is Typ : constant Entity_Id := Base_Type (Etype (Container)); Aspect : constant Node_Id := Find_Aspect (Typ, Aspect_Iterable); Result : Node_Id; begin Result := New_Occurrence_Of (Container, Loc); if Entity (Aspect) /= Typ then Result := Make_Type_Conversion (Loc, Subtype_Mark => New_Occurrence_Of (Entity (Aspect), Loc), Expression => Result); end if; return Result; end Convert_To_Iterable_Type; ------------------------- -- Expand_Assign_Array -- ------------------------- -- There are two issues here. First, do we let Gigi do a block move, or -- do we expand out into a loop? Second, we need to set the two flags -- Forwards_OK and Backwards_OK which show whether the block move (or -- corresponding loops) can be legitimately done in a forwards (low to -- high) or backwards (high to low) manner. procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Lhs : constant Node_Id := Name (N); Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs); Act_Rhs : Node_Id := Get_Referenced_Object (Rhs); L_Type : constant Entity_Id := Underlying_Type (Get_Actual_Subtype (Act_Lhs)); R_Type : Entity_Id := Underlying_Type (Get_Actual_Subtype (Act_Rhs)); L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice; R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice; Crep : constant Boolean := Change_Of_Representation (N); pragma Assert (Crep or else Is_Bit_Packed_Array (L_Type) = Is_Bit_Packed_Array (R_Type)); Larray : Node_Id; Rarray : Node_Id; Ndim : constant Pos := Number_Dimensions (L_Type); Loop_Required : Boolean := False; -- This switch is set to True if the array move must be done using -- an explicit front end generated loop. procedure Apply_Dereference (Arg : Node_Id); -- If the argument is an access to an array, and the assignment is -- converted into a procedure call, apply explicit dereference. function Has_Address_Clause (Exp : Node_Id) return Boolean; -- Test if Exp is a reference to an array whose declaration has -- an address clause, or it is a slice of such an array. function Is_Formal_Array (Exp : Node_Id) return Boolean; -- Test if Exp is a reference to an array which is either a formal -- parameter or a slice of a formal parameter. These are the cases -- where hidden aliasing can occur. function Is_Non_Local_Array (Exp : Node_Id) return Boolean; -- Determine if Exp is a reference to an array variable which is other -- than an object defined in the current scope, or a component or a -- slice of such an object. Such objects can be aliased to parameters -- (unlike local array references). ----------------------- -- Apply_Dereference -- ----------------------- procedure Apply_Dereference (Arg : Node_Id) is Typ : constant Entity_Id := Etype (Arg); begin if Is_Access_Type (Typ) then Rewrite (Arg, Make_Explicit_Dereference (Loc, Prefix => Relocate_Node (Arg))); Analyze_And_Resolve (Arg, Designated_Type (Typ)); end if; end Apply_Dereference; ------------------------ -- Has_Address_Clause -- ------------------------ function Has_Address_Clause (Exp : Node_Id) return Boolean is begin return (Is_Entity_Name (Exp) and then Present (Address_Clause (Entity (Exp)))) or else (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp))); end Has_Address_Clause; --------------------- -- Is_Formal_Array -- --------------------- function Is_Formal_Array (Exp : Node_Id) return Boolean is begin return (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp))) or else (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp))); end Is_Formal_Array; ------------------------ -- Is_Non_Local_Array -- ------------------------ function Is_Non_Local_Array (Exp : Node_Id) return Boolean is begin case Nkind (Exp) is when N_Indexed_Component | N_Selected_Component | N_Slice => return Is_Non_Local_Array (Prefix (Exp)); when others => return not (Is_Entity_Name (Exp) and then Scope (Entity (Exp)) = Current_Scope); end case; end Is_Non_Local_Array; -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs); Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs); Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs); Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs); -- Start of processing for Expand_Assign_Array begin -- Deal with length check. Note that the length check is done with -- respect to the right-hand side as given, not a possible underlying -- renamed object, since this would generate incorrect extra checks. Apply_Length_Check_On_Assignment (Rhs, L_Type, Lhs); -- We start by assuming that the move can be done in either direction, -- i.e. that the two sides are completely disjoint. Set_Forwards_OK (N, True); Set_Backwards_OK (N, True); -- Normally it is only the slice case that can lead to overlap, and -- explicit checks for slices are made below. But there is one case -- where the slice can be implicit and invisible to us: when we have a -- one dimensional array, and either both operands are parameters, or -- one is a parameter (which can be a slice passed by reference) and the -- other is a non-local variable. In this case the parameter could be a -- slice that overlaps with the other operand. -- However, if the array subtype is a constrained first subtype in the -- parameter case, then we don't have to worry about overlap, since -- slice assignments aren't possible (other than for a slice denoting -- the whole array). -- Note: No overlap is possible if there is a change of representation, -- so we can exclude this case. if Ndim = 1 and then not Crep and then ((Lhs_Formal and Rhs_Formal) or else (Lhs_Formal and Rhs_Non_Local_Var) or else (Rhs_Formal and Lhs_Non_Local_Var)) and then (not Is_Constrained (Etype (Lhs)) or else not Is_First_Subtype (Etype (Lhs))) then Set_Forwards_OK (N, False); Set_Backwards_OK (N, False); -- Note: the bit-packed case is not worrisome here, since if we have -- a slice passed as a parameter, it is always aligned on a byte -- boundary, and if there are no explicit slices, the assignment -- can be performed directly. end if; -- If either operand has an address clause clear Backwards_OK and -- Forwards_OK, since we cannot tell if the operands overlap. We -- exclude this treatment when Rhs is an aggregate, since we know -- that overlap can't occur. if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate) or else Has_Address_Clause (Rhs) then Set_Forwards_OK (N, False); Set_Backwards_OK (N, False); end if; -- We certainly must use a loop for change of representation and also -- we use the operand of the conversion on the right-hand side as the -- effective right-hand side (the component types must match in this -- situation). if Crep then Act_Rhs := Get_Referenced_Object (Rhs); R_Type := Get_Actual_Subtype (Act_Rhs); Loop_Required := True; -- We require a loop if either side is possibly bit aligned elsif Possible_Bit_Aligned_Component (Lhs) or else Possible_Bit_Aligned_Component (Rhs) then Loop_Required := True; -- Arrays with controlled components are expanded into a loop to force -- calls to Adjust at the component level. elsif Has_Controlled_Component (L_Type) then Loop_Required := True; -- If object is full access, we cannot tolerate a loop elsif Is_Full_Access_Object (Act_Lhs) or else Is_Full_Access_Object (Act_Rhs) then return; -- Loop is required if we have atomic components since we have to -- be sure to do any accesses on an element by element basis. elsif Has_Atomic_Components (L_Type) or else Has_Atomic_Components (R_Type) or else Is_Full_Access (Component_Type (L_Type)) or else Is_Full_Access (Component_Type (R_Type)) then Loop_Required := True; -- Case where no slice is involved elsif not L_Slice and not R_Slice then -- The following code deals with the case of unconstrained bit packed -- arrays. The problem is that the template for such arrays contains -- the bounds of the actual source level array, but the copy of an -- entire array requires the bounds of the underlying array. It would -- be nice if the back end could take care of this, but right now it -- does not know how, so if we have such a type, then we expand out -- into a loop, which is inefficient but works correctly. If we don't -- do this, we get the wrong length computed for the array to be -- moved. The two cases we need to worry about are: -- Explicit dereference of an unconstrained packed array type as in -- the following example: -- procedure C52 is -- type BITS is array(INTEGER range <>) of BOOLEAN; -- pragma PACK(BITS); -- type A is access BITS; -- P1,P2 : A; -- begin -- P1 := new BITS (1 .. 65_535); -- P2 := new BITS (1 .. 65_535); -- P2.ALL := P1.ALL; -- end C52; -- A formal parameter reference with an unconstrained bit array type -- is the other case we need to worry about (here we assume the same -- BITS type declared above): -- procedure Write_All (File : out BITS; Contents : BITS); -- begin -- File.Storage := Contents; -- end Write_All; -- We expand to a loop in either of these two cases -- Question for future thought. Another potentially more efficient -- approach would be to create the actual subtype, and then do an -- unchecked conversion to this actual subtype ??? Check_Unconstrained_Bit_Packed_Array : declare function Is_UBPA_Reference (Opnd : Node_Id) return Boolean; -- Function to perform required test for the first case, above -- (dereference of an unconstrained bit packed array). ----------------------- -- Is_UBPA_Reference -- ----------------------- function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is Typ : constant Entity_Id := Underlying_Type (Etype (Opnd)); P_Type : Entity_Id; Des_Type : Entity_Id; begin if Present (Packed_Array_Impl_Type (Typ)) and then Is_Array_Type (Packed_Array_Impl_Type (Typ)) and then not Is_Constrained (Packed_Array_Impl_Type (Typ)) then return True; elsif Nkind (Opnd) = N_Explicit_Dereference then P_Type := Underlying_Type (Etype (Prefix (Opnd))); if not Is_Access_Type (P_Type) then return False; else Des_Type := Designated_Type (P_Type); return Is_Bit_Packed_Array (Des_Type) and then not Is_Constrained (Des_Type); end if; else return False; end if; end Is_UBPA_Reference; -- Start of processing for Check_Unconstrained_Bit_Packed_Array begin if Is_UBPA_Reference (Lhs) or else Is_UBPA_Reference (Rhs) then Loop_Required := True; -- Here if we do not have the case of a reference to a bit packed -- unconstrained array case. In this case gigi can most certainly -- handle the assignment if a forwards move is allowed. -- (could it handle the backwards case also???) elsif Forwards_OK (N) then return; end if; end Check_Unconstrained_Bit_Packed_Array; -- The back end can always handle the assignment if the right side is a -- string literal (note that overlap is definitely impossible in this -- case). If the type is packed, a string literal is always converted -- into an aggregate, except in the case of a null slice, for which no -- aggregate can be written. In that case, rewrite the assignment as a -- null statement, a length check has already been emitted to verify -- that the range of the left-hand side is empty. -- Note that this code is not executed if we have an assignment of a -- string literal to a non-bit aligned component of a record, a case -- which cannot be handled by the backend. elsif Nkind (Rhs) = N_String_Literal then if String_Length (Strval (Rhs)) = 0 and then Is_Bit_Packed_Array (L_Type) then Rewrite (N, Make_Null_Statement (Loc)); Analyze (N); end if; return; -- If either operand is bit packed, then we need a loop, since we can't -- be sure that the slice is byte aligned. elsif Is_Bit_Packed_Array (L_Type) or else Is_Bit_Packed_Array (R_Type) then Loop_Required := True; -- If we are not bit-packed, and we have only one slice, then no overlap -- is possible except in the parameter case, so we can let the back end -- handle things. elsif not (L_Slice and R_Slice) then if Forwards_OK (N) then return; end if; end if; -- If the right-hand side is a string literal, introduce a temporary for -- it, for use in the generated loop that will follow. if Nkind (Rhs) = N_String_Literal then declare Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Rhs); Decl : Node_Id; begin Decl := Make_Object_Declaration (Loc, Defining_Identifier => Temp, Object_Definition => New_Occurrence_Of (L_Type, Loc), Expression => Relocate_Node (Rhs)); Insert_Action (N, Decl); Rewrite (Rhs, New_Occurrence_Of (Temp, Loc)); R_Type := Etype (Temp); end; end if; -- Come here to complete the analysis -- Loop_Required: Set to True if we know that a loop is required -- regardless of overlap considerations. -- Forwards_OK: Set to False if we already know that a forwards -- move is not safe, else set to True. -- Backwards_OK: Set to False if we already know that a backwards -- move is not safe, else set to True -- Our task at this stage is to complete the overlap analysis, which can -- result in possibly setting Forwards_OK or Backwards_OK to False, and -- then generating the final code, either by deciding that it is OK -- after all to let Gigi handle it, or by generating appropriate code -- in the front end. declare L_Index_Typ : constant Entity_Id := Etype (First_Index (L_Type)); R_Index_Typ : constant Entity_Id := Etype (First_Index (R_Type)); Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ); Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ); Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ); Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ); Act_L_Array : Node_Id; Act_R_Array : Node_Id; Cleft_Lo : Node_Id; Cright_Lo : Node_Id; Condition : Node_Id; Cresult : Compare_Result; begin -- Get the expressions for the arrays. If we are dealing with a -- private type, then convert to the underlying type. We can do -- direct assignments to an array that is a private type, but we -- cannot assign to elements of the array without this extra -- unchecked conversion. -- Note: We propagate Parent to the conversion nodes to generate -- a well-formed subtree. if Nkind (Act_Lhs) = N_Slice then Larray := Prefix (Act_Lhs); else Larray := Act_Lhs; if Is_Private_Type (Etype (Larray)) then declare Par : constant Node_Id := Parent (Larray); begin Larray := Unchecked_Convert_To (Underlying_Type (Etype (Larray)), Larray); Set_Parent (Larray, Par); end; end if; end if; if Nkind (Act_Rhs) = N_Slice then Rarray := Prefix (Act_Rhs); else Rarray := Act_Rhs; if Is_Private_Type (Etype (Rarray)) then declare Par : constant Node_Id := Parent (Rarray); begin Rarray := Unchecked_Convert_To (Underlying_Type (Etype (Rarray)), Rarray); Set_Parent (Rarray, Par); end; end if; end if; -- If both sides are slices, we must figure out whether it is safe -- to do the move in one direction or the other. It is always safe -- if there is a change of representation since obviously two arrays -- with different representations cannot possibly overlap. if not Crep and L_Slice and R_Slice then Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs)); Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs)); -- If both left- and right-hand arrays are entity names, and refer -- to different entities, then we know that the move is safe (the -- two storage areas are completely disjoint). if Is_Entity_Name (Act_L_Array) and then Is_Entity_Name (Act_R_Array) and then Entity (Act_L_Array) /= Entity (Act_R_Array) then null; -- Otherwise, we assume the worst, which is that the two arrays -- are the same array. There is no need to check if we know that -- is the case, because if we don't know it, we still have to -- assume it. -- Generally if the same array is involved, then we have an -- overlapping case. We will have to really assume the worst (i.e. -- set neither of the OK flags) unless we can determine the lower -- or upper bounds at compile time and compare them. else Cresult := Compile_Time_Compare (Left_Lo, Right_Lo, Assume_Valid => True); if Cresult = Unknown then Cresult := Compile_Time_Compare (Left_Hi, Right_Hi, Assume_Valid => True); end if; case Cresult is when EQ | LE | LT => Set_Backwards_OK (N, False); when GE | GT => Set_Forwards_OK (N, False); when NE | Unknown => Set_Backwards_OK (N, False); Set_Forwards_OK (N, False); end case; end if; end if; -- If after that analysis Loop_Required is False, meaning that we -- have not discovered some non-overlap reason for requiring a loop, -- then the outcome depends on the capabilities of the back end. if not Loop_Required then -- Assume the back end can deal with all cases of overlap by -- falling back to memmove if it cannot use a more efficient -- approach. return; end if; -- At this stage we have to generate an explicit loop, and we have -- the following cases: -- Forwards_OK = True -- Rnn : right_index := right_index'First; -- for Lnn in left-index loop -- left (Lnn) := right (Rnn); -- Rnn := right_index'Succ (Rnn); -- end loop; -- Note: the above code MUST be analyzed with checks off, because -- otherwise the Succ could overflow. But in any case this is more -- efficient. -- Forwards_OK = False, Backwards_OK = True -- Rnn : right_index := right_index'Last; -- for Lnn in reverse left-index loop -- left (Lnn) := right (Rnn); -- Rnn := right_index'Pred (Rnn); -- end loop; -- Note: the above code MUST be analyzed with checks off, because -- otherwise the Pred could overflow. But in any case this is more -- efficient. -- Forwards_OK = Backwards_OK = False -- This only happens if we have the same array on each side. It is -- possible to create situations using overlays that violate this, -- but we simply do not promise to get this "right" in this case. -- There are two possible subcases. If the No_Implicit_Conditionals -- restriction is set, then we generate the following code: -- declare -- T : constant := rhs; -- begin -- lhs := T; -- end; -- If implicit conditionals are permitted, then we generate: -- if Left_Lo <= Right_Lo then -- -- else -- -- end if; -- In order to detect possible aliasing, we examine the renamed -- expression when the source or target is a renaming. However, -- the renaming may be intended to capture an address that may be -- affected by subsequent code, and therefore we must recover -- the actual entity for the expansion that follows, not the -- object it renames. In particular, if source or target designate -- a portion of a dynamically allocated object, the pointer to it -- may be reassigned but the renaming preserves the proper location. if Is_Entity_Name (Rhs) and then Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration and then Nkind (Act_Rhs) = N_Slice then Rarray := Rhs; end if; if Is_Entity_Name (Lhs) and then Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration and then Nkind (Act_Lhs) = N_Slice then Larray := Lhs; end if; -- Cases where either Forwards_OK or Backwards_OK is true if Forwards_OK (N) or else Backwards_OK (N) then if Needs_Finalization (Component_Type (L_Type)) and then Base_Type (L_Type) = Base_Type (R_Type) and then Ndim = 1 and then not No_Ctrl_Actions (N) and then not No_Finalize_Actions (N) then declare Proc : constant Entity_Id := TSS (Base_Type (L_Type), TSS_Slice_Assign); Actuals : List_Id; begin Apply_Dereference (Larray); Apply_Dereference (Rarray); Actuals := New_List ( Duplicate_Subexpr (Larray, Name_Req => True), Duplicate_Subexpr (Rarray, Name_Req => True), Duplicate_Subexpr (Left_Lo, Name_Req => True), Duplicate_Subexpr (Left_Hi, Name_Req => True), Duplicate_Subexpr (Right_Lo, Name_Req => True), Duplicate_Subexpr (Right_Hi, Name_Req => True)); Append_To (Actuals, New_Occurrence_Of ( Boolean_Literals (not Forwards_OK (N)), Loc)); Rewrite (N, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Proc, Loc), Parameter_Associations => Actuals)); end; else Rewrite (N, Expand_Assign_Array_Loop_Or_Bitfield (N, Larray, Rarray, L_Type, R_Type, Ndim, Rev => not Forwards_OK (N))); end if; -- Case of both are false with No_Implicit_Conditionals elsif Restriction_Active (No_Implicit_Conditionals) then declare T : constant Entity_Id := Make_Defining_Identifier (Loc, Chars => Name_T); begin Rewrite (N, Make_Block_Statement (Loc, Declarations => New_List ( Make_Object_Declaration (Loc, Defining_Identifier => T, Constant_Present => True, Object_Definition => New_Occurrence_Of (Etype (Rhs), Loc), Expression => Relocate_Node (Rhs))), Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Assignment_Statement (Loc, Name => Relocate_Node (Lhs), Expression => New_Occurrence_Of (T, Loc)))))); end; -- Case of both are false with implicit conditionals allowed else -- Before we generate this code, we must ensure that the left and -- right side array types are defined. They may be itypes, and we -- cannot let them be defined inside the if, since the first use -- in the then may not be executed. Ensure_Defined (L_Type, N); Ensure_Defined (R_Type, N); -- We normally compare addresses to find out which way round to -- do the loop, since this is reliable, and handles the cases of -- parameters, conversions etc. But we can't do that in the bit -- packed case, because addresses don't work there. if not Is_Bit_Packed_Array (L_Type) then Condition := Make_Op_Le (Loc, Left_Opnd => Unchecked_Convert_To (RTE (RE_Integer_Address), Make_Attribute_Reference (Loc, Prefix => Make_Indexed_Component (Loc, Prefix => Duplicate_Subexpr_Move_Checks (Larray, True), Expressions => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (L_Index_Typ, Loc), Attribute_Name => Name_First))), Attribute_Name => Name_Address)), Right_Opnd => Unchecked_Convert_To (RTE (RE_Integer_Address), Make_Attribute_Reference (Loc, Prefix => Make_Indexed_Component (Loc, Prefix => Duplicate_Subexpr_Move_Checks (Rarray, True), Expressions => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (R_Index_Typ, Loc), Attribute_Name => Name_First))), Attribute_Name => Name_Address))); -- For the bit packed and VM cases we use the bounds. That's OK, -- because we don't have to worry about parameters, since they -- cannot cause overlap. Perhaps we should worry about weird slice -- conversions ??? else -- Copy the bounds Cleft_Lo := New_Copy_Tree (Left_Lo); Cright_Lo := New_Copy_Tree (Right_Lo); -- If the types do not match we add an implicit conversion -- here to ensure proper match if Etype (Left_Lo) /= Etype (Right_Lo) then Cright_Lo := Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo); end if; -- Reset the Analyzed flag, because the bounds of the index -- type itself may be universal, and must be reanalyzed to -- acquire the proper type for the back end. Set_Analyzed (Cleft_Lo, False); Set_Analyzed (Cright_Lo, False); Condition := Make_Op_Le (Loc, Left_Opnd => Cleft_Lo, Right_Opnd => Cright_Lo); end if; if Needs_Finalization (Component_Type (L_Type)) and then Base_Type (L_Type) = Base_Type (R_Type) and then Ndim = 1 and then not No_Ctrl_Actions (N) and then not No_Finalize_Actions (N) then -- Call TSS procedure for array assignment, passing the -- explicit bounds of right- and left-hand sides. declare Proc : constant Entity_Id := TSS (Base_Type (L_Type), TSS_Slice_Assign); Actuals : List_Id; begin Apply_Dereference (Larray); Apply_Dereference (Rarray); Actuals := New_List ( Duplicate_Subexpr (Larray, Name_Req => True), Duplicate_Subexpr (Rarray, Name_Req => True), Duplicate_Subexpr (Left_Lo, Name_Req => True), Duplicate_Subexpr (Left_Hi, Name_Req => True), Duplicate_Subexpr (Right_Lo, Name_Req => True), Duplicate_Subexpr (Right_Hi, Name_Req => True)); Append_To (Actuals, Make_Op_Not (Loc, Right_Opnd => Condition)); Rewrite (N, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Proc, Loc), Parameter_Associations => Actuals)); end; else Rewrite (N, Make_Implicit_If_Statement (N, Condition => Condition, Then_Statements => New_List ( Expand_Assign_Array_Loop_Or_Bitfield (N, Larray, Rarray, L_Type, R_Type, Ndim, Rev => False)), Else_Statements => New_List ( Expand_Assign_Array_Loop_Or_Bitfield (N, Larray, Rarray, L_Type, R_Type, Ndim, Rev => True)))); end if; end if; Analyze (N, Suppress => All_Checks); end; exception when RE_Not_Available => return; end Expand_Assign_Array; ------------------------------ -- Expand_Assign_Array_Loop -- ------------------------------ -- The following is an example of the loop generated for the case of a -- two-dimensional array: -- declare -- R2b : Tm1X1 := 1; -- begin -- for L1b in 1 .. 100 loop -- declare -- R4b : Tm1X2 := 1; -- begin -- for L3b in 1 .. 100 loop -- vm1 (L1b, L3b) := vm2 (R2b, R4b); -- R4b := Tm1X2'succ(R4b); -- end loop; -- end; -- R2b := Tm1X1'succ(R2b); -- end loop; -- end; -- Here Rev is False, and Tm1Xn are the subscript types for the right-hand -- side. The declarations of R2b and R4b are inserted before the original -- assignment statement. function Expand_Assign_Array_Loop (N : Node_Id; Larray : Entity_Id; Rarray : Entity_Id; L_Type : Entity_Id; R_Type : Entity_Id; Ndim : Pos; Rev : Boolean) return Node_Id is Loc : constant Source_Ptr := Sloc (N); Lnn : array (1 .. Ndim) of Entity_Id; Rnn : array (1 .. Ndim) of Entity_Id; -- Entities used as subscripts on left and right sides L_Index_Type : array (1 .. Ndim) of Entity_Id; R_Index_Type : array (1 .. Ndim) of Entity_Id; -- Left and right index types Assign : Node_Id; F_Or_L : Name_Id; S_Or_P : Name_Id; function Build_Step (J : Nat) return Node_Id; -- The increment step for the index of the right-hand side is written -- as an attribute reference (Succ or Pred). This function returns -- the corresponding node, which is placed at the end of the loop body. ---------------- -- Build_Step -- ---------------- function Build_Step (J : Nat) return Node_Id is Step : Node_Id; Lim : Name_Id; begin if Rev then Lim := Name_First; else Lim := Name_Last; end if; Step := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Rnn (J), Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (R_Index_Type (J), Loc), Attribute_Name => S_Or_P, Expressions => New_List ( New_Occurrence_Of (Rnn (J), Loc)))); -- Note that on the last iteration of the loop, the index is increased -- (or decreased) past the corresponding bound. This is consistent with -- the C semantics of the back-end, where such an off-by-one value on a -- dead index variable is OK. However, in CodePeer mode this leads to -- spurious warnings, and thus we place a guard around the attribute -- reference. For obvious reasons we only do this for CodePeer. if CodePeer_Mode then Step := Make_If_Statement (Loc, Condition => Make_Op_Ne (Loc, Left_Opnd => New_Occurrence_Of (Lnn (J), Loc), Right_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (L_Index_Type (J), Loc), Attribute_Name => Lim)), Then_Statements => New_List (Step)); end if; return Step; end Build_Step; -- Start of processing for Expand_Assign_Array_Loop begin if Rev then F_Or_L := Name_Last; S_Or_P := Name_Pred; else F_Or_L := Name_First; S_Or_P := Name_Succ; end if; -- Setup index types and subscript entities declare L_Index : Node_Id; R_Index : Node_Id; begin L_Index := First_Index (L_Type); R_Index := First_Index (R_Type); for J in 1 .. Ndim loop Lnn (J) := Make_Temporary (Loc, 'L'); Rnn (J) := Make_Temporary (Loc, 'R'); L_Index_Type (J) := Etype (L_Index); R_Index_Type (J) := Etype (R_Index); Next_Index (L_Index); Next_Index (R_Index); end loop; end; -- Now construct the assignment statement declare ExprL : constant List_Id := New_List; ExprR : constant List_Id := New_List; begin for J in 1 .. Ndim loop Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc)); Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc)); end loop; Assign := Make_Assignment_Statement (Loc, Name => Make_Indexed_Component (Loc, Prefix => Duplicate_Subexpr (Larray, Name_Req => True), Expressions => ExprL), Expression => Make_Indexed_Component (Loc, Prefix => Duplicate_Subexpr (Rarray, Name_Req => True), Expressions => ExprR)); -- We set assignment OK, since there are some cases, e.g. in object -- declarations, where we are actually assigning into a constant. -- If there really is an illegality, it was caught long before now, -- and was flagged when the original assignment was analyzed. Set_Assignment_OK (Name (Assign)); -- Propagate the No_{Ctrl,Finalize}_Actions flags to assignments Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N)); Set_No_Finalize_Actions (Assign, No_Finalize_Actions (N)); end; -- Now construct the loop from the inside out, with the last subscript -- varying most rapidly. Note that Assign is first the raw assignment -- statement, and then subsequently the loop that wraps it up. for J in reverse 1 .. Ndim loop Assign := Make_Block_Statement (Loc, Declarations => New_List ( Make_Object_Declaration (Loc, Defining_Identifier => Rnn (J), Object_Definition => New_Occurrence_Of (R_Index_Type (J), Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (R_Index_Type (J), Loc), Attribute_Name => F_Or_L))), Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Implicit_Loop_Statement (N, Iteration_Scheme => Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => Lnn (J), Reverse_Present => Rev, Discrete_Subtype_Definition => New_Occurrence_Of (L_Index_Type (J), Loc))), Statements => New_List (Assign, Build_Step (J)))))); end loop; return Assign; end Expand_Assign_Array_Loop; ---------------------------------- -- Expand_Assign_Array_Bitfield -- ---------------------------------- function Expand_Assign_Array_Bitfield (N : Node_Id; Larray : Entity_Id; Rarray : Entity_Id; L_Type : Entity_Id; R_Type : Entity_Id; Rev : Boolean) return Node_Id is pragma Assert (not Rev); -- Reverse copying is not yet supported by Copy_Bitfield. pragma Assert (not Change_Of_Representation (N)); -- This won't work, for example, to copy a packed array to an unpacked -- array. Loc : constant Source_Ptr := Sloc (N); L_Index_Typ : constant Entity_Id := Etype (First_Index (L_Type)); R_Index_Typ : constant Entity_Id := Etype (First_Index (R_Type)); Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ); Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ); L_Addr : constant Node_Id := Make_Attribute_Reference (Loc, Prefix => Make_Indexed_Component (Loc, Prefix => Duplicate_Subexpr (Larray, True), Expressions => New_List (New_Copy_Tree (Left_Lo))), Attribute_Name => Name_Address); L_Bit : constant Node_Id := Make_Attribute_Reference (Loc, Prefix => Make_Indexed_Component (Loc, Prefix => Duplicate_Subexpr (Larray, True), Expressions => New_List (New_Copy_Tree (Left_Lo))), Attribute_Name => Name_Bit); R_Addr : constant Node_Id := Make_Attribute_Reference (Loc, Prefix => Make_Indexed_Component (Loc, Prefix => Duplicate_Subexpr (Rarray, True), Expressions => New_List (New_Copy_Tree (Right_Lo))), Attribute_Name => Name_Address); R_Bit : constant Node_Id := Make_Attribute_Reference (Loc, Prefix => Make_Indexed_Component (Loc, Prefix => Duplicate_Subexpr (Rarray, True), Expressions => New_List (New_Copy_Tree (Right_Lo))), Attribute_Name => Name_Bit); -- Compute the Size of the bitfield -- Note that the length check has already been done, so we can use the -- size of either L or R; they are equal. We can't use 'Size here, -- because sometimes bit fields get copied into a temp, and the 'Size -- ends up being the size of the temp (e.g. an 8-bit temp containing -- a 4-bit bit field). Size : constant Node_Id := Make_Op_Multiply (Loc, Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr (Name (N), True), Attribute_Name => Name_Length), Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr (Name (N), True), Attribute_Name => Name_Component_Size)); begin return Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (RTE (RE_Copy_Bitfield), Loc), Parameter_Associations => New_List ( R_Addr, R_Bit, L_Addr, L_Bit, Size)); end Expand_Assign_Array_Bitfield; --------------------------------------- -- Expand_Assign_Array_Bitfield_Fast -- --------------------------------------- function Expand_Assign_Array_Bitfield_Fast (N : Node_Id; Larray : Entity_Id; Rarray : Entity_Id) return Node_Id is pragma Assert (not Change_Of_Representation (N)); -- This won't work, for example, to copy a packed array to an unpacked -- array. -- For L (A .. B) := R (C .. D), we generate: -- -- L := Fast_Copy_Bitfield (R, , L, , -- L (A .. B)'Length * L'Component_Size); -- -- with L and R suitably uncheckedly converted to/from Val_2. -- The offsets are from the start of L and R. Loc : constant Source_Ptr := Sloc (N); L_Typ : constant Entity_Id := Etype (Larray); R_Typ : constant Entity_Id := Etype (Rarray); -- The original type of the arrays L_Val : constant Node_Id := Unchecked_Convert_To (RTE (RE_Val_2), Larray); R_Val : constant Node_Id := Unchecked_Convert_To (RTE (RE_Val_2), Rarray); -- Converted values of left- and right-hand sides L_Small : constant Boolean := Known_Static_RM_Size (L_Typ) and then RM_Size (L_Typ) < Standard_Long_Long_Integer_Size; R_Small : constant Boolean := Known_Static_RM_Size (R_Typ) and then RM_Size (R_Typ) < Standard_Long_Long_Integer_Size; -- Whether the above unchecked conversions need to be padded with zeros C_Size : constant Uint := Component_Size (L_Typ); pragma Assert (C_Size >= 1); pragma Assert (C_Size = Component_Size (R_Typ)); Larray_Bounds : constant Range_Values := Get_Index_Bounds (First_Index (L_Typ)); L_Bounds : constant Range_Values := (if Nkind (Name (N)) = N_Slice then Get_Index_Bounds (Discrete_Range (Name (N))) else Larray_Bounds); -- If the left-hand side is A (First..Last), Larray_Bounds is A'Range, -- and L_Bounds is First..Last. If it's not a slice, we treat it like -- a slice starting at A'First. L_Bit : constant Node_Id := Make_Integer_Literal (Loc, (L_Bounds.First - Larray_Bounds.First) * C_Size); Rarray_Bounds : constant Range_Values := Get_Index_Bounds (First_Index (R_Typ)); R_Bounds : constant Range_Values := (if Nkind (Expression (N)) = N_Slice then Get_Index_Bounds (Discrete_Range (Expression (N))) else Rarray_Bounds); R_Bit : constant Node_Id := Make_Integer_Literal (Loc, (R_Bounds.First - Rarray_Bounds.First) * C_Size); Size : constant Node_Id := Make_Op_Multiply (Loc, Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr (Name (N), True), Attribute_Name => Name_Length), Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr (Larray, True), Attribute_Name => Name_Component_Size)); L_Arg, R_Arg, Call : Node_Id; begin -- The semantics of unchecked conversion between bit-packed arrays that -- are implemented as modular types and modular types is precisely that -- of unchecked conversion between modular types. Therefore, if it needs -- to be padded with zeros, the padding must be moved to the correct end -- for memory order because System.Bitfield_Utils works in memory order. if L_Small and then (Bytes_Big_Endian xor Reverse_Storage_Order (L_Typ)) then L_Arg := Make_Op_Shift_Left (Loc, Left_Opnd => L_Val, Right_Opnd => Make_Integer_Literal (Loc, Standard_Long_Long_Integer_Size - RM_Size (L_Typ))); else L_Arg := L_Val; end if; if R_Small and then (Bytes_Big_Endian xor Reverse_Storage_Order (R_Typ)) then R_Arg := Make_Op_Shift_Left (Loc, Left_Opnd => R_Val, Right_Opnd => Make_Integer_Literal (Loc, Standard_Long_Long_Integer_Size - RM_Size (R_Typ))); else R_Arg := R_Val; end if; Call := Make_Function_Call (Loc, Name => New_Occurrence_Of (RTE (RE_Fast_Copy_Bitfield), Loc), Parameter_Associations => New_List ( R_Arg, R_Bit, L_Arg, L_Bit, Size)); -- Conversely, the final unchecked conversion must take significant bits if L_Small and then (Bytes_Big_Endian xor Reverse_Storage_Order (L_Typ)) then Call := Make_Op_Shift_Right (Loc, Left_Opnd => Call, Right_Opnd => Make_Integer_Literal (Loc, Standard_Long_Long_Integer_Size - RM_Size (L_Typ))); end if; return Make_Assignment_Statement (Loc, Name => Duplicate_Subexpr (Larray, True), Expression => Unchecked_Convert_To (L_Typ, Call)); end Expand_Assign_Array_Bitfield_Fast; ------------------------------------------ -- Expand_Assign_Array_Loop_Or_Bitfield -- ------------------------------------------ function Expand_Assign_Array_Loop_Or_Bitfield (N : Node_Id; Larray : Entity_Id; Rarray : Entity_Id; L_Type : Entity_Id; R_Type : Entity_Id; Ndim : Pos; Rev : Boolean) return Node_Id is function Volatile_Or_Independent (Exp : Node_Id; Typ : Entity_Id) return Boolean; -- Exp is an expression of type Typ, or if there is no expression -- involved, Exp is Empty. True if there are any volatile or independent -- objects that should disable the optimization. We check the object -- itself, all subcomponents, and if Exp is a slice of a component or -- slice, we check the prefix and its type. -- -- We disable the optimization when there are relevant volatile or -- independent objects, because Copy_Bitfield can read and write bits -- that are not part of the objects being copied. ----------------------------- -- Volatile_Or_Independent -- ----------------------------- function Volatile_Or_Independent (Exp : Node_Id; Typ : Entity_Id) return Boolean is begin -- Initially, Exp is the left- or right-hand side. In recursive -- calls, Exp is Empty if we're just checking a component type, and -- Exp is the prefix if we're checking the prefix of a slice. if Present (Exp) and then (Is_Volatile_Object_Ref (Exp) or else Is_Independent_Object (Exp)) then return True; end if; if Has_Volatile_Components (Typ) or else Has_Independent_Components (Typ) then return True; end if; if Is_Array_Type (Typ) then if Volatile_Or_Independent (Empty, Component_Type (Typ)) then return True; end if; elsif Is_Record_Type (Typ) then declare Comp : Entity_Id := First_Component (Typ); begin while Present (Comp) loop if Volatile_Or_Independent (Empty, Comp) then return True; end if; Next_Component (Comp); end loop; end; end if; if Nkind (Exp) = N_Slice and then Nkind (Prefix (Exp)) in N_Selected_Component | N_Indexed_Component | N_Slice then if Volatile_Or_Independent (Prefix (Exp), Etype (Prefix (Exp))) then return True; end if; end if; return False; end Volatile_Or_Independent; function Slice_Of_Packed_Component (L : Node_Id) return Boolean is (Nkind (L) = N_Slice and then Nkind (Prefix (L)) = N_Indexed_Component and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (L))))); -- L is the left-hand side Name. Returns True if L is a slice of a -- component of a bit-packed array. The optimization is disabled in -- that case, because Expand_Assign_Array_Bitfield_Fast cannot -- currently handle that case correctly. L : constant Node_Id := Name (N); R : constant Node_Id := Expression (N); -- Left- and right-hand sides of the assignment statement Slices : constant Boolean := Nkind (L) = N_Slice or else Nkind (R) = N_Slice; -- Start of processing for Expand_Assign_Array_Loop_Or_Bitfield begin -- Determine whether Copy_Bitfield or Fast_Copy_Bitfield is appropriate -- (will work, and will be more efficient than component-by-component -- copy). Copy_Bitfield doesn't work for reversed storage orders. It is -- efficient for slices of bit-packed arrays. if Is_Bit_Packed_Array (L_Type) and then Is_Bit_Packed_Array (R_Type) and then not Reverse_Storage_Order (L_Type) and then not Reverse_Storage_Order (R_Type) and then Slices and then not Slice_Of_Packed_Component (L) and then not Volatile_Or_Independent (L, L_Type) and then not Volatile_Or_Independent (R, R_Type) then -- Here if Copy_Bitfield can work (except for the Rev test below). -- Determine whether to call Fast_Copy_Bitfield instead. If we -- are assigning slices, and all the relevant bounds are known at -- compile time, and the maximum object size is no greater than -- System.Bitfields.Val_Bits (i.e. Long_Long_Integer'Size / 2), and -- we don't have enumeration representation clauses, we can use -- Fast_Copy_Bitfield. The max size test is to ensure that the slices -- cannot overlap boundaries not supported by Fast_Copy_Bitfield. pragma Assert (Known_Component_Size (Base_Type (L_Type))); pragma Assert (Known_Component_Size (Base_Type (R_Type))); -- Note that L_Type and R_Type do not necessarily have the same base -- type, because of array type conversions. Hence the need to check -- various properties of both. if Compile_Time_Known_Bounds (Base_Type (L_Type)) and then Compile_Time_Known_Bounds (Base_Type (R_Type)) then declare Left_Base_Index : constant Entity_Id := First_Index (Base_Type (L_Type)); Left_Base_Range : constant Range_Values := Get_Index_Bounds (Left_Base_Index); Right_Base_Index : constant Entity_Id := First_Index (Base_Type (R_Type)); Right_Base_Range : constant Range_Values := Get_Index_Bounds (Right_Base_Index); Known_Left_Slice_Low : constant Boolean := (if Nkind (L) = N_Slice then Compile_Time_Known_Value (Get_Index_Bounds (Discrete_Range (L)).First)); Known_Right_Slice_Low : constant Boolean := (if Nkind (R) = N_Slice then Compile_Time_Known_Value (Get_Index_Bounds (Discrete_Range (R)).Last)); Val_Bits : constant Pos := Standard_Long_Long_Integer_Size / 2; begin if Left_Base_Range.Last - Left_Base_Range.First < Val_Bits and then Right_Base_Range.Last - Right_Base_Range.First < Val_Bits and then Known_Esize (L_Type) and then Known_Esize (R_Type) and then Known_Left_Slice_Low and then Known_Right_Slice_Low and then Compile_Time_Known_Value (Get_Index_Bounds (First_Index (Etype (Larray))).First) and then Compile_Time_Known_Value (Get_Index_Bounds (First_Index (Etype (Rarray))).First) and then not (Is_Enumeration_Type (Etype (Left_Base_Index)) and then Has_Enumeration_Rep_Clause (Etype (Left_Base_Index))) and then RTE_Available (RE_Fast_Copy_Bitfield) then pragma Assert (Known_Esize (L_Type)); pragma Assert (Known_Esize (R_Type)); return Expand_Assign_Array_Bitfield_Fast (N, Larray, Rarray); end if; end; end if; -- Fast_Copy_Bitfield can work if Rev is True, because the data is -- passed and returned by copy. Copy_Bitfield cannot. if not Rev and then RTE_Available (RE_Copy_Bitfield) then return Expand_Assign_Array_Bitfield (N, Larray, Rarray, L_Type, R_Type, Rev); end if; end if; -- Here if we did not return above, with Fast_Copy_Bitfield or -- Copy_Bitfield. return Expand_Assign_Array_Loop (N, Larray, Rarray, L_Type, R_Type, Ndim, Rev); end Expand_Assign_Array_Loop_Or_Bitfield; -------------------------- -- Expand_Assign_Record -- -------------------------- procedure Expand_Assign_Record (N : Node_Id) is Lhs : constant Node_Id := Name (N); Rhs : Node_Id := Expression (N); L_Typ : constant Entity_Id := Base_Type (Etype (Lhs)); begin -- If change of representation, then extract the real right-hand side -- from the type conversion, and proceed with component-wise assignment, -- since the two types are not the same as far as the back end is -- concerned. if Change_Of_Representation (N) then Rhs := Expression (Rhs); -- If this may be a case of a large bit aligned component, then proceed -- with component-wise assignment, to avoid possible clobbering of other -- components sharing bits in the first or last byte of the component to -- be assigned. elsif Possible_Bit_Aligned_Component (Lhs) or else Possible_Bit_Aligned_Component (Rhs) then null; -- If we have a tagged type that has a complete record representation -- clause, we must do we must do component-wise assignments, since child -- types may have used gaps for their components, and we might be -- dealing with a view conversion. elsif Is_Fully_Repped_Tagged_Type (L_Typ) then null; -- If neither condition met, then nothing special to do, the back end -- can handle assignment of the entire component as a single entity. else return; end if; -- At this stage we know that we must do a component wise assignment declare Loc : constant Source_Ptr := Sloc (N); R_Typ : constant Entity_Id := Base_Type (Etype (Rhs)); Decl : constant Node_Id := Declaration_Node (R_Typ); RDef : Node_Id; F : Entity_Id; function Find_Component (Typ : Entity_Id; Comp : Entity_Id) return Entity_Id; -- Find the component with the given name in the underlying record -- declaration for Typ. We need to use the actual entity because the -- type may be private and resolution by identifier alone would fail. function Make_Component_List_Assign (CL : Node_Id; U_U : Boolean := False) return List_Id; -- Returns a sequence of statements to assign the components that -- are referenced in the given component list. The flag U_U is -- used to force the usage of the inferred value of the variant -- part expression as the switch for the generated case statement. function Make_Field_Assign (C : Entity_Id; U_U : Boolean := False) return Node_Id; -- Given C, the entity for a discriminant or component, build an -- assignment for the corresponding field values. The flag U_U -- signals the presence of an Unchecked_Union and forces the usage -- of the inferred discriminant value of C as the right-hand side -- of the assignment. function Make_Field_Assigns (CI : List_Id) return List_Id; -- Given CI, a component items list, construct series of statements -- for fieldwise assignment of the corresponding components. -------------------- -- Find_Component -- -------------------- function Find_Component (Typ : Entity_Id; Comp : Entity_Id) return Entity_Id is Utyp : constant Entity_Id := Underlying_Type (Typ); C : Entity_Id; begin C := First_Entity (Utyp); while Present (C) loop if Chars (C) = Chars (Comp) then return C; -- The component may be a renamed discriminant, in -- which case check against the name of the original -- discriminant of the parent type. elsif Is_Derived_Type (Scope (Comp)) and then Ekind (Comp) = E_Discriminant and then Present (Corresponding_Discriminant (Comp)) and then Chars (C) = Chars (Corresponding_Discriminant (Comp)) then return C; end if; Next_Entity (C); end loop; raise Program_Error; end Find_Component; -------------------------------- -- Make_Component_List_Assign -- -------------------------------- function Make_Component_List_Assign (CL : Node_Id; U_U : Boolean := False) return List_Id is CI : constant List_Id := Component_Items (CL); VP : constant Node_Id := Variant_Part (CL); Alts : List_Id; DC : Node_Id; DCH : List_Id; Expr : Node_Id; Result : List_Id; V : Node_Id; begin Result := Make_Field_Assigns (CI); if Present (VP) then V := First_Non_Pragma (Variants (VP)); Alts := New_List; while Present (V) loop DCH := New_List; DC := First (Discrete_Choices (V)); while Present (DC) loop Append_To (DCH, New_Copy_Tree (DC)); Next (DC); end loop; Append_To (Alts, Make_Case_Statement_Alternative (Loc, Discrete_Choices => DCH, Statements => Make_Component_List_Assign (Component_List (V)))); Next_Non_Pragma (V); end loop; -- Try to find a constrained type or a derived type to extract -- discriminant values from, so that the case statement built -- below can be folded by Expand_N_Case_Statement. if U_U or else Is_Constrained (Etype (Rhs)) then Expr := New_Copy (Get_Discriminant_Value ( Entity (Name (VP)), Etype (Rhs), Discriminant_Constraint (Etype (Rhs)))); elsif Is_Constrained (Etype (Expression (N))) then Expr := New_Copy (Get_Discriminant_Value ( Entity (Name (VP)), Etype (Expression (N)), Discriminant_Constraint (Etype (Expression (N))))); elsif Is_Derived_Type (Etype (Rhs)) and then Present (Stored_Constraint (Etype (Rhs))) then Expr := New_Copy (Get_Discriminant_Value ( Corresponding_Record_Component (Entity (Name (VP))), Etype (Etype (Rhs)), Stored_Constraint (Etype (Rhs)))); else Expr := Empty; end if; if No (Expr) or else not Compile_Time_Known_Value (Expr) then Expr := Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr (Rhs), Selector_Name => Make_Identifier (Loc, Chars (Name (VP)))); end if; Append_To (Result, Make_Case_Statement (Loc, Expression => Expr, Alternatives => Alts)); end if; return Result; end Make_Component_List_Assign; ----------------------- -- Make_Field_Assign -- ----------------------- function Make_Field_Assign (C : Entity_Id; U_U : Boolean := False) return Node_Id is A : Node_Id; Disc : Entity_Id; Expr : Node_Id; begin -- The discriminant entity to be used in the retrieval below must -- be one in the corresponding type, given that the assignment may -- be between derived and parent types. if Is_Derived_Type (Etype (Rhs)) then Disc := Find_Component (R_Typ, C); else Disc := C; end if; -- In the case of an Unchecked_Union, use the discriminant -- constraint value as on the right-hand side of the assignment. if U_U then Expr := New_Copy (Get_Discriminant_Value (C, Etype (Rhs), Discriminant_Constraint (Etype (Rhs)))); else Expr := Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr (Rhs), Selector_Name => New_Occurrence_Of (Disc, Loc)); end if; -- Generate the assignment statement. When the left-hand side -- is an object with an address clause present, force generated -- temporaries to be renamings so as to correctly assign to any -- overlaid objects. A := Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr (Exp => Lhs, Name_Req => False, Renaming_Req => Is_Entity_Name (Lhs) and then Present (Address_Clause (Entity (Lhs)))), Selector_Name => New_Occurrence_Of (Find_Component (L_Typ, C), Loc)), Expression => Expr); -- Set Assignment_OK, so discriminants can be assigned Set_Assignment_OK (Name (A), True); if Componentwise_Assignment (N) and then Nkind (Name (A)) = N_Selected_Component and then Chars (Selector_Name (Name (A))) = Name_uParent then Set_Componentwise_Assignment (A); end if; return A; end Make_Field_Assign; ------------------------ -- Make_Field_Assigns -- ------------------------ function Make_Field_Assigns (CI : List_Id) return List_Id is Item : Node_Id; Result : List_Id; begin Item := First (CI); Result := New_List; while Present (Item) loop -- Look for components, but exclude _tag field assignment if -- the special Componentwise_Assignment flag is set. if Nkind (Item) = N_Component_Declaration and then not (Is_Tag (Defining_Identifier (Item)) and then Componentwise_Assignment (N)) then Append_To (Result, Make_Field_Assign (Defining_Identifier (Item))); end if; Next (Item); end loop; return Result; end Make_Field_Assigns; -- Start of processing for Expand_Assign_Record begin -- Note that we need to use the base types for this processing in -- order to retrieve the Type_Definition. In the constrained case, -- we filter out the non relevant fields in -- Make_Component_List_Assign. -- First copy the discriminants. This is done unconditionally. It -- is required in the unconstrained left side case, and also in the -- case where this assignment was constructed during the expansion -- of a type conversion (since initialization of discriminants is -- suppressed in this case). It is unnecessary but harmless in -- other cases. -- Special case: no copy if the target has no discriminants if Has_Discriminants (L_Typ) and then Is_Unchecked_Union (Base_Type (L_Typ)) then null; elsif Has_Discriminants (L_Typ) then F := First_Discriminant (R_Typ); while Present (F) loop -- If we are expanding the initialization of a derived record -- that constrains or renames discriminants of the parent, we -- must use the corresponding discriminant in the parent. declare CF : Entity_Id; begin if Inside_Init_Proc and then Present (Corresponding_Discriminant (F)) then CF := Corresponding_Discriminant (F); else CF := F; end if; if Is_Unchecked_Union (R_Typ) then -- Within an initialization procedure this is the -- assignment to an unchecked union component, in which -- case there is no discriminant to initialize. if Inside_Init_Proc then null; else -- The assignment is part of a conversion from a -- derived unchecked union type with an inferable -- discriminant, to a parent type. Insert_Action (N, Make_Field_Assign (CF, True)); end if; else Insert_Action (N, Make_Field_Assign (CF)); end if; Next_Discriminant (F); end; end loop; -- If the derived type has a stored constraint, assign the value -- of the corresponding discriminants explicitly, skipping those -- that are renamed discriminants. We cannot just retrieve them -- from the Rhs by selected component because they are invisible -- in the type of the right-hand side. if Present (Stored_Constraint (R_Typ)) then declare Assign : Node_Id; Discr_Val : Elmt_Id; begin Discr_Val := First_Elmt (Stored_Constraint (R_Typ)); F := First_Entity (R_Typ); while Present (F) loop if Ekind (F) = E_Discriminant and then Is_Completely_Hidden (F) and then Present (Corresponding_Record_Component (F)) and then (not Is_Entity_Name (Node (Discr_Val)) or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant) then Assign := Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr (Lhs), Selector_Name => New_Occurrence_Of (Corresponding_Record_Component (F), Loc)), Expression => New_Copy (Node (Discr_Val))); Set_Assignment_OK (Name (Assign)); Insert_Action (N, Assign); Next_Elmt (Discr_Val); end if; Next_Entity (F); end loop; end; end if; end if; -- We know the underlying type is a record, but its current view -- may be private. We must retrieve the usable record declaration. if Nkind (Decl) in N_Private_Type_Declaration | N_Private_Extension_Declaration and then Present (Full_View (R_Typ)) then RDef := Type_Definition (Declaration_Node (Full_View (R_Typ))); else RDef := Type_Definition (Decl); end if; if Nkind (RDef) = N_Derived_Type_Definition then RDef := Record_Extension_Part (RDef); end if; if Nkind (RDef) = N_Record_Definition and then Present (Component_List (RDef)) then if Is_Unchecked_Union (R_Typ) then Insert_Actions (N, Make_Component_List_Assign (Component_List (RDef), True)); else Insert_Actions (N, Make_Component_List_Assign (Component_List (RDef))); end if; Rewrite (N, Make_Null_Statement (Loc)); end if; end; end Expand_Assign_Record; ------------------------------------- -- Expand_Assign_With_Target_Names -- ------------------------------------- procedure Expand_Assign_With_Target_Names (N : Node_Id) is LHS : constant Node_Id := Name (N); LHS_Typ : constant Entity_Id := Etype (LHS); Loc : constant Source_Ptr := Sloc (N); RHS : constant Node_Id := Expression (N); Ent : Entity_Id; -- The entity of the left-hand side function Replace_Target (N : Node_Id) return Traverse_Result; -- Replace occurrences of the target name by the proper entity: either -- the entity of the LHS in simple cases, or the formal of the -- constructed procedure otherwise. -------------------- -- Replace_Target -- -------------------- function Replace_Target (N : Node_Id) return Traverse_Result is begin if Nkind (N) = N_Target_Name then Rewrite (N, New_Occurrence_Of (Ent, Sloc (N))); -- The expression will be reanalyzed when the enclosing assignment -- is reanalyzed, so reset the entity, which may be a temporary -- created during analysis, e.g. a loop variable for an iterated -- component association. However, if entity is callable then -- resolution has established its proper identity (including in -- rewritten prefixed calls) so we must preserve it. elsif Is_Entity_Name (N) then if Present (Entity (N)) and then not Is_Overloadable (Entity (N)) then Set_Entity (N, Empty); end if; end if; Set_Analyzed (N, False); return OK; end Replace_Target; procedure Replace_Target_Name is new Traverse_Proc (Replace_Target); -- Local variables New_RHS : Node_Id; Proc_Id : Entity_Id; -- Start of processing for Expand_Assign_With_Target_Names begin New_RHS := New_Copy_Tree (RHS); -- The left-hand side is a direct name if Is_Entity_Name (LHS) and then not Is_Renaming_Of_Object (Entity (LHS)) then Ent := Entity (LHS); Replace_Target_Name (New_RHS); -- Generate: -- LHS := ... LHS ...; Rewrite (N, Make_Assignment_Statement (Loc, Name => Relocate_Node (LHS), Expression => New_RHS)); -- The left-hand side is not a direct name, but is side-effect-free. -- Capture its value in a temporary to avoid generating a procedure. -- We don't do this optimization if the target object's type may need -- finalization actions, because we don't want extra finalizations to -- be done for the temp object, and instead we use the more general -- procedure-based approach below. elsif Side_Effect_Free (LHS) and then not Needs_Finalization (Etype (LHS)) then Ent := Make_Temporary (Loc, 'T'); Replace_Target_Name (New_RHS); -- Generate: -- T : LHS_Typ := LHS; Insert_Before_And_Analyze (N, Make_Object_Declaration (Loc, Defining_Identifier => Ent, Object_Definition => New_Occurrence_Of (LHS_Typ, Loc), Expression => New_Copy_Tree (LHS))); -- Generate: -- LHS := ... T ...; Rewrite (N, Make_Assignment_Statement (Loc, Name => Relocate_Node (LHS), Expression => New_RHS)); -- Otherwise wrap the whole assignment statement in a procedure with an -- IN OUT parameter. The original assignment then becomes a call to the -- procedure with the left-hand side as an actual. else Ent := Make_Temporary (Loc, 'T'); Replace_Target_Name (New_RHS); -- Generate: -- procedure P (T : in out LHS_Typ) is -- begin -- T := ... T ...; -- end P; Proc_Id := Make_Temporary (Loc, 'P'); Insert_Before_And_Analyze (N, Make_Subprogram_Body (Loc, Specification => Make_Procedure_Specification (Loc, Defining_Unit_Name => Proc_Id, Parameter_Specifications => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Ent, In_Present => True, Out_Present => True, Parameter_Type => New_Occurrence_Of (LHS_Typ, Loc)))), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Ent, Loc), Expression => New_RHS))))); -- Generate: -- P (LHS); Rewrite (N, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Proc_Id, Loc), Parameter_Associations => New_List (Relocate_Node (LHS)))); end if; -- Analyze rewritten node, either as assignment or procedure call Analyze (N); end Expand_Assign_With_Target_Names; ----------------------------------- -- Expand_N_Assignment_Statement -- ----------------------------------- -- This procedure implements various cases where an assignment statement -- cannot just be passed on to the back end in untransformed state. procedure Expand_N_Assignment_Statement (N : Node_Id) is Crep : constant Boolean := Change_Of_Representation (N); Lhs : constant Node_Id := Name (N); Loc : constant Source_Ptr := Sloc (N); Rhs : constant Node_Id := Expression (N); -- Obtain the relevant corresponding mutably tagged type if necessary Typ : constant Entity_Id := Get_Corresponding_Mutably_Tagged_Type_If_Present (Underlying_Type (Etype (Lhs))); Exp : Node_Id; begin -- Special case to check right away, if the Componentwise_Assignment -- flag is set, this is a reanalysis from the expansion of the primitive -- assignment procedure for a tagged type, and all we need to do is to -- expand to assignment of components, because otherwise, we would get -- infinite recursion (since this looks like a tagged assignment which -- would normally try to *call* the primitive assignment procedure). if Componentwise_Assignment (N) then Expand_Assign_Record (N); return; end if; -- Defend against invalid subscripts on left side if we are in standard -- validity checking mode. No need to do this if we are checking all -- subscripts. -- Note that we do this right away, because there are some early return -- paths in this procedure, and this is required on all paths. if Validity_Checks_On and then Validity_Check_Default and then not Validity_Check_Subscripts then Check_Valid_Lvalue_Subscripts (Lhs); end if; -- Separate expansion if RHS contain target names. Note that assignment -- may already have been expanded if RHS is aggregate. if Nkind (N) = N_Assignment_Statement and then Has_Target_Names (N) then Expand_Assign_With_Target_Names (N); return; end if; -- Ada 2005 (AI-327): Handle assignment to priority of protected object -- Rewrite an assignment to X'Priority into a run-time call -- For example: X'Priority := New_Prio_Expr; -- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr); -- Note that although X'Priority is notionally an object, it is quite -- deliberately not defined as an aliased object in the RM. This means -- that it works fine to rewrite it as a call, without having to worry -- about complications that would other arise from X'Priority'Access, -- which is illegal, because of the lack of aliasing. if Ada_Version >= Ada_2005 then declare Call : Node_Id; Ent : Entity_Id; Prottyp : Entity_Id; RT_Subprg : RE_Id; begin -- Handle chains of renamings Ent := Name (N); while Nkind (Ent) in N_Has_Entity and then Present (Entity (Ent)) and then Is_Object (Entity (Ent)) and then Present (Renamed_Object (Entity (Ent))) loop Ent := Renamed_Object (Entity (Ent)); end loop; -- The attribute Priority applied to protected objects has been -- previously expanded into a call to the Get_Ceiling run-time -- subprogram. In restricted profiles this is not available. if Is_Expanded_Priority_Attribute (Ent) then -- Look for the enclosing protected type Prottyp := Current_Scope; while not Is_Protected_Type (Prottyp) loop Prottyp := Scope (Prottyp); end loop; pragma Assert (Is_Protected_Type (Prottyp)); -- Select the appropriate run-time call if Has_Entries (Prottyp) then RT_Subprg := RO_PE_Set_Ceiling; else RT_Subprg := RE_Set_Ceiling; end if; Call := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (RTE (RT_Subprg), Loc), Parameter_Associations => New_List ( New_Copy_Tree (First (Parameter_Associations (Ent))), Relocate_Node (Expression (N)))); Rewrite (N, Call); Analyze (N); return; end if; end; end if; -- Deal with assignment checks unless suppressed if not Suppress_Assignment_Checks (N) then -- First deal with generation of range check if required, -- and then predicate checks if the type carries a predicate. -- If the Rhs is an expression these tests may have been applied -- already. This is the case if the RHS is a type conversion. -- Other such redundant checks could be removed ??? if Nkind (Rhs) /= N_Type_Conversion or else Entity (Subtype_Mark (Rhs)) /= Typ then if Do_Range_Check (Rhs) then Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed); end if; Apply_Predicate_Check (Rhs, Typ); end if; end if; -- Check for a special case where a high level transformation is -- required. If we have either of: -- P.field := rhs; -- P (sub) := rhs; -- where P is a reference to a bit packed array, then we have to unwind -- the assignment. The exact meaning of being a reference to a bit -- packed array is as follows: -- An indexed component whose prefix is a bit packed array is a -- reference to a bit packed array. -- An indexed component or selected component whose prefix is a -- reference to a bit packed array is itself a reference ot a -- bit packed array. -- The required transformation is -- Tnn : prefix_type := P; -- Tnn.field := rhs; -- P := Tnn; -- or -- Tnn : prefix_type := P; -- Tnn (subscr) := rhs; -- P := Tnn; -- Since P is going to be evaluated more than once, any subscripts -- in P must have their evaluation forced. if Nkind (Lhs) in N_Indexed_Component | N_Selected_Component and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs)) then declare BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs)); BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr); Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', BPAR_Expr); begin -- Insert the post assignment first, because we want to copy the -- BPAR_Expr tree before it gets analyzed in the context of the -- pre assignment. Note that we do not analyze the post assignment -- yet (we cannot till we have completed the analysis of the pre -- assignment). As usual, the analysis of this post assignment -- will happen on its own when we "run into" it after finishing -- the current assignment. Insert_After (N, Make_Assignment_Statement (Loc, Name => New_Copy_Tree (BPAR_Expr), Expression => New_Occurrence_Of (Tnn, Loc))); -- At this stage BPAR_Expr is a reference to a bit packed array -- where the reference was not expanded in the original tree, -- since it was on the left side of an assignment. But in the -- pre-assignment statement (the object definition), BPAR_Expr -- will end up on the right-hand side, and must be reexpanded. To -- achieve this, we reset the analyzed flag of all selected and -- indexed components down to the actual indexed component for -- the packed array. Exp := BPAR_Expr; loop Set_Analyzed (Exp, False); if Nkind (Exp) in N_Indexed_Component | N_Selected_Component then Exp := Prefix (Exp); else exit; end if; end loop; -- Now we can insert and analyze the pre-assignment -- If the right-hand side requires a transient scope, it has -- already been placed on the stack. However, the declaration is -- inserted in the tree outside of this scope, and must reflect -- the proper scope for its variable. This awkward bit is forced -- by the stricter scope discipline imposed by GCC 2.97. declare Uses_Transient_Scope : constant Boolean := Scope_Is_Transient and then N = Node_To_Be_Wrapped; begin if Uses_Transient_Scope then Push_Scope (Scope (Current_Scope)); end if; Insert_Before_And_Analyze (N, Make_Object_Declaration (Loc, Defining_Identifier => Tnn, Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc), Expression => BPAR_Expr)); if Uses_Transient_Scope then Pop_Scope; end if; end; -- Now fix up the original assignment and continue processing Rewrite (Prefix (Lhs), New_Occurrence_Of (Tnn, Loc)); -- We do not need to reanalyze that assignment, and we do not need -- to worry about references to the temporary, but we do need to -- make sure that the temporary is not marked as a true constant -- since we now have a generated assignment to it. Set_Is_True_Constant (Tnn, False); end; end if; -- When we have the appropriate type of aggregate in the expression (it -- has been determined during analysis of the aggregate by setting the -- delay flag), let's perform in place assignment and thus avoid -- creating a temporary. if Is_Delayed_Aggregate (Rhs) then Convert_Aggr_In_Assignment (N); Rewrite (N, Make_Null_Statement (Loc)); Analyze (N); return; end if; -- An assignment between nonnative storage models requires creating an -- intermediate temporary on the host, which can potentially be large. if Nkind (Lhs) = N_Explicit_Dereference and then Has_Designated_Storage_Model_Aspect (Etype (Prefix (Lhs))) and then Present (Storage_Model_Copy_To (Storage_Model_Object (Etype (Prefix (Lhs))))) and then Nkind (Rhs) = N_Explicit_Dereference and then Has_Designated_Storage_Model_Aspect (Etype (Prefix (Rhs))) and then Present (Storage_Model_Copy_From (Storage_Model_Object (Etype (Prefix (Rhs))))) then declare Assign_Code : List_Id; Tmp : Entity_Id; begin Assign_Code := New_List; Tmp := Build_Temporary_On_Secondary_Stack (Loc, Typ, Assign_Code); Append_To (Assign_Code, Make_Assignment_Statement (Loc, Name => Make_Explicit_Dereference (Loc, Prefix => New_Occurrence_Of (Tmp, Loc)), Expression => Relocate_Node (Rhs))); Append_To (Assign_Code, Make_Assignment_Statement (Loc, Name => Relocate_Node (Lhs), Expression => Make_Explicit_Dereference (Loc, Prefix => New_Occurrence_Of (Tmp, Loc)))); Insert_Actions (N, Assign_Code); Rewrite (N, Make_Null_Statement (Loc)); return; end; end if; -- Apply discriminant check if required. If Lhs is an access type to a -- designated type with discriminants, we must always check. If the -- type has unknown discriminants, more elaborate processing below. if Has_Discriminants (Etype (Lhs)) and then not Has_Unknown_Discriminants (Etype (Lhs)) then -- Skip discriminant check if change of representation. Will be -- done when the change of representation is expanded out. if not Crep and then not Suppress_Assignment_Checks (N) then Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs); end if; -- If the type is private without discriminants, and the full type -- has discriminants (necessarily with defaults) a check may still be -- necessary if the Lhs is aliased. The private discriminants must be -- visible to build the discriminant constraints. -- Only an explicit dereference that comes from source indicates -- aliasing. Access to formals of protected operations and entries -- create dereferences but are not semantic aliasings. elsif Is_Private_Type (Etype (Lhs)) and then Has_Discriminants (Typ) and then Nkind (Lhs) = N_Explicit_Dereference and then Comes_From_Source (Lhs) then declare Lt : constant Entity_Id := Etype (Lhs); Ubt : Entity_Id := Base_Type (Typ); begin -- In the case of an expander-generated record subtype whose base -- type still appears private, Typ will have been set to that -- private type rather than the underlying record type (because -- Underlying type will have returned the record subtype), so it's -- necessary to apply Underlying_Type again to the base type to -- get the record type we need for the discriminant check. Such -- subtypes can be created for assignments in certain cases, such -- as within an instantiation passed this kind of private type. -- It would be good to avoid this special test, but making changes -- to prevent this odd form of record subtype seems difficult. ??? if Is_Private_Type (Ubt) then Ubt := Underlying_Type (Ubt); end if; Set_Etype (Lhs, Ubt); Rewrite (Rhs, OK_Convert_To (Base_Type (Ubt), Rhs)); if not Suppress_Assignment_Checks (N) then Apply_Discriminant_Check (Rhs, Ubt, Lhs); end if; Set_Etype (Lhs, Lt); end; -- If the Lhs has a private type with unknown discriminants, it may -- have a full view with discriminants, but those are nameable only -- in the underlying type, so convert the Rhs to it before potential -- checking. Convert Lhs as well, otherwise the actual subtype might -- not be constructible. If the discriminants have defaults the type -- is unconstrained and there is nothing to check. -- Ditto if a private type with unknown discriminants has a full view -- that is an unconstrained array, in which case a length check is -- needed. elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs))) then if Has_Discriminants (Typ) and then not Has_Defaulted_Discriminants (Typ) then Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs)); Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs)); if not Suppress_Assignment_Checks (N) then Apply_Discriminant_Check (Rhs, Typ, Lhs); end if; elsif Is_Array_Type (Typ) and then (Is_Constrained (Typ) or else Is_Mutably_Tagged_Conversion (Lhs)) then Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs)); Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs)); if not Suppress_Assignment_Checks (N) then Apply_Length_Check (Rhs, Typ); end if; end if; -- In the access type case, we need the same discriminant check, and -- also range checks if we have an access to constrained array. elsif Is_Access_Type (Etype (Lhs)) and then Is_Constrained (Designated_Type (Etype (Lhs))) and then not Suppress_Assignment_Checks (N) then if Has_Discriminants (Designated_Type (Etype (Lhs))) then -- Skip discriminant check if change of representation. Will be -- done when the change of representation is expanded out. if not Crep then Apply_Discriminant_Check (Rhs, Etype (Lhs)); end if; elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then Apply_Range_Check (Rhs, Etype (Lhs)); if Is_Constrained (Etype (Lhs)) then Apply_Length_Check (Rhs, Etype (Lhs)); end if; end if; end if; -- Ada 2005 (AI-231): Generate the run-time check if Is_Access_Type (Typ) and then Can_Never_Be_Null (Etype (Lhs)) and then not Can_Never_Be_Null (Etype (Rhs)) -- If an actual is an out parameter of a null-excluding access -- type, there is access check on entry, so we set the flag -- Suppress_Assignment_Checks on the generated statement to -- assign the actual to the parameter block, and we do not want -- to generate an additional check at this point. and then not Suppress_Assignment_Checks (N) then Apply_Constraint_Check (Rhs, Etype (Lhs)); end if; -- Ada 2012 (AI05-148): Update current accessibility level if Rhs is a -- stand-alone obj of an anonymous access type. Do not install the check -- when the Lhs denotes a container cursor and the Next function employs -- an access type, because this can never result in a dangling pointer. if Is_Access_Type (Typ) and then Is_Entity_Name (Lhs) and then Ekind (Entity (Lhs)) /= E_Loop_Parameter and then Present (Effective_Extra_Accessibility (Entity (Lhs))) then declare function Lhs_Entity return Entity_Id; -- Look through renames to find the underlying entity. -- For assignment to a rename, we don't care about the -- Enclosing_Dynamic_Scope of the rename declaration. ---------------- -- Lhs_Entity -- ---------------- function Lhs_Entity return Entity_Id is Result : Entity_Id := Entity (Lhs); begin while Present (Renamed_Object (Result)) loop -- Renamed_Object must return an Entity_Name here -- because of preceding "Present (E_E_A (...))" test. Result := Entity (Renamed_Object (Result)); end loop; return Result; end Lhs_Entity; -- Local Declarations Access_Check : constant Node_Id := Make_Raise_Program_Error (Loc, Condition => Make_Op_Gt (Loc, Left_Opnd => Accessibility_Level (Rhs, Dynamic_Level), Right_Opnd => Make_Integer_Literal (Loc, Intval => Scope_Depth (Enclosing_Dynamic_Scope (Lhs_Entity)))), Reason => PE_Accessibility_Check_Failed); Access_Level_Update : constant Node_Id := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Effective_Extra_Accessibility (Entity (Lhs)), Loc), Expression => Accessibility_Level (Expr => Rhs, Level => Dynamic_Level, Allow_Alt_Model => False)); begin if not Accessibility_Checks_Suppressed (Entity (Lhs)) then Insert_Action (N, Access_Check); end if; Insert_Action (N, Access_Level_Update); end; end if; -- Case of assignment to a bit packed array element. If there is a -- change of representation this must be expanded into components, -- otherwise this is a bit-field assignment. if Nkind (Lhs) = N_Indexed_Component and then Is_Bit_Packed_Array (Etype (Prefix (Lhs))) then -- Normal case, no change of representation if not Crep then Expand_Bit_Packed_Element_Set (N); return; -- Change of representation case else -- Generate the following, to force component-by-component -- assignments in an efficient way. Otherwise each component -- will require a temporary and two bit-field manipulations. -- T1 : Elmt_Type; -- T1 := RhS; -- Lhs := T1; declare Tnn : constant Entity_Id := Make_Temporary (Loc, 'T'); Stats : List_Id; begin Stats := New_List ( Make_Object_Declaration (Loc, Defining_Identifier => Tnn, Object_Definition => New_Occurrence_Of (Etype (Lhs), Loc)), Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Tnn, Loc), Expression => Relocate_Node (Rhs)), Make_Assignment_Statement (Loc, Name => Relocate_Node (Lhs), Expression => New_Occurrence_Of (Tnn, Loc))); Insert_Actions (N, Stats); Rewrite (N, Make_Null_Statement (Loc)); Analyze (N); end; end if; -- Build-in-place function call case. This is for assignment statements -- that come from aggregate component associations or from init procs. -- User-written assignment statements with b-i-p calls are handled -- elsewhere. elsif Is_Build_In_Place_Function_Call (Rhs) then pragma Assert (not Comes_From_Source (N)); Make_Build_In_Place_Call_In_Assignment (N, Rhs); elsif Is_Tagged_Type (Typ) or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ)) then Tagged_Case : declare L : List_Id := No_List; Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N) and then not No_Finalize_Actions (N); begin -- In the controlled case, we ensure that function calls are -- evaluated before finalizing the target. In all cases, it makes -- the expansion easier if the side effects are removed first. Remove_Side_Effects (Lhs); Remove_Side_Effects (Rhs); -- Avoid recursion in the mechanism Set_Analyzed (N); -- If dispatching assignment, we need to dispatch to _assign if Is_Class_Wide_Type (Typ) -- If the type is tagged, we may as well use the predefined -- primitive assignment. This avoids inlining a lot of code -- and in the class-wide case, the assignment is replaced -- by a dispatching call to _assign. It is suppressed in the -- case of assignments created by the expander that correspond -- to initializations, where we do want to copy the tag -- (Expand_Ctrl_Actions flag is set False in this case). It is -- also suppressed if restriction No_Dispatching_Calls is in -- force because in that case predefined primitives are not -- generated. or else (Is_Tagged_Type (Typ) and then Chars (Current_Scope) /= Name_uAssign and then Expand_Ctrl_Actions and then not Restriction_Active (No_Dispatching_Calls)) then -- We should normally not encounter any limited type here, -- except in the corner case where an assignment was not -- intended like the pathological case of a raise expression -- within a return statement. if Is_Limited_Type (Typ) then pragma Assert (not Comes_From_Source (N)); return; end if; -- Fetch the primitive op _assign and proper type to call it. -- Because of possible conflicts between private and full view, -- fetch the proper type directly from the operation profile. declare Op : constant Entity_Id := Find_Prim_Op (Typ, Name_uAssign); F_Typ : Entity_Id := Etype (First_Formal (Op)); begin -- If the assignment is dispatching, make sure to use the -- proper type. if Is_Class_Wide_Type (Typ) then F_Typ := Class_Wide_Type (F_Typ); end if; L := New_List; -- In case of assignment to a class-wide tagged type, before -- the assignment we generate run-time check to ensure that -- the tags of source and target match. if not Tag_Checks_Suppressed (Typ) and then Is_Class_Wide_Type (Typ) and then Is_Tagged_Type (Typ) and then Is_Tagged_Type (Underlying_Type (Etype (Rhs))) then declare Lhs_Tag : Node_Id; Rhs_Tag : Node_Id; begin if not Is_Interface (Typ) then Lhs_Tag := Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr (Lhs), Selector_Name => Make_Identifier (Loc, Name_uTag)); Rhs_Tag := Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr (Rhs), Selector_Name => Make_Identifier (Loc, Name_uTag)); else -- Displace the pointer to the base of the objects -- applying 'Address, which is later expanded into -- a call to RE_Base_Address. Lhs_Tag := Make_Explicit_Dereference (Loc, Prefix => Unchecked_Convert_To (RTE (RE_Tag_Ptr), Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr (Lhs), Attribute_Name => Name_Address))); Rhs_Tag := Make_Explicit_Dereference (Loc, Prefix => Unchecked_Convert_To (RTE (RE_Tag_Ptr), Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr (Rhs), Attribute_Name => Name_Address))); end if; -- Handle assignment to a mutably tagged type if Is_Mutably_Tagged_Conversion (Lhs) or else Is_Mutably_Tagged_Type (Typ) or else Is_Mutably_Tagged_Type (Etype (Lhs)) then -- Create a tag check when we have the extra -- constrained formal and it is true (meaning we -- are not dealing with a mutably tagged object). if Is_Entity_Name (Name (N)) and then Is_Formal (Entity (Name (N))) and then Present (Extra_Constrained (Entity (Name (N)))) then Append_To (L, Make_If_Statement (Loc, Condition => New_Occurrence_Of (Extra_Constrained (Entity (Name (N))), Loc), Then_Statements => New_List ( Make_Raise_Constraint_Error (Loc, Condition => Make_Op_Ne (Loc, Left_Opnd => Lhs_Tag, Right_Opnd => Rhs_Tag), Reason => CE_Tag_Check_Failed)))); end if; -- Generate a tag assignment before the actual -- assignment so we dispatch to the proper -- assign version. Append_To (L, Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr (Lhs), Selector_Name => Make_Identifier (Loc, Name_uTag)), Expression => Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr (Rhs), Selector_Name => Make_Identifier (Loc, Name_uTag)))); -- Otherwise generate a normal tag check else Append_To (L, Make_Raise_Constraint_Error (Loc, Condition => Make_Op_Ne (Loc, Left_Opnd => Lhs_Tag, Right_Opnd => Rhs_Tag), Reason => CE_Tag_Check_Failed)); end if; end; end if; declare Left_N : Node_Id := Duplicate_Subexpr (Lhs); Right_N : Node_Id := Duplicate_Subexpr (Rhs); begin -- In order to dispatch the call to _assign the type of -- the actuals must match. Add conversion (if required). if Etype (Lhs) /= F_Typ then Left_N := Unchecked_Convert_To (F_Typ, Left_N); end if; if Etype (Rhs) /= F_Typ then Right_N := Unchecked_Convert_To (F_Typ, Right_N); end if; Append_To (L, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Op, Loc), Parameter_Associations => New_List ( Node1 => Left_N, Node2 => Right_N))); end; end; else L := Make_Tag_Ctrl_Assignment (N); -- We can't afford to have destructive Finalization Actions in -- the Self assignment case, so if the target and the source -- are not obviously different, code is generated to avoid the -- self assignment case: -- if lhs'address /= rhs'address then -- -- end if; -- Skip this if Restriction (No_Finalization) is active if not Statically_Different (Lhs, Rhs) and then Expand_Ctrl_Actions and then not Restriction_Active (No_Finalization) then L := New_List ( Make_Implicit_If_Statement (N, Condition => Make_Op_Ne (Loc, Left_Opnd => Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr (Lhs), Attribute_Name => Name_Address), Right_Opnd => Make_Attribute_Reference (Loc, Prefix => Duplicate_Subexpr (Rhs), Attribute_Name => Name_Address)), Then_Statements => L)); end if; -- We need to set up an exception handler for implementing -- 7.6.1(18), but this is skipped if the type has relaxed -- semantics for finalization. if Expand_Ctrl_Actions and then not Restriction_Active (No_Finalization) and then not Has_Relaxed_Finalization (Typ) then L := New_List ( Make_Block_Statement (Loc, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => L, Exception_Handlers => New_List ( Make_Handler_For_Ctrl_Operation (Loc))))); end if; end if; -- We will analyze the block statement with all checks suppressed -- below, but we need elaboration checks for the primitives in the -- case of an assignment created by the expansion of an aggregate. if No_Finalize_Actions (N) then Rewrite (N, Make_Unsuppress_Block (Loc, Name_Elaboration_Check, L)); else Rewrite (N, Make_Block_Statement (Loc, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, L))); end if; -- If no restrictions on aborts, protect the whole assignment -- for controlled objects as per 9.8(11). if Needs_Finalization (Typ) and then Expand_Ctrl_Actions and then Abort_Allowed then declare AUD : constant Entity_Id := RTE (RE_Abort_Undefer_Direct); HSS : constant Node_Id := Handled_Statement_Sequence (N); Blk_Id : Entity_Id; begin Set_Is_Abort_Block (N); Add_Block_Identifier (N, Blk_Id); Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer)); -- Like above, no need to deal with exception propagation -- if the type has relaxed semantics for finalization. if Has_Relaxed_Finalization (Typ) then Append_To (L, Build_Runtime_Call (Loc, RE_Abort_Undefer)); else Set_At_End_Proc (HSS, New_Occurrence_Of (AUD, Loc)); Expand_At_End_Handler (HSS, Blk_Id); -- Present Abort_Undefer_Direct procedure to the back end -- so that it can inline the call to the procedure. Add_Inlined_Body (AUD, N); end if; end; end if; -- N has been rewritten to a block statement for which it is -- known by construction that no checks are necessary: analyze -- it with all checks suppressed. Analyze (N, Suppress => All_Checks); return; end Tagged_Case; -- Array types elsif Is_Array_Type (Typ) then declare Actual_Rhs : Node_Id := Rhs; begin while Nkind (Actual_Rhs) in N_Type_Conversion | N_Qualified_Expression loop Actual_Rhs := Expression (Actual_Rhs); end loop; Expand_Assign_Array (N, Actual_Rhs); return; end; -- Record types elsif Is_Record_Type (Typ) then Expand_Assign_Record (N); return; -- Scalar types. This is where we perform the processing related to the -- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid -- scalar values. elsif Is_Scalar_Type (Typ) then -- Case where right side is known valid if Expr_Known_Valid (Rhs) then -- Here the right side is valid, so it is fine. The case to deal -- with is when the left side is a local variable reference whose -- value is not currently known to be valid. If this is the case, -- and the assignment appears in an unconditional context, then -- we can mark the left side as now being valid if one of these -- conditions holds: -- The expression of the right side has Do_Range_Check set so -- that we know a range check will be performed. Note that it -- can be the case that a range check is omitted because we -- make the assumption that we can assume validity for operands -- appearing in the right side in determining whether a range -- check is required -- The subtype of the right side matches the subtype of the -- left side. In this case, even though we have not checked -- the range of the right side, we know it is in range of its -- subtype if the expression is valid. if Is_Local_Variable_Reference (Lhs) and then not Is_Known_Valid (Entity (Lhs)) and then In_Unconditional_Context (N) then if Do_Range_Check (Rhs) or else Etype (Lhs) = Etype (Rhs) then Set_Is_Known_Valid (Entity (Lhs), True); end if; end if; -- Case where right side may be invalid in the sense of the RM -- reference above. The RM does not require that we check for the -- validity on an assignment, but it does require that the assignment -- of an invalid value not cause erroneous behavior. -- The general approach in GNAT is to use the Is_Known_Valid flag -- to avoid the need for validity checking on assignments. However -- in some cases, we have to do validity checking in order to make -- sure that the setting of this flag is correct. else -- Validate right side if we are validating copies if Validity_Checks_On and then Validity_Check_Copies then -- Skip this if left-hand side is an array or record component -- and elementary component validity checks are suppressed. if Nkind (Lhs) in N_Selected_Component | N_Indexed_Component and then not Validity_Check_Components then null; else Ensure_Valid (Rhs); end if; -- We can propagate this to the left side where appropriate if Is_Local_Variable_Reference (Lhs) and then not Is_Known_Valid (Entity (Lhs)) and then In_Unconditional_Context (N) then Set_Is_Known_Valid (Entity (Lhs), True); end if; -- Otherwise check to see what should be done -- If left side is a local variable, then we just set its flag to -- indicate that its value may no longer be valid, since we are -- copying a potentially invalid value. elsif Is_Local_Variable_Reference (Lhs) then Set_Is_Known_Valid (Entity (Lhs), False); -- Check for case of a nonlocal variable on the left side which -- is currently known to be valid. In this case, we simply ensure -- that the right side is valid. We only play the game of copying -- validity status for local variables, since we are doing this -- statically, not by tracing the full flow graph. elsif Is_Entity_Name (Lhs) and then Is_Known_Valid (Entity (Lhs)) then -- Note: If Validity_Checking mode is set to none, we ignore -- the Ensure_Valid call so don't worry about that case here. Ensure_Valid (Rhs); -- In all other cases, we can safely copy an invalid value without -- worrying about the status of the left side. Since it is not a -- variable reference it will not be considered -- as being known to be valid in any case. else null; end if; end if; end if; exception when RE_Not_Available => return; end Expand_N_Assignment_Statement; ------------------------------ -- Expand_N_Block_Statement -- ------------------------------ -- Encode entity names defined in block statement procedure Expand_N_Block_Statement (N : Node_Id) is begin Qualify_Entity_Names (N); end Expand_N_Block_Statement; ----------------------------- -- Expand_N_Case_Statement -- ----------------------------- procedure Expand_N_Case_Statement (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Expr : constant Node_Id := Expression (N); From_Cond_Expr : constant Boolean := From_Conditional_Expression (N); Alt : Node_Id; Len : Nat; Cond : Node_Id; Choice : Node_Id; Chlist : List_Id; function Expand_General_Case_Statement return Node_Id; -- Expand a case statement whose selecting expression is not discrete ----------------------------------- -- Expand_General_Case_Statement -- ----------------------------------- function Expand_General_Case_Statement return Node_Id is -- expand into a block statement Selector : constant Entity_Id := Make_Temporary (Loc, 'J'); function Selector_Subtype_Mark return Node_Id is (New_Occurrence_Of (Etype (Expr), Loc)); Renamed_Name : constant Node_Id := (if Is_Name_Reference (Expr) then Expr else Make_Qualified_Expression (Loc, Subtype_Mark => Selector_Subtype_Mark, Expression => Expr)); Selector_Decl : constant Node_Id := Make_Object_Renaming_Declaration (Loc, Defining_Identifier => Selector, Subtype_Mark => Selector_Subtype_Mark, Name => Renamed_Name); First_Alt : constant Node_Id := First (Alternatives (N)); function Choice_Index_Decl_If_Needed return Node_Id; -- If we are going to need a choice index object (that is, if -- Multidefined_Bindings is true for at least one of the case -- alternatives), then create and return that object's declaration. -- Otherwise, return Empty; no need for a decl in that case because -- it would never be referenced. --------------------------------- -- Choice_Index_Decl_If_Needed -- --------------------------------- function Choice_Index_Decl_If_Needed return Node_Id is Alt : Node_Id := First_Alt; begin while Present (Alt) loop if Multidefined_Bindings (Alt) then return Make_Object_Declaration (Sloc => Loc, Defining_Identifier => Make_Temporary (Loc, 'K'), Object_Definition => New_Occurrence_Of (Standard_Positive, Loc)); end if; Next (Alt); end loop; return Empty; -- decl not needed end Choice_Index_Decl_If_Needed; Choice_Index_Decl : constant Node_Id := Choice_Index_Decl_If_Needed; function Pattern_Match (Pattern : Node_Id; Object : Node_Id; Choice_Index : Natural; Alt : Node_Id; Suppress_Choice_Index_Update : Boolean := False) return Node_Id; -- Returns a Boolean-valued expression indicating a pattern match -- for a given pattern and object. If Choice_Index is nonzero, -- then Choice_Index is assigned to Choice_Index_Decl (unless -- Suppress_Choice_Index_Update is specified, which should only -- be the case for a recursive call where the caller has already -- taken care of the update). Pattern occurs as a choice (or as a -- subexpression of a choice) of the case statement alternative Alt. function Top_Level_Pattern_Match_Condition (Alt : Node_Id) return Node_Id; -- Returns a Boolean-valued expression indicating a pattern match -- for the given alternative's list of choices. ------------------- -- Pattern_Match -- ------------------- function Pattern_Match (Pattern : Node_Id; Object : Node_Id; Choice_Index : Natural; Alt : Node_Id; Suppress_Choice_Index_Update : Boolean := False) return Node_Id is procedure Finish_Binding_Object_Declaration (Component_Assoc : Node_Id; Subobject : Node_Id); -- Finish the work that was started during analysis to -- declare a binding object. If we are generating a copy, -- then initialize it. If we are generating a renaming, then -- initialize the access value designating the renamed object. function Update_Choice_Index return Node_Id is ( Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Defining_Identifier (Choice_Index_Decl), Loc), Expression => Make_Integer_Literal (Loc, Pos (Choice_Index)))); function PM (Pattern : Node_Id; Object : Node_Id; Choice_Index : Natural := Pattern_Match.Choice_Index; Alt : Node_Id := Pattern_Match.Alt; Suppress_Choice_Index_Update : Boolean := Pattern_Match.Suppress_Choice_Index_Update) return Node_Id renames Pattern_Match; -- convenient rename for recursive calls function Indexed_Element (Idx : Pos) return Node_Id; -- Returns the Nth (well, ok, the Idxth) element of Object --------------------------------------- -- Finish_Binding_Object_Declaration -- --------------------------------------- procedure Finish_Binding_Object_Declaration (Component_Assoc : Node_Id; Subobject : Node_Id) is Decl_Chars : constant Name_Id := Binding_Chars (Component_Assoc); Block_Stmt : constant Node_Id := First (Statements (Alt)); pragma Assert (Nkind (Block_Stmt) = N_Block_Statement); pragma Assert (No (Next (Block_Stmt))); Decl : Node_Id := First (Declarations (Block_Stmt)); Def_Id : Node_Id := Empty; function Declare_Copy (Decl : Node_Id) return Boolean is (Nkind (Decl) = N_Object_Declaration); -- Declare_Copy indicates which of the two approaches -- was chosen during analysis: declare (and initialize) -- a new variable, or use access values to declare a renaming -- of the appropriate subcomponent of the selector value. function Make_Conditional (Stmt : Node_Id) return Node_Id; -- If there is only one choice for this alternative, then -- simply return the argument. If there is more than one -- choice, then wrap an if-statement around the argument -- so that it is only executed if the current choice matches. ---------------------- -- Make_Conditional -- ---------------------- function Make_Conditional (Stmt : Node_Id) return Node_Id is Condition : Node_Id; begin if Present (Choice_Index_Decl) then Condition := Make_Op_Eq (Loc, New_Occurrence_Of (Defining_Identifier (Choice_Index_Decl), Loc), Make_Integer_Literal (Loc, Int (Choice_Index))); return Make_If_Statement (Loc, Condition => Condition, Then_Statements => New_List (Stmt)); else -- execute Stmt unconditionally return Stmt; end if; end Make_Conditional; begin -- find the variable to be modified (and its declaration) loop if Nkind (Decl) in N_Object_Declaration | N_Object_Renaming_Declaration then Def_Id := Defining_Identifier (Decl); exit when Chars (Def_Id) = Decl_Chars; end if; Next (Decl); pragma Assert (Present (Decl)); end loop; -- For a binding object, we sometimes make a copy and -- sometimes introduce a renaming. That decision is made -- elsewhere. The renaming case involves dereferencing an -- access value because of the possibility of multiple -- choices (with multiple binding definitions) for a single -- alternative. In the copy case, we initialize the copy -- here (conditionally if there are multiple choices); in the -- renaming case, we initialize (again, maybe conditionally) -- the access value. if Declare_Copy (Decl) then declare Assign_Value : constant Node_Id := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Def_Id, Loc), Expression => Subobject); HSS : constant Node_Id := Handled_Statement_Sequence (Block_Stmt); begin Prepend (Make_Conditional (Assign_Value), Statements (HSS)); Set_Analyzed (HSS, False); end; else pragma Assert (Nkind (Name (Decl)) = N_Explicit_Dereference); declare Ptr_Obj : constant Entity_Id := Entity (Prefix (Name (Decl))); Ptr_Decl : constant Node_Id := Parent (Ptr_Obj); Assign_Reference : constant Node_Id := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Ptr_Obj, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => Subobject, Attribute_Name => Name_Unrestricted_Access)); begin Insert_After (After => Ptr_Decl, Node => Make_Conditional (Assign_Reference)); if Present (Expression (Ptr_Decl)) then -- Delete bogus initial value built during analysis. -- Look for "5432" in sem_case.adb. pragma Assert (Nkind (Expression (Ptr_Decl)) = N_Unchecked_Type_Conversion); Set_Expression (Ptr_Decl, Empty); end if; end; end if; Set_Analyzed (Block_Stmt, False); end Finish_Binding_Object_Declaration; --------------------- -- Indexed_Element -- --------------------- function Indexed_Element (Idx : Pos) return Node_Id is Obj_Index : constant Node_Id := Make_Op_Add (Loc, Left_Opnd => Make_Attribute_Reference (Loc, Attribute_Name => Name_First, Prefix => New_Copy_Tree (Object)), Right_Opnd => Make_Integer_Literal (Loc, Idx - 1)); begin return Make_Indexed_Component (Loc, Prefix => New_Copy_Tree (Object), Expressions => New_List (Obj_Index)); end Indexed_Element; -- Start of processing for Pattern_Match begin if Choice_Index /= 0 and not Suppress_Choice_Index_Update then pragma Assert (Present (Choice_Index_Decl)); -- Add Choice_Index update as a side effect of evaluating -- this condition and try again, this time suppressing -- Choice_Index update. return Make_Expression_With_Actions (Loc, Actions => New_List (Update_Choice_Index), Expression => PM (Pattern, Object, Suppress_Choice_Index_Update => True)); end if; if Nkind (Pattern) in N_Has_Etype and then Is_Discrete_Type (Etype (Pattern)) and then Compile_Time_Known_Value (Pattern) then declare Val : Node_Id; begin if Is_Enumeration_Type (Etype (Pattern)) then Val := Get_Enum_Lit_From_Pos (Etype (Pattern), Expr_Value (Pattern), Loc); else Val := Make_Integer_Literal (Loc, Expr_Value (Pattern)); end if; return Make_Op_Eq (Loc, Object, Val); end; end if; case Nkind (Pattern) is when N_Aggregate => declare Result : Node_Id; begin if Is_Array_Type (Etype (Pattern)) then -- Nonpositional aggregates currently unimplemented. -- We flag that case during analysis, so an assertion -- is ok here. -- pragma Assert (Is_Empty_List (Component_Associations (Pattern))); declare Agg_Length : constant Node_Id := Make_Integer_Literal (Loc, List_Length (Expressions (Pattern))); Obj_Length : constant Node_Id := Make_Attribute_Reference (Loc, Attribute_Name => Name_Length, Prefix => New_Copy_Tree (Object)); begin Result := Make_Op_Eq (Loc, Left_Opnd => Obj_Length, Right_Opnd => Agg_Length); end; declare Expr : Node_Id := First (Expressions (Pattern)); Idx : Pos := 1; begin while Present (Expr) loop Result := Make_And_Then (Loc, Left_Opnd => Result, Right_Opnd => PM (Pattern => Expr, Object => Indexed_Element (Idx))); Next (Expr); Idx := Idx + 1; end loop; end; return Result; end if; -- positional notation should have been normalized pragma Assert (No (Expressions (Pattern))); declare Component_Assoc : Node_Id := First (Component_Associations (Pattern)); Choice : Node_Id; function Subobject return Node_Id is (Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Object), Selector_Name => New_Occurrence_Of (Entity (Choice), Loc))); begin Result := New_Occurrence_Of (Standard_True, Loc); while Present (Component_Assoc) loop Choice := First (Choices (Component_Assoc)); while Present (Choice) loop pragma Assert (Is_Entity_Name (Choice) and then Ekind (Entity (Choice)) in E_Discriminant | E_Component); if Box_Present (Component_Assoc) then -- Box matches anything pragma Assert (No (Expression (Component_Assoc))); else Result := Make_And_Then (Loc, Left_Opnd => Result, Right_Opnd => PM (Pattern => Expression (Component_Assoc), Object => Subobject)); end if; -- If this component association defines -- (in the case where the pattern matches) -- the value of a binding object, then -- prepend to the statement list for this -- alternative an assignment to the binding -- object. This assignment will be conditional -- if there is more than one choice. if Binding_Chars (Component_Assoc) /= No_Name then Finish_Binding_Object_Declaration (Component_Assoc => Component_Assoc, Subobject => Subobject); end if; Next (Choice); end loop; Next (Component_Assoc); end loop; end; return Result; end; when N_String_Literal => return Result : Node_Id do declare Char_Type : constant Entity_Id := Root_Type (Component_Type (Etype (Pattern))); -- If the component type is not a standard character -- type then this string lit should have already been -- transformed into an aggregate in -- Resolve_String_Literal. -- pragma Assert (Is_Standard_Character_Type (Char_Type)); Str : constant String_Id := Strval (Pattern); Strlen : constant Nat := String_Length (Str); Lit_Length : constant Node_Id := Make_Integer_Literal (Loc, Strlen); Obj_Length : constant Node_Id := Make_Attribute_Reference (Loc, Attribute_Name => Name_Length, Prefix => New_Copy_Tree (Object)); begin Result := Make_Op_Eq (Loc, Left_Opnd => Obj_Length, Right_Opnd => Lit_Length); for Idx in 1 .. Strlen loop declare C : constant Char_Code := Get_String_Char (Str, Idx); Obj_Element : constant Node_Id := Indexed_Element (Idx); Char_Lit : Node_Id; begin Set_Character_Literal_Name (C); Char_Lit := Make_Character_Literal (Loc, Chars => Name_Find, Char_Literal_Value => UI_From_CC (C)); Result := Make_And_Then (Loc, Left_Opnd => Result, Right_Opnd => Make_Op_Eq (Loc, Left_Opnd => Obj_Element, Right_Opnd => Char_Lit)); end; end loop; end; end return; when N_Qualified_Expression => return Make_And_Then (Loc, Left_Opnd => Make_In (Loc, Left_Opnd => New_Copy_Tree (Object), Right_Opnd => New_Copy_Tree (Subtype_Mark (Pattern))), Right_Opnd => PM (Pattern => Expression (Pattern), Object => New_Copy_Tree (Object))); when N_Identifier | N_Expanded_Name => if Is_Type (Entity (Pattern)) then return Make_In (Loc, Left_Opnd => New_Copy_Tree (Object), Right_Opnd => New_Occurrence_Of (Entity (Pattern), Loc)); elsif Ekind (Entity (Pattern)) = E_Constant then return PM (Pattern => Expression (Parent (Entity (Pattern))), Object => Object); end if; when N_Others_Choice => return New_Occurrence_Of (Standard_True, Loc); when N_Type_Conversion => -- aggregate expansion sometimes introduces conversions if not Comes_From_Source (Pattern) and then Base_Type (Etype (Pattern)) = Base_Type (Etype (Expression (Pattern))) then return PM (Expression (Pattern), Object); end if; when others => null; end case; -- Avoid cascading errors pragma Assert (Serious_Errors_Detected > 0); return New_Occurrence_Of (Standard_True, Loc); end Pattern_Match; --------------------------------------- -- Top_Level_Pattern_Match_Condition -- --------------------------------------- function Top_Level_Pattern_Match_Condition (Alt : Node_Id) return Node_Id is Top_Level_Object : constant Node_Id := New_Occurrence_Of (Selector, Loc); Choices : constant List_Id := Discrete_Choices (Alt); First_Choice : constant Node_Id := First (Choices); Subsequent : Node_Id := Next (First_Choice); Choice_Index : Natural := 0; begin if Multidefined_Bindings (Alt) then Choice_Index := 1; end if; return Result : Node_Id := Pattern_Match (Pattern => First_Choice, Object => Top_Level_Object, Choice_Index => Choice_Index, Alt => Alt) do while Present (Subsequent) loop if Choice_Index /= 0 then Choice_Index := Choice_Index + 1; end if; Result := Make_Or_Else (Loc, Left_Opnd => Result, Right_Opnd => Pattern_Match (Pattern => Subsequent, Object => Top_Level_Object, Choice_Index => Choice_Index, Alt => Alt)); Subsequent := Next (Subsequent); end loop; end return; end Top_Level_Pattern_Match_Condition; function Elsif_Parts return List_Id; -- Process subsequent alternatives ----------------- -- Elsif_Parts -- ----------------- function Elsif_Parts return List_Id is Alt : Node_Id := First_Alt; Result : constant List_Id := New_List; begin loop Alt := Next (Alt); exit when No (Alt); Append (Make_Elsif_Part (Loc, Condition => Top_Level_Pattern_Match_Condition (Alt), Then_Statements => Statements (Alt)), Result); end loop; return Result; end Elsif_Parts; function Else_Statements return List_Id; -- Returns a "raise Constraint_Error" statement if -- exception propagate is permitted and No_List otherwise. --------------------- -- Else_Statements -- --------------------- function Else_Statements return List_Id is begin if Restriction_Active (No_Exception_Propagation) then return No_List; else return New_List (Make_Raise_Constraint_Error (Loc, Reason => CE_Invalid_Data)); end if; end Else_Statements; -- Local constants If_Stmt : constant Node_Id := Make_If_Statement (Loc, Condition => Top_Level_Pattern_Match_Condition (First_Alt), Then_Statements => Statements (First_Alt), Elsif_Parts => Elsif_Parts, Else_Statements => Else_Statements); Declarations : constant List_Id := New_List (Selector_Decl); -- Start of processing for Expand_General_Case_Statement begin if Present (Choice_Index_Decl) then Append_To (Declarations, Choice_Index_Decl); end if; return Make_Block_Statement (Loc, Declarations => Declarations, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (If_Stmt))); end Expand_General_Case_Statement; -- Start of processing for Expand_N_Case_Statement begin if Core_Extensions_Allowed and then not Is_Discrete_Type (Etype (Expr)) then Rewrite (N, Expand_General_Case_Statement); Analyze (N); return; end if; -- Check for the situation where we know at compile time which branch -- will be taken. -- If the value is static but its subtype is predicated and the value -- does not obey the predicate, the value is marked non-static, and -- there can be no corresponding static alternative. In that case we -- replace the case statement with an exception, regardless of whether -- assertions are enabled or not, unless predicates are ignored. if Compile_Time_Known_Value (Expr) and then Has_Predicates (Etype (Expr)) and then not Predicates_Ignored (Etype (Expr)) and then not Is_OK_Static_Expression (Expr) then Rewrite (N, Make_Raise_Constraint_Error (Loc, Reason => CE_Invalid_Data)); Analyze (N); return; elsif Compile_Time_Known_Value (Expr) and then (not Has_Predicates (Etype (Expr)) or else Is_Static_Expression (Expr)) then Alt := Find_Static_Alternative (N); -- Do not consider controlled objects found in a case statement which -- actually models a case expression because their early finalization -- will affect the result of the expression. if not From_Conditional_Expression (N) then Process_Statements_For_Controlled_Objects (Alt); end if; -- Move statements from this alternative after the case statement. -- They are already analyzed, so will be skipped by the analyzer. Insert_List_After (N, Statements (Alt)); -- That leaves the case statement as a shell. So now we can kill all -- other alternatives in the case statement. Kill_Dead_Code (Expression (N)); declare Dead_Alt : Node_Id; begin -- Loop through case alternatives, skipping pragmas, and skipping -- the one alternative that we select (and therefore retain). Dead_Alt := First (Alternatives (N)); while Present (Dead_Alt) loop if Dead_Alt /= Alt and then Nkind (Dead_Alt) = N_Case_Statement_Alternative then