------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- C H E C K S -- -- -- -- S p e c -- -- -- -- -- -- Copyright (C) 1992-2001 Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING. If not, write -- -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- -- MA 02111-1307, USA. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). -- -- -- ------------------------------------------------------------------------------ -- Package containing routines used to deal with runtime checks. These -- routines are used both by the semantics and by the expander. In some -- cases, checks are enabled simply by setting flags for gigi, and in -- other cases the code for the check is expanded. -- The approach used for range and length checks, in regards to suppressed -- checks, is to attempt to detect at compilation time that a constraint -- error will occur. If this is detected a warning or error is issued and the -- offending expression or statement replaced with a constraint error node. -- This always occurs whether checks are suppressed or not. Dynamic range -- checks are, of course, not inserted if checks are suppressed. with Types; use Types; with Uintp; use Uintp; package Checks is procedure Initialize; -- Called for each new main source program, to initialize internal -- variables used in the package body of the Checks unit. function Access_Checks_Suppressed (E : Entity_Id) return Boolean; function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean; function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean; function Division_Checks_Suppressed (E : Entity_Id) return Boolean; function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean; function Index_Checks_Suppressed (E : Entity_Id) return Boolean; function Length_Checks_Suppressed (E : Entity_Id) return Boolean; function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean; function Range_Checks_Suppressed (E : Entity_Id) return Boolean; function Storage_Checks_Suppressed (E : Entity_Id) return Boolean; function Tag_Checks_Suppressed (E : Entity_Id) return Boolean; -- These functions check to see if the named check is suppressed, -- either by an active scope suppress setting, or because the check -- has been specifically suppressed for the given entity. If no entity -- is relevant for the current check, then Empty is used as an argument. -- Note: the reason we insist on specifying Empty is to force the -- caller to think about whether there is any relevant entity that -- should be checked. -- General note on following checks. These checks are always active if -- Expander_Active and not Inside_A_Generic. They are inactive and have -- no effect Inside_A_Generic. In the case where not Expander_Active -- and not Inside_A_Generic, most of them are inactive, but some of them -- operate anyway since they may generate useful compile time warnings. procedure Apply_Access_Check (N : Node_Id); -- Determines whether an expression node should be flagged as needing -- a runtime access check. If the node requires such a check, the -- Do_Access_Check flag is turned on. procedure Apply_Accessibility_Check (N : Node_Id; Typ : Entity_Id); -- Given a name N denoting an access parameter, emits a run-time -- accessibility check (if necessary), checking that the level of -- the object denoted by the access parameter is not deeper than the -- level of the type Typ. Program_Error is raised if the check fails. procedure Apply_Alignment_Check (E : Entity_Id; N : Node_Id); -- E is the entity for an object. If there is an address clause for -- this entity, and checks are enabled, then this procedure generates -- a check that the specified address has an alignment consistent with -- the alignment of the object, raising PE if this is not the case. The -- resulting check (if one is generated) is inserted before node N. procedure Apply_Array_Size_Check (N : Node_Id; Typ : Entity_Id); -- N is the node for an object declaration that declares an object of -- array type Typ. This routine generates, if necessary, a check that -- the size of the array is not too large, raising Storage_Error if so. procedure Apply_Arithmetic_Overflow_Check (N : Node_Id); -- Given a binary arithmetic operator (+ - *) expand a software integer -- overflow check using range checks on a larger checking type or a call -- to an appropriate runtime routine. This is used for all three operators -- for the signed integer case, and for +/- in the fixed-point case. The -- check is expanded only if Software_Overflow_Checking is enabled and -- Do_Overflow_Check is set on node N. Note that divide is handled -- separately using Apply_Arithmetic_Divide_Overflow_Check. procedure Apply_Constraint_Check (N : Node_Id; Typ : Entity_Id; No_Sliding : Boolean := False); -- Top-level procedure, calls all the others depending on the class of Typ. -- Checks that expression N verifies the constraint of type