------------------------------------------------------------------------------ -- -- -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS -- -- -- -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S -- -- -- -- B o d y -- -- -- -- $Revision$ -- -- -- Copyright (C) 1991-2001 Florida State University -- -- -- -- GNARL is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNARL is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNARL; see file COPYING. If not, write -- -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- -- MA 02111-1307, USA. -- -- -- -- As a special exception, if other files instantiate generics from this -- -- unit, or you link this unit with other files to produce an executable, -- -- this unit does not by itself cause the resulting executable to be -- -- covered by the GNU General Public License. This exception does not -- -- however invalidate any other reasons why the executable file might be -- -- covered by the GNU Public License. -- -- -- -- GNARL was developed by the GNARL team at Florida State University. It is -- -- now maintained by Ada Core Technologies Inc. in cooperation with Florida -- -- State University (http://www.gnat.com). -- -- -- ------------------------------------------------------------------------------ -- This is the VxWorks version of this package -- This package contains all the GNULL primitives that interface directly -- with the underlying OS. pragma Polling (Off); -- Turn off polling, we do not want ATC polling to take place during -- tasking operations. It causes infinite loops and other problems. with System.Tasking.Debug; -- used for Known_Tasks with Interfaces.C; -- used for int -- size_t with System.Interrupt_Management; -- used for Keep_Unmasked -- Abort_Task_Interrupt -- Interrupt_ID -- Initialize_Interrupts with System.Soft_Links; -- used for Defer/Undefer_Abort -- Note that we do not use System.Tasking.Initialization directly since -- this is a higher level package that we shouldn't depend on. For example -- when using the restricted run time, it is replaced by -- System.Tasking.Restricted.Initialization with System.OS_Interface; -- used for various type, constant, and operations with System.Parameters; -- used for Size_Type with System.Tasking; -- used for Ada_Task_Control_Block -- Task_ID -- ATCB components and types with System.Task_Info; -- used for Task_Image with System.OS_Primitives; -- used for Delay_Modes with System.VxWorks; -- used for TASK_DESC with Unchecked_Conversion; with Unchecked_Deallocation; package body System.Task_Primitives.Operations is use System.Tasking.Debug; use System.Tasking; use System.Task_Info; use Interfaces.C; use System.OS_Interface; use System.Parameters; use System.OS_Primitives; package SSL renames System.Soft_Links; ------------------ -- Local Data -- ------------------ -- The followings are logically constants, but need to be initialized -- at run time. ATCB_Key : aliased pthread_key_t; -- Key used to find the Ada Task_ID associated with a VxWorks task. All_Tasks_L : aliased System.Task_Primitives.RTS_Lock; -- See comments on locking rules in System.Tasking (spec). Environment_Task_ID : Task_ID; -- A variable to hold Task_ID for the environment task. Unblocked_Signal_Mask : aliased sigset_t; -- The set of signals that should unblocked in all tasks -- The followings are internal configuration constants needed. Time_Slice_Val : Integer; pragma Import (C, Time_Slice_Val, "__gl_time_slice_val"); Locking_Policy : Character; pragma Import (C, Locking_Policy, "__gl_locking_policy"); Dispatching_Policy : Character; pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy"); FIFO_Within_Priorities : constant Boolean := Dispatching_Policy = 'F'; -- Indicates whether FIFO_Within_Priorities is set. Mutex_Protocol : Interfaces.C.int; Stack_Limit : aliased System.Address; pragma Import (C, Stack_Limit, "__gnat_stack_limit"); ----------------------- -- Local Subprograms -- ----------------------- procedure Abort_Handler (signo : Signal); function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID); function