------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- B I N D O . G R A P H S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2019-2021, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Ada.Unchecked_Deallocation; with Butil; use Butil; with Debug; use Debug; with Output; use Output; with Bindo.Writers; use Bindo.Writers; use Bindo.Writers.Phase_Writers; package body Bindo.Graphs is ----------------------- -- Local subprograms -- ----------------------- function Sequence_Next_Cycle return Library_Graph_Cycle_Id; pragma Inline (Sequence_Next_Cycle); -- Generate a new unique library graph cycle handle function Sequence_Next_Edge return Invocation_Graph_Edge_Id; pragma Inline (Sequence_Next_Edge); -- Generate a new unique invocation graph edge handle function Sequence_Next_Edge return Library_Graph_Edge_Id; pragma Inline (Sequence_Next_Edge); -- Generate a new unique library graph edge handle function Sequence_Next_Vertex return Invocation_Graph_Vertex_Id; pragma Inline (Sequence_Next_Vertex); -- Generate a new unique invocation graph vertex handle function Sequence_Next_Vertex return Library_Graph_Vertex_Id; pragma Inline (Sequence_Next_Vertex); -- Generate a new unique library graph vertex handle ----------------------------------- -- Destroy_Invocation_Graph_Edge -- ----------------------------------- procedure Destroy_Invocation_Graph_Edge (Edge : in out Invocation_Graph_Edge_Id) is pragma Unreferenced (Edge); begin null; end Destroy_Invocation_Graph_Edge; --------------------------------- -- Destroy_Library_Graph_Cycle -- --------------------------------- procedure Destroy_Library_Graph_Cycle (Cycle : in out Library_Graph_Cycle_Id) is pragma Unreferenced (Cycle); begin null; end Destroy_Library_Graph_Cycle; -------------------------------- -- Destroy_Library_Graph_Edge -- -------------------------------- procedure Destroy_Library_Graph_Edge (Edge : in out Library_Graph_Edge_Id) is pragma Unreferenced (Edge); begin null; end Destroy_Library_Graph_Edge; ---------------------------------- -- Destroy_Library_Graph_Vertex -- ---------------------------------- procedure Destroy_Library_Graph_Vertex (Vertex : in out Library_Graph_Vertex_Id) is pragma Unreferenced (Vertex); begin null; end Destroy_Library_Graph_Vertex; -------------------------------- -- Hash_Invocation_Graph_Edge -- -------------------------------- function Hash_Invocation_Graph_Edge (Edge : Invocation_Graph_Edge_Id) return Bucket_Range_Type is begin pragma Assert (Present (Edge)); return Bucket_Range_Type (Edge); end Hash_Invocation_Graph_Edge; ---------------------------------- -- Hash_Invocation_Graph_Vertex -- ---------------------------------- function Hash_Invocation_Graph_Vertex (Vertex : Invocation_Graph_Vertex_Id) return Bucket_Range_Type is begin pragma Assert (Present (Vertex)); return Bucket_Range_Type (Vertex); end Hash_Invocation_Graph_Vertex; ------------------------------ -- Hash_Library_Graph_Cycle -- ------------------------------ function Hash_Library_Graph_Cycle (Cycle : Library_Graph_Cycle_Id) return Bucket_Range_Type is begin pragma Assert (Present (Cycle)); return Bucket_Range_Type (Cycle); end Hash_Library_Graph_Cycle; ----------------------------- -- Hash_Library_Graph_Edge -- ----------------------------- function Hash_Library_Graph_Edge (Edge : Library_Graph_Edge_Id) return Bucket_Range_Type is begin pragma Assert (Present (Edge)); return Bucket_Range_Type (Edge); end Hash_Library_Graph_Edge; ------------------------------- -- Hash_Library_Graph_Vertex -- ------------------------------- function Hash_Library_Graph_Vertex (Vertex : Library_Graph_Vertex_Id) return Bucket_Range_Type is begin pragma Assert (Present (Vertex)); return Bucket_Range_Type (Vertex); end Hash_Library_Graph_Vertex; -------------------- -- Library_Graphs -- -------------------- package body Library_Graphs is ----------------------- -- Local subprograms -- ----------------------- procedure Add_Body_Before_Spec_Edge (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Edges : LGE_Lists.Doubly_Linked_List); pragma Inline (Add_Body_Before_Spec_Edge); -- Create a new edge in library graph G between vertex Vertex and its -- corresponding spec or body, where the body is a predecessor and the -- spec a successor. Add the edge to list Edges. procedure Add_Body_Before_Spec_Edges (G : Library_Graph; Edges : LGE_Lists.Doubly_Linked_List); pragma Inline (Add_Body_Before_Spec_Edges); -- Create new edges in library graph G for all vertices and their -- corresponding specs or bodies, where the body is a predecessor -- and the spec is a successor. Add all edges to list Edges. procedure Add_Edge_Kind_Check (G : Library_Graph; Pred : Library_Graph_Vertex_Id; Succ : Library_Graph_Vertex_Id; New_Kind : Library_Graph_Edge_Kind); -- This is called by Add_Edge in the case where there is already a -- Pred-->Succ edge, to assert that the New_Kind is appropriate. Raises -- Program_Error if a bug is detected. The purpose is to prevent bugs -- where calling Add_Edge in different orders produces different output. function Add_Edge (G : Library_Graph; Pred : Library_Graph_Vertex_Id; Succ : Library_Graph_Vertex_Id; Kind : Library_Graph_Edge_Kind; Activates_Task : Boolean) return Library_Graph_Edge_Id; pragma Inline (Add_Edge); -- Create a new edge in library graph G with source vertex Pred and -- destination vertex Succ, and return its handle. Kind denotes the -- nature of the edge. Activates_Task should be set when the edge -- involves a task activation. If Pred and Succ are already related, -- no edge is created and No_Library_Graph_Edge is returned, but if -- Activates_Task is True, then the flag of the existing edge is -- updated. function At_Least_One_Edge_Satisfies (G : Library_Graph; Cycle : Library_Graph_Cycle_Id; Predicate : LGE_Predicate_Ptr) return Boolean; pragma Inline (At_Least_One_Edge_Satisfies); -- Determine whether at least one edge of cycle Cycle of library graph G -- satisfies predicate Predicate. function Copy_Cycle_Path (Cycle_Path : LGE_Lists.Doubly_Linked_List) return LGE_Lists.Doubly_Linked_List; pragma Inline (Copy_Cycle_Path); -- Create a deep copy of list Cycle_Path function Cycle_End_Vertices (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Elaborate_All_Active : Boolean) return LGV_Sets.Membership_Set; pragma Inline (Cycle_End_Vertices); -- Part of Tarjan's enumeration of the elementary circuits of a directed -- graph algorithm. Collect the vertices that terminate a cycle starting -- from vertex Vertex of library graph G in a set. This is usually the -- vertex itself, unless the vertex is part of an Elaborate_Body pair, -- or flag Elaborate_All_Active is set. In that case the complementary -- vertex is also added to the set. function Cycle_Kind_Of (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Library_Graph_Cycle_Kind; pragma Inline (Cycle_Kind_Of); -- Determine the cycle kind of edge Edge of library graph G if the edge -- participated in a circuit. function Cycle_Kind_Precedence (Kind : Library_Graph_Cycle_Kind; Compared_To : Library_Graph_Cycle_Kind) return Precedence_Kind; pragma Inline (Cycle_Kind_Precedence); -- Determine the precedence of cycle kind Kind compared to cycle kind -- Compared_To. function Cycle_Path_Precedence (G : Library_Graph; Path : LGE_Lists.Doubly_Linked_List; Compared_To : LGE_Lists.Doubly_Linked_List) return Precedence_Kind; pragma Inline (Cycle_Path_Precedence); -- Determine the precedence of cycle path Path of library graph G -- compared to path Compared_To. function Cycle_Precedence (G : Library_Graph; Cycle : Library_Graph_Cycle_Id; Compared_To : Library_Graph_Cycle_Id) return Precedence_Kind; pragma Inline (Cycle_Precedence); -- Determine the precedence of cycle Cycle of library graph G compared -- to cycle Compared_To. procedure Decrement_Library_Graph_Edge_Count (G : Library_Graph; Kind : Library_Graph_Edge_Kind); pragma Inline (Decrement_Library_Graph_Edge_Count); -- Decrement the number of edges of kind King in library graph G by one procedure Delete_Body_Before_Spec_Edges (G : Library_Graph; Edges : LGE_Lists.Doubly_Linked_List); pragma Inline (Delete_Body_Before_Spec_Edges); -- Delete all edges in list Edges from library graph G, that link spec -- and bodies, where the body acts as the predecessor and the spec as a -- successor. procedure Delete_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id); pragma Inline (Delete_Edge); -- Delete edge Edge from library graph G function Edge_Precedence (G : Library_Graph; Edge : Library_Graph_Edge_Id; Compared_To : Library_Graph_Edge_Id) return Precedence_Kind; pragma Inline (Edge_Precedence); -- Determine the precedence of edge Edge of library graph G compared to -- edge Compared_To. procedure Find_Cycles_From_Successor (G : Library_Graph; Edge : Library_Graph_Edge_Id; End_Vertices : LGV_Sets.Membership_Set; Deleted_Vertices : LGV_Sets.Membership_Set; Most_Significant_Edge : Library_Graph_Edge_Id; Invocation_Edge_Count : Natural; Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List; Visited_Set : LGV_Sets.Membership_Set; Visited_Stack : LGV_Lists.Doubly_Linked_List; Cycle_Count : in out Natural; Cycle_Limit : Natural; Elaborate_All_Active : Boolean; Has_Cycle : out Boolean; Indent : Indentation_Level); pragma Inline (Find_Cycles_From_Successor); -- Part of Tarjan's enumeration of the elementary circuits of a directed -- graph algorithm. Find all cycles from the successor indicated by edge -- Edge of library graph G. If at least one cycle exists, set Has_Cycle -- to True. The remaining parameters are as follows: -- -- * End vertices is the set of vertices that terminate a potential -- cycle. -- -- * Deleted vertices is the set of vertices that have been expanded -- during previous depth-first searches and should not be visited -- for the rest of the algorithm. -- -- * Most_Significant_Edge is the current highest-precedence edge on -- the path of the potential cycle. -- -- * Invocation_Edge_Count is the number of invocation edges on the -- path of the potential cycle. -- -- * Cycle_Path_Stack is the path of the potential cycle. -- -- * Visited_Set is the set of vertices that have been visited during -- the current depth-first search. -- -- * Visited_Stack maintains the vertices of Visited_Set in a stack -- for later unvisiting. -- -- * Cycle_Count is the number of cycles discovered so far. -- -- * Cycle_Limit is the upper bound of the number of cycles to be -- discovered. -- -- * Elaborate_All_Active should be set when the component currently -- being examined for cycles contains an Elaborate_All edge. -- -- * Indent in the desired indentation level for tracing. procedure Find_Cycles_From_Vertex (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; End_Vertices : LGV_Sets.Membership_Set; Deleted_Vertices : LGV_Sets.Membership_Set; Most_Significant_Edge : Library_Graph_Edge_Id; Invocation_Edge_Count : Natural; Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List; Visited_Set : LGV_Sets.Membership_Set; Visited_Stack : LGV_Lists.Doubly_Linked_List; Cycle_Count : in out Natural; Cycle_Limit : Natural; Elaborate_All_Active : Boolean; Is_Start_Vertex : Boolean; Has_Cycle : out Boolean; Indent : Indentation_Level); pragma Inline (Find_Cycles_From_Vertex); -- Part of Tarjan's enumeration of the elementary circuits of a directed -- graph algorithm. Find all cycles from vertex Vertex of library graph -- G. If at least one cycle exists, set Has_Cycle to True. The remaining -- parameters are as follows: -- -- * End_Vertices is the set of vertices that terminate a potential -- cycle. -- -- * Deleted_Vertices is the set of vertices that have been expanded -- during previous depth-first searches and should not be visited -- for the rest of the algorithm. -- -- * Most_Significant_Edge is the current highest-precedence edge on -- the path of the potential cycle. -- -- * Invocation_Edge_Count is the number of invocation edges on the -- path of the potential cycle. -- -- * Cycle_Path_Stack is the path of the potential cycle. -- -- * Visited_Set is the set of vertices that have been visited during -- the current depth-first search. -- -- * Visited_Stack maintains the vertices of Visited_Set in a stack -- for later unvisiting. -- -- * Cycle_Count is the number of cycles discovered so far. -- -- * Cycle_Limit is the upper bound of the number of cycles to be -- discovered. -- -- * Elaborate_All_Active should be set when the component currently -- being examined for cycles contains an Elaborate_All edge. -- -- * Indent in the desired indentation level for tracing. procedure Find_Cycles_In_Component (G : Library_Graph; Comp : Component_Id; Cycle_Count : in out Natural; Cycle_Limit : Natural); pragma Inline (Find_Cycles_In_Component); -- Part of Tarjan's enumeration of the elementary circuits of a directed -- graph algorithm. Find all cycles in component Comp of library graph -- G. The remaining parameters are as follows: -- -- * Cycle_Count is the number of cycles discovered so far. -- -- * Cycle_Limit is the upper bound of the number of cycles to be -- discovered. function Find_Edge (G : Library_Graph; Pred : Library_Graph_Vertex_Id; Succ : Library_Graph_Vertex_Id) return Library_Graph_Edge_Id; -- There must be an edge Pred-->Succ; this returns it function Find_First_Lower_Precedence_Cycle (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Id; pragma Inline (Find_First_Lower_Precedence_Cycle); -- Inspect the list of cycles of library graph G and return the first -- cycle whose precedence is lower than that of cycle Cycle. If there -- is no such cycle, return No_Library_Graph_Cycle. procedure Free is new Ada.Unchecked_Deallocation (Library_Graph_Attributes, Library_Graph); function Get_Component_Attributes (G : Library_Graph; Comp : Component_Id) return Component_Attributes; pragma Inline (Get_Component_Attributes); -- Obtain the attributes of component Comp of library graph G function Get_LGC_Attributes (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Attributes; pragma Inline (Get_LGC_Attributes); -- Obtain the attributes of cycle Cycle of library graph G function Get_LGE_Attributes (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Library_Graph_Edge_Attributes; pragma Inline (Get_LGE_Attributes); -- Obtain the attributes of edge Edge of library graph G function Get_LGV_Attributes (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Library_Graph_Vertex_Attributes; pragma Inline (Get_LGV_Attributes); -- Obtain the attributes of vertex Edge of library graph G function Has_Elaborate_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean; pragma Inline (Has_Elaborate_Body); -- Determine whether vertex Vertex of library graph G is subject to -- pragma Elaborate_Body. function Has_Elaborate_All_Edge (G : Library_Graph; Comp : Component_Id) return Boolean; pragma Inline (Has_Elaborate_All_Edge); -- Determine whether component Comp of library graph G contains an -- Elaborate_All edge that links two vertices in the same component. function Has_Elaborate_All_Edge (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean; pragma Inline (Has_Elaborate_All_Edge); -- Determine whether vertex Vertex of library graph G contains an -- Elaborate_All edge to a successor where both the vertex and the -- successor reside in the same component. function Highest_Precedence_Edge (G : Library_Graph; Left : Library_Graph_Edge_Id; Right : Library_Graph_Edge_Id) return Library_Graph_Edge_Id; pragma Inline (Highest_Precedence_Edge); -- Return the edge with highest precedence among edges Left and Right of -- library graph G. procedure Increment_Library_Graph_Edge_Count (G : Library_Graph; Kind : Library_Graph_Edge_Kind); pragma Inline (Increment_Library_Graph_Edge_Count); -- Increment the number of edges of king Kind in library graph G by one procedure Increment_Pending_Predecessors (G : Library_Graph; Comp : Component_Id; Edge : Library_Graph_Edge_Id); pragma Inline (Increment_Pending_Predecessors); -- Increment the number of pending predecessors component Comp which was -- reached via edge Edge of library graph G must wait on before it can -- be elaborated by one. procedure Increment_Pending_Predecessors (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Edge : Library_Graph_Edge_Id); pragma Inline (Increment_Pending_Predecessors); -- Increment the number of pending predecessors vertex Vertex which was -- reached via edge Edge of library graph G must wait on before it can -- be elaborated by one. procedure Initialize_Components (G : Library_Graph); pragma Inline (Initialize_Components); -- Initialize on the initial call or re-initialize on subsequent calls -- all components of library graph G. function Is_Cycle_Initiating_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Cycle_Initiating_Edge); -- Determine whether edge Edge of library graph G starts a cycle function Is_Cyclic_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Cyclic_Edge); -- Determine whether edge Edge of library graph G participates in a -- cycle. function Is_Cyclic_Elaborate_All_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Cyclic_Elaborate_All_Edge); -- Determine whether edge Edge of library graph G participates