Kill_Dead_Code (Statements (Dead_Alt), Warn_On_Deleted_Code); end if; Next (Dead_Alt); end loop; end; Rewrite (N, Make_Null_Statement (Loc)); return; end if; -- Here if the choice is not determined at compile time declare Last_Alt : constant Node_Id := Last (Alternatives (N)); Others_Present : Boolean; Others_Node : Node_Id; Then_Stms : List_Id; Else_Stms : List_Id; begin if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then Others_Present := True; Others_Node := Last_Alt; else Others_Present := False; end if; -- First step is to worry about possible invalid argument. The RM -- requires (RM 4.5.7 (21/3) and 5.4 (13)) that if the result is -- invalid (e.g. it is outside the base range), then Constraint_Error -- must be raised. -- Case of validity check required (validity checks are on, the -- expression is not known to be valid, and the case statement -- comes from source -- no need to validity check internally -- generated case statements). if Validity_Check_Default and then not Predicates_Ignored (Etype (Expr)) then -- Recognize the simple case where Expr is an object reference -- and the case statement is directly preceded by an -- "if Obj'Valid then": in this case, do not emit another validity -- check. declare Check_Validity : Boolean := True; Attr : Node_Id; begin if Nkind (Expr) = N_Identifier and then Nkind (Parent (N)) = N_If_Statement and then Nkind (Original_Node (Condition (Parent (N)))) = N_Attribute_Reference and then No (Prev (N)) then Attr := Original_Node (Condition (Parent (N))); if Attribute_Name (Attr) = Name_Valid and then Nkind (Prefix (Attr)) = N_Identifier and then Entity (Prefix (Attr)) = Entity (Expr) then Check_Validity := False; end if; end if; if Check_Validity then Ensure_Valid (Expr); end if; end; end if; -- If there is only a single alternative, just replace it with the -- sequence of statements since obviously that is what is going to -- be executed in all cases, except if it is the node to be wrapped -- by a transient scope, because this would cause the sequence of -- statements to be leaked out of the transient scope. Len := List_Length (Alternatives (N)); if Len = 1 and then not (Scope_Is_Transient and then Node_To_Be_Wrapped = N) then -- We still need to evaluate the expression if it has any side -- effects. Remove_Side_Effects (Expression (N)); Alt := First (Alternatives (N)); -- Do not consider controlled objects found in a case statement -- which actually models a case expression because their early -- finalization will affect the result of the expression. if not From_Conditional_Expression (N) then Process_Statements_For_Controlled_Objects (Alt); end if; Insert_List_After (N, Statements (Alt)); -- That leaves the case statement as a shell. The alternative that -- will be executed is reset to a null list. So now we can kill -- the entire case statement. Kill_Dead_Code (Expression (N)); Rewrite (N, Make_Null_Statement (Loc)); return; -- An optimization. If there are only two alternatives, and only -- a single choice, then rewrite the whole case statement as an -- if statement, since this can result in subsequent optimizations. -- This helps not only with case statements in the source of a -- simple form, but also with generated code (discriminant check -- functions in particular). -- Note: it is OK to do this before expanding out choices for any -- static predicates, since the if statement processing will handle -- the static predicate case fine. elsif Len = 2 then Chlist := Discrete_Choices (First (Alternatives (N))); if List_Length (Chlist) = 1 then Choice := First (Chlist); Then_Stms := Statements (First (Alternatives (N))); Else_Stms := Statements (Last (Alternatives (N))); -- For TRUE, generate "expression", not expression = true if Nkind (Choice) = N_Identifier and then Entity (Choice) = Standard_True then Cond := Expression (N); -- For FALSE, generate "expression" and switch then/else elsif Nkind (Choice) = N_Identifier and then Entity (Choice) = Standard_False then Cond := Expression (N); Else_Stms := Statements (First (Alternatives (N))); Then_Stms := Statements (Last (Alternatives (N))); -- For a range, generate "expression in range" elsif Nkind (Choice) = N_Range or else (Nkind (Choice) = N_Attribute_Reference and then Attribute_Name (Choice) = Name_Range) or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice))) then Cond := Make_In (Loc, Left_Opnd => Expression (N), Right_Opnd => Relocate_Node (Choice)); -- A subtype indication is not a legal operator in a membership -- test, so retrieve its range. elsif Nkind (Choice) = N_Subtype_Indication then Cond := Make_In (Loc, Left_Opnd => Expression (N), Right_Opnd => Relocate_Node (Range_Expression (Constraint (Choice)))); -- For any other subexpression "expression = value" else Cond := Make_Op_Eq (Loc, Left_Opnd => Expression (N), Right_Opnd => Relocate_Node (Choice)); end if; -- Now rewrite the case as an IF Rewrite (N, Make_If_Statement (Loc, Condition => Cond, Then_Statements => Then_Stms, Else_Statements => Else_Stms)); -- The rewritten if statement needs to inherit whether the -- case statement was expanded from a conditional expression, -- for proper handling of nested controlled objects. Set_From_Conditional_Expression (N, From_Cond_Expr); Analyze (N); return; end if; end if; -- If the last alternative is not an Others choice, replace it with -- an N_Others_Choice. Note that we do not bother to call Analyze on -- the modified case statement, since it's only effect would be to -- compute the contents of the Others_Discrete_Choices which is not -- needed by the back end anyway. -- The reason for this is that the back end always needs some default -- for a switch, so if we have not supplied one in the processing -- above for validity checking, then we need to supply one here. if not Others_Present then Others_Node := Make_Others_Choice (Sloc (Last_Alt)); -- If Predicates_Ignored is true the value does not satisfy the -- predicate, and there is no Others choice, Constraint_Error -- must be raised (RM 4.5.7 (21/3) and 5.4 (13)). if Predicates_Ignored (Etype (Expr)) then declare Except : constant Node_Id := Make_Raise_Constraint_Error (Loc, Reason => CE_Invalid_Data); New_Alt : constant Node_Id := Make_Case_Statement_Alternative (Loc, Discrete_Choices => New_List ( Make_Others_Choice (Loc)), Statements => New_List (Except)); begin Append (New_Alt, Alternatives (N)); Analyze_And_Resolve (Except); end; else Set_Others_Discrete_Choices (Others_Node, Discrete_Choices (Last_Alt)); Set_Discrete_Choices (Last_Alt, New_List (Others_Node)); end if; end if; -- Deal with possible declarations of controlled objects, and also -- with rewriting choice sequences for static predicate references. Alt := First_Non_Pragma (Alternatives (N)); while Present (Alt) loop -- Do not consider controlled objects found in a case statement -- which actually models a case expression because their early -- finalization will affect the result of the expression. if not From_Conditional_Expression (N) then Process_Statements_For_Controlled_Objects (Alt); end if; if Has_SP_Choice (Alt) then Expand_Static_Predicates_In_Choices (Alt); end if; Next_Non_Pragma (Alt); end loop; end; end Expand_N_Case_Statement; ----------------------------- -- Expand_N_Exit_Statement -- ----------------------------- -- The only processing required is to deal with a possible C/Fortran -- boolean value used as the condition for the exit statement. procedure Expand_N_Exit_Statement (N : Node_Id) is begin Adjust_Condition (Condition (N)); end Expand_N_Exit_Statement; ---------------------------------- -- Expand_Formal_Container_Loop -- ---------------------------------- procedure Expand_Formal_Container_Loop (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Isc : constant Node_Id := Iteration_Scheme (N); I_Spec : constant Node_Id := Iterator_Specification (Isc); Cursor : constant Entity_Id := Defining_Identifier (I_Spec); Container : constant Node_Id := Entity (Name (I_Spec)); Stats : constant List_Id := Statements (N); Advance : Node_Id; Init_Decl : Node_Id; Init_Name : Entity_Id; New_Loop : Node_Id; begin -- The expansion of a formal container loop resembles the one for Ada -- containers. The only difference is that the primitives mention the -- domain of iteration explicitly, and function First applied to the -- container yields a cursor directly. -- Cursor : Cursor_type := First (Container); -- while Has_Element (Cursor, Container) loop -- -- Cursor := Next (Container, Cursor); -- end loop; Build_Formal_Container_Iteration (N, Container, Cursor, Init_Decl, Advance, New_Loop); Append_To (Stats, Advance); -- Build a block to capture declaration of the cursor Rewrite (N, Make_Block_Statement (Loc, Declarations => New_List (Init_Decl), Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (New_Loop)))); -- The loop parameter is declared by an object declaration, but within -- the loop we must prevent user assignments to it, so we analyze the -- declaration and reset the entity kind, before analyzing the rest of -- the loop. Analyze (Init_Decl); Init_Name := Defining_Identifier (Init_Decl); Reinit_Field_To_Zero (Init_Name, F_Has_Initial_Value, Old_Ekind => (E_Variable => True, others => False)); Reinit_Field_To_Zero (Init_Name, F_Is_Elaboration_Checks_OK_Id); Reinit_Field_To_Zero (Init_Name, F_Is_Elaboration_Warnings_OK_Id); Reinit_Field_To_Zero (Init_Name, F_SPARK_Pragma); Reinit_Field_To_Zero (Init_Name, F_SPARK_Pragma_Inherited); Mutate_Ekind (Init_Name, E_Loop_Parameter); -- Wrap the block statements with the condition specified in the -- iterator filter when one is present. if Present (Iterator_Filter (I_Spec)) then pragma Assert (Ada_Version >= Ada_2022); Set_Statements (Handled_Statement_Sequence (N), New_List (Make_If_Statement (Loc, Condition => Iterator_Filter (I_Spec), Then_Statements => Statements (Handled_Statement_Sequence (N))))); end if; -- The cursor was marked as a loop parameter to prevent user assignments -- to it, however this renders the advancement step illegal as it is not -- possible to change the value of a constant. Flag the advancement step -- as a legal form of assignment to remedy this side effect. Set_Assignment_OK (Name (Advance)); Analyze (N); -- Because we have to analyze the initial declaration of the loop -- parameter multiple times its scope is incorrectly set at this point -- to the one surrounding the block statement - so set the scope -- manually to be the actual block statement, and indicate that it is -- not visible after the block has been analyzed. Set_Scope (Init_Name, Entity (Identifier (N))); Set_Is_Immediately_Visible (Init_Name, False); end Expand_Formal_Container_Loop; ------------------------------------------ -- Expand_Formal_Container_Element_Loop -- ------------------------------------------ procedure Expand_Formal_Container_Element_Loop (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Isc : constant Node_Id := Iteration_Scheme (N); I_Spec : constant Node_Id := Iterator_Specification (Isc); Element : constant Entity_Id := Defining_Identifier (I_Spec); Container : constant Node_Id := Entity (Name (I_Spec)); Container_Typ : constant Entity_Id := Base_Type (Etype (Container)); Stats : constant List_Id := Statements (N); Cursor : constant Entity_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (Element), 'C')); Elmt_Decl : Node_Id; Element_Op : constant Entity_Id := Get_Iterable_Type_Primitive (Container_Typ, Name_Element); Advance : Node_Id; Init : Node_Id; New_Loop : Node_Id; Block : Node_Id; begin -- For an element iterator, the Element aspect must be present, -- (this is checked during analysis). -- We create a block to hold a variable declaration initialized with -- a call to Element, and generate: -- Cursor : Cursor_Type := First (Container); -- while Has_Element (Cursor, Container) loop -- declare -- Elmt : Element_Type := Element (Container, Cursor); -- begin -- -- Cursor := Next (Container, Cursor); -- end; -- end loop; Build_Formal_Container_Iteration (N, Container, Cursor, Init, Advance, New_Loop); Mutate_Ekind (Cursor, E_Variable); Insert_Action (N, Init); -- The loop parameter is declared by an object declaration, but within -- the loop we must prevent user assignments to it; the following flag -- accomplishes that. Set_Is_Loop_Parameter (Element); -- Declaration for Element Elmt_Decl := Make_Object_Declaration (Loc, Defining_Identifier => Element, Object_Definition => New_Occurrence_Of (Etype (Element_Op), Loc)); Set_Expression (Elmt_Decl, Make_Function_Call (Loc, Name => New_Occurrence_Of (Element_Op, Loc), Parameter_Associations => New_List ( Convert_To_Iterable_Type (Container, Loc), New_Occurrence_Of (Cursor, Loc)))); Block := Make_Block_Statement (Loc, Declarations => New_List (Elmt_Decl), Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats)); -- Wrap the block statements with the condition specified in the -- iterator filter when one is present. if Present (Iterator_Filter (I_Spec)) then pragma Assert (Ada_Version >= Ada_2022); Set_Statements (Handled_Statement_Sequence (Block), New_List ( Make_If_Statement (Loc, Condition => Iterator_Filter (I_Spec), Then_Statements => Statements (Handled_Statement_Sequence (Block))), Advance)); else Append_To (Stats, Advance); end if; Set_Statements (New_Loop, New_List (Block)); -- The element is only modified in expanded code, so it appears as -- unassigned to the warning machinery. We must suppress this spurious -- warning explicitly. Set_Warnings_Off (Element); Rewrite (N, New_Loop); Analyze (N); end Expand_Formal_Container_Element_Loop; ---------------------------------- -- Expand_N_Goto_When_Statement -- ---------------------------------- procedure Expand_N_Goto_When_Statement (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); begin Rewrite (N, Make_If_Statement (Loc, Condition => Condition (N), Then_Statements => New_List ( Make_Goto_Statement (Loc, Name => Name (N))))); Analyze (N); end Expand_N_Goto_When_Statement; --------------------------- -- Expand_N_If_Statement -- --------------------------- -- First we deal with the case of C and Fortran convention boolean values, -- with zero/nonzero semantics. -- Second, we deal with the obvious rewriting for the cases where the -- condition of the IF is known at compile time to be True or False. -- Third, we remove elsif parts which have non-empty Condition_Actions and -- rewrite as independent if statements. For example: -- if x then xs -- elsif y then ys -- ... -- end if; -- becomes -- -- if x then xs -- else -- <> -- if y then ys -- ... -- end if; -- end if; -- This rewriting is needed if at least one elsif part has a non-empty -- Condition_Actions list. We also do the same processing if there is a -- constant condition in an elsif part (in conjunction with the first -- processing step mentioned above, for the recursive call made to deal -- with the created inner if, this deals with properly optimizing the -- cases of constant elsif conditions). procedure Expand_N_If_Statement (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Hed : Node_Id; E : Node_Id; New_If : Node_Id; Warn_If_Deleted : constant Boolean := Warn_On_Deleted_Code and then Comes_From_Source (N); -- Indicates whether we want warnings when we delete branches of the -- if statement based on constant condition analysis. We never want -- these warnings for expander generated code. begin -- Do not consider controlled objects found in an if statement which -- actually models an if expression because their early finalization -- will affect the result of the expression. if not From_Conditional_Expression (N) then Process_Statements_For_Controlled_Objects (N); end if; Adjust_Condition (Condition (N)); -- The following loop deals with constant conditions for the IF. We -- need a loop because as we eliminate False conditions, we grab the -- first elsif condition and use it as the primary condition. while Compile_Time_Known_Value (Condition (N)) loop -- If condition is True, we can simply rewrite the if statement now -- by replacing it by the series of then statements. if Is_True (Expr_Value (Condition (N))) then -- All the else parts can be killed Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted); Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted); Hed := Remove_Head (Then_Statements (N)); Insert_List_After (N, Then_Statements (N)); Rewrite (N, Hed); return; -- If condition is False, then we can delete the condition and -- the Then statements else -- We do not delete the condition if constant condition warnings -- are enabled, since otherwise we end up deleting the desired -- warning. Of course the backend will get rid of this True/False -- test anyway, so nothing is lost here. if not Constant_Condition_Warnings then Kill_Dead_Code (Condition (N)); end if; Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted); -- If there are no elsif statements, then we simply replace the -- entire if statement by the sequence of else statements. if No (Elsif_Parts (N)) then if Is_Empty_List (Else_Statements (N)) then Rewrite (N, Make_Null_Statement (Sloc (N))); else Hed := Remove_Head (Else_Statements (N)); Insert_List_After (N, Else_Statements (N)); Rewrite (N, Hed); end if; return; -- If there are elsif statements, the first of them becomes the -- if/then section of the rebuilt if statement This is the case -- where we loop to reprocess this copied condition. else Hed := Remove_Head (Elsif_Parts (N)); Insert_Actions (N, Condition_Actions (Hed)); Set_Condition (N, Condition (Hed)); Set_Then_Statements (N, Then_Statements (Hed)); -- Hed might have been captured as the condition determining -- the current value for an entity. Now it is detached from -- the tree, so a Current_Value pointer in the condition might -- need to be updated. Set_Current_Value_Condition (N); if Is_Empty_List (Elsif_Parts (N)) then Set_Elsif_Parts (N, No_List); end if; end if; end if; end loop; -- Loop through elsif parts, dealing with constant conditions and -- possible condition actions that are present. E := First (Elsif_Parts (N)); while Present (E) loop -- Do not consider controlled objects found in an if statement which -- actually models an if expression because their early finalization -- will affect the result of the expression. if not From_Conditional_Expression (N) then Process_Statements_For_Controlled_Objects (E); end if; Adjust_Condition (Condition (E)); -- If there are condition actions, then rewrite the if statement as -- indicated above. We also do the same rewrite for a True or False -- condition. The further processing of this constant condition is -- then done by the recursive call to expand the newly created if -- statement if Present (Condition_Actions (E)) or else Compile_Time_Known_Value (Condition (E)) then New_If := Make_If_Statement (Sloc (E), Condition => Condition (E), Then_Statements => Then_Statements (E), Elsif_Parts => No_List, Else_Statements => Else_Statements (N)); -- Elsif parts for new if come from remaining elsif's of parent while Present (Next (E)) loop if No (Elsif_Parts (New_If)) then Set_Elsif_Parts (New_If, New_List); end if; Append (Remove_Next (E), Elsif_Parts (New_If)); end loop; Set_Else_Statements (N, New_List (New_If)); Insert_List_Before (New_If, Condition_Actions (E)); Remove (E); if Is_Empty_List (Elsif_Parts (N)) then Set_Elsif_Parts (N, No_List); end if; Analyze (New_If); -- Note this is not an implicit if statement, since it is part of -- an explicit if statement in the source (or of an implicit if -- statement that has already been tested). We set the flag after -- calling Analyze to avoid generating extra warnings specific to -- pure if statements, however (see Sem_Ch5.Analyze_If_Statement). Preserve_Comes_From_Source (New_If, N); return; -- No special processing for that elsif part, move to next else Next (E); end if; end loop; -- Some more optimizations applicable if we still have an IF statement if Nkind (N) /= N_If_Statement then return; end if; -- Another optimization, special cases that can be simplified -- if expression then -- return [standard.]true; -- else -- return [standard.]false; -- end if; -- can be changed to: -- return expression; -- and -- if expression then -- return [standard.]false; -- else -- return [standard.]true; -- end if; -- can be changed to: -- return not (expression); -- Do these optimizations only for internally generated code and only -- when -fpreserve-control-flow isn't set, to preserve the original -- source control flow. if not Comes_From_Source (N) and then not Opt.Suppress_Control_Flow_Optimizations and then Nkind (N) = N_If_Statement and then No (Elsif_Parts (N)) and then List_Length (Then_Statements (N)) = 1 and then List_Length (Else_Statements (N)) = 1 then declare Then_Stm : constant Node_Id := First (Then_Statements (N)); Else_Stm : constant Node_Id := First (Else_Statements (N)); Then_Expr : Node_Id; Else_Expr : Node_Id; begin if Nkind (Then_Stm) = N_Simple_Return_Statement