------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- E X P _ A G G R -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2024, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Aspects; use Aspects; with Atree; use Atree; with Checks; use Checks; with Debug; use Debug; with Einfo; use Einfo; with Einfo.Entities; use Einfo.Entities; with Einfo.Utils; use Einfo.Utils; with Elists; use Elists; with Errout; use Errout; with Expander; use Expander; with Exp_Util; use Exp_Util; with Exp_Ch3; use Exp_Ch3; with Exp_Ch6; use Exp_Ch6; with Exp_Ch7; use Exp_Ch7; with Exp_Ch9; use Exp_Ch9; with Exp_Disp; use Exp_Disp; with Exp_Tss; use Exp_Tss; with Freeze; use Freeze; with Itypes; use Itypes; with Lib; use Lib; with Mutably_Tagged; use Mutably_Tagged; with Namet; use Namet; with Nmake; use Nmake; with Nlists; use Nlists; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Ttypes; use Ttypes; with Sem; use Sem; with Sem_Aggr; use Sem_Aggr; with Sem_Aux; use Sem_Aux; with Sem_Case; use Sem_Case; with Sem_Ch3; use Sem_Ch3; with Sem_Ch8; use Sem_Ch8; with Sem_Ch13; use Sem_Ch13; with Sem_Eval; use Sem_Eval; with Sem_Mech; use Sem_Mech; with Sem_Res; use Sem_Res; with Sem_Type; use Sem_Type; with Sem_Util; use Sem_Util; use Sem_Util.Storage_Model_Support; with Sinfo; use Sinfo; with Sinfo.Nodes; use Sinfo.Nodes; with Sinfo.Utils; use Sinfo.Utils; with Snames; use Snames; with Stand; use Stand; with Stringt; use Stringt; with Tbuild; use Tbuild; with Uintp; use Uintp; with Urealp; use Urealp; with Warnsw; use Warnsw; package body Exp_Aggr is function Build_Assignment_With_Temporary (Target : Node_Id; Typ : Entity_Id; Source : Node_Id) return List_Id; -- Returns a list of actions to assign Source to Target of type Typ using -- an extra temporary, which can potentially be large. type Case_Bounds is record Choice_Lo : Node_Id; Choice_Hi : Node_Id; Choice_Node : Node_Id; end record; type Case_Table_Type is array (Nat range <>) of Case_Bounds; -- Table type used by Check_Case_Choices procedure function Get_Base_Object (N : Node_Id) return Entity_Id; -- Return the base object, i.e. the outermost prefix object, that N refers -- to statically, or Empty if it cannot be determined. The assumption is -- that all dereferences are explicit in the tree rooted at N. function Has_Default_Init_Comps (N : Node_Id) return Boolean; -- N is an aggregate (record or array). Checks the presence of default -- initialization (<>) in any component (Ada 2005: AI-287). procedure Initialize_Component (N : Node_Id; Comp : Node_Id; Comp_Typ : Node_Id; Init_Expr : Node_Id; Stmts : List_Id); -- Perform the initialization of component Comp with expected type -- Comp_Typ of aggregate N. Init_Expr denotes the initialization -- expression of the component. All generated code is added to Stmts. function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean; -- Returns true if N is an aggregate used to initialize the components -- of a statically allocated dispatch table. function Late_Expansion (N : Node_Id; Typ : Entity_Id; Target : Node_Id) return List_Id; -- This routine implements top-down expansion of nested aggregates. In -- doing so, it avoids the generation of temporaries at each level. N is -- a nested record or array aggregate with the Expansion_Delayed flag. -- Typ is the expected type of the aggregate. Target is a (duplicatable) -- expression that will hold the result of the aggregate expansion. function Make_OK_Assignment_Statement (Sloc : Source_Ptr; Name : Node_Id; Expression : Node_Id) return Node_Id; -- This is like Make_Assignment_Statement, except that Assignment_OK -- is set in the left operand. All assignments built by this unit use -- this routine. This is needed to deal with assignments to initialized -- constants that are done in place. function Must_Slide (Aggr : Node_Id; Obj_Type : Entity_Id; Typ : Entity_Id) return Boolean; -- A static array aggregate in an object declaration can in most cases be -- expanded in place. The one exception is when the aggregate is given -- with component associations that specify different bounds from those of -- the type definition in the object declaration. In this pathological -- case the aggregate must slide, and we must introduce an intermediate -- temporary to hold it. -- -- The same holds in an assignment to multi-dimensional arrays, when -- components may be given with bounds that differ from those of the -- component type. function Number_Of_Choices (N : Node_Id) return Nat; -- Returns the number of discrete choices (not including the others choice -- if present) contained in (sub-)aggregate N. procedure Sort_Case_Table (Case_Table : in out Case_Table_Type); -- Sort the Case Table using the Lower Bound of each Choice as the key. -- A simple insertion sort is used since the number of choices in a case -- statement of variant part will usually be small and probably in near -- sorted order. ------------------------------------------------------ -- Local subprograms for Record Aggregate Expansion -- ------------------------------------------------------ function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean; -- Return True if N is a simple return whose expression needs to be built -- in place in the return object, assuming the expression is an aggregate, -- possibly qualified or a dependent expression of a conditional expression -- (and possibly recursively). Such qualified and conditional expressions -- are transparent for this purpose since an enclosing return is propagated -- resp. distributed into these expressions by the expander. function Build_Record_Aggr_Code (N : Node_Id; Typ : Entity_Id; Lhs : Node_Id) return List_Id; -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the -- aggregate. Lhs is an expression containing the location on which the -- component by component assignments will take place. Returns the list of -- assignments plus all other adjustments needed for tagged and controlled -- types. procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id); -- Transform a record aggregate into a sequence of assignments performed -- component by component. N is an N_Aggregate or N_Extension_Aggregate. -- Typ is the type of the record aggregate. procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id); -- This is the top level procedure for delta record aggregate expansion procedure Expand_Record_Aggregate (N : Node_Id; Orig_Tag : Node_Id := Empty; Parent_Expr : Node_Id := Empty); -- This is the top level procedure for record aggregate expansion. -- Expansion for record aggregates needs expand aggregates for tagged -- record types. Specifically Expand_Record_Aggregate adds the Tag -- field in front of the Component_Association list that was created -- during resolution by Resolve_Record_Aggregate. -- -- N is the record aggregate node. -- Orig_Tag is the value of the Tag that has to be provided for this -- specific aggregate. It carries the tag corresponding to the type -- of the outermost aggregate during the recursive expansion -- Parent_Expr is the ancestor part of the original extension -- aggregate function Has_Mutable_Components (Typ : Entity_Id) return Boolean; -- Return true if one of the components is of a discriminated type with -- defaults. An aggregate for a type with mutable components must be -- expanded into individual assignments. function In_Place_Assign_OK (N : Node_Id; Target_Object : Entity_Id := Empty) return Boolean; -- Predicate to determine whether an aggregate assignment can be done in -- place, because none of the new values can depend on the components of -- the target of the assignment. procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id); -- If the type of the aggregate is a type extension with renamed discrimi- -- nants, we must initialize the hidden discriminants of the parent. -- Otherwise, the target object must not be initialized. The discriminants -- are initialized by calling the initialization procedure for the type. -- This is incorrect if the initialization of other components has any -- side effects. We restrict this call to the case where the parent type -- has a variant part, because this is the only case where the hidden -- discriminants are accessed, namely when calling discriminant checking -- functions of the parent type, and when applying a stream attribute to -- an object of the derived type. --------------------------------------------------------- -- Local Subprograms for Container Aggregate Expansion -- --------------------------------------------------------- procedure Expand_Container_Aggregate (N : Node_Id); -- This is the top-level routine for container aggregate expansion function Build_Container_Aggr_Code (N : Node_Id; Typ : Entity_Id; Lhs : Node_Id; Init : out Node_Id) return List_Id; -- N is an N_Aggregate for a container type Typ. Lhs is an expression -- containing the location of the anonymous object, which may be built -- in place. Returns the function call used to initialize the anonymous -- object in Init and the list of statements needed to build N. ----------------------------------------------------- -- Local Subprograms for Array Aggregate Expansion -- ----------------------------------------------------- function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean; -- Returns true if an aggregate assignment can be done by the back end function Aggr_Size_OK (N : Node_Id) return Boolean; -- Very large static aggregates present problems to the back-end, and are -- transformed into assignments and loops. This function verifies that the -- total number of components of an aggregate is acceptable for rewriting -- into a purely positional static form. Aggr_Size_OK must be called before -- calling Flatten. -- -- This function also detects and warns about one-component aggregates that -- appear in a nonstatic context. Even if the component value is static, -- such an aggregate must be expanded into an assignment. function Backend_Processing_Possible (N : Node_Id) return Boolean; -- This function checks if array aggregate N can be processed directly -- by the backend. If this is the case, True is returned. function Build_Array_Aggr_Code (N : Node_Id; Ctype : Entity_Id; Index : Node_Id; Into : Node_Id; Scalar_Comp : Boolean; Indexes : List_Id := No_List) return List_Id; -- This recursive routine returns a list of statements containing the -- loops and assignments that are needed for the expansion of the array -- aggregate N. -- -- N is the (sub-)aggregate node to be expanded into code. This node has -- been fully analyzed, and its Etype is properly set. -- -- Index is the index node corresponding to the array subaggregate N -- -- Into is the target expression into which we are copying the aggregate. -- Note that this node may not have been analyzed yet, and so the Etype -- field may not be set. -- -- Scalar_Comp is True if the component type of the aggregate is scalar -- -- Indexes is the current list of expressions used to index the object we -- are writing into. procedure Convert_Array_Aggr_In_Allocator (N : Node_Id; Target : Node_Id); -- If the aggregate appears within an allocator and can be expanded in -- place, this routine generates the individual assignments to components -- of the designated object. This is an optimization over the general -- case, where a temporary is first created on the stack and then used to -- construct the allocated object on the heap. procedure Convert_To_Positional (N : Node_Id; Handle_Bit_Packed : Boolean := False); -- If possible, convert named notation to positional notation. This -- conversion is possible only in some static cases. If the conversion is -- possible, then N is rewritten with the analyzed converted aggregate. -- The parameter Handle_Bit_Packed is usually set False (since we do -- not expect the back end to handle bit packed arrays, so the normal case -- of conversion is pointless), but in the special case of a call from -- Packed_Array_Aggregate_Handled, we set this parameter to True, since -- these are cases we handle in there. procedure Expand_Array_Aggregate (N : Node_Id); -- This is the top-level routine for array aggregate expansion. -- N is the N_Aggregate node to be expanded. procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id); -- This is the top-level routine for delta array aggregate expansion function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean; -- For 2D packed array aggregates with constant bounds and constant scalar -- components, it is preferable to pack the inner aggregates because the -- whole matrix can then be presented to the back-end as a one-dimensional -- list of literals. This is much more efficient than expanding into single -- component assignments. This function determines if the type Typ is for -- an array that is suitable for this optimization: it returns True if Typ -- is a two dimensional bit packed array with component size 1, 2, or 4. function Max_Aggregate_Size (N : Node_Id; Default_Size : Nat := 5000) return Nat; -- Return the max size for a static aggregate N. Return Default_Size if no -- other special criteria trigger. function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean; -- Given an array aggregate, this function handles the case of a packed -- array aggregate with all constant values, where the aggregate can be -- evaluated at compile time. If this is possible, then N is rewritten -- to be its proper compile time value with all the components properly -- assembled. The expression is analyzed and resolved and True is returned. -- If this transformation is not possible, N is unchanged and False is -- returned. function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean; -- If the type of the aggregate is a two-dimensional bit_packed array -- it may be transformed into an array of bytes with constant values, -- and presented to the back-end as a static value. The function returns -- false if this transformation cannot be performed. THis is similar to, -- and reuses part of the machinery in Packed_Array_Aggregate_Handled. ------------------------------------ -- Aggr_Assignment_OK_For_Backend -- ------------------------------------ -- Back-end processing by Gigi/gcc is possible only if all the following -- conditions are met: -- 1. N consists of a single OTHERS choice, possibly recursively, or -- of a single choice, possibly recursively, if it is surrounded by -- a qualified expression whose subtype mark is unconstrained. -- 2. The array type has no null ranges (the purpose of this is to -- avoid a bogus warning for an out-of-range value). -- 3. The array type has no atomic components -- 4. The component type is elementary -- 5. The component size is a multiple of Storage_Unit -- 6. The component size is Storage_Unit or the value is of the form -- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit) -- and M in 0 .. A-1. This can also be viewed as K occurrences of -- the Storage_Unit value M, concatenated together. -- The ultimate goal is to generate a call to a fast memset routine -- specifically optimized for the target. function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is function Is_OK_Aggregate (Aggr : Node_Id) return Boolean; -- Return true if Aggr is suitable for back-end assignment --------------------- -- Is_OK_Aggregate -- --------------------- function Is_OK_Aggregate (Aggr : Node_Id) return Boolean is Assoc : constant List_Id := Component_Associations (Aggr); begin -- An "others" aggregate is most likely OK, but see below if Is_Others_Aggregate (Aggr) then null; -- An aggregate with a single choice requires a qualified expression -- whose subtype mark is an unconstrained type because we need it to -- have the semantics of an "others" aggregate. elsif Nkind (Parent (N)) = N_Qualified_Expression and then not Is_Constrained (Entity (Subtype_Mark (Parent (N)))) and then Is_Single_Aggregate (Aggr) then null; -- The other cases are not OK else return False; end if; -- In any case we do not support an iterated association return Nkind (First (Assoc)) /= N_Iterated_Component_Association; end Is_OK_Aggregate; Bounds : Range_Nodes; Csiz : Uint := No_Uint; Ctyp : Entity_Id; Expr : Node_Id; Index : Entity_Id; Nunits : Int; Remainder : Uint; Value : Uint; -- Start of processing for Aggr_Assignment_OK_For_Backend begin -- Back end doesn't know about <> if Has_Default_Init_Comps (N) then return False; end if; -- Recurse as far as possible to find the innermost component type Ctyp := Etype (N); Expr := N; while Is_Array_Type (Ctyp) loop if Nkind (Expr) /= N_Aggregate or else not Is_OK_Aggregate (Expr) then return False; end if; Index := First_Index (Ctyp); while Present (Index) loop Bounds := Get_Index_Bounds (Index); if Is_Null_Range (Bounds.First, Bounds.Last) then return False; end if; Next_Index (Index); end loop; Expr := Expression (First (Component_Associations (Expr))); for J in 1 .. Number_Dimensions (Ctyp) - 1 loop if Nkind (Expr) /= N_Aggregate or else not Is_OK_Aggregate (Expr) then return False; end if; Expr := Expression (First (Component_Associations (Expr))); end loop; if Has_Atomic_Components (Ctyp) then return False; end if; Csiz := Component_Size (Ctyp); Ctyp := Component_Type (Ctyp); if Is_Full_Access (Ctyp) then return False; end if; end loop; -- Access types need to be dealt with specially if Is_Access_Type (Ctyp) then -- Component_Size is not set by Layout_Type if the component -- type is an access type ??? Csiz := Esize (Ctyp); -- Fat pointers are rejected as they are not really elementary -- for the backend. if No (Csiz) or else Csiz /= System_Address_Size then return False; end if; -- The supported expressions are NULL and constants, others are -- rejected upfront to avoid being analyzed below, which can be -- problematic for some of them, for example allocators. if Nkind (Expr) /= N_Null and then not Is_Entity_Name (Expr) then return False; end if; -- Scalar types are OK if their size is a multiple of Storage_Unit elsif Is_Scalar_Type (Ctyp) and then Present (Csiz) then if Csiz mod System_Storage_Unit /= 0 then return False; end if; -- Composite types are rejected else return False; end if; -- If the expression has side effects (e.g. contains calls with -- potential side effects) reject as well. We only preanalyze the -- expression to prevent the removal of intended side effects. Preanalyze_And_Resolve (Expr, Ctyp); if not Side_Effect_Free (Expr) then return False; end if; -- The expression needs to be analyzed if True is returned Analyze_And_Resolve (Expr, Ctyp); -- Strip away any conversions from the expression as they simply -- qualify the real expression. while Nkind (Expr) in N_Unchecked_Type_Conversion | N_Type_Conversion loop Expr := Expression (Expr); end loop; Nunits := UI_To_Int (Csiz) / System_Storage_Unit; if Nunits = 1 then return True; end if; if not Compile_Time_Known_Value (Expr) then return False; end if; -- The only supported value for floating point is 0.0 if Is_Floating_Point_Type (Ctyp) then return Expr_Value_R (Expr) = Ureal_0; end if; -- For other types, we can look into the value as an integer, which -- means the representation value for enumeration literals. Value := Expr_Rep_Value (Expr); if Has_Biased_Representation (Ctyp) then Value := Value - Expr_Value (Type_Low_Bound (Ctyp)); end if; -- Values 0 and -1 immediately satisfy the last check if Value = Uint_0 or else Value = Uint_Minus_1 then return True; end if; -- We need to work with an unsigned value if Value < 0 then Value := Value + 2**(System_Storage_Unit * Nunits); end if; Remainder := Value rem 2**System_Storage_Unit; for J in 1 .. Nunits - 1 loop Value := Value / 2**System_Storage_Unit; if Value rem 2**System_Storage_Unit /= Remainder then return False; end if; end loop; return True; end Aggr_Assignment_OK_For_Backend; ------------------ -- Aggr_Size_OK -- ------------------ function Aggr_Size_OK (N : Node_Id) return Boolean is Typ : constant Entity_Id := Etype (N); Lo : Node_Id; Hi : Node_Id; Indx : Node_Id; Size : Uint; Lov : Uint; Hiv : Uint; Max_Aggr_Size : Nat; -- Determines the maximum size of an array aggregate produced by -- converting named to positional notation (e.g. from others clauses). -- This avoids running away with attempts to convert huge aggregates, -- which hit memory limits in the backend. function Component_Count (T : Entity_Id) return Nat; -- The limit is applied to the total number of subcomponents that the -- aggregate will have, which is the number of static expressions -- that will appear in the flattened array. This requires a recursive -- computation of the number of scalar components of the structure. --------------------- -- Component_Count -- --------------------- function Component_Count (T : Entity_Id) return Nat is Res : Nat := 0; Comp : Entity_Id; begin if Is_Scalar_Type (T) then return 1; elsif Is_Record_Type (T) then Comp := First_Component (T); while Present (Comp) loop Res := Res + Component_Count (Etype (Comp)); Next_Component (Comp); end loop; return Res; elsif Is_Array_Type (T) then declare Lo : constant Node_Id := Type_Low_Bound (Etype (First_Index (T))); Hi : constant Node_Id := Type_High_Bound (Etype (First_Index (T))); Siz : constant Nat := Component_Count (Component_Type (T)); begin -- Check for superflat arrays, i.e. arrays with such bounds -- as 4 .. 2, to insure that this function never returns a -- meaningless negative value. if not Compile_Time_Known_Value (Lo) or else not Compile_Time_Known_Value (Hi) or else Expr_Value (Hi) < Expr_Value (Lo) then return 0; else -- If the number of components is greater than Int'Last, -- then return Int'Last, so caller will return False (Aggr -- size is not OK). Otherwise, UI_To_Int will crash. declare UI : constant Uint := (Expr_Value (Hi) - Expr_Value (Lo) + 1) * Siz; begin if UI_Is_In_Int_Range (UI) then return UI_To_Int (UI); else return Int'Last; end if; end; end if; end; else -- Can only be a null for an access type return 1; end if; end Component_Count; -- Start of processing for Aggr_Size_OK begin -- We bump the maximum size unless the aggregate has a single component -- association, which will be more efficient if implemented with a loop. -- The -gnatd_g switch disables this bumping. if (No (Expressions (N)) and then No (Next (First (Component_Associations (N))))) or else Debug_Flag_Underscore_G then Max_Aggr_Size := Max_Aggregate_Size (N); else Max_Aggr_Size := Max_Aggregate_Size (N, 500_000); end if; Size := UI_From_Int (Component_Count (Component_Type (Typ))); Indx := First_Index (Typ); while Present (Indx) loop Lo := Type_Low_Bound (Etype (Indx)); Hi := Type_High_Bound (Etype (Indx)); -- Bounds need to be known at compile time if not Compile_Time_Known_Value (Lo) or else not Compile_Time_Known_Value (Hi) then return False; end if; Lov := Expr_Value (Lo); Hiv := Expr_Value (Hi); -- A flat array is always safe if Hiv < Lov then return True; end if; -- One-component named aggregates where the index constraint is not -- known at compile time are suspicious as the user might have -- intended to write a subtype name but wrote the name of an object -- instead. We emit a warning if we're in such a case. if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then declare Index_Type : constant Entity_Id := Etype (First_Index (Etype (Defining_Identifier (Parent (N))))); Indx : Node_Id; begin if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type)) or else not Compile_Time_Known_Value (Type_High_Bound (Index_Type)) then if Present (Component_Associations (N)) then Indx := First (Choice_List (First (Component_Associations (N)))); if Is_Entity_Name (Indx) and then not Is_Type (Entity (Indx)) then Error_Msg_N ("single component aggregate in " & "non-static context??", Indx); Error_Msg_N ("\maybe subtype name was meant??", Indx); end if; end if; end if; end; end if; declare Rng : constant Uint := Hiv - Lov + 1; begin -- Check if size is too large if not UI_Is_In_Int_Range (Rng) then return False; end if; -- Compute the size using universal arithmetic to avoid the -- possibility of overflow on very large aggregates. Size := Size * Rng; if Size <= 0 or else Size > Max_Aggr_Size then return False; end if; end; -- Bounds must be in integer range, for later array construction if not UI_Is_In_Int_Range (Lov) or else not UI_Is_In_Int_Range (Hiv) then return False; end if; Next_Index (Indx); end loop; return True; end Aggr_Size_OK; --------------------------------- -- Backend_Processing_Possible -- --------------------------------- -- Backend processing by Gigi/gcc is possible only if all the following -- conditions are met: -- 1. N is fully positional -- 2. N is not a bit-packed array aggregate; -- 3. The size of N's array type must be known at compile time. Note -- that this implies that the component size is also known -- 4. The array type of N does not follow the Fortran layout convention -- or if it does it must be 1 dimensional. -- 5. The array component type may not be tagged (which could necessitate -- reassignment of proper tags). -- 6. The array component type must not have unaligned bit components -- 7. None of the components of the aggregate may be bit unaligned -- components. -- 8. There cannot be delayed components, since we do not know enough -- at this stage to know if back end processing is possible. -- 9. There cannot be any discriminated record components, since the -- back end cannot handle this complex case. -- 10. No controlled actions need to be generated for components function Backend_Processing_Possible (N : Node_Id) return Boolean is Typ : constant Entity_Id := Etype (N); -- Typ is the correct constrained array subtype of the aggregate function Component_Check (N : Node_Id; Index : Node_Id) return Boolean; -- This routine checks components of aggregate N, enforcing checks -- 1, 7, 8, 9, 11, and 12. In the multidimensional case, these checks -- are performed on subaggregates. The Index value is the current index -- being checked in the multidimensional case. --------------------- -- Component_Check -- --------------------- function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is Expr : Node_Id; begin -- Checks 1: (no component associations) if Present (Component_Associations (N)) then return False; end if; -- Checks on components -- Recurse to check subaggregates, which may appear in qualified -- expressions. If delayed, the front-end will have to expand. -- If the component is a discriminated record, treat as nonstatic, -- as the back-end cannot handle this properly. Expr := First (Expressions (N)); while Present (Expr) loop -- Checks 8: (no delayed components) if Is_Delayed_Aggregate (Expr) then return False; end if; -- Checks 9: (no discriminated records) if Present (Etype (Expr)) and then Is_Record_Type (Etype (Expr)) and then Has_Discriminants (Etype (Expr)) then return False; end if; -- Checks 7. Component must not be bit aligned component if Possible_Bit_Aligned_Component (Expr) then return False; end if; -- Recursion to following indexes for multiple dimension case if Present (Next_Index (Index)) and then not Component_Check (Expr, Next_Index (Index)) then return False; end if; -- All checks for that component finished, on to next Next (Expr); end loop; return True; end Component_Check; -- Start of processing for Backend_Processing_Possible begin -- Checks 2 (array not bit packed) and 10 (no controlled actions) if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then return False; end if; -- If component is limited, aggregate must be expanded because each -- component assignment must be built in place. if Is_Inherently_Limited_Type (Component_Type (Typ)) then return False; end if; -- Checks 4 (array must not be multidimensional Fortran case) if Convention (Typ) = Convention_Fortran and then Number_Dimensions (Typ) > 1 then return False; end if; -- Checks 3 (size of array must be known at compile time) if not Size_Known_At_Compile_Time (Typ) then return False; end if; -- Checks on components if not Component_Check (N, First_Index (Typ)) then return False; end if; -- Checks 5 (if the component type is tagged, then we may need to do -- tag adjustments. Perhaps this should be refined to check for any -- component associations that actually need tag adjustment, similar -- to the test in Component_OK_For_Backend for record aggregates with -- tagged components, but not clear whether it's worthwhile ???; in the -- case of virtual machines (no Tagged_Type_Expansion), object tags are -- handled implicitly). if Is_Tagged_Type (Component_Type (Typ)) and then Tagged_Type_Expansion then return False; end if; -- Checks 6 (component type must not have bit aligned components) if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then return False; end if; -- Backend processing is possible return True; end Backend_Processing_Possible; --------------------------- -- Build_Array_Aggr_Code -- --------------------------- -- The code that we generate from a one dimensional aggregate is -- 1. If the subaggregate contains discrete choices we -- (a) Sort the discrete choices -- (b) Otherwise for each discrete choice that specifies a range we -- emit a loop. If a range specifies a maximum of three values, or -- we are dealing with an expression we emit a sequence of -- assignments instead of a loop. -- (c) Generate the remaining loops to cover the others choice if any -- 2. If the aggregate contains positional elements we -- (a) Translate the positional elements in a series of assignments -- (b) Generate a final loop to cover the others choice if any. -- Note that this final loop has to be a while loop since the case -- L : Integer := Integer'Last; -- H : Integer := Integer'Last; -- A : array (L .. H) := (1, others =>0); -- cannot be handled by a for loop. Thus for the following -- array (L .. H) := (.. positional elements.., others => E); -- we always generate something like: -- J : Index_Type := Index_Of_Last_Positional_Element; -- while J < H loop -- J := Index_Base'Succ (J) -- Tmp (J) := E; -- end loop; function Build_Array_Aggr_Code (N : Node_Id; Ctype : Entity_Id; Index : Node_Id; Into : Node_Id; Scalar_Comp : Boolean; Indexes : List_Id := No_List) return List_Id is Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (N); Index_Base : constant Entity_Id := Base_Type (Etype (Index)); Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base); Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base); function Add (Val : Int; To : Node_Id) return Node_Id; -- Returns an expression where Val is added to expression To, unless -- To+Val is provably out of To's base type range. To must be an -- already analyzed expression. function Empty_Range (L, H : Node_Id) return Boolean; -- Returns True if the range defined by L .. H is certainly empty function Equal (L, H : Node_Id) return Boolean; -- Returns True if L = H for sure function Index_Base_Name return Node_Id; -- Returns a new reference to the index type name function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id; -- Ind must be a side-effect-free expression. If the input aggregate N -- to Build_Loop contains no subaggregates, then this function returns -- the assignment statement: -- -- Into (Indexes, Ind) := Expr; -- -- Otherwise we call Build_Code recursively. -- -- Ada 2005 (AI-287): In case of default initialized component, Expr -- is empty and we generate a call to the corresponding IP subprogram. function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id; -- Nodes L and H must be side-effect-free expressions. If the input -- aggregate N to Build_Loop contains no subaggregates, this routine -- returns the for loop statement: -- -- for J in Index_Base'(L) .. Index_Base'(H) loop -- Into (Indexes, J) := Expr; -- end loop; -- -- Otherwise we call Build_Code recursively. As an optimization if the -- loop covers 3 or fewer scalar elements we generate a sequence of -- assignments. -- If the component association that generates the loop comes from an -- Iterated_Component_Association, the loop parameter has the name of -- the corresponding parameter in the original construct. function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id; -- Nodes L and H must be side-effect-free expressions. If the input -- aggregate N to Build_Loop contains no subaggregates, this routine -- returns the while loop statement: -- -- J : Index_Base := L; -- while J < H loop -- J := Index_Base'Succ (J); -- Into (Indexes, J) := Expr; -- end loop; -- -- Otherwise we call Build_Code recursively function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id; -- For an association with a box, use value given by aspect -- Default_Component_Value of array type if specified, else use -- value given by aspect Default_Value for component type itself -- if specified, else return Empty. function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean; function Local_Expr_Value (E : Node_Id) return Uint; -- These two Local routines are used to replace the corresponding ones -- in sem_eval because while processing the bounds of an aggregate with -- discrete choices whose index type is an enumeration, we build static -- expressions not recognized by Compile_Time_Known_Value as such since -- they have not yet been analyzed and resolved. All the expressions in -- question are things like Index_Base_Name'Val (Const) which we can -- easily recognize as being constant. --------- -- Add -- --------- function Add (Val : Int; To : Node_Id) return Node_Id is Expr_Pos : Node_Id; Expr : Node_Id; To_Pos : Node_Id; U_To : Uint; U_Val : constant Uint := UI_From_Int (Val); begin -- Note: do not try to optimize the case of Val = 0, because -- we need to build a new node with the proper Sloc value anyway. -- First test if we can do constant folding if Local_Compile_Time_Known_Value (To) then U_To := Local_Expr_Value (To) + Val; -- Determine if our constant is outside the range of the index. -- If so return an Empty node. This empty node will be caught -- by Empty_Range below. if Compile_Time_Known_Value (Index_Base_L) and then U_To < Expr_Value (Index_Base_L) then return Empty; elsif Compile_Time_Known_Value (Index_Base_H) and then U_To > Expr_Value (Index_Base_H) then return Empty; end if; Expr_Pos := Make_Integer_Literal (Loc, U_To); Set_Is_Static_Expression (Expr_Pos); if not Is_Enumeration_Type (Index_Base) then Expr := Expr_Pos; -- If we are dealing with enumeration return -- Index_Base'Val (Expr_Pos) else Expr := Make_Attribute_Reference (Loc, Prefix => Index_Base_Name, Attribute_Name => Name_Val, Expressions => New_List (Expr_Pos)); end if; return Expr; end if; -- If we are here no constant folding possible if not Is_Enumeration_Type (Index_Base) then Expr := Make_Op_Add (Loc, Left_Opnd => Duplicate_Subexpr (To), Right_Opnd => Make_Integer_Literal (Loc, U_Val)); -- If we are dealing with enumeration return -- Index_Base'Val (Index_Base'Pos (To) + Val) else To_Pos := Make_Attribute_Reference (Loc, Prefix => Index_Base_Name, Attribute_Name => Name_Pos, Expressions => New_List (Duplicate_Subexpr (To))); Expr_Pos := Make_Op_Add (Loc, Left_Opnd => To_Pos, Right_Opnd => Make_Integer_Literal (Loc, U_Val)); Expr := Make_Attribute_Reference (Loc, Prefix => Index_Base_Name, Attribute_Name => Name_Val, Expressions => New_List (Expr_Pos)); end if; return Expr; end Add; ----------------- -- Empty_Range -- ----------------- function Empty_Range (L, H : Node_Id) return Boolean is Is_Empty : Boolean := False; Low : Node_Id; High : Node_Id; begin -- First check if L or H were already detected as overflowing the -- index base range type by function Add above. If this is so Add -- returns the empty node. if No (L) or else No (H) then return True; end if; for J in 1 .. 