in a -- cycle and has a predecessor that is subject to pragma Elaborate_All. function Is_Cyclic_Elaborate_Body_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Cyclic_Elaborate_Body_Edge); -- Determine whether edge Edge of library graph G participates in a -- cycle and has a successor that is either a spec subject to pragma -- Elaborate_Body, or a body that completes such a spec. function Is_Cyclic_Elaborate_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Cyclic_Elaborate_Edge); -- Determine whether edge Edge of library graph G participates in a -- cycle and has a predecessor that is subject to pragma Elaborate. function Is_Cyclic_Forced_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Cyclic_Forced_Edge); -- Determine whether edge Edge of library graph G participates in a -- cycle and came from the forced-elaboration-order file. function Is_Cyclic_Invocation_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Cyclic_Invocation_Edge); -- Determine whether edge Edge of library graph G participates in a -- cycle and came from the traversal of the invocation graph. function Is_Cyclic_With_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Cyclic_With_Edge); -- Determine whether edge Edge of library graph G participates in a -- cycle and is the result of a with dependency between its successor -- and predecessor. function Is_Recorded_Edge (G : Library_Graph; Rel : Predecessor_Successor_Relation) return Boolean; pragma Inline (Is_Recorded_Edge); -- Determine whether a predecessor vertex and a successor vertex -- described by relation Rel are already linked in library graph G. function Is_Static_Successor_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Is_Static_Successor_Edge); -- Determine whether the successor of invocation edge Edge represents a -- unit that was compiled with the static model. function Is_Vertex_With_Elaborate_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean; pragma Inline (Is_Vertex_With_Elaborate_Body); -- Determine whether vertex Vertex of library graph G denotes a spec -- subject to pragma Elaborate_Body or the completing body of such a -- spec. function Links_Vertices_In_Same_Component (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean; pragma Inline (Links_Vertices_In_Same_Component); -- Determine whether edge Edge of library graph G links a predecessor -- and successor that reside in the same component. function Maximum_Invocation_Edge_Count (G : Library_Graph; Edge : Library_Graph_Edge_Id; Count : Natural) return Natural; pragma Inline (Maximum_Invocation_Edge_Count); -- Determine whether edge Edge of library graph G is an invocation edge, -- and if it is return Count + 1, otherwise return Count. procedure Normalize_Cycle_Path (Cycle_Path : LGE_Lists.Doubly_Linked_List; Most_Significant_Edge : Library_Graph_Edge_Id); pragma Inline (Normalize_Cycle_Path); -- Normalize cycle path Path by rotating it until its starting edge is -- Sig_Edge. procedure Order_Cycle (G : Library_Graph; Cycle : Library_Graph_Cycle_Id); pragma Inline (Order_Cycle); -- Insert cycle Cycle in library graph G and sort it based on its -- precedence relative to all recorded cycles. function Path (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return LGE_Lists.Doubly_Linked_List; pragma Inline (Path); -- Obtain the path of edges which comprises cycle Cycle of library -- graph G. procedure Record_Cycle (G : Library_Graph; Most_Significant_Edge : Library_Graph_Edge_Id; Invocation_Edge_Count : Natural; Cycle_Path : LGE_Lists.Doubly_Linked_List; Indent : Indentation_Level); pragma Inline (Record_Cycle); -- Normalize a cycle described by its path Cycle_Path and add it to -- library graph G. Most_Significant_Edge denotes the edge with the -- highest significance along the cycle path. Invocation_Edge_Count -- is the number of invocation edges along the cycle path. Indent is -- the desired indentation level for tracing. procedure Set_Activates_Task (G : Library_Graph; Edge : Library_Graph_Edge_Id); -- Set the Activates_Task flag of the Edge to True procedure Set_Component_Attributes (G : Library_Graph; Comp : Component_Id; Val : Component_Attributes); pragma Inline (Set_Component_Attributes); -- Set the attributes of component Comp of library graph G to value Val procedure Set_Corresponding_Vertex (G : Library_Graph; U_Id : Unit_Id; Val : Library_Graph_Vertex_Id); pragma Inline (Set_Corresponding_Vertex); -- Associate vertex Val of library graph G with unit U_Id procedure Set_Is_Recorded_Edge (G : Library_Graph; Rel : Predecessor_Successor_Relation); pragma Inline (Set_Is_Recorded_Edge); -- Mark a predecessor vertex and a successor vertex described by -- relation Rel as already linked. procedure Set_LGC_Attributes (G : Library_Graph; Cycle : Library_Graph_Cycle_Id; Val : Library_Graph_Cycle_Attributes); pragma Inline (Set_LGC_Attributes); -- Set the attributes of cycle Cycle of library graph G to value Val procedure Set_LGE_Attributes (G : Library_Graph; Edge : Library_Graph_Edge_Id; Val : Library_Graph_Edge_Attributes); pragma Inline (Set_LGE_Attributes); -- Set the attributes of edge Edge of library graph G to value Val procedure Set_LGV_Attributes (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Val : Library_Graph_Vertex_Attributes); pragma Inline (Set_LGV_Attributes); -- Set the attributes of vertex Vertex of library graph G to value Val procedure Trace_Component (G : Library_Graph; Comp : Component_Id; Indent : Indentation_Level); pragma Inline (Trace_Component); -- Write the contents of component Comp of library graph G to standard -- output. Indent is the desired indentation level for tracing. procedure Trace_Cycle (G : Library_Graph; Cycle : Library_Graph_Cycle_Id; Indent : Indentation_Level); pragma Inline (Trace_Cycle); -- Write the contents of cycle Cycle of library graph G to standard -- output. Indent is the desired indentation level for tracing. procedure Trace_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id; Indent : Indentation_Level); pragma Inline (Trace_Edge); -- Write the contents of edge Edge of library graph G to standard -- output. Indent is the desired indentation level for tracing. procedure Trace_Vertex (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Indent : Indentation_Level); pragma Inline (Trace_Vertex); -- Write the contents of vertex Vertex of library graph G to standard -- output. Indent is the desired indentation level for tracing. procedure Unvisit (Vertex : Library_Graph_Vertex_Id; Visited_Set : LGV_Sets.Membership_Set; Visited_Stack : LGV_Lists.Doubly_Linked_List); pragma Inline (Unvisit); -- Part of Tarjan's enumeration of the elementary circuits of a directed -- graph algorithm. Unwind the Visited_Stack by removing the top vertex -- from set Visited_Set until vertex Vertex is reached, inclusive. procedure Update_Pending_Predecessors (Strong_Predecessors : in out Natural; Weak_Predecessors : in out Natural; Update_Weak : Boolean; Value : Integer); pragma Inline (Update_Pending_Predecessors); -- Update the number of pending strong or weak predecessors denoted by -- Strong_Predecessors and Weak_Predecessors respectively depending on -- flag Update_Weak by adding value Value. procedure Update_Pending_Predecessors_Of_Components (G : Library_Graph); pragma Inline (Update_Pending_Predecessors_Of_Components); -- Update the number of pending predecessors all components of library -- graph G must wait on before they can be elaborated. procedure Update_Pending_Predecessors_Of_Components (G : Library_Graph; Edge : Library_Graph_Edge_Id); pragma Inline (Update_Pending_Predecessors_Of_Components); -- Update the number of pending predecessors the component of edge -- LGE_Is's successor vertex of library graph G must wait on before -- it can be elaborated. function Vertex_Precedence (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Compared_To : Library_Graph_Vertex_Id) return Precedence_Kind; pragma Inline (Vertex_Precedence); -- Determine the precedence of vertex Vertex of library graph G compared -- to vertex Compared_To. procedure Visit (Vertex : Library_Graph_Vertex_Id; Visited_Set : LGV_Sets.Membership_Set; Visited_Stack : LGV_Lists.Doubly_Linked_List); pragma Inline (Visit); -- Part of Tarjan's enumeration of the elementary circuits of a directed -- graph algorithm. Push vertex Vertex on the Visited_Stack and add it -- to set Visited_Set. -------------------- -- Activates_Task -- -------------------- function Activates_Task (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin return Get_LGE_Attributes (G, Edge).Activates_Task; end Activates_Task; ------------------------------- -- Add_Body_Before_Spec_Edge -- ------------------------------- procedure Add_Body_Before_Spec_Edge (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Edges : LGE_Lists.Doubly_Linked_List) is Edge : Library_Graph_Edge_Id; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); pragma Assert (LGE_Lists.Present (Edges)); -- A vertex requires a special Body_Before_Spec edge to its -- Corresponding_Item when it either denotes a -- -- * Body that completes a previous spec -- -- * Spec with a completing body -- -- The edge creates an intentional circularity between the spec and -- body in order to emulate a library unit, and guarantees that both -- will appear in the same component. -- -- Due to the structure of the library graph, either the spec or -- the body may be visited first, yet Corresponding_Item will still -- attempt to create the Body_Before_Spec edge. This is OK because -- successor and predecessor are kept consistent in both cases, and -- Add_Edge will prevent the creation of the second edge. -- Assume that no Body_Before_Spec is necessary Edge := No_Library_Graph_Edge; -- A body that completes a previous spec if Is_Body_With_Spec (G, Vertex) then Edge := Add_Edge (G => G, Pred => Vertex, Succ => Corresponding_Item (G, Vertex), Kind => Body_Before_Spec_Edge, Activates_Task => False); -- A spec with a completing body elsif Is_Spec_With_Body (G, Vertex) then Edge := Add_Edge (G => G, Pred => Corresponding_Item (G, Vertex), Succ => Vertex, Kind => Body_Before_Spec_Edge, Activates_Task => False); end if; if Present (Edge) then LGE_Lists.Append (Edges, Edge); end if; end Add_Body_Before_Spec_Edge; -------------------------------- -- Add_Body_Before_Spec_Edges -- -------------------------------- procedure Add_Body_Before_Spec_Edges (G : Library_Graph; Edges : LGE_Lists.Doubly_Linked_List) is Iter : Elaborable_Units_Iterator; U_Id : Unit_Id; begin pragma Assert (Present (G)); pragma Assert (LGE_Lists.Present (Edges)); Iter := Iterate_Elaborable_Units; while Has_Next (Iter) loop Next (Iter, U_Id); Add_Body_Before_Spec_Edge (G => G, Vertex => Corresponding_Vertex (G, U_Id), Edges => Edges); end loop; end Add_Body_Before_Spec_Edges; -------------- -- Add_Edge -- -------------- procedure Add_Edge (G : Library_Graph; Pred : Library_Graph_Vertex_Id; Succ : Library_Graph_Vertex_Id; Kind : Library_Graph_Edge_Kind; Activates_Task : Boolean) is Ignore : constant Library_Graph_Edge_Id := Add_Edge (G => G, Pred => Pred, Succ => Succ, Kind => Kind, Activates_Task => Activates_Task); begin null; end Add_Edge; ------------------------- -- Add_Edge_Kind_Check -- ------------------------- procedure Add_Edge_Kind_Check (G : Library_Graph; Pred : Library_Graph_Vertex_Id; Succ : Library_Graph_Vertex_Id; New_Kind : Library_Graph_Edge_Kind) is Old_Edge : constant Library_Graph_Edge_Id := Find_Edge (G, Pred, Succ); Old_Kind : constant Library_Graph_Edge_Kind := Get_LGE_Attributes (G, Old_Edge).Kind; OK : Boolean; begin case New_Kind is when Spec_Before_Body_Edge => OK := False; -- Spec_Before_Body_Edge comes first, and there is never more -- than one Spec_Before_Body_Edge for a given unit, so we can't -- have a preexisting edge in the Spec_Before_Body_Edge case. when With_Edge | Elaborate_Edge | Elaborate_All_Edge | Forced_Edge | Invocation_Edge => OK := Old_Kind <= New_Kind; -- These edges are created in the order of the enumeration -- type, and there can be duplicates; hence "<=". when Body_Before_Spec_Edge => OK := Old_Kind = Body_Before_Spec_Edge -- We call Add_Edge with Body_Before_Spec_Edge twice -- once -- for the spec and once for the body. or else Old_Kind = Forced_Edge or else Old_Kind = Invocation_Edge; -- The old one can be Forced_Edge or Invocation_Edge, which -- necessarily results in an elaboration cycle (in the static -- model), but this assertion happens before cycle detection, -- so we need to allow these cases. when No_Edge => OK := False; end case; if not OK then raise Program_Error with Old_Kind'Img & "-->" & New_Kind'Img; end if; end Add_Edge_Kind_Check; -------------- -- Add_Edge -- -------------- function Add_Edge (G : Library_Graph; Pred : Library_Graph_Vertex_Id; Succ : Library_Graph_Vertex_Id; Kind : Library_Graph_Edge_Kind; Activates_Task : Boolean) return Library_Graph_Edge_Id is pragma Assert (Present (G)); pragma Assert (Present (Pred)); pragma Assert (Present (Succ)); pragma Assert (Kind = Invocation_Edge or else not Activates_Task); -- Only invocation edges can activate tasks Rel : constant Predecessor_Successor_Relation := (Predecessor => Pred, Successor => Succ); Edge : Library_Graph_Edge_Id; begin -- If we already have a Pred-->Succ edge, we don't add another -- one. But we need to update Activates_Task, in order to avoid -- depending on the order of processing of edges. If we have -- Pred-->Succ with Activates_Task=True, and another Pred-->Succ with -- Activates_Task=False, we want Activates_Task to be True no matter -- which order we processed those two Add_Edge calls. if Is_Recorded_Edge (G, Rel) then pragma Debug (Add_Edge_Kind_Check (G, Pred, Succ, Kind)); if Activates_Task then Set_Activates_Task (G, Find_Edge (G, Pred, Succ)); end if; return No_Library_Graph_Edge; end if; Edge := Sequence_Next_Edge; -- Add the edge to the underlying graph. Note that the predecessor -- is the source of the edge because it will later need to notify -- all its successors that it has been elaborated. DG.Add_Edge (G => G.Graph, E => Edge, Source => Pred, Destination => Succ); -- Construct and save the attributes of the edge Set_LGE_Attributes (G => G, Edge => Edge, Val => (Activates_Task => Activates_Task, Kind => Kind)); -- Mark the predecessor and successor as related by the new edge. -- This prevents all further attempts to link the same predecessor -- and successor. Set_Is_Recorded_Edge (G, Rel); -- Update the number of pending predecessors the successor must wait -- on before it is elaborated. Increment_Pending_Predecessors (G => G, Vertex => Succ, Edge => Edge); -- Update the edge statistics Increment_Library_Graph_Edge_Count (G, Kind); return Edge; end Add_Edge; ---------------- -- Add_Vertex -- ---------------- procedure Add_Vertex (G : Library_Graph; U_Id : Unit_Id) is Vertex : Library_Graph_Vertex_Id; begin pragma Assert (Present (G)); pragma Assert (Present (U_Id)); -- Nothing to do when the unit already has a vertex if Present (Corresponding_Vertex (G, U_Id)) then return; end if; Vertex := Sequence_Next_Vertex; -- Add the vertex to the underlying graph DG.Add_Vertex (G.Graph, Vertex); -- Construct and save the attributes of the vertex Set_LGV_Attributes (G => G, Vertex => Vertex, Val => (Corresponding_Item => No_Library_Graph_Vertex, In_Elaboration_Order => False, Pending_Strong_Predecessors => 0, Pending_Weak_Predecessors => 0, Unit => U_Id)); -- Associate the unit with its corresponding vertex Set_Corresponding_Vertex (G, U_Id, Vertex); end Add_Vertex; --------------------------------- -- At_Least_One_Edge_Satisfies -- --------------------------------- function At_Least_One_Edge_Satisfies (G : Library_Graph; Cycle : Library_Graph_Cycle_Id; Predicate : LGE_Predicate_Ptr) return Boolean is Edge : Library_Graph_Edge_Id; Iter : Edges_Of_Cycle_Iterator; Satisfied : Boolean; begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); pragma Assert (Predicate /= null); -- Assume that the predicate cannot be satisfied Satisfied := False; -- IMPORTANT: -- -- * The iteration must run to completion in order to unlock the -- edges of the cycle. Iter := Iterate_Edges_Of_Cycle (G, Cycle); while Has_Next (Iter) loop Next (Iter, Edge); Satisfied := Satisfied or else Predicate.all (G, Edge); end loop; return Satisfied; end At_Least_One_Edge_Satisfies; -------------------------- -- Complementary_Vertex -- -------------------------- function Complementary_Vertex (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Force_Complement : Boolean) return Library_Graph_Vertex_Id is Complement : Library_Graph_Vertex_Id; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); -- Assume that there is no complementary vertex Complement := No_Library_Graph_Vertex; -- The caller requests the complement explicitly if Force_Complement then Complement := Corresponding_Item (G, Vertex); -- The vertex is a completing body of a spec subject to pragma -- Elaborate_Body. The complementary vertex is the spec. elsif Is_Body_Of_Spec_With_Elaborate_Body (G, Vertex) then Complement := Proper_Spec (G, Vertex); -- The vertex is a spec subject to pragma Elaborate_Body. The -- complementary vertex is the body. elsif