and then Nkind (Else_Stm) = N_Simple_Return_Statement then Then_Expr := Expression (Then_Stm); Else_Expr := Expression (Else_Stm); if Nkind (Then_Expr) in N_Expanded_Name | N_Identifier and then Nkind (Else_Expr) in N_Expanded_Name | N_Identifier then if Entity (Then_Expr) = Standard_True and then Entity (Else_Expr) = Standard_False then Rewrite (N, Make_Simple_Return_Statement (Loc, Expression => Relocate_Node (Condition (N)))); Analyze (N); elsif Entity (Then_Expr) = Standard_False and then Entity (Else_Expr) = Standard_True then Rewrite (N, Make_Simple_Return_Statement (Loc, Expression => Make_Op_Not (Loc, Right_Opnd => Relocate_Node (Condition (N))))); Analyze (N); end if; end if; end if; end; end if; end Expand_N_If_Statement; -------------------------- -- Expand_Iterator_Loop -- -------------------------- procedure Expand_Iterator_Loop (N : Node_Id) is Isc : constant Node_Id := Iteration_Scheme (N); I_Spec : constant Node_Id := Iterator_Specification (Isc); Container : constant Node_Id := Name (I_Spec); Container_Typ : constant Entity_Id := Base_Type (Etype (Container)); begin -- Processing for arrays if Is_Array_Type (Container_Typ) then pragma Assert (Of_Present (I_Spec)); Expand_Iterator_Loop_Over_Array (N); elsif Has_Aspect (Container_Typ, Aspect_Iterable) then if Of_Present (I_Spec) then Expand_Formal_Container_Element_Loop (N); else Expand_Formal_Container_Loop (N); end if; -- Processing for containers else Expand_Iterator_Loop_Over_Container (N, I_Spec, Container, Container_Typ); end if; end Expand_Iterator_Loop; ------------------------------------- -- Expand_Iterator_Loop_Over_Array -- ------------------------------------- procedure Expand_Iterator_Loop_Over_Array (N : Node_Id) is Isc : constant Node_Id := Iteration_Scheme (N); I_Spec : constant Node_Id := Iterator_Specification (Isc); Array_Node : constant Node_Id := Name (I_Spec); Array_Typ : constant Entity_Id := Base_Type (Etype (Array_Node)); Array_Dim : constant Pos := Number_Dimensions (Array_Typ); Id : constant Entity_Id := Defining_Identifier (I_Spec); Loc : constant Source_Ptr := Sloc (Isc); Stats : List_Id := Statements (N); Core_Loop : Node_Id; Dim1 : Int; Ind_Comp : Node_Id; Iterator : Entity_Id; begin if Present (Iterator_Filter (I_Spec)) then pragma Assert (Ada_Version >= Ada_2022); Stats := New_List (Make_If_Statement (Loc, Condition => Iterator_Filter (I_Spec), Then_Statements => Stats)); end if; -- for Element of Array loop -- It requires an internally generated cursor to iterate over the array pragma Assert (Of_Present (I_Spec)); Iterator := Make_Temporary (Loc, 'C'); -- Generate: -- Element : Component_Type renames Array (Iterator); -- Iterator is the index value, or a list of index values -- in the case of a multidimensional array. Ind_Comp := Make_Indexed_Component (Loc, Prefix => New_Copy_Tree (Array_Node), Expressions => New_List (New_Occurrence_Of (Iterator, Loc))); -- Propagate the original node to the copy since the analysis of the -- following object renaming declaration relies on the original node. Set_Original_Node (Prefix (Ind_Comp), Original_Node (Array_Node)); Prepend_To (Stats, Make_Object_Renaming_Declaration (Loc, Defining_Identifier => Id, Subtype_Mark => New_Occurrence_Of (Component_Type (Array_Typ), Loc), Name => Ind_Comp)); -- Mark the loop variable as needing debug info, so that expansion -- of the renaming will result in Materialize_Entity getting set via -- Debug_Renaming_Declaration. (This setting is needed here because -- the setting in Freeze_Entity comes after the expansion, which is -- too late. ???) Set_Debug_Info_Needed (Id); -- Generate: -- for Iterator in [reverse] Array'Range (Array_Dim) loop -- Element : Component_Type renames Array (Iterator); -- -- end loop; -- If this is an iteration over a multidimensional array, the -- innermost loop is over the last dimension in Ada, and over -- the first dimension in Fortran. if Convention (Array_Typ) = Convention_Fortran then Dim1 := 1; else Dim1 := Array_Dim; end if; Core_Loop := Make_Loop_Statement (Sloc (N), Iteration_Scheme => Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => Iterator, Discrete_Subtype_Definition => Make_Attribute_Reference (Loc, Prefix => New_Copy_Tree (Array_Node), Attribute_Name => Name_Range, Expressions => New_List ( Make_Integer_Literal (Loc, Dim1))), Reverse_Present => Reverse_Present (I_Spec))), Statements => Stats, End_Label => Empty); -- Processing for multidimensional array. The body of each loop is -- a loop over a previous dimension, going in decreasing order in Ada -- and in increasing order in Fortran. if Array_Dim > 1 then for Dim in 1 .. Array_Dim - 1 loop if Convention (Array_Typ) = Convention_Fortran then Dim1 := Dim + 1; else Dim1 := Array_Dim - Dim; end if; Iterator := Make_Temporary (Loc, 'C'); -- Generate the dimension loops starting from the innermost one -- for Iterator in [reverse] Array'Range (Array_Dim - Dim) loop -- -- end loop; Core_Loop := Make_Loop_Statement (Sloc (N), Iteration_Scheme => Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => Iterator, Discrete_Subtype_Definition => Make_Attribute_Reference (Loc, Prefix => New_Copy_Tree (Array_Node), Attribute_Name => Name_Range, Expressions => New_List ( Make_Integer_Literal (Loc, Dim1))), Reverse_Present => Reverse_Present (I_Spec))), Statements => New_List (Core_Loop), End_Label => Empty); -- Update the previously created object renaming declaration with -- the new iterator, by adding the index of the next loop to the -- indexed component, in the order that corresponds to the -- convention. if Convention (Array_Typ) = Convention_Fortran then Append_To (Expressions (Ind_Comp), New_Occurrence_Of (Iterator, Loc)); else Prepend_To (Expressions (Ind_Comp), New_Occurrence_Of (Iterator, Loc)); end if; end loop; end if; -- Inherit the loop identifier from the original loop. This ensures that -- the scope stack is consistent after the rewriting. if Present (Identifier (N)) then Set_Identifier (Core_Loop, Relocate_Node (Identifier (N))); end if; Rewrite (N, Core_Loop); Analyze (N); end Expand_Iterator_Loop_Over_Array; ----------------------------------------- -- Expand_Iterator_Loop_Over_Container -- ----------------------------------------- -- For a 'for ... in' loop, such as: -- for Cursor in Iterator_Function (...) loop -- ... -- end loop; -- we generate: -- Iter : Iterator_Type := Iterator_Function (...); -- Cursor : Cursor_type := First (Iter); -- or Last for "reverse" -- while Has_Element (Cursor) loop -- ... -- -- Cursor := Iter.Next (Cursor); -- or Prev for "reverse" -- end loop; -- For a 'for ... of' loop, such as: -- for X of Container loop -- ... -- end loop; -- the RM implies the generation of: -- Iter : Iterator_Type := Container.Iterate; -- the Default_Iterator -- Cursor : Cursor_Type := First (Iter); -- or Last for "reverse" -- while Has_Element (Cursor) loop -- declare -- X : Element_Type renames Element (Cursor).Element.all; -- -- or Constant_Element -- begin -- ... -- end; -- Cursor := Iter.Next (Cursor); -- or Prev for "reverse" -- end loop; -- In the general case, we do what the RM says. However, the operations -- Element and Iter.Next are slow, which is bad inside a loop, because they -- involve dispatching via interfaces, secondary stack manipulation, -- Busy/Lock incr/decr, and adjust/finalization/at-end handling. So for the -- predefined containers, we use an equivalent but optimized expansion. -- In the optimized case, we make use of these: -- procedure _Next (Position : in out Cursor); -- instead of Iter.Next -- (or _Previous for reverse loops) -- function Pseudo_Reference -- (Container : aliased Vector'Class) return Reference_Control_Type; -- type Element_Access is access all Element_Type; -- function Get_Element_Access -- (Position : Cursor) return not null Element_Access; -- Next is declared in the visible part of the container packages. -- The other three are added in the private part. (We're not supposed to -- pollute the namespace for clients. The compiler has no trouble breaking -- privacy to call things in the private part of an instance.) -- Note that Next and Previous are renamed as _Next and _Previous with -- leading underscores. Leading underscores are illegal in Ada, but we -- allow them in the run-time library. This allows us to avoid polluting -- the user-visible namespaces. -- Source: -- for X of My_Vector loop -- X.Count := X.Count + 1; -- ... -- end loop; -- The compiler will generate: -- Iter : Reversible_Iterator'Class := Iterate (My_Vector); -- -- Reversible_Iterator is an interface. Iterate is the -- -- Default_Iterator aspect of Vector. This increments Lock, -- -- disallowing tampering with cursors. Unfortunately, it does not -- -- increment Busy. The result of Iterate is Limited_Controlled; -- -- finalization will decrement Lock. This is a build-in-place -- -- dispatching call to Iterate. -- Cur : Cursor := First (Iter); -- or Last -- -- Dispatching call via interface. -- Control : Reference_Control_Type := Pseudo_Reference (My_Vector); -- -- Pseudo_Reference increments Busy, to detect tampering with -- -- elements, as required by RM. Also redundantly increment -- -- Lock. Finalization of Control will decrement both Busy and -- -- Lock. Pseudo_Reference returns a record containing a pointer to -- -- My_Vector, used by Finalize. -- -- -- -- Control is not used below, except to finalize it -- it's purely -- -- an RAII thing. This is needed because we are eliminating the -- -- call to Reference within the loop. -- while Has_Element (Cur) loop -- declare -- X : My_Element renames Get_Element_Access (Cur).all; -- -- Get_Element_Access returns a pointer to the element -- -- designated by Cur. No dispatching here, and no horsing -- -- around with access discriminants. This is instead of the -- -- existing -- -- -- -- X : My_Element renames Reference (Cur).Element.all; -- -- -- -- which creates a controlled object. -- begin -- -- Any attempt to tamper with My_Vector here in the loop -- -- will correctly raise Program_Error, because of the -- -- Control. -- -- X.Count := X.Count + 1; -- ... -- -- _Next (Cur); -- or _Previous -- -- This is instead of "Cur := Next (Iter, Cur);" -- end; -- -- No finalization here -- end loop; -- Finalize Iter and Control here, decrementing Lock twice and Busy -- once. -- This optimization makes "for ... of" loops over 30 times faster in cases -- measured. procedure Expand_Iterator_Loop_Over_Container (N : Node_Id; I_Spec : Node_Id; Container : Node_Id; Container_Typ : Entity_Id) is Id : constant Entity_Id := Defining_Identifier (I_Spec); Elem_Typ : constant Entity_Id := Etype (Id); Id_Kind : constant Entity_Kind := Ekind (Id); Loc : constant Source_Ptr := Sloc (N); Stats : List_Id := Statements (N); -- Maybe wrapped in a conditional if a filter is present Cursor : Entity_Id; Decl : Node_Id; Iter_Type : Entity_Id; Iterator : Entity_Id; Name_Init : Name_Id; Name_Step : Name_Id; Name_Fast_Step : Name_Id; New_Loop : Node_Id; Fast_Element_Access_Op : Entity_Id := Empty; Fast_Step_Op : Entity_Id := Empty; -- Only for optimized version of "for ... of" Iter_Pack : Entity_Id; -- The package in which the iterator interface is instantiated. This is -- typically an instance within the container package. begin if Present (Iterator_Filter (I_Spec)) then pragma Assert (Ada_Version >= Ada_2022); Stats := New_List (Make_If_Statement (Loc, Condition => Iterator_Filter (I_Spec), Then_Statements => Stats)); end if; -- Determine the advancement and initialization steps for the cursor. -- Analysis of the expanded loop will verify that the container has a -- reverse iterator. if Reverse_Present (I_Spec) then Name_Init := Name_Last; Name_Step := Name_Previous; Name_Fast_Step := Name_uPrevious; else Name_Init := Name_First; Name_Step := Name_Next; Name_Fast_Step := Name_uNext; end if; -- The type of the iterator is the return type of the Iterate function -- used. For the "of" form this is the default iterator for the type, -- otherwise it is the type of the explicit function used in the -- iterator specification. The most common case will be an Iterate -- function in the container package. -- The Iterator type is declared in an instance within the container -- package itself, for example: -- package Vector_Iterator_Interfaces is new -- Ada.Iterator_Interfaces (Cursor, Has_Element); if Of_Present (I_Spec) then Handle_Of : declare Container_Arg : Node_Id; function Get_Default_Iterator (T : Entity_Id) return Entity_Id; -- Return the default iterator for a specific type. If the type is -- derived, we return the inherited or overridden one if -- appropriate. -------------------------- -- Get_Default_Iterator -- -------------------------- function Get_Default_Iterator (T : Entity_Id) return Entity_Id is Iter : constant Entity_Id := Entity (Find_Value_Of_Aspect (T, Aspect_Default_Iterator)); Prim : Elmt_Id; Op : Entity_Id; begin Container_Arg := New_Copy_Tree (Container); -- A previous version of GNAT allowed indexing aspects to be -- redefined on derived container types, while the default -- iterator was inherited from the parent type. This -- nonstandard extension is preserved for use by the -- modeling project under debug flag -gnatd.X. if Debug_Flag_Dot_XX then if Base_Type (Etype (Container)) /= Base_Type (Etype (First_Formal (Iter))) then Container_Arg := Make_Type_Conversion (Loc, Subtype_Mark => New_Occurrence_Of (Etype (First_Formal (Iter)), Loc), Expression => Container_Arg); end if; return Iter; elsif Is_Derived_Type (T) then -- The default iterator must be a primitive operation of the -- type, at the same dispatch slot position. The DT position -- may not be established if type is not frozen yet. Prim := First_Elmt (Primitive_Operations (T)); while Present (Prim) loop Op := Node (Prim); if Alias (Op) = Iter or else (Chars (Op) = Chars (Iter) and then Present (DTC_Entity (Op)) and then DT_Position (Op) = DT_Position (Iter)) then return Op; end if; Next_Elmt (Prim); end loop; -- If we didn't find it, then our parent type is not -- iterable, so we return the Default_Iterator aspect of -- this type. return Iter; -- Otherwise not a derived type else return Iter; end if; end Get_Default_Iterator; -- Local variables Default_Iter : Entity_Id; Ent : Entity_Id; Cont_Type_Pack : Entity_Id; -- The package in which the container type is declared Reference_Control_Type : Entity_Id := Empty; Pseudo_Reference : Entity_Id := Empty; -- Start of processing for Handle_Of begin if Is_Class_Wide_Type (Container_Typ) then Default_Iter := Get_Default_Iterator (Etype (Base_Type (Container_Typ))); else Default_Iter := Get_Default_Iterator (Etype (Container)); end if; Cursor := Make_Temporary (Loc, 'C'); -- For a container element iterator, the iterator type is obtained -- from the corresponding aspect, whose return type is descended -- from the corresponding interface type in some instance of -- Ada.Iterator_Interfaces. The actuals of that instantiation -- are Cursor and Has_Element. Iter_Type := Etype (Default_Iter); -- If the container type is a derived type, the cursor type is -- found in the package of the ultimate ancestor type. if Is_Derived_Type (Container_Typ) then Cont_Type_Pack := Scope (Root_Type (Container_Typ)); else Cont_Type_Pack := Scope (Container_Typ); end if; -- Find declarations needed for "for ... of" optimization. -- These declarations come from GNAT sources or sources -- derived from them. User code may include additional -- overloadings with similar names, and we need to perforn -- some reasonable resolution to find the needed primitives. -- Note that we use _Next or _Previous to avoid picking up -- some arbitrary user-defined Next or Previous. Ent := First_Entity (Cont_Type_Pack); while Present (Ent) loop -- Ignore subprogram bodies if Ekind (Ent) = E_Subprogram_Body then null; -- Get_Element_Access function with one parameter called -- Position. elsif Chars (Ent) = Name_Get_Element_Access and then Ekind (Ent) = E_Function and then Present (First_Formal (Ent)) and then Chars (First_Formal (Ent)) = Name_Position and then No (Next_Formal (First_Formal (Ent))) then pragma Assert (No (Fast_Element_Access_Op)); Fast_Element_Access_Op := Ent; -- Next or Prev procedure with one parameter called -- Position. elsif Chars (Ent) = Name_Fast_Step then pragma Assert (No (Fast_Step_Op)); Fast_Step_Op := Ent; elsif Chars (Ent) = Name_Reference_Control_Type then pragma Assert (No (Reference_Control_Type)); Reference_Control_Type := Ent; elsif Chars (Ent) = Name_Pseudo_Reference then pragma Assert (No (Pseudo_Reference)); Pseudo_Reference := Ent; end if; Next_Entity (Ent); end loop; if Present (Reference_Control_Type) and then Present (Pseudo_Reference) then Insert_Action (N, Make_Object_Declaration (Loc, Defining_Identifier => Make_Temporary (Loc, 'D'), Object_Definition => New_Occurrence_Of (Reference_Control_Type, Loc), Expression => Make_Function_Call (Loc, Name => New_Occurrence_Of (Pseudo_Reference, Loc), Parameter_Associations => New_List (New_Copy_Tree (Container_Arg))))); end if; -- Rewrite domain of iteration as a call to the default iterator -- for the container type. The formal may be an access parameter -- in which case we must build a reference to the container. declare Arg : Node_Id; begin if Is_Access_Type (Etype (First_Entity (Default_Iter))) then Arg := Make_Attribute_Reference (Loc, Prefix => Container_Arg, Attribute_Name => Name_Unrestricted_Access); else Arg := Container_Arg; end if; Rewrite (Name (I_Spec), Make_Function_Call (Loc, Name => New_Occurrence_Of (Default_Iter, Loc), Parameter_Associations => New_List (Arg))); end; Analyze_And_Resolve (Name (I_Spec)); -- The desired instantiation is the scope of an iterator interface -- type that is an ancestor of the iterator type. Iter_Pack := Scope (Iterator_Interface_Ancestor (Iter_Type)); -- Find cursor type in proper iterator package, which is an -- instantiation of Iterator_Interfaces. Ent := First_Entity (Iter_Pack); while Present (Ent) loop if Chars (Ent) = Name_Cursor then Set_Etype (Cursor, Etype (Ent)); exit; end if; Next_Entity (Ent); end loop; if Present (Fast_Element_Access_Op) then Decl := Make_Object_Renaming_Declaration (Loc, Defining_Identifier => Id, Subtype_Mark => New_Occurrence_Of (Elem_Typ, Loc), Name => Make_Explicit_Dereference (Loc, Prefix => Make_Function_Call (Loc, Name => New_Occurrence_Of (Fast_Element_Access_Op, Loc), Parameter_Associations => New_List (New_Occurrence_Of (Cursor, Loc))))); else Decl := Make_Object_Renaming_Declaration (Loc, Defining_Identifier => Id, Subtype_Mark => New_Occurrence_Of (Elem_Typ, Loc), Name => Make_Indexed_Component (Loc, Prefix => Relocate_Node (Container_Arg), Expressions => New_List (New_Occurrence_Of (Cursor, Loc)))); end if; -- The defining identifier in the iterator is user-visible and -- must be visible in the debugger. Set_Debug_Info_Needed (Id); -- If the container does not have a variable indexing aspect, -- the element is a constant in the loop. The container itself -- may be constant, in which case the element is a constant as -- well. The container has been rewritten as a call to Iterate, -- so examine original node. if No (Find_Value_Of_Aspect (Container_Typ, Aspect_Variable_Indexing)) or else not Is_Variable (Original_Node (Container)) then Mutate_Ekind (Id, E_Constant); end if; Prepend_To (Stats, Decl); end Handle_Of; -- X in Iterate (S) : type of iterator is type of explicitly given -- Iterate function, and the loop variable is the cursor. It will be -- assigned in the loop and must be a variable. else Iter_Type := Etype (Name (I_Spec)); -- The instantiation in which to locate the Has_Element function -- is the scope containing an iterator interface type that is -- an ancestor of the iterator type. Iter_Pack := Scope (Iterator_Interface_Ancestor (Iter_Type)); Cursor := Id; end if; Iterator := Make_Temporary (Loc, 'I'); -- For both iterator forms, add a call to the step operation to advance -- the cursor. Generate: -- Cursor := Iterator.Next (Cursor); -- or else -- Cursor := Next (Cursor); if Present (Fast_Element_Access_Op) and then Present (Fast_Step_Op) then declare Curs_Name : constant Node_Id := New_Occurrence_Of (Cursor, Loc); Step_Call : Node_Id; begin Step_Call := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Fast_Step_Op, Loc), Parameter_Associations => New_List (Curs_Name)); Append_To (Stats, Step_Call); Set_Assignment_OK (Curs_Name); end; else declare Rhs : Node_Id; begin Rhs := Make_Function_Call (Loc, Name => Make_Selected_Component (Loc, Prefix => New_Occurrence_Of (Iterator, Loc), Selector_Name => Make_Identifier (Loc, Name_Step)), Parameter_Associations => New_List ( New_Occurrence_Of (Cursor, Loc))); Append_To (Stats, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Cursor, Loc), Expression => Rhs)); Set_Assignment_OK (Name (Last (Stats))); end; end if; -- Generate: -- while Has_Element (Cursor) loop -- -- end loop; -- Has_Element is the second actual in the iterator