Typ. No_Sliding -- is only relevant for constrained array types, id set to true, it -- checks that indexes are in range. procedure Apply_Discriminant_Check (N : Node_Id; Typ : Entity_Id; Lhs : Node_Id := Empty); -- Given an expression N of a discriminated type, or of an access type -- whose designated type is a discriminanted type, generates a check to -- ensure that the expression can be converted to the subtype given as -- the second parameter. Lhs is empty except in the case of assignments, -- where the target object may be needed to determine the subtype to -- check against (such as the cases of unconstrained formal parameters -- and unconstrained aliased objects). For the case of unconstrained -- formals, the check is peformed only if the corresponding actual is -- constrained, i.e., whether Lhs'Constrained is True. function Build_Discriminant_Checks (N : Node_Id; T_Typ : Entity_Id) return Node_Id; -- Subsidiary routine for Apply_Discriminant_Check. Builds the expression -- that compares discriminants of the expression with discriminants of the -- type. Also used directly for membership tests (see Exp_Ch4.Expand_N_In). procedure Apply_Divide_Check (N : Node_Id); -- The node kind is N_Op_Divide, N_Op_Mod, or N_Op_Rem. An appropriate -- check is generated to ensure that the right operand is non-zero. In -- the divide case, we also check that we do not have the annoying case -- of the largest negative number divided by minus one. procedure Apply_Type_Conversion_Checks (N : Node_Id); -- N is an N_Type_Conversion node. A type conversion actually involves -- two sorts of checks. The first check is the checks that ensures that -- the operand in the type conversion fits onto the base type of the -- subtype it is being converted to (see RM 4.6 (28)-(50)). The second -- check is there to ensure that once the operand has been converted to -- a value of the target type, this converted value meets the -- constraints imposed by the target subtype (see RM 4.6 (51)). procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id); -- The argument N is an attribute reference node intended for processing -- by gigi. The attribute is one that returns a universal integer, but -- the attribute reference node is currently typed with the expected -- result type. This routine deals with range and overflow checks needed -- to make sure that the universal result is in range. procedure Determine_Range (N : Node_Id; OK : out Boolean; Lo : out Uint; Hi : out Uint); -- N is a node for a subexpression. If N is of a discrete type with -- no error indications, and no other peculiarities (e.g. missing -- type fields), then OK is True on return, and Lo and Hi are set -- to a conservative estimate of the possible range of values of N. -- Thus if OK is True on return, the value of the subexpression N is -- known to like in the range Lo .. Hi (inclusive). If the expression -- is not of a discrete type, or some kind of error condition is -- detected, then OK is False on exit, and Lo/Hi are set to No_Uint. -- Thus the significance of OK being False on return is that no -- useful information is available on the range of the expression. ----------------------------- -- Length and Range Checks -- ----------------------------- -- In the following procedures, there are three arguments which have -- a common meaning as follows: -- Expr The expression to be checked. If a check is required, -- the appropriate flag will be placed on this node. Whether -- this node is further examined depends on the setting of -- the parameter Source_Typ, as described below. -- Target_Typ The target type on which the check is to be based. For -- example, if we have a scalar range check, then the check -- is that we are in range of this type. -- Source_Typ Normally Empty, but can be set to a type, in which case -- this type is used for the check, see below. -- The checks operate in one of two modes: -- If Source_Typ is Empty, then the node Expr is examined, at the -- very least to get the source subtype. In addition for some of -- the checks, the actual form of the node may be examined. For -- example, a node of type Integer whose actual form is an Integer -- conversion from a type with range 0 .. 3 can be determined to -- have a value in the range 0 .. 