3 loop case J is -- L > H range is empty when 1 => Low := L; High := H; -- B_L > H range must be empty when 2 => Low := Index_Base_L; High := H; -- L > B_H range must be empty when 3 => Low := L; High := Index_Base_H; end case; if Local_Compile_Time_Known_Value (Low) and then Local_Compile_Time_Known_Value (High) then Is_Empty := UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High)); end if; exit when Is_Empty; end loop; return Is_Empty; end Empty_Range; ----------- -- Equal -- ----------- function Equal (L, H : Node_Id) return Boolean is begin if L = H then return True; elsif Local_Compile_Time_Known_Value (L) and then Local_Compile_Time_Known_Value (H) then return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H)); end if; return False; end Equal; ---------------- -- Gen_Assign -- ---------------- function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is function Add_Loop_Actions (Lis : List_Id) return List_Id; -- Collect insert_actions generated in the construction of a loop, -- and prepend them to the sequence of assignments to complete the -- eventual body of the loop. ---------------------- -- Add_Loop_Actions -- ---------------------- function Add_Loop_Actions (Lis : List_Id) return List_Id is Res : List_Id; begin -- Ada 2005 (AI-287): Do nothing else in case of default -- initialized component. if No (Expr) then return Lis; elsif Nkind (Parent (Expr)) in N_Component_Association | N_Iterated_Component_Association and then Present (Loop_Actions (Parent (Expr))) then Res := Loop_Actions (Parent (Expr)); Set_Loop_Actions (Parent (Expr), No_List); Append_List (Lis, To => Res); return Res; else return Lis; end if; end Add_Loop_Actions; -- Local variables Stmts : constant List_Id := New_List; Comp_Typ : Entity_Id := Empty; Expr_Q : Node_Id; Indexed_Comp : Node_Id; Init_Call : Node_Id; New_Indexes : List_Id; -- Start of processing for Gen_Assign begin if No (Indexes) then New_Indexes := New_List; else New_Indexes := New_Copy_List_Tree (Indexes); end if; Append_To (New_Indexes, Ind); if Present (Next_Index (Index)) then return Add_Loop_Actions ( Build_Array_Aggr_Code (N => Expr, Ctype => Ctype, Index => Next_Index (Index), Into => Into, Scalar_Comp => Scalar_Comp, Indexes => New_Indexes)); end if; -- If we get here then we are at a bottom-level (sub-)aggregate Indexed_Comp := Checks_Off (Make_Indexed_Component (Loc, Prefix => New_Copy_Tree (Into), Expressions => New_Indexes)); Set_Assignment_OK (Indexed_Comp); -- Ada 2005 (AI-287): In case of default initialized component, Expr -- is not present (and therefore we also initialize Expr_Q to empty). Expr_Q := Unqualify (Expr); if Present (Etype (N)) and then Etype (N) /= Any_Composite then Comp_Typ := Get_Corresponding_Mutably_Tagged_Type_If_Present (Component_Type (Etype (N))); elsif Present (Next (First (New_Indexes))) then -- Ada 2005 (AI-287): Do nothing in case of default initialized -- component because we have received the component type in -- the formal parameter Ctype. -- ??? Some assert pragmas have been added to check if this new -- formal can be used to replace this code in all cases. if Present (Expr) then -- This is a multidimensional array. Recover the component type -- from the outermost aggregate, because subaggregates do not -- have an assigned type. declare P : Node_Id; begin P := Parent (Expr); while Present (P) loop if Nkind (P) = N_Aggregate and then Present (Etype (P)) then Comp_Typ := Component_Type (Etype (P)); exit; else P := Parent (P); end if; end loop; pragma Assert (Comp_Typ = Ctype); -- AI-287 end; end if; end if; -- Ada 2005 (AI-287): We only analyze the expression in case of non- -- default initialized components (otherwise Expr_Q is not present). if Present (Expr_Q) and then Nkind (Expr_Q) in N_Aggregate | N_Extension_Aggregate then -- At this stage the Expression may not have been analyzed yet -- because the array aggregate code has not been updated to use -- the Expansion_Delayed flag and avoid analysis altogether to -- solve the same problem (see Resolve_Aggr_Expr). So let us do -- the analysis of non-array aggregates now in order to get the -- value of Expansion_Delayed flag for the inner aggregate ??? -- In the case of an iterated component association, the analysis -- of the generated loop will analyze the expression in the -- proper context, in which the loop parameter is visible. if Present (Comp_Typ) and then not Is_Array_Type (Comp_Typ) then if Nkind (Parent (Expr_Q)) = N_Iterated_Component_Association or else Nkind (Parent (Parent ((Expr_Q)))) = N_Iterated_Component_Association then null; else Analyze_And_Resolve (Expr_Q, Comp_Typ); end if; end if; if Is_Delayed_Aggregate (Expr_Q) then -- This is either a subaggregate of a multidimensional array, -- or a component of an array type whose component type is -- also an array. In the latter case, the expression may have -- component associations that provide different bounds from -- those of the component type, and sliding must occur. Instead -- of decomposing the current aggregate assignment, force the -- reanalysis of the assignment, so that a temporary will be -- generated in the usual fashion, and sliding will take place. if Nkind (Parent (N)) = N_Assignment_Statement and then Is_Array_Type (Comp_Typ) and then Present (Component_Associations (Expr_Q)) and then Must_Slide (N, Comp_Typ, Etype (Expr_Q)) then Set_Expansion_Delayed (Expr_Q, False); Set_Analyzed (Expr_Q, False); else return Add_Loop_Actions ( Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp)); end if; end if; end if; if Present (Expr) then Initialize_Component (N => N, Comp => Indexed_Comp, Comp_Typ => Comp_Typ, Init_Expr => Expr, Stmts => Stmts); -- Ada 2005 (AI-287): In case of default initialized component, call -- the initialization subprogram associated with the component type. -- If the component type is an access type, add an explicit null -- assignment, because for the back-end there is an initialization -- present for the whole aggregate, and no default initialization -- will take place. -- In addition, if the component type is controlled, we must call -- its Initialize procedure explicitly, because there is no explicit -- object creation that will invoke it otherwise. else if Present (Base_Init_Proc (Ctype)) then Check_Restriction (No_Default_Initialization, N); if not Restriction_Active (No_Default_Initialization) then Append_List_To (Stmts, Build_Initialization_Call (N, Id_Ref => Indexed_Comp, Typ => Ctype, With_Default_Init => True)); end if; -- If the component type has invariants, add an invariant -- check after the component is default-initialized. It will -- be analyzed and resolved before the code for initialization -- of other components. if Has_Invariants (Ctype) then Set_Etype (Indexed_Comp, Ctype); Append_To (Stmts, Make_Invariant_Call (Indexed_Comp)); end if; end if; if Needs_Finalization (Ctype) then Init_Call := Make_Init_Call (Obj_Ref => New_Copy_Tree (Indexed_Comp), Typ => Ctype); -- Guard against a missing [Deep_]Initialize when the component -- type was not properly frozen. if Present (Init_Call) then Append_To (Stmts, Init_Call); end if; end if; -- If Default_Initial_Condition applies to the component type, -- add a DIC check after the component is default-initialized, -- as well as after an Initialize procedure is called, in the -- case of components of a controlled type. It will be analyzed -- and resolved before the code for initialization of other -- components. -- Theoretically this might also be needed for cases where Expr -- is not empty, but a default init still applies, such as for -- Default_Value cases, in which case we won't get here. ??? if Has_DIC (Ctype) and then Present (DIC_Procedure (Ctype)) then Append_To (Stmts, Build_DIC_Call (Loc, New_Copy_Tree (Indexed_Comp), Ctype)); end if; end if; return Add_Loop_Actions (Stmts); end Gen_Assign; -------------- -- Gen_Loop -- -------------- function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is Is_Iterated_Component : constant Boolean := Parent_Kind (Expr) = N_Iterated_Component_Association; Ent : Entity_Id; L_J : Node_Id; L_L : Node_Id; -- Index_Base'(L) L_H : Node_Id; -- Index_Base'(H) L_Range : Node_Id; -- Index_Base'(L) .. Index_Base'(H) L_Iteration_Scheme : Node_Id; -- L_J in Index_Base'(L) .. Index_Base'(H) L_Body : List_Id; -- The statements to execute in the loop S : constant List_Id := New_List; -- List of statements Tcopy : Node_Id; -- Copy of expression tree, used for checking purposes begin -- If loop bounds define an empty range return the null statement if Empty_Range (L, H) then Append_To (S, Make_Null_Statement (Loc)); -- Ada 2005 (AI-287): Nothing else need to be done in case of -- default initialized component. if No (Expr) then null; else -- The expression must be type-checked even though no component -- of the aggregate will have this value. This is done only for -- actual components of the array, not for subaggregates. Do -- the check on a copy, because the expression may be shared -- among several choices, some of which might be non-null. if Present (Etype (N)) and then Is_Array_Type (Etype (N)) and then No (Next_Index (Index)) then Expander_Mode_Save_And_Set (False); Tcopy := New_Copy_Tree (Expr); Set_Parent (Tcopy, N); -- For iterated_component_association analyze and resolve -- the expression with name of the index parameter visible. -- To manipulate scopes, we use entity of the implicit loop. if Is_Iterated_Component then declare Index_Parameter : constant Entity_Id := Defining_Identifier (Parent (Expr)); begin Push_Scope (Scope (Index_Parameter)); Enter_Name (Index_Parameter); Analyze_And_Resolve (Tcopy, Component_Type (Etype (N))); End_Scope; end; -- For ordinary component association, just analyze and -- resolve the expression. else Analyze_And_Resolve (Tcopy, Component_Type (Etype (N))); end if; Expander_Mode_Restore; end if; end if; return S; -- If loop bounds are the same then generate an assignment, unless -- the parent construct is an Iterated_Component_Association. elsif Equal (L, H) and then not Is_Iterated_Component then return Gen_Assign (New_Copy_Tree (L), Expr); -- If H - L <= 2 then generate a sequence of assignments when we are -- processing the bottom most aggregate and it contains scalar -- components. elsif No (Next_Index (Index)) and then Scalar_Comp and then Local_Compile_Time_Known_Value (L) and then Local_Compile_Time_Known_Value (H) and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2 and then not Is_Iterated_Component then Append_List_To (S, Gen_Assign (New_Copy_Tree (L), New_Copy_Tree (Expr))); Append_List_To (S, Gen_Assign (Add (1, To => L), New_Copy_Tree (Expr))); if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then Append_List_To (S, Gen_Assign (Add (2, To => L), New_Copy_Tree (Expr))); end if; return S; end if; -- Otherwise construct the loop, starting with the loop index L_J if Is_Iterated_Component then -- Create a new scope for the loop variable so that the -- following Gen_Assign (that ends up calling -- Preanalyze_And_Resolve) can correctly find it. Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L'); Set_Etype (Ent, Standard_Void_Type); Set_Parent (Ent, Parent (Parent (Expr))); Push_Scope (Ent); L_J := Make_Defining_Identifier (Loc, Chars => (Chars (Defining_Identifier (Parent (Expr))))); Enter_Name (L_J); -- The Etype will be set by a later Analyze call. Set_Etype (L_J, Any_Type); Mutate_Ekind (L_J, E_Variable); Set_Is_Not_Self_Hidden (L_J); Set_Scope (L_J, Ent); else L_J := Make_Temporary (Loc, 'J', L); end if; -- Construct "L .. H" in Index_Base. We use a qualified expression -- for the bound to convert to the index base, but we don't need -- to do that if we already have the base type at hand. if Etype (L) = Index_Base then L_L := New_Copy_Tree (L); else L_L := Make_Qualified_Expression (Loc, Subtype_Mark => Index_Base_Name, Expression => New_Copy_Tree (L)); end if; if Etype (H) = Index_Base then L_H := New_Copy_Tree (H); else L_H := Make_Qualified_Expression (Loc, Subtype_Mark => Index_Base_Name, Expression => New_Copy_Tree (H)); end if; L_Range := Make_Range (Loc, Low_Bound => L_L, High_Bound => L_H); -- Construct "for L_J in Index_Base range L .. H" L_Iteration_Scheme := Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => L_J, Discrete_Subtype_Definition => L_Range)); -- Construct the statements to execute in the loop body L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr); -- Construct the final loop Append_To (S, Make_Implicit_Loop_Statement (Node => N, Identifier => Empty, Iteration_Scheme => L_Iteration_Scheme, Statements => L_Body)); if Is_Iterated_Component then End_Scope; end if; -- A small optimization: if the aggregate is initialized with a box -- and the component type has no initialization procedure, remove the -- useless empty loop. if Nkind (First (S)) = N_Loop_Statement and then Is_Empty_List (Statements (First (S))) then return New_List (Make_Null_Statement (Loc)); else return S; end if; end Gen_Loop; --------------- -- Gen_While -- --------------- -- The code built is -- W_J : Index_Base := L; -- while W_J < H loop -- W_J := Index_Base'Succ (W); -- L_Body; -- end loop; function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is W_J : Node_Id; W_Decl : Node_Id; -- W_J : Base_Type := L; W_Iteration_Scheme : Node_Id; -- while W_J < H W_Index_Succ : Node_Id; -- Index_Base'Succ (J) W_Increment : Node_Id; -- W_J := Index_Base'Succ (W) W_Body : constant List_Id := New_List; -- The statements to execute in the loop S : constant List_Id := New_List; -- list of statement begin -- If loop bounds define an empty range or are equal return null if Empty_Range (L, H) or else Equal (L, H) then Append_To (S, Make_Null_Statement (Loc)); return S; end if; -- Build the decl of W_J W_J := Make_Temporary (Loc, 'J', L); W_Decl := Make_Object_Declaration (Loc, Defining_Identifier => W_J, Object_Definition => Index_Base_Name, Expression => L); -- Theoretically we should do a New_Copy_Tree (L) here, but we know -- that in this particular case L is a fresh Expr generated by -- Add which we are the only ones to use. Append_To (S, W_Decl); -- Construct " while W_J < H" W_Iteration_Scheme := Make_Iteration_Scheme (Loc, Condition => Make_Op_Lt (Loc, Left_Opnd => New_Occurrence_Of (W_J, Loc), Right_Opnd => New_Copy_Tree (H))); -- Construct the statements to execute in the loop body W_Index_Succ := Make_Attribute_Reference (Loc, Prefix => Index_Base_Name, Attribute_Name => Name_Succ, Expressions => New_List (New_Occurrence_Of (W_J, Loc))); W_Increment := Make_OK_Assignment_Statement (Loc, Name => New_Occurrence_Of (W_J, Loc), Expression => W_Index_Succ); Append_To (W_Body, W_Increment); Append_List_To (W_Body, Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr)); -- Construct the final loop Append_To (S, Make_Implicit_Loop_Statement (Node => N, Identifier => Empty, Iteration_Scheme => W_Iteration_Scheme, Statements => W_Body)); return S; end Gen_While; -------------------- -- Get_Assoc_Expr -- -------------------- -- Duplicate the expression in case we will be generating several loops. -- As a result the expression is no longer shared between the loops and -- is reevaluated for each such loop. function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is Typ : constant Entity_Id := Base_Type (Etype (N)); begin if Box_Present (Assoc) then if Present (Default_Aspect_Component_Value (Typ)) then return New_Copy_Tree (Default_Aspect_Component_Value (Typ)); elsif Needs_Simple_Initialization (Ctype) then return New_Copy_Tree (Get_Simple_Init_Val (Ctype, N)); else return Empty; end if; else -- The expression will be passed to Gen_Loop, which immediately -- calls Parent_Kind on it, so we set Parent when it matters. return Expr : constant Node_Id := New_Copy_Tree (Expression (Assoc)) do Copy_Parent (To => Expr, From => Expression (Assoc)); end return; end if; end Get_Assoc_Expr; --------------------- -- Index_Base_Name -- --------------------- function Index_Base_Name return Node_Id is begin return New_Occurrence_Of (Index_Base, Sloc (N)); end Index_Base_Name; ------------------------------------ -- Local_Compile_Time_Known_Value -- ------------------------------------ function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is begin return Compile_Time_Known_Value (E) or else (Nkind (E) = N_Attribute_Reference and then Attribute_Name (E) = Name_Val and then Compile_Time_Known_Value (First (Expressions (E)))); end Local_Compile_Time_Known_Value; ---------------------- -- Local_Expr_Value -- ---------------------- function Local_Expr_Value (E : Node_Id) return Uint is begin if Compile_Time_Known_Value (E) then return Expr_Value (E); else return Expr_Value (First (Expressions (E))); end if; end Local_Expr_Value; -- Local variables New_Code : constant List_Id := New_List; Aggr_Bounds : constant Range_Nodes := Get_Index_Bounds (Aggregate_Bounds (N)); Aggr_L : Node_Id renames Aggr_Bounds.First; Aggr_H : Node_Id renames Aggr_Bounds.Last; -- The aggregate bounds of this specific subaggregate. Note that if the -- code generated by Build_Array_Aggr_Code is executed then these bounds -- are OK. Otherwise a Constraint_Error would have been raised. Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L); Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H); -- After Duplicate_Subexpr these are side-effect-free Assoc : Node_Id; Choice : Node_Id; Expr : Node_Id; Bounds : Range_Nodes; Low : Node_Id renames Bounds.First; High : Node_Id renames Bounds.Last; Nb_Choices : Nat := 0; Table : Case_Table_Type (1 .. Number_Of_Choices (N)); -- Used to sort all the different choice values Nb_Elements : Int; -- Number of elements in the positional aggregate Others_Assoc : Node_Id := Empty; -- Start of processing for Build_Array_Aggr_Code begin -- First before we start, a special case. If we have a bit packed -- array represented as a modular type, then clear the value to -- zero first, to ensure that unused bits are properly cleared. if Present (Typ) and then Is_Bit_Packed_Array (Typ) and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then declare Zero : constant Node_Id := Make_Integer_Literal (Loc, Uint_0); begin Analyze_And_Resolve (Zero, Packed_Array_Impl_Type (Typ)); Append_To (New_Code, Make_Assignment_Statement (Loc, Name => New_Copy_Tree (Into), Expression => Unchecked_Convert_To (Typ, Zero))); end; end if; -- If the component type contains tasks, we need to build a Master -- entity in the current scope, because it will be needed if build- -- in-place functions are called in the expanded code. if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then Build_Master_Entity (Defining_Identifier (Parent (N))); end if; -- STEP 1: Process component associations -- For those associations that may generate a loop, initialize -- Loop_Actions to collect inserted actions that may be created. -- Skip this if no component associations if Is_Null_Aggregate (N) then null; elsif No (Expressions (N)) then -- STEP 1 (a): Sort the discrete choices Assoc := First (Component_Associations (N)); while Present (Assoc) loop declare First_Range : Boolean := True; begin Choice := First (Choice_List (Assoc)); while Present (Choice) loop if Nkind (Choice) = N_Others_Choice then Others_Assoc := Assoc; exit; end if; Bounds := Get_Index_Bounds (Choice); if First_Range and then Low /= High then pragma Assert (No (Loop_Actions (Assoc))); Set_Loop_Actions (Assoc, New_List); First_Range := False; end if; Nb_Choices := Nb_Choices + 1; Table (Nb_Choices) := (Choice_Lo => Low, Choice_Hi => High, Choice_Node => Get_Assoc_Expr (Assoc)); Next (Choice); end loop; end; Next (Assoc); end loop; -- If there is more than one set of choices these must be static -- and we can therefore sort them. Remember that Nb_Choices does not -- account for an others choice. if Nb_Choices > 1 then Sort_Case_Table (Table); end if; -- STEP 1 (b): take care of the whole set of discrete choices for J in 1 .. Nb_Choices loop Low := Table (J).Choice_Lo; High := Table (J).Choice_Hi; Expr := Table (J).Choice_Node; Append_List (Gen_Loop (Low, High, Expr), To => New_Code); end loop; -- STEP 1 (c): generate the remaining loops to cover others choice -- We don't need to generate loops over empty gaps, but if there is -- a single empty range we must analyze the expression for semantics if Present (Others_Assoc) then declare First : Boolean := True; begin for J in 0 .. Nb_Choices loop if J = 0 then Low := Aggr_Low; else Low := Add (1, To => Table (J).Choice_Hi); end if; if J = Nb_Choices then High := Aggr_High; else High := Add (-1, To => Table (J + 1).Choice_Lo); end if; -- If this is an expansion within an init proc, make -- sure that discriminant references are replaced by -- the corresponding discriminal. if Inside_Init_Proc then if Is_Entity_Name (Low) and then Ekind (Entity (Low)) = E_Discriminant then Set_Entity (Low, Discriminal (Entity (Low))); end if; if Is_Entity_Name (High) and then Ekind (Entity (High)) = E_Discriminant then Set_Entity (High, Discriminal (Entity (High))); end if; end if; if First or else not Empty_Range (Low, High) then if First then pragma Assert (No (Loop_Actions (Others_Assoc))); Set_Loop_Actions (Others_Assoc, New_List); First := False; end if; Expr := Get_Assoc_Expr (Others_Assoc); Append_List (Gen_Loop (Low, High, Expr), To => New_Code); end if; end loop; end; end if; -- STEP 2: Process positional components else -- STEP 2 (a): Generate the assignments for each positional element -- Note that here we have to use Aggr_L rather than Aggr_Low because -- Aggr_L is analyzed and Add wants an analyzed expression. Expr := First (Expressions (N)); Nb_Elements := -1; while Present (Expr) loop Nb_Elements := Nb_Elements + 1; Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr), To => New_Code); Next (Expr); end loop; -- STEP 2 (b): Generate final loop if an others choice is present. -- Here Nb_Elements gives the offset of the last positional element. if Present (Component_Associations (N)) then Assoc := Last (Component_Associations (N)); if Nkind (Assoc) = N_Iterated_Component_Association then -- Ada 2022: generate a loop to have a proper scope for -- the identifier that typically appears in the expression. -- The lower bound of the loop is the position after all -- previous positional components. Append_List (Gen_Loop (Add (Nb_Elements + 1, To => Aggr_L), Aggr_High, Expression (Assoc)), To => New_Code); else -- Ada 2005 (AI-287) Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L), Aggr_High, Get_Assoc_Expr (Assoc)), To => New_Code); end if; end if; end if; return New_Code; end Build_Array_Aggr_Code; ------------------------------------- -- Build_Assignment_With_Temporary -- ------------------------------------- function Build_Assignment_With_Temporary (Target : Node_Id; Typ : Entity_Id; Source : Node_Id) return List_Id is Loc : constant Source_Ptr := Sloc (Source); Aggr_Code : List_Id; Tmp : Entity_Id; begin Aggr_Code := New_List; Tmp := Build_Temporary_On_Secondary_Stack (Loc, Typ, Aggr_Code); Append_To (Aggr_Code, Make_OK_Assignment_Statement (Loc, Name => Make_Explicit_Dereference (Loc, Prefix => New_Occurrence_Of (Tmp, Loc)), Expression => Source)); Append_To (Aggr_Code, Make_OK_Assignment_Statement (Loc, Name => Target, Expression => Make_Explicit_Dereference (Loc, Prefix => New_Occurrence_Of (Tmp, Loc)))); return Aggr_Code; end Build_Assignment_With_Temporary; ---------------------------- -- Build_Record_Aggr_Code -- ---------------------------- function Build_Record_Aggr_Code (N : Node_Id; Typ : Entity_Id; Lhs : Node_Id) return List_Id is Loc : constant Source_Ptr := Sloc (N); L : constant List_Id := New_List; N_Typ : constant Entity_Id := Etype (N); Comp : Node_Id; Instr : Node_Id; Ref : Node_Id; Target : Entity_Id; Comp_Type : Entity_Id; Selector : Entity_Id; Comp_Expr : Node_Id; Expr_Q : Node_Id; Ancestor_Is_Subtype_Mark : Boolean := False; Init_Typ : Entity_Id := Empty; Finalization_Done : Boolean := False; -- True if Generate_Finalization_Actions has already been called; calls -- after the first do nothing. function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id; -- Returns the value that the given discriminant of an ancestor type -- should receive (in the absence of a conflict with the value provided -- by an ancestor part of an extension aggregate). procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id); -- Check that each of the discriminant values defined by the ancestor -- part of an extension aggregate match the corresponding values -- provided by either an association of the aggregate or by the -- constraint imposed by a parent type (RM95-4.3.2(8)). function Compatible_Int_Bounds (Agg_Bounds : Node_Id; Typ_Bounds : Node_Id) return Boolean; -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is -- assumed that both bounds are integer ranges. procedure Generate_Finalization_Actions; -- Deal with the various controlled type data structure initializations -- (but only if it hasn't been done already). function Get_Constraint_Association (T : Entity_Id) return Node_Id; -- Returns the first discriminant association in the constraint -- associated with T, if any, otherwise returns Empty. function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id; -- If the ancestor part is an unconstrained type and further ancestors -- do not provide discriminants for it, check aggregate components for -- values of the discriminants. procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id); -- If Typ is derived, and constrains discriminants of the parent type, -- these discriminants are not components of the aggregate, and must be -- initialized. The assignments are appended to List. The same is done -- if Typ derives from an already constrained subtype of a discriminated -- parent type. procedure Init_Stored_Discriminants; -- If the type is derived and has inherited discriminants, generate -- explicit assignments for each, using the store constraint of the -- type. Note that both visible and stored discriminants must be -- initialized in case the derived type has some renamed and some -- constrained discriminants. procedure Init_Visible_Discriminants; -- If type has discriminants, retrieve their values from aggregate, -- and generate explicit assignments for each. This does not include -- discriminants inherited from ancestor, which are handled above. -- The type of the aggregate is a subtype created ealier using the -- given values of the discriminant components of the aggregate. function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean; -- Check whether Bounds is a range node and its lower and higher bounds -- are integers literals. function Replace_Type (Expr : Node_Id) return Traverse_Result; -- If the aggregate contains a self-reference, traverse each expression -- to replace a possible self-reference with a reference to the proper -- component of the target of the assignment. function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result; -- If default expression of a component mentions a discriminant of the -- type, it must be rewritten as the discriminant of the target object. --------------------------------- -- Ancestor_Discriminant_Value -- --------------------------------- function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is Assoc : Node_Id; Assoc_Elmt : Elmt_Id; Aggr_Comp : Entity_Id; Corresp_Disc : Entity_Id; Current_Typ : Entity_Id := Base_Type (Typ); Parent_Typ : Entity_Id; Parent_Disc : Entity_Id; Save_Assoc : Node_Id := Empty; begin -- First check any discriminant associations to see if any of them -- provide a value for the discriminant. if Present (Discriminant_Specifications (Parent (Current_Typ))) then Assoc := First (Component_Associations (N)); while Present (Assoc) loop Aggr_Comp := Entity (First (Choices (Assoc))); if Ekind (Aggr_Comp) = E_Discriminant then Save_Assoc := Expression (Assoc); Corresp_Disc := Corresponding_Discriminant (Aggr_Comp); while Present (Corresp_Disc) loop -- If found a corresponding discriminant then return the -- value given in the aggregate. (Note: this is not -- correct in the presence of side effects. ???) if Disc = Corresp_Disc then return Duplicate_Subexpr (Expression (Assoc)); end if; Corresp_Disc := Corresponding_Discriminant (Corresp_Disc); end loop; end if; Next (Assoc); end loop; end if; -- No match found in aggregate, so chain up parent types to find -- a constraint that defines the value of the discriminant. Parent_Typ := Etype (Current_Typ); while Current_Typ /= Parent_Typ loop if Has_Discriminants (Parent_Typ) and then not Has_Unknown_Discriminants (Parent_Typ) then Parent_Disc := First_Discriminant (Parent_Typ); -- We either get the association from the subtype indication -- of the type definition itself, or from the discriminant -- constraint associated with the type entity (which is -- preferable, but it's not always present ???) if Is_Empty_Elmt_List (Discriminant_Constraint (Current_Typ)) then Assoc := Get_Constraint_Association (Current_Typ); Assoc_Elmt := No_Elmt; else Assoc_Elmt := First_Elmt (Discriminant_Constraint (Current_Typ)); Assoc := Node (Assoc_Elmt); end if; -- Traverse the discriminants of the parent type looking -- for one that corresponds. while Present (Parent_Disc) and then Present (Assoc) loop Corresp_Disc := Parent_Disc; while Present (Corresp_Disc) and then Disc /= Corresp_Disc loop Corresp_Disc := Corresponding_Discriminant (Corresp_Disc); end loop; if Disc = Corresp_Disc then if Nkind (Assoc) = N_Discriminant_Association then Assoc := Expression (Assoc); end if; -- If the located association directly denotes -- a discriminant, then use the value of a saved -- association of the aggregate. This is an approach -- used to handle certain cases involving multiple -- discriminants mapped to a single discriminant of -- a descendant. It's not clear how to locate the -- appropriate discriminant value for such cases. ??? if Is_Entity_Name (Assoc) and then Ekind (Entity (Assoc)) = E_Discriminant then Assoc := Save_Assoc; end if; return Duplicate_Subexpr (Assoc); end if; Next_Discriminant (Parent_Disc); if No (Assoc_Elmt) then Next (Assoc); else Next_Elmt (Assoc_Elmt); if Present (Assoc_Elmt) then Assoc := Node (Assoc_Elmt); else Assoc := Empty; end if; end if; end loop; end if; Current_Typ := Parent_Typ; Parent_Typ := Etype (Current_Typ); end loop; -- In some cases there's no ancestor value to locate (such as -- when an ancestor part given by an expression defines the -- discriminant value). return Empty; end Ancestor_Discriminant_Value; ---------------------------------- -- Check_Ancestor_Discriminants -- ---------------------------------- procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is Discr : Entity_Id; Disc_Value : Node_Id; Cond : Node_Id; begin Discr := First_Discriminant (Base_Type (Anc_Typ)); while Present (Discr) loop Disc_Value := Ancestor_Discriminant_Value (Discr); if Present (Disc_Value) then Cond := Make_Op_Ne (Loc, Left_Opnd => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Discr, Loc)), Right_Opnd => Disc_Value); Append_To (L, Make_Raise_Constraint_Error (Loc, Condition => Cond, Reason => CE_Discriminant_Check_Failed)); end if; Next_Discriminant (Discr); end loop; end Check_Ancestor_Discriminants; --------------------------- -- Compatible_Int_Bounds -- --------------------------- function Compatible_Int_Bounds (Agg_Bounds : Node_Id; Typ_Bounds : Node_Id) return Boolean is Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds)); Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds)); Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds)); Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds)); begin return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi; end Compatible_Int_Bounds; ----------------------------------- -- Generate_Finalization_Actions -- ----------------------------------- procedure Generate_Finalization_Actions is begin -- Do the work only the first time this is called if Finalization_Done then return; end if; Finalization_Done := True; -- Determine the external finalization list. It is either the -- finalization list of the outer scope or the one coming from an -- outer aggregate. When the target is not a temporary, the proper -- scope is the scope of the target rather than the potentially -- transient current scope. if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then Ref := Convert_To (Init_Typ, New_Copy_Tree (Target)); Set_Assignment_OK (Ref); Append_To (L, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Find_Controlled_Prim_Op (Init_Typ, Name_Initialize), Loc), Parameter_Associations => New_List (New_Copy_Tree (Ref)))); end if; end Generate_Finalization_Actions; -------------------------------- -- Get_Constraint_Association -- -------------------------------- function Get_Constraint_Association (T : Entity_Id) return Node_Id is Indic : Node_Id; Typ : Entity_Id; begin Typ := T; -- If type is private, get constraint from full view. This was -- previously done in an instance context, but is needed whenever -- the ancestor part has a discriminant, possibly inherited through -- multiple derivations. if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then Typ := Full_View (Typ); end if; Indic := Subtype_Indication (Type_Definition (Parent (Typ))); -- Verify that the subtype indication carries a constraint if Nkind (Indic) = N_Subtype_Indication and then Present (Constraint (Indic)) then return First (Constraints (Constraint (Indic))); end if; return Empty; end Get_Constraint_Association; ------------------------------------- -- Get_Explicit_Discriminant_Value -- ------------------------------------- function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id is Assoc : Node_Id; Choice : Node_Id; Val : Node_Id; begin -- The aggregate has been normalized and all associations have a -- single choice. Assoc := First (Component_Associations (N)); while Present (Assoc) loop Choice := First (Choices (Assoc)); if Chars (Choice) = Chars (D) then Val := Expression (Assoc); Remove (Assoc); return Val; end if; Next (Assoc); end loop; return Empty; end Get_Explicit_Discriminant_Value; ------------------------------- -- Init_Hidden_Discriminants -- ------------------------------- procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is function Is_Completely_Hidden_Discriminant (Discr : Entity_Id) return Boolean; -- Determine whether Discr is a completely hidden discriminant of -- type Typ. --------------------------------------- -- Is_Completely_Hidden_Discriminant -- --------------------------------------- function Is_Completely_Hidden_Discriminant (Discr : Entity_Id) return Boolean is Item : Entity_Id; begin -- Use First/Next_Entity as First/Next_Discriminant do not yield -- completely hidden discriminants. Item := First_Entity (Typ); while Present (Item) loop if Ekind (Item) = E_Discriminant and then Is_Completely_Hidden (Item) and then Chars (Original_Record_Component (Item)) = Chars (Discr) then return True; end if; Next_Entity (Item); end loop; return False; end Is_Completely_Hidden_Discriminant; -- Local variables Base_Typ : Entity_Id; Discr : Entity_Id; Discr_Constr : Elmt_Id; Discr_Init : Node_Id; Discr_Val : Node_Id; In_Aggr_Type : Boolean; Par_Typ : Entity_Id; -- Start of processing for Init_Hidden_Discriminants begin -- The constraints on the hidden discriminants, if present, are kept -- in the Stored_Constraint list of the type itself, or in that of -- the base type. If not in the constraints of the aggregate itself, -- we examine ancestors to find discriminants that are not renamed -- by other discriminants but constrained explicitly. In_Aggr_Type := True; Base_Typ := Base_Type (Typ); while Is_Derived_Type (Base_Typ) and then (Present (Stored_Constraint (Base_Typ)) or else (In_Aggr_Type and then Present (Stored_Constraint (Typ)))) loop Par_Typ := Etype (Base_Typ); if not Has_Discriminants (Par_Typ) then return; end if; Discr := First_Discriminant (Par_Typ); -- We know that one of the stored-constraint lists is present if Present (Stored_Constraint (Base_Typ)) then Discr_Constr := First_Elmt (Stored_Constraint (Base_Typ)); -- For private extension, stored constraint may be on full view elsif Is_Private_Type (Base_Typ) and then Present (Full_View (Base_Typ)) and then Present (Stored_Constraint (Full_View (Base_Typ))) then Discr_Constr := First_Elmt (Stored_Constraint (Full_View (Base_Typ))); -- Otherwise, no discriminant to process else Discr_Constr := No_Elmt; end if; while Present (Discr) and then Present (Discr_Constr) loop Discr_Val := Node (Discr_Constr); -- The parent discriminant is renamed in the derived type, -- nothing to initialize. -- type Deriv_Typ (Discr : ...) -- is new Parent_Typ (Discr => Discr); if Is_Entity_Name (Discr_Val) and then Ekind (Entity (Discr_Val)) = E_Discriminant then null; -- When the parent discriminant is constrained at the type -- extension level, it does not appear in the derived type. -- type Deriv_Typ (Discr : ...) -- is new Parent_Typ (Discr => Discr, -- Hidden_Discr => Expression); elsif Is_Completely_Hidden_Discriminant (Discr) then null; -- Otherwise initialize the discriminant else Discr_Init := Make_OK_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Discr, Loc)), Expression => New_Copy_Tree (Discr_Val)); Append_To (List, Discr_Init); end if; Next_Elmt (Discr_Constr); Next_Discriminant (Discr); end loop; In_Aggr_Type := False; Base_Typ := Base_Type (Par_Typ); end loop; end Init_Hidden_Discriminants; -------------------------------- -- Init_Visible_Discriminants -- -------------------------------- procedure Init_Visible_Discriminants is Discriminant : Entity_Id; Discriminant_Value : Node_Id; begin Discriminant := First_Discriminant (Typ); while Present (Discriminant) loop Comp_Expr := Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Discriminant, Loc)); Discriminant_Value := Get_Discriminant_Value (Discriminant, Typ, Discriminant_Constraint (N_Typ)); Instr := Make_OK_Assignment_Statement (Loc, Name => Comp_Expr, Expression => New_Copy_Tree (Discriminant_Value)); Append_To (L, Instr); Next_Discriminant (Discriminant); end loop; end Init_Visible_Discriminants; ------------------------------- -- Init_Stored_Discriminants -- ------------------------------- procedure Init_Stored_Discriminants is Discriminant : Entity_Id; Discriminant_Value : Node_Id; begin Discriminant := First_Stored_Discriminant (Typ); while Present (Discriminant) loop Comp_Expr := Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Discriminant, Loc)); Discriminant_Value := Get_Discriminant_Value (Discriminant, N_Typ, Discriminant_Constraint (N_Typ)); Instr := Make_OK_Assignment_Statement (Loc, Name => Comp_Expr, Expression => New_Copy_Tree (Discriminant_Value)); Append_To (L, Instr); Next_Stored_Discriminant (Discriminant); end loop; end Init_Stored_Discriminants; ------------------------- -- Is_Int_Range_Bounds -- ------------------------- function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is begin return Nkind (Bounds) = N_Range and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal and then Nkind (High_Bound (Bounds)) = N_Integer_Literal; end Is_Int_Range_Bounds; ------------------ -- Replace_Type -- ------------------ function Replace_Type (Expr : Node_Id) return Traverse_Result is begin -- Note about the Is_Ancestor test below: aggregate components for -- self-referential types include attribute references to the current -- instance, of the form: Typ'access, etc. These references are -- rewritten as references to the target of the aggregate: the -- left-hand side of an assignment, the entity in a declaration, -- or a temporary. Without this test, we would improperly extend -- this rewriting to attribute references whose prefix is not the -- type of the aggregate. if Nkind (Expr) = N_Attribute_Reference and then Is_Entity_Name (Prefix (Expr)) and then Is_Type (Entity (Prefix (Expr))) and then Is_Ancestor (Entity (Prefix (Expr)), Etype (N), Use_Full_View => True) then if Is_Entity_Name (Lhs) then Rewrite (Prefix (Expr), New_Occurrence_Of (Entity (Lhs), Loc)); else Rewrite (Expr, Make_Attribute_Reference (Loc, Attribute_Name => Name_Unrestricted_Access, Prefix => New_Copy_Tree (Lhs))); Set_Analyzed (Parent (Expr), False); end if; end if; return OK; end Replace_Type; -------------------------- -- Rewrite_Discriminant -- -------------------------- function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is begin if Is_Entity_Name (Expr) and then Present (Entity (Expr)) and then Ekind (Entity (Expr)) = E_In_Parameter and then Present (Discriminal_Link (Entity (Expr))) and then Scope (Discriminal_Link (Entity (Expr))) = Base_Type (Etype (N)) then Rewrite (Expr, Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Lhs), Selector_Name => Make_Identifier (Loc, Chars (Expr)))); -- The generated code will be reanalyzed, but if the reference -- to the discriminant appears within an already analyzed -- expression (e.g. a conditional) we must set its proper entity -- now. Context is an initialization procedure. Analyze (Expr); end if; return OK; end Rewrite_Discriminant; procedure Replace_Discriminants is new Traverse_Proc (Rewrite_Discriminant); procedure Replace_Self_Reference is new Traverse_Proc (Replace_Type); -- Start of processing for Build_Record_Aggr_Code begin if Has_Self_Reference (N) then Replace_Self_Reference (N); end if; -- If the target of the aggregate is class-wide, we must convert it -- to the actual type of the aggregate, so that the proper components -- are visible. We know already that the types are compatible. if Present (Etype (Lhs)) and then Is_Class_Wide_Type (Etype (Lhs)) then Target := Unchecked_Convert_To (Typ, Lhs); else Target := Lhs; end if; -- Deal with the ancestor part of extension aggregates or with the -- discriminants of the root type. if Nkind (N) = N_Extension_Aggregate then declare Ancestor : constant Node_Id := Ancestor_Part (N); Ancestor_Q : constant Node_Id := Unqualify (Ancestor); Assign : List_Id; begin -- If the ancestor part is a subtype mark T, we generate -- init-proc (T (tmp)); if T is constrained and -- init-proc (S (tmp)); where S applies an appropriate -- constraint if T is unconstrained if Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor)) then Ancestor_Is_Subtype_Mark := True; if Is_Constrained (Entity (Ancestor)) then Init_Typ := Entity (Ancestor); -- For an ancestor part given by an unconstrained type mark, -- create a subtype constrained by appropriate corresponding -- discriminant values coming from either associations of the -- aggregate or a constraint on a parent type. The subtype will -- be used to generate the correct default value for the -- ancestor part. elsif Has_Discriminants (Entity (Ancestor)) then declare Anc_Typ : constant Entity_Id := Entity (Ancestor); Anc_Constr : constant List_Id := New_List; Discrim : Entity_Id; Disc_Value : Node_Id; New_Indic : Node_Id; Subt_Decl : Node_Id; begin Discrim := First_Discriminant (Anc_Typ); while Present (Discrim) loop Disc_Value := Ancestor_Discriminant_Value (Discrim); -- If no usable discriminant in ancestors, check -- whether aggregate has an explicit value for it. if No (Disc_Value) then Disc_Value := Get_Explicit_Discriminant_Value (Discrim); end if; Append_To (Anc_Constr, Disc_Value); Next_Discriminant (Discrim); end loop; New_Indic := Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => Anc_Constr)); Init_Typ := Create_Itype (Ekind (Anc_Typ), N); Subt_Decl := Make_Subtype_Declaration (Loc, Defining_Identifier => Init_Typ, Subtype_Indication => New_Indic); -- Itypes must be analyzed with checks off Declaration -- must have a parent for proper handling of subsidiary -- actions. Set_Parent (Subt_Decl, N); Analyze (Subt_Decl, Suppress => All_Checks); end; end if; Ref := Convert_To (Init_Typ, New_Copy_Tree (Target)); Set_Assignment_OK (Ref); if not Is_Interface (Init_Typ) then Append_List_To (L, Build_Initialization_Call (N, Id_Ref => Ref, Typ => Init_Typ, In_Init_Proc => Within_Init_Proc, With_Default_Init => Has_Default_Init_Comps (N) or else Has_Task (Base_Type (Init_Typ)))); if Is_Constrained (Entity (Ancestor)) and then Has_Discriminants (Entity (Ancestor)) then Check_Ancestor_Discriminants (Entity (Ancestor)); end if; -- If ancestor type has Default_Initialization_Condition, -- add a DIC check after the ancestor object is initialized -- by default. if Has_DIC (Entity (Ancestor)) and then Present (DIC_Procedure (Entity (Ancestor))) then Append_To (L, Build_DIC_Call (Loc, New_Copy_Tree (Ref), Entity (Ancestor))); end if; end if; -- Handle calls to C++ constructors elsif Is_CPP_Constructor_Call (Ancestor) then Init_Typ := Etype (Ancestor); Ref := Convert_To (Init_Typ, New_Copy_Tree (Target)); Set_Assignment_OK (Ref); Append_List_To (L, Build_Initialization_Call (N, Id_Ref => Ref, Typ => Init_Typ, In_Init_Proc => Within_Init_Proc, With_Default_Init => Has_Default_Init_Comps (N), Constructor_Ref => Ancestor)); -- Ada 2005 (AI-287): If the ancestor part is an aggregate of -- limited type, a recursive call expands the ancestor. Note that -- in the limited case, the ancestor part must be either a -- function call (possibly qualified) or aggregate (definitely -- qualified). elsif Is_Limited_Type (Etype (Ancestor)) and then Nkind (Ancestor_Q) in N_Aggregate | N_Extension_Aggregate then Append_List_To (L, Build_Record_Aggr_Code (N => Ancestor_Q, Typ => Etype (Ancestor_Q), Lhs => Target)); -- If the ancestor part is an expression E of type T, we generate -- T (tmp) := E; -- In Ada 2005, this includes the case of a (possibly qualified) -- limited function call. The assignment will later be turned into -- a build-in-place function call (for further details, see -- Make_Build_In_Place_Call_In_Assignment). else Init_Typ := Etype (Ancestor); -- If the ancestor part is an aggregate, force its full -- expansion, which was delayed. if Nkind (Ancestor_Q) in N_Aggregate | N_Extension_Aggregate then Set_Analyzed (Ancestor, False); Set_Analyzed (Expression (Ancestor), False); end if; Ref := Convert_To (Init_Typ, New_Copy_Tree (Target)); Assign := New_List ( Make_OK_Assignment_Statement (Loc, Name => Ref, Expression => Ancestor)); -- Arrange for the component to be adjusted if need be (the -- call will be generated by Make_Tag_Ctrl_Assignment). if Needs_Finalization (Init_Typ) and then not Is_Inherently_Limited_Type (Init_Typ) then Set_No_Finalize_Actions (First (Assign)); else Set_No_Ctrl_Actions (First (Assign)); end if; Append_To (L, Make_Suppress_Block (Loc, Name_Discriminant_Check, Assign)); if Has_Discriminants (Init_Typ) then Check_Ancestor_Discriminants (Init_Typ); end if; end if; end; -- Generate assignments of hidden discriminants. If the base type is -- an unchecked union, the discriminants are unknown to the back-end -- and absent from a value of the type, so assignments for them are -- not emitted. if Has_Discriminants (Typ) and then not Is_Unchecked_Union (Base_Type (Typ)) then Init_Hidden_Discriminants (Typ, L); end if; -- Normal case (not an extension aggregate) else -- Generate the discriminant expressions, component by component. -- If the base type is an unchecked union, the discriminants are -- unknown to the back-end and absent from a value of the type, so -- assignments for them are not emitted. if Has_Discriminants (Typ) and then not Is_Unchecked_Union (Base_Type (Typ)) then Init_Hidden_Discriminants (Typ, L); -- Generate discriminant init values for the visible discriminants Init_Visible_Discriminants; if Is_Derived_Type (N_Typ) then Init_Stored_Discriminants; end if; end if; end if; -- For CPP types we generate an implicit call to the C++ default -- constructor to ensure the proper initialization of the _Tag -- component. if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then Invoke_Constructor : declare CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ); procedure Invoke_IC_Proc (T : Entity_Id); -- Recursive routine used to climb to parents. Required because -- parents must be initialized before descendants to ensure -- propagation of inherited C++ slots. -------------------- -- Invoke_IC_Proc -- -------------------- procedure Invoke_IC_Proc (T : Entity_Id) is begin -- Avoid generating extra calls. Initialization required -- only for types defined from the level of derivation of -- type of the constructor and the type of the aggregate. if T = CPP_Parent then return; end if; Invoke_IC_Proc (Etype (T)); -- Generate call to the IC routine if Present (CPP_Init_Proc (T)) then Append_To (L, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (CPP_Init_Proc (T), Loc))); end if; end Invoke_IC_Proc; -- Start of processing for Invoke_Constructor begin -- Implicit invocation of the C++ constructor if Nkind (N) = N_Aggregate then Append_To (L, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc), Parameter_Associations => New_List ( Unchecked_Convert_To (CPP_Parent, New_Copy_Tree (Lhs))))); end if; Invoke_IC_Proc (Typ); end Invoke_Constructor; end if; -- Generate the assignments, component by component -- tmp.comp1 := Expr1_From_Aggr; -- tmp.comp2 := Expr2_From_Aggr; -- .... Comp := First (Component_Associations (N)); while Present (Comp) loop Selector := Entity (First (Choices (Comp))); pragma Assert (Present (Selector)); -- C++ constructors if Is_CPP_Constructor_Call (Expression (Comp)) then Append_List_To (L, Build_Initialization_Call (N, Id_Ref => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Selector, Loc)), Typ => Etype (Selector), Enclos_Type => Typ, With_Default_Init => True, Constructor_Ref => Expression (Comp))); elsif Box_Present (Comp) and then Needs_Simple_Initialization (Etype (Selector)) then Comp_Expr := Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Selector, Loc)); Initialize_Component (N => N, Comp => Comp_Expr, Comp_Typ => Etype (Selector), Init_Expr => Get_Simple_Init_Val (Typ => Etype (Selector), N => Comp, Size => (if Known_Esize (Selector) then Esize (Selector) else Uint_0)), Stmts => L); -- Ada 2005 (AI-287): For each default-initialized component generate -- a call to the corresponding IP subprogram if available. elsif Box_Present (Comp) and then Has_Non_Null_Base_Init_Proc (Etype (Selector)) then Check_Restriction (No_Default_Initialization, N); if Ekind (Selector) /= E_Discriminant then Generate_Finalization_Actions; end if; -- Ada 2005 (AI-287): If the component type has tasks then -- generate the activation chain and master entities (except -- in case of an allocator because in that case these entities -- are generated by Build_Task_Allocate_Block). declare Ctype : constant Entity_Id := Etype (Selector); Inside_Allocator : Boolean := False; P : Node_Id := Parent (N); begin if Is_Task_Type (Ctype) or else Has_Task (Ctype) then while Present (P) loop if Nkind (P) = N_Allocator then Inside_Allocator := True; exit; end if; P := Parent (P); end loop; if not Inside_Init_Proc and not Inside_Allocator then Build_Activation_Chain_Entity (N); end if; end if; end; if not Restriction_Active (No_Default_Initialization) then Append_List_To (L, Build_Initialization_Call (N, Id_Ref => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Selector, Loc)), Typ => Etype (Selector), Enclos_Type => Typ, With_Default_Init => True)); end if; -- Prepare for component assignment elsif Ekind (Selector) /= E_Discriminant or else Nkind (N) = N_Extension_Aggregate then -- All the discriminants have now been assigned -- This is now a good moment to initialize and attach all the -- controllers. Their position may depend on the discriminants. if Ekind (Selector) /= E_Discriminant then Generate_Finalization_Actions; end if; Comp_Type := Underlying_Type (Etype (Selector)); Comp_Expr := Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Selector, Loc)); Expr_Q := Unqualify (Expression (Comp)); -- Now either create the assignment or generate the code for the -- inner aggregate top-down. if Is_Delayed_Aggregate (Expr_Q) then -- We have the following case of aggregate nesting inside -- an object declaration: -- type Arr_Typ is array (Integer range <>) of ...; -- type Rec_Typ (...) is record -- Obj_Arr_Typ : Arr_Typ (A .. B); -- end record; -- Obj_Rec_Typ : Rec_Typ := (..., -- Obj_Arr_Typ => (X => (...), Y => (...))); -- The length of the ranges of the aggregate and Obj_Add_Typ -- are equal (B - A = Y - X), but they do not coincide (X /= -- A and B /= Y). This case requires array sliding which is -- performed in the following manner: -- subtype Arr_Sub is Arr_Typ (X .. Y); -- Temp : Arr_Sub; -- Temp (X) := (...); -- ... -- Temp (Y) := (...); -- Obj_Rec_Typ.Obj_Arr_Typ := Temp; if Ekind (Comp_Type) = E_Array_Subtype and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q)) and then Is_Int_Range_Bounds (First_Index (Comp_Type)) and then not Compatible_Int_Bounds (Agg_Bounds => Aggregate_Bounds (Expr_Q), Typ_Bounds => First_Index (Comp_Type)) then -- Create the array subtype with bounds equal to those of -- the corresponding aggregate. declare SubE : constant Entity_Id := Make_Temporary (Loc, 'T'); SubD : constant Node_Id := Make_Subtype_Declaration (Loc, Defining_Identifier => SubE, Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Etype (Comp_Type), Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => New_List ( New_Copy_Tree (Aggregate_Bounds (Expr_Q)))))); -- Create a temporary array of the above subtype which -- will be used to capture the aggregate assignments. TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N); TmpD : constant Node_Id := Make_Object_Declaration (Loc, Defining_Identifier => TmpE, Object_Definition => New_Occurrence_Of (SubE, Loc)); begin Set_No_Initialization (TmpD); Append_To (L, SubD); Append_To (L, TmpD); -- Expand aggregate into assignments to the temp array Append_List_To (L, Late_Expansion (Expr_Q, Comp_Type, New_Occurrence_Of (TmpE, Loc))); -- Slide Append_To (L, Make_Assignment_Statement (Loc, Name => New_Copy_Tree (Comp_Expr), Expression => New_Occurrence_Of (TmpE, Loc))); end; -- Normal case (sliding not required) else Append_List_To (L, Late_Expansion (Expr_Q, Comp_Type, Comp_Expr)); end if; -- Expr_Q is not delayed aggregate else if Has_Discriminants (Typ) then Replace_Discriminants (Expr_Q); -- If the component is an array type that depends on -- discriminants, and the expression is a single Others -- clause, create an explicit subtype for it because the -- backend has troubles recovering the actual bounds. if Nkind (Expr_Q) = N_Aggregate and then Is_Array_Type (Comp_Type) and then Present (Component_Associations (Expr_Q)) then declare Assoc : constant Node_Id := First (Component_Associations (Expr_Q)); Decl : Node_Id; begin if Present (Assoc) and then Nkind (First (Choices (Assoc))) = N_Others_Choice then Decl := Build_Actual_Subtype_Of_Component (Comp_Type, Comp_Expr); -- If the component type does not in fact depend on -- discriminants, the subtype declaration is empty. if Present (Decl) then Append_To (L, Decl); Set_Etype (Comp_Expr, Defining_Entity (Decl)); end if; end if; end; end if; end if; Initialize_Component (N => N, Comp => Comp_Expr, Comp_Typ => Etype (Selector), Init_Expr => Expr_Q, Stmts => L); end if; -- comment would be good here ??? elsif Ekind (Selector) = E_Discriminant and then Nkind (N) /= N_Extension_Aggregate and then Nkind (Parent (N)) = N_Component_Association and then Is_Constrained (Typ) then -- We must check that the discriminant value imposed by the -- context is the same as the value given in the subaggregate, -- because after the expansion into assignments there is no -- record on which to perform a regular discriminant check. declare D_Val : Elmt_Id; Disc : Entity_Id; begin D_Val := First_Elmt (Discriminant_Constraint (Typ)); Disc := First_Discriminant (Typ); while Chars (Disc) /= Chars (Selector) loop Next_Discriminant (Disc); Next_Elmt (D_Val); end loop; pragma Assert (Present (D_Val)); -- This check cannot performed for components that are -- constrained by a current instance, because this is not a -- value that can be compared with the actual constraint. if Nkind (Node (D_Val)) /= N_Attribute_Reference or else not Is_Entity_Name (Prefix (Node (D_Val))) or else not Is_Type (Entity (Prefix (Node (D_Val)))) then Append_To (L, Make_Raise_Constraint_Error (Loc, Condition => Make_Op_Ne (Loc, Left_Opnd => New_Copy_Tree (Node (D_Val)), Right_Opnd => Expression (Comp)), Reason => CE_Discriminant_Check_Failed)); else -- Find self-reference in previous discriminant assignment, -- and replace with proper expression. declare Ass : Node_Id; begin Ass := First (L); while Present (Ass) loop if Nkind (Ass) = N_Assignment_Statement and then Nkind (Name (Ass)) = N_Selected_Component and then Chars (Selector_Name (Name (Ass))) = Chars (Disc) then Set_Expression (Ass, New_Copy_Tree (Expression (Comp))); exit; end if; Next (Ass); end loop; end; end if; end; end if; -- If the component association was specified with a box and the -- component type has a Default_Initial_Condition, then generate -- a call to the DIC procedure. if Has_DIC (Etype (Selector)) and then Was_Default_Init_Box_Association (Comp) and then Present (DIC_Procedure (Etype (Selector))) then Append_To (L, Build_DIC_Call (Loc, Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Occurrence_Of (Selector, Loc)), Etype (Selector))); end if; Next (Comp); end loop; -- For CPP types we generated a call to the C++ default constructor -- before the components have been initialized to ensure the proper -- initialization of the _Tag component (see above). if Is_CPP_Class (Typ) then null; -- If the type is tagged, the tag needs to be initialized (unless we -- are in VM-mode where tags are implicit). It is done late in the -- initialization process because in some cases, we call the init -- proc of an ancestor which will not leave out the right tag. elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then Instr := Make_Tag_Assignment_From_Type (Loc, New_Copy_Tree (Target), Base_Type (Typ)); Append_To (L, Instr); -- Ada 2005 (AI-251): If the tagged type has been derived from an -- abstract interfaces we must also initialize the tags of the -- secondary dispatch tables. if Has_Interfaces (Base_Type (Typ)) then Init_Secondary_Tags (Typ => Base_Type (Typ), Target => Target, Stmts_List => L, Init_Tags_List => L); end if; end if; -- If the controllers have not been initialized yet (by lack of non- -- discriminant components), let's do it now. Generate_Finalization_Actions; return L; end Build_Record_Aggr_Code; ------------------------------- -- Convert_Aggr_In_Allocator -- ------------------------------- procedure Convert_Aggr_In_Allocator (N : Node_Id; Temp : Entity_Id) is Aggr : constant Node_Id := Unqualify (Expression (N)); Loc : constant Source_Ptr := Sloc (Aggr); Typ : constant Entity_Id := Etype (Aggr); Occ : constant Node_Id := Unchecked_Convert_To (Typ, Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc))); begin if Is_Array_Type (Typ) then Convert_Array_Aggr_In_Allocator (N, Occ); elsif Has_Default_Init_Comps (Aggr) then declare Init_Stmts : constant List_Id := Late_Expansion (Aggr, Typ, Occ); begin if Has_Task (Typ) then declare Actions : constant List_Id := New_List; begin Build_Task_Allocate_Block (Actions, Aggr, Init_Stmts); Insert_Actions (N, Actions); end; else Insert_Actions (N, Init_Stmts); end if; end; else Insert_Actions (N, Late_Expansion (Aggr, Typ, Occ)); end if; end Convert_Aggr_In_Allocator; -------------------------------- -- Convert_Aggr_In_Assignment -- -------------------------------- procedure Convert_Aggr_In_Assignment (N : Node_Id) is Aggr : constant Node_Id := Unqualify (Expression (N)); Typ : constant Entity_Id := Etype (Aggr); Occ : constant Node_Id := New_Copy_Tree (Name (N)); begin Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ)); end Convert_Aggr_In_Assignment; --------------------------------- -- Convert_Aggr_In_Object_Decl -- --------------------------------- procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is Obj : constant Entity_Id := Defining_Identifier (N); Aggr : constant Node_Id := Unqualify (Expression (N)); Loc : constant Source_Ptr := Sloc (Aggr); Typ : constant Entity_Id := Etype (Aggr); function Discriminants_Ok return Boolean; -- If the object's subtype is constrained, the discriminants in the -- aggregate must be checked against the discriminants of the subtype. -- This cannot be done using Apply_Discriminant_Checks because after -- expansion there is no aggregate left to check. ---------------------- -- Discriminants_Ok -- ---------------------- function Discriminants_Ok return Boolean is Cond : Node_Id := Empty; Check : Node_Id; D : Entity_Id; Disc1 : Elmt_Id; Disc2 : Elmt_Id; Val1 : Node_Id; Val2 : Node_Id; begin D := First_Discriminant (Typ); Disc1 := First_Elmt (Discriminant_Constraint (Typ)); Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj))); while Present (Disc1) and then Present (Disc2) loop Val1 := Node (Disc1); Val2 := Node (Disc2); if not Is_OK_Static_Expression (Val1) or else not Is_OK_Static_Expression (Val2) then Check := Make_Op_Ne (Loc, Left_Opnd => Duplicate_Subexpr (Val1), Right_Opnd => Duplicate_Subexpr (Val2)); if No (Cond) then Cond := Check; else Cond := Make_Or_Else (Loc, Left_Opnd => Cond, Right_Opnd => Check); end if; elsif Expr_Value (Val1) /= Expr_Value (Val2) then Apply_Compile_Time_Constraint_Error (Aggr, Msg => "incorrect value for discriminant&??", Reason => CE_Discriminant_Check_Failed, Ent => D); return False; end if; Next_Discriminant (D); Next_Elmt (Disc1); Next_Elmt (Disc2); end loop; -- If any discriminant constraint is nonstatic, emit a check if Present (Cond) then Insert_Action (N, Make_Raise_Constraint_Error (Loc, Condition => Cond, Reason => CE_Discriminant_Check_Failed)); end if; return True; end Discriminants_Ok; -- Local variables Has_Transient_Scope : Boolean; Occ : Node_Id; Param : Node_Id; Stmt : Node_Id; Stmts : List_Id; -- Start of processing for Convert_Aggr_In_Object_Decl begin -- First generate