package New_Loop := Make_Loop_Statement (Loc, Iteration_Scheme => Make_Iteration_Scheme (Loc, Condition => Make_Function_Call (Loc, Name => New_Occurrence_Of (Next_Entity (First_Entity (Iter_Pack)), Loc), Parameter_Associations => New_List ( New_Occurrence_Of (Cursor, Loc)))), Statements => Stats, End_Label => Empty); -- If present, preserve identifier of loop, which can be used in an exit -- statement in the body. if Present (Identifier (N)) then Set_Identifier (New_Loop, Relocate_Node (Identifier (N))); end if; -- Create the declarations for Iterator and cursor and insert them -- before the source loop. Given that the domain of iteration is already -- an entity, the iterator is just a renaming of that entity. Possible -- optimization ??? Insert_Action (N, Make_Object_Renaming_Declaration (Loc, Defining_Identifier => Iterator, Subtype_Mark => New_Occurrence_Of (Iter_Type, Loc), Name => Relocate_Node (Name (I_Spec)))); -- Create declaration for cursor declare Cursor_Decl : constant Node_Id := Make_Object_Declaration (Loc, Defining_Identifier => Cursor, Object_Definition => New_Occurrence_Of (Etype (Cursor), Loc), Expression => Make_Selected_Component (Loc, Prefix => New_Occurrence_Of (Iterator, Loc), Selector_Name => Make_Identifier (Loc, Name_Init))); begin -- The cursor is only modified in expanded code, so it appears -- as unassigned to the warning machinery. We must suppress this -- spurious warning explicitly. The cursor's kind is that of the -- original loop parameter (it is a constant if the domain of -- iteration is constant). Set_Warnings_Off (Cursor); Set_Assignment_OK (Cursor_Decl); Insert_Action (N, Cursor_Decl); Reinit_Field_To_Zero (Cursor, F_Has_Initial_Value, Old_Ekind => (E_Variable => True, others => False)); Reinit_Field_To_Zero (Cursor, F_Is_Elaboration_Checks_OK_Id); Reinit_Field_To_Zero (Cursor, F_Is_Elaboration_Warnings_OK_Id); Reinit_Field_To_Zero (Cursor, F_SPARK_Pragma); Reinit_Field_To_Zero (Cursor, F_SPARK_Pragma_Inherited); Mutate_Ekind (Cursor, Id_Kind); end; Rewrite (N, New_Loop); Analyze (N); end Expand_Iterator_Loop_Over_Container; ----------------------------- -- Expand_N_Loop_Statement -- ----------------------------- -- 1. Remove null loop entirely -- 2. Deal with while condition for C/Fortran boolean -- 3. Deal with loops with a non-standard enumeration type range -- 4. Deal with while loops where Condition_Actions is set -- 5. Deal with loops over predicated subtypes -- 6. Deal with loops with iterators over arrays and containers procedure Expand_N_Loop_Statement (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Scheme : constant Node_Id := Iteration_Scheme (N); Stmt : Node_Id; begin -- Delete null loop if Is_Null_Loop (N) then Rewrite (N, Make_Null_Statement (Loc)); return; end if; -- Deal with condition for C/Fortran Boolean if Present (Scheme) then Adjust_Condition (Condition (Scheme)); end if; -- Nothing more to do for plain loop with no iteration scheme if No (Scheme) then null; -- Case of for loop (Loop_Parameter_Specification present) -- Note: we do not have to worry about validity checking of the for loop -- range bounds here, since they were frozen with constant declarations -- and it is during that process that the validity checking is done. elsif Present (Loop_Parameter_Specification (Scheme)) then declare LPS : constant Node_Id := Loop_Parameter_Specification (Scheme); Loop_Id : constant Entity_Id := Defining_Identifier (LPS); Ltype : constant Entity_Id := Etype (Loop_Id); Btype : constant Entity_Id := Base_Type (Ltype); Stats : constant List_Id := Statements (N); Expr : Node_Id; Decls : List_Id; New_Id : Entity_Id; begin -- If Discrete_Subtype_Definition has been rewritten as an -- N_Raise_xxx_Error, rewrite the whole loop as a raise node to -- avoid confusing the code generator down the line. if Nkind (Discrete_Subtype_Definition (LPS)) in N_Raise_xxx_Error then Rewrite (N, Discrete_Subtype_Definition (LPS)); return; end if; if Present (Iterator_Filter (LPS)) then pragma Assert (Ada_Version >= Ada_2022); Set_Statements (N, New_List (Make_If_Statement (Loc, Condition => Iterator_Filter (LPS), Then_Statements => Stats))); Analyze_List (Statements (N)); end if; -- Deal with loop over predicates if Is_Discrete_Type (Ltype) and then Present (Predicate_Function (Ltype)) then Expand_Predicated_Loop (N); -- Handle the case where we have a for loop with the range type -- being an enumeration type with non-standard representation. -- In this case we expand: -- for x in [reverse] a .. b loop -- ... -- end loop; -- to -- for xP in [reverse] integer -- range etype'Pos (a) .. etype'Pos (b) -- loop -- declare -- x : constant etype := Pos_To_Rep (xP); -- begin -- ... -- end; -- end loop; elsif Is_Enumeration_Type (Btype) and then Present (Enum_Pos_To_Rep (Btype)) then New_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (Loop_Id), 'P')); -- If the type has a contiguous representation, successive -- values can be generated as offsets from the first literal. if Has_Contiguous_Rep (Btype) then Expr := Unchecked_Convert_To (Btype, Make_Op_Add (Loc, Left_Opnd => Make_Integer_Literal (Loc, Enumeration_Rep (First_Literal (Btype))), Right_Opnd => New_Occurrence_Of (New_Id, Loc))); else -- Use the constructed array Enum_Pos_To_Rep Expr := Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (Enum_Pos_To_Rep (Btype), Loc), Expressions => New_List (New_Occurrence_Of (New_Id, Loc))); end if; -- Build declaration for loop identifier Decls := New_List ( Make_Object_Declaration (Loc, Defining_Identifier => Loop_Id, Constant_Present => True, Object_Definition => New_Occurrence_Of (Ltype, Loc), Expression => Expr)); Rewrite (N, Make_Loop_Statement (Loc, Identifier => Identifier (N), Iteration_Scheme => Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => New_Id, Reverse_Present => Reverse_Present (LPS), Discrete_Subtype_Definition => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Standard_Natural, Loc), Constraint => Make_Range_Constraint (Loc, Range_Expression => Make_Range (Loc, Low_Bound => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Btype, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Relocate_Node (Type_Low_Bound (Ltype)))), High_Bound => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Btype, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Relocate_Node (Type_High_Bound (Ltype))))))))), Statements => New_List ( Make_Block_Statement (Loc, Declarations => Decls, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats))), End_Label => End_Label (N))); -- The loop parameter's entity must be removed from the loop -- scope's entity list and rendered invisible, since it will -- now be located in the new block scope. Any other entities -- already associated with the loop scope, such as the loop -- parameter's subtype, will remain there. -- In an element loop, the loop will contain a declaration for -- a cursor variable; otherwise the loop id is the first entity -- in the scope constructed for the loop. if Comes_From_Source (Loop_Id) then pragma Assert (First_Entity (Scope (Loop_Id)) = Loop_Id); null; end if; Set_First_Entity (Scope (Loop_Id), Next_Entity (Loop_Id)); Remove_Homonym (Loop_Id); if Last_Entity (Scope (Loop_Id)) = Loop_Id then Set_Last_Entity (Scope (Loop_Id), Empty); end if; Analyze (N); -- Nothing to do with other cases of for loops else null; end if; end; -- Second case, if we have a while loop with Condition_Actions set, then -- we change it into a plain loop: -- while C loop -- ... -- end loop; -- changed to: -- loop -- <> -- exit when not C; -- ... -- end loop elsif Present (Scheme) and then Present (Condition_Actions (Scheme)) and then Present (Condition (Scheme)) then declare ES : Node_Id; begin ES := Make_Exit_Statement (Sloc (Condition (Scheme)), Condition => Make_Op_Not (Sloc (Condition (Scheme)), Right_Opnd => Condition (Scheme))); Prepend (ES, Statements (N)); Insert_List_Before (ES, Condition_Actions (Scheme)); -- This is not an implicit loop, since it is generated in response -- to the loop statement being processed. If this is itself -- implicit, the restriction has already been checked. If not, -- it is an explicit loop. Rewrite (N, Make_Loop_Statement (Sloc (N), Identifier => Identifier (N), Statements => Statements (N), End_Label => End_Label (N))); Analyze (N); end; -- Here to deal with iterator case elsif Present (Scheme) and then Present (Iterator_Specification (Scheme)) then Expand_Iterator_Loop (N); -- An iterator loop may generate renaming declarations for elements -- that require debug information. This is the case in particular -- with element iterators, where debug information must be generated -- for the temporary that holds the element value. These temporaries -- are created within a transient block whose local declarations are -- transferred to the loop, which now has nontrivial local objects. if Nkind (N) = N_Loop_Statement and then Present (Identifier (N)) then Qualify_Entity_Names (N); end if; end if; -- When the iteration scheme mentions attribute 'Loop_Entry, the loop -- is transformed into a conditional block where the original loop is -- the sole statement. Inspect the statements of the nested loop for -- controlled objects. Stmt := N; if Subject_To_Loop_Entry_Attributes (Stmt) then Stmt := Find_Loop_In_Conditional_Block (Stmt); end if; Process_Statements_For_Controlled_Objects (Stmt); end Expand_N_Loop_Statement; ---------------------------- -- Expand_Predicated_Loop -- ---------------------------- -- Note: the expander can handle generation of loops over predicated -- subtypes for both the dynamic and static cases. Depending on what -- we decide is allowed in Ada 2012 mode and/or extensions allowed -- mode, the semantic analyzer may disallow one or both forms. procedure Expand_Predicated_Loop (N : Node_Id) is Orig_Loop_Id : Node_Id := Empty; Loc : constant Source_Ptr := Sloc (N); Isc : constant Node_Id := Iteration_Scheme (N); LPS : constant Node_Id := Loop_Parameter_Specification (Isc); Loop_Id : constant Entity_Id := Defining_Identifier (LPS); Ltype : constant Entity_Id := Etype (Loop_Id); Stat : constant List_Id := Static_Discrete_Predicate (Ltype); Stmts : constant List_Id := Statements (N); begin -- Case of iteration over non-static predicate, should not be possible -- since this is not allowed by the semantics and should have been -- caught during analysis of the loop statement. if No (Stat) then raise Program_Error; -- If the predicate list is empty, that corresponds to a predicate of -- False, in which case the loop won't run at all, and we rewrite the -- entire loop as a null statement. elsif Is_Empty_List (Stat) then Rewrite (N, Make_Null_Statement (Loc)); Analyze (N); -- For expansion over a static predicate we generate the following -- declare -- J : Ltype := min-val; -- begin -- loop -- body -- case J is -- when endpoint => J := startpoint; -- when endpoint => J := startpoint; -- ... -- when max-val => exit; -- when others => J := Lval'Succ (J); -- end case; -- end loop; -- end; -- with min-val replaced by max-val and Succ replaced by Pred if the -- loop parameter specification carries a Reverse indicator. -- To make this a little clearer, let's take a specific example: -- type Int is range 1 .. 10; -- subtype StaticP is Int with -- predicate => StaticP in 3 | 10 | 5 .. 7; -- ... -- for L in StaticP loop -- Put_Line ("static:" & J'Img); -- end loop; -- In this case, the loop is transformed into -- begin -- J : L := 3; -- loop -- body -- case J is -- when 3 => J := 5; -- when 7 => J := 10; -- when 10 => exit; -- when others => J := L'Succ (J); -- end case; -- end loop; -- end; -- In addition, if the loop specification is given by a subtype -- indication that constrains a predicated type, the bounds of -- iteration are given by those of the subtype indication. else Static_Predicate : declare S : Node_Id; D : Node_Id; P : Node_Id; Alts : List_Id; Cstm : Node_Id; -- If the domain is an itype, note the bounds of its range. L_Hi : Node_Id := Empty; L_Lo : Node_Id := Empty; function Lo_Val (N : Node_Id) return Node_Id; -- Given static expression or static range, returns an identifier -- whose value is the low bound of the expression value or range. function Hi_Val (N : Node_Id) return Node_Id; -- Given static expression or static range, returns an identifier -- whose value is the high bound of the expression value or range. ------------ -- Hi_Val -- ------------ function Hi_Val (N : Node_Id) return Node_Id is begin if Is_OK_Static_Expression (N) then return New_Copy (N); else pragma Assert (Nkind (N) = N_Range); return New_Copy (High_Bound (N)); end if; end Hi_Val; ------------ -- Lo_Val -- ------------ function Lo_Val (N : Node_Id) return Node_Id is begin if Is_OK_Static_Expression (N) then return New_Copy (N); else pragma Assert (Nkind (N) = N_Range); return New_Copy (Low_Bound (N)); end if; end Lo_Val; -- Start of processing for Static_Predicate begin -- Convert loop identifier to normal variable and reanalyze it so -- that this conversion works. We have to use the same defining -- identifier, since there may be references in the loop body. Set_Analyzed (Loop_Id, False); Mutate_Ekind (Loop_Id, E_Variable); -- In most loops the loop variable is assigned in various -- alternatives in the body. However, in the rare case when -- the range specifies a single element, the loop variable -- may trigger a spurious warning that is could be constant. -- This warning might as well be suppressed. Set_Warnings_Off (Loop_Id); if Is_Itype (Ltype) then L_Hi := High_Bound (Scalar_Range (Ltype)); L_Lo := Low_Bound (Scalar_Range (Ltype)); end if; -- Loop to create branches of case statement Alts := New_List; if Reverse_Present (LPS) then -- Initial value is largest value in predicate. if Is_Itype (Ltype) then D := Make_Object_Declaration (Loc, Defining_Identifier => Loop_Id, Object_Definition => New_Occurrence_Of (Ltype, Loc), Expression => L_Hi); else D := Make_Object_Declaration (Loc, Defining_Identifier => Loop_Id, Object_Definition => New_Occurrence_Of (Ltype, Loc), Expression => Hi_Val (Last (Stat))); end if; P := Last (Stat); while Present (P) loop if No (Prev (P)) then S := Make_Exit_Statement (Loc); else S := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Loop_Id, Loc), Expression => Hi_Val (Prev (P))); Set_Suppress_Assignment_Checks (S); end if; Append_To (Alts, Make_Case_Statement_Alternative (Loc, Statements => New_List (S), Discrete_Choices => New_List (Lo_Val (P)))); Prev (P); end loop; if Is_Itype (Ltype) and then Is_OK_Static_Expression (L_Lo) and then Expr_Value (L_Lo) /= Expr_Value (Lo_Val (First (Stat))) then Append_To (Alts, Make_Case_Statement_Alternative (Loc, Statements => New_List (Make_Exit_Statement (Loc)), Discrete_Choices => New_List (L_Lo))); end if; else -- Initial value is smallest value in predicate if Is_Itype (Ltype) then D := Make_Object_Declaration (Loc, Defining_Identifier => Loop_Id, Object_Definition => New_Occurrence_Of (Ltype, Loc), Expression => L_Lo); else D := Make_Object_Declaration (Loc, Defining_Identifier => Loop_Id, Object_Definition => New_Occurrence_Of (Ltype, Loc), Expression => Lo_Val (First (Stat))); end if; P := First (Stat); while Present (P) loop if No (Next (P)) then S := Make_Exit_Statement (Loc); else S := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Loop_Id, Loc), Expression => Lo_Val (Next (P))); Set_Suppress_Assignment_Checks (S); end if; Append_To (Alts, Make_Case_Statement_Alternative (Loc, Statements => New_List (S), Discrete_Choices => New_List (Hi_Val (P)))); Next (P); end loop; if Is_Itype (Ltype) and then Is_OK_Static_Expression (L_Hi) and then Expr_Value (L_Hi) /= Expr_Value (Lo_Val (Last (Stat))) then Append_To (Alts, Make_Case_Statement_Alternative (Loc, Statements => New_List (Make_Exit_Statement (Loc)), Discrete_Choices => New_List (L_Hi))); end if; end if; -- Add others choice declare Name_Next : Name_Id; begin if Reverse_Present (LPS) then Name_Next := Name_Pred; else Name_Next := Name_Succ; end if; S := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Loop_Id, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ltype, Loc), Attribute_Name => Name_Next, Expressions => New_List ( New_Occurrence_Of (Loop_Id, Loc)))); Set_Suppress_Assignment_Checks (S); end; Append_To (Alts, Make_Case_Statement_Alternative (Loc, Discrete_Choices => New_List (Make_Others_Choice (Loc)), Statements => New_List (S))); -- Construct case statement and append to body statements Cstm := Make_Case_Statement (Loc, Expression => New_Occurrence_Of (Loop_Id, Loc), Alternatives => Alts); Append_To (Stmts, Cstm); -- Rewrite the loop preserving the loop identifier in case there -- are exit statements referencing it. if Present (Identifier (N)) then Orig_Loop_Id := New_Occurrence_Of (Entity (Identifier (N)), Loc); end if; Set_Suppress_Assignment_Checks (D); Rewrite (N, Make_Block_Statement (Loc, Declarations => New_List (D), Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Loop_Statement (Loc, Statements => Stmts, Identifier => Orig_Loop_Id, End_Label => Empty))))); Analyze (N); end Static_Predicate; end if; end Expand_Predicated_Loop; ------------------------------ -- Make_Tag_Ctrl_Assignment -- ------------------------------ function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is Asn : constant Node_Id := Relocate_Node (N); L : constant Node_Id := Name (N); Loc : constant Source_Ptr := Sloc (N); Res : constant List_Id := New_List; T : constant Entity_Id := Underlying_Type (Etype (L)); Adj_Act : constant Boolean := Needs_Finalization (T) and then not No_Ctrl_Actions (N); Comp_Asn : constant Boolean := Is_Fully_Repped_Tagged_Type (T); Ctrl_Act : constant Boolean := Needs_Finalization (T) and then not No_Ctrl_Actions (N) and then not No_Finalize_Actions (N); Save_Tag : constant Boolean := Is_Tagged_Type (T) and then not Comp_Asn and then not No_Ctrl_Actions (N) and then not No_Finalize_Actions (N) and then Tagged_Type_Expansion; Set_Tag : constant Boolean := Is_Tagged_Type (T) and then not Comp_Asn and then not No_Ctrl_Actions (N) and then Tagged_Type_Expansion; Adj_Call : Node_Id; Fin_Call : Node_Id; Tag_Id : Entity_Id; begin -- Finalize the target of the assignment when controlled -- We have two exceptions here: -- 1. If we are in an init proc or within an aggregate, since it is an -- initialization more than an assignment. -- 2. If the left-hand side is a temporary that was not initialized -- (or the parent part of a temporary since it is the case in -- extension aggregates). Such a temporary does not come from -- source. We must examine the original node for the prefix, because -- it may be a component of an entry formal, in which case it has -- been rewritten and does not appear to come from source either. -- Case of init proc or aggregate if not Ctrl_Act then null; -- The left-hand side is an uninitialized temporary object elsif Nkind (L) = N_Type_Conversion and then Is_Entity_Name (Expression (L)) and then Nkind (Parent (Entity (Expression (L)))) = N_Object_Declaration and then No_Initialization (Parent (Entity (Expression (L)))) then null; else Fin_Call := Make_Final_Call (Obj_Ref => Duplicate_Subexpr_No_Checks (L), Typ => Etype (L)); if Present (Fin_Call) then Append_To (Res, Fin_Call); end if; end if; -- Save the Tag in a local variable Tag_Id if Save_Tag then Tag_Id := Make_Temporary (Loc, 'A'); Append_To (Res, Make_Object_Declaration (Loc, Defining_Identifier => Tag_Id, Object_Definition => New_Occurrence_Of (RTE (RE_Tag), Loc), Expression => Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr_No_Checks (L), Selector_Name => New_Occurrence_Of (First_Tag_Component (T), Loc)))); -- Otherwise Tag_Id is not used else Tag_Id := Empty; end if; -- If the tagged type has a full rep clause, expand the assignment into -- component-wise assignments. Mark the node as unanalyzed in order to -- generate the proper code and propagate this scenario by setting a -- flag to avoid infinite recursion. if Comp_Asn then Set_Analyzed (Asn, False); Set_Componentwise_Assignment (Asn, True); end if; Append_To (Res, Asn); -- Restore the tag if Save_Tag then Append_To (Res, Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => Duplicate_Subexpr_No_Checks (L), Selector_Name => New_Occurrence_Of (First_Tag_Component (T), Loc)), Expression => New_Occurrence_Of (Tag_Id, Loc))); -- Or else just initialize it elsif Set_Tag then Append_To (Res, Make_Tag_Assignment_From_Type (Loc, Duplicate_Subexpr_No_Checks (L), T)); end if; -- Adjust the target after the assignment when controlled (not in the -- init proc since it is an initialization more than an assignment). if Ctrl_Act or else Adj_Act then Adj_Call := Make_Adjust_Call (Obj_Ref => Duplicate_Subexpr_Move_Checks (L), Typ => Etype (L)); if Present (Adj_Call) then Append_To (Res, Adj_Call); end if; end if; return Res; exception -- Could use comment here ??? when RE_Not_Available => return Empty_List; end Make_Tag_Ctrl_Assignment; end Exp_Ch5;