3. -- If Source_Typ is given, then nothing can be assumed about the -- Expr, and indeed its contents are not examined. In this case the -- check is based on the assumption that Expr can be an arbitrary -- value of the given Source_Typ. -- Currently, the only case in which a Source_Typ is explicitly supplied -- is for the case of Out and In_Out parameters, where, for the conversion -- on return (the Out direction), the types must be reversed. This is -- handled by the caller. procedure Apply_Length_Check (Ck_Node : Node_Id; Target_Typ : Entity_Id; Source_Typ : Entity_Id := Empty); -- This procedure builds a sequence of declarations to do a length check -- that checks if the lengths of the two arrays Target_Typ and source type -- are the same. The resulting actions are inserted at Node using a call -- to Insert_Actions. -- -- For access types, the Directly_Designated_Type is retrieved and -- processing continues as enumerated above, with a guard against -- null values. -- -- Note: calls to Apply_Length_Check currently never supply an explicit -- Source_Typ parameter, but Apply_Length_Check takes this parameter and -- processes it as described above for consistency with the other routines -- in this section. procedure Apply_Range_Check (Ck_Node : Node_Id; Target_Typ : Entity_Id; Source_Typ : Entity_Id := Empty); -- For an Node of kind N_Range, constructs a range check action that -- tests first that the range is not null and then that the range -- is contained in the Target_Typ range. -- -- For scalar types, constructs a range check action that first tests that -- the expression is contained in the Target_Typ range. The difference -- between this and Apply_Scalar_Range_Check is that the latter generates -- the actual checking code in gigi against the Etype of the expression. -- -- For constrained array types, construct series of range check actions -- to check that each Expr range is properly contained in the range of -- Target_Typ. -- -- For a type conversion to an unconstrained array type, constructs -- a range check action to check that the bounds of the source type -- are within the constraints imposed by the Target_Typ. -- -- For access types, the Directly_Designated_Type is retrieved and -- processing continues as enumerated above, with a guard against -- null values. -- -- The source type is used by type conversions to unconstrained array -- types to retrieve the corresponding bounds. procedure Apply_Static_Length_Check (Expr : Node_Id; Target_Typ : Entity_Id; Source_Typ : Entity_Id := Empty); -- Tries to determine statically whether the two array types source type -- and Target_Typ have the same length. If it can be determined at compile -- time that they do not, then an N_Raise_Constraint_Error node replaces -- Expr, and a warning message is issued. procedure Apply_Scalar_Range_Check (Expr : Node_Id; Target_Typ : Entity_Id; Source_Typ : Entity_Id := Empty; Fixed_Int : Boolean := False); -- For scalar types, determines whether an expression node should be -- flagged as needing a runtime range check. If the node requires such -- a check, the Do_Range_Check flag is turned on. The Fixed_Int flag -- if set causes any fixed-point values to be treated as though they -- were discrete values (i.e. the underlying integer value is used). type Check_Result is private; -- Type used to return result of Range_Check call, for later use in -- call to Insert_Range_Checks procedure. procedure Append_Range_Checks (Checks : Check_Result; Stmts : List_Id; Suppress_Typ : Entity_Id; Static_Sloc : Source_Ptr; Flag_Node : Node_Id); -- Called to append range checks as returned by a call to Range_Check. -- Stmts is a list to which either the dynamic check is appended or -- the raise Constraint_Error statement is appended (for static checks). -- Static_Sloc is the Sloc at which the raise CE node points, -- Flag_Node is used as the node at which to set the Has_Dynamic_Check -- flag. Checks_On is a boolean value that says if range and index checking -- is on or not. procedure Enable_Range_Check (N : Node_Id); pragma Inline (Enable_Range_Check); -- Set Do_Range_Check flag in node N to True unless Kill_Range_Check flag -- is set in N (the purpose of the latter flag is precisely to prevent -- Do_Range_Check from being set). procedure Insert_Range_Checks (Checks : Check_Result; Node : Node_Id; Suppress_Typ : Entity_Id; Static_Sloc : Source_Ptr := No_Location; Flag_Node : Node_Id := Empty; Do_Before : Boolean := False); -- Called to insert range checks as returned by a call to Range_Check. -- Node is the node after which either the dynamic check is inserted or -- the raise Constraint_Error statement is inserted (for static checks). -- Suppress_Typ is the type to check to determine if checks are suppressed. -- Static_Sloc, if passed, is the Sloc at which the raise CE node points, -- otherwise Sloc (Node) is used. The Has_Dynamic_Check flag is normally -- set at Node. If Flag_Node is present, then this is used instead as the -- node at which to set the Has_Dynamic_Check flag. Normally the check is -- inserted after, if Do_Before is True, the check is inserted before -- Node. function Range_Check (Ck_Node : Node_Id; Target_Typ : Entity_Id; Source_Typ : Entity_Id := Empty; Warn_Node : Node_Id := Empty) return Check_Result; -- Like Apply_Range_Check, except it does not modify anything. Instead -- it returns an encapsulated result of the check operations for later -- use in a call to Insert_Range_Checks. If Warn_Node is non-empty, its -- Sloc is used, in the