discriminant checks if need be, and bail out if one -- of them fails statically. if Has_Discriminants (Typ) and then Typ /= Etype (Obj) and then Is_Constrained (Etype (Obj)) and then not Discriminants_Ok then return; end if; -- If the context is an extended return statement, it has its own -- finalization machinery (i.e. works like a transient scope) and -- we do not want to create an additional one, because objects on -- the finalization list of the return must be moved to the caller's -- finalization list to complete the return. -- Similarly if the aggregate is limited, it is built in place, and the -- controlled components are not assigned to intermediate temporaries -- so there is no need for a transient scope in this case either. if Requires_Transient_Scope (Typ) and then Ekind (Current_Scope) /= E_Return_Statement and then not Is_Limited_Type (Typ) then Establish_Transient_Scope (Aggr, Manage_Sec_Stack => False); Has_Transient_Scope := True; else Has_Transient_Scope := False; end if; Occ := New_Occurrence_Of (Obj, Loc); Set_Assignment_OK (Occ); Stmts := Late_Expansion (Aggr, Typ, Occ); -- If Obj is already frozen or if N is wrapped in a transient scope, -- Stmts do not need to be saved in Initialization_Statements since -- there is no freezing issue. if Is_Frozen (Obj) or else Has_Transient_Scope then Insert_Actions_After (N, Stmts); else Stmt := Make_Compound_Statement (Sloc (N), Actions => Stmts); Insert_Action_After (N, Stmt); -- Insert_Action_After may freeze Obj in which case we should -- remove the compound statement just created and simply insert -- Stmts after N. if Is_Frozen (Obj) then Remove (Stmt); Insert_Actions_After (N, Stmts); else Set_Initialization_Statements (Obj, Stmt); end if; end if; -- If Typ has controlled components and a call to a Slice_Assign -- procedure is part of the initialization statements, then we -- need to initialize the array component since Slice_Assign will -- need to adjust it. if Has_Controlled_Component (Typ) then Stmt := First (Stmts); while Present (Stmt) loop if Nkind (Stmt) = N_Procedure_Call_Statement and then Is_TSS (Entity (Name (Stmt)), TSS_Slice_Assign) then Param := First (Parameter_Associations (Stmt)); Insert_Actions (Stmt, Build_Initialization_Call (N, New_Copy_Tree (Param), Etype (Param))); end if; Next (Stmt); end loop; end if; -- After expansion the expression can be removed from the declaration -- except if the object is class-wide, in which case the aggregate -- provides the actual type. if not Is_Class_Wide_Type (Etype (Obj)) then Set_Expression (N, Empty); end if; Set_No_Initialization (N); Initialize_Discriminants (N, Typ); end Convert_Aggr_In_Object_Decl; ------------------------------------- -- Convert_Array_Aggr_In_Allocator -- ------------------------------------- procedure Convert_Array_Aggr_In_Allocator (N : Node_Id; Target : Node_Id) is Aggr : constant Node_Id := Unqualify (Expression (N)); Typ : constant Entity_Id := Etype (Aggr); Ctyp : constant Entity_Id := Component_Type (Typ); Aggr_Code : List_Id; New_Aggr : Node_Id; begin -- The target is an explicit dereference of the allocated object -- If the assignment can be done directly by the back end, then -- reset Set_Expansion_Delayed and do not expand further. if not CodePeer_Mode and then Aggr_Assignment_OK_For_Backend (Aggr) then New_Aggr := New_Copy_Tree (Aggr); Set_Expansion_Delayed (New_Aggr, False); -- In the case of Target's type using the Designated_Storage_Model -- aspect with a Copy_To procedure, insert a temporary and have the -- back end handle the assignment to it. Copy the result to the -- original target. if Has_Designated_Storage_Model_Aspect (Etype (Prefix (Expression (Target)))) and then Present (Storage_Model_Copy_To (Storage_Model_Object (Etype (Prefix (Expression (Target)))))) then Aggr_Code := Build_Assignment_With_Temporary (Target, Typ, New_Aggr); else Aggr_Code := New_List ( Make_OK_Assignment_Statement (Sloc (New_Aggr), Name => Target, Expression => New_Aggr)); end if; -- Or else, generate component assignments to it, as for an aggregate -- that appears on the right-hand side of an assignment statement. else Aggr_Code := Build_Array_Aggr_Code (Aggr, Ctype => Ctyp, Index => First_Index (Typ), Into => Target, Scalar_Comp => Is_Scalar_Type (Ctyp)); end if; Insert_Actions (N, Aggr_Code); end Convert_Array_Aggr_In_Allocator; ------------------------ -- In_Place_Assign_OK -- ------------------------ function In_Place_Assign_OK (N : Node_Id; Target_Object : Entity_Id := Empty) return Boolean is Is_Array : constant Boolean := Is_Array_Type (Etype (N)); function Safe_Aggregate (Aggr : Node_Id) return Boolean; -- Check recursively that each component of a (sub)aggregate does not -- depend on the variable being assigned to. function Safe_Component (Expr : Node_Id) return Boolean; -- Verify that an expression cannot depend on the target being assigned -- to. Return true for compile-time known values, stand-alone objects, -- parameters passed by copy, calls to functions that return by copy, -- selected components thereof only if the aggregate's type is an array, -- indexed components and slices thereof only if the aggregate's type is -- a record, and simple expressions involving only these as operands. -- This is OK whatever the target because, for a component to overlap -- with the target, it must be either a direct reference to a component -- of the target, in which case there must be a matching selection or -- indexation or slicing, or an indirect reference to such a component, -- which is excluded by the above condition. Additionally, if the target -- is statically known, return true for arbitrarily nested selections, -- indexations or slicings, provided that their ultimate prefix is not -- the target itself. -------------------- -- Safe_Aggregate -- -------------------- function Safe_Aggregate (Aggr : Node_Id) return Boolean is Expr : Node_Id; begin if Nkind (Parent (Aggr)) = N_Iterated_Component_Association then return False; end if; if Present (Expressions (Aggr)) then Expr := First (Expressions (Aggr)); while Present (Expr) loop if Nkind (Expr) = N_Aggregate then if not Safe_Aggregate (Expr) then return False; end if; elsif not Safe_Component (Expr) then return False; end if; Next (Expr); end loop; end if; if Present (Component_Associations (Aggr)) then Expr := First (Component_Associations (Aggr)); while Present (Expr) loop if Nkind (Expression (Expr)) = N_Aggregate then if not Safe_Aggregate (Expression (Expr)) then return False; end if; -- If association has a box, no way to determine yet whether -- default can be assigned in place. elsif Box_Present (Expr) then return False; elsif not Safe_Component (Expression (Expr)) then return False; end if; Next (Expr); end loop; end if; return True; end Safe_Aggregate; -------------------- -- Safe_Component -- -------------------- function Safe_Component (Expr : Node_Id) return Boolean is Comp : Node_Id := Expr; function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean; -- Do the recursive traversal, after copy. If T_OK is True, return -- True for a stand-alone object only if the target is statically -- known and distinct from the object. At the top level, we start -- with T_OK set to False and set it to True at a deeper level only -- if we cannot disambiguate the component here without statically -- knowing the target. Note that this is not optimal, we should do -- something along the lines of Denotes_Same_Prefix for that. --------------------- -- Check_Component -- --------------------- function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean is function SDO (E : Entity_Id) return Uint; -- Return the Scope Depth Of the enclosing dynamic scope of E --------- -- SDO -- --------- function SDO (E : Entity_Id) return Uint is begin return Scope_Depth (Enclosing_Dynamic_Scope (E)); end SDO; -- Start of processing for Check_Component begin if Is_Overloaded (C) then return False; elsif Compile_Time_Known_Value (C) then return True; end if; case Nkind (C) is when N_Attribute_Reference => return Check_Component (Prefix (C), T_OK); when N_Function_Call => if Nkind (Name (C)) = N_Explicit_Dereference then return not Returns_By_Ref (Etype (Name (C))); else return not Returns_By_Ref (Entity (Name (C))); end if; when N_Indexed_Component | N_Slice => -- In a target record, these operations cannot determine -- alone a component so we can recurse whatever the target. return Check_Component (Prefix (C), T_OK or else Is_Array); when N_Selected_Component => -- In a target array, this operation cannot determine alone -- a component so we can recurse whatever the target. return Check_Component (Prefix (C), T_OK or else not Is_Array); when N_Type_Conversion | N_Unchecked_Type_Conversion => return Check_Component (Expression (C), T_OK); when N_Binary_Op => return Check_Component (Left_Opnd (C), T_OK) and then Check_Component (Right_Opnd (C), T_OK); when N_Unary_Op => return Check_Component (Right_Opnd (C), T_OK); when others => if Is_Entity_Name (C) and then Is_Object (Entity (C)) then -- Case of a formal parameter component. It's either -- trivial if passed by copy or very annoying if not, -- because in the latter case it's almost equivalent -- to a dereference, so the path-based disambiguation -- logic is totally off and we always need the target. if Is_Formal (Entity (C)) then -- If it is passed by copy, then this is safe if Mechanism (Entity (C)) = By_Copy then return True; -- Otherwise, this is safe if the target is present -- and is at least as deeply nested as the component. else return Present (Target_Object) and then not Is_Formal (Target_Object) and then SDO (Target_Object) >= SDO (Entity (C)); end if; -- For a renamed object, recurse elsif Present (Renamed_Object (Entity (C))) then return Check_Component (Renamed_Object (Entity (C)), T_OK); -- If this is safe whatever the target, we are done elsif not T_OK then return True; -- If there is no target or the component is the target, -- this is not safe. elsif No (Target_Object) or else Entity (C) = Target_Object then return False; -- Case of a formal parameter target. This is safe if it -- is at most as deeply nested as the component. elsif Is_Formal (Target_Object) then return SDO (Target_Object) <= SDO (Entity (C)); -- For distinct stand-alone objects, this is safe else return True; end if; -- For anything else than an object, this is not safe else return False; end if; end case; end Check_Component; -- Start of processing for Safe_Component begin -- If the component appears in an association that may correspond -- to more than one element, it is not analyzed before expansion -- into assignments, to avoid side effects. We analyze, but do not -- resolve the copy, to obtain sufficient entity information for -- the checks that follow. If component is overloaded we assume -- an unsafe function call. if not Analyzed (Comp) then if Is_Overloaded (Expr) then return False; elsif Nkind (Expr) = N_Allocator then -- For now, too complex to analyze return False; elsif Nkind (Parent (Expr)) = N_Iterated_Component_Association then -- Ditto for iterated component associations, which in general -- require an enclosing loop and involve nonstatic expressions. return False; end if; Comp := New_Copy_Tree (Expr); Set_Parent (Comp, Parent (Expr)); Analyze (Comp); end if; if Nkind (Comp) = N_Aggregate then return Safe_Aggregate (Comp); else return Check_Component (Comp, False); end if; end Safe_Component; -- Local variables Aggr_In : Node_Id; Aggr_Bounds : Range_Nodes; Obj_In : Node_Id; Obj_Bounds : Range_Nodes; Parent_Kind : Node_Kind; Parent_Node : Node_Id; -- Start of processing for In_Place_Assign_OK begin -- By-copy semantic cannot be guaranteed for controlled objects if Needs_Finalization (Etype (N)) then return False; end if; Parent_Node := Parent (N); Parent_Kind := Nkind (Parent_Node); if Parent_Kind = N_Qualified_Expression then Parent_Node := Parent (Parent_Node); Parent_Kind := Nkind (Parent_Node); end if; -- On assignment, sliding can take place, so we cannot do the -- assignment in place unless the bounds of the aggregate are -- statically equal to those of the target. -- If the aggregate is given by an others choice, the bounds are -- derived from the left-hand side, and the assignment is safe if -- the expression is. if Is_Array and then Present (Component_Associations (N)) and then not Is_Others_Aggregate (N) then Aggr_In := First_Index (Etype (N)); -- Context is an assignment if Parent_Kind = N_Assignment_Statement then Obj_In := First_Index (Etype (Name (Parent_Node))); -- Context is an allocator. Check the bounds of the aggregate against -- those of the designated type, except in the case where the type is -- unconstrained (and then we can directly return true, see below). else pragma Assert (Parent_Kind = N_Allocator); declare Desig_Typ : constant Entity_Id := Designated_Type (Etype (Parent_Node)); begin if not Is_Constrained (Desig_Typ) then return True; end if; Obj_In := First_Index (Desig_Typ); end; end if; while Present (Aggr_In) loop Aggr_Bounds := Get_Index_Bounds (Aggr_In); Obj_Bounds := Get_Index_Bounds (Obj_In); -- We require static bounds for the target and a static matching -- of low bound for the aggregate. if not Compile_Time_Known_Value (Obj_Bounds.First) or else not Compile_Time_Known_Value (Obj_Bounds.Last) or else not Compile_Time_Known_Value (Aggr_Bounds.First) or else Expr_Value (Aggr_Bounds.First) /= Expr_Value (Obj_Bounds.First) then return False; -- For an assignment statement we require static matching of -- bounds. Ditto for an allocator whose qualified expression -- is a constrained type. If the expression in the allocator -- is an unconstrained array, we accept an upper bound that -- is not static, to allow for nonstatic expressions of the -- base type. Clearly there are further possibilities (with -- diminishing returns) for safely building arrays in place -- here. elsif Parent_Kind = N_Assignment_Statement or else Is_Constrained (Etype (Parent_Node)) then if not Compile_Time_Known_Value (Aggr_Bounds.Last) or else Expr_Value (Aggr_Bounds.Last) /= Expr_Value (Obj_Bounds.Last) then return False; end if; end if; Next_Index (Aggr_In); Next_Index (Obj_In); end loop; end if; -- Now check the component values themselves, except for an allocator -- for which the target is newly allocated memory. if Parent_Kind = N_Allocator then return True; else return Safe_Aggregate (N); end if; end In_Place_Assign_OK; ---------------------------- -- Convert_To_Assignments -- ---------------------------- procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); function Known_Size (Decl : Node_Id; Cond_Init : Boolean) return Boolean; -- Decl is an N_Object_Declaration node. Return true if it declares an -- object with a known size; in this context, that is always the case, -- except for a declaration without explicit constraints of an object, -- either whose nominal subtype is class-wide, or whose initialization -- contains a conditional expression and whose nominal subtype is both -- discriminated and unconstrained. ---------------- -- Known_Size -- ---------------- function Known_Size (Decl : Node_Id; Cond_Init : Boolean) return Boolean is begin if Is_Entity_Name (Object_Definition (Decl)) then declare Typ : constant Entity_Id := Entity (Object_Definition (Decl)); begin return not Is_Class_Wide_Type (Typ) and then not (Cond_Init and then Has_Discriminants (Typ) and then not Is_Constrained (Typ)); end; else return True; end if; end Known_Size; -- Local variables Aggr_Code : List_Id; Full_Typ : Entity_Id; In_Cond_Expr : Boolean; Instr : Node_Id; Node : Node_Id; Parent_Node : Node_Id; Target_Expr : Node_Id; Temp : Entity_Id; -- Start of processing for Convert_To_Assignments begin pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate); pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N)); pragma Assert (Is_Record_Type (Typ)); In_Cond_Expr := False; Node := N; Parent_Node := Parent (Node); -- First, climb the parent chain, looking through qualified expressions -- and dependent expressions of conditional expressions. while True loop case Nkind (Parent_Node) is when N_Case_Expression_Alternative => null; when N_Case_Expression => exit when Node = Expression (Parent_Node); In_Cond_Expr := True; when N_If_Expression => exit when Node = First (Expressions (Parent_Node)); In_Cond_Expr := True; when N_Qualified_Expression => null; when others => exit; end case; Node := Parent_Node; Parent_Node := Parent (Node); end loop; -- Set the Expansion_Delayed flag in the cases where the transformation -- will be done top down from above. if -- Internal aggregates (transformed when expanding the parent), -- excluding container aggregates as these are transformed into -- subprogram calls later. So far aggregates with self-references -- are not supported if they appear in a conditional expression. (Nkind (Parent_Node) = N_Component_Association and then not Is_Container_Aggregate (Parent (Parent_Node)) and then not (In_Cond_Expr and then Has_Self_Reference (N))) or else (Nkind (Parent_Node) in N_Aggregate | N_Extension_Aggregate and then not Is_Container_Aggregate (Parent_Node) and then not (In_Cond_Expr and then Has_Self_Reference (N))) -- Allocator (see Convert_Aggr_In_Allocator) or else Nkind (Parent_Node) = N_Allocator -- Object declaration (see Convert_Aggr_In_Object_Decl). So far only -- declarations with a known size are supported. or else (Nkind (Parent_Node) = N_Object_Declaration and then Known_Size (Parent_Node, In_Cond_Expr)) -- Safe assignment (see Convert_Aggr_In_Assignment). So far only the -- assignments in init procs are taken into account. or else (Nkind (Parent_Node) = N_Assignment_Statement and then Inside_Init_Proc) -- (Ada 2005) An inherently limited type in a return statement, which -- will be handled in a build-in-place fashion, and may be rewritten -- as an extended return and have its own finalization machinery. -- In the case of a simple return, the aggregate needs to be delayed -- until the scope for the return statement has been created, so -- that any finalization chain will be associated with that scope. -- For extended returns, we delay expansion to avoid the creation -- of an unwanted transient scope that could result in premature -- finalization of the return object (which is built in place -- within the caller's scope). or else Is_Build_In_Place_Aggregate_Return (Parent_Node) then Node := N; -- Mark the aggregate, as well as all the intermediate conditional -- expressions, as having expansion delayed. This will block the -- usual (bottom-up) expansion of the marked nodes and replace it -- with a top-down expansion from the parent node. while Node /= Parent_Node loop if Nkind (Node) in N_Aggregate | N_Case_Expression | N_Extension_Aggregate | N_If_Expression then Set_Expansion_Delayed (Node); end if; Node := Parent (Node); end loop; return; end if; -- Otherwise, if a transient scope is required, create it now if Requires_Transient_Scope (Typ) then Establish_Transient_Scope (N, Manage_Sec_Stack => False); end if; -- Now get back to the immediate parent, modulo qualified expression Parent_Node := Parent (N); if Nkind (Parent_Node) = N_Qualified_Expression then Parent_Node := Parent (Parent_Node); end if; -- If the context is an assignment and the aggregate is limited, this -- is a subaggregate of an enclosing aggregate being expanded; it must -- be built in place, so use the target of the current assignment. if Nkind (Parent_Node) = N_Assignment_Statement and then Is_Limited_Type (Typ) then Target_Expr := New_Copy_Tree (Name (Parent_Node)); Insert_Actions (Parent_Node, Build_Record_Aggr_Code (N, Typ, Target_Expr)); Rewrite (Parent_Node, Make_Null_Statement (Loc)); -- Do not declare a temporary to initialize an aggregate assigned to -- a target when in-place assignment is possible, i.e. preserving the -- by-copy semantics of aggregates. This avoids large stack usage and -- generates more efficient code. elsif Nkind (Parent_Node) = N_Assignment_Statement and then In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node))) then declare Lhs : constant Node_Id := Name (Parent_Node); begin -- Apply discriminant check if required if Has_Discriminants (Etype (N)) then Apply_Discriminant_Check (N, Etype (Lhs), Lhs); end if; -- The check just above may have replaced the aggregate with a CE if Nkind (N) in N_Aggregate | N_Extension_Aggregate then Target_Expr := New_Copy_Tree (Lhs); Insert_Actions (Parent_Node, Build_Record_Aggr_Code (N, Typ, Target_Expr)); Rewrite (Parent_Node, Make_Null_Statement (Loc)); end if; end; -- Otherwise, create a temporary since aggregates have by-copy semantics else Temp := Make_Temporary (Loc, 'A', N); -- If the type inherits unknown discriminants, use the view with -- known discriminants if available. if Has_Unknown_Discriminants (Typ) and then Present (Underlying_Record_View (Typ)) then Full_Typ := Underlying_Record_View (Typ); else Full_Typ := Typ; end if; Instr := Make_Object_Declaration (Loc, Defining_Identifier => Temp, Object_Definition => New_Occurrence_Of (Full_Typ, Loc)); Set_No_Initialization (Instr); Insert_Action (N, Instr); Initialize_Discriminants (Instr, Full_Typ); Target_Expr := New_Occurrence_Of (Temp, Loc); Aggr_Code := Build_Record_Aggr_Code (N, Full_Typ, Target_Expr); -- Save the last assignment statement associated with the aggregate -- when building a controlled object. This reference is utilized by -- the finalization machinery when marking an object as successfully -- initialized. if Needs_Finalization (Full_Typ) then Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code)); end if; Insert_Actions (N, Aggr_Code); Rewrite (N, New_Occurrence_Of (Temp, Loc)); Analyze_And_Resolve (N, Full_Typ); end if; end Convert_To_Assignments; --------------------------- -- Convert_To_Positional -- --------------------------- procedure Convert_To_Positional (N : Node_Id; Handle_Bit_Packed : Boolean := False) is Typ : constant Entity_Id := Etype (N); Dims : constant Nat := Number_Dimensions (Typ); Max_Others_Replicate : constant Nat := Max_Aggregate_Size (N); Ctyp : Entity_Id := Component_Type (Typ); Static_Components : Boolean := True; procedure Check_Static_Components; -- Check whether all components of the aggregate are compile-time known -- values, and can be passed as is to the back-end without further -- expansion. function Flatten (N : Node_Id; Dims : Nat; Ix : Node_Id; Ixb : Node_Id) return Boolean; -- Convert the aggregate into a purely positional form if possible after -- checking that the bounds of all dimensions are known to be static. function Is_Flat (N : Node_Id; Dims : Nat) return Boolean; -- Return True if the aggregate N is flat (which is not trivial in the -- case of multidimensional aggregates). function Is_Static_Element (N : Node_Id; Dims : Nat) return Boolean; -- Return True if N, an element of a component association list, i.e. -- N_Component_Association or N_Iterated_Component_Association, has a -- compile-time known value and can be passed as is to the back-end -- without further expansion. -- An Iterated_Component_Association is treated as nonstatic in most -- cases for now, so there are possibilities for optimization. ----------------------------- -- Check_Static_Components -- ----------------------------- -- Could use some comments in this body ??? procedure Check_Static_Components is Assoc : Node_Id; Expr : Node_Id; begin Static_Components := True; if Nkind (N) = N_String_Literal then null; elsif Present (Expressions (N)) then Expr := First (Expressions (N)); while Present (Expr) loop if Nkind (Expr) /= N_Aggregate or else not Compile_Time_Known_Aggregate (Expr) or else Expansion_Delayed (Expr) then Static_Components := False; exit; end if; Next (Expr); end loop; end if; if Nkind (N) = N_Aggregate and then Present (Component_Associations (N)) then Assoc := First (Component_Associations (N)); while Present (Assoc) loop if not Is_Static_Element (Assoc, Dims) then Static_Components := False; exit; end if; Next (Assoc); end loop; end if; end Check_Static_Components; ------------- -- Flatten -- ------------- function Flatten (N : Node_Id; Dims : Nat; Ix : Node_Id; Ixb : Node_Id) return Boolean is Loc : constant Source_Ptr := Sloc (N); Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb)); Lo : constant Node_Id := Type_Low_Bound (Etype (Ix)); Hi : constant Node_Id := Type_High_Bound (Etype (Ix)); function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean; -- Return true if Expr is an aggregate for the next dimension that -- cannot be recursively flattened. ------------------------------ -- Cannot_Flatten_Next_Aggr -- ------------------------------ function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean is begin return Nkind (Expr) = N_Aggregate and then Present (Next_Index (Ix)) and then not Flatten (Expr, Dims - 1, Next_Index (Ix), Next_Index (Ixb)); end Cannot_Flatten_Next_Aggr; -- Local variables Lov : Uint; Hiv : Uint; Others_Present : Boolean; -- Start of processing for Flatten begin if Nkind (Original_Node (N)) = N_String_Literal then return True; end if; if not Compile_Time_Known_Value (Lo) or else not Compile_Time_Known_Value (Hi) then return False; end if; Lov := Expr_Value (Lo); Hiv := Expr_Value (Hi); -- Check if there is an others choice Others_Present := False; if Present (Component_Associations (N)) then if Is_Empty_List (Component_Associations (N)) then -- an expanded null array aggregate return False; end if; declare Assoc : Node_Id; Choice : Node_Id; begin Assoc := First (Component_Associations (N)); while Present (Assoc) loop -- If this is a box association, flattening is in general -- not possible because at this point we cannot tell if the -- default is static or even exists. if Box_Present (Assoc) then return False; elsif Nkind (Assoc) = N_Iterated_Component_Association then return False; end if; Choice := First (Choice_List (Assoc)); while Present (Choice) loop if Nkind (Choice) = N_Others_Choice then Others_Present := True; end if; Next (Choice); end loop; Next (Assoc); end loop; end; end if; -- If the low bound is not known at compile time and others is not -- present we can proceed since the bounds can be obtained from the -- aggregate. if not Compile_Time_Known_Value (Blo) and then Others_Present then return False; end if; -- Determine if set of alternatives is suitable for conversion and -- build an array containing the values in sequence. declare Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv)) of Node_Id := (others => Empty); -- The values in the aggregate sorted appropriately Vlist : List_Id; -- Same data as Vals in list form Rep_Count : Nat; -- Used to validate Max_Others_Replicate limit Elmt : Node_Id; Expr : Node_Id; Num : Int := UI_To_Int (Lov); Choice_Index : Int; Choice : Node_Id; Lo, Hi : Node_Id; begin if Present (Expressions (N)) then Elmt := First (Expressions (N)); while Present (Elmt) loop -- In the case of a multidimensional array, check that the -- aggregate can be recursively flattened. if Cannot_Flatten_Next_Aggr (Elmt) then return False; end if; -- Duplicate expression for each index it covers Vals (Num) := New_Copy_Tree (Elmt); Num := Num + 1; Next (Elmt); end loop; end if; if No (Component_Associations (N)) then return True; end if; Elmt := First (Component_Associations (N)); Component_Loop : while Present (Elmt) loop Expr := Expression (Elmt); -- If the expression involves a construct that generates a -- loop, we must generate individual assignments and no -- flattening is possible. if Nkind (Expr) = N_Quantified_Expression then return False; end if; -- In the case of a multidimensional array, check that the -- aggregate can be recursively flattened. if Cannot_Flatten_Next_Aggr (Expr) then return False; end if; Choice := First (Choice_List (Elmt)); Choice_Loop : while Present (Choice) loop -- If we have an others choice, fill in the missing elements -- subject to the limit established by Max_Others_Replicate. if Nkind (Choice) = N_Others_Choice then Rep_Count := 0; for J in Vals'Range loop if No (Vals (J)) then Vals (J) := New_Copy_Tree (Expr); Rep_Count := Rep_Count + 1; -- Check for maximum others replication. Note that -- we skip this test if either of the restrictions -- No_Implicit_Loops or No_Elaboration_Code is -- active, if this is a preelaborable unit or -- a predefined unit, or if the unit must be -- placed in data memory. This also ensures that -- predefined units get the same level of constant -- folding in Ada 95 and Ada 2005, where their -- categorization has changed. declare P : constant Entity_Id := Cunit_Entity (Current_Sem_Unit); begin -- Check if duplication is always OK and, if so, -- continue processing. if Restriction_Active (No_Implicit_Loops) then null; -- If duplication is not always OK, continue -- only if either the element is static or is -- an aggregate (we already know it is OK). elsif not Is_Static_Element (Elmt, Dims) and then Nkind (Expr) /= N_Aggregate then return False; -- Check if duplication is OK for elaboration -- purposes and, if so, continue processing. elsif Restriction_Active (No_Elaboration_Code) or else (Ekind (Current_Scope) = E_Package and then Static_Elaboration_Desired (Current_Scope)) or else Is_Preelaborated (P) or else (Ekind (P) = E_Package_Body and then Is_Preelaborated (Spec_Entity (P))) or else Is_Predefined_Unit (Get_Source_Unit (P)) then null; -- Otherwise, check that the replication count -- is not too high. elsif Rep_Count > Max_Others_Replicate then return False; end if; end; end if; end loop; if Rep_Count = 0 and then Warn_On_Redundant_Constructs -- We don't emit warnings on null arrays initialized -- with an aggregate of the form "(others => ...)". and then Vals'Length > 0 then Error_Msg_N ("there are no others?r?", Elmt); end if; exit Component_Loop; -- Case of a subtype mark, identifier or expanded name elsif Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)) then Lo := Type_Low_Bound (Etype (Choice)); Hi := Type_High_Bound (Etype (Choice)); -- Case of subtype indication elsif Nkind (Choice) = N_Subtype_Indication then Lo := Low_Bound (Range_Expression (Constraint (Choice))); Hi := High_Bound (Range_Expression (Constraint (Choice))); -- Case of a range elsif Nkind (Choice) = N_Range then Lo := Low_Bound (Choice); Hi := High_Bound (Choice); -- Normal subexpression case else pragma Assert (Nkind (Choice) in N_Subexpr); if not Compile_Time_Known_Value (Choice) then return False; else Choice_Index := UI_To_Int (Expr_Value (Choice)); if Choice_Index in Vals'Range then Vals (Choice_Index) := New_Copy_Tree (Expr); goto Continue; -- Choice is statically out-of-range, will be -- rewritten to raise Constraint_Error. else return False; end if; end if; end if; -- Range cases merge with Lo,Hi set if not Compile_Time_Known_Value (Lo) or else not Compile_Time_Known_Value (Hi) then return False; else for J in UI_To_Int (Expr_Value (Lo)) .. UI_To_Int (Expr_Value (Hi)) loop Vals (J) := New_Copy_Tree (Expr); end loop; end if; <> Next (Choice); end loop Choice_Loop; Next (Elmt); end loop Component_Loop; -- If we get here the conversion is possible Vlist := New_List; for J in Vals'Range loop Append (Vals (J), Vlist); end loop; Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist)); Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N))); return True; end; end Flatten; ------------- -- Is_Flat -- ------------- function Is_Flat (N : Node_Id; Dims : Nat) return Boolean is Elmt : Node_Id; begin if Dims = 0 then return True; elsif Nkind (N) = N_Aggregate then if Present (Component_Associations (N)) then return False; else Elmt := First (Expressions (N)); while Present (Elmt) loop if not Is_Flat (Elmt, Dims - 1) then return False; end if; Next (Elmt); end loop; return True; end if; else return True; end if; end Is_Flat; ----------------------- -- Is_Static_Element -- ----------------------- function Is_Static_Element (N : Node_Id; Dims : Nat) return Boolean is Expr : constant Node_Id := Expression (N); begin -- In most cases the interesting expressions are unambiguously static if Compile_Time_Known_Value (Expr) then return True; elsif Nkind (N) = N_Iterated_Component_Association then return False; elsif Nkind (Expr) = N_Aggregate and then Compile_Time_Known_Aggregate (Expr) and then not Expansion_Delayed (Expr) then return True; -- However, one may write static expressions that are syntactically -- ambiguous, so preanalyze the expression before checking it again, -- but only at the innermost level for a multidimensional