Is_Spec_With_Elaborate_Body (G, Vertex) then Complement := Proper_Body (G, Vertex); end if; return Complement; end Complementary_Vertex; --------------- -- Component -- --------------- function Component (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Component_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return DG.Component (G.Graph, Vertex); end Component; --------------------------------- -- Contains_Elaborate_All_Edge -- --------------------------------- function Contains_Elaborate_All_Edge (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return At_Least_One_Edge_Satisfies (G => G, Cycle => Cycle, Predicate => Is_Elaborate_All_Edge'Access); end Contains_Elaborate_All_Edge; ------------------------------------ -- Contains_Static_Successor_Edge -- ------------------------------------ function Contains_Static_Successor_Edge (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return At_Least_One_Edge_Satisfies (G => G, Cycle => Cycle, Predicate => Is_Static_Successor_Edge'Access); end Contains_Static_Successor_Edge; ------------------------------ -- Contains_Task_Activation -- ------------------------------ function Contains_Task_Activation (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return At_Least_One_Edge_Satisfies (G => G, Cycle => Cycle, Predicate => Activates_Task'Access); end Contains_Task_Activation; --------------------- -- Copy_Cycle_Path -- --------------------- function Copy_Cycle_Path (Cycle_Path : LGE_Lists.Doubly_Linked_List) return LGE_Lists.Doubly_Linked_List is Edge : Library_Graph_Edge_Id; Iter : LGE_Lists.Iterator; Path : LGE_Lists.Doubly_Linked_List; begin pragma Assert (LGE_Lists.Present (Cycle_Path)); Path := LGE_Lists.Create; Iter := LGE_Lists.Iterate (Cycle_Path); while LGE_Lists.Has_Next (Iter) loop LGE_Lists.Next (Iter, Edge); LGE_Lists.Append (Path, Edge); end loop; return Path; end Copy_Cycle_Path; ------------------------ -- Corresponding_Item -- ------------------------ function Corresponding_Item (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Library_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Get_LGV_Attributes (G, Vertex).Corresponding_Item; end Corresponding_Item; -------------------------- -- Corresponding_Vertex -- -------------------------- function Corresponding_Vertex (G : Library_Graph; U_Id : Unit_Id) return Library_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (U_Id)); return Unit_Tables.Get (G.Unit_To_Vertex, U_Id); end Corresponding_Vertex; ------------ -- Create -- ------------ function Create (Initial_Vertices : Positive; Initial_Edges : Positive) return Library_Graph is G : constant Library_Graph := new Library_Graph_Attributes; begin G.Component_Attributes := Component_Tables.Create (Initial_Vertices); G.Cycle_Attributes := LGC_Tables.Create (Initial_Vertices); G.Cycles := LGC_Lists.Create; G.Edge_Attributes := LGE_Tables.Create (Initial_Edges); G.Graph := DG.Create (Initial_Vertices => Initial_Vertices, Initial_Edges => Initial_Edges); G.Recorded_Edges := RE_Sets.Create (Initial_Edges); G.Unit_To_Vertex := Unit_Tables.Create (Initial_Vertices); G.Vertex_Attributes := LGV_Tables.Create (Initial_Vertices); return G; end Create; ------------------------ -- Cycle_End_Vertices -- ------------------------ function Cycle_End_Vertices (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Elaborate_All_Active : Boolean) return LGV_Sets.Membership_Set is Complement : Library_Graph_Vertex_Id; End_Vertices : LGV_Sets.Membership_Set := LGV_Sets.Nil; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); End_Vertices := LGV_Sets.Create (2); -- The input vertex always terminates a cycle path LGV_Sets.Insert (End_Vertices, Vertex); -- Add the complementary vertex to the set of cycle terminating -- vertices when either Elaborate_All is in effect, or the input -- vertex is part of an Elaborat_Body pair. if Elaborate_All_Active or else Is_Vertex_With_Elaborate_Body (G, Vertex) then Complement := Complementary_Vertex (G => G, Vertex => Vertex, Force_Complement => Elaborate_All_Active); if Present (Complement) then LGV_Sets.Insert (End_Vertices, Complement); end if; end if; return End_Vertices; end Cycle_End_Vertices; ------------------- -- Cycle_Kind_Of -- ------------------- function Cycle_Kind_Of (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Library_Graph_Cycle_Kind is pragma Assert (Present (G)); pragma Assert (Present (Edge)); begin if Is_Cyclic_Elaborate_All_Edge (G, Edge) then return Elaborate_All_Cycle; elsif Is_Cyclic_Elaborate_Body_Edge (G, Edge) then return Elaborate_Body_Cycle; elsif Is_Cyclic_Elaborate_Edge (G, Edge) then return Elaborate_Cycle; elsif Is_Cyclic_Forced_Edge (G, Edge) then return Forced_Cycle; elsif Is_Cyclic_Invocation_Edge (G, Edge) then return Invocation_Cycle; else return No_Cycle_Kind; end if; end Cycle_Kind_Of; --------------------------- -- Cycle_Kind_Precedence -- --------------------------- function Cycle_Kind_Precedence (Kind : Library_Graph_Cycle_Kind; Compared_To : Library_Graph_Cycle_Kind) return Precedence_Kind is Comp_Pos : constant Integer := Library_Graph_Cycle_Kind'Pos (Compared_To); Kind_Pos : constant Integer := Library_Graph_Cycle_Kind'Pos (Kind); begin -- A lower ordinal indicates a higher precedence if Kind_Pos < Comp_Pos then return Higher_Precedence; elsif Kind_Pos > Comp_Pos then return Lower_Precedence; else return Equal_Precedence; end if; end Cycle_Kind_Precedence; --------------------------- -- Cycle_Path_Precedence -- --------------------------- function Cycle_Path_Precedence (G : Library_Graph; Path : LGE_Lists.Doubly_Linked_List; Compared_To : LGE_Lists.Doubly_Linked_List) return Precedence_Kind is procedure Next_Available (Iter : in out LGE_Lists.Iterator; Edge : out Library_Graph_Edge_Id); pragma Inline (Next_Available); -- Obtain the next edge available through iterator Iter, or return -- No_Library_Graph_Edge if the iterator has been exhausted. -------------------- -- Next_Available -- -------------------- procedure Next_Available (Iter : in out LGE_Lists.Iterator; Edge : out Library_Graph_Edge_Id) is begin -- Assume that the iterator has been exhausted Edge := No_Library_Graph_Edge; if LGE_Lists.Has_Next (Iter) then LGE_Lists.Next (Iter, Edge); end if; end Next_Available; -- Local variables Comp_Edge : Library_Graph_Edge_Id; Comp_Iter : LGE_Lists.Iterator; Path_Edge : Library_Graph_Edge_Id; Path_Iter : LGE_Lists.Iterator; Prec : Precedence_Kind; -- Start of processing for Cycle_Path_Precedence begin pragma Assert (Present (G)); pragma Assert (LGE_Lists.Present (Path)); pragma Assert (LGE_Lists.Present (Compared_To)); -- Assume that the paths have equal precedence Prec := Equal_Precedence; Comp_Iter := LGE_Lists.Iterate (Compared_To); Path_Iter := LGE_Lists.Iterate (Path); Next_Available (Comp_Iter, Comp_Edge); Next_Available (Path_Iter, Path_Edge); -- IMPORTANT: -- -- * The iteration must run to completion in order to unlock the -- edges of both paths. while Present (Comp_Edge) or else Present (Path_Edge) loop if Prec = Equal_Precedence and then Present (Comp_Edge) and then Present (Path_Edge) then Prec := Edge_Precedence (G => G, Edge => Path_Edge, Compared_To => Comp_Edge); end if; Next_Available (Comp_Iter, Comp_Edge); Next_Available (Path_Iter, Path_Edge); end loop; return Prec; end Cycle_Path_Precedence; ---------------------- -- Cycle_Precedence -- ---------------------- function Cycle_Precedence (G : Library_Graph; Cycle : Library_Graph_Cycle_Id; Compared_To : Library_Graph_Cycle_Id) return Precedence_Kind is pragma Assert (Present (G)); pragma Assert (Present (Cycle)); pragma Assert (Present (Compared_To)); Comp_Invs : constant Natural := Invocation_Edge_Count (G, Compared_To); Comp_Len : constant Natural := Length (G, Compared_To); Cycle_Invs : constant Natural := Invocation_Edge_Count (G, Cycle); Cycle_Len : constant Natural := Length (G, Cycle); Kind_Prec : constant Precedence_Kind := Cycle_Kind_Precedence (Kind => Kind (G, Cycle), Compared_To => Kind (G, Compared_To)); begin -- Prefer a cycle with higher precedence based on its kind if Kind_Prec = Higher_Precedence or else Kind_Prec = Lower_Precedence then return Kind_Prec; -- Prefer a shorter cycle elsif Cycle_Len < Comp_Len then return Higher_Precedence; elsif Cycle_Len > Comp_Len then return Lower_Precedence; -- Prefer a cycle wih fewer invocation edges elsif Cycle_Invs < Comp_Invs then return Higher_Precedence; elsif Cycle_Invs > Comp_Invs then return Lower_Precedence; -- Prefer a cycle with a higher path precedence else return Cycle_Path_Precedence (G => G, Path => Path (G, Cycle), Compared_To => Path (G, Compared_To)); end if; end Cycle_Precedence; ---------------------------------------- -- Decrement_Library_Graph_Edge_Count -- ---------------------------------------- procedure Decrement_Library_Graph_Edge_Count (G : Library_Graph; Kind : Library_Graph_Edge_Kind) is pragma Assert (Present (G)); Count : Natural renames G.Counts (Kind); begin Count := Count - 1; end Decrement_Library_Graph_Edge_Count; ------------------------------------ -- Decrement_Pending_Predecessors -- ------------------------------------ procedure Decrement_Pending_Predecessors (G : Library_Graph; Comp : Component_Id; Edge : Library_Graph_Edge_Id) is Attrs : Component_Attributes; begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); Attrs := Get_Component_Attributes (G, Comp); Update_Pending_Predecessors (Strong_Predecessors => Attrs.Pending_Strong_Predecessors, Weak_Predecessors => Attrs.Pending_Weak_Predecessors, Update_Weak => Is_Invocation_Edge (G, Edge), Value => -1); Set_Component_Attributes (G, Comp, Attrs); end Decrement_Pending_Predecessors; ------------------------------------ -- Decrement_Pending_Predecessors -- ------------------------------------ procedure Decrement_Pending_Predecessors (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Edge : Library_Graph_Edge_Id) is Attrs : Library_Graph_Vertex_Attributes; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); Attrs := Get_LGV_Attributes (G, Vertex); Update_Pending_Predecessors (Strong_Predecessors => Attrs.Pending_Strong_Predecessors, Weak_Predecessors => Attrs.Pending_Weak_Predecessors, Update_Weak => Is_Invocation_Edge (G, Edge), Value => -1); Set_LGV_Attributes (G, Vertex, Attrs); end Decrement_Pending_Predecessors; ----------------------------------- -- Delete_Body_Before_Spec_Edges -- ----------------------------------- procedure Delete_Body_Before_Spec_Edges (G : Library_Graph; Edges : LGE_Lists.Doubly_Linked_List) is Edge : Library_Graph_Edge_Id; Iter : LGE_Lists.Iterator; begin pragma Assert (Present (G)); pragma Assert (LGE_Lists.Present (Edges)); Iter := LGE_Lists.Iterate (Edges); while LGE_Lists.Has_Next (Iter) loop LGE_Lists.Next (Iter, Edge); pragma Assert (Kind (G, Edge) = Body_Before_Spec_Edge); Delete_Edge (G, Edge); end loop; end Delete_Body_Before_Spec_Edges; ----------------- -- Delete_Edge -- ----------------- procedure Delete_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) is pragma Assert (Present (G)); pragma Assert (Present (Edge)); Pred : constant Library_Graph_Vertex_Id := Predecessor (G, Edge); Succ : constant Library_Graph_Vertex_Id := Successor (G, Edge); Rel : constant Predecessor_Successor_Relation := (Predecessor => Pred, Successor => Succ); begin -- Update the edge statistics Decrement_Library_Graph_Edge_Count (G, Kind (G, Edge)); -- Update the number of pending predecessors the successor must wait -- on before it is elaborated. Decrement_Pending_Predecessors (G => G, Vertex => Succ, Edge => Edge); -- Delete the link between the predecessor and successor. This allows -- for further attempts to link the same predecessor and successor. RE_Sets.Delete (G.Recorded_Edges, Rel); -- Delete the attributes of the edge LGE_Tables.Delete (G.Edge_Attributes, Edge); -- Delete the edge from the underlying graph DG.Delete_Edge (G.Graph, Edge); end Delete_Edge; ------------- -- Destroy -- ------------- procedure Destroy (G : in out Library_Graph) is begin pragma Assert (Present (G)); Component_Tables.Destroy (G.Component_Attributes); LGC_Tables.Destroy (G.Cycle_Attributes); LGC_Lists.Destroy (G.Cycles); LGE_Tables.Destroy (G.Edge_Attributes); DG.Destroy (G.Graph); RE_Sets.Destroy (G.Recorded_Edges); Unit_Tables.Destroy (G.Unit_To_Vertex); LGV_Tables.Destroy (G.Vertex_Attributes); Free (G); end Destroy; ---------------------------------- -- Destroy_Component_Attributes -- ---------------------------------- procedure Destroy_Component_Attributes (Attrs : in out Component_Attributes) is pragma Unreferenced (Attrs); begin null; end Destroy_Component_Attributes; -------------------------------------------- -- Destroy_Library_Graph_Cycle_Attributes -- -------------------------------------------- procedure Destroy_Library_Graph_Cycle_Attributes (Attrs : in out Library_Graph_Cycle_Attributes) is begin LGE_Lists.Destroy (Attrs.Path); end Destroy_Library_Graph_Cycle_Attributes; ------------------------------------------- -- Destroy_Library_Graph_Edge_Attributes -- ------------------------------------------- procedure Destroy_Library_Graph_Edge_Attributes (Attrs : in out Library_Graph_Edge_Attributes) is pragma Unreferenced (Attrs); begin null; end Destroy_Library_Graph_Edge_Attributes; --------------------------------------------- -- Destroy_Library_Graph_Vertex_Attributes -- --------------------------------------------- procedure Destroy_Library_Graph_Vertex_Attributes (Attrs : in out Library_Graph_Vertex_Attributes) is pragma Unreferenced (Attrs); begin null; end Destroy_Library_Graph_Vertex_Attributes; --------------------- -- Edge_Precedence -- --------------------- function Edge_Precedence (G : Library_Graph; Edge : Library_Graph_Edge_Id; Compared_To : Library_Graph_Edge_Id) return Precedence_Kind is pragma Assert (Present (G)); pragma Assert (Present (Edge)); pragma Assert (Present (Compared_To)); Comp_Succ : constant Library_Graph_Vertex_Id := Successor (G, Compared_To); Edge_Succ : constant Library_Graph_Vertex_Id := Successor (G, Edge); Kind_Prec : constant Precedence_Kind := Cycle_Kind_Precedence (Kind => Cycle_Kind_Of (G, Edge), Compared_To => Cycle_Kind_Of (G, Compared_To)); Succ_Prec : constant Precedence_Kind := Vertex_Precedence (G => G, Vertex => Edge_Succ, Compared_To => Comp_Succ); begin -- Prefer an edge with a higher cycle kind precedence if Kind_Prec = Higher_Precedence or else Kind_Prec = Lower_Precedence then return Kind_Prec; -- Prefer an edge whose successor has a higher precedence elsif Comp_Succ /= Edge_Succ and then (Succ_Prec = Higher_Precedence or else Succ_Prec = Lower_Precedence) then return Succ_Prec; -- Prefer an edge whose predecessor has a higher precedence else return Vertex_Precedence (G => G, Vertex => Predecessor (G, Edge), Compared_To => Predecessor (G, Compared_To)); end if; end Edge_Precedence; --------------- -- File_Name -- --------------- function File_Name (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return File_Name_Type is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return File_Name (Unit (G, Vertex)); end File_Name; --------------------- -- Find_Components -- --------------------- procedure Find_Components (G : Library_Graph) is Edges : LGE_Lists.Doubly_Linked_List; begin pragma Assert (Present (G)); Start_Phase (Component_Discovery); -- Initialize or reinitialize the components of the graph Initialize_Components (G); -- Create a set of special edges that link a predecessor body with a -- successor spec. This is an illegal dependency, however using such -- edges eliminates the need to create yet another graph, where both -- spec and body are collapsed into a single vertex. Edges := LGE_Lists.Create; Add_Body_Before_Spec_Edges (G, Edges); DG.Find_Components (G.Graph); -- Remove the special edges that link a predecessor body with a -- successor spec because they cause unresolvable circularities. Delete_Body_Before_Spec_Edges (G, Edges); LGE_Lists.Destroy (Edges); -- Update the number of predecessors various components must wait on -- before they can be elaborated. Update_Pending_Predecessors_Of_Components (G); End_Phase (Component_Discovery); end Find_Components; ----------------- -- Find_Cycles -- ----------------- procedure Find_Cycles (G : Library_Graph) is All_Cycle_Limit : constant Natural := 64; -- The performance of Tarjan's algorithm may degrate to exponential -- when pragma Elaborate_All is in effect, or some vertex is part of -- an Elaborate_Body pair. In this case the algorithm discovers all -- combinations of edges that close a circuit starting and ending on -- some start vertex while going through different vertices. Use a -- limit on the total number of cycles within a component to guard -- against such degradation. Comp : Component_Id; Cycle_Count : Natural; Iter : Component_Iterator; begin pragma Assert (Present (G)); Start_Phase (Cycle_Discovery); -- The cycles of graph G are discovered using Tarjan's enumeration -- of the elementary circuits of a directed-graph algorithm. Do not -- modify this code unless you intimately understand the algorithm. -- -- The logic of the algorithm is split among the following routines: -- -- Cycle_End_Vertices -- Find_Cycles_From_Successor -- Find_Cycles_From_Vertex -- Find_Cycles_In_Component -- Unvisit -- Visit -- -- The original algorithm has been significantly modified in order to -- -- * Accommodate the semantics of Elaborate_All and Elaborate_Body. -- -- * Capture cycle paths as edges rather than vertices. -- -- * Take advantage of graph components. -- Assume that the graph does not contain a cycle Cycle_Count := 0; -- Run the modified version of the algorithm on each component of the -- graph. Iter := Iterate_Components (G); while Has_Next (Iter) loop Next (Iter, Comp); Find_Cycles_In_Component (G => G, Comp => Comp, Cycle_Count => Cycle_Count, Cycle_Limit => All_Cycle_Limit); end loop; End_Phase (Cycle_Discovery); end Find_Cycles; -------------------------------- -- Find_Cycles_From_Successor -- -------------------------------- procedure Find_Cycles_From_Successor (G : Library_Graph; Edge : Library_Graph_Edge_Id; End_Vertices : LGV_Sets.Membership_Set; Deleted_Vertices : LGV_Sets.Membership_Set; Most_Significant_Edge : Library_Graph_Edge_Id; Invocation_Edge_Count : Natural; Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List; Visited_Set : LGV_Sets.Membership_Set; Visited_Stack : LGV_Lists.Doubly_Linked_List; Cycle_Count : in out Natural; Cycle_Limit : Natural; Elaborate_All_Active : Boolean; Has_Cycle : out Boolean; Indent : Indentation_Level) is pragma Assert (Present (G)); pragma Assert (Present (Edge)); pragma Assert (LGV_Sets.Present (End_Vertices)); pragma Assert (LGV_Sets.Present (Deleted_Vertices)); pragma Assert (LGE_Lists.Present (Cycle_Path_Stack)); pragma Assert (LGV_Sets.Present (Visited_Set)); pragma Assert (LGV_Lists.Present (Visited_Stack)); Succ : constant Library_Graph_Vertex_Id := Successor (G, Edge); Succ_Indent : constant Indentation_Level := Indent + Nested_Indentation; begin -- Assume that the successor reached via the edge does not result in -- a cycle. Has_Cycle := False; -- Nothing to do when the edge connects two vertices residing in two -- different components. if not Is_Cyclic_Edge (G, Edge) then return; end if; Trace_Edge (G, Edge, Indent); -- The modified version does not place vertices on the "point stack", -- but instead collects the edges comprising the cycle. Prepare the -- edge for backtracking. LGE_Lists.Prepend (Cycle_Path_Stack, Edge); Find_Cycles_From_Vertex (G => G, Vertex => Succ, End_Vertices => End_Vertices, Deleted_Vertices => Deleted_Vertices, Most_Significant_Edge => Most_Significant_Edge, Invocation_Edge_Count => Invocation_Edge_Count, Cycle_Path_Stack => Cycle_Path_Stack, Visited_Set => Visited_Set, Visited_Stack => Visited_Stack, Cycle_Count => Cycle_Count, Cycle_Limit => Cycle_Limit, Elaborate_All_Active => Elaborate_All_Active, Is_Start_Vertex => False, Has_Cycle => Has_Cycle, Indent => Succ_Indent); -- The modified version does not place vertices on the "point stack", -- but instead collects the edges comprising the cycle. Backtrack the -- edge. LGE_Lists.Delete_First (Cycle_Path_Stack); end Find_Cycles_From_Successor; ----------------------------- -- Find_Cycles_From_Vertex -- ----------------------------- procedure Find_Cycles_From_Vertex (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; End_Vertices : LGV_Sets.Membership_Set; Deleted_Vertices : LGV_Sets.Membership_Set; Most_Significant_Edge : Library_Graph_Edge_Id; Invocation_Edge_Count : Natural; Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List; Visited_Set : LGV_Sets.Membership_Set; Visited_Stack : LGV_Lists.Doubly_Linked_List; Cycle_Count : in out Natural; Cycle_Limit : Natural; Elaborate_All_Active : Boolean; Is_Start_Vertex : Boolean; Has_Cycle : out Boolean; Indent : Indentation_Level) is Edge_Indent : constant Indentation_Level := Indent + Nested_Indentation; Complement : Library_Graph_Vertex_Id; Edge : Library_Graph_Edge_Id; Iter : Edges_To_Successors_Iterator; Complement_Has_Cycle : Boolean; -- This flag is set when either Elaborate_All is in effect or the -- current vertex is part of an Elaborate_Body pair, and visiting -- the "complementary" vertex resulted in a cycle. Successor_Has_Cycle : Boolean; -- This flag is set when visiting at least one successor of the -- current vertex resulted in a cycle. begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); pragma Assert (LGV_Sets.Present (End_Vertices)); pragma Assert (LGV_Sets.Present (Deleted_Vertices)); pragma Assert (LGE_Lists.Present (Cycle_Path_Stack)); pragma Assert (LGV_Sets.Present (Visited_Set)); pragma Assert (LGV_Lists.Present (Visited_Stack)); -- Assume that the vertex does not close a circuit Has_Cycle := False; -- Nothing to do when the limit on the number of saved cycles has -- been reached. This protects against a combinatorial explosion -- in components with Elaborate_All cycles. if Cycle_Count >= Cycle_Limit then return; -- The vertex closes the circuit, thus resulting in a cycle. Save -- the cycle for later diagnostics. The initial invocation of the -- routine always ignores the starting vertex, to prevent a spurious -- self-cycle. elsif not Is_Start_Vertex and then LGV_Sets.Contains (End_Vertices, Vertex) then Trace_Vertex (G, Vertex, Indent); Record_Cycle (G => G, Most_Significant_Edge => Most_Significant_Edge, Invocation_Edge_Count => Invocation_Edge_Count, Cycle_Path => Cycle_Path_Stack, Indent => Indent); Has_Cycle := True; Cycle_Count := Cycle_Count + 1; return; -- Nothing to do when the vertex has already been deleted. This -- indicates that all available cycles involving the vertex have -- been discovered, and the vertex cannot contribute further to -- the depth-first search. elsif LGV_Sets.Contains (Deleted_Vertices, Vertex) then return; -- Nothing to do when the vertex has already been visited. This -- indicates that the depth-first search initiated from some start -- vertex already encountered this vertex, and the visited stack has -- not been unrolled yet. elsif LGV_Sets.Contains (Visited_Set, Vertex) then return; end if; Trace_Vertex (G, Vertex, Indent); -- Mark the vertex as visited Visit (Vertex => Vertex, Visited_Set => Visited_Set, Visited_Stack => Visited_Stack); -- Extend the depth-first search via all the edges to successors Iter := Iterate_Edges_To_Successors (G, Vertex); while Has_Next (Iter) loop Next (Iter, Edge); Find_Cycles_From_Successor (G => G, Edge => Edge, End_Vertices => End_Vertices, Deleted_Vertices => Deleted_Vertices, -- The edge may be more important than the most important edge -- up to this point, thus "upgrading" the nature of the cycle, -- and shifting its point of normalization. Most_Significant_Edge => Highest_Precedence_Edge (G => G, Left => Edge, Right => Most_Significant_Edge), -- The edge may be an invocation edge, in which case the count -- of invocation edges increases by one. Invocation_Edge_Count => Maximum_Invocation_Edge_Count (G => G, Edge => Edge, Count => Invocation_Edge_Count), Cycle_Path_Stack => Cycle_Path_Stack, Visited_Set => Visited_Set, Visited_Stack => Visited_Stack, Cycle_Count => Cycle_Count, Cycle_Limit => Cycle_Limit, Elaborate_All_Active => Elaborate_All_Active, Has_Cycle => Successor_Has_Cycle, Indent => Edge_Indent); Has_Cycle := Has_Cycle or Successor_Has_Cycle; end loop; -- Visit the complementary vertex of the current vertex when pragma -- Elaborate_All is in effect, or the current vertex is part of an -- Elaborate_Body pair. if Elaborate_All_Active or else Is_Vertex_With_Elaborate_Body (G, Vertex) then Complement := Complementary_Vertex (G => G, Vertex => Vertex, Force_Complement => Elaborate_All_Active); if Present (Complement) then Find_Cycles_From_Vertex (G => G, Vertex => Complement, End_Vertices => End_Vertices, Deleted_Vertices => Deleted_Vertices, Most_Significant_Edge => Most_Significant_Edge, Invocation_Edge_Count => Invocation_Edge_Count, Cycle_Path_Stack => Cycle_Path_Stack, Visited_Set => Visited_Set, Visited_Stack => Visited_Stack, Cycle_Count => Cycle_Count, Cycle_Limit => Cycle_Limit, Elaborate_All_Active => Elaborate_All_Active, Is_Start_Vertex => Is_Start_Vertex, Has_Cycle => Complement_Has_Cycle, Indent => Indent); Has_Cycle := Has_Cycle or Complement_Has_Cycle; end if; end if; -- The original algorithm clears the "marked stack" in two places: -- -- * When the depth-first search starting from the current vertex -- discovers at least one cycle, and -- -- * When the depth-first search initiated from a start vertex -- completes. -- -- The modified version handles both cases in one place. if Has_Cycle or else Is_Start_Vertex then Unvisit (Vertex => Vertex, Visited_Set => Visited_Set, Visited_Stack => Visited_Stack); end if; -- Delete a start vertex from the graph once its depth-first search -- completes. This action preserves the invariant where a cycle is -- not rediscovered "later" in some permuted form. if Is_Start_Vertex then LGV_Sets.Insert (Deleted_Vertices, Vertex); end if; end Find_Cycles_From_Vertex; ------------------------------ -- Find_Cycles_In_Component -- ------------------------------ procedure Find_Cycles_In_Component (G : Library_Graph; Comp : Component_Id; Cycle_Count : in out Natural; Cycle_Limit : Natural) is pragma Assert (Present (G)); pragma Assert (Present (Comp)); Num_Of_Vertices : constant Natural := Number_Of_Component_Vertices (G, Comp); Elaborate_All_Active : constant Boolean := Has_Elaborate_All_Edge (G, Comp); -- The presence of an Elaborate_All edge within a component causes -- all spec-body pairs to be treated as one vertex. Has_Cycle : Boolean; Iter : Component_Vertex_Iterator; Vertex : Library_Graph_Vertex_Id; Cycle_Path_Stack : LGE_Lists.Doubly_Linked_List := LGE_Lists.Nil; -- The "point stack" of Tarjan's algorithm. The original maintains -- a stack of vertices, however for diagnostic purposes using edges -- is preferable. Deleted_Vertices : LGV_Sets.Membership_Set := LGV_Sets.Nil; -- The original algorithm alters the graph by deleting vertices with -- lower ordinals compared to some starting vertex. Since the graph -- must remain intact for diagnostic purposes, vertices are instead -- inserted in this set and treated as "deleted". End_Vertices : LGV_Sets.Membership_Set := LGV_Sets.Nil; -- The original algorithm uses a single vertex to indicate the start -- and end vertex of a cycle. The semantics of pragmas Elaborate_All -- and Elaborate_Body increase this number by one. The end vertices -- are added to this set and treated as "cycle-terminating". Visited_Set : LGV_Sets.Membership_Set := LGV_Sets.Nil; -- The "mark" array of Tarjan's algorithm. Since the original visits -- all vertices in increasing ordinal number 1 .. N, the array offers -- a one-to-one mapping between a vertex and its "marked" state. The -- modified version however visits vertices within components, where -- their ordinals are not contiguous. Vertices are added to this set -- and treated as "marked". Visited_Stack : LGV_Lists.Doubly_Linked_List := LGV_Lists.Nil; -- The "marked stack" of Tarjan's algorithm begin Trace_Component (G, Comp, No_Indentation); -- Initialize all component-level data structures Cycle_Path_Stack := LGE_Lists.Create; Deleted_Vertices := LGV_Sets.Create (Num_Of_Vertices); Visited_Set := LGV_Sets.Create (Num_Of_Vertices); Visited_Stack := LGV_Lists.Create; -- The modified version does not use ordinals to visit vertices in -- 1 .. N fashion. To preserve the invariant of the original, this -- version deletes a vertex after its depth-first search completes. -- The timing of the deletion is sound because all cycles through -- that vertex have already been discovered, thus the vertex cannot -- contribute to any cycles discovered "later" in the algorithm. Iter := Iterate_Component_Vertices (G, Comp); while Has_Next (Iter) loop Next (Iter, Vertex); -- Construct the set of vertices (at most 2) that terminates a -- potential cycle that starts from the current vertex. End_Vertices := Cycle_End_Vertices (G => G, Vertex => Vertex, Elaborate_All_Active => Elaborate_All_Active); -- The modified version maintains two additional attributes while -- performing the depth-first search: -- -- * The most significant edge of the current potential cycle. -- -- * The number of invocation edges encountered along the path -- of the current potential cycle. -- -- Both attributes are used in the heuristic that determines the -- importance of cycles. Find_Cycles_From_Vertex (G => G, Vertex => Vertex, End_Vertices => End_Vertices, Deleted_Vertices => Deleted_Vertices, Most_Significant_Edge => No_Library_Graph_Edge, Invocation_Edge_Count => 0, Cycle_Path_Stack => Cycle_Path_Stack, Visited_Set => Visited_Set, Visited_Stack => Visited_Stack, Cycle_Count => Cycle_Count, Cycle_Limit => Cycle_Limit, Elaborate_All_Active => Elaborate_All_Active, Is_Start_Vertex => True, Has_Cycle => Has_Cycle, Indent => Nested_Indentation); -- Destroy the cycle-terminating vertices because a new set must -- be constructed for the next vertex. LGV_Sets.Destroy (End_Vertices); end loop; -- Destroy all component-level data structures LGE_Lists.Destroy (Cycle_Path_Stack); LGV_Sets.Destroy (Deleted_Vertices); LGV_Sets.Destroy (Visited_Set); LGV_Lists.Destroy (Visited_Stack); end Find_Cycles_In_Component; --------------- -- Find_Edge -- --------------- function Find_Edge (G : Library_Graph; Pred : Library_Graph_Vertex_Id; Succ : Library_Graph_Vertex_Id) return Library_Graph_Edge_Id is Result : Library_Graph_Edge_Id := No_Library_Graph_Edge; Edge : Library_Graph_Edge_Id; Iter : Edges_To_Successors_Iterator := Iterate_Edges_To_Successors (G, Pred); begin -- IMPORTANT: -- -- * The iteration must run to completion in order to unlock the -- edges to successors. -- This does a linear search through the successors of Pred. -- Efficiency is not a problem, because this is called only when -- Activates_Task is True, which is rare, and anyway, there aren't -- usually large numbers of successors. while Has_Next (Iter) loop Next (Iter, Edge); if Succ = Successor (G, Edge) then pragma Assert (not Present (Result)); Result := Edge; end if; end loop; pragma Assert (Present (Result)); return Result; end Find_Edge; --------------------------------------- -- Find_First_Lower_Precedence_Cycle -- --------------------------------------- function Find_First_Lower_Precedence_Cycle (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Id is Current_Cycle : Library_Graph_Cycle_Id; Iter : All_Cycle_Iterator; Lesser_Cycle : Library_Graph_Cycle_Id; begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); -- Assume that there is no lesser cycle Lesser_Cycle := No_Library_Graph_Cycle; -- Find a cycle with a slightly lower precedence than the input -- cycle. -- -- IMPORTANT: -- -- * The iterator must run to completion in order to unlock the -- list of all cycles. Iter := Iterate_All_Cycles (G); while Has_Next (Iter) loop Next (Iter, Current_Cycle); if not Present (Lesser_Cycle) and then Cycle_Precedence (G => G, Cycle => Cycle, Compared_To => Current_Cycle) = Higher_Precedence then Lesser_Cycle := Current_Cycle; end if; end loop; return Lesser_Cycle; end Find_First_Lower_Precedence_Cycle; ------------------------------ -- Get_Component_Attributes -- ------------------------------ function Get_Component_Attributes (G : Library_Graph; Comp : Component_Id) return Component_Attributes is begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); return Component_Tables.Get (G.Component_Attributes, Comp); end Get_Component_Attributes; ------------------------ -- Get_LGC_Attributes -- ------------------------ function Get_LGC_Attributes (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Attributes is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return LGC_Tables.Get (G.Cycle_Attributes, Cycle); end Get_LGC_Attributes; ------------------------ -- Get_LGE_Attributes -- ------------------------ function Get_LGE_Attributes (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Library_Graph_Edge_Attributes is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return LGE_Tables.Get (G.Edge_Attributes, Edge); end Get_LGE_Attributes; ------------------------ -- Get_LGV_Attributes -- ------------------------ function Get_LGV_Attributes (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Library_Graph_Vertex_Attributes is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return LGV_Tables.Get (G.Vertex_Attributes, Vertex); end Get_LGV_Attributes; ----------------------------- -- Has_Elaborate_All_Cycle -- ----------------------------- function Has_Elaborate_All_Cycle (G : Library_Graph) return Boolean is Edge : Library_Graph_Edge_Id; Iter : All_Edge_Iterator; Seen : Boolean; begin pragma Assert (Present (G)); -- Assume that no cyclic Elaborate_All edge has been seen Seen := False; -- IMPORTANT: -- -- * The iteration must run to completion in order to unlock the -- graph. Iter := Iterate_All_Edges (G); while Has_Next (Iter) loop Next (Iter, Edge); if not Seen and then Is_Cyclic_Elaborate_All_Edge (G, Edge) then Seen := True; end if; end loop; return Seen; end Has_Elaborate_All_Cycle; ---------------------------- -- Has_Elaborate_All_Edge -- ---------------------------- function Has_Elaborate_All_Edge (G : Library_Graph; Comp : Component_Id) return Boolean is Has_Edge : Boolean; Iter : Component_Vertex_Iterator; Vertex : Library_Graph_Vertex_Id; begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); -- Assume that there is no Elaborate_All edge Has_Edge := False; -- IMPORTANT: -- -- * The iteration must run to completion in order to unlock the -- component vertices. Iter := Iterate_Component_Vertices (G, Comp); while Has_Next (Iter) loop Next (Iter, Vertex); Has_Edge := Has_Edge or else Has_Elaborate_All_Edge (G, Vertex); end loop; return Has_Edge; end Has_Elaborate_All_Edge; ---------------------------- -- Has_Elaborate_All_Edge -- ---------------------------- function Has_Elaborate_All_Edge (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is Edge : Library_Graph_Edge_Id; Has_Edge : Boolean; Iter : Edges_To_Successors_Iterator; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); -- Assume that there is no Elaborate_All edge Has_Edge := False; -- IMPORTANT: -- -- * The iteration must run to completion in order to unlock the -- edges to successors. Iter := Iterate_Edges_To_Successors (G, Vertex); while Has_Next (Iter) loop Next (Iter, Edge); Has_Edge := Has_Edge or else Is_Cyclic_Elaborate_All_Edge (G, Edge); end loop; return Has_Edge; end Has_Elaborate_All_Edge; ------------------------ -- Has_Elaborate_Body -- ------------------------ function Has_Elaborate_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); U_Id : constant Unit_Id := Unit (G, Vertex); U_Rec : Unit_Record renames ALI.Units.Table (U_Id); begin -- Treat the spec and body as decoupled when switch -d_b (ignore the -- effects of pragma Elaborate_Body) is in effect. return U_Rec.Elaborate_Body and not Debug_Flag_Underscore_B; end Has_Elaborate_Body; -------------- -- Has_Next -- -------------- function Has_Next (Iter : All_Cycle_Iterator) return Boolean is begin return LGC_Lists.Has_Next (LGC_Lists.Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : All_Edge_Iterator) return Boolean is begin return DG.Has_Next (DG.All_Edge_Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : All_Vertex_Iterator) return Boolean is begin return DG.Has_Next (DG.All_Vertex_Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : Component_Iterator) return Boolean is begin return DG.Has_Next (DG.Component_Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : Component_Vertex_Iterator) return Boolean is begin return DG.Has_Next (DG.Component_Vertex_Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : Edges_Of_Cycle_Iterator) return Boolean is begin return LGE_Lists.Has_Next (LGE_Lists.Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : Edges_To_Successors_Iterator) return Boolean is begin return DG.Has_Next (DG.Outgoing_Edge_Iterator (Iter)); end Has_Next; ----------------------------- -- Has_No_Elaboration_Code -- ----------------------------- function Has_No_Elaboration_Code (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Has_No_Elaboration_Code (Unit (G, Vertex)); end Has_No_Elaboration_Code; ----------------------------------------- -- Hash_Library_Graph_Cycle_Attributes -- ----------------------------------------- function Hash_Library_Graph_Cycle_Attributes (Attrs : Library_Graph_Cycle_Attributes) return Bucket_Range_Type is Edge : Library_Graph_Edge_Id; Hash : Bucket_Range_Type; Iter : LGE_Lists.Iterator; begin pragma Assert (LGE_Lists.Present (Attrs.Path)); -- The hash is obtained in the following manner: -- -- (((edge1 * 31) + edge2) * 31) + edgeN Hash := 0; Iter := LGE_Lists.Iterate (Attrs.Path); while LGE_Lists.Has_Next (Iter) loop LGE_Lists.Next (Iter, Edge); Hash := (Hash * 31) + Bucket_Range_Type (Edge); end loop; return Hash; end Hash_Library_Graph_Cycle_Attributes; ----------------------------------------- -- Hash_Predecessor_Successor_Relation -- ----------------------------------------- function Hash_Predecessor_Successor_Relation (Rel : Predecessor_Successor_Relation) return Bucket_Range_Type is begin pragma Assert (Present (Rel.Predecessor)); pragma Assert (Present (Rel.Successor)); return Hash_Two_Keys (Bucket_Range_Type (Rel.Predecessor), Bucket_Range_Type (Rel.Successor)); end Hash_Predecessor_Successor_Relation; ------------------------------ -- Highest_Precedence_Cycle -- ------------------------------ function Highest_Precedence_Cycle (G : Library_Graph) return Library_Graph_Cycle_Id is begin pragma Assert (Present (G)); pragma Assert (LGC_Lists.Present (G.Cycles)); if LGC_Lists.Is_Empty (G.Cycles) then return No_Library_Graph_Cycle; -- The highest precedence cycle is always the first in the list of -- all cycles. else return LGC_Lists.First (G.Cycles); end if; end Highest_Precedence_Cycle; ----------------------------- -- Highest_Precedence_Edge -- ----------------------------- function Highest_Precedence_Edge (G : Library_Graph; Left : Library_Graph_Edge_Id; Right : Library_Graph_Edge_Id) return Library_Graph_Edge_Id is Edge_Prec : Precedence_Kind; begin pragma Assert (Present (G)); -- Both edges are available, pick the one with highest precedence if Present (Left) and then Present (Right) then Edge_Prec := Edge_Precedence (G => G, Edge => Left, Compared_To => Right); if Edge_Prec = Higher_Precedence then return Left; -- The precedence rules for edges are such that no two edges can -- ever have the same precedence. else pragma Assert (Edge_Prec = Lower_Precedence); return Right; end if; -- Otherwise at least one edge must be present elsif Present (Left) then return Left; else pragma Assert (Present (Right)); return Right; end if; end Highest_Precedence_Edge; -------------------------- -- In_Elaboration_Order -- -------------------------- function In_Elaboration_Order (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Get_LGV_Attributes (G, Vertex).In_Elaboration_Order; end In_Elaboration_Order; ----------------------- -- In_Same_Component -- ----------------------- function In_Same_Component (G : Library_Graph; Left : Library_Graph_Vertex_Id; Right : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Left)); pragma Assert (Present (Right)); return Component (G, Left) = Component (G, Right); end In_Same_Component; ---------------------------------------- -- Increment_Library_Graph_Edge_Count -- ---------------------------------------- procedure Increment_Library_Graph_Edge_Count (G : Library_Graph; Kind : Library_Graph_Edge_Kind) is pragma Assert (Present (G)); Count : Natural renames G.Counts (Kind); begin Count := Count + 1; end Increment_Library_Graph_Edge_Count; ------------------------------------ -- Increment_Pending_Predecessors -- ------------------------------------ procedure Increment_Pending_Predecessors (G : Library_Graph; Comp : Component_Id; Edge : Library_Graph_Edge_Id) is Attrs : Component_Attributes; begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); Attrs := Get_Component_Attributes (G, Comp); Update_Pending_Predecessors (Strong_Predecessors => Attrs.Pending_Strong_Predecessors, Weak_Predecessors => Attrs.Pending_Weak_Predecessors, Update_Weak => Is_Invocation_Edge (G, Edge), Value => 1); Set_Component_Attributes (G, Comp, Attrs); end Increment_Pending_Predecessors; ------------------------------------ -- Increment_Pending_Predecessors -- ------------------------------------ procedure Increment_Pending_Predecessors (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Edge : Library_Graph_Edge_Id) is Attrs : Library_Graph_Vertex_Attributes; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); Attrs := Get_LGV_Attributes (G, Vertex); Update_Pending_Predecessors (Strong_Predecessors => Attrs.Pending_Strong_Predecessors, Weak_Predecessors => Attrs.Pending_Weak_Predecessors, Update_Weak => Is_Invocation_Edge (G, Edge), Value => 1); Set_LGV_Attributes (G, Vertex, Attrs); end Increment_Pending_Predecessors; --------------------------- -- Initialize_Components -- --------------------------- procedure Initialize_Components (G : Library_Graph) is begin pragma Assert (Present (G)); -- The graph already contains a set of components. Reinitialize -- them in order to accommodate the new set of components about to -- be computed. if Number_Of_Components (G) > 0 then Component_Tables.Destroy (G.Component_Attributes); G.Component_Attributes := Component_Tables.Create (Number_Of_Vertices (G)); end if; end Initialize_Components; --------------------------- -- Invocation_Edge_Count -- --------------------------- function Invocation_Edge_Count (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Natural is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return Get_LGC_Attributes (G, Cycle).Invocation_Edge_Count; end Invocation_Edge_Count; ------------------------------- -- Invocation_Graph_Encoding -- ------------------------------- function Invocation_Graph_Encoding (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Invocation_Graph_Encoding_Kind is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Invocation_Graph_Encoding (Unit (G, Vertex)); end Invocation_Graph_Encoding; ------------- -- Is_Body -- ------------- function Is_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); U_Id : constant Unit_Id := Unit (G, Vertex); U_Rec : Unit_Record renames ALI.Units.Table (U_Id); begin return U_Rec.Utype = Is_Body or else U_Rec.Utype = Is_Body_Only; end Is_Body; ----------------------------------------- -- Is_Body_Of_Spec_With_Elaborate_Body -- ----------------------------------------- function Is_Body_Of_Spec_With_Elaborate_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); if Is_Body_With_Spec (G, Vertex) then return Is_Spec_With_Elaborate_Body (G => G, Vertex => Proper_Spec (G, Vertex)); end if; return False; end Is_Body_Of_Spec_With_Elaborate_Body; ----------------------- -- Is_Body_With_Spec -- ----------------------- function Is_Body_With_Spec (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); U_Id : constant Unit_Id := Unit (G, Vertex); U_Rec : Unit_Record renames ALI.Units.Table (U_Id); begin return U_Rec.Utype = Is_Body; end Is_Body_With_Spec; ------------------------------ -- Is_Cycle_Initiating_Edge -- ------------------------------ function Is_Cycle_Initiating_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Is_Cyclic_Elaborate_All_Edge (G, Edge) or else Is_Cyclic_Elaborate_Body_Edge (G, Edge) or else Is_Cyclic_Elaborate_Edge (G, Edge) or else Is_Cyclic_Forced_Edge (G, Edge) or else Is_Cyclic_Invocation_Edge (G, Edge); end Is_Cycle_Initiating_Edge; -------------------- -- Is_Cyclic_Edge -- -------------------- function Is_Cyclic_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Is_Cycle_Initiating_Edge (G, Edge) or else Is_Cyclic_With_Edge (G, Edge); end Is_Cyclic_Edge; ---------------------------------- -- Is_Cyclic_Elaborate_All_Edge -- ---------------------------------- function Is_Cyclic_Elaborate_All_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Is_Elaborate_All_Edge (G, Edge) and then Links_Vertices_In_Same_Component (G, Edge); end Is_Cyclic_Elaborate_All_Edge; ----------------------------------- -- Is_Cyclic_Elaborate_Body_Edge -- ----------------------------------- function Is_Cyclic_Elaborate_Body_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Is_Elaborate_Body_Edge (G, Edge) and then Links_Vertices_In_Same_Component (G, Edge); end Is_Cyclic_Elaborate_Body_Edge; ------------------------------ -- Is_Cyclic_Elaborate_Edge -- ------------------------------ function Is_Cyclic_Elaborate_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Is_Elaborate_Edge (G, Edge) and then Links_Vertices_In_Same_Component (G, Edge); end Is_Cyclic_Elaborate_Edge; --------------------------- -- Is_Cyclic_Forced_Edge -- --------------------------- function Is_Cyclic_Forced_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Is_Forced_Edge (G, Edge) and then Links_Vertices_In_Same_Component (G, Edge); end Is_Cyclic_Forced_Edge; ------------------------------- -- Is_Cyclic_Invocation_Edge -- ------------------------------- function Is_Cyclic_Invocation_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Is_Invocation_Edge (G, Edge) and then Links_Vertices_In_Same_Component (G, Edge); end Is_Cyclic_Invocation_Edge; ------------------------- -- Is_Cyclic_With_Edge -- ------------------------- function Is_Cyclic_With_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); -- Ignore Elaborate_Body edges because they also appear as with -- edges, but have special successors. return Is_With_Edge (G, Edge) and then Links_Vertices_In_Same_Component (G, Edge) and then not Is_Elaborate_Body_Edge (G, Edge); end Is_Cyclic_With_Edge; ------------------------------- -- Is_Dynamically_Elaborated -- ------------------------------- function Is_Dynamically_Elaborated (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Is_Dynamically_Elaborated (Unit (G, Vertex)); end Is_Dynamically_Elaborated; ----------------------------- -- Is_Elaborable_Component -- ----------------------------- function Is_Elaborable_Component (G : Library_Graph; Comp : Component_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); -- A component is elaborable when: -- -- * It is not waiting on strong predecessors, and -- * It is not waiting on weak predecessors return Pending_Strong_Predecessors (G, Comp) = 0 and then Pending_Weak_Predecessors (G, Comp) = 0; end Is_Elaborable_Component; -------------------------- -- Is_Elaborable_Vertex -- -------------------------- function Is_Elaborable_Vertex (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); Complement : constant Library_Graph_Vertex_Id := Complementary_Vertex (G => G, Vertex => Vertex, Force_Complement => False); Strong_Preds : Natural; Weak_Preds : Natural; begin -- A vertex is elaborable when: -- -- * It has not been elaborated yet, and -- * The complement vertex of an Elaborate_Body pair has not been -- elaborated yet, and -- * It resides within an elaborable component, and -- * It is not waiting on strong predecessors, and -- * It is not waiting on weak predecessors if In_Elaboration_Order (G, Vertex) then return False; elsif Present (Complement) and then In_Elaboration_Order (G, Complement) then return False; elsif not Is_Elaborable_Component (G, Component (G, Vertex)) then return False; end if; Pending_Predecessors_For_Elaboration (G => G, Vertex => Vertex, Strong_Preds => Strong_Preds, Weak_Preds => Weak_Preds); return Strong_Preds = 0 and then Weak_Preds = 0; end Is_Elaborable_Vertex; --------------------------- -- Is_Elaborate_All_Edge -- --------------------------- function Is_Elaborate_All_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Kind (G, Edge) = Elaborate_All_Edge; end Is_Elaborate_All_Edge; ---------------------------- -- Is_Elaborate_Body_Edge -- ---------------------------- function Is_Elaborate_Body_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Kind (G, Edge) = With_Edge and then Is_Vertex_With_Elaborate_Body (G, Successor (G, Edge)); end Is_Elaborate_Body_Edge; ----------------------- -- Is_Elaborate_Edge -- ----------------------- function Is_Elaborate_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Kind (G, Edge) = Elaborate_Edge; end Is_Elaborate_Edge; ---------------------------- -- Is_Elaborate_Body_Pair -- ---------------------------- function Is_Elaborate_Body_Pair (G : Library_Graph; Spec_Vertex : Library_Graph_Vertex_Id; Body_Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Spec_Vertex)); pragma Assert (Present (Body_Vertex)); return Is_Spec_With_Elaborate_Body (G, Spec_Vertex) and then Is_Body_Of_Spec_With_Elaborate_Body (G, Body_Vertex) and then Proper_Body (G, Spec_Vertex) = Body_Vertex; end Is_Elaborate_Body_Pair; -------------------- -- Is_Forced_Edge -- -------------------- function Is_Forced_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Kind (G, Edge) = Forced_Edge; end Is_Forced_Edge; ---------------------- -- Is_Internal_Unit -- ---------------------- function Is_Internal_Unit (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Is_Internal_Unit (Unit (G, Vertex)); end Is_Internal_Unit; ------------------------ -- Is_Invocation_Edge -- ------------------------ function Is_Invocation_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Kind (G, Edge) = Invocation_Edge; end Is_Invocation_Edge; ------------------------ -- Is_Predefined_Unit -- ------------------------ function Is_Predefined_Unit (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Is_Predefined_Unit (Unit (G, Vertex)); end Is_Predefined_Unit; --------------------------- -- Is_Preelaborated_Unit -- --------------------------- function Is_Preelaborated_Unit (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); U_Id : constant Unit_Id := Unit (G, Vertex); U_Rec : Unit_Record renames ALI.Units.Table (U_Id); begin return U_Rec.Preelab or else U_Rec.Pure; end Is_Preelaborated_Unit; ---------------------- -- Is_Recorded_Edge -- ---------------------- function Is_Recorded_Edge (G : Library_Graph; Rel : Predecessor_Successor_Relation) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Rel.Predecessor)); pragma Assert (Present (Rel.Successor)); return RE_Sets.Contains (G.Recorded_Edges, Rel); end Is_Recorded_Edge; ------------- -- Is_Spec -- ------------- function Is_Spec (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); U_Id : constant Unit_Id := Unit (G, Vertex); U_Rec : Unit_Record renames ALI.Units.Table (U_Id); begin return U_Rec.Utype = Is_Spec or else