static case, for the generated warning or error. -- Additionally, it is used rather than Expr (or Low/High_Bound of Expr) -- in constructing the check. ----------------------- -- Validity Checking -- ----------------------- -- In (RM 13.9.1(9-11)) we have the following rules on invalid values -- 9 If the representation of a scalar object does not represent a -- value of the object's subtype (perhaps because the object was not -- initialized), the object is said to have an invalid representation. -- It is a bounded error to evaluate the value of such an object. If -- the error is detected, either Constraint_Error or Program_Error is -- raised. Otherwise, execution continues using the invalid -- representation. The rules of the language outside this subclause -- assume that all objects have valid representations. The semantics -- of operations on invalid representations are as follows: -- -- 10 If the representation of the object represents a value of the -- object's type, the value of the type is used. -- -- 11 If the representation of the object does not represent a value -- of the object's type, the semantics of operations on such -- representations is implementation-defined, but does not by -- itself lead to erroneous or unpredictable execution, or to -- other objects becoming abnormal. -- We quote the rules in full here since they are quite delicate. Most -- of the time, we can just compute away with wrong values, and get a -- possibly wrong result, which is well within the range of allowed -- implementation defined behavior. The two tricky cases are subscripted -- array assignments, where we don't want to do wild stores, and case -- statements where we don't want to do wild jumps. -- In GNAT, we control validity checking with a switch -gnatV that -- can take three parameters, n/d/f for None/Default/Full. These -- modes have the following meanings: -- None (no validity checking) -- In this mode, there is no specific checking for invalid values -- and the code generator assumes that all stored values are always -- within the bounds of the object subtype. The consequences are as -- follows: -- For case statements, an out of range invalid value will cause -- Constraint_Error to be raised, or an arbitrary one of the case -- alternatives will be executed. Wild jumps cannot result even -- in this mode, since we always do a range check -- For subscripted array assignments, wild stores will result in -- the expected manner when addresses are calculated using values -- of subscripts that are out of range. -- It could perhaps be argued that this mode is still conformant with -- the letter of the RM, since implementation defined is a rather -- broad category, but certainly it is not in the spirit of the -- RM requirement, since wild stores certainly seem to be a case of -- erroneous behavior. -- Default (default standard RM-compatible validity checking) -- In this mode, which is the default, minimal validity checking is -- performed to ensure no erroneous behavior as follows: -- For case statements, an out of range invalid value will cause -- Constraint_Error to be raised. -- For subscripted array assignments, invalid out of range -- subscript values will cause Constraint_Error to be raised. -- Full (Full validity checking) -- In this mode, the protections guaranteed by the standard mode are -- in place, and the following additional checks are made: -- For every assignment, the right side is checked for validity -- For every call, IN and IN OUT parameters are checked for validity -- For every subscripted array reference, both for stores and loads, -- all subscripts are checked for validity. -- These checks are not required by the RM, but will in practice -- improve the detection of uninitialized variables, particularly -- if used in conjunction with pragma Normalize_Scalars. -- In the above description, we talk about performing validity checks, -- but we don't actually generate a check in a case where the compiler -- can be sure that the value is valid. Note that this assurance must -- be achieved without assuming that any uninitialized value lies within -- the range of its type. The following are cases in which values are -- known to be valid. The flag Is_Known_Valid is used to keep track of -- some of these cases. -- If all possible stored values are valid, then any uninitialized -- value must be valid. -- Literals, including enumeration literals, are clearly always valid. -- Constants are always assumed valid, with a validity check being -- performed on the initializing value where necessary to ensure that -- this is the case. -- For variables, the status is set to known valid if there is an -- initializing expression. Again a check is made on the initializing -- value if necessary to ensure that this assumption is valid. The -- status can change as a result of local assignments to a variable. -- If a known