array. elsif Dims = 1 then Preanalyze_And_Resolve (Expr, Ctyp); return Compile_Time_Known_Value (Expr); else return False; end if; end Is_Static_Element; -- Start of processing for Convert_To_Positional begin -- Ada 2005 (AI-287): Do not convert in case of default initialized -- components because in this case will need to call the corresponding -- IP procedure. if Has_Default_Init_Comps (N) then return; end if; -- A subaggregate may have been flattened but is not known to be -- Compile_Time_Known. Set that flag in cases that cannot require -- elaboration code, so that the aggregate can be used as the -- initial value of a thread-local variable. if Is_Flat (N, Dims) then if Static_Array_Aggregate (N) then Set_Compile_Time_Known_Aggregate (N); end if; return; end if; if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then return; end if; -- Do not convert to positional if controlled components are involved -- since these require special processing if Has_Controlled_Component (Typ) then return; end if; -- Special handling for mutably taggeds Ctyp := Get_Corresponding_Mutably_Tagged_Type_If_Present (Ctyp); Check_Static_Components; -- If the size is known, or all the components are static, try to -- build a fully positional aggregate. -- The size of the type may not be known for an aggregate with -- discriminated array components, but if the components are static -- it is still possible to verify statically that the length is -- compatible with the upper bound of the type, and therefore it is -- worth flattening such aggregates as well. if Aggr_Size_OK (N) and then Flatten (N, Dims, First_Index (Typ), First_Index (Base_Type (Typ))) then if Static_Components then Set_Compile_Time_Known_Aggregate (N); Set_Expansion_Delayed (N, False); end if; Analyze_And_Resolve (N, Typ); end if; -- If Static_Elaboration_Desired has been specified, diagnose aggregates -- that will still require initialization code. if (Ekind (Current_Scope) = E_Package and then Static_Elaboration_Desired (Current_Scope)) and then Nkind (Parent (N)) = N_Object_Declaration then declare Expr : Node_Id; begin if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then Expr := First (Expressions (N)); while Present (Expr) loop if not Compile_Time_Known_Value (Expr) then Error_Msg_N ("non-static object requires elaboration code??", N); exit; end if; Next (Expr); end loop; if Present (Component_Associations (N)) then Error_Msg_N ("object requires elaboration code??", N); end if; end if; end; end if; end Convert_To_Positional; ---------------------------- -- Expand_Array_Aggregate -- ---------------------------- -- Array aggregate expansion proceeds as follows: -- 1. If requested we generate code to perform all the array aggregate -- bound checks, specifically -- (a) Check that the index range defined by aggregate bounds is -- compatible with corresponding index subtype. -- (b) If an others choice is present check that no aggregate -- index is outside the bounds of the index constraint. -- (c) For multidimensional arrays make sure that all subaggregates -- corresponding to the same dimension have the same bounds. -- 2. Check for packed array aggregate which can be converted to a -- constant so that the aggregate disappears completely. -- 3. Check case of nested aggregate. Generally nested aggregates are -- handled during the processing of the parent aggregate. -- 4. Check if the aggregate can be statically processed. If this is the -- case pass it as is to Gigi. Note that a necessary condition for -- static processing is that the aggregate be fully positional. -- 5. If in-place aggregate expansion is possible (i.e. no need to create -- a temporary) then mark the aggregate as such and return. Otherwise -- create a new temporary and generate the appropriate initialization -- code. procedure Expand_Array_Aggregate (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (N); -- Typ is the correct constrained array subtype of the aggregate Ctyp : Entity_Id := Component_Type (Typ); -- Ctyp is the corresponding component type. Aggr_Dimension : constant Pos := Number_Dimensions (Typ); -- Number of aggregate index dimensions Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id; Aggr_High : array (1 .. Aggr_Dimension) of Node_Id; -- Low and High bounds of the constraint for each aggregate index Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id; -- The type of each index In_Place_Assign_OK_For_Declaration : Boolean := False; -- True if we are to generate an in-place assignment for a declaration Maybe_In_Place_OK : Boolean; -- If the type is neither controlled nor packed and the aggregate -- is the expression in an assignment, assignment in place may be -- possible, provided other conditions are met on the LHS. Others_Present : array (1 .. Aggr_Dimension) of Boolean := (others => False); -- If Others_Present (J) is True, then there is an others choice in one -- of the subaggregates of N at dimension J. procedure Build_Constrained_Type (Positional : Boolean); -- If the subtype is not static or unconstrained, build a constrained -- type using the computable sizes of the aggregate and its sub- -- aggregates. procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id); -- Checks that the bounds of Aggr_Bounds are within the bounds defined -- by Index_Bounds. For null array aggregate (Ada 2022) check that the -- aggregate bounds define a null range. procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos); -- Checks that in a multidimensional array aggregate all subaggregates -- corresponding to the same dimension have the same bounds. Sub_Aggr is -- an array subaggregate. Dim is the dimension corresponding to the -- subaggregate. procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos); -- Computes the values of array Others_Present. Sub_Aggr is the array -- subaggregate we start the computation from. Dim is the dimension -- corresponding to the subaggregate. procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos); -- Checks that if an others choice is present in any subaggregate, no -- aggregate index is outside the bounds of the index constraint. -- Sub_Aggr is an array subaggregate. Dim is the dimension corresponding -- to the subaggregate. function Safe_Left_Hand_Side (N : Node_Id) return Boolean; -- In addition to Maybe_In_Place_OK, in order for an aggregate to be -- built directly into the target of the assignment it must be free -- of side effects. N is the LHS of an assignment. procedure Two_Pass_Aggregate_Expansion (N : Node_Id); -- If the aggregate consists only of iterated associations then the -- aggregate is constructed in two steps: -- a) Build an expression to compute the number of elements -- generated by each iterator, and use the expression to allocate -- the destination aggregate. -- b) Generate the loops corresponding to each iterator to insert -- the elements in their proper positions. ---------------------------- -- Build_Constrained_Type -- ---------------------------- procedure Build_Constrained_Type (Positional : Boolean) is Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A'); Decl : Node_Id; Indexes : constant List_Id := New_List; Num : Nat; Sub_Agg : Node_Id; begin -- If the aggregate is purely positional, all its subaggregates -- have the same size. We collect the dimensions from the first -- subaggregate at each level. if Positional then Sub_Agg := N; for D in 1 .. Aggr_Dimension loop Num := List_Length (Expressions (Sub_Agg)); Append_To (Indexes, Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, Uint_1), High_Bound => Make_Integer_Literal (Loc, Num))); Sub_Agg := First (Expressions (Sub_Agg)); end loop; else -- We know the aggregate type is unconstrained and the aggregate -- is not processable by the back end, therefore not necessarily -- positional. Retrieve each dimension bounds (computed earlier). for D in 1 .. Aggr_Dimension loop Append_To (Indexes, Make_Range (Loc, Low_Bound => Aggr_Low (D), High_Bound => Aggr_High (D))); end loop; end if; Decl := Make_Full_Type_Declaration (Loc, Defining_Identifier => Agg_Type, Type_Definition => Make_Constrained_Array_Definition (Loc, Discrete_Subtype_Definitions => Indexes, Component_Definition => Make_Component_Definition (Loc, Subtype_Indication => New_Occurrence_Of (Component_Type (Typ), Loc)))); Insert_Action (N, Decl); Analyze (Decl); Set_Etype (N, Agg_Type); Set_Is_Itype (Agg_Type); Freeze_Itype (Agg_Type, N); end Build_Constrained_Type; ------------------ -- Check_Bounds -- ------------------ procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id) is Aggr_Bounds : constant Range_Nodes := Get_Index_Bounds (Aggr_Bounds_Node); Ind_Bounds : constant Range_Nodes := Get_Index_Bounds (Index_Bounds_Node); Cond : Node_Id; begin -- For a null array aggregate check that high bound (i.e., low -- bound predecessor) exists. Fail if low bound is low bound of -- base subtype (in all cases, including modular). if Is_Null_Aggregate (N) then Insert_Action (N, Make_Raise_Constraint_Error (Loc, Condition => Make_Op_Eq (Loc, New_Copy_Tree (Aggr_Bounds.First), New_Copy_Tree (Type_Low_Bound (Base_Type (Etype (Ind_Bounds.First))))), Reason => CE_Range_Check_Failed)); return; end if; -- Generate the following test: -- [constraint_error when -- Aggr_Bounds.First <= Aggr_Bounds.Last and then -- (Aggr_Bounds.First < Ind_Bounds.First -- or else Aggr_Bounds.Last > Ind_Bounds.Last)] -- As an optimization try to see if some tests are trivially vacuous -- because we are comparing an expression against itself. if Aggr_Bounds.First = Ind_Bounds.First and then Aggr_Bounds.Last = Ind_Bounds.Last then Cond := Empty; elsif Aggr_Bounds.Last = Ind_Bounds.Last then Cond := Make_Op_Lt (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First), Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Bounds.First)); elsif Aggr_Bounds.First = Ind_Bounds.First then Cond := Make_Op_Gt (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last), Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Bounds.Last)); else Cond := Make_Or_Else (Loc, Left_Opnd => Make_Op_Lt (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First), Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Bounds.First)), Right_Opnd => Make_Op_Gt (Loc, Left_Opnd => Duplicate_Subexpr (Aggr_Bounds.Last), Right_Opnd => Duplicate_Subexpr (Ind_Bounds.Last))); end if; if Present (Cond) then Cond := Make_And_Then (Loc, Left_Opnd => Make_Op_Le (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First), Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last)), Right_Opnd => Cond); Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False); Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False); Insert_Action (N, Make_Raise_Constraint_Error (Loc, Condition => Cond, Reason => CE_Range_Check_Failed)); end if; end Check_Bounds; ---------------------------- -- Check_Same_Aggr_Bounds -- ---------------------------- procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is Sub_Bounds : constant Range_Nodes := Get_Index_Bounds (Aggregate_Bounds (Sub_Aggr)); Sub_Lo : Node_Id renames Sub_Bounds.First; Sub_Hi : Node_Id renames Sub_Bounds.Last; -- The bounds of this specific subaggregate Aggr_Lo : constant Node_Id := Aggr_Low (Dim); Aggr_Hi : constant Node_Id := Aggr_High (Dim); -- The bounds of the aggregate for this dimension Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim); -- The index type for this dimension. Cond : Node_Id; Assoc : Node_Id; Expr : Node_Id; begin -- If index checks are on generate the test -- [constraint_error when -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi] -- As an optimization try to see if some tests are trivially vacuos -- because we are comparing an expression against itself. Also for -- the first dimension the test is trivially vacuous because there -- is just one aggregate for dimension 1. if Index_Checks_Suppressed (Ind_Typ) then Cond := Empty; elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi) then Cond := Empty; elsif Aggr_Hi = Sub_Hi then Cond := Make_Op_Ne (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo), Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)); elsif Aggr_Lo = Sub_Lo then Cond := Make_Op_Ne (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi), Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi)); else Cond := Make_Or_Else (Loc, Left_Opnd => Make_Op_Ne (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo), Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)), Right_Opnd => Make_Op_Ne (Loc, Left_Opnd => Duplicate_Subexpr (Aggr_Hi), Right_Opnd => Duplicate_Subexpr (Sub_Hi))); end if; if Present (Cond) then Insert_Action (N, Make_Raise_Constraint_Error (Loc, Condition => Cond, Reason => CE_Length_Check_Failed)); end if; -- Now look inside the subaggregate to see if there is more work if Dim < Aggr_Dimension then -- Process positional components if Present (Expressions (Sub_Aggr)) then Expr := First (Expressions (Sub_Aggr)); while Present (Expr) loop Check_Same_Aggr_Bounds (Expr, Dim + 1); Next (Expr); end loop; end if; -- Process component associations if Present (Component_Associations (Sub_Aggr)) then Assoc := First (Component_Associations (Sub_Aggr)); while Present (Assoc) loop Expr := Expression (Assoc); Check_Same_Aggr_Bounds (Expr, Dim + 1); Next (Assoc); end loop; end if; end if; end Check_Same_Aggr_Bounds; ---------------------------- -- Compute_Others_Present -- ---------------------------- procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is Assoc : Node_Id; Expr : Node_Id; begin if Present (Component_Associations (Sub_Aggr)) then Assoc := Last (Component_Associations (Sub_Aggr)); if Present (Assoc) and then Nkind (First (Choice_List (Assoc))) = N_Others_Choice then Others_Present (Dim) := True; -- An others_clause may be superfluous if previous components -- cover the full given range of a constrained array. In such -- a case an others_clause does not contribute any additional -- components and has not been analyzed. We analyze it now to -- detect type errors in the expression, even though no code -- will be generated for it. if Dim = Aggr_Dimension and then Nkind (Assoc) /= N_Iterated_Component_Association and then not Analyzed (Expression (Assoc)) and then not Box_Present (Assoc) then Preanalyze_And_Resolve (Expression (Assoc), Ctyp); end if; end if; end if; -- Now look inside the subaggregate to see if there is more work if Dim < Aggr_Dimension then -- Process positional components if Present (Expressions (Sub_Aggr)) then Expr := First (Expressions (Sub_Aggr)); while Present (Expr) loop Compute_Others_Present (Expr, Dim + 1); Next (Expr); end loop; end if; -- Process component associations if Present (Component_Associations (Sub_Aggr)) then Assoc := First (Component_Associations (Sub_Aggr)); while Present (Assoc) loop Expr := Expression (Assoc); Compute_Others_Present (Expr, Dim + 1); Next (Assoc); end loop; end if; end if; end Compute_Others_Present; ------------------ -- Others_Check -- ------------------ procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is Aggr_Lo : constant Node_Id := Aggr_Low (Dim); Aggr_Hi : constant Node_Id := Aggr_High (Dim); -- The bounds of the aggregate for this dimension Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim); -- The index type for this dimension Need_To_Check : Boolean := False; Choices_Lo : Node_Id := Empty; Choices_Hi : Node_Id := Empty; -- The lowest and highest discrete choices for a named subaggregate Nb_Choices : Int := -1; -- The number of discrete non-others choices in this subaggregate Nb_Elements : Uint := Uint_0; -- The number of elements in a positional aggregate Cond : Node_Id := Empty; Assoc : Node_Id; Choice : Node_Id; Expr : Node_Id; begin -- Check if we have an others choice. If we do make sure that this -- subaggregate contains at least one element in addition to the -- others choice. if Range_Checks_Suppressed (Ind_Typ) then Need_To_Check := False; elsif Present (Expressions (Sub_Aggr)) and then Present (Component_Associations (Sub_Aggr)) then Need_To_Check := not (Is_Empty_List (Expressions (Sub_Aggr)) and then Is_Empty_List (Component_Associations (Sub_Aggr))); elsif Present (Component_Associations (Sub_Aggr)) then Assoc := Last (Component_Associations (Sub_Aggr)); if Nkind (First (Choice_List (Assoc))) /= N_Others_Choice then Need_To_Check := False; else -- Count the number of discrete choices. Start with -1 because -- the others choice does not count. -- Is there some reason we do not use List_Length here ??? Nb_Choices := -1; Assoc := First (Component_Associations (Sub_Aggr)); while Present (Assoc) loop Choice := First (Choice_List (Assoc)); while Present (Choice) loop Nb_Choices := Nb_Choices + 1; Next (Choice); end loop; Next (Assoc); end loop; -- If there is only an others choice nothing to do Need_To_Check := (Nb_Choices > 0); end if; else Need_To_Check := False; end if; -- If we are dealing with a positional subaggregate with an others -- choice then compute the number or positional elements. if Need_To_Check and then Present (Expressions (Sub_Aggr)) then Expr := First (Expressions (Sub_Aggr)); Nb_Elements := Uint_0; while Present (Expr) loop Nb_Elements := Nb_Elements + 1; Next (Expr); end loop; -- If the aggregate contains discrete choices and an others choice -- compute the smallest and largest discrete choice values. elsif Need_To_Check then Compute_Choices_Lo_And_Choices_Hi : declare Table : Case_Table_Type (1 .. Nb_Choices); -- Used to sort all the different choice values J : Pos := 1; begin Assoc := First (Component_Associations (Sub_Aggr)); while Present (Assoc) loop Choice := First (Choice_List (Assoc)); while Present (Choice) loop if Nkind (Choice) = N_Others_Choice then exit; end if; declare Bounds : constant Range_Nodes := Get_Index_Bounds (Choice); begin Table (J).Choice_Lo := Bounds.First; Table (J).Choice_Hi := Bounds.Last; end; J := J + 1; Next (Choice); end loop; Next (Assoc); end loop; -- Sort the discrete choices Sort_Case_Table (Table); Choices_Lo := Table (1).Choice_Lo; Choices_Hi := Table (Nb_Choices).Choice_Hi; end Compute_Choices_Lo_And_Choices_Hi; end if; -- If no others choice in this subaggregate, or the aggregate -- comprises only an others choice, nothing to do. if not Need_To_Check then Cond := Empty; -- If we are dealing with an aggregate containing an others choice -- and positional components, we generate the following test: -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) > -- Ind_Typ'Pos (Aggr_Hi) -- then -- raise Constraint_Error; -- end if; -- in the general case, but the following simpler test: -- [constraint_error when -- Aggr_Lo + (Nb_Elements - 1) > Aggr_Hi]; -- instead if the index type is a signed integer. elsif Nb_Elements > Uint_0 then if Nb_Elements = Uint_1 then Cond := Make_Op_Gt (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo), Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)); elsif Is_Signed_Integer_Type (Ind_Typ) then Cond := Make_Op_Gt (Loc, Left_Opnd => Make_Op_Add (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo), Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)), Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)); else Cond := Make_Op_Gt (Loc, Left_Opnd => Make_Op_Add (Loc, Left_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ind_Typ, Loc), Attribute_Name => Name_Pos, Expressions => New_List (Duplicate_Subexpr_Move_Checks (Aggr_Lo))), Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)), Right_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Ind_Typ, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Duplicate_Subexpr_Move_Checks (Aggr_Hi)))); end if; -- If we are dealing with an aggregate containing an others choice -- and discrete choices we generate the following test: -- [constraint_error when -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi]; else Cond := Make_Or_Else (Loc, Left_Opnd => Make_Op_Lt (Loc, Left_Opnd => Duplicate_Subexpr_Move_Checks (Choices_Lo), Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)), Right_Opnd => Make_Op_Gt (Loc, Left_Opnd => Duplicate_Subexpr (Choices_Hi), Right_Opnd => Duplicate_Subexpr (Aggr_Hi))); end if; if Present (Cond) then Insert_Action (N, Make_Raise_Constraint_Error (Loc, Condition => Cond, Reason => CE_Length_Check_Failed)); -- Questionable reason code, shouldn't that be a -- CE_Range_Check_Failed ??? end if; -- Now look inside the subaggregate to see if there is more work if Dim < Aggr_Dimension then -- Process positional components if Present (Expressions (Sub_Aggr)) then Expr := First (Expressions (Sub_Aggr)); while Present (Expr) loop Others_Check (Expr, Dim + 1); Next (Expr); end loop; end if; -- Process component associations if Present (Component_Associations (Sub_Aggr)) then Assoc := First (Component_Associations (Sub_Aggr)); while Present (Assoc) loop Expr := Expression (Assoc); Others_Check (Expr, Dim + 1); Next (Assoc); end loop; end if; end if; end Others_Check; ------------------------- -- Safe_Left_Hand_Side -- ------------------------- function Safe_Left_Hand_Side (N : Node_Id) return Boolean is function Is_Safe_Index (Indx : Node_Id) return Boolean; -- If the left-hand side includes an indexed component, check that -- the indexes are free of side effects. ------------------- -- Is_Safe_Index -- ------------------- function Is_Safe_Index (Indx : Node_Id) return Boolean is begin if Is_Entity_Name (Indx) then return True; elsif Nkind (Indx) = N_Integer_Literal then return True; elsif Nkind (Indx) = N_Function_Call and then Is_Entity_Name (Name (Indx)) and then Has_Pragma_Pure_Function (Entity (Name (Indx))) then return True; elsif Nkind (Indx) = N_Type_Conversion and then Is_Safe_Index (Expression (Indx)) then return True; else return False; end if; end Is_Safe_Index; -- Start of processing for Safe_Left_Hand_Side begin if Is_Entity_Name (N) then return True; elsif Nkind (N) in N_Explicit_Dereference | N_Selected_Component and then Safe_Left_Hand_Side (Prefix (N)) then return True; elsif Nkind (N) = N_Indexed_Component and then Safe_Left_Hand_Side (Prefix (N)) and then Is_Safe_Index (First (Expressions (N))) then return True; elsif Nkind (N) = N_Unchecked_Type_Conversion then return Safe_Left_Hand_Side (Expression (N)); else return False; end if; end Safe_Left_Hand_Side; ---------------------------------- -- Two_Pass_Aggregate_Expansion -- ---------------------------------- procedure Two_Pass_Aggregate_Expansion (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Comp_Type : constant Entity_Id := Etype (N); Index_Id : constant Entity_Id := Make_Temporary (Loc, 'I', N); Index_Type : constant Entity_Id := Etype (First_Index (Etype (N))); Size_Id : constant Entity_Id := Make_Temporary (Loc, 'I', N); TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N); Assoc : Node_Id := First (Component_Associations (N)); Incr : Node_Id; Iter : Node_Id; New_Comp : Node_Id; One_Loop : Node_Id; Iter_Id : Entity_Id; Size_Expr_Code : List_Id; Insertion_Code : List_Id := New_List; begin Size_Expr_Code := New_List ( Make_Object_Declaration (Loc, Defining_Identifier => Size_Id, Object_Definition => New_Occurrence_Of (Standard_Integer, Loc), Expression => Make_Integer_Literal (Loc, 0))); -- First pass: execute the iterators to count the number of elements -- that will be generated. while Present (Assoc) loop Iter := Iterator_Specification (Assoc); Iter_Id := Defining_Identifier (Iter); Incr := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Size_Id, Loc), Expression => Make_Op_Add (Loc, Left_Opnd => New_Occurrence_Of (Size_Id, Loc), Right_Opnd => Make_Integer_Literal (Loc, 1))); -- Avoid using the same iterator definition in both loops by -- creating a new iterator for each loop and mapping it over the -- original iterator references. One_Loop := Make_Implicit_Loop_Statement (N, Iteration_Scheme => Make_Iteration_Scheme (Loc, Iterator_Specification => New_Copy_Tree (Iter, Map => New_Elmt_List (Iter_Id, New_Copy (Iter_Id)))), Statements => New_List (Incr)); Append (One_Loop, Size_Expr_Code); Next (Assoc); end loop; Insert_Actions (N, Size_Expr_Code); -- Build a constrained subtype with the calculated length -- and declare the proper bounded aggregate object. -- The index type is some discrete type, so the bounds of the -- constructed array are computed as T'Val (T'Pos (ineger bound)); declare Pos_Lo : constant Node_Id := Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index_Type, Loc), Attribute_Name => Name_Pos, Expressions => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index_Type, Loc), Attribute_Name => Name_First))); Aggr_Lo : constant Node_Id := Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index_Type, Loc), Attribute_Name => Name_Val, Expressions => New_List (New_Copy_Tree (Pos_Lo))); -- Hi = Index_type'Pos (Lo + Size -1). Pos_Hi : constant Node_Id := Make_Op_Add (Loc, Left_Opnd => New_Copy_Tree (Pos_Lo), Right_Opnd => Make_Op_Subtract (Loc, Left_Opnd => New_Occurrence_Of (Size_Id, Loc), Right_Opnd => Make_Integer_Literal (Loc, 1))); -- Corresponding index value Aggr_Hi : constant Node_Id := Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index_Type, Loc), Attribute_Name => Name_Val, Expressions => New_List (New_Copy_Tree (Pos_Hi))); SubE : constant Entity_Id := Make_Temporary (Loc, 'T'); SubD : constant Node_Id := Make_Subtype_Declaration (Loc, Defining_Identifier => SubE, Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Etype (Comp_Type), Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => New_List (Make_Range (Loc, Aggr_Lo, Aggr_Hi))))); -- Create a temporary array of the above subtype which -- will be used to capture the aggregate assignments. TmpD : constant Node_Id := Make_Object_Declaration (Loc, Defining_Identifier => TmpE, Object_Definition => New_Occurrence_Of (SubE, Loc)); begin Insert_Actions (N, New_List (SubD, TmpD)); end; -- Second pass: use the iterators to generate the elements of the -- aggregate. Insertion index starts at Index_Type'First. We -- assume that the second evaluation of each iterator generates -- the same number of elements as the first pass, and consider -- that the execution is erroneous (even if the RM does not state -- this explicitly) if the number of elements generated differs -- between first and second pass. Assoc := First (Component_Associations (N)); -- Initialize insertion position to first array component. Insertion_Code := New_List ( Make_Object_Declaration (Loc, Defining_Identifier => Index_Id, Object_Definition => New_Occurrence_Of (Index_Type, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index_Type, Loc), Attribute_Name => Name_First))); while Present (Assoc) loop Iter := Iterator_Specification (Assoc); Iter_Id := Defining_Identifier (Iter); New_Comp := Make_Assignment_Statement (Loc, Name => Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (TmpE, Loc), Expressions => New_List (New_Occurrence_Of (Index_Id, Loc))), Expression => Copy_Separate_Tree (Expression (Assoc))); -- Advance index position for insertion. Incr := Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Index_Id, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index_Type, Loc), Attribute_Name => Name_Succ, Expressions => New_List (New_Occurrence_Of (Index_Id, Loc)))); -- Add guard to skip last increment when upper bound is reached. Incr := Make_If_Statement (Loc, Condition => Make_Op_Ne (Loc, Left_Opnd => New_Occurrence_Of (Index_Id, Loc), Right_Opnd => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index_Type, Loc), Attribute_Name => Name_Last)), Then_Statements => New_List (Incr)); -- Avoid using the same iterator definition in both loops by -- creating a new iterator for each loop and mapping it over the -- original iterator references. One_Loop := Make_Implicit_Loop_Statement (N, Iteration_Scheme => Make_Iteration_Scheme (Loc, Iterator_Specification => New_Copy_Tree (Iter, Map => New_Elmt_List (Iter_Id, New_Copy (Iter_Id)))), Statements => New_List (New_Comp, Incr)); Append (One_Loop, Insertion_Code); Next (Assoc); end loop; Insert_Actions (N, Insertion_Code); -- Depending on context this may not work for build-in-place -- arrays ??? Rewrite (N, New_Occurrence_Of (TmpE, Loc)); end Two_Pass_Aggregate_Expansion; -- Local variables Tmp : Entity_Id; -- Holds the temporary aggregate value Tmp_Decl : Node_Id; -- Holds the declaration of Tmp Aggr_Code : List_Id; Parent_Node : Node_Id; Parent_Kind : Node_Kind; -- Start of processing for Expand_Array_Aggregate begin -- Do not touch the special aggregates of attributes used for Asm calls if Is_RTE (Ctyp, RE_Asm_Input_Operand) or else Is_RTE (Ctyp, RE_Asm_Output_Operand) then return; elsif Is_Two_Pass_Aggregate (N) then Two_Pass_Aggregate_Expansion (N); return; -- Do not attempt expansion if error already detected. We may reach this -- point in spite of previous errors when compiling with -gnatq, to -- force all possible errors (this is the usual ACATS mode). elsif Error_Posted (N) then return; end if; -- If the semantic analyzer has determined that aggregate N will raise -- Constraint_Error at run time, then the aggregate node has been -- replaced with an N_Raise_Constraint_Error node and we should -- never get here. pragma Assert (not Raises_Constraint_Error (N)); -- Special handling for mutably taggeds Ctyp := Get_Corresponding_Mutably_Tagged_Type_If_Present (Ctyp); -- STEP 1a -- Check that the index range defined by aggregate bounds is -- compatible with corresponding index subtype. Index_Compatibility_Check : declare Aggr_Index_Range : Node_Id := First_Index (Typ); -- The current aggregate index range Index_Constraint : Node_Id := First_Index (Etype (Typ)); -- The corresponding index constraint against which we have to -- check the above aggregate index range. begin Compute_Others_Present (N, 1); for J in 1 .. Aggr_Dimension loop -- There is no need to emit a check if an others choice is present -- for this array aggregate dimension since in this case one of -- N's subaggregates has taken its bounds from the context and -- these bounds must have been checked already. In addition all -- subaggregates corresponding to the same dimension must all have -- the same bounds (checked in (c) below). if not Range_Checks_Suppressed (Etype (Index_Constraint)) and then not Others_Present (J) then -- We don't use Checks.Apply_Range_Check here because it emits -- a spurious check. Namely it checks that the range defined by -- the aggregate bounds is nonempty. But we know this already -- if we get here. Check_Bounds (Aggr_Index_Range, Index_Constraint); end if; -- Save the low and high bounds of the aggregate index as well as -- the index type for later use in checks (b) and (c) below. Get_Index_Bounds (Aggr_Index_Range, L => Aggr_Low (J), H => Aggr_High (J)); Aggr_Index_Typ (J) := Etype (Index_Constraint); Next_Index (Aggr_Index_Range); Next_Index (Index_Constraint); end loop; end Index_Compatibility_Check; -- STEP 1b -- If an others choice is present check that no aggregate index is -- outside the bounds of the index constraint. Others_Check (N, 1); -- STEP 1c -- For multidimensional arrays make sure that all subaggregates -- corresponding to the same dimension have the same bounds. if Aggr_Dimension > 1 then Check_Same_Aggr_Bounds (N, 1); end if; -- STEP 1d -- If we have a default component value, or simple initialization is -- required for the component type, then we replace <> in component -- associations by the required default value. declare Default_Val : Node_Id; Assoc : Node_Id; begin if (Present (Default_Aspect_Component_Value (Typ)) or else Needs_Simple_Initialization (Ctyp)) and then Present (Component_Associations (N)) then Assoc := First (Component_Associations (N)); while Present (Assoc) loop if Nkind (Assoc) = N_Component_Association and then Box_Present (Assoc) then Set_Box_Present (Assoc, False); if Present (Default_Aspect_Component_Value (Typ)) then Default_Val := Default_Aspect_Component_Value (Typ); else Default_Val := Get_Simple_Init_Val (Ctyp, N); end if; Set_Expression (Assoc, New_Copy_Tree (Default_Val)); Analyze_And_Resolve (Expression (Assoc), Ctyp); end if; Next (Assoc); end loop; end if; end; -- STEP 2 -- Here we test for is packed array aggregate that we can handle at -- compile time. If so, return with transformation done. Note that we do -- this even if the aggregate is nested, because once we have done this -- processing, there is no more nested aggregate. if Packed_Array_Aggregate_Handled (N) then return; end if; -- At this point we try to convert to positional form Convert_To_Positional (N); -- If the result