To_Address is new Unchecked_Conversion (Task_ID, System.Address); ------------------- -- Abort_Handler -- ------------------- procedure Abort_Handler (signo : Signal) is Self_ID : constant Task_ID := Self; Result : Interfaces.C.int; Old_Set : aliased sigset_t; begin if Self_ID.Deferral_Level = 0 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level and then not Self_ID.Aborting then Self_ID.Aborting := True; -- Make sure signals used for RTS internal purpose are unmasked Result := pthread_sigmask (SIG_UNBLOCK, Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access); pragma Assert (Result = 0); raise Standard'Abort_Signal; end if; end Abort_Handler; ----------------- -- Stack_Guard -- ----------------- procedure Stack_Guard (T : ST.Task_ID; On : Boolean) is Task_Descriptor : aliased System.VxWorks.TASK_DESC; Result : Interfaces.C.int; begin if On then Result := taskInfoGet (T.Common.LL.Thread, Task_Descriptor'Unchecked_Access); pragma Assert (Result = 0); Stack_Limit := Task_Descriptor.td_pStackLimit; end if; end Stack_Guard; ------------------- -- Get_Thread_Id -- ------------------- function Get_Thread_Id (T : ST.Task_ID) return OSI.Thread_Id is begin return T.Common.LL.Thread; end Get_Thread_Id; ---------- -- Self -- ---------- function Self return Task_ID is Result : System.Address; begin Result := pthread_getspecific (ATCB_Key); pragma Assert (Result /= System.Null_Address); return To_Task_ID (Result); end Self; ----------------------------- -- Install_Signal_Handlers -- ----------------------------- procedure Install_Signal_Handlers; pragma Inline (Install_Signal_Handlers); procedure Install_Signal_Handlers is act : aliased struct_sigaction; old_act : aliased struct_sigaction; Tmp_Set : aliased sigset_t; Result : Interfaces.C.int; begin act.sa_flags := 0; act.sa_handler := Abort_Handler'Address; Result := sigemptyset (Tmp_Set'Access); pragma Assert (Result = 0); act.sa_mask := Tmp_Set; Result := sigaction (Signal (Interrupt_Management.Abort_Task_Interrupt), act'Unchecked_Access, old_act'Unchecked_Access); pragma Assert (Result = 0); Interrupt_Management.Initialize_Interrupts; end Install_Signal_Handlers; --------------------- -- Initialize_Lock -- --------------------- -- Note: mutexes and cond_variables needed per-task basis are -- initialized in Intialize_TCB and the Storage_Error is -- handled. Other mutexes (such as All_Tasks_Lock, Memory_Lock...) -- used in RTS is initialized before any status change of RTS. -- Therefore rasing Storage_Error in the following routines -- should be able to be handled safely. procedure Initialize_Lock (Prio : System.Any_Priority; L : access Lock) is Attributes : aliased pthread_mutexattr_t; Result : Interfaces.C.int; begin Result := pthread_mutexattr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; Result := pthread_mutexattr_setprotocol (Attributes'Access, Mutex_Protocol); pragma Assert (Result = 0); Result := pthread_mutexattr_setprioceiling (Attributes'Access, Interfaces.C.int (Prio)); pragma Assert (Result = 0); Result := pthread_mutex_init (L, Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Attributes'Access); pragma Assert (Result = 0); end Initialize_Lock; procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is Attributes : aliased pthread_mutexattr_t; Result : Interfaces.C.int; begin Result := pthread_mutexattr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; Result := pthread_mutexattr_setprotocol (Attributes'Access, Mutex_Protocol); pragma Assert (Result = 0); Result := pthread_mutexattr_setprioceiling (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last)); pragma Assert (Result = 0); Result := pthread_mutex_init (L, Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = ENOMEM then raise Storage_Error; end if; Result := pthread_mutexattr_destroy (Attributes'Access); pragma Assert (Result = 0); end Initialize_Lock; ------------------- -- Finalize_Lock -- ------------------- procedure Finalize_Lock (L : access Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_destroy (L); pragma Assert (Result = 0); end Finalize_Lock; procedure Finalize_Lock (L : access RTS_Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_destroy (L); pragma Assert (Result = 0); end Finalize_Lock; ---------------- -- Write_Lock -- ---------------- procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (L); -- Assume that the cause of EINVAL is a priority ceiling violation Ceiling_Violation := (Result = EINVAL); pragma Assert (Result = 0 or else Result = EINVAL); end Write_Lock; procedure Write_Lock (L : access RTS_Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (L); pragma Assert (Result = 0); end Write_Lock; procedure Write_Lock (T : Task_ID) is Result : Interfaces.C.int; begin Result := pthread_mutex_lock (T.Common.LL.L'Access); pragma Assert (Result = 0); end Write_Lock; --------------- -- Read_Lock -- --------------- procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is begin Write_Lock (L, Ceiling_Violation); end Read_Lock; ------------ -- Unlock -- ------------ procedure Unlock (L : access Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_unlock (L); pragma Assert (Result = 0); end Unlock; procedure Unlock (L : access RTS_Lock) is Result : Interfaces.C.int; begin Result := pthread_mutex_unlock (L); pragma Assert (Result = 0); end Unlock; procedure Unlock (T : Task_ID) is Result : Interfaces.C.int; begin Result := pthread_mutex_unlock (T.Common.LL.L'Access); pragma Assert (Result = 0); end Unlock; ------------- -- Sleep -- ------------- procedure Sleep (Self_ID : Task_ID; Reason : System.Tasking.Task_States) is Result : Interfaces.C.int; begin pragma Assert (Self_ID = Self); Result := pthread_cond_wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access); -- EINTR is not considered a failure. pragma Assert (Result = 0 or else Result = EINTR); end Sleep; ----------------- -- Timed_Sleep -- ----------------- -- This is for use within the run-time system, so abort is -- assumed to be already deferred, and the caller should be -- holding its own ATCB lock. procedure Timed_Sleep (Self_ID : Task_ID; Time : Duration; Mode : ST.Delay_Modes; Reason : System.Tasking.Task_States; Timedout : out Boolean; Yielded : out Boolean) is Check_Time : constant Duration := Monotonic_Clock; Abs_Time : Duration; Request : aliased timespec; Result : Interfaces.C.int; begin Timedout := True; Yielded := False; if Mode = Relative then Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time; else Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time); end if; if Abs_Time > Check_Time then Request := To_Timespec (Abs_Time); loop exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level or else Self_ID.Pending_Priority_Change; Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access, Request'Access); Yielded := True; exit when Abs_Time <= Monotonic_Clock; if Result = 0 or Result = EINTR then -- Somebody may have called Wakeup for us Timedout := False; exit; end if; pragma Assert (Result = ETIMEDOUT); end loop; end if; end Timed_Sleep; ----------------- -- Timed_Delay -- ----------------- -- This is for use in implementing delay statements, so -- we assume the caller is abort-deferred but is holding -- no locks. procedure Timed_Delay (Self_ID : Task_ID; Time : Duration; Mode : ST.Delay_Modes) is Check_Time : constant Duration := Monotonic_Clock; Abs_Time : Duration; Request : aliased timespec; Result : Interfaces.C.int; Yielded : Boolean := False; begin -- Only the little window between deferring abort and -- locking Self_ID is the reason we need to -- check for pending abort and priority change below! :( SSL.Abort_Defer.all; Write_Lock (Self_ID); if Mode = Relative then Abs_Time := Time + Check_Time; else Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time); end if; if Abs_Time > Check_Time then Request := To_Timespec (Abs_Time); Self_ID.Common.State := Delay_Sleep; loop if Self_ID.Pending_Priority_Change then Self_ID.Pending_Priority_Change := False; Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority; Set_Priority (Self_ID, Self_ID.Common.Base_Priority); end if; exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level; Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access, Request'Access); Yielded := True; exit when Abs_Time <= Monotonic_Clock; pragma Assert (Result = 0 or else Result = ETIMEDOUT or else Result = EINTR); end loop; Self_ID.Common.State := Runnable; end if; Unlock (Self_ID); if not Yielded then Result := sched_yield; end if; SSL.Abort_Undefer.all; end Timed_Delay; --------------------- -- Monotonic_Clock -- --------------------- function Monotonic_Clock return Duration is TS : aliased timespec; Result : Interfaces.C.int; begin Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access); pragma Assert (Result = 0); return To_Duration (TS); end Monotonic_Clock; ------------------- -- RT_Resolution -- ------------------- function RT_Resolution return Duration is begin return 10#1.0#E-6; end RT_Resolution; ------------ -- Wakeup -- ------------ procedure Wakeup (T : Task_ID; Reason : System.Tasking.Task_States) is Result : Interfaces.C.int; begin Result := pthread_cond_signal (T.Common.LL.CV'Access); pragma Assert (Result = 0); end Wakeup; ----------- -- Yield -- ----------- procedure Yield (Do_Yield : Boolean := True) is Result : Interfaces.C.int; begin Result := sched_yield; end Yield; ------------------ -- Set_Priority -- ------------------ type Prio_Array_Type is array (System.Any_Priority) of Integer; pragma Atomic_Components (Prio_Array_Type); Prio_Array : Prio_Array_Type; -- Global array containing the id of the currently running task for -- each priority. -- -- Note: we assume that we are on a single processor with run-til-blocked -- scheduling. procedure Set_Priority (T : Task_ID; Prio : System.Any_Priority; Loss_Of_Inheritance : Boolean := False) is Param : aliased struct_sched_param; Array_Item : Integer; Result : Interfaces.C.int; begin Param.sched_priority := Interfaces.C.int (Prio); if Time_Slice_Val <= 0 then Result := pthread_setschedparam (T.Common.LL.Thread, SCHED_FIFO, Param'Access); else Result := pthread_setschedparam (T.Common.LL.Thread, SCHED_RR, Param'Access); end if; pragma Assert (Result = 0); if FIFO_Within_Priorities then -- Annex D requirement [RM D.2.2 par. 9]: -- If the task drops its priority due to the loss of inherited -- priority, it is added at the head of the ready queue for its -- new active priority. if Loss_Of_Inheritance and then Prio < T.Common.Current_Priority then Array_Item := Prio_Array (T.Common.Base_Priority) + 1; Prio_Array (T.Common.Base_Priority) := Array_Item; loop -- Let some processes a chance to arrive Yield; -- Then wait for our turn to proceed exit when Array_Item = Prio_Array (T.Common.Base_Priority) or else Prio_Array (T.Common.Base_Priority) = 1; end loop; Prio_Array (T.Common.Base_Priority) := Prio_Array (T.Common.Base_Priority) - 1; end if; end if; T.Common.Current_Priority := Prio; end Set_Priority; ------------------ -- Get_Priority -- ------------------ function Get_Priority (T : Task_ID) return System.Any_Priority is begin return T.Common.Current_Priority; end Get_Priority; ---------------- -- Enter_Task -- ---------------- procedure Enter_Task (Self_ID : Task_ID) is Result : Interfaces.C.int; procedure Init_Float; pragma Import (C, Init_Float, "__gnat_init_float"); -- Properly initializes the FPU for PPC/MIPS systems. begin Self_ID.Common.LL.Thread := pthread_self; Result := pthread_setspecific (ATCB_Key, To_Address (Self_ID)); pragma Assert (Result = 0); Init_Float; -- Install the signal handlers. -- This is called for each task since there is no signal inheritance -- between VxWorks tasks. Install_Signal_Handlers; Lock_All_Tasks_List; for T in Known_Tasks'Range loop if Known_Tasks (T) = null then Known_Tasks (T) := Self_ID; Self_ID.Known_Tasks_Index := T; exit; end if; end loop; Unlock_All_Tasks_List; end Enter_Task; -------------- -- New_ATCB -- -------------- function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is begin return new Ada_Task_Control_Block (Entry_Num); end New_ATCB; ---------------------- -- Initialize_TCB -- ---------------------- procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is Mutex_Attr : aliased pthread_mutexattr_t; Result : Interfaces.C.int; Cond_Attr : aliased pthread_condattr_t; begin Self_ID.Common.LL.Thread := null_pthread; Result := pthread_mutexattr_init (Mutex_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Succeeded := False; return; end if; Result := pthread_mutexattr_setprotocol (Mutex_Attr'Access, Mutex_Protocol); pragma Assert (Result = 0); Result := pthread_mutexattr_setprioceiling (Mutex_Attr'Access, Interfaces.C.int (System.Any_Priority'Last)); pragma Assert (Result = 0); Result := pthread_mutex_init (Self_ID.Common.LL.L'Access, Mutex_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Succeeded := False; return; end if; Result := pthread_mutexattr_destroy (Mutex_Attr'Access); pragma Assert (Result = 0); Result := pthread_condattr_init (Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access); pragma Assert (Result = 0); Succeeded := False; return; end if; Result := pthread_cond_init (Self_ID.Common.LL.CV'Access, Cond_Attr'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result = 0 then Succeeded := True; else Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access); pragma Assert (Result = 0); Succeeded := False; end if; Result := pthread_condattr_destroy (Cond_Attr'Access); pragma Assert (Result = 0); end Initialize_TCB; ----------------- -- Create_Task -- ----------------- procedure Create_Task (T : Task_ID; Wrapper : System.Address; Stack_Size : System.Parameters.Size_Type; Priority : System.Any_Priority; Succeeded : out Boolean) is use type System.Task_Info.Task_Image_Type; Adjusted_Stack_Size : Interfaces.C.size_t; Attributes : aliased pthread_attr_t; Result : Interfaces.C.int; function Thread_Body_Access is new Unchecked_Conversion (System.Address, Thread_Body); begin if Stack_Size = Unspecified_Size then Adjusted_Stack_Size := Interfaces.C.size_t (Default_Stack_Size); elsif Stack_Size < Minimum_Stack_Size then Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size); else Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size); end if; -- Ask for 4 extra bytes of stack space so that the ATCB -- pointer can be stored below the stack limit, plus extra -- space for the frame of Task_Wrapper. This is so the user -- gets the amount of stack requested exclusive of the needs -- of the runtime. -- -- We also have to allocate 10 more bytes for the task name -- storage and enough space for the Wind Task Control Block -- which is around 0x778 bytes. VxWorks also seems to carve out -- additional space, so use 2048 as a nice round number. -- We might want to increment to the nearest page size in -- case we ever support VxVMI. -- -- XXX - we should come back and visit this so we can -- set the task name to something appropriate. Adjusted_Stack_Size := Adjusted_Stack_Size + 2048; Result := pthread_attr_init (Attributes'Access); pragma Assert (Result = 0 or else Result = ENOMEM); if Result /= 0 then Succeeded := False; return; end if; Result := pthread_attr_setdetachstate (Attributes'Access, PTHREAD_CREATE_DETACHED); pragma Assert (Result = 0); Result := pthread_attr_setstacksize (Attributes'Access, Adjusted_Stack_Size); pragma Assert (Result = 0); -- Let's check to see if the task has an image string and -- use that as the VxWorks task name. if T.Common.Task_Image /= null then declare Task_Name : aliased constant String := T.Common.Task_Image.all & ASCII.NUL; begin Result := pthread_attr_setname_np (Attributes'Access, Task_Name'Address); -- Since the initial signal mask of a thread is inherited from the -- creator, and the Environment task has all its signals masked, -- we do not need to manipulate caller's signal mask at this -- point. All tasks in RTS will have All_Tasks_Mask initially. Result := pthread_create (T.Common.LL.Thread'Access, Attributes'Access, Thread_Body_Access (Wrapper), To_Address (T)); end; else -- No specified task name Result := pthread_create (T.Common.LL.Thread'Access, Attributes'Access, Thread_Body_Access (Wrapper), To_Address (T)); end if; pragma Assert (Result = 0); Succeeded := Result = 0; Result := pthread_attr_destroy (Attributes'Access); pragma Assert (Result = 0); Task_Creation_Hook (T.Common.LL.Thread); Set_Priority (T, Priority); end Create_Task; ------------------ -- Finalize_TCB -- ------------------ procedure Finalize_TCB (T : Task_ID) is Result : Interfaces.C.int; Tmp : Task_ID := T; procedure Free is new Unchecked_Deallocation (Ada_Task_Control_Block, Task_ID); begin T.Common.LL.Thread := null_pthread; Result := pthread_mutex_destroy (T.Common.LL.L'Access); pragma Assert (Result = 0); Result := pthread_cond_destroy (T.Common.LL.CV'Access); pragma Assert (Result = 0); if T.Known_Tasks_Index /= -1 then Known_Tasks (T.Known_Tasks_Index) := null; end if; Free (Tmp); end Finalize_TCB; --------------- -- Exit_Task -- --------------- procedure Exit_Task is begin Task_Termination_Hook; pthread_exit (System.Null_Address); end Exit_Task; ---------------- -- Abort_Task -- ---------------- procedure Abort_Task (T : Task_ID) is Result : Interfaces.C.int; begin Result := kill (T.Common.LL.Thread, Signal (Interrupt_Management.Abort_Task_Interrupt)); pragma Assert (Result = 0); end Abort_Task; ---------------- -- Check_Exit -- ---------------- -- Dummy versions. The only currently working versions is for solaris -- (native). function Check_Exit (Self_ID : ST.Task_ID) return Boolean is begin return True; end Check_Exit; -------------------- -- Check_No_Locks -- -------------------- function Check_No_Locks (Self_ID : ST.Task_ID) return Boolean is begin return True; end Check_No_Locks; ---------------------- -- Environment_Task -- ---------------------- function Environment_Task return Task_ID is begin return Environment_Task_ID; end Environment_Task; ------------------------- -- Lock_All_Tasks_List -- ------------------------- procedure Lock_All_Tasks_List is begin Write_Lock (All_Tasks_L'Access); end Lock_All_Tasks_List; --------------------------- -- Unlock_All_Tasks_List -- --------------------------- procedure Unlock_All_Tasks_List is begin Unlock (All_Tasks_L'Access); end Unlock_All_Tasks_List; ------------------ -- Suspend_Task -- ------------------ function Suspend_Task (T : ST.Task_ID; Thread_Self : Thread_Id) return Boolean is begin if T.Common.LL.Thread /= null_pthread and then T.Common.LL.Thread /= Thread_Self then return taskSuspend (T.Common.LL.Thread) = 0; else return True; end if; end Suspend_Task; ----------------- -- Resume_Task -- ----------------- function Resume_Task (T : ST.Task_ID; Thread_Self : Thread_Id) return Boolean is begin if T.Common.LL.Thread /= null_pthread and then T.Common.LL.Thread /= Thread_Self then return taskResume (T.Common.LL.Thread) = 0; else return True; end if; end Resume_Task; ---------------- -- Initialize -- ---------------- procedure Initialize (Environment_Task : Task_ID) is begin Environment_Task_ID := Environment_Task; -- Initialize the lock used to synchronize chain of all ATCBs. Initialize_Lock (All_Tasks_L'Access, All_Tasks_Level); Enter_Task (Environment_Task); end Initialize; begin declare Result : Interfaces.C.int; begin if Locking_Policy = 'C' then Mutex_Protocol := PTHREAD_PRIO_PROTECT; else -- We default to VxWorks native priority inheritence -- and inversion safe mutexes with no ceiling checks. Mutex_Protocol := PTHREAD_PRIO_INHERIT; end if; if Time_Slice_Val > 0 then Result := pthread_sched_rr_set_interval (Interfaces.C.int (Time_Slice_Val)); end if; -- Prepare the set of signals that should unblocked in all tasks Result := sigemptyset (Unblocked_Signal_Mask'Access); pragma Assert (Result = 0); for J in Interrupt_Management.Interrupt_ID loop if Interrupt_Management.Keep_Unmasked (J) then Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J)); pragma Assert (Result = 0); end if; end loop; Result := pthread_key_create (ATCB_Key'Access, null); pragma Assert (Result = 0); Result := taskVarAdd (getpid, Stack_Limit'Access); pragma Assert (Result = 0); end; end System.Task_Primitives.Operations;