valid value is unconditionally assigned, then we mark -- the left side as known valid. If a value is assigned that is not -- known to be valid, then we mark the left side as invalid. This -- kind of processing does NOT apply to non-local variables since we -- are not following the flow graph (more properly the flow of actual -- processing only corresponds to the flow graph for local assignments). -- For non-local variables, we preserve the current setting, i.e. a -- validity check is performed when assigning to a knonwn valid global. -- Note: no validity checking is required if range checks are suppressed -- regardless of the setting of the validity checking mode. -- The following procedures are used in handling validity checking procedure Apply_Subscript_Validity_Checks (Expr : Node_Id); -- Expr is the node for an indexed component. If validity checking and -- range checking are enabled, all subscripts for this indexed component -- are checked for validity. procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id); -- Expr is a lvalue, i.e. an expression representing the target of -- an assignment. This procedure checks for this expression involving -- an assignment to an array value. We have to be sure that all the -- subscripts in such a case are valid, since according to the rules -- in (RM 13.9.1(9-11)) such assignments are not permitted to result -- in erroneous behavior in the case of invalid subscript values. procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False); -- Ensure that Expr represents a valid value of its type. If this type -- is not a scalar type, then the call has no effect, since validity -- is only an issue for scalar types. The effect of this call is to -- check if the value is known valid, if so, nothing needs to be done. -- If this is not known, then either Expr is set to be range checked, -- or specific checking code is inserted so that an exception is raised -- if the value is not valid. -- -- The optional argument Holes_OK indicates whether it is necessary to -- worry about enumeration types with non-standard representations leading -- to "holes" in the range of possible representations. If Holes_OK is -- True, then such values are assumed valid (this is used when the caller -- will make a separate check for this case anyway). If Holes_OK is False, -- then this case is checked, and code is inserted to ensure that Expr is -- valid, raising Constraint_Error if the value is not valid. function Expr_Known_Valid (Expr : Node_Id) return Boolean; -- This function tests it the value of Expr is known to be valid in -- the sense of RM 13.9.1(9-11). In the case of GNAT, it is only -- discrete types which are a concern, since for non-discrete types -- we simply continue computation with invalid values, which does -- not lead to erroneous behavior. Thus Expr_Known_Valid always -- returns True if the type of Expr is non-discrete. For discrete -- types the value returned is True only if it can be determined -- that the value is Valid. Otherwise False is returned. procedure Insert_Valid_Check (Expr : Node_Id); -- Inserts code that will check for the value of Expr being valid, in -- the sense of the 'Valid attribute returning True. Constraint_Error -- will be raised if the value is not valid. procedure Remove_Checks (Expr : Node_Id); -- Remove all checks from Expr except those that are only executed -- conditionally (on the right side of And Then/Or Else. This call -- removes only embedded checks (Do_Range_Check, Do_Overflow_Check). private type Check_Result is array (Positive range 1 .. 2) of Node_Id; -- There are two cases for the result returned by Range_Check: -- -- For the static case the result is one or two nodes that should cause -- a Constraint_Error. Typically these will include Expr itself or the -- direct descendents of Expr, such as Low/High_Bound (Expr)). It is the -- responsibility of the caller to rewrite and substitute the nodes with -- N_Raise_Constraint_Error nodes. -- -- For the non-static case a single N_Raise_Constraint_Error node -- with a non-empty Condition field is returned. -- -- Unused entries in Check_Result, if any, are simply set to Empty -- For external clients, the required processing on this result is -- achieved using the Insert_Range_Checks routine. pragma Inline (Access_Checks_Suppressed); pragma Inline (Accessibility_Checks_Suppressed); pragma Inline (Discriminant_Checks_Suppressed); pragma Inline (Division_Checks_Suppressed); pragma Inline (Elaboration_Checks_Suppressed); pragma Inline (Index_Checks_Suppressed); pragma Inline (Length_Checks_Suppressed); pragma Inline (Overflow_Checks_Suppressed); pragma Inline (Range_Checks_Suppressed); pragma Inline (Storage_Checks_Suppressed); pragma Inline (Tag_Checks_Suppressed); pragma Inline (Apply_Length_Check); pragma Inline (Apply_Range_Check); pragma Inline (Apply_Static_Length_Check); end Checks;