is no longer an aggregate (e.g. it may be a string -- literal, or a temporary which has the needed value), then we are -- done, since there is no longer a nested aggregate. if Nkind (N) /= N_Aggregate then return; -- We are also done if the result is an analyzed aggregate, indicating -- that Convert_To_Positional succeeded and reanalyzed the rewritten -- aggregate. elsif Analyzed (N) and then Is_Rewrite_Substitution (N) then return; end if; -- If all aggregate components are compile-time known and the aggregate -- has been flattened, nothing left to do. The same occurs if the -- aggregate is used to initialize the components of a statically -- allocated dispatch table. if Compile_Time_Known_Aggregate (N) or else Is_Static_Dispatch_Table_Aggregate (N) then Set_Expansion_Delayed (N, False); return; end if; -- Now see if back end processing is possible if Backend_Processing_Possible (N) then -- If the aggregate is static but the constraints are not, build -- a static subtype for the aggregate, so that Gigi can place it -- in static memory. Perform an unchecked_conversion to the non- -- static type imposed by the context. declare Itype : constant Entity_Id := Etype (N); Index : Node_Id; Needs_Type : Boolean := False; begin Index := First_Index (Itype); while Present (Index) loop if not Is_OK_Static_Subtype (Etype (Index)) then Needs_Type := True; exit; else Next_Index (Index); end if; end loop; if Needs_Type then Build_Constrained_Type (Positional => True); Rewrite (N, Unchecked_Convert_To (Itype, N)); Analyze (N); end if; end; return; end if; -- STEP 3 -- Delay expansion for nested aggregates: it will be taken care of when -- the parent aggregate is expanded, excluding container aggregates as -- these are transformed into subprogram calls later. Parent_Node := Parent (N); Parent_Kind := Nkind (Parent_Node); if Parent_Kind = N_Qualified_Expression then Parent_Node := Parent (Parent_Node); Parent_Kind := Nkind (Parent_Node); end if; if (Parent_Kind = N_Component_Association and then not Is_Container_Aggregate (Parent (Parent_Node))) or else (Parent_Kind in N_Aggregate | N_Extension_Aggregate and then not Is_Container_Aggregate (Parent_Node)) or else (Parent_Kind = N_Object_Declaration and then (Needs_Finalization (Typ) or else Is_Special_Return_Object (Defining_Identifier (Parent_Node)))) or else (Parent_Kind = N_Assignment_Statement and then Inside_Init_Proc) or else Is_Build_In_Place_Aggregate_Return (Parent_Node) then Set_Expansion_Delayed (N, not Static_Array_Aggregate (N)); return; end if; -- STEP 4 -- Check whether in-place aggregate expansion is possible -- For object declarations we build the aggregate in place, unless -- the array is bit-packed. -- For assignments we do the assignment in place if all the component -- associations have compile-time known values, or are default- -- initialized limited components, e.g. tasks. For other cases we -- create a temporary. A full analysis for safety of in-place assignment -- is delicate. -- For allocators we assign to the designated object in place if the -- aggregate meets the same conditions as other in-place assignments. -- In this case the aggregate may not come from source but was created -- for default initialization, e.g. with Initialize_Scalars. if Requires_Transient_Scope (Typ) then Establish_Transient_Scope (N, Manage_Sec_Stack => False); end if; -- An array of limited components is built in place if Is_Limited_Type (Typ) then Maybe_In_Place_OK := True; elsif Has_Default_Init_Comps (N) then Maybe_In_Place_OK := False; elsif Is_Bit_Packed_Array (Typ) or else Has_Controlled_Component (Typ) then Maybe_In_Place_OK := False; elsif Parent_Kind = N_Assignment_Statement then Maybe_In_Place_OK := In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node))); elsif Parent_Kind = N_Allocator then Maybe_In_Place_OK := In_Place_Assign_OK (N); else Maybe_In_Place_OK := False; end if; -- If this is an array of tasks, it will be expanded into build-in-place -- assignments. Build an activation chain for the tasks now. if Has_Task (Typ) then Build_Activation_Chain_Entity (N); end if; -- Perform in-place expansion of aggregate in an object declaration. -- Note: actions generated for the aggregate will be captured in an -- expression-with-actions statement so that they can be transferred -- to freeze actions later if there is an address clause for the -- object. (Note: we don't use a block statement because this would -- cause generated freeze nodes to be elaborated in the wrong scope). -- Arrays of limited components must be built in place. The code -- previously excluded controlled components but this is an old -- oversight: the rules in 7.6 (17) are clear. if Comes_From_Source (Parent_Node) and then Parent_Kind = N_Object_Declaration and then Present (Expression (Parent_Node)) and then not Must_Slide (N, Etype (Defining_Identifier (Parent_Node)), Typ) and then not Is_Bit_Packed_Array (Typ) then In_Place_Assign_OK_For_Declaration := True; Tmp := Defining_Identifier (Parent_Node); Set_No_Initialization (Parent_Node); Set_Expression (Parent_Node, Empty); -- Set kind and type of the entity, for use in the analysis -- of the subsequent assignments. If the nominal type is not -- constrained, build a subtype from the known bounds of the -- aggregate. If the declaration has a subtype mark, use it, -- otherwise use the itype of the aggregate. Mutate_Ekind (Tmp, E_Variable); if not Is_Constrained (Typ) then Build_Constrained_Type (Positional => False); elsif Is_Entity_Name (Object_Definition (Parent_Node)) and then Is_Constrained (Entity (Object_Definition (Parent_Node))) then Set_Etype (Tmp, Entity (Object_Definition (Parent_Node))); else Set_Size_Known_At_Compile_Time (Typ, False); Set_Etype (Tmp, Typ); end if; elsif Maybe_In_Place_OK and then Parent_Kind = N_Allocator then Set_Expansion_Delayed (N); return; -- In the remaining cases the aggregate appears in the RHS of an -- assignment, which may be part of the expansion of an object -- declaration. If the aggregate is an actual in a call, itself -- possibly in a RHS, building it in the target is not possible. elsif Maybe_In_Place_OK and then Nkind (Parent_Node) not in N_Subprogram_Call and then Safe_Left_Hand_Side (Name (Parent_Node)) then Tmp := Name (Parent_Node); if Etype (Tmp) /= Etype (N) then Apply_Length_Check (N, Etype (Tmp)); if Nkind (N) = N_Raise_Constraint_Error then -- Static error, nothing further to expand return; end if; end if; -- If a slice assignment has an aggregate with a single others_choice, -- the assignment can be done in place even if bounds are not static, -- by converting it into a loop over the discrete range of the slice. elsif Maybe_In_Place_OK and then Nkind (Name (Parent_Node)) = N_Slice and then Is_Others_Aggregate (N) then Tmp := Name (Parent_Node); -- Set type of aggregate to be type of lhs in assignment, in order -- to suppress redundant length checks. Set_Etype (N, Etype (Tmp)); -- Step 5 -- In-place aggregate expansion is not possible else Maybe_In_Place_OK := False; Tmp := Make_Temporary (Loc, 'A', N); Tmp_Decl := Make_Object_Declaration (Loc, Defining_Identifier => Tmp, Object_Definition => New_Occurrence_Of (Typ, Loc)); Set_No_Initialization (Tmp_Decl, True); -- If we are within a loop, the temporary will be pushed on the -- stack at each iteration. If the aggregate is the expression -- for an allocator, it will be immediately copied to the heap -- and can be reclaimed at once. We create a transient scope -- around the aggregate for this purpose. if Ekind (Current_Scope) = E_Loop and then Parent_Kind = N_Allocator then Establish_Transient_Scope (N, Manage_Sec_Stack => False); -- If the parent is an assignment for which no controlled actions -- should take place, prevent the temporary from being finalized. elsif Parent_Kind = N_Assignment_Statement and then No_Ctrl_Actions (Parent_Node) then Mutate_Ekind (Tmp, E_Variable); Set_Is_Ignored_For_Finalization (Tmp); end if; Insert_Action (N, Tmp_Decl); end if; -- Construct and insert the aggregate code. We can safely suppress index -- checks because this code is guaranteed not to raise CE on index -- checks. However we should *not* suppress all checks. declare Target : Node_Id; begin if Nkind (Tmp) = N_Defining_Identifier then Target := New_Occurrence_Of (Tmp, Loc); else if Has_Default_Init_Comps (N) and then not Maybe_In_Place_OK then -- Ada 2005 (AI-287): This case has not been analyzed??? raise Program_Error; end if; -- Name in assignment is explicit dereference Target := New_Copy (Tmp); end if; -- If we are to generate an in-place assignment for a declaration or -- an assignment statement, and the assignment can be done directly -- by the back end, then do not expand further. -- ??? We can also do that if in-place expansion is not possible but -- then we could go into an infinite recursion. if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK) and then not CodePeer_Mode and then not Possible_Bit_Aligned_Component (Target) and then not Is_Possibly_Unaligned_Slice (Target) and then Aggr_Assignment_OK_For_Backend (N) then -- In the case of an assignment using an access with the -- Designated_Storage_Model aspect with a Copy_To procedure, -- insert a temporary and have the back end handle the assignment -- to it. Copy the result to the original target. if Parent_Kind = N_Assignment_Statement and then Nkind (Name (Parent_Node)) = N_Explicit_Dereference and then Has_Designated_Storage_Model_Aspect (Etype (Prefix (Name (Parent_Node)))) and then Present (Storage_Model_Copy_To (Storage_Model_Object (Etype (Prefix (Name (Parent_Node)))))) then Aggr_Code := Build_Assignment_With_Temporary (Target, Typ, New_Copy_Tree (N)); else if Maybe_In_Place_OK then return; end if; Aggr_Code := New_List ( Make_Assignment_Statement (Loc, Name => Target, Expression => New_Copy_Tree (N))); end if; else Aggr_Code := Build_Array_Aggr_Code (N, Ctype => Ctyp, Index => First_Index (Typ), Into => Target, Scalar_Comp => Is_Scalar_Type (Ctyp)); end if; -- Save the last assignment statement associated with the aggregate -- when building a controlled object. This reference is utilized by -- the finalization machinery when marking an object as successfully -- initialized. if Needs_Finalization (Typ) and then Is_Entity_Name (Target) and then Present (Entity (Target)) and then Ekind (Entity (Target)) in E_Constant | E_Variable then Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code)); end if; end; -- If the aggregate is the expression in a declaration, the expanded -- code must be inserted after it. The defining entity might not come -- from source if this is part of an inlined body, but the declaration -- itself will. -- The test below looks very specialized and kludgy??? if Comes_From_Source (Tmp) or else (Nkind (Parent (N)) = N_Object_Declaration and then Comes_From_Source (Parent (N)) and then Tmp = Defining_Entity (Parent (N))) then if Parent_Kind /= N_Object_Declaration or else Is_Frozen (Tmp) then Insert_Actions_After (Parent_Node, Aggr_Code); else declare Comp_Stmt : constant Node_Id := Make_Compound_Statement (Sloc (Parent_Node), Actions => Aggr_Code); begin Insert_Action_After (Parent_Node, Comp_Stmt); Set_Initialization_Statements (Tmp, Comp_Stmt); end; end if; else Insert_Actions (N, Aggr_Code); end if; -- If the aggregate has been assigned in place, remove the original -- assignment. if Parent_Kind = N_Assignment_Statement and then Maybe_In_Place_OK then Rewrite (Parent_Node, Make_Null_Statement (Loc)); -- Or else, if a temporary was created, replace the aggregate with it elsif Parent_Kind /= N_Object_Declaration or else Tmp /= Defining_Identifier (Parent_Node) then Rewrite (N, New_Occurrence_Of (Tmp, Loc)); Analyze_And_Resolve (N, Typ); end if; end Expand_Array_Aggregate; ------------------------ -- Expand_N_Aggregate -- ------------------------ procedure Expand_N_Aggregate (N : Node_Id) is T : constant Entity_Id := Etype (N); begin -- Record aggregate case if Is_Record_Type (T) and then not Is_Private_Type (T) and then not Is_Homogeneous_Aggregate (N) then Expand_Record_Aggregate (N); -- Container aggregate case elsif Has_Aspect (T, Aspect_Aggregate) then Expand_Container_Aggregate (N); -- Array aggregate case else -- A special case, if we have a string subtype with bounds 1 .. N, -- where N is known at compile time, and the aggregate is of the -- form (others => 'x'), with a single choice and no expressions, -- and N is less than 80 (an arbitrary limit for now), then replace -- the aggregate by the equivalent string literal (but do not mark -- it as static since it is not). -- Note: this entire circuit is redundant with respect to code in -- Expand_Array_Aggregate that collapses others choices to positional -- form, but there are two problems with that circuit: -- a) It is limited to very small cases due to ill-understood -- interactions with bootstrapping. That limit is removed by -- use of the No_Implicit_Loops restriction. -- b) It incorrectly ends up with the resulting expressions being -- considered static when they are not. For example, the -- following test should fail: -- pragma Restrictions (No_Implicit_Loops); -- package NonSOthers4 is -- B : constant String (1 .. 6) := (others => 'A'); -- DH : constant String (1 .. 8) := B & "BB"; -- X : Integer; -- pragma Export (C, X, Link_Name => DH); -- end; -- But it succeeds (DH looks static to pragma Export) -- To be sorted out ??? if Present (Component_Associations (N)) then declare CA : constant Node_Id := First (Component_Associations (N)); MX : constant := 80; begin if Present (CA) and then Nkind (First (Choice_List (CA))) = N_Others_Choice and then Nkind (Expression (CA)) = N_Character_Literal and then No (Expressions (N)) then declare X : constant Node_Id := First_Index (T); EC : constant Node_Id := Expression (CA); CV : constant Uint := Char_Literal_Value (EC); CC : constant Char_Code := UI_To_CC (CV); begin if Nkind (X) = N_Range and then Compile_Time_Known_Value (Low_Bound (X)) and then Expr_Value (Low_Bound (X)) = 1 and then Compile_Time_Known_Value (High_Bound (X)) then declare Hi : constant Uint := Expr_Value (High_Bound (X)); begin if Hi <= MX then Start_String; for J in 1 .. UI_To_Int (Hi) loop Store_String_Char (CC); end loop; Rewrite (N, Make_String_Literal (Sloc (N), Strval => End_String)); if In_Character_Range (CC) then null; elsif In_Wide_Character_Range (CC) then Set_Has_Wide_Character (N); else Set_Has_Wide_Wide_Character (N); end if; Analyze_And_Resolve (N, T); Set_Is_Static_Expression (N, False); return; end if; end; end if; end; end if; end; end if; -- Not that special case, so normal expansion of array aggregate Expand_Array_Aggregate (N); end if; exception when RE_Not_Available => return; end Expand_N_Aggregate; ------------------------------- -- Build_Container_Aggr_Code -- ------------------------------- function Build_Container_Aggr_Code (N : Node_Id; Typ : Entity_Id; Lhs : Node_Id; Init : out Node_Id) return List_Id is Loc : constant Source_Ptr := Sloc (N); Aggr_Code : constant List_Id := New_List; Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate); Empty_Subp : Node_Id := Empty; Add_Named_Subp : Node_Id := Empty; Add_Unnamed_Subp : Node_Id := Empty; New_Indexed_Subp : Node_Id := Empty; Assign_Indexed_Subp : Node_Id := Empty; -- Identifiers for the subprograms referenced in the aggregate Choice_Lo : Node_Id := Empty; Choice_Hi : Node_Id := Empty; -- These variables are used to determine the smallest and largest -- choice values. Choice_Lo and Choice_Hi are passed to the New_Indexed -- function, for allocating an indexed aggregate object. function Aggregate_Size return Node_Id; -- Compute number of entries in aggregate, including choices -- that cover a range or subtype, as well as iterated constructs. -- The size of the aggregate can either be a statically known in which -- case it is returned as an integer literal, or it can be a dynamic -- expression in which case an empty node is returned. -- -- It is not possible to determine the size for all case. When that -- happens this function returns an empty node. In that case we will -- later just allocate a default size for the aggregate. function Build_Size_Expr (Comp : Node_Id) return Node_Id; -- When the aggregate contains a single Iterated_Component_Association -- or Element_Association with non-static bounds, build an expression -- to be used as the allocated size of the container. This may be an -- overestimate if a filter is present, but is a safe approximation. -- If bounds are dynamic the aggregate is created in two passes, and -- the first generates a loop for the sole purpose of computing the -- number of elements that will be generated on the second pass. procedure Expand_Iterated_Component (Comp : Node_Id); -- Handle iterated_component_association and iterated_Element -- association by generating a loop over the specified range, -- given either by a loop parameter specification or an iterator -- specification. function Expand_Range_Component (Rng : Node_Id; Expr : Node_Id; Insert_Op : Entity_Id) return Node_Id; -- Transform a component association with a range into an explicit loop -- that calls the appropriate operation Insert_Op to add the value of -- Expr to each container element with an index in the range. function To_Int (Expr : N_Subexpr_Id) return Int; -- Return the Int value corresponding to the bound Expr -------------------- -- Aggregate_Size -- -------------------- function Aggregate_Size return Node_Id is Comp : Node_Id; Comp_Siz_Exp : Node_Id; Siz_Exp : Node_Id; begin -- Aggregate is either all positional or all named Siz_Exp := Make_Integer_Literal (Loc, List_Length (Expressions (N))); Set_Is_Static_Expression (Siz_Exp); if Present (Component_Associations (N)) then Comp := First (Component_Associations (N)); while Present (Comp) loop Comp_Siz_Exp := Build_Size_Expr (Comp); if No (Comp_Siz_Exp) then -- If the size of the component cannot be determined then -- we cannot continue with the dynamic evalution and we -- should use the default value instead. return Empty; else if Is_Static_Expression (Siz_Exp) and then Is_Static_Expression (Comp_Siz_Exp) then -- Create a simpler version of the expression Siz_Exp := Make_Integer_Literal (Loc, To_Int (Siz_Exp) + To_Int (Comp_Siz_Exp)); Set_Is_Static_Expression (Siz_Exp); else Siz_Exp := Make_Op_Add (Sloc (Comp), Left_Opnd => Siz_Exp, Right_Opnd => Comp_Siz_Exp); end if; end if; Next (Comp); end loop; end if; return Siz_Exp; end Aggregate_Size; --------------------- -- Build_Size_Expr -- --------------------- function Build_Size_Expr (Comp : Node_Id) return Node_Id is Lo, Hi : Node_Id; It : Node_Id; Siz_Exp : Node_Id := Empty; Choice : Node_Id; Temp_Siz_Exp : Node_Id; Siz : Int; procedure Update_Choices (Lo : Node_Id; Hi : Node_Id); -- Update the Choice_Lo and Choice_Hi variables with the smallest -- and largest possible node values. -------------------- -- Update_Choices -- -------------------- procedure Update_Choices (Lo : Node_Id; Hi : Node_Id) is Range_Int_Lo : constant Int := To_Int (Lo); Range_Int_Hi : constant Int := To_Int (Hi); begin if No (Choice_Lo) or else (Is_Static_Expression (Choice_Lo) and then Range_Int_Lo < To_Int (Choice_Lo)) then Choice_Lo := Lo; end if; if No (Choice_Hi) or else (Is_Static_Expression (Choice_Hi) and then Range_Int_Hi > To_Int (Choice_Hi)) then Choice_Hi := Hi; end if; end Update_Choices; -- Start of processing for Build_Size_Expr begin if Nkind (Comp) = N_Range then Lo := Low_Bound (Comp); Hi := High_Bound (Comp); Analyze (Lo); Analyze (Hi); -- Compute static size when possible. if Is_Static_Expression (Lo) and then Is_Static_Expression (Hi) then Update_Choices (Lo, Hi); Siz := To_Int (Hi) - To_Int (Lo) + 1; Siz_Exp := Make_Integer_Literal (Loc, Siz); Set_Is_Static_Expression (Siz_Exp); return Siz_Exp; else -- Capture the nonstatic bounds, for later use in passing on -- the call to New_Indexed. Choice_Lo := Lo; Choice_Hi := Hi; return Make_Op_Add (Sloc (Comp), Left_Opnd => Make_Op_Subtract (Sloc (Comp), Left_Opnd => New_Copy_Tree (Hi), Right_Opnd => New_Copy_Tree (Lo)), Right_Opnd => Make_Integer_Literal (Loc, 1)); end if; elsif Nkind (Comp) = N_Iterated_Component_Association then if Present (Iterator_Specification (Comp)) then -- If the static size of the iterable object is known, -- attempt to return it. It := Name (Iterator_Specification (Comp)); Preanalyze (It); -- Handle the simplest cases for now where It denotes an array -- object. if Nkind (It) in N_Identifier and then Ekind (Etype (It)) = E_Array_Subtype then declare Idx_N : Node_Id := First_Index (Etype (It)); Siz_Exp : Node_Id := Empty; begin while Present (Idx_N) loop Temp_Siz_Exp := Build_Size_Expr (Idx_N); pragma Assert (Present (Temp_Siz_Exp)); if Present (Siz_Exp) then if Is_Static_Expression (Siz_Exp) and then Is_Static_Expression (Temp_Siz_Exp) then -- Create a simpler version of the expression Siz_Exp := Make_Integer_Literal (Loc, To_Int (Siz_Exp) * To_Int (Temp_Siz_Exp)); Set_Is_Static_Expression (Siz_Exp); else Siz_Exp := Make_Op_Multiply (Sloc (Comp), Left_Opnd => Siz_Exp, Right_Opnd => Temp_Siz_Exp); end if; else Siz_Exp := Temp_Siz_Exp; end if; Next_Index (Idx_N); end loop; return Siz_Exp; end; end if; return Empty; else return Build_Size_Expr (First (Discrete_Choices (Comp))); end if; elsif Nkind (Comp) = N_Component_Association then Choice := First (Choices (Comp)); while Present (Choice) loop Analyze (Choice); if Nkind (Choice) = N_Range then Temp_Siz_Exp := Build_Size_Expr (Choice); -- Choice is subtype_mark; add range based on its bounds elsif Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)) then Lo := Type_Low_Bound (Entity (Choice)); Hi := Type_High_Bound (Entity (Choice)); Rewrite (Choice, Make_Range (Loc, New_Copy_Tree (Lo), New_Copy_Tree (Hi))); Temp_Siz_Exp := Build_Size_Expr (Choice); -- Choice is a single discrete value elsif Is_Discrete_Type (Etype (Choice)) then Update_Choices (Choice, Choice); Temp_Siz_Exp := Make_Integer_Literal (Loc, 1); Set_Is_Static_Expression (Temp_Siz_Exp); -- Choice is a single value of some nondiscrete type else Temp_Siz_Exp := Make_Integer_Literal (Loc, 1); Set_Is_Static_Expression (Temp_Siz_Exp); end if; if Present (Siz_Exp) then if Is_Static_Expression (Siz_Exp) and then Is_Static_Expression (Temp_Siz_Exp) then -- Create a simpler version of the expression Siz_Exp := Make_Integer_Literal (Loc, To_Int (Siz_Exp) + To_Int (Temp_Siz_Exp)); Set_Is_Static_Expression (Siz_Exp); else Siz_Exp := Make_Op_Add (Sloc (Comp), Left_Opnd => Siz_Exp, Right_Opnd => Temp_Siz_Exp); end if; else Siz_Exp := Temp_Siz_Exp; end if; Next (Choice); end loop; return Siz_Exp; elsif Nkind (Comp) = N_Iterated_Element_Association then return Empty; -- ??? Need to create code for a loop and add to generated code, -- as is done for array aggregates with iterated element -- associations, instead of using Append operations. else return Empty; end if; end Build_Size_Expr; ------------------------------- -- Expand_Iterated_Component -- ------------------------------- procedure Expand_Iterated_Component (Comp : Node_Id) is Expr : constant Node_Id := Expression (Comp); Key_Expr : Node_Id := Empty; Loop_Id : Entity_Id; L_Range : Node_Id; L_Iteration_Scheme : Node_Id; Loop_Stat : Node_Id; Params : List_Id; Stats : List_Id; begin if Nkind (Comp) = N_Iterated_Element_Association then Key_Expr := Key_Expression (Comp); -- We create a new entity as loop identifier in all cases, -- as is done for generated loops elsewhere, as the loop -- structure has been previously analyzed. if Present (Iterator_Specification (Comp)) then -- Either an Iterator_Specification or a Loop_Parameter_ -- Specification is present. L_Iteration_Scheme := Make_Iteration_Scheme (Loc, Iterator_Specification => Iterator_Specification (Comp)); Loop_Id := Make_Defining_Identifier (Loc, Chars => Chars (Defining_Identifier (Iterator_Specification (Comp)))); Set_Defining_Identifier (Iterator_Specification (L_Iteration_Scheme), Loop_Id); else L_Iteration_Scheme := Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Loop_Parameter_Specification (Comp)); Loop_Id := Make_Defining_Identifier (Loc, Chars => Chars (Defining_Identifier (Loop_Parameter_Specification (Comp)))); Set_Defining_Identifier (Loop_Parameter_Specification (L_Iteration_Scheme), Loop_Id); end if; else -- Iterated_Component_Association. if Present (Iterator_Specification (Comp)) then Loop_Id := Make_Defining_Identifier (Loc, Chars => Chars (Defining_Identifier (Iterator_Specification (Comp)))); L_Iteration_Scheme := Make_Iteration_Scheme (Loc, Iterator_Specification => Iterator_Specification (Comp)); Set_Defining_Identifier (Iterator_Specification (L_Iteration_Scheme), Loop_Id); else -- Loop_Parameter_Specification is parsed with a choice list. -- where the range is the first (and only) choice. Loop_Id := Make_Defining_Identifier (Loc, Chars => Chars (Defining_Identifier (Comp))); L_Range := Relocate_Node (First (Discrete_Choices (Comp))); L_Iteration_Scheme := Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => Loop_Id, Reverse_Present => Reverse_Present (Comp), Discrete_Subtype_Definition => L_Range)); end if; end if; -- Build insertion statement. For a positional aggregate, only the -- expression is needed. For a named aggregate, the loop variable, -- whose type is that of the key, is an additional parameter for -- the insertion operation. -- If a Key_Expression is present, it serves as the additional -- parameter. Otherwise the key is given by the loop parameter -- itself. if Present (Add_Unnamed_Subp) and then No (Add_Named_Subp) then Stats := New_List (Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Entity (Add_Unnamed_Subp), Loc), Parameter_Associations => New_List (New_Copy_Tree (Lhs), New_Copy_Tree (Expr)))); else -- Named or indexed aggregate, for which a key is present, -- possibly with a specified key_expression. if Present (Key_Expr) then Params := New_List (New_Copy_Tree (Lhs), New_Copy_Tree (Key_Expr), New_Copy_Tree (Expr)); else Params := New_List (New_Copy_Tree (Lhs), New_Occurrence_Of (Loop_Id, Loc), New_Copy_Tree (Expr)); end if; Stats := New_List (Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Entity (Add_Named_Subp), Loc), Parameter_Associations => Params)); end if; Loop_Stat := Make_Implicit_Loop_Statement (Node => N, Identifier => Empty, Iteration_Scheme => L_Iteration_Scheme, Statements => Stats); Append (Loop_Stat, Aggr_Code); end Expand_Iterated_Component; ---------------------------- -- Expand_Range_Component -- ---------------------------- function Expand_Range_Component (Rng : Node_Id; Expr : Node_Id; Insert_Op : Entity_Id) return Node_Id is Loop_Id : constant Entity_Id := Make_Temporary (Loc, 'T'); L_Iteration_Scheme : Node_Id; Stats : List_Id; begin L_Iteration_Scheme := Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => Loop_Id, Discrete_Subtype_Definition => New_Copy_Tree (Rng))); Stats := New_List (Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Insert_Op, Loc), Parameter_Associations => New_List (New_Copy_Tree (Lhs), New_Occurrence_Of (Loop_Id, Loc), New_Copy_Tree (Expr)))); return Make_Implicit_Loop_Statement (Node => N, Identifier => Empty, Iteration_Scheme => L_Iteration_Scheme, Statements => Stats); end Expand_Range_Component; ------------ -- To_Int -- ------------ -- The bounds of the discrete range are integers or enumeration literals function To_Int (Expr : N_Subexpr_Id) return Int is begin return UI_To_Int ((if Nkind (Expr) = N_Integer_Literal then Intval (Expr) else Enumeration_Pos (Expr))); end To_Int; -- Local variables Is_Indexed_Aggregate : Boolean; -- True if the aggregate is indexed as per RM 4.3.5(25/5) -- Start of processing for Build_Container_Aggr_Code begin Parse_Aspect_Aggregate (Asp, Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp, New_Indexed_Subp, Assign_Indexed_Subp); -- Determine whether this is an indexed aggregate Is_Indexed_Aggregate := Sem_Aggr.Is_Indexed_Aggregate (N, Add_Unnamed_Subp, New_Indexed_Subp); -- Build the function call that initializes the anonymous object declare Empty_First_Formal : constant Entity_Id := First_Formal (Entity (Empty_Subp)); Count_Type : Entity_Id; Default : Node_Id; Param_List : List_Id; Siz_Exp : Node_Id; begin -- The constructor for bounded containers is a function with -- a parameter that sets the size of the container. If the -- size cannot be determined statically we use a default value -- or a dynamic expression. Siz_Exp := Aggregate_Size; -- If aggregate size is not static, we use the default value of the -- Empty operation's formal parameter for the allocation. We assume -- that this (implementation-dependent) value is static, even though -- the AI does not require it. if Present (Empty_First_Formal) then Default := Default_Value (Empty_First_Formal); Count_Type := Etype (Empty_First_Formal); else Default := Empty; Count_Type := Standard_Natural; end if; -- Create an object initialized by the aggregate's determined size -- (number of elements): a constant literal in the simple case, an -- expression if iterated component associations may be involved, -- and the default otherwise. if Present (Siz_Exp) then Siz_Exp := Make_Type_Conversion (Loc, Subtype_Mark => New_Occurrence_Of (Count_Type, Loc), Expression => Siz_Exp); elsif Present (Default) then Siz_Exp := New_Copy_Tree (Default); -- If the length isn't known and there's not a default, then use -- zero for the initial container length. else Siz_Exp := Make_Integer_Literal (Loc, 0); end if; -- In the case of an indexed aggregate, the aggregate is allocated -- with the New_Indexed operation, passing the bounds. if Is_Indexed_Aggregate then declare Insert : constant Entity_Id := Entity (Assign_Indexed_Subp); Index_Type : constant Entity_Id := Etype (Next_Formal (First_Formal (Insert))); begin if No (Choice_Lo) then pragma Assert (No (Choice_Hi)); Choice_Lo := New_Copy_Tree (Type_Low_Bound (Index_Type)); Choice_Hi := Make_Op_Add (Loc, Left_Opnd => New_Copy_Tree (Type_Low_Bound (Index_Type)), Right_Opnd => Make_Op_Subtract (Loc, Left_Opnd => Make_Type_Conversion (Loc, Subtype_Mark => New_Occurrence_Of (Index_Type, Loc), Expression => Siz_Exp), Right_Opnd => Make_Integer_Literal (Loc, 1))); else Choice_Lo := New_Copy_Tree (Choice_Lo); Choice_Hi := New_Copy_Tree (Choice_Hi); end if; Init := Make_Function_Call (Loc, Name => New_Occurrence_Of (Entity (New_Indexed_Subp), Loc), Parameter_Associations => New_List (Choice_Lo, Choice_Hi)); end; -- Otherwise we generate a call to the Empty function, passing the -- determined number of elements Siz_Exp if the function has a formal -- parameter, and otherwise making a parameterless call. else if Present (Empty_First_Formal) then Param_List := New_List (Siz_Exp); else Param_List := No_List; end if; Init := Make_Function_Call (Loc, Name => New_Occurrence_Of (Entity (Empty_Subp), Loc), Parameter_Associations => Param_List); end if; end; -- Report warning on infinite recursion if an empty container aggregate -- appears in the return statement of its Empty function. if Ekind (Entity (Empty_Subp)) = E_Function and then Nkind (Parent (N)) = N_Simple_Return_Statement and then Is_Empty_List (Expressions (N)) and then Is_Empty_List (Component_Associations (N)) and then Entity (Empty_Subp) = Current_Scope then Error_Msg_Warn := SPARK_Mode /= On; Error_Msg_N ("!empty aggregate returned by the empty function of a container" & " aggregate<<", Parent (N)); Error_Msg_N ("\this will result in infinite recursion<<", Parent (N)); end if; --------------------------- -- Positional aggregate -- --------------------------- -- If the aggregate is positional, then the aspect must include -- an Add_Unnamed or Assign_Indexed procedure. if not Is_Null_Aggregate (N) and then (Present (Add_Unnamed_Subp) or else Present (Assign_Indexed_Subp)) then if Present (Expressions (N)) then declare Insert : constant Entity_Id := (if Is_Indexed_Aggregate then Entity (Assign_Indexed_Subp) else Entity (Add_Unnamed_Subp)); Comp : Node_Id; Stat : Node_Id; Param_List : List_Id; Key_Type : Entity_Id; Key_Index : Entity_Id; begin -- For an indexed aggregate, use Etype of the Assign_Indexed -- procedure's second formal as the key type, and declare an -- index object of that type, which will iterate over the key -- type values while traversing the component associations. if Is_Indexed_Aggregate then Key_Type := Etype (Next_Formal (First_Formal (Entity (Assign_Indexed_Subp)))); Key_Index := Make_Temporary (Loc, 'I', N); Append_To (Aggr_Code, Make_Object_Declaration (Loc, Defining_Identifier => Key_Index, Object_Definition => New_Occurrence_Of (Key_Type, Loc))); end if; Comp := First (Expressions (N)); while Present (Comp) loop if Is_Indexed_Aggregate then -- Generate an assignment to set the first key value of -- the key index object from the key type's lower bound. if Comp = First (Expressions (N)) then Append_To (Aggr_Code, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Key_Index, Loc), Expression => New_Copy (Type_Low_Bound (Key_Type)))); -- Generate an assignment to increment the key value -- for the subsequent component assignments. else Append_To (Aggr_Code, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Key_Index, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Key_Type, Loc), Attribute_Name => Name_Succ, Expressions => New_List ( New_Occurrence_Of (Key_Index, Loc))))); end if; Param_List := New_List (New_Copy_Tree (Lhs), New_Occurrence_Of (Key_Index, Loc), New_Copy_Tree (Comp)); else Param_List := New_List (New_Copy_Tree (Lhs), New_Copy_Tree (Comp)); end if; Stat := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Insert, Loc), Parameter_Associations => Param_List); Append (Stat, Aggr_Code); Next (Comp); end loop; end; -- Indexed aggregates are handled below. Unnamed aggregates -- such as sets may include iterated component associations. elsif not Is_Indexed_Aggregate then declare Comp : Node_Id; begin Comp := First (Component_Associations (N)); while Present (Comp) loop if Nkind (Comp) = N_Iterated_Component_Association or else Nkind (Comp) = N_Iterated_Element_Association then Expand_Iterated_Component (Comp); end if; Next (Comp); end loop; end; end if; --------------------- -- Named_Aggregate -- --------------------- elsif Present (Add_Named_Subp) then declare Insert : constant Entity_Id := Entity (Add_Named_Subp); Comp : Node_Id; Key : Node_Id; Stat : Node_Id; begin Comp := First (Component_Associations (N)); -- Each component association may contain several choices; -- generate an insertion statement for each. while Present (Comp) loop if Nkind (Comp) in N_Iterated_Component_Association | N_Iterated_Element_Association then Expand_Iterated_Component (Comp); else Key := First (Choices (Comp)); while Present (Key) loop if Nkind (Key) = N_Range then -- Create loop for the specified range, with copies of -- the expression. Stat := Expand_Range_Component (Key, Expression (Comp), Insert); else Stat := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Insert, Loc), Parameter_Associations => New_List (New_Copy_Tree (Lhs), New_Copy_Tree (Key), New_Copy_Tree (Expression (Comp)))); end if; Append (Stat, Aggr_Code); Next (Key); end loop; end if; Next (Comp); end loop; end; end if; ----------------------- -- Indexed_Aggregate -- ----------------------- -- For an indexed aggregate there must be an Assigned_Indexed -- subprogram. Note that unlike array aggregates, a container -- aggregate must be fully positional or fully indexed. In the -- first case the expansion has already taken place. -- TBA: the keys for an indexed aggregate must provide a dense -- range with no repetitions. if Is_Indexed_Aggregate and then Present (Component_Associations (N)) and then not Is_Empty_List (Component_Associations (N)) then declare Insert : constant Entity_Id := Entity (Assign_Indexed_Subp); Comp : Node_Id; Stat : Node_Id; Key : Node_Id; begin pragma Assert (No (Expressions (N))); Comp := First (Component_Associations (N)); -- The choice may be a static value, or a range with -- static bounds. while Present (Comp) loop if Nkind (Comp) = N_Component_Association then Key := First (Choices (Comp)); while Present (Key) loop -- If the expression is a box, the corresponding -- component (s) is left uninitialized. if Box_Present (Comp) then goto Next_Key; elsif Nkind (Key) = N_Range then -- Create loop for the specified range, -- with copies of the expression. Stat := Expand_Range_Component (Key, Expression (Comp), Insert); else Stat := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Insert, Loc), Parameter_Associations => New_List (New_Copy_Tree (Lhs), New_Copy_Tree (Key), New_Copy_Tree (Expression (Comp)))); end if; Append (Stat, Aggr_Code); <> Next (Key); end loop; else -- Iterated component association. Discard -- positional insertion procedure. if No (Iterator_Specification (Comp)) then Add_Unnamed_Subp := Empty; end if; Add_Named_Subp := Assign_Indexed_Subp; Expand_Iterated_Component (Comp); end if; Next (Comp); end loop; end; end if; return Aggr_Code; end Build_Container_Aggr_Code; -------------------------------- -- Expand_Container_Aggregate -- -------------------------------- procedure Expand_Container_Aggregate (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (N); Aggr_Code : List_Id; Init : Node_Id; Lhs : Node_Id; Obj_Id : Entity_Id; Par : Node_Id; begin Par := Parent (N); while Nkind (Par) = N_Qualified_Expression loop Par := Parent (Par); end loop; -- If the aggregate is the initialization expression of an object -- declaration, we always build the aggregate in place, although -- this is required only for immutably limited types and types -- that need finalization, see RM 7.6(17.2/3-17.3/3). if Nkind (Par) = N_Object_Declaration then Obj_Id := Defining_Identifier (Par); Lhs := New_Occurrence_Of (Obj_Id, Loc); Set_Assignment_OK (Lhs); Aggr_Code := Build_Container_Aggr_Code (N, Typ, Lhs, Init); -- Save the last assignment statement associated with the aggregate -- when building a controlled object. This reference is utilized by -- the finalization machinery when marking an object as successfully -- initialized. if Needs_Finalization (Typ) then Mutate_Ekind (Obj_Id, E_Variable); Set_Last_Aggregate_Assignment (Obj_Id, Last (Aggr_Code)); end if; -- If a transient scope has been created around the declaration, we -- need to attach the code to it so that the finalization actions of -- the declaration will be inserted after it. Otherwise, we directly -- insert it after the declaration and it will be analyzed only once -- the declaration is processed. if Scope_Is_Transient and then Par = Node_To_Be_Wrapped then Insert_Actions_After (Par, Aggr_Code); else Insert_List_After (Par, Aggr_Code); end if; Rewrite (N, Init); Analyze_And_Resolve (N, Typ); -- Likewise if the aggregate is the qualified expression of an allocator -- but, in this case, we wait until after Expand_Allocator_Expression -- rewrites the allocator as the initialization expression of an object -- declaration to have the left hand side. elsif Nkind (Par) = N_Allocator then if Nkind (Parent (Par)) = N_Object_Declaration and then not Comes_From_Source (Defining_Identifier (Parent (Par))) then Obj_Id := Defining_Identifier (Parent (Par)); Lhs := Make_Explicit_Dereference (Loc, Prefix => New_Occurrence_Of (Obj_Id, Loc)); Set_Assignment_OK (Lhs); Aggr_Code := Build_Container_Aggr_Code (N, Typ, Lhs, Init); Insert_Actions_After (Parent (Par), Aggr_Code); Rewrite (N, Init); Analyze_And_Resolve (N, Typ); end if; -- Otherwise we create a temporary for the anonymous object and replace -- the aggregate with the temporary. else Obj_Id := Make_Temporary (Loc, 'A', N); Lhs := New_Occurrence_Of (Obj_Id, Loc); Set_Assignment_OK (Lhs); Aggr_Code := Build_Container_Aggr_Code (N, Typ, Lhs, Init); Prepend_To (Aggr_Code, Make_Object_Declaration (Loc, Defining_Identifier => Obj_Id, Object_Definition => New_Occurrence_Of (Typ, Loc), Expression => Init)); Insert_Actions (N, Aggr_Code); Rewrite (N, Lhs); Analyze_And_Resolve (N, Typ); end if; end Expand_Container_Aggregate; ------------------------------ -- Expand_N_Delta_Aggregate -- ------------------------------ procedure Expand_N_Delta_Aggregate (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (Expression (N)); Decl : Node_Id; begin Decl := Make_Object_Declaration (Loc, Defining_Identifier => Make_Temporary (Loc, 'T'), Object_Definition => New_Occurrence_Of (Typ, Loc), Expression => New_Copy_Tree (Expression (N))); if Is_Array_Type (Etype (N)) then Expand_Delta_Array_Aggregate (N, New_List (Decl)); else Expand_Delta_Record_Aggregate (N, New_List (Decl)); end if; end Expand_N_Delta_Aggregate; ---------------------------------- -- Expand_Delta_Array_Aggregate -- ---------------------------------- procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id) is Loc : constant Source_Ptr := Sloc (N); Temp : constant Entity_Id := Defining_Identifier (First (Deltas)); Assoc : Node_Id; function Generate_Loop (C : Node_Id) return Node_Id; -- Generate a loop containing individual component assignments for -- choices that are ranges, subtype indications, subtype names, and -- iterated component associations. function Make_Array_Delta_Assignment_LHS (Choice : Node_Id; Temp : Entity_Id) return Node_Id; -- Generate the LHS for the assignment associated with one -- component association. This can be more complex than just an -- indexed component in the case of a deep delta aggregate. ------------------- -- Generate_Loop -- ------------------- function Generate_Loop (C : Node_Id) return Node_Id is Sl : constant Source_Ptr := Sloc (C); Ix : Entity_Id; begin if Nkind (Parent (C)) = N_Iterated_Component_Association then Ix := Make_Defining_Identifier (Loc, Chars => (Chars (Defining_Identifier (Parent (C))))); else Ix := Make_Temporary (Sl, 'I'); end if; return Make_Implicit_Loop_Statement (C, Iteration_Scheme => Make_Iteration_Scheme (Sl, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Sl, Defining_Identifier => Ix, Discrete_Subtype_Definition => New_Copy_Tree (C))), Statements => New_List ( Make_Assignment_Statement (Sl, Name => Make_Indexed_Component (Sl, Prefix => New_Occurrence_Of (Temp, Sl), Expressions => New_List (New_Occurrence_Of (Ix, Sl))), Expression => New_Copy_Tree (Expression (Assoc)))), End_Label => Empty); end Generate_Loop; function Make_Array_Delta_Assignment_LHS (Choice : Node_Id; Temp : Entity_Id) return Node_Id is function Make_Delta_Choice_LHS (Choice : Node_Id; Deep_Choice : Boolean) return Node_Id; -- Recursively (but recursion only in deep delta aggregate case) -- build up the LHS by successively applying selectors. --------------------------- -- Make_Delta_Choice_LHS -- --------------------------- function Make_Delta_Choice_LHS (Choice : Node_Id; Deep_Choice : Boolean) return Node_Id is begin if not Deep_Choice or else Is_Root_Prefix_Of_Deep_Choice (Choice) then return Make_Indexed_Component (Sloc (Choice), Prefix => New_Occurrence_Of (Temp, Loc), Expressions => New_List (New_Copy_Tree (Choice))); else -- a deep delta aggregate choice pragma Assert (All_Extensions_Allowed); declare -- recursively get name for prefix LHS_Prefix : constant Node_Id := Make_Delta_Choice_LHS (Prefix (Choice), Deep_Choice); begin if Nkind (Choice) = N_Indexed_Component then return Make_Indexed_Component (Sloc (Choice), Prefix => LHS_Prefix, Expressions => New_Copy_List (Expressions (Choice))); else return Make_Selected_Component (Sloc (Choice), Prefix => LHS_Prefix, Selector_Name => Make_Identifier (Sloc (Choice), Chars (Selector_Name (Choice)))); end if; end; end if; end Make_Delta_Choice_LHS; begin return Make_Delta_Choice_LHS (Choice, Is_Deep_Choice (Choice, Etype (N))); end Make_Array_Delta_Assignment_LHS; -- Local variables Choice : Node_Id; -- Start of processing for Expand_Delta_Array_Aggregate begin Assoc := First (Component_Associations (N)); while Present (Assoc) loop Choice := First (Choice_List (Assoc)); if Nkind (Assoc) = N_Iterated_Component_Association then while Present (Choice) loop Append_To (Deltas, Generate_Loop (Choice)); Next (Choice); end loop; else while Present (Choice) loop -- Choice can be given by a range, a subtype indication, a -- subtype name, a scalar value, or an entity. if Nkind (Choice) = N_Range or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice))) then Append_To (Deltas, Generate_Loop (Choice)); elsif Nkind (Choice) = N_Subtype_Indication then Append_To (Deltas, Generate_Loop (Range_Expression (Constraint (Choice)))); else Append_To (Deltas, Make_Assignment_Statement (Sloc (Choice), Name => Make_Array_Delta_Assignment_LHS (Choice, Temp), Expression => New_Copy_Tree (Expression (Assoc)))); end if; Next (Choice); end loop; end if; Next (Assoc); end loop; Insert_Actions (N, Deltas); Rewrite (N, New_Occurrence_Of (Temp, Loc)); end Expand_Delta_Array_Aggregate; ----------------------------------- -- Expand_Delta_Record_Aggregate -- ----------------------------------- procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id) is Loc : constant Source_Ptr := Sloc (N); Temp : constant Entity_Id := Defining_Identifier (First (Deltas)); Assoc : Node_Id; Choice : Node_Id; function Make_Record_Delta_Assignment_LHS (Selector : Node_Id) return Node_Id; -- Generate the LHS for an assignment to a component (or subcomponent -- if -gnatX specified) of the result object. -------------------------------------- -- Make_Record_Delta_Assignment_LHS -- -------------------------------------- function Make_Record_Delta_Assignment_LHS (Selector : Node_Id) return Node_Id is begin if Nkind (Selector) = N_Selected_Component then -- a deep delta aggregate, requires -gnatX0 return Make_Selected_Component (Sloc (Choice), Prefix => Make_Record_Delta_Assignment_LHS (Prefix (Selector)), Selector_Name => Make_Identifier (Loc, Chars (Selector_Name (Selector)))); elsif Nkind (Selector) = N_Indexed_Component then -- a deep delta aggregate, requires -gnatX0 return Make_Indexed_Component (Sloc (Choice), Prefix => Make_Record_Delta_Assignment_LHS (Prefix (Selector)), Expressions => Expressions (Selector)); else return Make_Selected_Component (Sloc (Choice), Prefix => New_Occurrence_Of (Temp, Loc), Selector_Name => Make_Identifier (Loc, Chars (Selector))); end if; end Make_Record_Delta_Assignment_LHS; begin Assoc := First (Component_Associations (N)); while Present (Assoc) loop Choice := First (Choice_List (Assoc)); while Present (Choice) loop Append_To (Deltas, Make_Assignment_Statement (Sloc (Choice), Name => Make_Record_Delta_Assignment_LHS (Choice), Expression => New_Copy_Tree (Expression (Assoc)))); Next (Choice); end loop; Next (Assoc); end loop; Insert_Actions (N, Deltas); Rewrite (N, New_Occurrence_Of (Temp, Loc)); end Expand_Delta_Record_Aggregate; ---------------------------------- -- Expand_N_Extension_Aggregate -- ---------------------------------- -- If the ancestor part is an expression, add a component association for -- the parent field. If the type of the ancestor part is not the direct -- parent of the expected type, build recursively the needed ancestors. -- If the ancestor part is a subtype_mark, replace aggregate with a -- declaration for a temporary of the expected type, followed by -- individual assignments to the given components. procedure Expand_N_Extension_Aggregate (N : Node_Id) is A : constant Node_Id := Ancestor_Part (N); Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (N); begin -- If the ancestor is a subtype mark, an init proc must be called -- on the resulting object which thus has to be materialized in -- the front-end if Is_Entity_Name (A) and then Is_Type (Entity (A)) then Convert_To_Assignments (N, Typ); -- The extension aggregate is transformed into a record aggregate -- of the following form (c1 and c2 are inherited components) -- (Exp with c3 => a, c4 => b) -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b) else Set_Etype (N, Typ); if Tagged_Type_Expansion then Expand_Record_Aggregate (N, Orig_Tag => New_Occurrence_Of (Node (First_Elmt (Access_Disp_Table (Typ))), Loc), Parent_Expr => A); -- No tag is needed in the case of a VM else Expand_Record_Aggregate (N, Parent_Expr => A); end if; end if; exception when RE_Not_Available => return; end Expand_N_Extension_Aggregate; ----------------------------- -- Expand_Record_Aggregate -- ----------------------------- procedure Expand_Record_Aggregate (N : Node_Id; Orig_Tag : Node_Id := Empty; Parent_Expr : Node_Id := Empty) is Loc : constant Source_Ptr := Sloc (N); Comps : constant List_Id := Component_Associations (N); Typ : constant Entity_Id := Etype (N); Base_Typ : constant Entity_Id := Base_Type (Typ); Static_Components : Boolean := True; -- Flag to indicate whether all components are compile-time known, -- and the aggregate can be constructed statically and handled by -- the back-end. Set to False by Component_OK_For_Backend. procedure Build_Back_End_Aggregate; -- Build a proper aggregate to be handled by the back-end function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean; -- Returns true if N is an expression of composite type which can be -- fully evaluated at compile time without raising constraint error. -- Such expressions can be passed as is to Gigi without any expansion. -- -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate -- set and constants whose expression is such an aggregate, recursively. function Component_OK_For_Backend return Boolean; -- Check for presence of a component which makes it impossible for the -- backend to process the aggregate, thus requiring the use of a series -- of assignment statements. Cases checked for are a nested aggregate -- needing Late_Expansion, the presence of a tagged component which may -- need tag adjustment, and a bit unaligned component reference. -- -- We also force expansion into assignments if a component is of a -- mutable type (including a private type with discriminants) because -- in that case the size of the component to be copied may be smaller -- than the side of the target, and there is no simple way for gigi -- to compute the size of the object to be copied. -- -- NOTE: This is part of the ongoing work to define precisely the -- interface between front-end and back-end handling of aggregates. -- In general it is desirable to pass aggregates as they are to gigi, -- in order to minimize elaboration code. This is one case where the -- semantics of Ada complicate the analysis and lead to anomalies in -- the gcc back-end if the aggregate is not expanded into assignments. -- -- NOTE: This sets the global Static_Components to False in most, but -- not all, cases when it returns False. function Contains_Mutably_Tagged_Component (Typ : Entity_Id) return Boolean; -- Determine if some component of Typ is mutably tagged function Has_Visible_Private_Ancestor (Id : E) return Boolean; -- If any ancestor of the current type is private, the aggregate -- cannot be built in place. We cannot rely on Has_Private_Ancestor, -- because it will not be set when type and its parent are in the -- same scope, and the parent component needs expansion. function Top_Level_Aggregate (N : Node_Id) return Node_Id; -- For nested aggregates return the ultimate enclosing aggregate; for -- non-nested aggregates return N. ------------------------------ -- Build_Back_End_Aggregate -- ------------------------------ procedure Build_Back_End_Aggregate is Comp : Entity_Id; New_Comp : Node_Id; Tag_Value : Node_Id; begin if Nkind (N) = N_Aggregate then -- If the aggregate is static and can be handled by the back-end, -- nothing left to do. if Static_Components then Set_Compile_Time_Known_Aggregate (N); Set_Expansion_Delayed (N, False); end if; end if; -- If no discriminants, nothing special to do if not Has_Discriminants (Typ) then null; -- Case of discriminants present elsif Is_Derived_Type (Typ) then -- For untagged types, non-stored discriminants are replaced with -- stored discriminants, which are the ones that gigi uses to -- describe the type and its components. Generate_Aggregate_For_Derived_Type : declare procedure Prepend_Stored_Values (T : Entity_Id); -- Scan the list of stored discriminants of the type, and add -- their values to the aggregate being built. --------------------------- -- Prepend_Stored_Values -- --------------------------- procedure Prepend_Stored_Values (T : Entity_Id) is Discr : Entity_Id; First_Comp : Node_Id := Empty; begin Discr := First_Stored_Discriminant (T); while Present (Discr) loop New_Comp := Make_Component_Association (Loc, Choices => New_List ( New_Occurrence_Of (Discr, Loc)), Expression => New_Copy_Tree (Get_Discriminant_Value (Discr, Typ, Discriminant_Constraint (Typ)))); if No (First_Comp) then Prepend_To (Component_Associations (N), New_Comp); else Insert_After (First_Comp, New_Comp); end if; First_Comp := New_Comp; Next_Stored_Discriminant (Discr); end loop; end Prepend_Stored_Values; -- Local variables Constraints : constant List_Id := New_List; Discr : Entity_Id; Decl : Node_Id; Num_Disc : Nat := 0; Num_Stor : Nat := 0; -- Start of processing for Generate_Aggregate_For_Derived_Type begin -- Remove the associations for the discriminant of derived type declare First_Comp : Node_Id; begin First_Comp := First (Component_Associations (N)); while Present (First_Comp) loop Comp := First_Comp; Next (First_Comp); if Ekind (Entity (First (Choices (Comp)))) = E_Discriminant then Remove (Comp); Num_Disc := Num_Disc + 1; end if; end loop; end; -- Insert stored discriminant associations in the correct -- order. If there are more stored discriminants than new -- discriminants, there is at least one new discriminant that -- constrains more than one of the stored discriminants. In -- this case we need to construct a proper subtype of the -- parent type, in order to supply values to all the -- components. Otherwise there is one-one correspondence -- between the constraints and the stored discriminants. Discr := First_Stored_Discriminant (Base_Type (Typ)); while Present (Discr) loop Num_Stor := Num_Stor + 1; Next_Stored_Discriminant (Discr); end loop; -- Case of more stored discriminants than new discriminants if Num_Stor > Num_Disc then -- Create a proper subtype of the parent type, which is the -- proper implementation type for the aggregate, and convert -- it to the intended target type. Discr := First_Stored_Discriminant (Base_Type (Typ)); while Present (Discr) loop New_Comp := New_Copy_Tree (Get_Discriminant_Value (Discr, Typ, Discriminant_Constraint (Typ))); Append (New_Comp, Constraints); Next_Stored_Discriminant (Discr); end loop; Decl := Make_Subtype_Declaration (Loc, Defining_Identifier => Make_Temporary (Loc, 'T'), Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Etype (Base_Type (Typ)), Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints))); Insert_Action (N, Decl); Prepend_Stored_Values (Base_Type (Typ)); Set_Etype (N, Defining_Identifier (Decl)); Set_Analyzed (N); Rewrite (N, Unchecked_Convert_To (Typ, N)); Analyze (N); -- Case where we do not have fewer new discriminants than -- stored discriminants, so in this case we can simply use the -- stored discriminants of the subtype. else Prepend_Stored_Values (Typ); end if; end Generate_Aggregate_For_Derived_Type; end if; if Is_Tagged_Type (Typ) then -- In the tagged case, _parent and _tag component must be created -- Reset Null_Present unconditionally. Tagged records always have -- at least one field (the tag or the parent). Set_Null_Record_Present (N, False); -- When the current aggregate comes from the expansion of an -- extension aggregate, the parent expr is replaced by an -- aggregate formed by selected components of this expr. if Present (Parent_Expr) and then Is_Empty_List (Comps) then Comp := First_Component_Or_Discriminant (Typ); while Present (Comp) loop -- Skip all expander-generated components if not Comes_From_Source (Original_Record_Component (Comp)) then null; else New_Comp := Make_Selected_Component (Loc, Prefix => Unchecked_Convert_To (Typ, Duplicate_Subexpr (Parent_Expr, True)), Selector_Name => New_Occurrence_Of (Comp, Loc)); Append_To (Comps, Make_Component_Association (Loc, Choices => New_List ( New_Occurrence_Of (Comp, Loc)), Expression => New_Comp)); Analyze_And_Resolve (New_Comp, Etype (Comp)); end if; Next_Component_Or_Discriminant (Comp); end loop; end if; -- Compute the value for the Tag now, if the type is a root it -- will be included in the aggregate right away, otherwise it will -- be propagated to the parent aggregate. if Present (Orig_Tag) then Tag_Value := Orig_Tag; elsif not Tagged_Type_Expansion then Tag_Value := Empty; else Tag_Value := New_Occurrence_Of (Node (First_Elmt (Access_Disp_Table (Typ))), Loc); end if; -- For a derived type, an aggregate for the parent is formed with -- all the inherited components. if Is_Derived_Type (Typ) then declare First_Comp : Node_Id; Parent_Comps : List_Id; Parent_Aggr : Node_Id; Parent_Name : Node_Id; begin First_Comp := First (Component_Associations (N)); Parent_Comps := New_List; -- First skip the discriminants while Present (First_Comp) and then Ekind (Entity (First (Choices (First_Comp)))) = E_Discriminant loop Next (First_Comp); end loop; -- Then remove the inherited component association from the -- aggregate and store them in the parent aggregate while Present (First_Comp) and then Scope (Original_Record_Component (Entity (First (Choices (First_Comp))))) /= Base_Typ loop Comp := First_Comp; Next (First_Comp); Remove (Comp); Append (Comp, Parent_Comps); end loop; Parent_Aggr := Make_Aggregate (Loc, Component_Associations => Parent_Comps); Set_Etype (Parent_Aggr, Etype (Base_Type (Typ))); -- Find the _parent component Comp := First_Component (Typ); while Chars (Comp) /= Name_uParent loop Next_Component (Comp); end loop; Parent_Name := New_Occurrence_Of (Comp, Loc); -- Insert the parent aggregate Prepend_To (Component_Associations (N), Make_Component_Association (Loc, Choices => New_List (Parent_Name), Expression => Parent_Aggr)); -- Expand recursively the parent propagating the right Tag Expand_Record_Aggregate (Parent_Aggr, Tag_Value, Parent_Expr); -- The ancestor part may be a nested aggregate that has -- delayed expansion: recheck now. if not Component_OK_For_Backend then Convert_To_Assignments (N, Typ); end if; end; -- For a root type, the tag component is added (unless compiling -- for the VMs, where tags are implicit). elsif Tagged_Type_Expansion then declare Tag_Name : constant Node_Id := New_Occurrence_Of (First_Tag_Component (Typ), Loc); Typ_Tag : constant Entity_Id := RTE (RE_Tag); Conv_Node : constant Node_Id := Unchecked_Convert_To (Typ_Tag, Tag_Value); begin Set_Etype (Conv_Node, Typ_Tag); Prepend_To (Component_Associations (N), Make_Component_Association (Loc, Choices => New_List (Tag_Name), Expression => Conv_Node)); end; end if; end if; end Build_Back_End_Aggregate; ---------------------------------------- -- Compile_Time_Known_Composite_Value -- ---------------------------------------- function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean is begin -- If we have an entity name, then see if it is the name of a -- constant and if so, test the corresponding constant value. if Is_Entity_Name (N) then declare E : constant Entity_Id := Entity (N); V : Node_Id; begin if Ekind (E) /= E_Constant then return False; else V := Constant_Value (E); return Present (V) and then Compile_Time_Known_Composite_Value (V); end if; end; -- We have a value, see if it is compile time known else if Nkind (N) = N_Aggregate then return Compile_Time_Known_Aggregate (N); end if; -- All other types of values are not known at compile time return False; end if; end Compile_Time_Known_Composite_Value; ------------------------------ -- Component_OK_For_Backend -- ------------------------------ function Component_OK_For_Backend return Boolean is C : Node_Id; Expr_Q : Node_Id; begin C := First (Comps); while Present (C) loop -- If the component has box initialization, expansion is needed -- and component is not ready for backend. if Box_Present (C) then return False; end if; Expr_Q := Unqualify (Expression (C)); -- Return False for array components whose bounds raise -- constraint error. declare Comp : constant Entity_Id := First (Choices (C)); Indx : Node_Id; begin if Present (Etype (Comp)) and then Is_Array_Type (Etype (Comp)) then Indx := First_Index (Etype (Comp)); while Present (Indx) loop if Nkind (Type_Low_Bound (Etype (Indx))) = N_Raise_Constraint_Error or else Nkind (Type_High_Bound (Etype (Indx))) = N_Raise_Constraint_Error then return False; end if; Next_Index (Indx); end loop; end if; end; -- Return False if the aggregate has any associations for tagged -- components that may require tag adjustment. -- These are cases where the source expression may have a tag that -- could differ from the component tag (e.g., can occur for type -- conversions and formal parameters). (Tag adjustment not needed -- if Tagged_Type_Expansion because object tags are implicit in -- the machine.) if Is_Tagged_Type (Etype (Expr_Q)) and then (Nkind (Expr_Q) = N_Type_Conversion or else (Is_Entity_Name (Expr_Q) and then Is_Formal (Entity (Expr_Q)))) and then Tagged_Type_Expansion then Static_Components := False; return False; elsif Is_Delayed_Aggregate (Expr_Q) or else Is_Delayed_Conditional_Expression (Expr_Q) then Static_Components := False; return False; elsif Nkind (Expr_Q) = N_Quantified_Expression then Static_Components := False; return False; elsif Possible_Bit_Aligned_Component (Expr_Q) then Static_Components := False; return False; end if; if Is_Elementary_Type (Etype (Expr_Q)) then if not Compile_Time_Known_Value (Expr_Q) then Static_Components := False; end if; elsif not Compile_Time_Known_Composite_Value (Expr_Q) then Static_Components := False; if Is_Private_Type (Etype (Expr_Q)) and then Has_Discriminants (Etype (Expr_Q)) then return False; end if; end if; Next (C); end loop; return True; end Component_OK_For_Backend; --------------------------------------- -- Contains_Mutably_Tagged_Component -- --------------------------------------- function Contains_Mutably_Tagged_Component (Typ : Entity_Id) return Boolean is Comp : Entity_Id; begin -- Move through Typ's components looking for mutably tagged ones Comp := First_Component (Typ); while Present (Comp) loop -- When we find one, return True if Is_Mutably_Tagged_CW_Equivalent_Type (Etype (Comp)) then return True; end if; Next_Component (Comp); end loop; return False; end Contains_Mutably_Tagged_Component; ----------------------------------- -- Has_Visible_Private_Ancestor -- ----------------------------------- function Has_Visible_Private_Ancestor (Id : E) return Boolean is R : constant Entity_Id := Root_Type (Id); T1 : Entity_Id := Id; begin loop if Is_Private_Type (T1) then return True; elsif T1 = R then return False; else T1 := Etype (T1); end if; end loop; end Has_Visible_Private_Ancestor; ------------------------- -- Top_Level_Aggregate -- ------------------------- function Top_Level_Aggregate (N : Node_Id) return Node_Id is Aggr : Node_Id; begin Aggr := N; while Present (Parent (Aggr)) and then Nkind (Parent (Aggr)) in N_Aggregate | N_Component_Association loop Aggr := Parent (Aggr); end loop; return Aggr; end Top_Level_Aggregate; -- Local variables Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N); -- Start of processing for Expand_Record_Aggregate begin -- No special management required for aggregates used to initialize -- statically allocated dispatch tables if Is_Static_Dispatch_Table_Aggregate (N) then return; -- Case pattern aggregates need to remain as aggregates elsif Is_Case_Choice_Pattern (N) then return; end if; -- If the pragma Aggregate_Individually_Assign is set, always convert to -- assignments so that proper tag assignments and conversions can be -- generated. if Aggregate_Individually_Assign then Convert_To_Assignments (N, Typ); -- Ada 2005 (AI-318-2): We need to convert to assignments if components -- are build-in-place function calls. The assignments will each turn -- into a build-in-place function call. If components are all static, -- we can pass the aggregate to the back end regardless of limitedness. -- Extension aggregates, aggregates in extended return statements, and -- aggregates for C++ imported types must be expanded. elsif Ada_Version >= Ada_2005 and then Is_Inherently_Limited_Type (Typ) then if Nkind (Parent (N)) not in N_Component_Association | N_Object_Declaration then Convert_To_Assignments (N, Typ); elsif Nkind (N) = N_Extension_Aggregate or else Convention (Typ) = Convention_CPP then Convert_To_Assignments (N, Typ); elsif not Size_Known_At_Compile_Time (Typ) or else not Component_OK_For_Backend or else not Static_Components then Convert_To_Assignments (N, Typ); -- In all other cases, build a proper aggregate to be handled by -- the back-end. else Build_Back_End_Aggregate; end if; -- When we have any components which are mutably tagged types then -- special processing is required. elsif Contains_Mutably_Tagged_Component (Typ) then Convert_To_Assignments (N, Typ); -- Gigi doesn't properly handle temporaries of variable size so we -- generate it in the