U_Rec.Utype = Is_Spec_Only; end Is_Spec; ------------------------------ -- Is_Spec_Before_Body_Edge -- ------------------------------ function Is_Spec_Before_Body_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Kind (G, Edge) = Spec_Before_Body_Edge; end Is_Spec_Before_Body_Edge; ----------------------- -- Is_Spec_With_Body -- ----------------------- function Is_Spec_With_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); U_Id : constant Unit_Id := Unit (G, Vertex); U_Rec : Unit_Record renames ALI.Units.Table (U_Id); begin return U_Rec.Utype = Is_Spec; end Is_Spec_With_Body; --------------------------------- -- Is_Spec_With_Elaborate_Body -- --------------------------------- function Is_Spec_With_Elaborate_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Is_Spec_With_Body (G, Vertex) and then Has_Elaborate_Body (G, Vertex); end Is_Spec_With_Elaborate_Body; ------------------------------ -- Is_Static_Successor_Edge -- ------------------------------ function Is_Static_Successor_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Is_Invocation_Edge (G, Edge) and then not Is_Dynamically_Elaborated (G, Successor (G, Edge)); end Is_Static_Successor_Edge; ----------------------------------- -- Is_Vertex_With_Elaborate_Body -- ----------------------------------- function Is_Vertex_With_Elaborate_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Is_Spec_With_Elaborate_Body (G, Vertex) or else Is_Body_Of_Spec_With_Elaborate_Body (G, Vertex); end Is_Vertex_With_Elaborate_Body; --------------------------------- -- Is_Weakly_Elaborable_Vertex -- ---------------------------------- function Is_Weakly_Elaborable_Vertex (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); Complement : constant Library_Graph_Vertex_Id := Complementary_Vertex (G => G, Vertex => Vertex, Force_Complement => False); Strong_Preds : Natural; Weak_Preds : Natural; begin -- A vertex is weakly elaborable when: -- -- * It has not been elaborated yet, and -- * The complement vertex of an Elaborate_Body pair has not been -- elaborated yet, and -- * It resides within an elaborable component, and -- * It is not waiting on strong predecessors, and -- * It is waiting on at least one weak predecessor if In_Elaboration_Order (G, Vertex) then return False; elsif Present (Complement) and then In_Elaboration_Order (G, Complement) then return False; elsif not Is_Elaborable_Component (G, Component (G, Vertex)) then return False; end if; Pending_Predecessors_For_Elaboration (G => G, Vertex => Vertex, Strong_Preds => Strong_Preds, Weak_Preds => Weak_Preds); return Strong_Preds = 0 and then Weak_Preds >= 1; end Is_Weakly_Elaborable_Vertex; ------------------ -- Is_With_Edge -- ------------------ function Is_With_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Kind (G, Edge) = With_Edge; end Is_With_Edge; ------------------------ -- Iterate_All_Cycles -- ------------------------ function Iterate_All_Cycles (G : Library_Graph) return All_Cycle_Iterator is begin pragma Assert (Present (G)); return All_Cycle_Iterator (LGC_Lists.Iterate (G.Cycles)); end Iterate_All_Cycles; ----------------------- -- Iterate_All_Edges -- ----------------------- function Iterate_All_Edges (G : Library_Graph) return All_Edge_Iterator is begin pragma Assert (Present (G)); return All_Edge_Iterator (DG.Iterate_All_Edges (G.Graph)); end Iterate_All_Edges; -------------------------- -- Iterate_All_Vertices -- -------------------------- function Iterate_All_Vertices (G : Library_Graph) return All_Vertex_Iterator is begin pragma Assert (Present (G)); return All_Vertex_Iterator (DG.Iterate_All_Vertices (G.Graph)); end Iterate_All_Vertices; ------------------------ -- Iterate_Components -- ------------------------ function Iterate_Components (G : Library_Graph) return Component_Iterator is begin pragma Assert (Present (G)); return Component_Iterator (DG.Iterate_Components (G.Graph)); end Iterate_Components; -------------------------------- -- Iterate_Component_Vertices -- -------------------------------- function Iterate_Component_Vertices (G : Library_Graph; Comp : Component_Id) return Component_Vertex_Iterator is begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); return Component_Vertex_Iterator (DG.Iterate_Component_Vertices (G.Graph, Comp)); end Iterate_Component_Vertices; ---------------------------- -- Iterate_Edges_Of_Cycle -- ---------------------------- function Iterate_Edges_Of_Cycle (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Edges_Of_Cycle_Iterator is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return Edges_Of_Cycle_Iterator (LGE_Lists.Iterate (Path (G, Cycle))); end Iterate_Edges_Of_Cycle; --------------------------------- -- Iterate_Edges_To_Successors -- --------------------------------- function Iterate_Edges_To_Successors (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Edges_To_Successors_Iterator is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Edges_To_Successors_Iterator (DG.Iterate_Outgoing_Edges (G.Graph, Vertex)); end Iterate_Edges_To_Successors; ---------- -- Kind -- ---------- function Kind (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Library_Graph_Cycle_Kind is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return Get_LGC_Attributes (G, Cycle).Kind; end Kind; ---------- -- Kind -- ---------- function Kind (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Library_Graph_Edge_Kind is begin return Get_LGE_Attributes (G, Edge).Kind; end Kind; ------------ -- Length -- ------------ function Length (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return Natural is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return LGE_Lists.Size (Path (G, Cycle)); end Length; ------------------------------ -- Library_Graph_Edge_Count -- ------------------------------ function Library_Graph_Edge_Count (G : Library_Graph; Kind : Library_Graph_Edge_Kind) return Natural is begin pragma Assert (Present (G)); return G.Counts (Kind); end Library_Graph_Edge_Count; -------------------------------------- -- Links_Vertices_In_Same_Component -- -------------------------------------- function Links_Vertices_In_Same_Component (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); -- An edge is part of a cycle when both the successor and predecessor -- reside in the same component. return In_Same_Component (G => G, Left => Predecessor (G, Edge), Right => Successor (G, Edge)); end Links_Vertices_In_Same_Component; ----------------------------------- -- Maximum_Invocation_Edge_Count -- ----------------------------------- function Maximum_Invocation_Edge_Count (G : Library_Graph; Edge : Library_Graph_Edge_Id; Count : Natural) return Natural is New_Count : Natural; begin pragma Assert (Present (G)); New_Count := Count; if Present (Edge) and then Is_Invocation_Edge (G, Edge) then New_Count := New_Count + 1; end if; return New_Count; end Maximum_Invocation_Edge_Count; ---------- -- Name -- ---------- function Name (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Unit_Name_Type is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Name (Unit (G, Vertex)); end Name; ----------------------- -- Needs_Elaboration -- ----------------------- function Needs_Elaboration (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Boolean is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Needs_Elaboration (Unit (G, Vertex)); end Needs_Elaboration; ---------- -- Next -- ---------- procedure Next (Iter : in out All_Cycle_Iterator; Cycle : out Library_Graph_Cycle_Id) is begin LGC_Lists.Next (LGC_Lists.Iterator (Iter), Cycle); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out All_Edge_Iterator; Edge : out Library_Graph_Edge_Id) is begin DG.Next (DG.All_Edge_Iterator (Iter), Edge); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out All_Vertex_Iterator; Vertex : out Library_Graph_Vertex_Id) is begin DG.Next (DG.All_Vertex_Iterator (Iter), Vertex); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out Edges_Of_Cycle_Iterator; Edge : out Library_Graph_Edge_Id) is begin LGE_Lists.Next (LGE_Lists.Iterator (Iter), Edge); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out Component_Iterator; Comp : out Component_Id) is begin DG.Next (DG.Component_Iterator (Iter), Comp); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out Edges_To_Successors_Iterator; Edge : out Library_Graph_Edge_Id) is begin DG.Next (DG.Outgoing_Edge_Iterator (Iter), Edge); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out Component_Vertex_Iterator; Vertex : out Library_Graph_Vertex_Id) is begin DG.Next (DG.Component_Vertex_Iterator (Iter), Vertex); end Next; -------------------------- -- Normalize_Cycle_Path -- -------------------------- procedure Normalize_Cycle_Path (Cycle_Path : LGE_Lists.Doubly_Linked_List; Most_Significant_Edge : Library_Graph_Edge_Id) is Edge : Library_Graph_Edge_Id; begin pragma Assert (LGE_Lists.Present (Cycle_Path)); pragma Assert (Present (Most_Significant_Edge)); -- Perform at most |Cycle_Path| rotations in case the cycle is -- malformed and the significant edge does not appear within. for Rotation in 1 .. LGE_Lists.Size (Cycle_Path) loop Edge := LGE_Lists.First (Cycle_Path); -- The cycle is already rotated such that the most significant -- edge is first. if Edge = Most_Significant_Edge then return; -- Otherwise rotate the cycle by relocating the current edge from -- the start to the end of the path. This preserves the order of -- the path. else LGE_Lists.Delete_First (Cycle_Path); LGE_Lists.Append (Cycle_Path, Edge); end if; end loop; pragma Assert (False); end Normalize_Cycle_Path; ---------------------------------- -- Number_Of_Component_Vertices -- ---------------------------------- function Number_Of_Component_Vertices (G : Library_Graph; Comp : Component_Id) return Natural is begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); return DG.Number_Of_Component_Vertices (G.Graph, Comp); end Number_Of_Component_Vertices; -------------------------- -- Number_Of_Components -- -------------------------- function Number_Of_Components (G : Library_Graph) return Natural is begin pragma Assert (Present (G)); return DG.Number_Of_Components (G.Graph); end Number_Of_Components; ---------------------- -- Number_Of_Cycles -- ---------------------- function Number_Of_Cycles (G : Library_Graph) return Natural is begin pragma Assert (Present (G)); return LGC_Lists.Size (G.Cycles); end Number_Of_Cycles; --------------------- -- Number_Of_Edges -- --------------------- function Number_Of_Edges (G : Library_Graph) return Natural is begin pragma Assert (Present (G)); return DG.Number_Of_Edges (G.Graph); end Number_Of_Edges; ----------------------------------- -- Number_Of_Edges_To_Successors -- ----------------------------------- function Number_Of_Edges_To_Successors (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Natural is begin pragma Assert (Present (G)); return DG.Number_Of_Outgoing_Edges (G.Graph, Vertex); end Number_Of_Edges_To_Successors; ------------------------ -- Number_Of_Vertices -- ------------------------ function Number_Of_Vertices (G : Library_Graph) return Natural is begin pragma Assert (Present (G)); return DG.Number_Of_Vertices (G.Graph); end Number_Of_Vertices; ----------------- -- Order_Cycle -- ----------------- procedure Order_Cycle (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) is Lesser_Cycle : Library_Graph_Cycle_Id; begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); pragma Assert (LGC_Lists.Present (G.Cycles)); -- The input cycle is the first to be inserted if LGC_Lists.Is_Empty (G.Cycles) then LGC_Lists.Prepend (G.Cycles, Cycle); -- Otherwise the list of all cycles contains at least one cycle. -- Insert the input cycle based on its precedence. else Lesser_Cycle := Find_First_Lower_Precedence_Cycle (G, Cycle); -- The list contains at least one cycle, and the input cycle has a -- higher precedence compared to some cycle in the list. if Present (Lesser_Cycle) then LGC_Lists.Insert_Before (L => G.Cycles, Before => Lesser_Cycle, Elem => Cycle); -- Otherwise the input cycle has the lowest precedence among all -- cycles. else LGC_Lists.Append (G.Cycles, Cycle); end if; end if; end Order_Cycle; ---------- -- Path -- ---------- function Path (G : Library_Graph; Cycle : Library_Graph_Cycle_Id) return LGE_Lists.Doubly_Linked_List is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); return Get_LGC_Attributes (G, Cycle).Path; end Path; ------------------------------------------ -- Pending_Predecessors_For_Elaboration -- ------------------------------------------ procedure Pending_Predecessors_For_Elaboration (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Strong_Preds : out Natural; Weak_Preds : out Natural) is Complement : Library_Graph_Vertex_Id; Spec_Vertex : Library_Graph_Vertex_Id; Total_Strong_Preds : Natural; Total_Weak_Preds : Natural; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); Total_Strong_Preds := Pending_Strong_Predecessors (G, Vertex); Total_Weak_Preds := Pending_Weak_Predecessors (G, Vertex); -- Assume that there is no complementary vertex that needs to be -- examined. Complement := No_Library_Graph_Vertex; Spec_Vertex := No_Library_Graph_Vertex; if Is_Body_Of_Spec_With_Elaborate_Body (G, Vertex) then Complement := Proper_Spec (G, Vertex); Spec_Vertex := Complement; elsif Is_Spec_With_Elaborate_Body (G, Vertex) then Complement := Proper_Body (G, Vertex); Spec_Vertex := Vertex; end if; -- The vertex is part of an Elaborate_Body pair. Take into account -- the strong and weak predecessors of the complementary vertex. if Present (Complement) then Total_Strong_Preds := Pending_Strong_Predecessors (G, Complement) + Total_Strong_Preds; Total_Weak_Preds := Pending_Weak_Predecessors (G, Complement) + Total_Weak_Preds; -- The body of an Elaborate_Body pair is the successor of a strong -- edge where the predecessor is the spec. This edge must not be -- considered for elaboration purposes because the pair is treated -- as one vertex. Account for the edge only when the spec has not -- been elaborated yet. if not In_Elaboration_Order (G, Spec_Vertex) then Total_Strong_Preds := Total_Strong_Preds - 1; end if; end if; Strong_Preds := Total_Strong_Preds; Weak_Preds := Total_Weak_Preds; end Pending_Predecessors_For_Elaboration; --------------------------------- -- Pending_Strong_Predecessors -- --------------------------------- function Pending_Strong_Predecessors (G : Library_Graph; Comp : Component_Id) return Natural is begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); return Get_Component_Attributes (G, Comp).Pending_Strong_Predecessors; end Pending_Strong_Predecessors; --------------------------------- -- Pending_Strong_Predecessors -- --------------------------------- function Pending_Strong_Predecessors (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Natural is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Get_LGV_Attributes (G, Vertex).Pending_Strong_Predecessors; end Pending_Strong_Predecessors; ------------------------------- -- Pending_Weak_Predecessors -- ------------------------------- function Pending_Weak_Predecessors (G : Library_Graph; Comp : Component_Id) return Natural is begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); return Get_Component_Attributes (G, Comp).Pending_Weak_Predecessors; end Pending_Weak_Predecessors; ------------------------------- -- Pending_Weak_Predecessors -- ------------------------------- function Pending_Weak_Predecessors (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Natural is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Get_LGV_Attributes (G, Vertex).Pending_Weak_Predecessors; end Pending_Weak_Predecessors; ----------------- -- Predecessor -- ----------------- function Predecessor (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Library_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return DG.Source_Vertex (G.Graph, Edge); end Predecessor; ------------- -- Present -- ------------- function Present (G : Library_Graph) return Boolean is begin return G /= Nil; end Present; ----------------- -- Proper_Body -- ----------------- function Proper_Body (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Library_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); -- When the vertex denotes a spec with a completing body, return the -- body. if Is_Spec_With_Body (G, Vertex) then return Corresponding_Item (G, Vertex); -- Otherwise the vertex must be a body else pragma Assert (Is_Body (G, Vertex)); return Vertex; end if; end Proper_Body; ----------------- -- Proper_Spec -- ----------------- function Proper_Spec (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Library_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); -- When the vertex denotes a body that completes a spec, return the -- spec. if Is_Body_With_Spec (G, Vertex) then return Corresponding_Item (G, Vertex); -- Otherwise the vertex must denote a spec else pragma Assert (Is_Spec (G, Vertex)); return Vertex; end if; end Proper_Spec; ------------------ -- Record_Cycle -- ------------------ procedure Record_Cycle (G : Library_Graph; Most_Significant_Edge : Library_Graph_Edge_Id; Invocation_Edge_Count : Natural; Cycle_Path : LGE_Lists.Doubly_Linked_List; Indent : Indentation_Level) is Cycle : Library_Graph_Cycle_Id; Path : LGE_Lists.Doubly_Linked_List; begin pragma Assert (Present (G)); pragma Assert (Present (Most_Significant_Edge)); pragma Assert (LGE_Lists.Present (Cycle_Path)); -- Replicate the path of the cycle in order to avoid sharing lists Path := Copy_Cycle_Path (Cycle_Path); -- Normalize the path of the cycle such that its most significant -- edge is the first in the list of edges. Normalize_Cycle_Path (Cycle_Path => Path, Most_Significant_Edge => Most_Significant_Edge); -- Save the cycle for diagnostic purposes. Its kind is determined by -- its most significant edge. Cycle := Sequence_Next_Cycle; Set_LGC_Attributes (G => G, Cycle => Cycle, Val => (Invocation_Edge_Count => Invocation_Edge_Count, Kind => Cycle_Kind_Of (G => G, Edge => Most_Significant_Edge), Path => Path)); Trace_Cycle (G, Cycle, Indent); -- Order the cycle based on its precedence relative to previously -- discovered cycles. Order_Cycle (G, Cycle); end Record_Cycle; ----------------------------------------- -- Same_Library_Graph_Cycle_Attributes -- ----------------------------------------- function Same_Library_Graph_Cycle_Attributes (Left : Library_Graph_Cycle_Attributes; Right : Library_Graph_Cycle_Attributes) return Boolean is begin -- Two cycles are the same when -- -- * They are of the same kind -- * They have the same number of invocation edges in their paths -- * Their paths are the same length -- * The edges comprising their paths are the same return Left.Invocation_Edge_Count = Right.Invocation_Edge_Count and then Left.Kind = Right.Kind and then LGE_Lists.Equal (Left.Path, Right.Path); end Same_Library_Graph_Cycle_Attributes; ------------------------ -- Set_Activates_Task -- ------------------------ procedure Set_Activates_Task (G : Library_Graph; Edge : Library_Graph_Edge_Id) is Attributes : Library_Graph_Edge_Attributes := Get_LGE_Attributes (G, Edge); begin Attributes.Activates_Task := True; Set_LGE_Attributes (G, Edge, Attributes); end Set_Activates_Task; ------------------------------ -- Set_Component_Attributes -- ------------------------------ procedure Set_Component_Attributes (G : Library_Graph; Comp : Component_Id; Val : Component_Attributes) is begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); Component_Tables.Put (G.Component_Attributes, Comp, Val); end Set_Component_Attributes; ---------------------------- -- Set_Corresponding_Item -- ---------------------------- procedure Set_Corresponding_Item (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Val : Library_Graph_Vertex_Id) is Attrs : Library_Graph_Vertex_Attributes; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); Attrs := Get_LGV_Attributes (G, Vertex); Attrs.Corresponding_Item := Val; Set_LGV_Attributes (G, Vertex, Attrs); end Set_Corresponding_Item; ------------------------------ -- Set_Corresponding_Vertex -- ------------------------------ procedure Set_Corresponding_Vertex (G : Library_Graph; U_Id : Unit_Id; Val : Library_Graph_Vertex_Id) is begin pragma Assert (Present (G)); pragma Assert (Present (U_Id)); Unit_Tables.Put (G.Unit_To_Vertex, U_Id, Val); end Set_Corresponding_Vertex; ------------------------------ -- Set_In_Elaboration_Order -- ------------------------------ procedure Set_In_Elaboration_Order (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Val : Boolean := True) is Attrs : Library_Graph_Vertex_Attributes; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); Attrs := Get_LGV_Attributes (G, Vertex); Attrs.In_Elaboration_Order := Val; Set_LGV_Attributes (G, Vertex, Attrs); end Set_In_Elaboration_Order; -------------------------- -- Set_Is_Recorded_Edge -- -------------------------- procedure Set_Is_Recorded_Edge (G : Library_Graph; Rel : Predecessor_Successor_Relation) is begin pragma Assert (Present (G)); pragma Assert (Present (Rel.Predecessor)); pragma Assert (Present (Rel.Successor)); RE_Sets.Insert (G.Recorded_Edges, Rel); end Set_Is_Recorded_Edge; ------------------------ -- Set_LGC_Attributes -- ------------------------ procedure Set_LGC_Attributes (G : Library_Graph; Cycle : Library_Graph_Cycle_Id; Val : Library_Graph_Cycle_Attributes) is begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); LGC_Tables.Put (G.Cycle_Attributes, Cycle, Val); end Set_LGC_Attributes; ------------------------ -- Set_LGE_Attributes -- ------------------------ procedure Set_LGE_Attributes (G : Library_Graph; Edge : Library_Graph_Edge_Id; Val : Library_Graph_Edge_Attributes) is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); LGE_Tables.Put (G.Edge_Attributes, Edge, Val); end Set_LGE_Attributes; ------------------------ -- Set_LGV_Attributes -- ------------------------ procedure Set_LGV_Attributes (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Val : Library_Graph_Vertex_Attributes) is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); LGV_Tables.Put (G.Vertex_Attributes, Vertex, Val); end Set_LGV_Attributes; --------------- -- Successor -- --------------- function Successor (G : Library_Graph; Edge : Library_Graph_Edge_Id) return Library_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return DG.Destination_Vertex (G.Graph, Edge); end Successor; --------------------- -- Trace_Component -- --------------------- procedure Trace_Component (G : Library_Graph; Comp : Component_Id; Indent : Indentation_Level) is begin pragma Assert (Present (G)); pragma Assert (Present (Comp)); -- Nothing to do when switch -d_t (output cycle-detection trace -- information) is not in effect. if not Debug_Flag_Underscore_T then return; end if; Write_Eol; Indent_By (Indent); Write_Str ("component (Comp_"); Write_Int (Int (Comp)); Write_Str (")"); Write_Eol; end Trace_Component; ----------------- -- Trace_Cycle -- ----------------- procedure Trace_Cycle (G : Library_Graph; Cycle : Library_Graph_Cycle_Id; Indent : Indentation_Level) is Attr_Indent : constant Indentation_Level := Indent + Nested_Indentation; Edge_Indent : constant Indentation_Level := Attr_Indent + Nested_Indentation; Edge : Library_Graph_Edge_Id; Iter : Edges_Of_Cycle_Iterator; begin pragma Assert (Present (G)); pragma Assert (Present (Cycle)); -- Nothing to do when switch -d_t (output cycle-detection trace -- information) is not in effect. if not Debug_Flag_Underscore_T then return; end if; Indent_By (Indent); Write_Str ("cycle (LGC_Id_"); Write_Int (Int (Cycle)); Write_Str (")"); Write_Eol; Indent_By (Attr_Indent); Write_Str ("kind = "); Write_Str (Kind (G, Cycle)'Img); Write_Eol; Indent_By (Attr_Indent); Write_Str ("invocation edges = "); Write_Int (Int (Invocation_Edge_Count (G, Cycle))); Write_Eol; Indent_By (Attr_Indent); Write_Str ("length: "); Write_Int (Int (Length (G, Cycle))); Write_Eol; Iter := Iterate_Edges_Of_Cycle (G, Cycle); while Has_Next (Iter) loop Next (Iter, Edge); Indent_By (Edge_Indent); Write_Str ("library graph edge (LGE_Id_"); Write_Int (Int (Edge)); Write_Str (")"); Write_Eol; end loop; end Trace_Cycle; ---------------- -- Trace_Edge -- ---------------- procedure Trace_Edge (G : Library_Graph; Edge : Library_Graph_Edge_Id; Indent : Indentation_Level) is pragma Assert (Present (G)); pragma Assert (Present (Edge)); Attr_Indent : constant Indentation_Level := Indent + Nested_Indentation; Pred : constant Library_Graph_Vertex_Id := Predecessor (G, Edge); Succ : constant Library_Graph_Vertex_Id := Successor (G, Edge); begin -- Nothing to do when switch -d_t (output cycle-detection trace -- information) is not in effect. if not Debug_Flag_Underscore_T then return; end if; Indent_By (Indent); Write_Str ("library graph edge (LGE_Id_"); Write_Int (Int (Edge)); Write_Str (")"); Write_Eol; Indent_By (Attr_Indent); Write_Str ("kind = "); Write_Str (Kind (G, Edge)'Img); Write_Eol; Indent_By (Attr_Indent); Write_Str ("Predecessor (LGV_Id_"); Write_Int (Int (Pred)); Write_Str (") name = "); Write_Name (Name (G, Pred)); Write_Eol; Indent_By (Attr_Indent); Write_Str ("Successor (LGV_Id_"); Write_Int (Int (Succ)); Write_Str (") name = "); Write_Name (Name (G, Succ)); Write_Eol; end Trace_Edge; ------------------ -- Trace_Vertex -- ------------------ procedure Trace_Vertex (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Indent : Indentation_Level) is Attr_Indent : constant Indentation_Level := Indent + Nested_Indentation; begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); -- Nothing to do when switch -d_t (output cycle-detection trace -- information) is not in effect. if not Debug_Flag_Underscore_T then return; end if; Indent_By (Indent); Write_Str ("library graph vertex (LGV_Id_"); Write_Int (Int (Vertex)); Write_Str (")"); Write_Eol; Indent_By (Attr_Indent); Write_Str ("Unit (U_Id_"); Write_Int (Int (Unit (G, Vertex))); Write_Str (") name = "); Write_Name (Name (G, Vertex)); Write_Eol; end Trace_Vertex; ---------- -- Unit -- ---------- function Unit (G : Library_Graph; Vertex : Library_Graph_Vertex_Id) return Unit_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Get_LGV_Attributes (G, Vertex).Unit; end Unit; ------------- -- Unvisit -- ------------- procedure Unvisit (Vertex : Library_Graph_Vertex_Id; Visited_Set : LGV_Sets.Membership_Set; Visited_Stack : LGV_Lists.Doubly_Linked_List) is Current_Vertex : Library_Graph_Vertex_Id; begin pragma Assert (Present (Vertex)); pragma Assert (LGV_Sets.Present (Visited_Set)); pragma Assert (LGV_Lists.Present (Visited_Stack)); while not LGV_Lists.Is_Empty (Visited_Stack) loop Current_Vertex := LGV_Lists.First (Visited_Stack); LGV_Lists.Delete_First (Visited_Stack); LGV_Sets.Delete (Visited_Set, Current_Vertex); exit when Current_Vertex = Vertex; end loop; end Unvisit; --------------------------------- -- Update_Pending_Predecessors -- --------------------------------- procedure Update_Pending_Predecessors (Strong_Predecessors : in out Natural; Weak_Predecessors : in out Natural; Update_Weak : Boolean; Value : Integer) is begin if Update_Weak then Weak_Predecessors := Weak_Predecessors + Value; else Strong_Predecessors := Strong_Predecessors + Value; end if; end Update_Pending_Predecessors; ----------------------------------------------- -- Update_Pending_Predecessors_Of_Components -- ----------------------------------------------- procedure Update_Pending_Predecessors_Of_Components (G : Library_Graph) is Edge : Library_Graph_Edge_Id; Iter : All_Edge_Iterator; begin pragma Assert (Present (G)); Iter := Iterate_All_Edges (G); while Has_Next (Iter) loop Next (Iter, Edge); Update_Pending_Predecessors_Of_Components (G, Edge); end loop; end Update_Pending_Predecessors_Of_Components; ----------------------------------------------- -- Update_Pending_Predecessors_Of_Components -- ----------------------------------------------- procedure Update_Pending_Predecessors_Of_Components (G : Library_Graph; Edge : Library_Graph_Edge_Id) is pragma Assert (Present (G)); pragma Assert (Present (Edge)); Pred_Comp : constant Component_Id := Component (G, Predecessor (G, Edge)); Succ_Comp : constant Component_Id := Component (G, Successor (G, Edge)); pragma Assert (Present (Pred_Comp)); pragma Assert (Present (Succ_Comp)); begin -- The edge links a successor and a predecessor coming from two -- different SCCs. This indicates that the SCC of the successor -- must wait on another predecessor until it can be elaborated. if Pred_Comp /= Succ_Comp then Increment_Pending_Predecessors (G => G, Comp => Succ_Comp, Edge => Edge); end if; end Update_Pending_Predecessors_Of_Components; ----------------------- -- Vertex_Precedence -- ----------------------- function Vertex_Precedence (G : Library_Graph; Vertex : Library_Graph_Vertex_Id; Compared_To : Library_Graph_Vertex_Id) return Precedence_Kind is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); pragma Assert (Present (Compared_To)); -- Use lexicographical order to determine precedence and ensure -- deterministic behavior. if Uname_Less (Name (G, Vertex), Name (G, Compared_To)) then return Higher_Precedence; else return Lower_Precedence; end if; end Vertex_Precedence; ----------- -- Visit -- ----------- procedure Visit (Vertex : Library_Graph_Vertex_Id; Visited_Set : LGV_Sets.Membership_Set; Visited_Stack : LGV_Lists.Doubly_Linked_List) is begin pragma Assert (Present (Vertex)); pragma Assert (LGV_Sets.Present (Visited_Set)); pragma Assert (LGV_Lists.Present (Visited_Stack)); LGV_Sets.Insert (Visited_Set, Vertex); LGV_Lists.Prepend (Visited_Stack, Vertex); end Visit; end Library_Graphs; ----------------------- -- Invocation_Graphs -- ----------------------- package body Invocation_Graphs is ----------------------- -- Local subprograms -- ----------------------- procedure Free is new Ada.Unchecked_Deallocation (Invocation_Graph_Attributes, Invocation_Graph); function Get_IGE_Attributes (G : Invocation_Graph; Edge : Invocation_Graph_Edge_Id) return Invocation_Graph_Edge_Attributes; pragma Inline (Get_IGE_Attributes); -- Obtain the attributes of edge Edge of invocation graph G function Get_IGV_Attributes (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Invocation_Graph_Vertex_Attributes; pragma Inline (Get_IGV_Attributes); -- Obtain the attributes of vertex Vertex of invocation graph G procedure Increment_Invocation_Graph_Edge_Count (G : Invocation_Graph; Kind : Invocation_Kind); pragma Inline (Increment_Invocation_Graph_Edge_Count); -- Increment the number of edges of king Kind in invocation graph G by -- one. function Is_Elaboration_Root (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Boolean; pragma Inline (Is_Elaboration_Root); -- Determine whether vertex Vertex of invocation graph denotes the -- elaboration procedure of a spec or a body. function Is_Existing_Source_Target_Relation (G : Invocation_Graph; Rel : Source_Target_Relation) return Boolean; pragma Inline (Is_Existing_Source_Target_Relation); -- Determine whether a source vertex and a target vertex described by -- relation Rel are already related in invocation graph G. procedure Save_Elaboration_Root (G : Invocation_Graph; Root : Invocation_Graph_Vertex_Id); pragma Inline (Save_Elaboration_Root); -- Save elaboration root Root of invocation graph G procedure Set_Corresponding_Vertex (G : Invocation_Graph; IS_Id : Invocation_Signature_Id; Vertex : Invocation_Graph_Vertex_Id); pragma Inline (Set_Corresponding_Vertex); -- Associate vertex Vertex of invocation graph G with signature IS_Id procedure Set_Is_Existing_Source_Target_Relation (G : Invocation_Graph; Rel : Source_Target_Relation; Val : Boolean := True); pragma Inline (Set_Is_Existing_Source_Target_Relation); -- Mark a source vertex and a target vertex described by relation Rel as -- already related in invocation graph G depending on value Val. procedure Set_IGE_Attributes (G : Invocation_Graph; Edge : Invocation_Graph_Edge_Id; Val : Invocation_Graph_Edge_Attributes); pragma Inline (Set_IGE_Attributes); -- Set the attributes of edge Edge of invocation graph G to value Val procedure Set_IGV_Attributes (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id; Val : Invocation_Graph_Vertex_Attributes); pragma Inline (Set_IGV_Attributes); -- Set the attributes of vertex Vertex of invocation graph G to value -- Val. -------------- -- Add_Edge -- -------------- procedure Add_Edge (G : Invocation_Graph; Source : Invocation_Graph_Vertex_Id; Target : Invocation_Graph_Vertex_Id; IR_Id : Invocation_Relation_Id) is pragma Assert (Present (G)); pragma Assert (Present (Source)); pragma Assert (Present (Target)); pragma Assert (Present (IR_Id)); Rel : constant Source_Target_Relation := (Source => Source, Target => Target); Edge : Invocation_Graph_Edge_Id; begin -- Nothing to do when the source and target are already related by an -- edge. if Is_Existing_Source_Target_Relation (G, Rel) then return; end if; Edge := Sequence_Next_Edge; -- Add the edge to the underlying graph DG.Add_Edge (G => G.Graph, E => Edge, Source => Source, Destination => Target); -- Build and save the attributes of the edge Set_IGE_Attributes (G => G, Edge => Edge, Val => (Relation => IR_Id)); -- Mark the source and target as related by the new edge. This -- prevents all further attempts to link the same source and target. Set_Is_Existing_Source_Target_Relation (G, Rel); -- Update the edge statistics Increment_Invocation_Graph_Edge_Count (G, Kind (IR_Id)); end Add_Edge; ---------------- -- Add_Vertex -- ---------------- procedure Add_Vertex (G : Invocation_Graph; IC_Id : Invocation_Construct_Id; Body_Vertex : Library_Graph_Vertex_Id; Spec_Vertex : Library_Graph_Vertex_Id) is pragma Assert (Present (G)); pragma Assert (Present (IC_Id)); pragma Assert (Present (Body_Vertex)); pragma Assert (Present (Spec_Vertex)); Construct_Signature : constant Invocation_Signature_Id := Signature (IC_Id); Vertex : Invocation_Graph_Vertex_Id; begin -- Nothing to do when the construct already has a vertex if Present (Corresponding_Vertex (G, Construct_Signature)) then return; end if; Vertex := Sequence_Next_Vertex; -- Add the vertex to the underlying graph DG.Add_Vertex (G.Graph, Vertex); -- Build and save the attributes of the vertex Set_IGV_Attributes (G => G, Vertex => Vertex, Val => (Body_Vertex => Body_Vertex, Construct => IC_Id, Spec_Vertex => Spec_Vertex)); -- Associate the construct with its corresponding vertex Set_Corresponding_Vertex (G, Construct_Signature, Vertex); -- Save the vertex for later processing when it denotes a spec or -- body elaboration procedure. if Is_Elaboration_Root (G, Vertex) then Save_Elaboration_Root (G, Vertex); end if; end Add_Vertex; ----------------- -- Body_Vertex -- ----------------- function Body_Vertex (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Library_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Get_IGV_Attributes (G, Vertex).Body_Vertex; end Body_Vertex; ------------ -- Column -- ------------ function Column (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Nat is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Column (Signature (Construct (G, Vertex))); end Column; --------------- -- Construct -- --------------- function Construct (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Invocation_Construct_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Get_IGV_Attributes (G, Vertex).Construct; end Construct; -------------------------- -- Corresponding_Vertex -- -------------------------- function Corresponding_Vertex (G : Invocation_Graph; IS_Id : Invocation_Signature_Id) return Invocation_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (IS_Id)); return Signature_Tables.Get (G.Signature_To_Vertex, IS_Id); end Corresponding_Vertex; ------------ -- Create -- ------------ function Create (Initial_Vertices : Positive; Initial_Edges : Positive; Lib_Graph : Library_Graphs.Library_Graph) return Invocation_Graph is G : constant Invocation_Graph := new Invocation_Graph_Attributes' (Counts => <>, Edge_Attributes => IGE_Tables.Create (Initial_Edges), Graph => DG.Create (Initial_Vertices => Initial_Vertices, Initial_Edges => Initial_Edges), Relations => Relation_Sets.Create (Initial_Edges), Roots => IGV_Sets.Create (Initial_Vertices), Signature_To_Vertex => Signature_Tables.Create (Initial_Vertices), Vertex_Attributes => IGV_Tables.Create (Initial_Vertices), Lib_Graph => Lib_Graph); begin return G; end Create; ------------- -- Destroy -- ------------- procedure Destroy (G : in out Invocation_Graph) is begin pragma Assert (Present (G)); IGE_Tables.Destroy (G.Edge_Attributes); DG.Destroy (G.Graph); Relation_Sets.Destroy (G.Relations); IGV_Sets.Destroy (G.Roots); Signature_Tables.Destroy (G.Signature_To_Vertex); IGV_Tables.Destroy (G.Vertex_Attributes); Free (G); end Destroy; ----------------------------------- -- Destroy_Invocation_Graph_Edge -- ----------------------------------- procedure Destroy_Invocation_Graph_Edge (Edge : in out Invocation_Graph_Edge_Id) is pragma Unreferenced (Edge); begin null; end Destroy_Invocation_Graph_Edge; ---------------------------------------------- -- Destroy_Invocation_Graph_Edge_Attributes -- ---------------------------------------------- procedure Destroy_Invocation_Graph_Edge_Attributes (Attrs : in out Invocation_Graph_Edge_Attributes) is pragma Unreferenced (Attrs); begin null; end Destroy_Invocation_Graph_Edge_Attributes; ------------------------------------- -- Destroy_Invocation_Graph_Vertex -- ------------------------------------- procedure Destroy_Invocation_Graph_Vertex (Vertex : in out Invocation_Graph_Vertex_Id) is pragma Unreferenced (Vertex); begin null; end Destroy_Invocation_Graph_Vertex; ------------------------------------------------ -- Destroy_Invocation_Graph_Vertex_Attributes -- ------------------------------------------------ procedure Destroy_Invocation_Graph_Vertex_Attributes (Attrs : in out Invocation_Graph_Vertex_Attributes) is pragma Unreferenced (Attrs); begin null; end Destroy_Invocation_Graph_Vertex_Attributes; ----------- -- Extra -- ----------- function Extra (G : Invocation_Graph; Edge : Invocation_Graph_Edge_Id) return Name_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Extra (Relation (G, Edge)); end Extra; ------------------------ -- Get_IGE_Attributes -- ------------------------ function Get_IGE_Attributes (G : Invocation_Graph; Edge : Invocation_Graph_Edge_Id) return Invocation_Graph_Edge_Attributes is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return IGE_Tables.Get (G.Edge_Attributes, Edge); end Get_IGE_Attributes; ------------------------ -- Get_IGV_Attributes -- ------------------------ function Get_IGV_Attributes (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Invocation_Graph_Vertex_Attributes is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return IGV_Tables.Get (G.Vertex_Attributes, Vertex); end Get_IGV_Attributes; -------------- -- Has_Next -- -------------- function Has_Next (Iter : All_Edge_Iterator) return Boolean is begin return DG.Has_Next (DG.All_Edge_Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : All_Vertex_Iterator) return Boolean is begin return DG.Has_Next (DG.All_Vertex_Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : Edges_To_Targets_Iterator) return Boolean is begin return DG.Has_Next (DG.Outgoing_Edge_Iterator (Iter)); end Has_Next; -------------- -- Has_Next -- -------------- function Has_Next (Iter : Elaboration_Root_Iterator) return Boolean is begin return IGV_Sets.Has_Next (IGV_Sets.Iterator (Iter)); end Has_Next; ------------------------------- -- Hash_Invocation_Signature -- ------------------------------- function Hash_Invocation_Signature (IS_Id : Invocation_Signature_Id) return Bucket_Range_Type is begin pragma Assert (Present (IS_Id)); return Bucket_Range_Type (IS_Id); end Hash_Invocation_Signature; --------------------------------- -- Hash_Source_Target_Relation -- --------------------------------- function Hash_Source_Target_Relation (Rel : Source_Target_Relation) return Bucket_Range_Type is begin pragma Assert (Present (Rel.Source)); pragma Assert (Present (Rel.Target)); return Hash_Two_Keys (Bucket_Range_Type (Rel.Source), Bucket_Range_Type (Rel.Target)); end Hash_Source_Target_Relation; ------------------------------------------- -- Increment_Invocation_Graph_Edge_Count -- ------------------------------------------- procedure Increment_Invocation_Graph_Edge_Count (G : Invocation_Graph; Kind : Invocation_Kind) is pragma Assert (Present (G)); Count : Natural renames G.Counts (Kind); begin Count := Count + 1; end Increment_Invocation_Graph_Edge_Count; --------------------------------- -- Invocation_Graph_Edge_Count -- --------------------------------- function Invocation_Graph_Edge_Count (G : Invocation_Graph; Kind : Invocation_Kind) return Natural is begin pragma Assert (Present (G)); return G.Counts (Kind); end Invocation_Graph_Edge_Count; ------------------------- -- Is_Elaboration_Root -- ------------------------- function Is_Elaboration_Root (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Boolean is pragma Assert (Present (G)); pragma Assert (Present (Vertex)); Vertex_Kind : constant Invocation_Construct_Kind := Kind (Construct (G, Vertex)); begin return Vertex_Kind = Elaborate_Body_Procedure or else Vertex_Kind = Elaborate_Spec_Procedure; end Is_Elaboration_Root; ---------------------------------------- -- Is_Existing_Source_Target_Relation -- ---------------------------------------- function Is_Existing_Source_Target_Relation (G : Invocation_Graph; Rel : Source_Target_Relation) return Boolean is begin pragma Assert (Present (G)); return Relation_Sets.Contains (G.Relations, Rel); end Is_Existing_Source_Target_Relation; ----------------------- -- Iterate_All_Edges -- ----------------------- function Iterate_All_Edges (G : Invocation_Graph) return All_Edge_Iterator is begin pragma Assert (Present (G)); return All_Edge_Iterator (DG.Iterate_All_Edges (G.Graph)); end Iterate_All_Edges; -------------------------- -- Iterate_All_Vertices -- -------------------------- function Iterate_All_Vertices (G : Invocation_Graph) return All_Vertex_Iterator is begin pragma Assert (Present (G)); return All_Vertex_Iterator (DG.Iterate_All_Vertices (G.Graph)); end Iterate_All_Vertices; ------------------------------ -- Iterate_Edges_To_Targets -- ------------------------------ function Iterate_Edges_To_Targets (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Edges_To_Targets_Iterator is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Edges_To_Targets_Iterator (DG.Iterate_Outgoing_Edges (G.Graph, Vertex)); end Iterate_Edges_To_Targets; ------------------------------- -- Iterate_Elaboration_Roots -- ------------------------------- function Iterate_Elaboration_Roots (G : Invocation_Graph) return Elaboration_Root_Iterator is begin pragma Assert (Present (G)); return Elaboration_Root_Iterator (IGV_Sets.Iterate (G.Roots)); end Iterate_Elaboration_Roots; ---------- -- Kind -- ---------- function Kind (G : Invocation_Graph; Edge : Invocation_Graph_Edge_Id) return Invocation_Kind is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Kind (Relation (G, Edge)); end Kind; ------------------- -- Get_Lib_Graph -- ------------------- function Get_Lib_Graph (G : Invocation_Graph) return Library_Graphs.Library_Graph is pragma Assert (Present (G)); begin return G.Lib_Graph; end Get_Lib_Graph; ---------- -- Line -- ---------- function Line (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Nat is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Line (Signature (Construct (G, Vertex))); end Line; ---------- -- Name -- ---------- function Name (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Name_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Name (Signature (Construct (G, Vertex))); end Name; ---------- -- Next -- ---------- procedure Next (Iter : in out All_Edge_Iterator; Edge : out Invocation_Graph_Edge_Id) is begin DG.Next (DG.All_Edge_Iterator (Iter), Edge); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out All_Vertex_Iterator; Vertex : out Invocation_Graph_Vertex_Id) is begin DG.Next (DG.All_Vertex_Iterator (Iter), Vertex); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out Edges_To_Targets_Iterator; Edge : out Invocation_Graph_Edge_Id) is begin DG.Next (DG.Outgoing_Edge_Iterator (Iter), Edge); end Next; ---------- -- Next -- ---------- procedure Next (Iter : in out Elaboration_Root_Iterator; Root : out Invocation_Graph_Vertex_Id) is begin IGV_Sets.Next (IGV_Sets.Iterator (Iter), Root); end Next; --------------------- -- Number_Of_Edges -- --------------------- function Number_Of_Edges (G : Invocation_Graph) return Natural is begin pragma Assert (Present (G)); return DG.Number_Of_Edges (G.Graph); end Number_Of_Edges; -------------------------------- -- Number_Of_Edges_To_Targets -- -------------------------------- function Number_Of_Edges_To_Targets (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Natural is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return DG.Number_Of_Outgoing_Edges (G.Graph, Vertex); end Number_Of_Edges_To_Targets; --------------------------------- -- Number_Of_Elaboration_Roots -- --------------------------------- function Number_Of_Elaboration_Roots (G : Invocation_Graph) return Natural is begin pragma Assert (Present (G)); return IGV_Sets.Size (G.Roots); end Number_Of_Elaboration_Roots; ------------------------ -- Number_Of_Vertices -- ------------------------ function Number_Of_Vertices (G : Invocation_Graph) return Natural is begin pragma Assert (Present (G)); return DG.Number_Of_Vertices (G.Graph); end Number_Of_Vertices; ------------- -- Present -- ------------- function Present (G : Invocation_Graph) return Boolean is begin return G /= Nil; end Present; -------------- -- Relation -- -------------- function Relation (G : Invocation_Graph; Edge : Invocation_Graph_Edge_Id) return Invocation_Relation_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return Get_IGE_Attributes (G, Edge).Relation; end Relation; --------------------------- -- Save_Elaboration_Root -- --------------------------- procedure Save_Elaboration_Root (G : Invocation_Graph; Root : Invocation_Graph_Vertex_Id) is begin pragma Assert (Present (G)); pragma Assert (Present (Root)); IGV_Sets.Insert (G.Roots, Root); end Save_Elaboration_Root; ------------------------------ -- Set_Corresponding_Vertex -- ------------------------------ procedure Set_Corresponding_Vertex (G : Invocation_Graph; IS_Id : Invocation_Signature_Id; Vertex : Invocation_Graph_Vertex_Id) is begin pragma Assert (Present (G)); pragma Assert (Present (IS_Id)); pragma Assert (Present (Vertex)); Signature_Tables.Put (G.Signature_To_Vertex, IS_Id, Vertex); end Set_Corresponding_Vertex; -------------------------------------------- -- Set_Is_Existing_Source_Target_Relation -- -------------------------------------------- procedure Set_Is_Existing_Source_Target_Relation (G : Invocation_Graph; Rel : Source_Target_Relation; Val : Boolean := True) is begin pragma Assert (Present (G)); pragma Assert (Present (Rel.Source)); pragma Assert (Present (Rel.Target)); if Val then Relation_Sets.Insert (G.Relations, Rel); else Relation_Sets.Delete (G.Relations, Rel); end if; end Set_Is_Existing_Source_Target_Relation; ------------------------ -- Set_IGE_Attributes -- ------------------------ procedure Set_IGE_Attributes (G : Invocation_Graph; Edge : Invocation_Graph_Edge_Id; Val : Invocation_Graph_Edge_Attributes) is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); IGE_Tables.Put (G.Edge_Attributes, Edge, Val); end Set_IGE_Attributes; ------------------------ -- Set_IGV_Attributes -- ------------------------ procedure Set_IGV_Attributes (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id; Val : Invocation_Graph_Vertex_Attributes) is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); IGV_Tables.Put (G.Vertex_Attributes, Vertex, Val); end Set_IGV_Attributes; ----------------- -- Spec_Vertex -- ----------------- function Spec_Vertex (G : Invocation_Graph; Vertex : Invocation_Graph_Vertex_Id) return Library_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Vertex)); return Get_IGV_Attributes (G, Vertex).Spec_Vertex; end Spec_Vertex; ------------ -- Target -- ------------ function Target (G : Invocation_Graph; Edge : Invocation_Graph_Edge_Id) return Invocation_Graph_Vertex_Id is begin pragma Assert (Present (G)); pragma Assert (Present (Edge)); return DG.Destination_Vertex (G.Graph, Edge); end Target; end Invocation_Graphs; ------------- -- Present -- ------------- function Present (Edge : Invocation_Graph_Edge_Id) return Boolean is begin return Edge /= No_Invocation_Graph_Edge; end Present; ------------- -- Present -- ------------- function Present (Vertex : Invocation_Graph_Vertex_Id) return Boolean is begin return Vertex /= No_Invocation_Graph_Vertex; end Present; ------------- -- Present -- ------------- function Present (Cycle : Library_Graph_Cycle_Id) return Boolean is begin return Cycle /= No_Library_Graph_Cycle; end Present; ------------- -- Present -- ------------- function Present (Edge : Library_Graph_Edge_Id) return Boolean is begin return Edge /= No_Library_Graph_Edge; end Present; ------------- -- Present -- ------------- function Present (Vertex : Library_Graph_Vertex_Id) return Boolean is begin return Vertex /= No_Library_Graph_Vertex; end Present; -------------------------- -- Sequence_Next_Edge -- -------------------------- IGE_Sequencer : Invocation_Graph_Edge_Id := First_Invocation_Graph_Edge; -- The counter for invocation graph edges. Do not directly manipulate its -- value. function Sequence_Next_Edge return Invocation_Graph_Edge_Id is Edge : constant Invocation_Graph_Edge_Id := IGE_Sequencer; begin IGE_Sequencer := IGE_Sequencer + 1; return Edge; end Sequence_Next_Edge; -------------------------- -- Sequence_Next_Vertex -- -------------------------- IGV_Sequencer : Invocation_Graph_Vertex_Id := First_Invocation_Graph_Vertex; -- The counter for invocation graph vertices. Do not directly manipulate -- its value. function Sequence_Next_Vertex return Invocation_Graph_Vertex_Id is Vertex : constant Invocation_Graph_Vertex_Id := IGV_Sequencer; begin IGV_Sequencer := IGV_Sequencer + 1; return Vertex; end Sequence_Next_Vertex; -------------------------- -- Sequence_Next_Cycle -- -------------------------- LGC_Sequencer : Library_Graph_Cycle_Id := First_Library_Graph_Cycle; -- The counter for library graph cycles. Do not directly manipulate its -- value. function Sequence_Next_Cycle return Library_Graph_Cycle_Id is Cycle : constant Library_Graph_Cycle_Id := LGC_Sequencer; begin LGC_Sequencer := LGC_Sequencer + 1; return Cycle; end Sequence_Next_Cycle; -------------------------- -- Sequence_Next_Edge -- -------------------------- LGE_Sequencer : Library_Graph_Edge_Id := First_Library_Graph_Edge; -- The counter for library graph edges. Do not directly manipulate its -- value. function Sequence_Next_Edge return Library_Graph_Edge_Id is Edge : constant Library_Graph_Edge_Id := LGE_Sequencer; begin LGE_Sequencer := LGE_Sequencer + 1; return Edge; end Sequence_Next_Edge; -------------------------- -- Sequence_Next_Vertex -- -------------------------- LGV_Sequencer : Library_Graph_Vertex_Id := First_Library_Graph_Vertex; -- The counter for library graph vertices. Do not directly manipulate its -- value. function Sequence_Next_Vertex return Library_Graph_Vertex_Id is Vertex : constant Library_Graph_Vertex_Id := LGV_Sequencer; begin LGV_Sequencer := LGV_Sequencer + 1; return Vertex; end Sequence_Next_Vertex; end Bindo.Graphs;