front-end elsif not Size_Known_At_Compile_Time (Typ) and then Tagged_Type_Expansion then Convert_To_Assignments (N, Typ); -- An aggregate used to initialize a controlled object must be turned -- into component assignments as the components themselves may require -- finalization actions such as adjustment. elsif Needs_Finalization (Typ) then Convert_To_Assignments (N, Typ); -- Ada 2005 (AI-287): In case of default initialized components we -- convert the aggregate into assignments. elsif Has_Default_Init_Comps (N) then Convert_To_Assignments (N, Typ); -- Check components elsif not Component_OK_For_Backend then Convert_To_Assignments (N, Typ); -- If an ancestor is private, some components are not inherited and we -- cannot expand into a record aggregate. elsif Has_Visible_Private_Ancestor (Typ) then Convert_To_Assignments (N, Typ); -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi -- is not able to handle the aggregate for Late_Request. elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then Convert_To_Assignments (N, Typ); -- If the tagged types covers interface types we need to initialize all -- hidden components containing pointers to secondary dispatch tables. elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then Convert_To_Assignments (N, Typ); -- If some components are mutable, the size of the aggregate component -- may be distinct from the default size of the type component, so -- we need to expand to insure that the back-end copies the proper -- size of the data. However, if the aggregate is the initial value of -- a constant, the target is immutable and might be built statically -- if components are appropriate. elsif Has_Mutable_Components (Typ) and then (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration or else not Constant_Present (Parent (Top_Level_Aggr)) or else not Static_Components) then Convert_To_Assignments (N, Typ); -- If the type involved has bit aligned components, then we are not sure -- that the back end can handle this case correctly. elsif Type_May_Have_Bit_Aligned_Components (Typ) then Convert_To_Assignments (N, Typ); -- In all other cases, build a proper aggregate to be handled by gigi else Build_Back_End_Aggregate; end if; end Expand_Record_Aggregate; --------------------- -- Get_Base_Object -- --------------------- function Get_Base_Object (N : Node_Id) return Entity_Id is R : Node_Id; begin R := Get_Referenced_Object (N); while Nkind (R) in N_Indexed_Component | N_Selected_Component | N_Slice loop R := Get_Referenced_Object (Prefix (R)); end loop; if Is_Entity_Name (R) and then Is_Object (Entity (R)) then return Entity (R); else return Empty; end if; end Get_Base_Object; ---------------------------- -- Has_Default_Init_Comps -- ---------------------------- function Has_Default_Init_Comps (N : Node_Id) return Boolean is Assoc : Node_Id; Expr : Node_Id; -- Component association and expression, respectively begin pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate); if Has_Self_Reference (N) then return True; end if; Assoc := First (Component_Associations (N)); while Present (Assoc) loop -- Each component association has either a box or an expression pragma Assert (Box_Present (Assoc) xor Present (Expression (Assoc))); -- Check if any direct component has default initialized components if Box_Present (Assoc) then return True; -- Recursive call in case of aggregate expression else Expr := Expression (Assoc); if Nkind (Expr) in N_Aggregate | N_Extension_Aggregate and then Has_Default_Init_Comps (Expr) then return True; end if; end if; Next (Assoc); end loop; return False; end Has_Default_Init_Comps; -------------------------- -- Initialize_Component -- -------------------------- procedure Initialize_Component (N : Node_Id; Comp : Node_Id; Comp_Typ : Node_Id; Init_Expr : Node_Id; Stmts : List_Id) is Exceptions_OK : constant Boolean := not Restriction_Active (No_Exception_Propagation); Finalization_OK : constant Boolean := Present (Comp_Typ) and then Needs_Finalization (Comp_Typ); Loc : constant Source_Ptr := Sloc (N); Blk_Stmts : List_Id; Init_Stmt : Node_Id; begin pragma Assert (Nkind (Init_Expr) in N_Subexpr); -- Protect the initialization statements from aborts. Generate: -- Abort_Defer; if Finalization_OK and Abort_Allowed then if Exceptions_OK then Blk_Stmts := New_List; else Blk_Stmts := Stmts; end if; Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer)); -- Otherwise aborts are not allowed. All generated code is added -- directly to the input list. else Blk_Stmts := Stmts; end if; -- Initialize the component. Generate: -- Comp := Init_Expr; -- Note that the initialization expression is not duplicated because -- either only a single component may be initialized by it (record) -- or it has already been duplicated if need be (array). Init_Stmt := Make_OK_Assignment_Statement (Loc, Name => New_Copy_Tree (Comp), Expression => Relocate_Node (Init_Expr)); -- If the initialization expression is a conditional expression whose -- expansion has been delayed, analyze it again and expand it. if Is_Delayed_Conditional_Expression (Expression (Init_Stmt)) then Set_Analyzed (Expression (Init_Stmt), False); end if; Append_To (Blk_Stmts, Init_Stmt); -- Arrange for the component to be adjusted if need be (the call will be -- generated by Make_Tag_Ctrl_Assignment). But, in the case of an array -- aggregate, controlled subaggregates are not considered because each -- of their individual elements will receive an adjustment of its own. if Finalization_OK and then not Is_Inherently_Limited_Type (Comp_Typ) and then not (Is_Array_Type (Etype (N)) and then Is_Array_Type (Comp_Typ) and then Needs_Finalization (Component_Type (Comp_Typ)) and then Nkind (Unqualify (Init_Expr)) = N_Aggregate) then Set_No_Finalize_Actions (Init_Stmt); -- Or else, only adjust the tag due to a possible view conversion else Set_No_Ctrl_Actions (Init_Stmt); if Tagged_Type_Expansion and then Is_Tagged_Type (Comp_Typ) then declare Typ : Entity_Id := Underlying_Type (Comp_Typ); begin if Is_Concurrent_Type (Typ) then Typ := Corresponding_Record_Type (Typ); end if; Append_To (Blk_Stmts, Make_Tag_Assignment_From_Type (Loc, New_Copy_Tree (Comp), Typ)); end; end if; end if; -- Complete the protection of the initialization statements if Finalization_OK and Abort_Allowed then -- Wrap the initialization statements in a block to catch a -- potential exception. Generate: -- begin -- Abort_Defer; -- Comp := Init_Expr; -- Comp._tag := Full_TypP; -- [Deep_]Adjust (Comp); -- at end -- Abort_Undefer_Direct; -- end; if Exceptions_OK then Append_To (Stmts, Build_Abort_Undefer_Block (Loc, Stmts => Blk_Stmts, Context => N)); -- Otherwise exceptions are not propagated. Generate: -- Abort_Defer; -- Comp := Init_Expr; -- Comp._tag := Full_TypP; -- [Deep_]Adjust (Comp); -- Abort_Undefer; else Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer)); end if; end if; end Initialize_Component; ---------------------------------------- -- Is_Build_In_Place_Aggregate_Return -- ---------------------------------------- function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean is F : Entity_Id; begin if Nkind (N) /= N_Simple_Return_Statement then return False; end if; F := Return_Applies_To (Return_Statement_Entity (N)); -- For a build-in-place function, all the returns are done in place -- by definition. We also return aggregates in place in other cases -- as an optimization, and they correspond to the cases where the -- return object is built in place (see Is_Special_Return_Object). return Is_Build_In_Place_Function (F) or else Needs_Secondary_Stack (Etype (F)) or else (Back_End_Return_Slot and then Is_By_Reference_Type (Etype (F))); end Is_Build_In_Place_Aggregate_Return; -------------------------- -- Is_Delayed_Aggregate -- -------------------------- function Is_Delayed_Aggregate (N : Node_Id) return Boolean is Unqual_N : constant Node_Id := Unqualify (N); begin return Nkind (Unqual_N) in N_Aggregate | N_Extension_Aggregate and then Expansion_Delayed (Unqual_N); end Is_Delayed_Aggregate; --------------------------------------- -- Is_Delayed_Conditional_Expression -- --------------------------------------- function Is_Delayed_Conditional_Expression (N : Node_Id) return Boolean is Unqual_N : constant Node_Id := Unqualify (N); begin return Nkind (Unqual_N) in N_Case_Expression | N_If_Expression and then Expansion_Delayed (Unqual_N); end Is_Delayed_Conditional_Expression; ---------------------------------------- -- Is_Static_Dispatch_Table_Aggregate -- ---------------------------------------- function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is Typ : constant Entity_Id := Base_Type (Etype (N)); begin return Building_Static_Dispatch_Tables and then Tagged_Type_Expansion -- Avoid circularity when rebuilding the compiler and then not Is_RTU (Cunit_Entity (Get_Source_Unit (N)), Ada_Tags) and then (Is_RTE (Typ, RE_Dispatch_Table_Wrapper) or else Is_RTE (Typ, RE_Address_Array) or else Is_RTE (Typ, RE_Type_Specific_Data) or else Is_RTE (Typ, RE_Tag_Table) or else Is_RTE (Typ, RE_Object_Specific_Data) or else Is_RTE (Typ, RE_Interface_Data) or else Is_RTE (Typ, RE_Interfaces_Array) or else Is_RTE (Typ, RE_Interface_Data_Element)); end Is_Static_Dispatch_Table_Aggregate; ----------------------------- -- Is_Two_Dim_Packed_Array -- ----------------------------- function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is C : constant Uint := Component_Size (Typ); begin return Number_Dimensions (Typ) = 2 and then Is_Bit_Packed_Array (Typ) and then Is_Scalar_Type (Component_Type (Typ)) and then C in Uint_1 | Uint_2 | Uint_4; -- False if No_Uint end Is_Two_Dim_Packed_Array; --------------------------- -- Is_Two_Pass_Aggregate -- --------------------------- function Is_Two_Pass_Aggregate (N : Node_Id) return Boolean is begin return Nkind (N) = N_Aggregate and then Present (Component_Associations (N)) and then Nkind (First (Component_Associations (N))) = N_Iterated_Component_Association and then Present (Iterator_Specification (First (Component_Associations (N)))); end Is_Two_Pass_Aggregate; -------------------- -- Late_Expansion -- -------------------- function Late_Expansion (N : Node_Id; Typ : Entity_Id; Target : Node_Id) return List_Id is Aggr_Code : List_Id; New_Aggr : Node_Id; begin if Is_Array_Type (Typ) then -- If the assignment can be done directly by the back end, then -- reset Set_Expansion_Delayed and do not expand further. if not CodePeer_Mode and then not Possible_Bit_Aligned_Component (Target) and then not Is_Possibly_Unaligned_Slice (Target) and then Aggr_Assignment_OK_For_Backend (N) then New_Aggr := New_Copy_Tree (N); Set_Expansion_Delayed (New_Aggr, False); Aggr_Code := New_List ( Make_OK_Assignment_Statement (Sloc (New_Aggr), Name => Target, Expression => New_Aggr)); -- Or else, generate component assignments to it else Aggr_Code := Build_Array_Aggr_Code (N => N, Ctype => Component_Type (Typ), Index => First_Index (Typ), Into => Target, Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)), Indexes => No_List); end if; -- Directly or indirectly (e.g. access protected procedure) a record else Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target); end if; -- Save the last assignment statement associated with the aggregate -- when building a controlled object. This reference is utilized by -- the finalization machinery when marking an object as successfully -- initialized. if Needs_Finalization (Typ) and then Is_Entity_Name (Target) and then Present (Entity (Target)) and then Ekind (Entity (Target)) in E_Constant | E_Variable then Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code)); end if; return Aggr_Code; end Late_Expansion; ---------------------------------- -- Make_OK_Assignment_Statement -- ---------------------------------- function Make_OK_Assignment_Statement (Sloc : Source_Ptr; Name : Node_Id; Expression : Node_Id) return Node_Id is begin Set_Assignment_OK (Name); return Make_Assignment_Statement (Sloc, Name, Expression); end Make_OK_Assignment_Statement; ------------------------ -- Max_Aggregate_Size -- ------------------------ function Max_Aggregate_Size (N : Node_Id; Default_Size : Nat := 5000) return Nat is function Use_Small_Size (N : Node_Id) return Boolean; -- True if we should return a very small size, which means large -- aggregates will be implemented as a loop when possible (potentially -- transformed to memset calls). function Aggr_Context (N : Node_Id) return Node_Id; -- Return the context in which the aggregate appears, not counting -- qualified expressions and similar. ------------------ -- Aggr_Context -- ------------------ function Aggr_Context (N : Node_Id) return Node_Id is Result : Node_Id := Parent (N); begin if Nkind (Result) in N_Qualified_Expression | N_Type_Conversion | N_Unchecked_Type_Conversion | N_If_Expression | N_Case_Expression | N_Component_Association | N_Aggregate then Result := Aggr_Context (Result); end if; return Result; end Aggr_Context; -------------------- -- Use_Small_Size -- -------------------- function Use_Small_Size (N : Node_Id) return Boolean is C : constant Node_Id := Aggr_Context (N); -- The decision depends on the context in which the aggregate occurs, -- and for variable declarations, whether we are nested inside a -- subprogram. begin case Nkind (C) is -- True for assignment statements and similar when N_Assignment_Statement | N_Simple_Return_Statement | N_Allocator | N_Attribute_Reference => return True; -- True for nested variable declarations. False for library level -- variables, and for constants (whether or not nested). when N_Object_Declaration => return not Constant_Present (C) and then Is_Subprogram (Current_Scope); -- False for all other contexts when others => return False; end case; end Use_Small_Size; -- Local variables Typ : constant Entity_Id := Etype (N); -- Start of processing for Max_Aggregate_Size begin -- We use a small limit in CodePeer mode where we favor loops instead of -- thousands of single assignments (from large aggregates). -- We also increase the limit to 2**24 (about 16 million) if -- Restrictions (No_Elaboration_Code) or Restrictions -- (No_Implicit_Loops) is specified, since in either case we are at risk -- of declaring the program illegal because of this limit. We also -- increase the limit when Static_Elaboration_Desired, given that this -- means that objects are intended to be placed in data memory. -- Same if the aggregate is for a packed two-dimensional array, because -- if components are static it is much more efficient to construct a -- one-dimensional equivalent array with static components. if CodePeer_Mode then return 100; elsif Restriction_Active (No_Elaboration_Code) or else Restriction_Active (No_Implicit_Loops) or else Is_Two_Dim_Packed_Array (Typ) or else (Ekind (Current_Scope) = E_Package and then Static_Elaboration_Desired (Current_Scope)) then return 2 ** 24; elsif Use_Small_Size (N) then return 64; end if; return Default_Size; end Max_Aggregate_Size; ----------------------- -- Number_Of_Choices -- ----------------------- function Number_Of_Choices (N : Node_Id) return Nat is Assoc : Node_Id; Choice : Node_Id; Nb_Choices : Nat := 0; begin if Present (Expressions (N)) then return 0; end if; Assoc := First (Component_Associations (N)); while Present (Assoc) loop Choice := First (Choice_List (Assoc)); while Present (Choice) loop if Nkind (Choice) /= N_Others_Choice then Nb_Choices := Nb_Choices + 1; end if; Next (Choice); end loop; Next (Assoc); end loop; return Nb_Choices; end Number_Of_Choices; ------------------------------------ -- Packed_Array_Aggregate_Handled -- ------------------------------------ -- The current version of this procedure will handle at compile time -- any array aggregate that meets these conditions: -- One and two dimensional, bit packed -- Underlying packed type is modular type -- Bounds are within 32-bit Int range -- All bounds and values are static -- Note: for now, in the 2-D case, we only handle component sizes of -- 1, 2, 4 (cases where an integral number of elements occupies a byte). function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (N); Ctyp : constant Entity_Id := Component_Type (Typ); Not_Handled : exception; -- Exception raised if this aggregate cannot be handled begin -- Handle one- or two dimensional bit packed array if not Is_Bit_Packed_Array (Typ) or else Number_Dimensions (Typ) > 2 then return False; end if; -- If two-dimensional, check whether it can be folded, and transformed -- into a one-dimensional aggregate for the Packed_Array_Impl_Type of -- the original type. if Number_Dimensions (Typ) = 2 then return Two_Dim_Packed_Array_Handled (N); end if; if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then return False; end if; if not Is_Scalar_Type (Ctyp) then return False; end if; declare Csiz : constant Nat := UI_To_Int (Component_Size (Typ)); function Get_Component_Val (N : Node_Id) return Uint; -- Given a expression value N of the component type Ctyp, returns a -- value of Csiz (component size) bits representing this value. If -- the value is nonstatic or any other reason exists why the value -- cannot be returned, then Not_Handled is raised. ----------------------- -- Get_Component_Val -- ----------------------- function Get_Component_Val (N : Node_Id) return Uint is Val : Uint; begin -- We have to analyze the expression here before doing any further -- processing here. The analysis of such expressions is deferred -- till expansion to prevent some problems of premature analysis. Analyze_And_Resolve (N, Ctyp); -- Must have a compile time value. String literals have to be -- converted into temporaries as well, because they cannot easily -- be converted into their bit representation. if not Compile_Time_Known_Value (N) or else Nkind (N) = N_String_Literal then raise Not_Handled; end if; Val := Expr_Rep_Value (N); -- Adjust for bias, and strip proper number of bits if Has_Biased_Representation (Ctyp) then Val := Val - Expr_Value (Type_Low_Bound (Ctyp)); end if; return Val mod Uint_2 ** Csiz; end Get_Component_Val; Bounds : constant Range_Nodes := Get_Index_Bounds (First_Index (Typ)); -- Here we know we have a one dimensional bit packed array begin -- Cannot do anything if bounds are dynamic if not (Compile_Time_Known_Value (Bounds.First) and then Compile_Time_Known_Value (Bounds.Last)) then return False; end if; declare Bounds_Vals : Range_Values; -- Compile-time known values of bounds begin -- Or are silly out of range of int bounds Bounds_Vals.First := Expr_Value (Bounds.First); Bounds_Vals.Last := Expr_Value (Bounds.Last); if not UI_Is_In_Int_Range (Bounds_Vals.First) or else not UI_Is_In_Int_Range (Bounds_Vals.Last) then return False; end if; -- At this stage we have a suitable aggregate for handling at -- compile time. The only remaining checks are that the values of -- expressions in the aggregate are compile-time known (checks are -- performed by Get_Component_Val), and that any subtypes or -- ranges are statically known. -- If the aggregate is not fully positional at this stage, then -- convert it to positional form. Either this will fail, in which -- case we can do nothing, or it will succeed, in which case we -- have succeeded in handling the aggregate and transforming it -- into a modular value, or it will stay an aggregate, in which -- case we have failed to create a packed value for it. if Present (Component_Associations (N)) then Convert_To_Positional (N, Handle_Bit_Packed => True); return Nkind (N) /= N_Aggregate; end if; -- Otherwise we are all positional, so convert to proper value declare Len : constant Nat := Int'Max (0, UI_To_Int (Bounds_Vals.Last) - UI_To_Int (Bounds_Vals.First) + 1); -- The length of the array (number of elements) Aggregate_Val : Uint; -- Value of aggregate. The value is set in the low order bits -- of this value. For the little-endian case, the values are -- stored from low-order to high-order and for the big-endian -- case the values are stored from high order to low order. -- Note that gigi will take care of the conversions to left -- justify the value in the big endian case (because of left -- justified modular type processing), so we do not have to -- worry about that here. Lit : Node_Id; -- Integer literal for resulting constructed value Shift : Nat; -- Shift count from low order for next value Incr : Int; -- Shift increment for loop Expr : Node_Id; -- Next expression from positional parameters of aggregate Left_Justified : Boolean; -- Set True if we are filling the high order bits of the target -- value (i.e. the value is left justified). begin -- For little endian, we fill up the low order bits of the -- target value. For big endian we fill up the high order bits -- of the target value (which is a left justified modular -- value). Left_Justified := Bytes_Big_Endian; -- Switch justification if using -gnatd8 if Debug_Flag_8 then Left_Justified := not Left_Justified; end if; -- Switch justfification if reverse storage order if Reverse_Storage_Order (Base_Type (Typ)) then Left_Justified := not Left_Justified; end if; if Left_Justified then Shift := Csiz * (Len - 1); Incr := -Csiz; else Shift := 0; Incr := +Csiz; end if; -- Loop to set the values if Len = 0 then Aggregate_Val := Uint_0; else Expr := First (Expressions (N)); Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift; for J in 2 .. Len loop Shift := Shift + Incr; Next (Expr); Aggregate_Val := Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift; end loop; end if; -- Now we can rewrite with the proper value Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val); Set_Print_In_Hex (Lit); -- Construct the expression using this literal. Note that it -- is important to qualify the literal with its proper modular -- type since universal integer does not have the required -- range and also this is a left justified modular type, -- which is important in the big-endian case. Rewrite (N, Unchecked_Convert_To (Typ, Make_Qualified_Expression (Loc, Subtype_Mark => New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc), Expression => Lit))); Analyze_And_Resolve (N, Typ); return True; end; end; end; exception when Not_Handled => return False; end Packed_Array_Aggregate_Handled; ---------------------------- -- Has_Mutable_Components -- ---------------------------- function Has_Mutable_Components (Typ : Entity_Id) return Boolean is Comp : Entity_Id; Ctyp : Entity_Id; begin Comp := First_Component (Typ); while Present (Comp) loop Ctyp := Underlying_Type (Etype (Comp)); if Is_Record_Type (Ctyp) and then Has_Discriminants (Ctyp) and then not Is_Constrained (Ctyp) then return True; end if; Next_Component (Comp); end loop; return False; end Has_Mutable_Components; ------------------------------ -- Initialize_Discriminants -- ------------------------------ procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is Loc : constant Source_Ptr := Sloc (N); Bas : constant Entity_Id := Base_Type (Typ); Par : constant Entity_Id := Etype (Bas); Decl : constant Node_Id := Parent (Par); Ref : Node_Id; begin if Is_Tagged_Type (Bas) and then Is_Derived_Type (Bas) and then Has_Discriminants (Par) and then Has_Discriminants (Bas) and then Number_Discriminants (Bas) /= Number_Discriminants (Par) and then Nkind (Decl) = N_Full_Type_Declaration and then Nkind (Type_Definition (Decl)) = N_Record_Definition and then Present (Variant_Part (Component_List (Type_Definition (Decl)))) and then Nkind (N) /= N_Extension_Aggregate then -- Call init proc to set discriminants. -- There should eventually be a special procedure for this ??? Ref := New_Occurrence_Of (Defining_Identifier (N), Loc); Insert_Actions_After (N, Build_Initialization_Call (N, Ref, Typ)); end if; end Initialize_Discriminants; ---------------- -- Must_Slide -- ---------------- function Must_Slide (Aggr : Node_Id; Obj_Type : Entity_Id; Typ : Entity_Id) return Boolean is begin -- No sliding if the type of the object is not established yet, if it is -- an unconstrained type whose actual subtype comes from the aggregate, -- or if the two types are identical. If the aggregate contains only -- an Others_Clause it gets its type from the context and no sliding -- is involved either. if not Is_Array_Type (Obj_Type) then return False; elsif not Is_Constrained (Obj_Type) then return False; elsif Typ = Obj_Type then return False; elsif Is_Others_Aggregate (Aggr) then return False; -- Check if sliding is required else declare Obj_Index : Node_Id := First_Index (Obj_Type); Obj_Bounds : Range_Nodes; Typ_Index : Node_Id := First_Index (Typ); Typ_Bounds : Range_Nodes; begin while Present (Typ_Index) loop pragma Assert (Present (Obj_Index)); Typ_Bounds := Get_Index_Bounds (Typ_Index); Obj_Bounds := Get_Index_Bounds (Obj_Index); if not Is_OK_Static_Expression (Typ_Bounds.First) or else not Is_OK_Static_Expression (Obj_Bounds.First) or else not Is_OK_Static_Expression (Typ_Bounds.Last) or else not Is_OK_Static_Expression (Obj_Bounds.Last) then return True; elsif Expr_Value (Typ_Bounds.First) /= Expr_Value (Obj_Bounds.First) or else Expr_Value (Typ_Bounds.Last) /= Expr_Value (Obj_Bounds.Last) then return True; end if; Next_Index (Typ_Index); Next_Index (Obj_Index); end loop; end; end if; return False; end Must_Slide; --------------------- -- Sort_Case_Table -- --------------------- procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is L : constant Int := Case_Table'First; U : constant Int := Case_Table'Last; K : Int; J : Int; T : Case_Bounds; begin K := L; while K /= U loop T := Case_Table (K + 1); J := K + 1; while J /= L and then Expr_Value (Case_Table (J - 1).Choice_Lo) > Expr_Value (T.Choice_Lo) loop Case_Table (J) := Case_Table (J - 1); J := J - 1; end loop; Case_Table (J) := T; K := K + 1; end loop; end Sort_Case_Table; ---------------------------- -- Static_Array_Aggregate -- ---------------------------- function Static_Array_Aggregate (N : Node_Id) return Boolean is function Is_Static_Component (Nod : Node_Id) return Boolean; -- Return True if Nod has a compile-time known value and can be passed -- as is to the back-end without further expansion. --------------------------- -- Is_Static_Component -- --------------------------- function Is_Static_Component (Nod : Node_Id) return Boolean is begin if Nkind (Nod) in N_Integer_Literal | N_Real_Literal then return True; elsif Is_Entity_Name (Nod) and then Present (Entity (Nod)) and then Ekind (Entity (Nod)) = E_Enumeration_Literal then return True; elsif Nkind (Nod) = N_Aggregate and then Compile_Time_Known_Aggregate (Nod) then return True; else return False; end if; end Is_Static_Component; -- Local variables Bounds : constant Node_Id := Aggregate_Bounds (N); Typ : constant Entity_Id := Etype (N); Agg : Node_Id; Expr : Node_Id; Lo : Node_Id; Hi : Node_Id; -- Start of processing for Static_Array_Aggregate begin if Is_Packed (Typ) or else Has_Discriminants (Component_Type (Typ)) then return False; end if; if Present (Bounds) and then Nkind (Bounds) = N_Range and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal and then Nkind (High_Bound (Bounds)) = N_Integer_Literal then Lo := Low_Bound (Bounds); Hi := High_Bound (Bounds); if No (Component_Associations (N)) then -- Verify that all components are static Expr := First (Expressions (N)); while Present (Expr) loop if not Is_Static_Component (Expr) then return False; end if; Next (Expr); end loop; return True; else -- We allow only a single named association, either a static -- range or an others_clause, with a static expression. Expr := First (Component_Associations (N)); if Present (Expressions (N)) then return False; elsif Present (Next (Expr)) then return False; elsif Present (Next (First (Choice_List (Expr)))) then return False; else -- The aggregate is static if all components are literals, -- or else all its components are static aggregates for the -- component type. We also limit the size of a static aggregate -- to prevent runaway static expressions. if not Is_Static_Component (Expression (Expr)) then return False; end if; if not Aggr_Size_OK (N) then return False; end if; -- Create a positional aggregate with the right number of -- copies of the expression. Agg := Make_Aggregate (Sloc (N), New_List, No_List); for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi)) loop Append_To (Expressions (Agg), New_Copy (Expression (Expr))); -- The copied expression must be analyzed and resolved. -- Besides setting the type, this ensures that static -- expressions are appropriately marked as such. Analyze_And_Resolve (Last (Expressions (Agg)), Component_Type (Typ)); end loop; Set_Aggregate_Bounds (Agg, Bounds); Set_Etype (Agg, Typ); Set_Analyzed (Agg); Rewrite (N, Agg); Set_Compile_Time_Known_Aggregate (N); return True; end if; end if; else return False; end if; end Static_Array_Aggregate; ---------------------------------- -- Two_Dim_Packed_Array_Handled -- ---------------------------------- function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (N); Ctyp : constant Entity_Id := Component_Type (Typ); Comp_Size : constant Int := UI_To_Int (Component_Size (Typ)); Packed_Array : constant Entity_Id := Packed_Array_Impl_Type (Base_Type (Typ)); One_Comp : Node_Id; -- Expression in original aggregate One_Dim : Node_Id; -- One-dimensional subaggregate begin -- For now, only deal with cases where an integral number of elements -- fit in a single byte. This includes the most common boolean case. if not (Comp_Size = 1 or else Comp_Size = 2 or else Comp_Size = 4) then return False; end if; Convert_To_Positional (N, Handle_Bit_Packed => True); -- Verify that all components are static if Nkind (N) = N_Aggregate and then Compile_Time_Known_Aggregate (N) then null; -- The aggregate may have been reanalyzed and converted already elsif Nkind (N) /= N_Aggregate then return True; -- If component associations remain, the aggregate is not static elsif Present (Component_Associations (N)) then return False; else One_Dim := First (Expressions (N)); while Present (One_Dim) loop if Present (Component_Associations (One_Dim)) then return False; end if; One_Comp := First (Expressions (One_Dim)); while Present (One_Comp) loop if not Is_OK_Static_Expression (One_Comp) then return False; end if; Next (One_Comp); end loop; Next (One_Dim); end loop; end if; -- Two-dimensional aggregate is now fully positional so pack one -- dimension to create a static one-dimensional array, and rewrite -- as an unchecked conversion to the original type. declare Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array)); -- The packed array type is a byte array Packed_Num : Nat; -- Number of components accumulated in current byte Comps : List_Id; -- Assembled list of packed values for equivalent aggregate Comp_Val : Uint; -- Integer value of component Incr : Int; -- Step size for packing Init_Shift : Int; -- Endian-dependent start position for packing Shift : Int; -- Current insertion position Val : Int; -- Component of packed array being assembled begin Comps := New_List; Val := 0; Packed_Num := 0; -- Account for endianness. See corresponding comment in -- Packed_Array_Aggregate_Handled concerning the following. if Bytes_Big_Endian xor Debug_Flag_8 xor Reverse_Storage_Order (Base_Type (Typ)) then Init_Shift := Byte_Size - Comp_Size; Incr := -Comp_Size; else Init_Shift := 0; Incr := +Comp_Size; end if; -- Iterate over each subaggregate Shift := Init_Shift; One_Dim := First (Expressions (N)); while Present (One_Dim) loop One_Comp := First (Expressions (One_Dim)); while Present (One_Comp) loop if Packed_Num = Byte_Size / Comp_Size then -- Byte is complete, add to list of expressions Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps); Val := 0; Shift := Init_Shift; Packed_Num := 0; else Comp_Val := Expr_Rep_Value (One_Comp); -- Adjust for bias, and strip proper number of bits if Has_Biased_Representation (Ctyp) then Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp)); end if; Comp_Val := Comp_Val mod Uint_2 ** Comp_Size; Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift); Shift := Shift + Incr; Next (One_Comp); Packed_Num := Packed_Num + 1; end if; end loop; Next (One_Dim); end loop; if Packed_Num > 0 then -- Add final incomplete byte if present Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps); end if; Rewrite (N, Unchecked_Convert_To (Typ, Make_Qualified_Expression (Loc, Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc), Expression => Make_Aggregate (Loc, Expressions => Comps)))); Analyze_And_Resolve (N); return True; end; end Two_Dim_Packed_Array_Handled; end Exp_Aggr;